Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
 
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
 
 
 
 
 
 
 
 
 
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC void
  34xlog_dealloc_log(
  35	struct xlog		*log);
  36
  37/* local state machine functions */
  38STATIC void xlog_state_done_syncing(
  39	struct xlog_in_core	*iclog);
  40STATIC void xlog_state_do_callback(
  41	struct xlog		*log);
  42STATIC int
  43xlog_state_get_iclog_space(
  44	struct xlog		*log,
  45	int			len,
  46	struct xlog_in_core	**iclog,
  47	struct xlog_ticket	*ticket,
  48	int			*logoffsetp);
  49STATIC void
  50xlog_sync(
  51	struct xlog		*log,
  52	struct xlog_in_core	*iclog,
  53	struct xlog_ticket	*ticket);
 
 
 
 
 
 
 
 
 
 
 
  54#if defined(DEBUG)
  55STATIC void
  56xlog_verify_iclog(
  57	struct xlog		*log,
  58	struct xlog_in_core	*iclog,
  59	int			count);
  60STATIC void
  61xlog_verify_tail_lsn(
  62	struct xlog		*log,
  63	struct xlog_in_core	*iclog);
  64#else
  65#define xlog_verify_iclog(a,b,c)
  66#define xlog_verify_tail_lsn(a,b)
 
 
  67#endif
  68
  69STATIC int
  70xlog_iclogs_empty(
  71	struct xlog		*log);
  72
  73static int
  74xfs_log_cover(struct xfs_mount *);
  75
  76/*
  77 * We need to make sure the buffer pointer returned is naturally aligned for the
  78 * biggest basic data type we put into it. We have already accounted for this
  79 * padding when sizing the buffer.
  80 *
  81 * However, this padding does not get written into the log, and hence we have to
  82 * track the space used by the log vectors separately to prevent log space hangs
  83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  84 * CIL context ticket.
  85 *
  86 * We also add space for the xlog_op_header that describes this region in the
  87 * log. This prepends the data region we return to the caller to copy their data
  88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
  89 * is not 8 byte aligned, we have to be careful to ensure that we align the
  90 * start of the buffer such that the region we return to the call is 8 byte
  91 * aligned and packed against the tail of the ophdr.
  92 */
  93void *
  94xlog_prepare_iovec(
  95	struct xfs_log_vec	*lv,
  96	struct xfs_log_iovec	**vecp,
  97	uint			type)
  98{
  99	struct xfs_log_iovec	*vec = *vecp;
 100	struct xlog_op_header	*oph;
 101	uint32_t		len;
 102	void			*buf;
 103
 104	if (vec) {
 105		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 106		vec++;
 107	} else {
 108		vec = &lv->lv_iovecp[0];
 109	}
 110
 111	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 112	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 113		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 114					sizeof(struct xlog_op_header);
 115	}
 116
 117	vec->i_type = type;
 118	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 119
 120	oph = vec->i_addr;
 121	oph->oh_clientid = XFS_TRANSACTION;
 122	oph->oh_res2 = 0;
 123	oph->oh_flags = 0;
 124
 125	buf = vec->i_addr + sizeof(struct xlog_op_header);
 126	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 127
 128	*vecp = vec;
 129	return buf;
 130}
 
 
 131
 132static inline void
 133xlog_grant_sub_space(
 134	struct xlog_grant_head	*head,
 135	int64_t			bytes)
 136{
 137	atomic64_sub(bytes, &head->grant);
 138}
 139
 140static inline void
 141xlog_grant_add_space(
 142	struct xlog_grant_head	*head,
 143	int64_t			bytes)
 144{
 145	atomic64_add(bytes, &head->grant);
 146}
 147
 148static void
 149xlog_grant_head_init(
 150	struct xlog_grant_head	*head)
 
 
 151{
 152	atomic64_set(&head->grant, 0);
 153	INIT_LIST_HEAD(&head->waiters);
 154	spin_lock_init(&head->lock);
 155}
 156
 157void
 158xlog_grant_return_space(
 159	struct xlog	*log,
 160	xfs_lsn_t	old_head,
 161	xfs_lsn_t	new_head)
 162{
 163	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
 164
 165	xlog_grant_sub_space(&log->l_reserve_head, diff);
 166	xlog_grant_sub_space(&log->l_write_head, diff);
 167}
 168
 169/*
 170 * Return the space in the log between the tail and the head.  In the case where
 171 * we have overrun available reservation space, return 0. The memory barrier
 172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
 173 * vs tail space updates are seen in the correct order and hence avoid
 174 * transients as space is transferred from the grant heads to the AIL on commit
 175 * completion.
 176 */
 177static uint64_t
 178xlog_grant_space_left(
 179	struct xlog		*log,
 180	struct xlog_grant_head	*head)
 181{
 182	int64_t			free_bytes;
 183
 184	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
 185	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
 186			atomic64_read(&head->grant);
 187	if (free_bytes > 0)
 188		return free_bytes;
 189	return 0;
 190}
 191
 192STATIC void
 193xlog_grant_head_wake_all(
 194	struct xlog_grant_head	*head)
 195{
 196	struct xlog_ticket	*tic;
 197
 198	spin_lock(&head->lock);
 199	list_for_each_entry(tic, &head->waiters, t_queue)
 200		wake_up_process(tic->t_task);
 201	spin_unlock(&head->lock);
 202}
 203
 204static inline int
 205xlog_ticket_reservation(
 206	struct xlog		*log,
 207	struct xlog_grant_head	*head,
 208	struct xlog_ticket	*tic)
 209{
 210	if (head == &log->l_write_head) {
 211		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 212		return tic->t_unit_res;
 
 
 213	}
 214
 215	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 216		return tic->t_unit_res * tic->t_cnt;
 217
 218	return tic->t_unit_res;
 219}
 220
 221STATIC bool
 222xlog_grant_head_wake(
 223	struct xlog		*log,
 224	struct xlog_grant_head	*head,
 225	int			*free_bytes)
 226{
 227	struct xlog_ticket	*tic;
 228	int			need_bytes;
 229
 230	list_for_each_entry(tic, &head->waiters, t_queue) {
 231		need_bytes = xlog_ticket_reservation(log, head, tic);
 232		if (*free_bytes < need_bytes)
 233			return false;
 234
 235		*free_bytes -= need_bytes;
 236		trace_xfs_log_grant_wake_up(log, tic);
 237		wake_up_process(tic->t_task);
 238	}
 239
 240	return true;
 241}
 242
 243STATIC int
 244xlog_grant_head_wait(
 245	struct xlog		*log,
 246	struct xlog_grant_head	*head,
 247	struct xlog_ticket	*tic,
 248	int			need_bytes) __releases(&head->lock)
 249					    __acquires(&head->lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	list_add_tail(&tic->t_queue, &head->waiters);
 
 252
 253	do {
 254		if (xlog_is_shutdown(log))
 255			goto shutdown;
 256
 257		__set_current_state(TASK_UNINTERRUPTIBLE);
 258		spin_unlock(&head->lock);
 
 
 
 
 
 
 259
 260		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 261
 262		/* Push on the AIL to free up all the log space. */
 263		xfs_ail_push_all(log->l_ailp);
 
 264
 265		trace_xfs_log_grant_sleep(log, tic);
 266		schedule();
 267		trace_xfs_log_grant_wake(log, tic);
 
 
 
 
 
 268
 269		spin_lock(&head->lock);
 270		if (xlog_is_shutdown(log))
 271			goto shutdown;
 272	} while (xlog_grant_space_left(log, head) < need_bytes);
 
 
 
 273
 274	list_del_init(&tic->t_queue);
 275	return 0;
 276shutdown:
 277	list_del_init(&tic->t_queue);
 278	return -EIO;
 279}
 280
 281/*
 282 * Atomically get the log space required for a log ticket.
 283 *
 284 * Once a ticket gets put onto head->waiters, it will only return after the
 285 * needed reservation is satisfied.
 286 *
 287 * This function is structured so that it has a lock free fast path. This is
 288 * necessary because every new transaction reservation will come through this
 289 * path. Hence any lock will be globally hot if we take it unconditionally on
 290 * every pass.
 291 *
 292 * As tickets are only ever moved on and off head->waiters under head->lock, we
 293 * only need to take that lock if we are going to add the ticket to the queue
 294 * and sleep. We can avoid taking the lock if the ticket was never added to
 295 * head->waiters because the t_queue list head will be empty and we hold the
 296 * only reference to it so it can safely be checked unlocked.
 297 */
 298STATIC int
 299xlog_grant_head_check(
 300	struct xlog		*log,
 301	struct xlog_grant_head	*head,
 302	struct xlog_ticket	*tic,
 303	int			*need_bytes)
 304{
 305	int			free_bytes;
 306	int			error = 0;
 307
 308	ASSERT(!xlog_in_recovery(log));
 309
 310	/*
 311	 * If there are other waiters on the queue then give them a chance at
 312	 * logspace before us.  Wake up the first waiters, if we do not wake
 313	 * up all the waiters then go to sleep waiting for more free space,
 314	 * otherwise try to get some space for this transaction.
 315	 */
 316	*need_bytes = xlog_ticket_reservation(log, head, tic);
 317	free_bytes = xlog_grant_space_left(log, head);
 318	if (!list_empty_careful(&head->waiters)) {
 319		spin_lock(&head->lock);
 320		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 321		    free_bytes < *need_bytes) {
 322			error = xlog_grant_head_wait(log, head, tic,
 323						     *need_bytes);
 324		}
 325		spin_unlock(&head->lock);
 326	} else if (free_bytes < *need_bytes) {
 327		spin_lock(&head->lock);
 328		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 329		spin_unlock(&head->lock);
 330	}
 331
 332	return error;
 333}
 334
 335bool
 336xfs_log_writable(
 337	struct xfs_mount	*mp)
 338{
 339	/*
 340	 * Do not write to the log on norecovery mounts, if the data or log
 341	 * devices are read-only, or if the filesystem is shutdown. Read-only
 342	 * mounts allow internal writes for log recovery and unmount purposes,
 343	 * so don't restrict that case.
 344	 */
 345	if (xfs_has_norecovery(mp))
 346		return false;
 347	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 348		return false;
 349	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 350		return false;
 351	if (xlog_is_shutdown(mp->m_log))
 352		return false;
 353	return true;
 354}
 355
 356/*
 357 * Replenish the byte reservation required by moving the grant write head.
 358 */
 359int
 360xfs_log_regrant(
 361	struct xfs_mount	*mp,
 362	struct xlog_ticket	*tic)
 363{
 364	struct xlog		*log = mp->m_log;
 365	int			need_bytes;
 366	int			error = 0;
 367
 368	if (xlog_is_shutdown(log))
 369		return -EIO;
 370
 371	XFS_STATS_INC(mp, xs_try_logspace);
 372
 373	/*
 374	 * This is a new transaction on the ticket, so we need to change the
 375	 * transaction ID so that the next transaction has a different TID in
 376	 * the log. Just add one to the existing tid so that we can see chains
 377	 * of rolling transactions in the log easily.
 378	 */
 379	tic->t_tid++;
 380	tic->t_curr_res = tic->t_unit_res;
 381	if (tic->t_cnt > 0)
 382		return 0;
 383
 384	trace_xfs_log_regrant(log, tic);
 385
 386	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 387				      &need_bytes);
 388	if (error)
 389		goto out_error;
 390
 391	xlog_grant_add_space(&log->l_write_head, need_bytes);
 392	trace_xfs_log_regrant_exit(log, tic);
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 
 
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int			unit_bytes,
 418	int			cnt,
 419	struct xlog_ticket	**ticp,
 420	bool			permanent)
 421{
 422	struct xlog		*log = mp->m_log;
 423	struct xlog_ticket	*tic;
 424	int			need_bytes;
 425	int			error = 0;
 426
 427	if (xlog_is_shutdown(log))
 428		return -EIO;
 429
 430	XFS_STATS_INC(mp, xs_try_logspace);
 431
 432	ASSERT(*ticp == NULL);
 433	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 434	*ticp = tic;
 435	trace_xfs_log_reserve(log, tic);
 436	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 437				      &need_bytes);
 438	if (error)
 439		goto out_error;
 440
 441	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
 442	xlog_grant_add_space(&log->l_write_head, need_bytes);
 443	trace_xfs_log_reserve_exit(log, tic);
 444	return 0;
 445
 446out_error:
 447	/*
 448	 * If we are failing, make sure the ticket doesn't have any current
 449	 * reservations.  We don't want to add this back when the ticket/
 450	 * transaction gets cancelled.
 451	 */
 452	tic->t_curr_res = 0;
 453	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 454	return error;
 455}
 456
 457/*
 458 * Run all the pending iclog callbacks and wake log force waiters and iclog
 459 * space waiters so they can process the newly set shutdown state. We really
 460 * don't care what order we process callbacks here because the log is shut down
 461 * and so state cannot change on disk anymore. However, we cannot wake waiters
 462 * until the callbacks have been processed because we may be in unmount and
 463 * we must ensure that all AIL operations the callbacks perform have completed
 464 * before we tear down the AIL.
 465 *
 466 * We avoid processing actively referenced iclogs so that we don't run callbacks
 467 * while the iclog owner might still be preparing the iclog for IO submssion.
 468 * These will be caught by xlog_state_iclog_release() and call this function
 469 * again to process any callbacks that may have been added to that iclog.
 470 */
 471static void
 472xlog_state_shutdown_callbacks(
 473	struct xlog		*log)
 474{
 475	struct xlog_in_core	*iclog;
 476	LIST_HEAD(cb_list);
 
 477
 478	iclog = log->l_iclog;
 479	do {
 480		if (atomic_read(&iclog->ic_refcnt)) {
 481			/* Reference holder will re-run iclog callbacks. */
 482			continue;
 483		}
 484		list_splice_init(&iclog->ic_callbacks, &cb_list);
 485		spin_unlock(&log->l_icloglock);
 486
 487		xlog_cil_process_committed(&cb_list);
 
 488
 489		spin_lock(&log->l_icloglock);
 490		wake_up_all(&iclog->ic_write_wait);
 491		wake_up_all(&iclog->ic_force_wait);
 492	} while ((iclog = iclog->ic_next) != log->l_iclog);
 493
 494	wake_up_all(&log->l_flush_wait);
 495}
 496
 497/*
 498 * Flush iclog to disk if this is the last reference to the given iclog and the
 499 * it is in the WANT_SYNC state.
 500 *
 501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 503 * written to stable storage, and implies that a commit record is contained
 504 * within the iclog. We need to ensure that the log tail does not move beyond
 505 * the tail that the first commit record in the iclog ordered against, otherwise
 506 * correct recovery of that checkpoint becomes dependent on future operations
 507 * performed on this iclog.
 508 *
 509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 510 * current tail into iclog. Once the iclog tail is set, future operations must
 511 * not modify it, otherwise they potentially violate ordering constraints for
 512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 513 * the iclog will get zeroed on activation of the iclog after sync, so we
 514 * always capture the tail lsn on the iclog on the first NEED_FUA release
 515 * regardless of the number of active reference counts on this iclog.
 516 */
 517int
 518xlog_state_release_iclog(
 519	struct xlog		*log,
 520	struct xlog_in_core	*iclog,
 521	struct xlog_ticket	*ticket)
 522{
 523	bool			last_ref;
 524
 525	lockdep_assert_held(&log->l_icloglock);
 
 
 526
 527	trace_xlog_iclog_release(iclog, _RET_IP_);
 528	/*
 529	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 530	 * of the tail LSN into the iclog so we guarantee that the log tail does
 531	 * not move between the first time we know that the iclog needs to be
 532	 * made stable and when we eventually submit it.
 533	 */
 534	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 535	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 536	    !iclog->ic_header.h_tail_lsn) {
 537		iclog->ic_header.h_tail_lsn =
 538				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
 539	}
 540
 541	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 542
 543	if (xlog_is_shutdown(log)) {
 544		/*
 545		 * If there are no more references to this iclog, process the
 546		 * pending iclog callbacks that were waiting on the release of
 547		 * this iclog.
 
 
 548		 */
 549		if (last_ref)
 550			xlog_state_shutdown_callbacks(log);
 551		return -EIO;
 552	}
 553
 554	if (!last_ref)
 555		return 0;
 556
 557	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 558		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 559		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560	}
 561
 562	iclog->ic_state = XLOG_STATE_SYNCING;
 563	xlog_verify_tail_lsn(log, iclog);
 564	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 565
 566	spin_unlock(&log->l_icloglock);
 567	xlog_sync(log, iclog, ticket);
 568	spin_lock(&log->l_icloglock);
 569	return 0;
 570}
 571
 572/*
 573 * Mount a log filesystem
 574 *
 575 * mp		- ubiquitous xfs mount point structure
 576 * log_target	- buftarg of on-disk log device
 577 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 578 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 579 *
 580 * Return error or zero.
 581 */
 582int
 583xfs_log_mount(
 584	xfs_mount_t		*mp,
 585	struct xfs_buftarg	*log_target,
 586	xfs_daddr_t		blk_offset,
 587	int			num_bblks)
 588{
 589	struct xlog		*log;
 590	int			error = 0;
 591	int			min_logfsbs;
 592
 593	if (!xfs_has_norecovery(mp)) {
 594		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 595			   XFS_SB_VERSION_NUM(&mp->m_sb),
 596			   &mp->m_sb.sb_uuid);
 597	} else {
 598		xfs_notice(mp,
 599"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 600			   XFS_SB_VERSION_NUM(&mp->m_sb),
 601			   &mp->m_sb.sb_uuid);
 602		ASSERT(xfs_is_readonly(mp));
 603	}
 604
 605	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 606	if (IS_ERR(log)) {
 607		error = PTR_ERR(log);
 608		goto out;
 609	}
 610	mp->m_log = log;
 611
 612	/*
 613	 * Now that we have set up the log and it's internal geometry
 614	 * parameters, we can validate the given log space and drop a critical
 615	 * message via syslog if the log size is too small. A log that is too
 616	 * small can lead to unexpected situations in transaction log space
 617	 * reservation stage. The superblock verifier has already validated all
 618	 * the other log geometry constraints, so we don't have to check those
 619	 * here.
 620	 *
 621	 * Note: For v4 filesystems, we can't just reject the mount if the
 622	 * validation fails.  This would mean that people would have to
 623	 * downgrade their kernel just to remedy the situation as there is no
 624	 * way to grow the log (short of black magic surgery with xfs_db).
 625	 *
 626	 * We can, however, reject mounts for V5 format filesystems, as the
 627	 * mkfs binary being used to make the filesystem should never create a
 628	 * filesystem with a log that is too small.
 629	 */
 630	min_logfsbs = xfs_log_calc_minimum_size(mp);
 631	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 632		xfs_warn(mp,
 633		"Log size %d blocks too small, minimum size is %d blocks",
 634			 mp->m_sb.sb_logblocks, min_logfsbs);
 635
 636		/*
 637		 * Log check errors are always fatal on v5; or whenever bad
 638		 * metadata leads to a crash.
 639		 */
 640		if (xfs_has_crc(mp)) {
 641			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 642			ASSERT(0);
 643			error = -EINVAL;
 644			goto out_free_log;
 645		}
 646		xfs_crit(mp, "Log size out of supported range.");
 647		xfs_crit(mp,
 648"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 649	}
 650
 651	/*
 652	 * Initialize the AIL now we have a log.
 653	 */
 654	error = xfs_trans_ail_init(mp);
 655	if (error) {
 656		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 657		goto out_free_log;
 658	}
 659	log->l_ailp = mp->m_ail;
 660
 661	/*
 662	 * skip log recovery on a norecovery mount.  pretend it all
 663	 * just worked.
 664	 */
 665	if (!xfs_has_norecovery(mp)) {
 666		error = xlog_recover(log);
 
 
 
 
 
 
 
 
 667		if (error) {
 668			xfs_warn(mp, "log mount/recovery failed: error %d",
 669				error);
 670			xlog_recover_cancel(log);
 671			goto out_destroy_ail;
 672		}
 673	}
 674
 675	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 676			       "log");
 677	if (error)
 678		goto out_destroy_ail;
 679
 680	/* Normal transactions can now occur */
 681	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 682
 683	/*
 684	 * Now the log has been fully initialised and we know were our
 685	 * space grant counters are, we can initialise the permanent ticket
 686	 * needed for delayed logging to work.
 687	 */
 688	xlog_cil_init_post_recovery(log);
 689
 690	return 0;
 691
 692out_destroy_ail:
 693	xfs_trans_ail_destroy(mp);
 694out_free_log:
 695	xlog_dealloc_log(log);
 696out:
 697	return error;
 698}
 699
 700/*
 701 * Finish the recovery of the file system.  This is separate from the
 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 704 * here.
 705 *
 706 * If we finish recovery successfully, start the background log work. If we are
 707 * not doing recovery, then we have a RO filesystem and we don't need to start
 708 * it.
 709 */
 710int
 711xfs_log_mount_finish(
 712	struct xfs_mount	*mp)
 713{
 714	struct xlog		*log = mp->m_log;
 715	int			error = 0;
 716
 717	if (xfs_has_norecovery(mp)) {
 718		ASSERT(xfs_is_readonly(mp));
 719		return 0;
 
 
 720	}
 721
 722	/*
 723	 * During the second phase of log recovery, we need iget and
 724	 * iput to behave like they do for an active filesystem.
 725	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 726	 * of inodes before we're done replaying log items on those
 727	 * inodes.  Turn it off immediately after recovery finishes
 728	 * so that we don't leak the quota inodes if subsequent mount
 729	 * activities fail.
 730	 *
 731	 * We let all inodes involved in redo item processing end up on
 732	 * the LRU instead of being evicted immediately so that if we do
 733	 * something to an unlinked inode, the irele won't cause
 734	 * premature truncation and freeing of the inode, which results
 735	 * in log recovery failure.  We have to evict the unreferenced
 736	 * lru inodes after clearing SB_ACTIVE because we don't
 737	 * otherwise clean up the lru if there's a subsequent failure in
 738	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 739	 * else (e.g. quotacheck) references the inodes before the
 740	 * mount failure occurs.
 741	 */
 742	mp->m_super->s_flags |= SB_ACTIVE;
 743	xfs_log_work_queue(mp);
 744	if (xlog_recovery_needed(log))
 745		error = xlog_recover_finish(log);
 746	mp->m_super->s_flags &= ~SB_ACTIVE;
 747	evict_inodes(mp->m_super);
 748
 749	/*
 750	 * Drain the buffer LRU after log recovery. This is required for v4
 751	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 752	 * but we do it unconditionally to make sure we're always in a clean
 753	 * cache state after mount.
 754	 *
 755	 * Don't push in the error case because the AIL may have pending intents
 756	 * that aren't removed until recovery is cancelled.
 757	 */
 758	if (xlog_recovery_needed(log)) {
 759		if (!error) {
 760			xfs_log_force(mp, XFS_LOG_SYNC);
 761			xfs_ail_push_all_sync(mp->m_ail);
 762		}
 763		xfs_notice(mp, "Ending recovery (logdev: %s)",
 764				mp->m_logname ? mp->m_logname : "internal");
 765	} else {
 766		xfs_info(mp, "Ending clean mount");
 767	}
 768	xfs_buftarg_drain(mp->m_ddev_targp);
 769
 770	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 771
 772	/* Make sure the log is dead if we're returning failure. */
 773	ASSERT(!error || xlog_is_shutdown(log));
 774
 775	return error;
 776}
 777
 778/*
 779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 780 * the log.
 781 */
 782void
 783xfs_log_mount_cancel(
 784	struct xfs_mount	*mp)
 785{
 786	xlog_recover_cancel(mp->m_log);
 787	xfs_log_unmount(mp);
 788}
 789
 790/*
 791 * Flush out the iclog to disk ensuring that device caches are flushed and
 792 * the iclog hits stable storage before any completion waiters are woken.
 793 */
 794static inline int
 795xlog_force_iclog(
 796	struct xlog_in_core	*iclog)
 797{
 798	atomic_inc(&iclog->ic_refcnt);
 799	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 800	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 801		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 802	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 803}
 804
 805/*
 806 * Cycle all the iclogbuf locks to make sure all log IO completion
 807 * is done before we tear down these buffers.
 
 
 
 808 */
 809static void
 810xlog_wait_iclog_completion(struct xlog *log)
 811{
 812	int		i;
 813	struct xlog_in_core	*iclog = log->l_iclog;
 814
 815	for (i = 0; i < log->l_iclog_bufs; i++) {
 816		down(&iclog->ic_sema);
 817		up(&iclog->ic_sema);
 818		iclog = iclog->ic_next;
 819	}
 820}
 821
 822/*
 823 * Wait for the iclog and all prior iclogs to be written disk as required by the
 824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 825 * have been ordered and callbacks run before we are woken here, hence
 826 * guaranteeing that all the iclogs up to this one are on stable storage.
 827 */
 828int
 829xlog_wait_on_iclog(
 830	struct xlog_in_core	*iclog)
 831		__releases(iclog->ic_log->l_icloglock)
 832{
 833	struct xlog		*log = iclog->ic_log;
 834
 835	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 836	if (!xlog_is_shutdown(log) &&
 837	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 838	    iclog->ic_state != XLOG_STATE_DIRTY) {
 839		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 840		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 841	} else {
 842		spin_unlock(&log->l_icloglock);
 843	}
 844
 845	if (xlog_is_shutdown(log))
 846		return -EIO;
 847	return 0;
 848}
 849
 850/*
 851 * Write out an unmount record using the ticket provided. We have to account for
 852 * the data space used in the unmount ticket as this write is not done from a
 853 * transaction context that has already done the accounting for us.
 854 */
 855static int
 856xlog_write_unmount_record(
 857	struct xlog		*log,
 858	struct xlog_ticket	*ticket)
 859{
 860	struct  {
 861		struct xlog_op_header ophdr;
 862		struct xfs_unmount_log_format ulf;
 863	} unmount_rec = {
 864		.ophdr = {
 865			.oh_clientid = XFS_LOG,
 866			.oh_tid = cpu_to_be32(ticket->t_tid),
 867			.oh_flags = XLOG_UNMOUNT_TRANS,
 868		},
 869		.ulf = {
 870			.magic = XLOG_UNMOUNT_TYPE,
 871		},
 872	};
 873	struct xfs_log_iovec reg = {
 874		.i_addr = &unmount_rec,
 875		.i_len = sizeof(unmount_rec),
 876		.i_type = XLOG_REG_TYPE_UNMOUNT,
 877	};
 878	struct xfs_log_vec vec = {
 879		.lv_niovecs = 1,
 880		.lv_iovecp = &reg,
 881	};
 882	LIST_HEAD(lv_chain);
 883	list_add(&vec.lv_list, &lv_chain);
 884
 885	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 886		      sizeof(struct xfs_unmount_log_format)) !=
 887							sizeof(unmount_rec));
 888
 889	/* account for space used by record data */
 890	ticket->t_curr_res -= sizeof(unmount_rec);
 891
 892	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 893}
 894
 895/*
 896 * Mark the filesystem clean by writing an unmount record to the head of the
 897 * log.
 898 */
 899static void
 900xlog_unmount_write(
 901	struct xlog		*log)
 902{
 903	struct xfs_mount	*mp = log->l_mp;
 904	struct xlog_in_core	*iclog;
 905	struct xlog_ticket	*tic = NULL;
 906	int			error;
 907
 908	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 909	if (error)
 910		goto out_err;
 911
 912	error = xlog_write_unmount_record(log, tic);
 913	/*
 914	 * At this point, we're umounting anyway, so there's no point in
 915	 * transitioning log state to shutdown. Just continue...
 916	 */
 917out_err:
 918	if (error)
 919		xfs_alert(mp, "%s: unmount record failed", __func__);
 920
 921	spin_lock(&log->l_icloglock);
 922	iclog = log->l_iclog;
 923	error = xlog_force_iclog(iclog);
 924	xlog_wait_on_iclog(iclog);
 925
 926	if (tic) {
 927		trace_xfs_log_umount_write(log, tic);
 928		xfs_log_ticket_ungrant(log, tic);
 929	}
 930}
 931
 932static void
 933xfs_log_unmount_verify_iclog(
 934	struct xlog		*log)
 935{
 936	struct xlog_in_core	*iclog = log->l_iclog;
 937
 
 
 938	do {
 939		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 940		ASSERT(iclog->ic_offset == 0);
 941	} while ((iclog = iclog->ic_next) != log->l_iclog);
 942}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/*
 945 * Unmount record used to have a string "Unmount filesystem--" in the
 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 947 * We just write the magic number now since that particular field isn't
 948 * currently architecture converted and "Unmount" is a bit foo.
 949 * As far as I know, there weren't any dependencies on the old behaviour.
 950 */
 951static void
 952xfs_log_unmount_write(
 953	struct xfs_mount	*mp)
 954{
 955	struct xlog		*log = mp->m_log;
 956
 957	if (!xfs_log_writable(mp))
 958		return;
 959
 960	xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 
 
 
 961
 962	if (xlog_is_shutdown(log))
 963		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	/*
 966	 * If we think the summary counters are bad, avoid writing the unmount
 967	 * record to force log recovery at next mount, after which the summary
 968	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 969	 * more details.
 970	 */
 971	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 972			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 973		xfs_alert(mp, "%s: will fix summary counters at next mount",
 974				__func__);
 975		return;
 976	}
 977
 978	xfs_log_unmount_verify_iclog(log);
 979	xlog_unmount_write(log);
 980}
 981
 982/*
 983 * Empty the log for unmount/freeze.
 984 *
 985 * To do this, we first need to shut down the background log work so it is not
 986 * trying to cover the log as we clean up. We then need to unpin all objects in
 987 * the log so we can then flush them out. Once they have completed their IO and
 988 * run the callbacks removing themselves from the AIL, we can cover the log.
 989 */
 990int
 991xfs_log_quiesce(
 992	struct xfs_mount	*mp)
 993{
 994	/*
 995	 * Clear log incompat features since we're quiescing the log.  Report
 996	 * failures, though it's not fatal to have a higher log feature
 997	 * protection level than the log contents actually require.
 998	 */
 999	if (xfs_clear_incompat_log_features(mp)) {
1000		int error;
1001
1002		error = xfs_sync_sb(mp, false);
1003		if (error)
1004			xfs_warn(mp,
1005	"Failed to clear log incompat features on quiesce");
 
1006	}
1007
1008	cancel_delayed_work_sync(&mp->m_log->l_work);
1009	xfs_log_force(mp, XFS_LOG_SYNC);
1010
1011	/*
1012	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014	 * xfs_buf_iowait() cannot be used because it was pushed with the
1015	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016	 * the IO to complete.
1017	 */
1018	xfs_ail_push_all_sync(mp->m_ail);
1019	xfs_buftarg_wait(mp->m_ddev_targp);
1020	xfs_buf_lock(mp->m_sb_bp);
1021	xfs_buf_unlock(mp->m_sb_bp);
1022
1023	return xfs_log_cover(mp);
1024}
1025
1026void
1027xfs_log_clean(
1028	struct xfs_mount	*mp)
1029{
1030	xfs_log_quiesce(mp);
1031	xfs_log_unmount_write(mp);
1032}
1033
1034/*
1035 * Shut down and release the AIL and Log.
1036 *
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1040 */
1041void
1042xfs_log_unmount(
1043	struct xfs_mount	*mp)
1044{
1045	xfs_log_clean(mp);
1046
1047	/*
1048	 * If shutdown has come from iclog IO context, the log
1049	 * cleaning will have been skipped and so we need to wait
1050	 * for the iclog to complete shutdown processing before we
1051	 * tear anything down.
1052	 */
1053	xlog_wait_iclog_completion(mp->m_log);
1054
1055	xfs_buftarg_drain(mp->m_ddev_targp);
1056
1057	xfs_trans_ail_destroy(mp);
1058
1059	xfs_sysfs_del(&mp->m_log->l_kobj);
1060
1061	xlog_dealloc_log(mp->m_log);
1062}
1063
1064void
1065xfs_log_item_init(
1066	struct xfs_mount	*mp,
1067	struct xfs_log_item	*item,
1068	int			type,
1069	const struct xfs_item_ops *ops)
1070{
1071	item->li_log = mp->m_log;
1072	item->li_ailp = mp->m_ail;
1073	item->li_type = type;
1074	item->li_ops = ops;
1075	item->li_lv = NULL;
1076
1077	INIT_LIST_HEAD(&item->li_ail);
1078	INIT_LIST_HEAD(&item->li_cil);
1079	INIT_LIST_HEAD(&item->li_bio_list);
1080	INIT_LIST_HEAD(&item->li_trans);
1081}
1082
1083/*
1084 * Wake up processes waiting for log space after we have moved the log tail.
 
 
 
 
 
1085 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086void
1087xfs_log_space_wake(
1088	struct xfs_mount	*mp)
1089{
1090	struct xlog		*log = mp->m_log;
1091	int			free_bytes;
 
1092
1093	if (xlog_is_shutdown(log))
1094		return;
1095
1096	if (!list_empty_careful(&log->l_write_head.waiters)) {
1097		ASSERT(!xlog_in_recovery(log));
1098
1099		spin_lock(&log->l_write_head.lock);
1100		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102		spin_unlock(&log->l_write_head.lock);
1103	}
1104
1105	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106		ASSERT(!xlog_in_recovery(log));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108		spin_lock(&log->l_reserve_head.lock);
1109		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111		spin_unlock(&log->l_reserve_head.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112	}
1113}
1114
1115/*
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1120 *
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1123 * state.
1124 *
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1131 */
1132static bool
1133xfs_log_need_covered(
1134	struct xfs_mount	*mp)
1135{
1136	struct xlog		*log = mp->m_log;
1137	bool			needed = false;
1138
1139	if (!xlog_cil_empty(log))
1140		return false;
1141
1142	spin_lock(&log->l_icloglock);
1143	switch (log->l_covered_state) {
1144	case XLOG_STATE_COVER_DONE:
1145	case XLOG_STATE_COVER_DONE2:
1146	case XLOG_STATE_COVER_IDLE:
1147		break;
1148	case XLOG_STATE_COVER_NEED:
1149	case XLOG_STATE_COVER_NEED2:
1150		if (xfs_ail_min_lsn(log->l_ailp))
1151			break;
1152		if (!xlog_iclogs_empty(log))
1153			break;
1154
1155		needed = true;
1156		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157			log->l_covered_state = XLOG_STATE_COVER_DONE;
1158		else
1159			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160		break;
1161	default:
1162		needed = true;
1163		break;
1164	}
1165	spin_unlock(&log->l_icloglock);
1166	return needed;
1167}
1168
1169/*
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1174 */
1175static int
1176xfs_log_cover(
 
 
 
 
 
 
 
 
 
 
 
1177	struct xfs_mount	*mp)
1178{
1179	int			error = 0;
1180	bool			need_covered;
1181
1182	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184		xlog_is_shutdown(mp->m_log));
1185
1186	if (!xfs_log_writable(mp))
1187		return 0;
 
1188
1189	/*
1190	 * xfs_log_need_covered() is not idempotent because it progresses the
1191	 * state machine if the log requires covering. Therefore, we must call
1192	 * this function once and use the result until we've issued an sb sync.
1193	 * Do so first to make that abundantly clear.
1194	 *
1195	 * Fall into the covering sequence if the log needs covering or the
1196	 * mount has lazy superblock accounting to sync to disk. The sb sync
1197	 * used for covering accumulates the in-core counters, so covering
1198	 * handles this for us.
1199	 */
1200	need_covered = xfs_log_need_covered(mp);
1201	if (!need_covered && !xfs_has_lazysbcount(mp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202		return 0;
1203
1204	/*
1205	 * To cover the log, commit the superblock twice (at most) in
1206	 * independent checkpoints. The first serves as a reference for the
1207	 * tail pointer. The sync transaction and AIL push empties the AIL and
1208	 * updates the in-core tail to the LSN of the first checkpoint. The
1209	 * second commit updates the on-disk tail with the in-core LSN,
1210	 * covering the log. Push the AIL one more time to leave it empty, as
1211	 * we found it.
1212	 */
1213	do {
1214		error = xfs_sync_sb(mp, true);
1215		if (error)
1216			break;
1217		xfs_ail_push_all_sync(mp->m_ail);
1218	} while (xfs_log_need_covered(mp));
1219
1220	return error;
1221}
1222
1223static void
1224xlog_ioend_work(
1225	struct work_struct	*work)
1226{
1227	struct xlog_in_core     *iclog =
1228		container_of(work, struct xlog_in_core, ic_end_io_work);
1229	struct xlog		*log = iclog->ic_log;
1230	int			error;
1231
1232	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233#ifdef DEBUG
1234	/* treat writes with injected CRC errors as failed */
1235	if (iclog->ic_fail_crc)
1236		error = -EIO;
1237#endif
 
 
 
 
 
 
1238
1239	/*
1240	 * Race to shutdown the filesystem if we see an error.
1241	 */
1242	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243		xfs_alert(log->l_mp, "log I/O error %d", error);
1244		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 
 
 
 
 
 
 
1245	}
1246
1247	xlog_state_done_syncing(iclog);
1248	bio_uninit(&iclog->ic_bio);
1249
1250	/*
1251	 * Drop the lock to signal that we are done. Nothing references the
1252	 * iclog after this, so an unmount waiting on this lock can now tear it
1253	 * down safely. As such, it is unsafe to reference the iclog after the
1254	 * unlock as we could race with it being freed.
1255	 */
1256	up(&iclog->ic_sema);
1257}
1258
1259/*
1260 * Return size of each in-core log record buffer.
1261 *
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1263 *
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1266 */
 
1267STATIC void
1268xlog_get_iclog_buffer_size(
1269	struct xfs_mount	*mp,
1270	struct xlog		*log)
1271{
1272	if (mp->m_logbufs <= 0)
1273		mp->m_logbufs = XLOG_MAX_ICLOGS;
1274	if (mp->m_logbsize <= 0)
1275		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1276
1277	log->l_iclog_bufs = mp->m_logbufs;
1278	log->l_iclog_size = mp->m_logbsize;
 
 
1279
1280	/*
1281	 * # headers = size / 32k - one header holds cycles from 32k of data.
1282	 */
1283	log->l_iclog_heads =
1284		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1286}
1287
1288void
1289xfs_log_work_queue(
1290	struct xfs_mount        *mp)
1291{
1292	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1294}
1295
1296/*
1297 * Clear the log incompat flags if we have the opportunity.
1298 *
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1301 */
1302static inline void
1303xlog_clear_incompat(
1304	struct xlog		*log)
1305{
1306	struct xfs_mount	*mp = log->l_mp;
1307
1308	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310		return;
1311
1312	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313		return;
1314
1315	xfs_clear_incompat_log_features(mp);
1316}
1317
1318/*
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1322 */
1323static void
1324xfs_log_worker(
1325	struct work_struct	*work)
1326{
1327	struct xlog		*log = container_of(to_delayed_work(work),
1328						struct xlog, l_work);
1329	struct xfs_mount	*mp = log->l_mp;
1330
1331	/* dgc: errors ignored - not fatal and nowhere to report them */
1332	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1333		/*
1334		 * Dump a transaction into the log that contains no real change.
1335		 * This is needed to stamp the current tail LSN into the log
1336		 * during the covering operation.
1337		 *
1338		 * We cannot use an inode here for this - that will push dirty
1339		 * state back up into the VFS and then periodic inode flushing
1340		 * will prevent log covering from making progress. Hence we
1341		 * synchronously log the superblock instead to ensure the
1342		 * superblock is immediately unpinned and can be written back.
1343		 */
1344		xlog_clear_incompat(log);
1345		xfs_sync_sb(mp, true);
1346	} else
1347		xfs_log_force(mp, 0);
1348
1349	/* start pushing all the metadata that is currently dirty */
1350	xfs_ail_push_all(mp->m_ail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351
1352	/* queue us up again */
1353	xfs_log_work_queue(mp);
1354}
1355
1356/*
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1359 * some other stuff may be filled in too.
1360 */
1361STATIC struct xlog *
1362xlog_alloc_log(
1363	struct xfs_mount	*mp,
1364	struct xfs_buftarg	*log_target,
1365	xfs_daddr_t		blk_offset,
1366	int			num_bblks)
1367{
1368	struct xlog		*log;
1369	xlog_rec_header_t	*head;
1370	xlog_in_core_t		**iclogp;
1371	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 
1372	int			i;
1373	int			error = -ENOMEM;
1374	uint			log2_size = 0;
1375
1376	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377	if (!log) {
1378		xfs_warn(mp, "Log allocation failed: No memory!");
1379		goto out;
1380	}
1381
1382	log->l_mp	   = mp;
1383	log->l_targ	   = log_target;
1384	log->l_logsize     = BBTOB(num_bblks);
1385	log->l_logBBstart  = blk_offset;
1386	log->l_logBBsize   = num_bblks;
1387	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390	INIT_LIST_HEAD(&log->r_dfops);
1391
1392	log->l_prev_block  = -1;
1393	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
 
1395	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
 
 
 
 
 
 
1396
1397	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399	else
1400		log->l_iclog_roundoff = BBSIZE;
1401
1402	xlog_grant_head_init(&log->l_reserve_head);
1403	xlog_grant_head_init(&log->l_write_head);
1404
1405	error = -EFSCORRUPTED;
1406	if (xfs_has_sector(mp)) {
1407	        log2_size = mp->m_sb.sb_logsectlog;
1408		if (log2_size < BBSHIFT) {
1409			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410				log2_size, BBSHIFT);
1411			goto out_free_log;
1412		}
1413
1414	        log2_size -= BBSHIFT;
1415		if (log2_size > mp->m_sectbb_log) {
1416			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417				log2_size, mp->m_sectbb_log);
1418			goto out_free_log;
1419		}
1420
1421		/* for larger sector sizes, must have v2 or external log */
1422		if (log2_size && log->l_logBBstart > 0 &&
1423			    !xfs_has_logv2(mp)) {
1424			xfs_warn(mp,
1425		"log sector size (0x%x) invalid for configuration.",
1426				log2_size);
1427			goto out_free_log;
1428		}
1429	}
1430	log->l_sectBBsize = 1 << log2_size;
1431
1432	xlog_get_iclog_buffer_size(mp, log);
1433
 
 
 
 
 
 
 
 
1434	spin_lock_init(&log->l_icloglock);
1435	init_waitqueue_head(&log->l_flush_wait);
1436
 
 
 
1437	iclogp = &log->l_iclog;
1438	/*
1439	 * The amount of memory to allocate for the iclog structure is
1440	 * rather funky due to the way the structure is defined.  It is
1441	 * done this way so that we can use different sizes for machines
1442	 * with different amounts of memory.  See the definition of
1443	 * xlog_in_core_t in xfs_log_priv.h for details.
1444	 */
1445	ASSERT(log->l_iclog_size >= 4096);
1446	for (i = 0; i < log->l_iclog_bufs; i++) {
1447		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448				sizeof(struct bio_vec);
1449
1450		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452		if (!iclog)
1453			goto out_free_iclog;
1454
1455		*iclogp = iclog;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		iclog->ic_data = kvzalloc(log->l_iclog_size,
1460				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461		if (!iclog->ic_data)
1462			goto out_free_iclog;
 
 
 
 
 
 
 
1463		head = &iclog->ic_header;
1464		memset(head, 0, sizeof(xlog_rec_header_t));
1465		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466		head->h_version = cpu_to_be32(
1467			xfs_has_logv2(log->l_mp) ? 2 : 1);
1468		head->h_size = cpu_to_be32(log->l_iclog_size);
1469		/* new fields */
1470		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472
1473		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474		iclog->ic_state = XLOG_STATE_ACTIVE;
1475		iclog->ic_log = log;
1476		atomic_set(&iclog->ic_refcnt, 0);
1477		INIT_LIST_HEAD(&iclog->ic_callbacks);
1478		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
 
1479
 
1480		init_waitqueue_head(&iclog->ic_force_wait);
1481		init_waitqueue_head(&iclog->ic_write_wait);
1482		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483		sema_init(&iclog->ic_sema, 1);
1484
1485		iclogp = &iclog->ic_next;
1486	}
1487	*iclogp = log->l_iclog;			/* complete ring */
1488	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1489
1490	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492				    WQ_HIGHPRI),
1493			0, mp->m_super->s_id);
1494	if (!log->l_ioend_workqueue)
1495		goto out_free_iclog;
1496
1497	error = xlog_cil_init(log);
1498	if (error)
1499		goto out_destroy_workqueue;
1500	return log;
1501
1502out_destroy_workqueue:
1503	destroy_workqueue(log->l_ioend_workqueue);
1504out_free_iclog:
1505	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506		prev_iclog = iclog->ic_next;
1507		kvfree(iclog->ic_data);
1508		kfree(iclog);
1509		if (prev_iclog == log->l_iclog)
1510			break;
1511	}
 
 
1512out_free_log:
1513	kfree(log);
1514out:
1515	return ERR_PTR(error);
1516}	/* xlog_alloc_log */
1517
 
1518/*
1519 * Stamp cycle number in every block
 
1520 */
1521STATIC void
1522xlog_pack_data(
1523	struct xlog		*log,
1524	struct xlog_in_core	*iclog,
1525	int			roundoff)
 
1526{
1527	int			i, j, k;
1528	int			size = iclog->ic_offset + roundoff;
1529	__be32			cycle_lsn;
1530	char			*dp;
1531
1532	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1533
1534	dp = iclog->ic_datap;
1535	for (i = 0; i < BTOBB(size); i++) {
1536		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537			break;
1538		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539		*(__be32 *)dp = cycle_lsn;
1540		dp += BBSIZE;
1541	}
1542
1543	if (xfs_has_logv2(log->l_mp)) {
1544		xlog_in_core_2_t *xhdr = iclog->ic_data;
1545
1546		for ( ; i < BTOBB(size); i++) {
1547			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550			*(__be32 *)dp = cycle_lsn;
1551			dp += BBSIZE;
1552		}
1553
1554		for (i = 1; i < log->l_iclog_heads; i++)
1555			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1556	}
 
 
 
1557}
1558
1559/*
1560 * Calculate the checksum for a log buffer.
1561 *
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
 
1564 */
1565__le32
1566xlog_cksum(
1567	struct xlog		*log,
1568	struct xlog_rec_header	*rhead,
1569	char			*dp,
1570	int			size)
1571{
1572	uint32_t		crc;
1573
1574	/* first generate the crc for the record header ... */
1575	crc = xfs_start_cksum_update((char *)rhead,
1576			      sizeof(struct xlog_rec_header),
1577			      offsetof(struct xlog_rec_header, h_crc));
1578
1579	/* ... then for additional cycle data for v2 logs ... */
1580	if (xfs_has_logv2(log->l_mp)) {
1581		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582		int		i;
1583		int		xheads;
1584
1585		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1586
1587		for (i = 1; i < xheads; i++) {
1588			crc = crc32c(crc, &xhdr[i].hic_xheader,
1589				     sizeof(struct xlog_rec_ext_header));
1590		}
1591	}
1592
1593	/* ... and finally for the payload */
1594	crc = crc32c(crc, dp, size);
1595
1596	return xfs_end_cksum(crc);
1597}
1598
1599static void
1600xlog_bio_end_io(
1601	struct bio		*bio)
1602{
1603	struct xlog_in_core	*iclog = bio->bi_private;
1604
1605	queue_work(iclog->ic_log->l_ioend_workqueue,
1606		   &iclog->ic_end_io_work);
1607}
1608
1609static int
1610xlog_map_iclog_data(
1611	struct bio		*bio,
1612	void			*data,
1613	size_t			count)
1614{
1615	do {
1616		struct page	*page = kmem_to_page(data);
1617		unsigned int	off = offset_in_page(data);
1618		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1619
1620		if (bio_add_page(bio, page, len, off) != len)
1621			return -EIO;
1622
1623		data += len;
1624		count -= len;
1625	} while (count);
1626
1627	return 0;
1628}
1629
1630STATIC void
1631xlog_write_iclog(
1632	struct xlog		*log,
1633	struct xlog_in_core	*iclog,
1634	uint64_t		bno,
1635	unsigned int		count)
1636{
1637	ASSERT(bno < log->l_logBBsize);
1638	trace_xlog_iclog_write(iclog, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639
1640	/*
1641	 * We lock the iclogbufs here so that we can serialise against I/O
1642	 * completion during unmount.  We might be processing a shutdown
1643	 * triggered during unmount, and that can occur asynchronously to the
1644	 * unmount thread, and hence we need to ensure that completes before
1645	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1646	 * across the log IO to archieve that.
1647	 */
1648	down(&iclog->ic_sema);
1649	if (xlog_is_shutdown(log)) {
1650		/*
1651		 * It would seem logical to return EIO here, but we rely on
1652		 * the log state machine to propagate I/O errors instead of
1653		 * doing it here.  We kick of the state machine and unlock
1654		 * the buffer manually, the code needs to be kept in sync
1655		 * with the I/O completion path.
1656		 */
1657		goto sync;
1658	}
1659
 
1660	/*
1661	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662	 * IOs coming immediately after this one. This prevents the block layer
1663	 * writeback throttle from throttling log writes behind background
1664	 * metadata writeback and causing priority inversions.
1665	 */
1666	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667		 howmany(count, PAGE_SIZE),
1668		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671	iclog->ic_bio.bi_private = iclog;
1672
1673	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1675		/*
1676		 * For external log devices, we also need to flush the data
1677		 * device cache first to ensure all metadata writeback covered
1678		 * by the LSN in this iclog is on stable storage. This is slow,
1679		 * but it *must* complete before we issue the external log IO.
1680		 *
1681		 * If the flush fails, we cannot conclude that past metadata
1682		 * writeback from the log succeeded.  Repeating the flush is
1683		 * not possible, hence we must shut down with log IO error to
1684		 * avoid shutdown re-entering this path and erroring out again.
1685		 */
1686		if (log->l_targ != log->l_mp->m_ddev_targp &&
1687		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688			goto shutdown;
1689	}
1690	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691		iclog->ic_bio.bi_opf |= REQ_FUA;
1692
1693	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1694
1695	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696		goto shutdown;
1697
1698	if (is_vmalloc_addr(iclog->ic_data))
1699		flush_kernel_vmap_range(iclog->ic_data, count);
1700
1701	/*
1702	 * If this log buffer would straddle the end of the log we will have
1703	 * to split it up into two bios, so that we can continue at the start.
 
1704	 */
1705	if (bno + BTOBB(count) > log->l_logBBsize) {
1706		struct bio *split;
1707
1708		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709				  GFP_NOIO, &fs_bio_set);
1710		bio_chain(split, &iclog->ic_bio);
1711		submit_bio(split);
1712
1713		/* restart at logical offset zero for the remainder */
1714		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1715	}
1716
1717	submit_bio(&iclog->ic_bio);
1718	return;
1719shutdown:
1720	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721sync:
1722	xlog_state_done_syncing(iclog);
1723	up(&iclog->ic_sema);
1724}
1725
1726/*
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
 
 
 
1730 */
1731static void
1732xlog_split_iclog(
1733	struct xlog		*log,
1734	void			*data,
1735	uint64_t		bno,
1736	unsigned int		count)
1737{
1738	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1739	unsigned int		i;
1740
1741	for (i = split_offset; i < count; i += BBSIZE) {
1742		uint32_t cycle = get_unaligned_be32(data + i);
1743
1744		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745			cycle++;
1746		put_unaligned_be32(cycle, data + i);
 
 
 
 
 
 
 
1747	}
1748}
1749
1750static int
1751xlog_calc_iclog_size(
1752	struct xlog		*log,
1753	struct xlog_in_core	*iclog,
1754	uint32_t		*roundoff)
1755{
1756	uint32_t		count_init, count;
1757
1758	/* Add for LR header */
1759	count_init = log->l_iclog_hsize + iclog->ic_offset;
1760	count = roundup(count_init, log->l_iclog_roundoff);
1761
1762	*roundoff = count - count_init;
1763
1764	ASSERT(count >= count_init);
1765	ASSERT(*roundoff < log->l_iclog_roundoff);
1766	return count;
1767}
1768
1769/*
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion.  Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog.  This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header.  We replace
1776 * it with the current cycle count.  Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once.  In other words,
1779 * we can't have part of a 512 byte block written and part not written.  By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1782 *
1783 * This routine is single threaded on the iclog.  No other thread can be in
1784 * this routine with the same iclog.  Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock.  Updating the global
1786 * log will require grabbing the lock though.
1787 *
1788 * The entire log manager uses a logical block numbering scheme.  Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
 
1791 */
1792STATIC void
1793xlog_sync(
1794	struct xlog		*log,
1795	struct xlog_in_core	*iclog,
1796	struct xlog_ticket	*ticket)
1797{
1798	unsigned int		count;		/* byte count of bwrite */
1799	unsigned int		roundoff;       /* roundoff to BB or stripe */
1800	uint64_t		bno;
1801	unsigned int		size;
 
 
 
 
 
1802
 
1803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804	trace_xlog_iclog_sync(iclog, _RET_IP_);
1805
1806	count = xlog_calc_iclog_size(log, iclog, &roundoff);
 
1807
1808	/*
1809	 * If we have a ticket, account for the roundoff via the ticket
1810	 * reservation to avoid touching the hot grant heads needlessly.
1811	 * Otherwise, we have to move grant heads directly.
1812	 */
1813	if (ticket) {
1814		ticket->t_curr_res -= roundoff;
1815	} else {
1816		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817		xlog_grant_add_space(&log->l_write_head, roundoff);
1818	}
 
 
 
 
 
 
 
 
 
 
 
1819
1820	/* put cycle number in every block */
1821	xlog_pack_data(log, iclog, roundoff);
1822
1823	/* real byte length */
1824	size = iclog->ic_offset;
1825	if (xfs_has_logv2(log->l_mp))
1826		size += roundoff;
1827	iclog->ic_header.h_len = cpu_to_be32(size);
 
 
 
1828
1829	XFS_STATS_INC(log->l_mp, xs_log_writes);
1830	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1831
1832	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1833
1834	/* Do we need to split this write into 2 parts? */
1835	if (bno + BTOBB(count) > log->l_logBBsize)
1836		xlog_split_iclog(log, &iclog->ic_header, bno, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837
1838	/* calculcate the checksum */
1839	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840					    iclog->ic_datap, size);
1841	/*
1842	 * Intentionally corrupt the log record CRC based on the error injection
1843	 * frequency, if defined. This facilitates testing log recovery in the
1844	 * event of torn writes. Hence, set the IOABORT state to abort the log
1845	 * write on I/O completion and shutdown the fs. The subsequent mount
1846	 * detects the bad CRC and attempts to recover.
1847	 */
1848#ifdef DEBUG
1849	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851		iclog->ic_fail_crc = true;
1852		xfs_warn(log->l_mp,
1853	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854			 be64_to_cpu(iclog->ic_header.h_lsn));
1855	}
1856#endif
1857	xlog_verify_iclog(log, iclog, count);
1858	xlog_write_iclog(log, iclog, bno, count);
1859}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861/*
1862 * Deallocate a log structure
1863 */
1864STATIC void
1865xlog_dealloc_log(
1866	struct xlog	*log)
1867{
1868	xlog_in_core_t	*iclog, *next_iclog;
1869	int		i;
1870
 
 
1871	/*
1872	 * Destroy the CIL after waiting for iclog IO completion because an
1873	 * iclog EIO error will try to shut down the log, which accesses the
1874	 * CIL to wake up the waiters.
1875	 */
1876	xlog_cil_destroy(log);
 
1877
1878	iclog = log->l_iclog;
1879	for (i = 0; i < log->l_iclog_bufs; i++) {
 
1880		next_iclog = iclog->ic_next;
1881		kvfree(iclog->ic_data);
1882		kfree(iclog);
1883		iclog = next_iclog;
1884	}
 
1885
1886	log->l_mp->m_log = NULL;
1887	destroy_workqueue(log->l_ioend_workqueue);
1888	kfree(log);
1889}
1890
1891/*
1892 * Update counters atomically now that memcpy is done.
1893 */
 
1894static inline void
1895xlog_state_finish_copy(
1896	struct xlog		*log,
1897	struct xlog_in_core	*iclog,
1898	int			record_cnt,
1899	int			copy_bytes)
1900{
1901	lockdep_assert_held(&log->l_icloglock);
1902
1903	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904	iclog->ic_offset += copy_bytes;
1905}
 
 
 
 
 
1906
1907/*
1908 * print out info relating to regions written which consume
1909 * the reservation
1910 */
1911void
1912xlog_print_tic_res(
1913	struct xfs_mount	*mp,
1914	struct xlog_ticket	*ticket)
1915{
1916	xfs_warn(mp, "ticket reservation summary:");
1917	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1918	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1919	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1920	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921}
1922
1923/*
1924 * Print a summary of the transaction.
 
1925 */
1926void
1927xlog_print_trans(
1928	struct xfs_trans	*tp)
 
1929{
1930	struct xfs_mount	*mp = tp->t_mountp;
1931	struct xfs_log_item	*lip;
 
 
1932
1933	/* dump core transaction and ticket info */
1934	xfs_warn(mp, "transaction summary:");
1935	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1936	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1937	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1938
1939	xlog_print_tic_res(mp, tp->t_ticket);
1940
1941	/* dump each log item */
1942	list_for_each_entry(lip, &tp->t_items, li_trans) {
1943		struct xfs_log_vec	*lv = lip->li_lv;
1944		struct xfs_log_iovec	*vec;
1945		int			i;
1946
1947		xfs_warn(mp, "log item: ");
1948		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1949		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1950		if (!lv)
1951			continue;
1952		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1953		xfs_warn(mp, "  size	= %d", lv->lv_size);
1954		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1955		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1956
1957		/* dump each iovec for the log item */
1958		vec = lv->lv_iovecp;
1959		for (i = 0; i < lv->lv_niovecs; i++) {
1960			int dumplen = min(vec->i_len, 32);
1961
1962			xfs_warn(mp, "  iovec[%d]", i);
1963			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1964			xfs_warn(mp, "    len	= %d", vec->i_len);
1965			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1966			xfs_hex_dump(vec->i_addr, dumplen);
1967
1968			vec++;
 
1969		}
1970	}
1971}
1972
1973static inline void
1974xlog_write_iovec(
1975	struct xlog_in_core	*iclog,
1976	uint32_t		*log_offset,
1977	void			*data,
1978	uint32_t		write_len,
1979	int			*bytes_left,
1980	uint32_t		*record_cnt,
1981	uint32_t		*data_cnt)
1982{
1983	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984	ASSERT(*log_offset % sizeof(int32_t) == 0);
1985	ASSERT(write_len % sizeof(int32_t) == 0);
1986
1987	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988	*log_offset += write_len;
1989	*bytes_left -= write_len;
1990	(*record_cnt)++;
1991	*data_cnt += write_len;
1992}
1993
1994/*
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
1997 */
1998static void
1999xlog_write_full(
2000	struct xfs_log_vec	*lv,
2001	struct xlog_ticket	*ticket,
2002	struct xlog_in_core	*iclog,
2003	uint32_t		*log_offset,
2004	uint32_t		*len,
2005	uint32_t		*record_cnt,
2006	uint32_t		*data_cnt)
2007{
2008	int			index;
 
2009
2010	ASSERT(*log_offset + *len <= iclog->ic_size ||
2011		iclog->ic_state == XLOG_STATE_WANT_SYNC);
 
 
 
2012
2013	/*
2014	 * Ordered log vectors have no regions to write so this
2015	 * loop will naturally skip them.
2016	 */
2017	for (index = 0; index < lv->lv_niovecs; index++) {
2018		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2019		struct xlog_op_header	*ophdr = reg->i_addr;
2020
2021		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023				reg->i_len, len, record_cnt, data_cnt);
2024	}
2025}
2026
2027static int
2028xlog_write_get_more_iclog_space(
 
 
2029	struct xlog_ticket	*ticket,
2030	struct xlog_in_core	**iclogp,
2031	uint32_t		*log_offset,
2032	uint32_t		len,
2033	uint32_t		*record_cnt,
2034	uint32_t		*data_cnt)
2035{
2036	struct xlog_in_core	*iclog = *iclogp;
2037	struct xlog		*log = iclog->ic_log;
2038	int			error;
2039
2040	spin_lock(&log->l_icloglock);
2041	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043	error = xlog_state_release_iclog(log, iclog, ticket);
2044	spin_unlock(&log->l_icloglock);
2045	if (error)
2046		return error;
 
 
 
 
 
 
 
 
 
 
 
 
2047
2048	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049					log_offset);
2050	if (error)
2051		return error;
2052	*record_cnt = 0;
2053	*data_cnt = 0;
2054	*iclogp = iclog;
2055	return 0;
2056}
2057
2058/*
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2063 */
2064static int
2065xlog_write_partial(
2066	struct xfs_log_vec	*lv,
2067	struct xlog_ticket	*ticket,
2068	struct xlog_in_core	**iclogp,
2069	uint32_t		*log_offset,
2070	uint32_t		*len,
2071	uint32_t		*record_cnt,
2072	uint32_t		*data_cnt)
2073{
2074	struct xlog_in_core	*iclog = *iclogp;
2075	struct xlog_op_header	*ophdr;
2076	int			index = 0;
2077	uint32_t		rlen;
2078	int			error;
2079
2080	/* walk the logvec, copying until we run out of space in the iclog */
2081	for (index = 0; index < lv->lv_niovecs; index++) {
2082		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2083		uint32_t		reg_offset = 0;
2084
2085		/*
2086		 * The first region of a continuation must have a non-zero
2087		 * length otherwise log recovery will just skip over it and
2088		 * start recovering from the next opheader it finds. Because we
2089		 * mark the next opheader as a continuation, recovery will then
2090		 * incorrectly add the continuation to the previous region and
2091		 * that breaks stuff.
2092		 *
2093		 * Hence if there isn't space for region data after the
2094		 * opheader, then we need to start afresh with a new iclog.
2095		 */
2096		if (iclog->ic_size - *log_offset <=
2097					sizeof(struct xlog_op_header)) {
2098			error = xlog_write_get_more_iclog_space(ticket,
2099					&iclog, log_offset, *len, record_cnt,
2100					data_cnt);
2101			if (error)
2102				return error;
2103		}
2104
2105		ophdr = reg->i_addr;
2106		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2107
2108		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110		if (rlen != reg->i_len)
2111			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2112
2113		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114				rlen, len, record_cnt, data_cnt);
 
 
 
 
 
 
 
 
 
 
2115
2116		/* If we wrote the whole region, move to the next. */
2117		if (rlen == reg->i_len)
2118			continue;
2119
 
 
 
 
 
 
 
 
 
 
 
 
 
2120		/*
2121		 * We now have a partially written iovec, but it can span
2122		 * multiple iclogs so we loop here. First we release the iclog
2123		 * we currently have, then we get a new iclog and add a new
2124		 * opheader. Then we continue copying from where we were until
2125		 * we either complete the iovec or fill the iclog. If we
2126		 * complete the iovec, then we increment the index and go right
2127		 * back to the top of the outer loop. if we fill the iclog, we
2128		 * run the inner loop again.
2129		 *
2130		 * This is complicated by the tail of a region using all the
2131		 * space in an iclog and hence requiring us to release the iclog
2132		 * and get a new one before returning to the outer loop. We must
2133		 * always guarantee that we exit this inner loop with at least
2134		 * space for log transaction opheaders left in the current
2135		 * iclog, hence we cannot just terminate the loop at the end
2136		 * of the of the continuation. So we loop while there is no
2137		 * space left in the current iclog, and check for the end of the
2138		 * continuation after getting a new iclog.
2139		 */
2140		do {
2141			/*
2142			 * Ensure we include the continuation opheader in the
2143			 * space we need in the new iclog by adding that size
2144			 * to the length we require. This continuation opheader
2145			 * needs to be accounted to the ticket as the space it
2146			 * consumes hasn't been accounted to the lv we are
2147			 * writing.
2148			 */
2149			error = xlog_write_get_more_iclog_space(ticket,
2150					&iclog, log_offset,
2151					*len + sizeof(struct xlog_op_header),
2152					record_cnt, data_cnt);
2153			if (error)
2154				return error;
2155
2156			ophdr = iclog->ic_datap + *log_offset;
2157			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158			ophdr->oh_clientid = XFS_TRANSACTION;
2159			ophdr->oh_res2 = 0;
2160			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2161
2162			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163			*log_offset += sizeof(struct xlog_op_header);
2164			*data_cnt += sizeof(struct xlog_op_header);
2165
2166			/*
2167			 * If rlen fits in the iclog, then end the region
2168			 * continuation. Otherwise we're going around again.
2169			 */
2170			reg_offset += rlen;
2171			rlen = reg->i_len - reg_offset;
2172			if (rlen <= iclog->ic_size - *log_offset)
2173				ophdr->oh_flags |= XLOG_END_TRANS;
2174			else
2175				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2176
2177			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178			ophdr->oh_len = cpu_to_be32(rlen);
2179
2180			xlog_write_iovec(iclog, log_offset,
2181					reg->i_addr + reg_offset,
2182					rlen, len, record_cnt, data_cnt);
2183
2184		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
 
 
 
2185	}
2186
2187	/*
2188	 * No more iovecs remain in this logvec so return the next log vec to
2189	 * the caller so it can go back to fast path copying.
2190	 */
2191	*iclogp = iclog;
2192	return 0;
2193}
2194
2195/*
2196 * Write some region out to in-core log
2197 *
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2200 *
2201 * General algorithm:
2202 *	1. Find total length of this write.  This may include adding to the
2203 *		lengths passed in.
2204 *	2. Check whether we violate the tickets reservation.
2205 *	3. While writing to this iclog
2206 *	    A. Reserve as much space in this iclog as can get
2207 *	    B. If this is first write, save away start lsn
2208 *	    C. While writing this region:
2209 *		1. If first write of transaction, write start record
2210 *		2. Write log operation header (header per region)
2211 *		3. Find out if we can fit entire region into this iclog
2212 *		4. Potentially, verify destination memcpy ptr
2213 *		5. Memcpy (partial) region
2214 *		6. If partial copy, release iclog; otherwise, continue
2215 *			copying more regions into current iclog
2216 *	4. Mark want sync bit (in simulation mode)
2217 *	5. Release iclog for potential flush to on-disk log.
2218 *
2219 * ERRORS:
2220 * 1.	Panic if reservation is overrun.  This should never happen since
2221 *	reservation amounts are generated internal to the filesystem.
2222 * NOTES:
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 *	syncing routine.  When a single log_write region needs to span
2226 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 *	on all log operation writes which don't contain the end of the
2228 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2229 *	operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 *	we don't really know exactly how much space will be used.  As a result,
2232 *	we don't update ic_offset until the end when we know exactly how many
2233 *	bytes have been written out.
2234 */
2235int
2236xlog_write(
2237	struct xlog		*log,
2238	struct xfs_cil_ctx	*ctx,
2239	struct list_head	*lv_chain,
2240	struct xlog_ticket	*ticket,
2241	uint32_t		len)
2242
 
2243{
2244	struct xlog_in_core	*iclog = NULL;
 
2245	struct xfs_log_vec	*lv;
2246	uint32_t		record_cnt = 0;
2247	uint32_t		data_cnt = 0;
2248	int			error = 0;
2249	int			log_offset;
2250
2251	if (ticket->t_curr_res < 0) {
2252		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253		     "ctx ticket reservation ran out. Need to up reservation");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254		xlog_print_tic_res(log->l_mp, ticket);
2255		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2256	}
2257
2258	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259					   &log_offset);
2260	if (error)
2261		return error;
 
 
 
 
 
 
 
2262
2263	ASSERT(log_offset <= iclog->ic_size - 1);
 
2264
2265	/*
2266	 * If we have a context pointer, pass it the first iclog we are
2267	 * writing to so it can record state needed for iclog write
2268	 * ordering.
2269	 */
2270	if (ctx)
2271		xlog_cil_set_ctx_write_state(ctx, iclog);
2272
2273	list_for_each_entry(lv, lv_chain, lv_list) {
2274		/*
2275		 * If the entire log vec does not fit in the iclog, punt it to
2276		 * the partial copy loop which can handle this case.
2277		 */
2278		if (lv->lv_niovecs &&
2279		    lv->lv_bytes > iclog->ic_size - log_offset) {
2280			error = xlog_write_partial(lv, ticket, &iclog,
2281					&log_offset, &len, &record_cnt,
2282					&data_cnt);
2283			if (error) {
2284				/*
2285				 * We have no iclog to release, so just return
2286				 * the error immediately.
2287				 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288				return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289			}
2290		} else {
2291			xlog_write_full(lv, ticket, iclog, &log_offset,
2292					 &len, &record_cnt, &data_cnt);
2293		}
2294	}
 
2295	ASSERT(len == 0);
2296
2297	/*
2298	 * We've already been guaranteed that the last writes will fit inside
2299	 * the current iclog, and hence it will already have the space used by
2300	 * those writes accounted to it. Hence we do not need to update the
2301	 * iclog with the number of bytes written here.
2302	 */
2303	spin_lock(&log->l_icloglock);
2304	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305	error = xlog_state_release_iclog(log, iclog, ticket);
2306	spin_unlock(&log->l_icloglock);
2307
2308	return error;
 
 
2309}
2310
2311static void
2312xlog_state_activate_iclog(
2313	struct xlog_in_core	*iclog,
2314	int			*iclogs_changed)
2315{
2316	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317	trace_xlog_iclog_activate(iclog, _RET_IP_);
2318
2319	/*
2320	 * If the number of ops in this iclog indicate it just contains the
2321	 * dummy transaction, we can change state into IDLE (the second time
2322	 * around). Otherwise we should change the state into NEED a dummy.
2323	 * We don't need to cover the dummy.
2324	 */
2325	if (*iclogs_changed == 0 &&
2326	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327		*iclogs_changed = 1;
2328	} else {
2329		/*
2330		 * We have two dirty iclogs so start over.  This could also be
2331		 * num of ops indicating this is not the dummy going out.
2332		 */
2333		*iclogs_changed = 2;
2334	}
2335
2336	iclog->ic_state	= XLOG_STATE_ACTIVE;
2337	iclog->ic_offset = 0;
2338	iclog->ic_header.h_num_logops = 0;
2339	memset(iclog->ic_header.h_cycle_data, 0,
2340		sizeof(iclog->ic_header.h_cycle_data));
2341	iclog->ic_header.h_lsn = 0;
2342	iclog->ic_header.h_tail_lsn = 0;
2343}
2344
2345/*
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
 
 
 
 
2348 */
2349static void
2350xlog_state_activate_iclogs(
2351	struct xlog		*log,
2352	int			*iclogs_changed)
2353{
2354	struct xlog_in_core	*iclog = log->l_iclog;
 
2355
 
2356	do {
2357		if (iclog->ic_state == XLOG_STATE_DIRTY)
2358			xlog_state_activate_iclog(iclog, iclogs_changed);
2359		/*
2360		 * The ordering of marking iclogs ACTIVE must be maintained, so
2361		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2362		 */
2363		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364			break;
2365	} while ((iclog = iclog->ic_next) != log->l_iclog);
2366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367
2368static int
2369xlog_covered_state(
2370	int			prev_state,
2371	int			iclogs_changed)
2372{
2373	/*
2374	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375	 * wrote the first covering record (DONE). We go to IDLE if we just
2376	 * wrote the second covering record (DONE2) and remain in IDLE until a
2377	 * non-covering write occurs.
2378	 */
2379	switch (prev_state) {
2380	case XLOG_STATE_COVER_IDLE:
2381		if (iclogs_changed == 1)
2382			return XLOG_STATE_COVER_IDLE;
2383		fallthrough;
2384	case XLOG_STATE_COVER_NEED:
2385	case XLOG_STATE_COVER_NEED2:
2386		break;
2387	case XLOG_STATE_COVER_DONE:
2388		if (iclogs_changed == 1)
2389			return XLOG_STATE_COVER_NEED2;
2390		break;
2391	case XLOG_STATE_COVER_DONE2:
2392		if (iclogs_changed == 1)
2393			return XLOG_STATE_COVER_IDLE;
2394		break;
2395	default:
2396		ASSERT(0);
2397	}
2398
2399	return XLOG_STATE_COVER_NEED;
2400}
2401
2402STATIC void
2403xlog_state_clean_iclog(
2404	struct xlog		*log,
2405	struct xlog_in_core	*dirty_iclog)
2406{
2407	int			iclogs_changed = 0;
2408
2409	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2410
2411	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
 
 
 
 
 
2412
2413	xlog_state_activate_iclogs(log, &iclogs_changed);
2414	wake_up_all(&dirty_iclog->ic_force_wait);
 
 
 
 
2415
2416	if (iclogs_changed) {
2417		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418				iclogs_changed);
2419	}
2420}
2421
2422STATIC xfs_lsn_t
2423xlog_get_lowest_lsn(
2424	struct xlog		*log)
2425{
2426	struct xlog_in_core	*iclog = log->l_iclog;
2427	xfs_lsn_t		lowest_lsn = 0, lsn;
2428
 
 
2429	do {
2430		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431		    iclog->ic_state == XLOG_STATE_DIRTY)
2432			continue;
2433
2434		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436			lowest_lsn = lsn;
2437	} while ((iclog = iclog->ic_next) != log->l_iclog);
2438
 
 
2439	return lowest_lsn;
2440}
2441
2442/*
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2446 */
2447static bool
2448xlog_state_iodone_process_iclog(
2449	struct xlog		*log,
2450	struct xlog_in_core	*iclog)
2451{
2452	xfs_lsn_t		lowest_lsn;
2453	xfs_lsn_t		header_lsn;
2454
2455	switch (iclog->ic_state) {
2456	case XLOG_STATE_ACTIVE:
2457	case XLOG_STATE_DIRTY:
2458		/*
2459		 * Skip all iclogs in the ACTIVE & DIRTY states:
2460		 */
2461		return false;
2462	case XLOG_STATE_DONE_SYNC:
2463		/*
2464		 * Now that we have an iclog that is in the DONE_SYNC state, do
2465		 * one more check here to see if we have chased our tail around.
2466		 * If this is not the lowest lsn iclog, then we will leave it
2467		 * for another completion to process.
2468		 */
2469		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470		lowest_lsn = xlog_get_lowest_lsn(log);
2471		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472			return false;
2473		/*
2474		 * If there are no callbacks on this iclog, we can mark it clean
2475		 * immediately and return. Otherwise we need to run the
2476		 * callbacks.
2477		 */
2478		if (list_empty(&iclog->ic_callbacks)) {
2479			xlog_state_clean_iclog(log, iclog);
2480			return false;
2481		}
2482		trace_xlog_iclog_callback(iclog, _RET_IP_);
2483		iclog->ic_state = XLOG_STATE_CALLBACK;
2484		return false;
2485	default:
2486		/*
2487		 * Can only perform callbacks in order.  Since this iclog is not
2488		 * in the DONE_SYNC state, we skip the rest and just try to
2489		 * clean up.
 
 
 
2490		 */
2491		return true;
2492	}
2493}
 
2494
2495/*
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2501 */
2502static bool
2503xlog_state_do_iclog_callbacks(
2504	struct xlog		*log)
2505		__releases(&log->l_icloglock)
2506		__acquires(&log->l_icloglock)
2507{
2508	struct xlog_in_core	*first_iclog = log->l_iclog;
2509	struct xlog_in_core	*iclog = first_iclog;
2510	bool			ran_callback = false;
2511
2512	do {
2513		LIST_HEAD(cb_list);
 
 
 
 
2514
2515		if (xlog_state_iodone_process_iclog(log, iclog))
2516			break;
2517		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518			iclog = iclog->ic_next;
2519			continue;
2520		}
2521		list_splice_init(&iclog->ic_callbacks, &cb_list);
2522		spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523
2524		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525		xlog_cil_process_committed(&cb_list);
2526		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527		ran_callback = true;
2528
2529		spin_lock(&log->l_icloglock);
2530		xlog_state_clean_iclog(log, iclog);
2531		iclog = iclog->ic_next;
2532	} while (iclog != first_iclog);
 
 
 
 
2533
2534	return ran_callback;
2535}
2536
2537
2538/*
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2541 */
2542STATIC void
2543xlog_state_do_callback(
2544	struct xlog		*log)
2545{
2546	int			flushcnt = 0;
2547	int			repeats = 0;
2548
2549	spin_lock(&log->l_icloglock);
2550	while (xlog_state_do_iclog_callbacks(log)) {
2551		if (xlog_is_shutdown(log))
2552			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554		if (++repeats > 5000) {
 
 
 
 
 
 
2555			flushcnt += repeats;
2556			repeats = 0;
2557			xfs_warn(log->l_mp,
2558				"%s: possible infinite loop (%d iterations)",
2559				__func__, flushcnt);
2560		}
2561	}
2562
2563	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2564		wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565
 
 
2566	spin_unlock(&log->l_icloglock);
 
 
 
2567}
2568
2569
2570/*
2571 * Finish transitioning this iclog to the dirty state.
2572 *
 
 
 
 
 
 
 
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2575 */
2576STATIC void
2577xlog_state_done_syncing(
2578	struct xlog_in_core	*iclog)
 
2579{
2580	struct xlog		*log = iclog->ic_log;
2581
2582	spin_lock(&log->l_icloglock);
 
 
 
2583	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
 
2585
2586	/*
2587	 * If we got an error, either on the first buffer, or in the case of
2588	 * split log writes, on the second, we shut down the file system and
2589	 * no iclogs should ever be attempted to be written to disk again.
2590	 */
2591	if (!xlog_is_shutdown(log)) {
2592		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
 
 
 
 
2593		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2594	}
2595
2596	/*
2597	 * Someone could be sleeping prior to writing out the next
2598	 * iclog buffer, we wake them all, one will get to do the
2599	 * I/O, the others get to wait for the result.
2600	 */
2601	wake_up_all(&iclog->ic_write_wait);
2602	spin_unlock(&log->l_icloglock);
2603	xlog_state_do_callback(log);
2604}
 
2605
2606/*
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep.  We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2611 *
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2614 *
2615 * return:
2616 *	* log_offset where xlog_write() can start writing into the in-core
2617 *		log's data space.
2618 *	* in-core log pointer to which xlog_write() should write.
2619 *	* boolean indicating this is a continued write to an in-core log.
2620 *		If this is the last write, then the in-core log's offset field
2621 *		needs to be incremented, depending on the amount of data which
2622 *		is copied.
2623 */
2624STATIC int
2625xlog_state_get_iclog_space(
2626	struct xlog		*log,
2627	int			len,
2628	struct xlog_in_core	**iclogp,
2629	struct xlog_ticket	*ticket,
2630	int			*logoffsetp)
2631{
2632	int		  log_offset;
2633	xlog_rec_header_t *head;
2634	xlog_in_core_t	  *iclog;
 
2635
2636restart:
2637	spin_lock(&log->l_icloglock);
2638	if (xlog_is_shutdown(log)) {
2639		spin_unlock(&log->l_icloglock);
2640		return -EIO;
2641	}
2642
2643	iclog = log->l_iclog;
2644	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2646
2647		/* Wait for log writes to have flushed */
2648		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649		goto restart;
2650	}
2651
2652	head = &iclog->ic_header;
2653
2654	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2655	log_offset = iclog->ic_offset;
2656
2657	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2658
2659	/* On the 1st write to an iclog, figure out lsn.  This works
2660	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661	 * committing to.  If the offset is set, that's how many blocks
2662	 * must be written.
2663	 */
2664	if (log_offset == 0) {
2665		ticket->t_curr_res -= log->l_iclog_hsize;
 
 
 
2666		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667		head->h_lsn = cpu_to_be64(
2668			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669		ASSERT(log->l_curr_block >= 0);
2670	}
2671
2672	/* If there is enough room to write everything, then do it.  Otherwise,
2673	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674	 * bit is on, so this will get flushed out.  Don't update ic_offset
2675	 * until you know exactly how many bytes get copied.  Therefore, wait
2676	 * until later to update ic_offset.
2677	 *
2678	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679	 * can fit into remaining data section.
2680	 */
2681	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682		int		error = 0;
2683
2684		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2685
2686		/*
2687		 * If we are the only one writing to this iclog, sync it to
2688		 * disk.  We need to do an atomic compare and decrement here to
2689		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690		 * xlog_state_release_iclog() when there is more than one
2691		 * reference to the iclog.
2692		 */
2693		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694			error = xlog_state_release_iclog(log, iclog, ticket);
2695		spin_unlock(&log->l_icloglock);
2696		if (error)
2697			return error;
 
 
 
 
2698		goto restart;
2699	}
2700
2701	/* Do we have enough room to write the full amount in the remainder
2702	 * of this iclog?  Or must we continue a write on the next iclog and
2703	 * mark this iclog as completely taken?  In the case where we switch
2704	 * iclogs (to mark it taken), this particular iclog will release/sync
2705	 * to disk in xlog_write().
2706	 */
2707	if (len <= iclog->ic_size - iclog->ic_offset)
 
2708		iclog->ic_offset += len;
2709	else
 
2710		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
 
2711	*iclogp = iclog;
2712
2713	ASSERT(iclog->ic_offset <= iclog->ic_size);
2714	spin_unlock(&log->l_icloglock);
2715
2716	*logoffsetp = log_offset;
2717	return 0;
2718}
2719
2720/*
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount.  Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth.  Also move grant reservation head
2725 * forward.
 
 
 
 
 
 
 
 
 
 
 
2726 */
2727void
2728xfs_log_ticket_regrant(
2729	struct xlog		*log,
2730	struct xlog_ticket	*ticket)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731{
2732	trace_xfs_log_ticket_regrant(log, ticket);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733
2734	if (ticket->t_cnt > 0)
2735		ticket->t_cnt--;
2736
2737	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
 
 
2739	ticket->t_curr_res = ticket->t_unit_res;
 
2740
2741	trace_xfs_log_ticket_regrant_sub(log, ticket);
2742
2743	/* just return if we still have some of the pre-reserved space */
2744	if (!ticket->t_cnt) {
2745		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2746		trace_xfs_log_ticket_regrant_exit(log, ticket);
2747
2748		ticket->t_curr_res = ticket->t_unit_res;
2749	}
 
 
 
 
 
 
2750
2751	xfs_log_ticket_put(ticket);
2752}
2753
2754/*
2755 * Give back the space left from a reservation.
2756 *
2757 * All the information we need to make a correct determination of space left
2758 * is present.  For non-permanent reservations, things are quite easy.  The
2759 * count should have been decremented to zero.  We only need to deal with the
2760 * space remaining in the current reservation part of the ticket.  If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released.  A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space.  The first
2764 * one goes to fill up the first current reservation.  Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2767 */
2768void
2769xfs_log_ticket_ungrant(
2770	struct xlog		*log,
2771	struct xlog_ticket	*ticket)
2772{
2773	int			bytes;
2774
2775	trace_xfs_log_ticket_ungrant(log, ticket);
2776
2777	if (ticket->t_cnt > 0)
2778		ticket->t_cnt--;
2779
2780	trace_xfs_log_ticket_ungrant_sub(log, ticket);
 
2781
2782	/*
2783	 * If this is a permanent reservation ticket, we may be able to free
2784	 * up more space based on the remaining count.
2785	 */
2786	bytes = ticket->t_curr_res;
2787	if (ticket->t_cnt > 0) {
2788		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789		bytes += ticket->t_unit_res*ticket->t_cnt;
2790	}
2791
2792	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793	xlog_grant_sub_space(&log->l_write_head, bytes);
2794
2795	trace_xfs_log_ticket_ungrant_exit(log, ticket);
 
 
 
2796
2797	xfs_log_space_wake(log->l_mp);
2798	xfs_log_ticket_put(ticket);
2799}
2800
2801/*
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
 
 
 
 
 
2804 */
2805void
2806xlog_state_switch_iclogs(
2807	struct xlog		*log,
2808	struct xlog_in_core	*iclog,
2809	int			eventual_size)
2810{
2811	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812	assert_spin_locked(&log->l_icloglock);
2813	trace_xlog_iclog_switch(iclog, _RET_IP_);
 
 
 
 
 
2814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815	if (!eventual_size)
2816		eventual_size = iclog->ic_offset;
2817	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819	log->l_prev_block = log->l_curr_block;
2820	log->l_prev_cycle = log->l_curr_cycle;
2821
2822	/* roll log?: ic_offset changed later */
2823	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2824
2825	/* Round up to next log-sunit */
2826	if (log->l_iclog_roundoff > BBSIZE) {
2827		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
 
2828		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2829	}
2830
2831	if (log->l_curr_block >= log->l_logBBsize) {
2832		/*
2833		 * Rewind the current block before the cycle is bumped to make
2834		 * sure that the combined LSN never transiently moves forward
2835		 * when the log wraps to the next cycle. This is to support the
2836		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837		 * other cases should acquire l_icloglock.
2838		 */
2839		log->l_curr_block -= log->l_logBBsize;
2840		ASSERT(log->l_curr_block >= 0);
2841		smp_wmb();
2842		log->l_curr_cycle++;
2843		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844			log->l_curr_cycle++;
 
 
2845	}
2846	ASSERT(iclog == log->l_iclog);
2847	log->l_iclog = iclog->ic_next;
2848}
2849
2850/*
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2856 */
2857static int
2858xlog_force_and_check_iclog(
2859	struct xlog_in_core	*iclog,
2860	bool			*completed)
2861{
2862	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863	int			error;
2864
2865	*completed = false;
2866	error = xlog_force_iclog(iclog);
2867	if (error)
2868		return error;
2869
2870	/*
2871	 * If the iclog has already been completed and reused the header LSN
2872	 * will have been rewritten by completion
2873	 */
2874	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875		*completed = true;
2876	return 0;
2877}
2878
2879/*
2880 * Write out all data in the in-core log as of this exact moment in time.
2881 *
2882 * Data may be written to the in-core log during this call.  However,
2883 * we don't guarantee this data will be written out.  A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2885 *
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return.  There is no
2888 * flushable data if:
2889 *
2890 *	1. the current iclog is active and has no data; the previous iclog
2891 *		is in the active or dirty state.
2892 *	2. the current iclog is drity, and the previous iclog is in the
2893 *		active or dirty state.
2894 *
2895 * We may sleep if:
2896 *
2897 *	1. the current iclog is not in the active nor dirty state.
2898 *	2. the current iclog dirty, and the previous iclog is not in the
2899 *		active nor dirty state.
2900 *	3. the current iclog is active, and there is another thread writing
2901 *		to this particular iclog.
2902 *	4. a) the current iclog is active and has no other writers
2903 *	   b) when we return from flushing out this iclog, it is still
2904 *		not in the active nor dirty state.
2905 */
2906int
2907xfs_log_force(
2908	struct xfs_mount	*mp,
2909	uint			flags)
 
2910{
2911	struct xlog		*log = mp->m_log;
2912	struct xlog_in_core	*iclog;
 
2913
2914	XFS_STATS_INC(mp, xs_log_force);
2915	trace_xfs_log_force(mp, 0, _RET_IP_);
2916
2917	xlog_cil_force(log);
 
2918
2919	spin_lock(&log->l_icloglock);
2920	if (xlog_is_shutdown(log))
2921		goto out_error;
2922
2923	iclog = log->l_iclog;
2924	trace_xlog_iclog_force(iclog, _RET_IP_);
 
 
 
2925
2926	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
2929		/*
2930		 * If the head is dirty or (active and empty), then we need to
2931		 * look at the previous iclog.
2932		 *
2933		 * If the previous iclog is active or dirty we are done.  There
2934		 * is nothing to sync out. Otherwise, we attach ourselves to the
2935		 * previous iclog and go to sleep.
2936		 */
2937		iclog = iclog->ic_prev;
2938	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939		if (atomic_read(&iclog->ic_refcnt) == 0) {
2940			/* We have exclusive access to this iclog. */
2941			bool	completed;
2942
2943			if (xlog_force_and_check_iclog(iclog, &completed))
2944				goto out_error;
2945
2946			if (completed)
2947				goto out_unlock;
2948		} else {
2949			/*
2950			 * Someone else is still writing to this iclog, so we
2951			 * need to ensure that when they release the iclog it
2952			 * gets synced immediately as we may be waiting on it.
2953			 */
2954			xlog_state_switch_iclogs(log, iclog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955		}
2956	}
2957
2958	/*
2959	 * The iclog we are about to wait on may contain the checkpoint pushed
2960	 * by the above xlog_cil_force() call, but it may not have been pushed
2961	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962	 * are flushed when this iclog is written.
2963	 */
2964	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2966
2967	if (flags & XFS_LOG_SYNC)
2968		return xlog_wait_on_iclog(iclog);
2969out_unlock:
2970	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971	return 0;
2972out_error:
2973	spin_unlock(&log->l_icloglock);
2974	return -EIO;
2975}
2976
2977/*
2978 * Force the log to a specific LSN.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979 *
2980 * If an iclog with that lsn can be found:
2981 *	If it is in the DIRTY state, just return.
2982 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 *		state and go to sleep or return.
2984 *	If it is in any other state, go to sleep or return.
2985 *
2986 * Synchronous forces are implemented with a wait queue.  All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log.  When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
 
2990 */
2991static int
2992xlog_force_lsn(
2993	struct xlog		*log,
2994	xfs_lsn_t		lsn,
2995	uint			flags,
2996	int			*log_flushed,
2997	bool			already_slept)
2998{
 
2999	struct xlog_in_core	*iclog;
3000	bool			completed;
3001
3002	spin_lock(&log->l_icloglock);
3003	if (xlog_is_shutdown(log))
3004		goto out_error;
 
 
 
 
 
 
3005
 
 
3006	iclog = log->l_iclog;
3007	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009		iclog = iclog->ic_next;
3010		if (iclog == log->l_iclog)
3011			goto out_unlock;
3012	}
3013
3014	switch (iclog->ic_state) {
3015	case XLOG_STATE_ACTIVE:
3016		/*
3017		 * We sleep here if we haven't already slept (e.g. this is the
3018		 * first time we've looked at the correct iclog buf) and the
3019		 * buffer before us is going to be sync'ed.  The reason for this
3020		 * is that if we are doing sync transactions here, by waiting
3021		 * for the previous I/O to complete, we can allow a few more
3022		 * transactions into this iclog before we close it down.
3023		 *
3024		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025		 * refcnt so we can release the log (which drops the ref count).
3026		 * The state switch keeps new transaction commits from using
3027		 * this buffer.  When the current commits finish writing into
3028		 * the buffer, the refcount will drop to zero and the buffer
3029		 * will go out then.
3030		 */
3031		if (!already_slept &&
3032		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034			xlog_wait(&iclog->ic_prev->ic_write_wait,
3035					&log->l_icloglock);
3036			return -EAGAIN;
3037		}
3038		if (xlog_force_and_check_iclog(iclog, &completed))
3039			goto out_error;
3040		if (log_flushed)
3041			*log_flushed = 1;
3042		if (completed)
3043			goto out_unlock;
3044		break;
3045	case XLOG_STATE_WANT_SYNC:
3046		/*
3047		 * This iclog may contain the checkpoint pushed by the
3048		 * xlog_cil_force_seq() call, but there are other writers still
3049		 * accessing it so it hasn't been pushed to disk yet. Like the
3050		 * ACTIVE case above, we need to make sure caches are flushed
3051		 * when this iclog is written.
3052		 */
3053		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054		break;
3055	default:
3056		/*
3057		 * The entire checkpoint was written by the CIL force and is on
3058		 * its way to disk already. It will be stable when it
3059		 * completes, so we don't need to manipulate caches here at all.
3060		 * We just need to wait for completion if necessary.
3061		 */
3062		break;
3063	}
3064
3065	if (flags & XFS_LOG_SYNC)
3066		return xlog_wait_on_iclog(iclog);
3067out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068	spin_unlock(&log->l_icloglock);
3069	return 0;
3070out_error:
3071	spin_unlock(&log->l_icloglock);
3072	return -EIO;
3073}
3074
3075/*
3076 * Force the log to a specific checkpoint sequence.
3077 *
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3083 */
3084int
3085xfs_log_force_seq(
3086	struct xfs_mount	*mp,
3087	xfs_csn_t		seq,
3088	uint			flags,
3089	int			*log_flushed)
3090{
3091	struct xlog		*log = mp->m_log;
3092	xfs_lsn_t		lsn;
3093	int			ret;
3094	ASSERT(seq != 0);
3095
3096	XFS_STATS_INC(mp, xs_log_force);
3097	trace_xfs_log_force(mp, seq, _RET_IP_);
 
 
3098
3099	lsn = xlog_cil_force_seq(log, seq);
3100	if (lsn == NULLCOMMITLSN)
3101		return 0;
 
 
 
 
 
3102
3103	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104	if (ret == -EAGAIN) {
3105		XFS_STATS_INC(mp, xs_log_force_sleep);
3106		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
 
3107	}
3108	return ret;
3109}
3110
 
 
 
 
 
 
 
 
3111/*
3112 * Free a used ticket when its refcount falls to zero.
3113 */
3114void
3115xfs_log_ticket_put(
3116	xlog_ticket_t	*ticket)
3117{
3118	ASSERT(atomic_read(&ticket->t_ref) > 0);
3119	if (atomic_dec_and_test(&ticket->t_ref))
3120		kmem_cache_free(xfs_log_ticket_cache, ticket);
3121}
3122
3123xlog_ticket_t *
3124xfs_log_ticket_get(
3125	xlog_ticket_t	*ticket)
3126{
3127	ASSERT(atomic_read(&ticket->t_ref) > 0);
3128	atomic_inc(&ticket->t_ref);
3129	return ticket;
3130}
3131
3132/*
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3135 */
3136static int
3137xlog_calc_unit_res(
3138	struct xlog		*log,
3139	int			unit_bytes,
3140	int			*niclogs)
3141{
3142	int			iclog_space;
3143	uint			num_headers;
 
 
 
 
 
 
 
 
3144
3145	/*
3146	 * Permanent reservations have up to 'cnt'-1 active log operations
3147	 * in the log.  A unit in this case is the amount of space for one
3148	 * of these log operations.  Normal reservations have a cnt of 1
3149	 * and their unit amount is the total amount of space required.
3150	 *
3151	 * The following lines of code account for non-transaction data
3152	 * which occupy space in the on-disk log.
3153	 *
3154	 * Normal form of a transaction is:
3155	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3157	 *
3158	 * We need to account for all the leadup data and trailer data
3159	 * around the transaction data.
3160	 * And then we need to account for the worst case in terms of using
3161	 * more space.
3162	 * The worst case will happen if:
3163	 * - the placement of the transaction happens to be such that the
3164	 *   roundoff is at its maximum
3165	 * - the transaction data is synced before the commit record is synced
3166	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167	 *   Therefore the commit record is in its own Log Record.
3168	 *   This can happen as the commit record is called with its
3169	 *   own region to xlog_write().
3170	 *   This then means that in the worst case, roundoff can happen for
3171	 *   the commit-rec as well.
3172	 *   The commit-rec is smaller than padding in this scenario and so it is
3173	 *   not added separately.
3174	 */
3175
3176	/* for trans header */
3177	unit_bytes += sizeof(xlog_op_header_t);
3178	unit_bytes += sizeof(xfs_trans_header_t);
3179
3180	/* for start-rec */
3181	unit_bytes += sizeof(xlog_op_header_t);
3182
3183	/*
3184	 * for LR headers - the space for data in an iclog is the size minus
3185	 * the space used for the headers. If we use the iclog size, then we
3186	 * undercalculate the number of headers required.
3187	 *
3188	 * Furthermore - the addition of op headers for split-recs might
3189	 * increase the space required enough to require more log and op
3190	 * headers, so take that into account too.
3191	 *
3192	 * IMPORTANT: This reservation makes the assumption that if this
3193	 * transaction is the first in an iclog and hence has the LR headers
3194	 * accounted to it, then the remaining space in the iclog is
3195	 * exclusively for this transaction.  i.e. if the transaction is larger
3196	 * than the iclog, it will be the only thing in that iclog.
3197	 * Fundamentally, this means we must pass the entire log vector to
3198	 * xlog_write to guarantee this.
3199	 */
3200	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201	num_headers = howmany(unit_bytes, iclog_space);
3202
3203	/* for split-recs - ophdrs added when data split over LRs */
3204	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3205
3206	/* add extra header reservations if we overrun */
3207	while (!num_headers ||
3208	       howmany(unit_bytes, iclog_space) > num_headers) {
3209		unit_bytes += sizeof(xlog_op_header_t);
3210		num_headers++;
3211	}
3212	unit_bytes += log->l_iclog_hsize * num_headers;
3213
3214	/* for commit-rec LR header - note: padding will subsume the ophdr */
3215	unit_bytes += log->l_iclog_hsize;
3216
3217	/* roundoff padding for transaction data and one for commit record */
3218	unit_bytes += 2 * log->l_iclog_roundoff;
3219
3220	if (niclogs)
3221		*niclogs = num_headers;
3222	return unit_bytes;
3223}
3224
3225int
3226xfs_log_calc_unit_res(
3227	struct xfs_mount	*mp,
3228	int			unit_bytes)
3229{
3230	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3231}
3232
3233/*
3234 * Allocate and initialise a new log ticket.
3235 */
3236struct xlog_ticket *
3237xlog_ticket_alloc(
3238	struct xlog		*log,
3239	int			unit_bytes,
3240	int			cnt,
3241	bool			permanent)
3242{
3243	struct xlog_ticket	*tic;
3244	int			unit_res;
3245
3246	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247			GFP_KERNEL | __GFP_NOFAIL);
3248
3249	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3250
3251	atomic_set(&tic->t_ref, 1);
3252	tic->t_task		= current;
3253	INIT_LIST_HEAD(&tic->t_queue);
3254	tic->t_unit_res		= unit_res;
3255	tic->t_curr_res		= unit_res;
3256	tic->t_cnt		= cnt;
3257	tic->t_ocnt		= cnt;
3258	tic->t_tid		= get_random_u32();
3259	if (permanent)
 
 
 
3260		tic->t_flags |= XLOG_TIC_PERM_RESERV;
 
 
 
3261
3262	return tic;
3263}
3264
 
 
 
 
 
 
 
3265#if defined(DEBUG)
3266static void
3267xlog_verify_dump_tail(
3268	struct xlog		*log,
3269	struct xlog_in_core	*iclog)
 
 
 
 
 
3270{
3271	xfs_alert(log->l_mp,
3272"ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274			atomic64_read(&log->l_tail_lsn),
3275			log->l_ailp->ail_head_lsn,
3276			log->l_curr_cycle, log->l_curr_block,
3277			log->l_prev_cycle, log->l_prev_block);
3278	xfs_alert(log->l_mp,
3279"write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280			atomic64_read(&log->l_write_head.grant),
3281			atomic64_read(&log->l_reserve_head.grant),
3282			log->l_tail_space, log->l_logsize,
3283			iclog ? iclog->ic_flags : -1);
3284}
3285
3286/* Check if the new iclog will fit in the log. */
 
 
 
 
 
 
 
 
 
 
3287STATIC void
3288xlog_verify_tail_lsn(
3289	struct xlog		*log,
3290	struct xlog_in_core	*iclog)
3291{
3292	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293	int		blocks;
3294
3295	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296		blocks = log->l_logBBsize -
3297				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3298		if (blocks < BTOBB(iclog->ic_offset) +
3299					BTOBB(log->l_iclog_hsize)) {
3300			xfs_emerg(log->l_mp,
3301					"%s: ran out of log space", __func__);
3302			xlog_verify_dump_tail(log, iclog);
3303		}
3304		return;
3305	}
3306
3307	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309		xlog_verify_dump_tail(log, iclog);
3310		return;
 
 
3311	}
3312	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314		xlog_verify_dump_tail(log, iclog);
3315		return;
3316	}
3317
3318	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321		xlog_verify_dump_tail(log, iclog);
3322	}
3323}
3324
3325/*
3326 * Perform a number of checks on the iclog before writing to disk.
3327 *
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 *	A. Valid client identifier
3333 *	B. tid ptr value falls in valid ptr space (user space code)
3334 *	C. Length in log record header is correct according to the
3335 *		individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 *	log, check the preceding blocks of the physical log to make sure all
3338 *	the cycle numbers agree with the current cycle number.
3339 */
3340STATIC void
3341xlog_verify_iclog(
3342	struct xlog		*log,
3343	struct xlog_in_core	*iclog,
3344	int			count)
3345{
3346	xlog_op_header_t	*ophead;
3347	xlog_in_core_t		*icptr;
3348	xlog_in_core_2_t	*xhdr;
3349	void			*base_ptr, *ptr, *p;
3350	ptrdiff_t		field_offset;
3351	uint8_t			clientid;
 
3352	int			len, i, j, k, op_len;
3353	int			idx;
3354
3355	/* check validity of iclog pointers */
3356	spin_lock(&log->l_icloglock);
3357	icptr = log->l_iclog;
3358	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359		ASSERT(icptr);
3360
 
 
3361	if (icptr != log->l_iclog)
3362		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363	spin_unlock(&log->l_icloglock);
3364
3365	/* check log magic numbers */
3366	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3368
3369	base_ptr = ptr = &iclog->ic_header;
3370	p = &iclog->ic_header;
3371	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374				__func__);
3375	}
3376
3377	/* check fields */
3378	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379	base_ptr = ptr = iclog->ic_datap;
3380	ophead = ptr;
 
3381	xhdr = iclog->ic_data;
3382	for (i = 0; i < len; i++) {
3383		ophead = ptr;
3384
3385		/* clientid is only 1 byte */
3386		p = &ophead->oh_clientid;
3387		field_offset = p - base_ptr;
3388		if (field_offset & 0x1ff) {
3389			clientid = ophead->oh_clientid;
3390		} else {
3391			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395				clientid = xlog_get_client_id(
3396					xhdr[j].hic_xheader.xh_cycle_data[k]);
3397			} else {
3398				clientid = xlog_get_client_id(
3399					iclog->ic_header.h_cycle_data[idx]);
3400			}
3401		}
3402		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403			xfs_warn(log->l_mp,
3404				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405				__func__, i, clientid, ophead,
3406				(unsigned long)field_offset);
3407		}
3408
3409		/* check length */
3410		p = &ophead->oh_len;
3411		field_offset = p - base_ptr;
3412		if (field_offset & 0x1ff) {
3413			op_len = be32_to_cpu(ophead->oh_len);
3414		} else {
3415			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
 
3416			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420			} else {
3421				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3422			}
3423		}
3424		ptr += sizeof(xlog_op_header_t) + op_len;
3425	}
3426}
3427#endif
3428
3429/*
3430 * Perform a forced shutdown on the log.
3431 *
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3434 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435 * Our main objectives here are to make sure that:
3436 *	a. if the shutdown was not due to a log IO error, flush the logs to
3437 *	   disk. Anything modified after this is ignored.
3438 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 *	   parties to find out. Nothing new gets queued after this is done.
3440 *	c. Tasks sleeping on log reservations, pinned objects and
3441 *	   other resources get woken up.
3442 *	d. The mount is also marked as shut down so that log triggered shutdowns
3443 *	   still behave the same as if they called xfs_forced_shutdown().
3444 *
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3446 * log down.
3447 */
3448bool
3449xlog_force_shutdown(
3450	struct xlog	*log,
3451	uint32_t	shutdown_flags)
3452{
3453	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3454
3455	if (!log)
3456		return false;
3457
3458	/*
3459	 * Ensure that there is only ever one log shutdown being processed.
3460	 * If we allow the log force below on a second pass after shutting
3461	 * down the log, we risk deadlocking the CIL push as it may require
3462	 * locks on objects the current shutdown context holds (e.g. taking
3463	 * buffer locks to abort buffers on last unpin of buf log items).
3464	 */
3465	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3466		return false;
3467
3468	/*
3469	 * Flush all the completed transactions to disk before marking the log
3470	 * being shut down. We need to do this first as shutting down the log
3471	 * before the force will prevent the log force from flushing the iclogs
3472	 * to disk.
3473	 *
3474	 * When we are in recovery, there are no transactions to flush, and
3475	 * we don't want to touch the log because we don't want to perturb the
3476	 * current head/tail for future recovery attempts. Hence we need to
3477	 * avoid a log force in this case.
3478	 *
3479	 * If we are shutting down due to a log IO error, then we must avoid
3480	 * trying to write the log as that may just result in more IO errors and
3481	 * an endless shutdown/force loop.
3482	 */
3483	if (!log_error && !xlog_in_recovery(log))
3484		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3485
3486	/*
3487	 * Atomically set the shutdown state. If the shutdown state is already
3488	 * set, there someone else is performing the shutdown and so we are done
3489	 * here. This should never happen because we should only ever get called
3490	 * once by the first shutdown caller.
3491	 *
3492	 * Much of the log state machine transitions assume that shutdown state
3493	 * cannot change once they hold the log->l_icloglock. Hence we need to
3494	 * hold that lock here, even though we use the atomic test_and_set_bit()
3495	 * operation to set the shutdown state.
3496	 */
3497	spin_lock(&log->l_icloglock);
3498	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3499		spin_unlock(&log->l_icloglock);
3500		ASSERT(0);
3501		return false;
 
3502	}
3503	spin_unlock(&log->l_icloglock);
3504
3505	/*
3506	 * If this log shutdown also sets the mount shutdown state, issue a
3507	 * shutdown warning message.
3508	 */
3509	if (!xfs_set_shutdown(log->l_mp)) {
3510		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3511"Filesystem has been shut down due to log error (0x%x).",
3512				shutdown_flags);
3513		xfs_alert(log->l_mp,
3514"Please unmount the filesystem and rectify the problem(s).");
3515		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3516			xfs_stack_trace();
3517	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3518
3519	/*
3520	 * We don't want anybody waiting for log reservations after this. That
3521	 * means we have to wake up everybody queued up on reserveq as well as
3522	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3523	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524	 * action is protected by the grant locks.
3525	 */
3526	xlog_grant_head_wake_all(&log->l_reserve_head);
3527	xlog_grant_head_wake_all(&log->l_write_head);
 
 
 
 
 
 
 
3528
3529	/*
3530	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531	 * as if the log writes were completed. The abort handling in the log
3532	 * item committed callback functions will do this again under lock to
3533	 * avoid races.
3534	 */
3535	spin_lock(&log->l_cilp->xc_push_lock);
3536	wake_up_all(&log->l_cilp->xc_start_wait);
3537	wake_up_all(&log->l_cilp->xc_commit_wait);
3538	spin_unlock(&log->l_cilp->xc_push_lock);
3539
3540	spin_lock(&log->l_icloglock);
3541	xlog_state_shutdown_callbacks(log);
3542	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
3543
3544	wake_up_var(&log->l_opstate);
3545	return log_error;
 
 
 
 
 
 
 
 
 
3546}
3547
3548STATIC int
3549xlog_iclogs_empty(
3550	struct xlog	*log)
3551{
3552	xlog_in_core_t	*iclog;
3553
3554	iclog = log->l_iclog;
3555	do {
3556		/* endianness does not matter here, zero is zero in
3557		 * any language.
3558		 */
3559		if (iclog->ic_header.h_num_logops)
3560			return 0;
3561		iclog = iclog->ic_next;
3562	} while (iclog != log->l_iclog);
3563	return 1;
3564}
3565
3566/*
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3569 */
3570bool
3571xfs_log_check_lsn(
3572	struct xfs_mount	*mp,
3573	xfs_lsn_t		lsn)
3574{
3575	struct xlog		*log = mp->m_log;
3576	bool			valid;
3577
3578	/*
3579	 * norecovery mode skips mount-time log processing and unconditionally
3580	 * resets the in-core LSN. We can't validate in this mode, but
3581	 * modifications are not allowed anyways so just return true.
3582	 */
3583	if (xfs_has_norecovery(mp))
3584		return true;
3585
3586	/*
3587	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588	 * handled by recovery and thus safe to ignore here.
3589	 */
3590	if (lsn == NULLCOMMITLSN)
3591		return true;
3592
3593	valid = xlog_valid_lsn(mp->m_log, lsn);
3594
3595	/* warn the user about what's gone wrong before verifier failure */
3596	if (!valid) {
3597		spin_lock(&log->l_icloglock);
3598		xfs_warn(mp,
3599"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3602			 log->l_curr_cycle, log->l_curr_block);
3603		spin_unlock(&log->l_icloglock);
3604	}
3605
3606	return valid;
3607}
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
 
  28#include "xfs_error.h"
 
 
 
  29#include "xfs_log_priv.h"
  30#include "xfs_buf_item.h"
  31#include "xfs_bmap_btree.h"
  32#include "xfs_alloc_btree.h"
  33#include "xfs_ialloc_btree.h"
  34#include "xfs_log_recover.h"
  35#include "xfs_trans_priv.h"
  36#include "xfs_dinode.h"
  37#include "xfs_inode.h"
  38#include "xfs_rw.h"
  39#include "xfs_trace.h"
 
 
 
  40
  41kmem_zone_t	*xfs_log_ticket_zone;
  42
  43/* Local miscellaneous function prototypes */
  44STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
  45				    xlog_in_core_t **, xfs_lsn_t *);
  46STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
  47				xfs_buftarg_t	*log_target,
  48				xfs_daddr_t	blk_offset,
  49				int		num_bblks);
  50STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
  51STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
  52STATIC void	 xlog_dealloc_log(xlog_t *log);
  53
  54/* local state machine functions */
  55STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  56STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
  57STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
  58				       int		len,
  59				       xlog_in_core_t	**iclog,
  60				       xlog_ticket_t	*ticket,
  61				       int		*continued_write,
  62				       int		*logoffsetp);
  63STATIC int  xlog_state_release_iclog(xlog_t		*log,
  64				     xlog_in_core_t	*iclog);
  65STATIC void xlog_state_switch_iclogs(xlog_t		*log,
  66				     xlog_in_core_t *iclog,
  67				     int		eventual_size);
  68STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
  69
  70/* local functions to manipulate grant head */
  71STATIC int  xlog_grant_log_space(xlog_t		*log,
  72				 xlog_ticket_t	*xtic);
  73STATIC void xlog_grant_push_ail(struct log	*log,
  74				int		need_bytes);
  75STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
  76					   xlog_ticket_t *ticket);
  77STATIC int xlog_regrant_write_log_space(xlog_t		*log,
  78					 xlog_ticket_t  *ticket);
  79STATIC void xlog_ungrant_log_space(xlog_t	 *log,
  80				   xlog_ticket_t *ticket);
  81
  82#if defined(DEBUG)
  83STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
  84STATIC void	xlog_verify_grant_tail(struct log *log);
  85STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
  86				  int count, boolean_t syncing);
  87STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
  88				     xfs_lsn_t tail_lsn);
 
 
 
  89#else
  90#define xlog_verify_dest_ptr(a,b)
  91#define xlog_verify_grant_tail(a)
  92#define xlog_verify_iclog(a,b,c,d)
  93#define xlog_verify_tail_lsn(a,b,c)
  94#endif
  95
  96STATIC int	xlog_iclogs_empty(xlog_t *log);
 
 
  97
  98static void
  99xlog_grant_sub_space(
 100	struct log	*log,
 101	atomic64_t	*head,
 102	int		bytes)
 103{
 104	int64_t	head_val = atomic64_read(head);
 105	int64_t new, old;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107	do {
 108		int	cycle, space;
 
 
 109
 110		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 111
 112		space -= bytes;
 113		if (space < 0) {
 114			space += log->l_logsize;
 115			cycle--;
 116		}
 117
 118		old = head_val;
 119		new = xlog_assign_grant_head_val(cycle, space);
 120		head_val = atomic64_cmpxchg(head, old, new);
 121	} while (head_val != old);
 
 
 
 
 
 
 
 
 
 
 122}
 123
 124static void
 125xlog_grant_add_space(
 126	struct log	*log,
 127	atomic64_t	*head,
 128	int		bytes)
 129{
 130	int64_t	head_val = atomic64_read(head);
 131	int64_t new, old;
 
 
 132
 133	do {
 134		int		tmp;
 135		int		cycle, space;
 
 
 
 
 136
 137		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 
 138
 139		tmp = log->l_logsize - space;
 140		if (tmp > bytes)
 141			space += bytes;
 142		else {
 143			space = bytes - tmp;
 144			cycle++;
 145		}
 
 
 
 
 
 
 
 146
 147		old = head_val;
 148		new = xlog_assign_grant_head_val(cycle, space);
 149		head_val = atomic64_cmpxchg(head, old, new);
 150	} while (head_val != old);
 
 
 151}
 152
 153static void
 154xlog_tic_reset_res(xlog_ticket_t *tic)
 
 155{
 156	tic->t_res_num = 0;
 157	tic->t_res_arr_sum = 0;
 158	tic->t_res_num_ophdrs = 0;
 
 
 
 159}
 160
 161static void
 162xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 
 
 
 163{
 164	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 165		/* add to overflow and start again */
 166		tic->t_res_o_flow += tic->t_res_arr_sum;
 167		tic->t_res_num = 0;
 168		tic->t_res_arr_sum = 0;
 169	}
 170
 171	tic->t_res_arr[tic->t_res_num].r_len = len;
 172	tic->t_res_arr[tic->t_res_num].r_type = type;
 173	tic->t_res_arr_sum += len;
 174	tic->t_res_num++;
 175}
 176
 177/*
 178 * NOTES:
 179 *
 180 *	1. currblock field gets updated at startup and after in-core logs
 181 *		marked as with WANT_SYNC.
 182 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183
 184/*
 185 * This routine is called when a user of a log manager ticket is done with
 186 * the reservation.  If the ticket was ever used, then a commit record for
 187 * the associated transaction is written out as a log operation header with
 188 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 189 * a given ticket.  If the ticket was one with a permanent reservation, then
 190 * a few operations are done differently.  Permanent reservation tickets by
 191 * default don't release the reservation.  They just commit the current
 192 * transaction with the belief that the reservation is still needed.  A flag
 193 * must be passed in before permanent reservations are actually released.
 194 * When these type of tickets are not released, they need to be set into
 195 * the inited state again.  By doing this, a start record will be written
 196 * out when the next write occurs.
 197 */
 198xfs_lsn_t
 199xfs_log_done(
 200	struct xfs_mount	*mp,
 201	struct xlog_ticket	*ticket,
 202	struct xlog_in_core	**iclog,
 203	uint			flags)
 204{
 205	struct log		*log = mp->m_log;
 206	xfs_lsn_t		lsn = 0;
 207
 208	if (XLOG_FORCED_SHUTDOWN(log) ||
 209	    /*
 210	     * If nothing was ever written, don't write out commit record.
 211	     * If we get an error, just continue and give back the log ticket.
 212	     */
 213	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 214	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 215		lsn = (xfs_lsn_t) -1;
 216		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
 217			flags |= XFS_LOG_REL_PERM_RESERV;
 218		}
 219	}
 220
 
 221
 222	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
 223	    (flags & XFS_LOG_REL_PERM_RESERV)) {
 224		trace_xfs_log_done_nonperm(log, ticket);
 225
 226		/*
 227		 * Release ticket if not permanent reservation or a specific
 228		 * request has been made to release a permanent reservation.
 229		 */
 230		xlog_ungrant_log_space(log, ticket);
 231		xfs_log_ticket_put(ticket);
 232	} else {
 233		trace_xfs_log_done_perm(log, ticket);
 234
 235		xlog_regrant_reserve_log_space(log, ticket);
 236		/* If this ticket was a permanent reservation and we aren't
 237		 * trying to release it, reset the inited flags; so next time
 238		 * we write, a start record will be written out.
 239		 */
 240		ticket->t_flags |= XLOG_TIC_INITED;
 241	}
 242
 243	return lsn;
 
 
 
 
 244}
 245
 246/*
 247 * Attaches a new iclog I/O completion callback routine during
 248 * transaction commit.  If the log is in error state, a non-zero
 249 * return code is handed back and the caller is responsible for
 250 * executing the callback at an appropriate time.
 
 
 
 
 
 
 
 
 
 
 
 251 */
 252int
 253xfs_log_notify(
 254	struct xfs_mount	*mp,
 255	struct xlog_in_core	*iclog,
 256	xfs_log_callback_t	*cb)
 
 257{
 258	int	abortflg;
 
 
 
 259
 260	spin_lock(&iclog->ic_callback_lock);
 261	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 262	if (!abortflg) {
 263		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 264			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 265		cb->cb_next = NULL;
 266		*(iclog->ic_callback_tail) = cb;
 267		iclog->ic_callback_tail = &(cb->cb_next);
 
 
 
 
 
 
 
 
 
 
 
 
 268	}
 269	spin_unlock(&iclog->ic_callback_lock);
 270	return abortflg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271}
 272
 
 
 
 273int
 274xfs_log_release_iclog(
 275	struct xfs_mount	*mp,
 276	struct xlog_in_core	*iclog)
 277{
 278	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 279		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 280		return EIO;
 281	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282
 
 
 283	return 0;
 
 
 
 
 
 
 
 
 
 
 284}
 285
 286/*
 287 *  1. Reserve an amount of on-disk log space and return a ticket corresponding
 288 *	to the reservation.
 289 *  2. Potentially, push buffers at tail of log to disk.
 290 *
 291 * Each reservation is going to reserve extra space for a log record header.
 292 * When writes happen to the on-disk log, we don't subtract the length of the
 293 * log record header from any reservation.  By wasting space in each
 294 * reservation, we prevent over allocation problems.
 295 */
 296int
 297xfs_log_reserve(
 298	struct xfs_mount	*mp,
 299	int		 	unit_bytes,
 300	int		 	cnt,
 301	struct xlog_ticket	**ticket,
 302	__uint8_t	 	client,
 303	uint		 	flags,
 304	uint		 	t_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305{
 306	struct log		*log = mp->m_log;
 307	struct xlog_ticket	*internal_ticket;
 308	int			retval = 0;
 309
 310	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 
 
 
 
 
 
 
 311
 312	if (XLOG_FORCED_SHUTDOWN(log))
 313		return XFS_ERROR(EIO);
 314
 315	XFS_STATS_INC(xs_try_logspace);
 
 
 
 
 
 
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317
 318	if (*ticket != NULL) {
 319		ASSERT(flags & XFS_LOG_PERM_RESERV);
 320		internal_ticket = *ticket;
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322		/*
 323		 * this is a new transaction on the ticket, so we need to
 324		 * change the transaction ID so that the next transaction has a
 325		 * different TID in the log. Just add one to the existing tid
 326		 * so that we can see chains of rolling transactions in the log
 327		 * easily.
 328		 */
 329		internal_ticket->t_tid++;
 
 
 
 330
 331		trace_xfs_log_reserve(log, internal_ticket);
 
 332
 333		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
 334		retval = xlog_regrant_write_log_space(log, internal_ticket);
 335	} else {
 336		/* may sleep if need to allocate more tickets */
 337		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
 338						  client, flags,
 339						  KM_SLEEP|KM_MAYFAIL);
 340		if (!internal_ticket)
 341			return XFS_ERROR(ENOMEM);
 342		internal_ticket->t_trans_type = t_type;
 343		*ticket = internal_ticket;
 344
 345		trace_xfs_log_reserve(log, internal_ticket);
 346
 347		xlog_grant_push_ail(log,
 348				    (internal_ticket->t_unit_res *
 349				     internal_ticket->t_cnt));
 350		retval = xlog_grant_log_space(log, internal_ticket);
 351	}
 352
 353	return retval;
 354}	/* xfs_log_reserve */
 
 355
 
 
 
 
 
 356
 357/*
 358 * Mount a log filesystem
 359 *
 360 * mp		- ubiquitous xfs mount point structure
 361 * log_target	- buftarg of on-disk log device
 362 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 363 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 364 *
 365 * Return error or zero.
 366 */
 367int
 368xfs_log_mount(
 369	xfs_mount_t	*mp,
 370	xfs_buftarg_t	*log_target,
 371	xfs_daddr_t	blk_offset,
 372	int		num_bblks)
 373{
 374	int		error;
 375
 376	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 377		xfs_notice(mp, "Mounting Filesystem");
 378	else {
 
 
 
 
 379		xfs_notice(mp,
 380"Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
 381		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 
 382	}
 383
 384	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 385	if (IS_ERR(mp->m_log)) {
 386		error = -PTR_ERR(mp->m_log);
 387		goto out;
 388	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390	/*
 391	 * Initialize the AIL now we have a log.
 392	 */
 393	error = xfs_trans_ail_init(mp);
 394	if (error) {
 395		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 396		goto out_free_log;
 397	}
 398	mp->m_log->l_ailp = mp->m_ail;
 399
 400	/*
 401	 * skip log recovery on a norecovery mount.  pretend it all
 402	 * just worked.
 403	 */
 404	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 405		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 406
 407		if (readonly)
 408			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 409
 410		error = xlog_recover(mp->m_log);
 411
 412		if (readonly)
 413			mp->m_flags |= XFS_MOUNT_RDONLY;
 414		if (error) {
 415			xfs_warn(mp, "log mount/recovery failed: error %d",
 416				error);
 
 417			goto out_destroy_ail;
 418		}
 419	}
 420
 
 
 
 
 
 421	/* Normal transactions can now occur */
 422	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 423
 424	/*
 425	 * Now the log has been fully initialised and we know were our
 426	 * space grant counters are, we can initialise the permanent ticket
 427	 * needed for delayed logging to work.
 428	 */
 429	xlog_cil_init_post_recovery(mp->m_log);
 430
 431	return 0;
 432
 433out_destroy_ail:
 434	xfs_trans_ail_destroy(mp);
 435out_free_log:
 436	xlog_dealloc_log(mp->m_log);
 437out:
 438	return error;
 439}
 440
 441/*
 442 * Finish the recovery of the file system.  This is separate from
 443 * the xfs_log_mount() call, because it depends on the code in
 444 * xfs_mountfs() to read in the root and real-time bitmap inodes
 445 * between calling xfs_log_mount() and here.
 446 *
 447 * mp		- ubiquitous xfs mount point structure
 
 
 448 */
 449int
 450xfs_log_mount_finish(xfs_mount_t *mp)
 
 451{
 452	int	error;
 
 453
 454	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 455		error = xlog_recover_finish(mp->m_log);
 456	else {
 457		error = 0;
 458		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 459	}
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461	return error;
 462}
 463
 464/*
 465 * Final log writes as part of unmount.
 466 *
 467 * Mark the filesystem clean as unmount happens.  Note that during relocation
 468 * this routine needs to be executed as part of source-bag while the
 469 * deallocation must not be done until source-end.
 
 
 
 
 
 
 
 
 
 470 */
 
 
 
 
 
 
 
 
 
 
 471
 472/*
 473 * Unmount record used to have a string "Unmount filesystem--" in the
 474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 475 * We just write the magic number now since that particular field isn't
 476 * currently architecture converted and "nUmount" is a bit foo.
 477 * As far as I know, there weren't any dependencies on the old behaviour.
 478 */
 
 
 
 
 
 
 
 
 
 
 
 
 479
 
 
 
 
 
 
 480int
 481xfs_log_unmount_write(xfs_mount_t *mp)
 
 
 482{
 483	xlog_t		 *log = mp->m_log;
 484	xlog_in_core_t	 *iclog;
 485#ifdef DEBUG
 486	xlog_in_core_t	 *first_iclog;
 487#endif
 488	xlog_ticket_t	*tic = NULL;
 489	xfs_lsn_t	 lsn;
 490	int		 error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 
 492	/*
 493	 * Don't write out unmount record on read-only mounts.
 494	 * Or, if we are doing a forced umount (typically because of IO errors).
 495	 */
 496	if (mp->m_flags & XFS_MOUNT_RDONLY)
 497		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 500	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 
 
 
 501
 502#ifdef DEBUG
 503	first_iclog = iclog = log->l_iclog;
 504	do {
 505		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 506			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 507			ASSERT(iclog->ic_offset == 0);
 508		}
 509		iclog = iclog->ic_next;
 510	} while (iclog != first_iclog);
 511#endif
 512	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 513		error = xfs_log_reserve(mp, 600, 1, &tic,
 514					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 515		if (!error) {
 516			/* the data section must be 32 bit size aligned */
 517			struct {
 518			    __uint16_t magic;
 519			    __uint16_t pad1;
 520			    __uint32_t pad2; /* may as well make it 64 bits */
 521			} magic = {
 522				.magic = XLOG_UNMOUNT_TYPE,
 523			};
 524			struct xfs_log_iovec reg = {
 525				.i_addr = &magic,
 526				.i_len = sizeof(magic),
 527				.i_type = XLOG_REG_TYPE_UNMOUNT,
 528			};
 529			struct xfs_log_vec vec = {
 530				.lv_niovecs = 1,
 531				.lv_iovecp = &reg,
 532			};
 533
 534			/* remove inited flag */
 535			tic->t_flags = 0;
 536			error = xlog_write(log, &vec, tic, &lsn,
 537					   NULL, XLOG_UNMOUNT_TRANS);
 538			/*
 539			 * At this point, we're umounting anyway,
 540			 * so there's no point in transitioning log state
 541			 * to IOERROR. Just continue...
 542			 */
 543		}
 544
 545		if (error)
 546			xfs_alert(mp, "%s: unmount record failed", __func__);
 
 
 
 
 
 
 
 
 
 
 547
 
 
 548
 549		spin_lock(&log->l_icloglock);
 550		iclog = log->l_iclog;
 551		atomic_inc(&iclog->ic_refcnt);
 552		xlog_state_want_sync(log, iclog);
 553		spin_unlock(&log->l_icloglock);
 554		error = xlog_state_release_iclog(log, iclog);
 555
 556		spin_lock(&log->l_icloglock);
 557		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 558		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 559			if (!XLOG_FORCED_SHUTDOWN(log)) {
 560				xlog_wait(&iclog->ic_force_wait,
 561							&log->l_icloglock);
 562			} else {
 563				spin_unlock(&log->l_icloglock);
 564			}
 565		} else {
 566			spin_unlock(&log->l_icloglock);
 567		}
 568		if (tic) {
 569			trace_xfs_log_umount_write(log, tic);
 570			xlog_ungrant_log_space(log, tic);
 571			xfs_log_ticket_put(tic);
 572		}
 573	} else {
 574		/*
 575		 * We're already in forced_shutdown mode, couldn't
 576		 * even attempt to write out the unmount transaction.
 577		 *
 578		 * Go through the motions of sync'ing and releasing
 579		 * the iclog, even though no I/O will actually happen,
 580		 * we need to wait for other log I/Os that may already
 581		 * be in progress.  Do this as a separate section of
 582		 * code so we'll know if we ever get stuck here that
 583		 * we're in this odd situation of trying to unmount
 584		 * a file system that went into forced_shutdown as
 585		 * the result of an unmount..
 586		 */
 587		spin_lock(&log->l_icloglock);
 588		iclog = log->l_iclog;
 589		atomic_inc(&iclog->ic_refcnt);
 590
 591		xlog_state_want_sync(log, iclog);
 592		spin_unlock(&log->l_icloglock);
 593		error =  xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
 
 
 594
 595		spin_lock(&log->l_icloglock);
 
 
 596
 597		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 598			|| iclog->ic_state == XLOG_STATE_DIRTY
 599			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601				xlog_wait(&iclog->ic_force_wait,
 602							&log->l_icloglock);
 603		} else {
 604			spin_unlock(&log->l_icloglock);
 605		}
 606	}
 607
 608	return error;
 609}	/* xfs_log_unmount_write */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610
 611/*
 612 * Deallocate log structures for unmount/relocation.
 613 *
 614 * We need to stop the aild from running before we destroy
 615 * and deallocate the log as the aild references the log.
 
 616 */
 617void
 618xfs_log_unmount(xfs_mount_t *mp)
 
 619{
 
 
 
 
 
 
 
 
 
 
 
 
 620	xfs_trans_ail_destroy(mp);
 
 
 
 621	xlog_dealloc_log(mp->m_log);
 622}
 623
 624void
 625xfs_log_item_init(
 626	struct xfs_mount	*mp,
 627	struct xfs_log_item	*item,
 628	int			type,
 629	struct xfs_item_ops	*ops)
 630{
 631	item->li_mountp = mp;
 632	item->li_ailp = mp->m_ail;
 633	item->li_type = type;
 634	item->li_ops = ops;
 635	item->li_lv = NULL;
 636
 637	INIT_LIST_HEAD(&item->li_ail);
 638	INIT_LIST_HEAD(&item->li_cil);
 
 
 639}
 640
 641/*
 642 * Write region vectors to log.  The write happens using the space reservation
 643 * of the ticket (tic).  It is not a requirement that all writes for a given
 644 * transaction occur with one call to xfs_log_write(). However, it is important
 645 * to note that the transaction reservation code makes an assumption about the
 646 * number of log headers a transaction requires that may be violated if you
 647 * don't pass all the transaction vectors in one call....
 648 */
 649int
 650xfs_log_write(
 651	struct xfs_mount	*mp,
 652	struct xfs_log_iovec	reg[],
 653	int			nentries,
 654	struct xlog_ticket	*tic,
 655	xfs_lsn_t		*start_lsn)
 656{
 657	struct log		*log = mp->m_log;
 658	int			error;
 659	struct xfs_log_vec	vec = {
 660		.lv_niovecs = nentries,
 661		.lv_iovecp = reg,
 662	};
 663
 664	if (XLOG_FORCED_SHUTDOWN(log))
 665		return XFS_ERROR(EIO);
 666
 667	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
 668	if (error)
 669		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 670	return error;
 671}
 672
 673void
 674xfs_log_move_tail(xfs_mount_t	*mp,
 675		  xfs_lsn_t	tail_lsn)
 676{
 677	xlog_ticket_t	*tic;
 678	xlog_t		*log = mp->m_log;
 679	int		need_bytes, free_bytes;
 680
 681	if (XLOG_FORCED_SHUTDOWN(log))
 682		return;
 683
 684	if (tail_lsn == 0)
 685		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 686
 687	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
 688	if (tail_lsn != 1)
 689		atomic64_set(&log->l_tail_lsn, tail_lsn);
 
 
 690
 691	if (!list_empty_careful(&log->l_writeq)) {
 692#ifdef DEBUG
 693		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
 694			panic("Recovery problem");
 695#endif
 696		spin_lock(&log->l_grant_write_lock);
 697		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
 698		list_for_each_entry(tic, &log->l_writeq, t_queue) {
 699			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 700
 701			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
 702				break;
 703			tail_lsn = 0;
 704			free_bytes -= tic->t_unit_res;
 705			trace_xfs_log_regrant_write_wake_up(log, tic);
 706			wake_up(&tic->t_wait);
 707		}
 708		spin_unlock(&log->l_grant_write_lock);
 709	}
 710
 711	if (!list_empty_careful(&log->l_reserveq)) {
 712#ifdef DEBUG
 713		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
 714			panic("Recovery problem");
 715#endif
 716		spin_lock(&log->l_grant_reserve_lock);
 717		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
 718		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
 719			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 720				need_bytes = tic->t_unit_res*tic->t_cnt;
 721			else
 722				need_bytes = tic->t_unit_res;
 723			if (free_bytes < need_bytes && tail_lsn != 1)
 724				break;
 725			tail_lsn = 0;
 726			free_bytes -= need_bytes;
 727			trace_xfs_log_grant_wake_up(log, tic);
 728			wake_up(&tic->t_wait);
 729		}
 730		spin_unlock(&log->l_grant_reserve_lock);
 731	}
 732}
 733
 734/*
 735 * Determine if we have a transaction that has gone to disk
 736 * that needs to be covered. To begin the transition to the idle state
 737 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
 738 * If we are then in a state where covering is needed, the caller is informed
 739 * that dummy transactions are required to move the log into the idle state.
 740 *
 741 * Because this is called as part of the sync process, we should also indicate
 742 * that dummy transactions should be issued in anything but the covered or
 743 * idle states. This ensures that the log tail is accurately reflected in
 744 * the log at the end of the sync, hence if a crash occurrs avoids replay
 745 * of transactions where the metadata is already on disk.
 
 
 
 
 746 */
 747int
 748xfs_log_need_covered(xfs_mount_t *mp)
 
 749{
 750	int		needed = 0;
 751	xlog_t		*log = mp->m_log;
 752
 753	if (!xfs_fs_writable(mp))
 754		return 0;
 755
 756	spin_lock(&log->l_icloglock);
 757	switch (log->l_covered_state) {
 758	case XLOG_STATE_COVER_DONE:
 759	case XLOG_STATE_COVER_DONE2:
 760	case XLOG_STATE_COVER_IDLE:
 761		break;
 762	case XLOG_STATE_COVER_NEED:
 763	case XLOG_STATE_COVER_NEED2:
 764		if (!xfs_ail_min_lsn(log->l_ailp) &&
 765		    xlog_iclogs_empty(log)) {
 766			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
 767				log->l_covered_state = XLOG_STATE_COVER_DONE;
 768			else
 769				log->l_covered_state = XLOG_STATE_COVER_DONE2;
 770		}
 771		/* FALLTHRU */
 
 
 
 772	default:
 773		needed = 1;
 774		break;
 775	}
 776	spin_unlock(&log->l_icloglock);
 777	return needed;
 778}
 779
 780/******************************************************************************
 781 *
 782 *	local routines
 783 *
 784 ******************************************************************************
 785 */
 786
 787/* xfs_trans_tail_ail returns 0 when there is nothing in the list.
 788 * The log manager must keep track of the last LR which was committed
 789 * to disk.  The lsn of this LR will become the new tail_lsn whenever
 790 * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
 791 * the situation where stuff could be written into the log but nothing
 792 * was ever in the AIL when asked.  Eventually, we panic since the
 793 * tail hits the head.
 794 *
 795 * We may be holding the log iclog lock upon entering this routine.
 796 */
 797xfs_lsn_t
 798xlog_assign_tail_lsn(
 799	struct xfs_mount	*mp)
 800{
 801	xfs_lsn_t		tail_lsn;
 802	struct log		*log = mp->m_log;
 803
 804	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
 805	if (!tail_lsn)
 806		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 807
 808	atomic64_set(&log->l_tail_lsn, tail_lsn);
 809	return tail_lsn;
 810}
 811
 812/*
 813 * Return the space in the log between the tail and the head.  The head
 814 * is passed in the cycle/bytes formal parms.  In the special case where
 815 * the reserve head has wrapped passed the tail, this calculation is no
 816 * longer valid.  In this case, just return 0 which means there is no space
 817 * in the log.  This works for all places where this function is called
 818 * with the reserve head.  Of course, if the write head were to ever
 819 * wrap the tail, we should blow up.  Rather than catch this case here,
 820 * we depend on other ASSERTions in other parts of the code.   XXXmiken
 821 *
 822 * This code also handles the case where the reservation head is behind
 823 * the tail.  The details of this case are described below, but the end
 824 * result is that we return the size of the log as the amount of space left.
 825 */
 826STATIC int
 827xlog_space_left(
 828	struct log	*log,
 829	atomic64_t	*head)
 830{
 831	int		free_bytes;
 832	int		tail_bytes;
 833	int		tail_cycle;
 834	int		head_cycle;
 835	int		head_bytes;
 836
 837	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
 838	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
 839	tail_bytes = BBTOB(tail_bytes);
 840	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
 841		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
 842	else if (tail_cycle + 1 < head_cycle)
 843		return 0;
 844	else if (tail_cycle < head_cycle) {
 845		ASSERT(tail_cycle == (head_cycle - 1));
 846		free_bytes = tail_bytes - head_bytes;
 847	} else {
 848		/*
 849		 * The reservation head is behind the tail.
 850		 * In this case we just want to return the size of the
 851		 * log as the amount of space left.
 852		 */
 853		xfs_alert(log->l_mp,
 854			"xlog_space_left: head behind tail\n"
 855			"  tail_cycle = %d, tail_bytes = %d\n"
 856			"  GH   cycle = %d, GH   bytes = %d",
 857			tail_cycle, tail_bytes, head_cycle, head_bytes);
 858		ASSERT(0);
 859		free_bytes = log->l_logsize;
 860	}
 861	return free_bytes;
 862}
 863
 
 
 
 
 
 
 
 
 864
 865/*
 866 * Log function which is called when an io completes.
 867 *
 868 * The log manager needs its own routine, in order to control what
 869 * happens with the buffer after the write completes.
 870 */
 871void
 872xlog_iodone(xfs_buf_t *bp)
 873{
 874	xlog_in_core_t	*iclog = bp->b_fspriv;
 875	xlog_t		*l = iclog->ic_log;
 876	int		aborted = 0;
 877
 878	/*
 879	 * Race to shutdown the filesystem if we see an error.
 880	 */
 881	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
 882			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
 883		xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
 884		XFS_BUF_STALE(bp);
 885		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
 886		/*
 887		 * This flag will be propagated to the trans-committed
 888		 * callback routines to let them know that the log-commit
 889		 * didn't succeed.
 890		 */
 891		aborted = XFS_LI_ABORTED;
 892	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
 893		aborted = XFS_LI_ABORTED;
 894	}
 895
 896	/* log I/O is always issued ASYNC */
 897	ASSERT(XFS_BUF_ISASYNC(bp));
 898	xlog_state_done_syncing(iclog, aborted);
 899	/*
 900	 * do not reference the buffer (bp) here as we could race
 901	 * with it being freed after writing the unmount record to the
 902	 * log.
 
 903	 */
 904
 905}	/* xlog_iodone */
 906
 907/*
 908 * Return size of each in-core log record buffer.
 909 *
 910 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
 911 *
 912 * If the filesystem blocksize is too large, we may need to choose a
 913 * larger size since the directory code currently logs entire blocks.
 914 */
 915
 916STATIC void
 917xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
 918			   xlog_t	*log)
 
 919{
 920	int size;
 921	int xhdrs;
 
 
 922
 923	if (mp->m_logbufs <= 0)
 924		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
 925	else
 926		log->l_iclog_bufs = mp->m_logbufs;
 927
 928	/*
 929	 * Buffer size passed in from mount system call.
 930	 */
 931	if (mp->m_logbsize > 0) {
 932		size = log->l_iclog_size = mp->m_logbsize;
 933		log->l_iclog_size_log = 0;
 934		while (size != 1) {
 935			log->l_iclog_size_log++;
 936			size >>= 1;
 937		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938
 939		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
 940			/* # headers = size / 32k
 941			 * one header holds cycles from 32k of data
 942			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
 945			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
 946				xhdrs++;
 947			log->l_iclog_hsize = xhdrs << BBSHIFT;
 948			log->l_iclog_heads = xhdrs;
 949		} else {
 950			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
 951			log->l_iclog_hsize = BBSIZE;
 952			log->l_iclog_heads = 1;
 953		}
 954		goto done;
 955	}
 956
 957	/* All machines use 32kB buffers by default. */
 958	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
 959	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
 960
 961	/* the default log size is 16k or 32k which is one header sector */
 962	log->l_iclog_hsize = BBSIZE;
 963	log->l_iclog_heads = 1;
 964
 965done:
 966	/* are we being asked to make the sizes selected above visible? */
 967	if (mp->m_logbufs == 0)
 968		mp->m_logbufs = log->l_iclog_bufs;
 969	if (mp->m_logbsize == 0)
 970		mp->m_logbsize = log->l_iclog_size;
 971}	/* xlog_get_iclog_buffer_size */
 972
 
 
 
 973
 974/*
 975 * This routine initializes some of the log structure for a given mount point.
 976 * Its primary purpose is to fill in enough, so recovery can occur.  However,
 977 * some other stuff may be filled in too.
 978 */
 979STATIC xlog_t *
 980xlog_alloc_log(xfs_mount_t	*mp,
 981	       xfs_buftarg_t	*log_target,
 982	       xfs_daddr_t	blk_offset,
 983	       int		num_bblks)
 
 984{
 985	xlog_t			*log;
 986	xlog_rec_header_t	*head;
 987	xlog_in_core_t		**iclogp;
 988	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 989	xfs_buf_t		*bp;
 990	int			i;
 991	int			error = ENOMEM;
 992	uint			log2_size = 0;
 993
 994	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
 995	if (!log) {
 996		xfs_warn(mp, "Log allocation failed: No memory!");
 997		goto out;
 998	}
 999
1000	log->l_mp	   = mp;
1001	log->l_targ	   = log_target;
1002	log->l_logsize     = BBTOB(num_bblks);
1003	log->l_logBBstart  = blk_offset;
1004	log->l_logBBsize   = num_bblks;
1005	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1006	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
 
 
1007
1008	log->l_prev_block  = -1;
1009	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1010	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1011	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1012	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1013	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1014	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1015	INIT_LIST_HEAD(&log->l_reserveq);
1016	INIT_LIST_HEAD(&log->l_writeq);
1017	spin_lock_init(&log->l_grant_reserve_lock);
1018	spin_lock_init(&log->l_grant_write_lock);
1019
1020	error = EFSCORRUPTED;
1021	if (xfs_sb_version_hassector(&mp->m_sb)) {
 
 
 
 
 
 
 
 
1022	        log2_size = mp->m_sb.sb_logsectlog;
1023		if (log2_size < BBSHIFT) {
1024			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1025				log2_size, BBSHIFT);
1026			goto out_free_log;
1027		}
1028
1029	        log2_size -= BBSHIFT;
1030		if (log2_size > mp->m_sectbb_log) {
1031			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1032				log2_size, mp->m_sectbb_log);
1033			goto out_free_log;
1034		}
1035
1036		/* for larger sector sizes, must have v2 or external log */
1037		if (log2_size && log->l_logBBstart > 0 &&
1038			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1039			xfs_warn(mp,
1040		"log sector size (0x%x) invalid for configuration.",
1041				log2_size);
1042			goto out_free_log;
1043		}
1044	}
1045	log->l_sectBBsize = 1 << log2_size;
1046
1047	xlog_get_iclog_buffer_size(mp, log);
1048
1049	error = ENOMEM;
1050	bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1051	if (!bp)
1052		goto out_free_log;
1053	bp->b_iodone = xlog_iodone;
1054	ASSERT(xfs_buf_islocked(bp));
1055	log->l_xbuf = bp;
1056
1057	spin_lock_init(&log->l_icloglock);
1058	init_waitqueue_head(&log->l_flush_wait);
1059
1060	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1061	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1062
1063	iclogp = &log->l_iclog;
1064	/*
1065	 * The amount of memory to allocate for the iclog structure is
1066	 * rather funky due to the way the structure is defined.  It is
1067	 * done this way so that we can use different sizes for machines
1068	 * with different amounts of memory.  See the definition of
1069	 * xlog_in_core_t in xfs_log_priv.h for details.
1070	 */
1071	ASSERT(log->l_iclog_size >= 4096);
1072	for (i=0; i < log->l_iclog_bufs; i++) {
1073		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1074		if (!*iclogp)
 
 
 
 
1075			goto out_free_iclog;
1076
1077		iclog = *iclogp;
1078		iclog->ic_prev = prev_iclog;
1079		prev_iclog = iclog;
1080
1081		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1082						log->l_iclog_size, 0);
1083		if (!bp)
1084			goto out_free_iclog;
1085
1086		bp->b_iodone = xlog_iodone;
1087		iclog->ic_bp = bp;
1088		iclog->ic_data = bp->b_addr;
1089#ifdef DEBUG
1090		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1091#endif
1092		head = &iclog->ic_header;
1093		memset(head, 0, sizeof(xlog_rec_header_t));
1094		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1095		head->h_version = cpu_to_be32(
1096			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1097		head->h_size = cpu_to_be32(log->l_iclog_size);
1098		/* new fields */
1099		head->h_fmt = cpu_to_be32(XLOG_FMT);
1100		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1101
1102		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1103		iclog->ic_state = XLOG_STATE_ACTIVE;
1104		iclog->ic_log = log;
1105		atomic_set(&iclog->ic_refcnt, 0);
1106		spin_lock_init(&iclog->ic_callback_lock);
1107		iclog->ic_callback_tail = &(iclog->ic_callback);
1108		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1109
1110		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1111		init_waitqueue_head(&iclog->ic_force_wait);
1112		init_waitqueue_head(&iclog->ic_write_wait);
 
 
1113
1114		iclogp = &iclog->ic_next;
1115	}
1116	*iclogp = log->l_iclog;			/* complete ring */
1117	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1118
 
 
 
 
 
 
 
1119	error = xlog_cil_init(log);
1120	if (error)
1121		goto out_free_iclog;
1122	return log;
1123
 
 
1124out_free_iclog:
1125	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1126		prev_iclog = iclog->ic_next;
1127		if (iclog->ic_bp)
1128			xfs_buf_free(iclog->ic_bp);
1129		kmem_free(iclog);
 
1130	}
1131	spinlock_destroy(&log->l_icloglock);
1132	xfs_buf_free(log->l_xbuf);
1133out_free_log:
1134	kmem_free(log);
1135out:
1136	return ERR_PTR(-error);
1137}	/* xlog_alloc_log */
1138
1139
1140/*
1141 * Write out the commit record of a transaction associated with the given
1142 * ticket.  Return the lsn of the commit record.
1143 */
1144STATIC int
1145xlog_commit_record(
1146	struct log		*log,
1147	struct xlog_ticket	*ticket,
1148	struct xlog_in_core	**iclog,
1149	xfs_lsn_t		*commitlsnp)
1150{
1151	struct xfs_mount *mp = log->l_mp;
1152	int	error;
1153	struct xfs_log_iovec reg = {
1154		.i_addr = NULL,
1155		.i_len = 0,
1156		.i_type = XLOG_REG_TYPE_COMMIT,
1157	};
1158	struct xfs_log_vec vec = {
1159		.lv_niovecs = 1,
1160		.lv_iovecp = &reg,
1161	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162
1163	ASSERT_ALWAYS(iclog);
1164	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1165					XLOG_COMMIT_TRANS);
1166	if (error)
1167		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1168	return error;
1169}
1170
1171/*
1172 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1173 * log space.  This code pushes on the lsn which would supposedly free up
1174 * the 25% which we want to leave free.  We may need to adopt a policy which
1175 * pushes on an lsn which is further along in the log once we reach the high
1176 * water mark.  In this manner, we would be creating a low water mark.
1177 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178STATIC void
1179xlog_grant_push_ail(
1180	struct log	*log,
1181	int		need_bytes)
1182{
1183	xfs_lsn_t	threshold_lsn = 0;
1184	xfs_lsn_t	last_sync_lsn;
1185	int		free_blocks;
1186	int		free_bytes;
1187	int		threshold_block;
1188	int		threshold_cycle;
1189	int		free_threshold;
1190
1191	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1192
1193	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1194	free_blocks = BTOBBT(free_bytes);
1195
1196	/*
1197	 * Set the threshold for the minimum number of free blocks in the
1198	 * log to the maximum of what the caller needs, one quarter of the
1199	 * log, and 256 blocks.
1200	 */
1201	free_threshold = BTOBB(need_bytes);
1202	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1203	free_threshold = MAX(free_threshold, 256);
1204	if (free_blocks >= free_threshold)
1205		return;
1206
1207	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1208						&threshold_block);
1209	threshold_block += free_threshold;
1210	if (threshold_block >= log->l_logBBsize) {
1211		threshold_block -= log->l_logBBsize;
1212		threshold_cycle += 1;
 
 
 
 
 
 
 
 
 
 
 
 
1213	}
1214	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1215					threshold_block);
1216	/*
1217	 * Don't pass in an lsn greater than the lsn of the last
1218	 * log record known to be on disk. Use a snapshot of the last sync lsn
1219	 * so that it doesn't change between the compare and the set.
 
1220	 */
1221	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1222	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1223		threshold_lsn = last_sync_lsn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224
1225	/*
1226	 * Get the transaction layer to kick the dirty buffers out to
1227	 * disk asynchronously. No point in trying to do this if
1228	 * the filesystem is shutting down.
1229	 */
1230	if (!XLOG_FORCED_SHUTDOWN(log))
1231		xfs_ail_push(log->l_ailp, threshold_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232}
1233
1234/*
1235 * The bdstrat callback function for log bufs. This gives us a central
1236 * place to trap bufs in case we get hit by a log I/O error and need to
1237 * shutdown. Actually, in practice, even when we didn't get a log error,
1238 * we transition the iclogs to IOERROR state *after* flushing all existing
1239 * iclogs to disk. This is because we don't want anymore new transactions to be
1240 * started or completed afterwards.
1241 */
1242STATIC int
1243xlog_bdstrat(
1244	struct xfs_buf		*bp)
 
 
 
1245{
1246	struct xlog_in_core	*iclog = bp->b_fspriv;
 
 
 
 
1247
1248	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1249		xfs_buf_ioerror(bp, EIO);
1250		XFS_BUF_STALE(bp);
1251		xfs_buf_ioend(bp, 0);
1252		/*
1253		 * It would seem logical to return EIO here, but we rely on
1254		 * the log state machine to propagate I/O errors instead of
1255		 * doing it here.
1256		 */
1257		return 0;
1258	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260	xfs_buf_iorequest(bp);
1261	return 0;
 
1262}
1263
1264/*
1265 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1266 * fashion.  Previously, we should have moved the current iclog
1267 * ptr in the log to point to the next available iclog.  This allows further
1268 * write to continue while this code syncs out an iclog ready to go.
1269 * Before an in-core log can be written out, the data section must be scanned
1270 * to save away the 1st word of each BBSIZE block into the header.  We replace
1271 * it with the current cycle count.  Each BBSIZE block is tagged with the
1272 * cycle count because there in an implicit assumption that drives will
1273 * guarantee that entire 512 byte blocks get written at once.  In other words,
1274 * we can't have part of a 512 byte block written and part not written.  By
1275 * tagging each block, we will know which blocks are valid when recovering
1276 * after an unclean shutdown.
1277 *
1278 * This routine is single threaded on the iclog.  No other thread can be in
1279 * this routine with the same iclog.  Changing contents of iclog can there-
1280 * fore be done without grabbing the state machine lock.  Updating the global
1281 * log will require grabbing the lock though.
1282 *
1283 * The entire log manager uses a logical block numbering scheme.  Only
1284 * log_sync (and then only bwrite()) know about the fact that the log may
1285 * not start with block zero on a given device.  The log block start offset
1286 * is added immediately before calling bwrite().
1287 */
1288
1289STATIC int
1290xlog_sync(xlog_t		*log,
1291	  xlog_in_core_t	*iclog)
 
1292{
1293	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1294	xfs_buf_t	*bp;
1295	int		i;
1296	uint		count;		/* byte count of bwrite */
1297	uint		count_init;	/* initial count before roundup */
1298	int		roundoff;       /* roundoff to BB or stripe */
1299	int		split = 0;	/* split write into two regions */
1300	int		error;
1301	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1302
1303	XFS_STATS_INC(xs_log_writes);
1304	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
1305
1306	/* Add for LR header */
1307	count_init = log->l_iclog_hsize + iclog->ic_offset;
1308
1309	/* Round out the log write size */
1310	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1311		/* we have a v2 stripe unit to use */
1312		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
 
 
 
1313	} else {
1314		count = BBTOB(BTOBB(count_init));
 
1315	}
1316	roundoff = count - count_init;
1317	ASSERT(roundoff >= 0);
1318	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1319                roundoff < log->l_mp->m_sb.sb_logsunit)
1320		|| 
1321		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1322		 roundoff < BBTOB(1)));
1323
1324	/* move grant heads by roundoff in sync */
1325	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1326	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1327
1328	/* put cycle number in every block */
1329	xlog_pack_data(log, iclog, roundoff); 
1330
1331	/* real byte length */
1332	if (v2) {
1333		iclog->ic_header.h_len =
1334			cpu_to_be32(iclog->ic_offset + roundoff);
1335	} else {
1336		iclog->ic_header.h_len =
1337			cpu_to_be32(iclog->ic_offset);
1338	}
1339
1340	bp = iclog->ic_bp;
1341	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1342
1343	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1344
1345	/* Do we need to split this write into 2 parts? */
1346	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1347		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1348		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1349		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1350	} else {
1351		iclog->ic_bwritecnt = 1;
1352	}
1353	XFS_BUF_SET_COUNT(bp, count);
1354	bp->b_fspriv = iclog;
1355	XFS_BUF_ZEROFLAGS(bp);
1356	XFS_BUF_ASYNC(bp);
1357	bp->b_flags |= XBF_SYNCIO;
1358
1359	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1360		bp->b_flags |= XBF_FUA;
1361
1362		/*
1363		 * Flush the data device before flushing the log to make
1364		 * sure all meta data written back from the AIL actually made
1365		 * it to disk before stamping the new log tail LSN into the
1366		 * log buffer.  For an external log we need to issue the
1367		 * flush explicitly, and unfortunately synchronously here;
1368		 * for an internal log we can simply use the block layer
1369		 * state machine for preflushes.
1370		 */
1371		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1372			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1373		else
1374			bp->b_flags |= XBF_FLUSH;
1375	}
1376
1377	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1378	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1379
1380	xlog_verify_iclog(log, iclog, count, B_TRUE);
1381
1382	/* account for log which doesn't start at block #0 */
1383	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1384	/*
1385	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1386	 * is shutting down.
 
 
 
 
1387	 */
1388	XFS_BUF_WRITE(bp);
1389
1390	if ((error = xlog_bdstrat(bp))) {
1391		xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1392				  XFS_BUF_ADDR(bp));
1393		return error;
 
1394	}
1395	if (split) {
1396		bp = iclog->ic_log->l_xbuf;
1397		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1398		xfs_buf_associate_memory(bp,
1399				(char *)&iclog->ic_header + count, split);
1400		bp->b_fspriv = iclog;
1401		XFS_BUF_ZEROFLAGS(bp);
1402		XFS_BUF_ASYNC(bp);
1403		bp->b_flags |= XBF_SYNCIO;
1404		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1405			bp->b_flags |= XBF_FUA;
1406		dptr = bp->b_addr;
1407		/*
1408		 * Bump the cycle numbers at the start of each block
1409		 * since this part of the buffer is at the start of
1410		 * a new cycle.  Watch out for the header magic number
1411		 * case, though.
1412		 */
1413		for (i = 0; i < split; i += BBSIZE) {
1414			be32_add_cpu((__be32 *)dptr, 1);
1415			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1416				be32_add_cpu((__be32 *)dptr, 1);
1417			dptr += BBSIZE;
1418		}
1419
1420		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1421		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1422
1423		/* account for internal log which doesn't start at block #0 */
1424		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1425		XFS_BUF_WRITE(bp);
1426		if ((error = xlog_bdstrat(bp))) {
1427			xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1428					  bp, XFS_BUF_ADDR(bp));
1429			return error;
1430		}
1431	}
1432	return 0;
1433}	/* xlog_sync */
1434
1435
1436/*
1437 * Deallocate a log structure
1438 */
1439STATIC void
1440xlog_dealloc_log(xlog_t *log)
 
1441{
1442	xlog_in_core_t	*iclog, *next_iclog;
1443	int		i;
1444
1445	xlog_cil_destroy(log);
1446
1447	/*
1448	 * always need to ensure that the extra buffer does not point to memory
1449	 * owned by another log buffer before we free it.
 
1450	 */
1451	xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1452	xfs_buf_free(log->l_xbuf);
1453
1454	iclog = log->l_iclog;
1455	for (i=0; i<log->l_iclog_bufs; i++) {
1456		xfs_buf_free(iclog->ic_bp);
1457		next_iclog = iclog->ic_next;
1458		kmem_free(iclog);
 
1459		iclog = next_iclog;
1460	}
1461	spinlock_destroy(&log->l_icloglock);
1462
1463	log->l_mp->m_log = NULL;
1464	kmem_free(log);
1465}	/* xlog_dealloc_log */
 
1466
1467/*
1468 * Update counters atomically now that memcpy is done.
1469 */
1470/* ARGSUSED */
1471static inline void
1472xlog_state_finish_copy(xlog_t		*log,
1473		       xlog_in_core_t	*iclog,
1474		       int		record_cnt,
1475		       int		copy_bytes)
 
1476{
1477	spin_lock(&log->l_icloglock);
1478
1479	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1480	iclog->ic_offset += copy_bytes;
1481
1482	spin_unlock(&log->l_icloglock);
1483}	/* xlog_state_finish_copy */
1484
1485
1486
1487
1488/*
1489 * print out info relating to regions written which consume
1490 * the reservation
1491 */
1492void
1493xlog_print_tic_res(
1494	struct xfs_mount	*mp,
1495	struct xlog_ticket	*ticket)
1496{
1497	uint i;
1498	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1499
1500	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1501	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1502	    "bformat",
1503	    "bchunk",
1504	    "efi_format",
1505	    "efd_format",
1506	    "iformat",
1507	    "icore",
1508	    "iext",
1509	    "ibroot",
1510	    "ilocal",
1511	    "iattr_ext",
1512	    "iattr_broot",
1513	    "iattr_local",
1514	    "qformat",
1515	    "dquot",
1516	    "quotaoff",
1517	    "LR header",
1518	    "unmount",
1519	    "commit",
1520	    "trans header"
1521	};
1522	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1523	    "SETATTR_NOT_SIZE",
1524	    "SETATTR_SIZE",
1525	    "INACTIVE",
1526	    "CREATE",
1527	    "CREATE_TRUNC",
1528	    "TRUNCATE_FILE",
1529	    "REMOVE",
1530	    "LINK",
1531	    "RENAME",
1532	    "MKDIR",
1533	    "RMDIR",
1534	    "SYMLINK",
1535	    "SET_DMATTRS",
1536	    "GROWFS",
1537	    "STRAT_WRITE",
1538	    "DIOSTRAT",
1539	    "WRITE_SYNC",
1540	    "WRITEID",
1541	    "ADDAFORK",
1542	    "ATTRINVAL",
1543	    "ATRUNCATE",
1544	    "ATTR_SET",
1545	    "ATTR_RM",
1546	    "ATTR_FLAG",
1547	    "CLEAR_AGI_BUCKET",
1548	    "QM_SBCHANGE",
1549	    "DUMMY1",
1550	    "DUMMY2",
1551	    "QM_QUOTAOFF",
1552	    "QM_DQALLOC",
1553	    "QM_SETQLIM",
1554	    "QM_DQCLUSTER",
1555	    "QM_QINOCREATE",
1556	    "QM_QUOTAOFF_END",
1557	    "SB_UNIT",
1558	    "FSYNC_TS",
1559	    "GROWFSRT_ALLOC",
1560	    "GROWFSRT_ZERO",
1561	    "GROWFSRT_FREE",
1562	    "SWAPEXT"
1563	};
1564
1565	xfs_warn(mp,
1566		"xfs_log_write: reservation summary:\n"
1567		"  trans type  = %s (%u)\n"
1568		"  unit res    = %d bytes\n"
1569		"  current res = %d bytes\n"
1570		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1571		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1572		"  ophdr + reg = %u bytes\n"
1573		"  num regions = %u\n",
1574		((ticket->t_trans_type <= 0 ||
1575		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1576		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1577		ticket->t_trans_type,
1578		ticket->t_unit_res,
1579		ticket->t_curr_res,
1580		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1581		ticket->t_res_num_ophdrs, ophdr_spc,
1582		ticket->t_res_arr_sum +
1583		ticket->t_res_o_flow + ophdr_spc,
1584		ticket->t_res_num);
1585
1586	for (i = 0; i < ticket->t_res_num; i++) {
1587		uint r_type = ticket->t_res_arr[i].r_type;
1588		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1589			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1590			    "bad-rtype" : res_type_str[r_type-1]),
1591			    ticket->t_res_arr[i].r_len);
1592	}
1593
1594	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1595		"xfs_log_write: reservation ran out. Need to up reservation");
1596	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1597}
1598
1599/*
1600 * Calculate the potential space needed by the log vector.  Each region gets
1601 * its own xlog_op_header_t and may need to be double word aligned.
1602 */
1603static int
1604xlog_write_calc_vec_length(
1605	struct xlog_ticket	*ticket,
1606	struct xfs_log_vec	*log_vector)
1607{
1608	struct xfs_log_vec	*lv;
1609	int			headers = 0;
1610	int			len = 0;
1611	int			i;
1612
1613	/* acct for start rec of xact */
1614	if (ticket->t_flags & XLOG_TIC_INITED)
1615		headers++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616
1617	for (lv = log_vector; lv; lv = lv->lv_next) {
1618		headers += lv->lv_niovecs;
 
 
1619
1620		for (i = 0; i < lv->lv_niovecs; i++) {
1621			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
 
 
 
1622
1623			len += vecp->i_len;
1624			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1625		}
1626	}
 
1627
1628	ticket->t_res_num_ophdrs += headers;
1629	len += headers * sizeof(struct xlog_op_header);
1630
1631	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632}
1633
1634/*
1635 * If first write for transaction, insert start record  We can't be trying to
1636 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1637 */
1638static int
1639xlog_write_start_rec(
1640	struct xlog_op_header	*ophdr,
1641	struct xlog_ticket	*ticket)
 
 
 
 
 
1642{
1643	if (!(ticket->t_flags & XLOG_TIC_INITED))
1644		return 0;
1645
1646	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1647	ophdr->oh_clientid = ticket->t_clientid;
1648	ophdr->oh_len = 0;
1649	ophdr->oh_flags = XLOG_START_TRANS;
1650	ophdr->oh_res2 = 0;
1651
1652	ticket->t_flags &= ~XLOG_TIC_INITED;
 
 
 
 
 
 
1653
1654	return sizeof(struct xlog_op_header);
 
 
 
1655}
1656
1657static xlog_op_header_t *
1658xlog_write_setup_ophdr(
1659	struct log		*log,
1660	struct xlog_op_header	*ophdr,
1661	struct xlog_ticket	*ticket,
1662	uint			flags)
 
 
 
 
1663{
1664	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1665	ophdr->oh_clientid = ticket->t_clientid;
1666	ophdr->oh_res2 = 0;
1667
1668	/* are we copying a commit or unmount record? */
1669	ophdr->oh_flags = flags;
1670
1671	/*
1672	 * We've seen logs corrupted with bad transaction client ids.  This
1673	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1674	 * and shut down the filesystem.
1675	 */
1676	switch (ophdr->oh_clientid)  {
1677	case XFS_TRANSACTION:
1678	case XFS_VOLUME:
1679	case XFS_LOG:
1680		break;
1681	default:
1682		xfs_warn(log->l_mp,
1683			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1684			ophdr->oh_clientid, ticket);
1685		return NULL;
1686	}
1687
1688	return ophdr;
 
 
 
 
 
 
 
1689}
1690
1691/*
1692 * Set up the parameters of the region copy into the log. This has
1693 * to handle region write split across multiple log buffers - this
1694 * state is kept external to this function so that this code can
1695 * can be written in an obvious, self documenting manner.
1696 */
1697static int
1698xlog_write_setup_copy(
 
1699	struct xlog_ticket	*ticket,
1700	struct xlog_op_header	*ophdr,
1701	int			space_available,
1702	int			space_required,
1703	int			*copy_off,
1704	int			*copy_len,
1705	int			*last_was_partial_copy,
1706	int			*bytes_consumed)
1707{
1708	int			still_to_copy;
1709
1710	still_to_copy = space_required - *bytes_consumed;
1711	*copy_off = *bytes_consumed;
1712
1713	if (still_to_copy <= space_available) {
1714		/* write of region completes here */
1715		*copy_len = still_to_copy;
1716		ophdr->oh_len = cpu_to_be32(*copy_len);
1717		if (*last_was_partial_copy)
1718			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1719		*last_was_partial_copy = 0;
1720		*bytes_consumed = 0;
1721		return 0;
1722	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724	/* partial write of region, needs extra log op header reservation */
1725	*copy_len = space_available;
1726	ophdr->oh_len = cpu_to_be32(*copy_len);
1727	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1728	if (*last_was_partial_copy)
1729		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1730	*bytes_consumed += *copy_len;
1731	(*last_was_partial_copy)++;
1732
1733	/* account for new log op header */
1734	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1735	ticket->t_res_num_ophdrs++;
1736
1737	return sizeof(struct xlog_op_header);
1738}
 
1739
1740static int
1741xlog_write_copy_finish(
1742	struct log		*log,
1743	struct xlog_in_core	*iclog,
1744	uint			flags,
1745	int			*record_cnt,
1746	int			*data_cnt,
1747	int			*partial_copy,
1748	int			*partial_copy_len,
1749	int			log_offset,
1750	struct xlog_in_core	**commit_iclog)
1751{
1752	if (*partial_copy) {
1753		/*
1754		 * This iclog has already been marked WANT_SYNC by
1755		 * xlog_state_get_iclog_space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756		 */
1757		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1758		*record_cnt = 0;
1759		*data_cnt = 0;
1760		return xlog_state_release_iclog(log, iclog);
1761	}
1762
1763	*partial_copy = 0;
1764	*partial_copy_len = 0;
1765
1766	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1767		/* no more space in this iclog - push it. */
1768		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1769		*record_cnt = 0;
1770		*data_cnt = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771
1772		spin_lock(&log->l_icloglock);
1773		xlog_state_want_sync(log, iclog);
1774		spin_unlock(&log->l_icloglock);
1775
1776		if (!commit_iclog)
1777			return xlog_state_release_iclog(log, iclog);
1778		ASSERT(flags & XLOG_COMMIT_TRANS);
1779		*commit_iclog = iclog;
1780	}
1781
 
 
 
 
 
1782	return 0;
1783}
1784
1785/*
1786 * Write some region out to in-core log
1787 *
1788 * This will be called when writing externally provided regions or when
1789 * writing out a commit record for a given transaction.
1790 *
1791 * General algorithm:
1792 *	1. Find total length of this write.  This may include adding to the
1793 *		lengths passed in.
1794 *	2. Check whether we violate the tickets reservation.
1795 *	3. While writing to this iclog
1796 *	    A. Reserve as much space in this iclog as can get
1797 *	    B. If this is first write, save away start lsn
1798 *	    C. While writing this region:
1799 *		1. If first write of transaction, write start record
1800 *		2. Write log operation header (header per region)
1801 *		3. Find out if we can fit entire region into this iclog
1802 *		4. Potentially, verify destination memcpy ptr
1803 *		5. Memcpy (partial) region
1804 *		6. If partial copy, release iclog; otherwise, continue
1805 *			copying more regions into current iclog
1806 *	4. Mark want sync bit (in simulation mode)
1807 *	5. Release iclog for potential flush to on-disk log.
1808 *
1809 * ERRORS:
1810 * 1.	Panic if reservation is overrun.  This should never happen since
1811 *	reservation amounts are generated internal to the filesystem.
1812 * NOTES:
1813 * 1. Tickets are single threaded data structures.
1814 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1815 *	syncing routine.  When a single log_write region needs to span
1816 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1817 *	on all log operation writes which don't contain the end of the
1818 *	region.  The XLOG_END_TRANS bit is used for the in-core log
1819 *	operation which contains the end of the continued log_write region.
1820 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1821 *	we don't really know exactly how much space will be used.  As a result,
1822 *	we don't update ic_offset until the end when we know exactly how many
1823 *	bytes have been written out.
1824 */
1825int
1826xlog_write(
1827	struct log		*log,
1828	struct xfs_log_vec	*log_vector,
 
1829	struct xlog_ticket	*ticket,
1830	xfs_lsn_t		*start_lsn,
1831	struct xlog_in_core	**commit_iclog,
1832	uint			flags)
1833{
1834	struct xlog_in_core	*iclog = NULL;
1835	struct xfs_log_iovec	*vecp;
1836	struct xfs_log_vec	*lv;
1837	int			len;
1838	int			index;
1839	int			partial_copy = 0;
1840	int			partial_copy_len = 0;
1841	int			contwr = 0;
1842	int			record_cnt = 0;
1843	int			data_cnt = 0;
1844	int			error;
1845
1846	*start_lsn = 0;
1847
1848	len = xlog_write_calc_vec_length(ticket, log_vector);
1849	if (log->l_cilp) {
1850		/*
1851		 * Region headers and bytes are already accounted for.
1852		 * We only need to take into account start records and
1853		 * split regions in this function.
1854		 */
1855		if (ticket->t_flags & XLOG_TIC_INITED)
1856			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1857
1858		/*
1859		 * Commit record headers need to be accounted for. These
1860		 * come in as separate writes so are easy to detect.
1861		 */
1862		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1863			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1864	} else
1865		ticket->t_curr_res -= len;
1866
1867	if (ticket->t_curr_res < 0)
1868		xlog_print_tic_res(log->l_mp, ticket);
 
 
1869
1870	index = 0;
1871	lv = log_vector;
1872	vecp = lv->lv_iovecp;
1873	while (lv && index < lv->lv_niovecs) {
1874		void		*ptr;
1875		int		log_offset;
1876
1877		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1878						   &contwr, &log_offset);
1879		if (error)
1880			return error;
1881
1882		ASSERT(log_offset <= iclog->ic_size - 1);
1883		ptr = iclog->ic_datap + log_offset;
1884
1885		/* start_lsn is the first lsn written to. That's all we need. */
1886		if (!*start_lsn)
1887			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
 
 
 
 
1888
 
1889		/*
1890		 * This loop writes out as many regions as can fit in the amount
1891		 * of space which was allocated by xlog_state_get_iclog_space().
1892		 */
1893		while (lv && index < lv->lv_niovecs) {
1894			struct xfs_log_iovec	*reg = &vecp[index];
1895			struct xlog_op_header	*ophdr;
1896			int			start_rec_copy;
1897			int			copy_len;
1898			int			copy_off;
1899
1900			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1901			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1902
1903			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1904			if (start_rec_copy) {
1905				record_cnt++;
1906				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1907						   start_rec_copy);
1908			}
1909
1910			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1911			if (!ophdr)
1912				return XFS_ERROR(EIO);
1913
1914			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1915					   sizeof(struct xlog_op_header));
1916
1917			len += xlog_write_setup_copy(ticket, ophdr,
1918						     iclog->ic_size-log_offset,
1919						     reg->i_len,
1920						     &copy_off, &copy_len,
1921						     &partial_copy,
1922						     &partial_copy_len);
1923			xlog_verify_dest_ptr(log, ptr);
1924
1925			/* copy region */
1926			ASSERT(copy_len >= 0);
1927			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1928			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1929
1930			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1931			record_cnt++;
1932			data_cnt += contwr ? copy_len : 0;
1933
1934			error = xlog_write_copy_finish(log, iclog, flags,
1935						       &record_cnt, &data_cnt,
1936						       &partial_copy,
1937						       &partial_copy_len,
1938						       log_offset,
1939						       commit_iclog);
1940			if (error)
1941				return error;
1942
1943			/*
1944			 * if we had a partial copy, we need to get more iclog
1945			 * space but we don't want to increment the region
1946			 * index because there is still more is this region to
1947			 * write.
1948			 *
1949			 * If we completed writing this region, and we flushed
1950			 * the iclog (indicated by resetting of the record
1951			 * count), then we also need to get more log space. If
1952			 * this was the last record, though, we are done and
1953			 * can just return.
1954			 */
1955			if (partial_copy)
1956				break;
1957
1958			if (++index == lv->lv_niovecs) {
1959				lv = lv->lv_next;
1960				index = 0;
1961				if (lv)
1962					vecp = lv->lv_iovecp;
1963			}
1964			if (record_cnt == 0) {
1965				if (!lv)
1966					return 0;
1967				break;
1968			}
 
 
 
1969		}
1970	}
1971
1972	ASSERT(len == 0);
1973
1974	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1975	if (!commit_iclog)
1976		return xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
1977
1978	ASSERT(flags & XLOG_COMMIT_TRANS);
1979	*commit_iclog = iclog;
1980	return 0;
1981}
1982
 
 
 
 
 
 
 
1983
1984/*****************************************************************************
1985 *
1986 *		State Machine functions
1987 *
1988 *****************************************************************************
1989 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1990
1991/* Clean iclogs starting from the head.  This ordering must be
1992 * maintained, so an iclog doesn't become ACTIVE beyond one that
1993 * is SYNCING.  This is also required to maintain the notion that we use
1994 * a ordered wait queue to hold off would be writers to the log when every
1995 * iclog is trying to sync to disk.
1996 *
1997 * State Change: DIRTY -> ACTIVE
1998 */
1999STATIC void
2000xlog_state_clean_log(xlog_t *log)
 
 
2001{
2002	xlog_in_core_t	*iclog;
2003	int changed = 0;
2004
2005	iclog = log->l_iclog;
2006	do {
2007		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2008			iclog->ic_state	= XLOG_STATE_ACTIVE;
2009			iclog->ic_offset       = 0;
2010			ASSERT(iclog->ic_callback == NULL);
2011			/*
2012			 * If the number of ops in this iclog indicate it just
2013			 * contains the dummy transaction, we can
2014			 * change state into IDLE (the second time around).
2015			 * Otherwise we should change the state into
2016			 * NEED a dummy.
2017			 * We don't need to cover the dummy.
2018			 */
2019			if (!changed &&
2020			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2021			   		XLOG_COVER_OPS)) {
2022				changed = 1;
2023			} else {
2024				/*
2025				 * We have two dirty iclogs so start over
2026				 * This could also be num of ops indicates
2027				 * this is not the dummy going out.
2028				 */
2029				changed = 2;
2030			}
2031			iclog->ic_header.h_num_logops = 0;
2032			memset(iclog->ic_header.h_cycle_data, 0,
2033			      sizeof(iclog->ic_header.h_cycle_data));
2034			iclog->ic_header.h_lsn = 0;
2035		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2036			/* do nothing */;
2037		else
2038			break;	/* stop cleaning */
2039		iclog = iclog->ic_next;
2040	} while (iclog != log->l_iclog);
2041
2042	/* log is locked when we are called */
 
 
 
 
2043	/*
2044	 * Change state for the dummy log recording.
2045	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2046	 * we are done writing the dummy record.
2047	 * If we are done with the second dummy recored (DONE2), then
2048	 * we go to IDLE.
2049	 */
2050	if (changed) {
2051		switch (log->l_covered_state) {
2052		case XLOG_STATE_COVER_IDLE:
2053		case XLOG_STATE_COVER_NEED:
2054		case XLOG_STATE_COVER_NEED2:
2055			log->l_covered_state = XLOG_STATE_COVER_NEED;
2056			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
2058		case XLOG_STATE_COVER_DONE:
2059			if (changed == 1)
2060				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2061			else
2062				log->l_covered_state = XLOG_STATE_COVER_NEED;
2063			break;
2064
2065		case XLOG_STATE_COVER_DONE2:
2066			if (changed == 1)
2067				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2068			else
2069				log->l_covered_state = XLOG_STATE_COVER_NEED;
2070			break;
2071
2072		default:
2073			ASSERT(0);
2074		}
2075	}
2076}	/* xlog_state_clean_log */
2077
2078STATIC xfs_lsn_t
2079xlog_get_lowest_lsn(
2080	xlog_t		*log)
2081{
2082	xlog_in_core_t  *lsn_log;
2083	xfs_lsn_t	lowest_lsn, lsn;
2084
2085	lsn_log = log->l_iclog;
2086	lowest_lsn = 0;
2087	do {
2088	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2089		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2090		if ((lsn && !lowest_lsn) ||
2091		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
 
 
2092			lowest_lsn = lsn;
2093		}
2094	    }
2095	    lsn_log = lsn_log->ic_next;
2096	} while (lsn_log != log->l_iclog);
2097	return lowest_lsn;
2098}
2099
 
 
 
 
 
 
 
 
 
 
 
 
2100
2101STATIC void
2102xlog_state_do_callback(
2103	xlog_t		*log,
2104	int		aborted,
2105	xlog_in_core_t	*ciclog)
2106{
2107	xlog_in_core_t	   *iclog;
2108	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2109						 * processed all iclogs once */
2110	xfs_log_callback_t *cb, *cb_next;
2111	int		   flushcnt = 0;
2112	xfs_lsn_t	   lowest_lsn;
2113	int		   ioerrors;	/* counter: iclogs with errors */
2114	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2115	int		   funcdidcallbacks; /* flag: function did callbacks */
2116	int		   repeats;	/* for issuing console warnings if
2117					 * looping too many times */
2118	int		   wake = 0;
2119
2120	spin_lock(&log->l_icloglock);
2121	first_iclog = iclog = log->l_iclog;
2122	ioerrors = 0;
2123	funcdidcallbacks = 0;
2124	repeats = 0;
2125
2126	do {
 
 
 
 
 
2127		/*
2128		 * Scan all iclogs starting with the one pointed to by the
2129		 * log.  Reset this starting point each time the log is
2130		 * unlocked (during callbacks).
2131		 *
2132		 * Keep looping through iclogs until one full pass is made
2133		 * without running any callbacks.
2134		 */
2135		first_iclog = log->l_iclog;
2136		iclog = log->l_iclog;
2137		loopdidcallbacks = 0;
2138		repeats++;
2139
2140		do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141
2142			/* skip all iclogs in the ACTIVE & DIRTY states */
2143			if (iclog->ic_state &
2144			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2145				iclog = iclog->ic_next;
2146				continue;
2147			}
2148
2149			/*
2150			 * Between marking a filesystem SHUTDOWN and stopping
2151			 * the log, we do flush all iclogs to disk (if there
2152			 * wasn't a log I/O error). So, we do want things to
2153			 * go smoothly in case of just a SHUTDOWN  w/o a
2154			 * LOG_IO_ERROR.
2155			 */
2156			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2157				/*
2158				 * Can only perform callbacks in order.  Since
2159				 * this iclog is not in the DONE_SYNC/
2160				 * DO_CALLBACK state, we skip the rest and
2161				 * just try to clean up.  If we set our iclog
2162				 * to DO_CALLBACK, we will not process it when
2163				 * we retry since a previous iclog is in the
2164				 * CALLBACK and the state cannot change since
2165				 * we are holding the l_icloglock.
2166				 */
2167				if (!(iclog->ic_state &
2168					(XLOG_STATE_DONE_SYNC |
2169						 XLOG_STATE_DO_CALLBACK))) {
2170					if (ciclog && (ciclog->ic_state ==
2171							XLOG_STATE_DONE_SYNC)) {
2172						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2173					}
2174					break;
2175				}
2176				/*
2177				 * We now have an iclog that is in either the
2178				 * DO_CALLBACK or DONE_SYNC states. The other
2179				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2180				 * caught by the above if and are going to
2181				 * clean (i.e. we aren't doing their callbacks)
2182				 * see the above if.
2183				 */
2184
2185				/*
2186				 * We will do one more check here to see if we
2187				 * have chased our tail around.
2188				 */
2189
2190				lowest_lsn = xlog_get_lowest_lsn(log);
2191				if (lowest_lsn &&
2192				    XFS_LSN_CMP(lowest_lsn,
2193						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2194					iclog = iclog->ic_next;
2195					continue; /* Leave this iclog for
2196						   * another thread */
2197				}
2198
2199				iclog->ic_state = XLOG_STATE_CALLBACK;
 
2200
2201
2202				/*
2203				 * update the last_sync_lsn before we drop the
2204				 * icloglock to ensure we are the only one that
2205				 * can update it.
2206				 */
2207				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2208					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2209				atomic64_set(&log->l_last_sync_lsn,
2210					be64_to_cpu(iclog->ic_header.h_lsn));
 
2211
2212			} else
2213				ioerrors++;
2214
2215			spin_unlock(&log->l_icloglock);
2216
2217			/*
2218			 * Keep processing entries in the callback list until
2219			 * we come around and it is empty.  We need to
2220			 * atomically see that the list is empty and change the
2221			 * state to DIRTY so that we don't miss any more
2222			 * callbacks being added.
2223			 */
2224			spin_lock(&iclog->ic_callback_lock);
2225			cb = iclog->ic_callback;
2226			while (cb) {
2227				iclog->ic_callback_tail = &(iclog->ic_callback);
2228				iclog->ic_callback = NULL;
2229				spin_unlock(&iclog->ic_callback_lock);
2230
2231				/* perform callbacks in the order given */
2232				for (; cb; cb = cb_next) {
2233					cb_next = cb->cb_next;
2234					cb->cb_func(cb->cb_arg, aborted);
2235				}
2236				spin_lock(&iclog->ic_callback_lock);
2237				cb = iclog->ic_callback;
2238			}
2239
2240			loopdidcallbacks++;
2241			funcdidcallbacks++;
2242
2243			spin_lock(&log->l_icloglock);
2244			ASSERT(iclog->ic_callback == NULL);
2245			spin_unlock(&iclog->ic_callback_lock);
2246			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2247				iclog->ic_state = XLOG_STATE_DIRTY;
2248
2249			/*
2250			 * Transition from DIRTY to ACTIVE if applicable.
2251			 * NOP if STATE_IOERROR.
2252			 */
2253			xlog_state_clean_log(log);
2254
2255			/* wake up threads waiting in xfs_log_force() */
2256			wake_up_all(&iclog->ic_force_wait);
2257
2258			iclog = iclog->ic_next;
2259		} while (first_iclog != iclog);
2260
2261		if (repeats > 5000) {
2262			flushcnt += repeats;
2263			repeats = 0;
2264			xfs_warn(log->l_mp,
2265				"%s: possible infinite loop (%d iterations)",
2266				__func__, flushcnt);
2267		}
2268	} while (!ioerrors && loopdidcallbacks);
2269
2270	/*
2271	 * make one last gasp attempt to see if iclogs are being left in
2272	 * limbo..
2273	 */
2274#ifdef DEBUG
2275	if (funcdidcallbacks) {
2276		first_iclog = iclog = log->l_iclog;
2277		do {
2278			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2279			/*
2280			 * Terminate the loop if iclogs are found in states
2281			 * which will cause other threads to clean up iclogs.
2282			 *
2283			 * SYNCING - i/o completion will go through logs
2284			 * DONE_SYNC - interrupt thread should be waiting for
2285			 *              l_icloglock
2286			 * IOERROR - give up hope all ye who enter here
2287			 */
2288			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2289			    iclog->ic_state == XLOG_STATE_SYNCING ||
2290			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2291			    iclog->ic_state == XLOG_STATE_IOERROR )
2292				break;
2293			iclog = iclog->ic_next;
2294		} while (first_iclog != iclog);
2295	}
2296#endif
2297
2298	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2299		wake = 1;
2300	spin_unlock(&log->l_icloglock);
2301
2302	if (wake)
2303		wake_up_all(&log->l_flush_wait);
2304}
2305
2306
2307/*
2308 * Finish transitioning this iclog to the dirty state.
2309 *
2310 * Make sure that we completely execute this routine only when this is
2311 * the last call to the iclog.  There is a good chance that iclog flushes,
2312 * when we reach the end of the physical log, get turned into 2 separate
2313 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2314 * routine.  By using the reference count bwritecnt, we guarantee that only
2315 * the second completion goes through.
2316 *
2317 * Callbacks could take time, so they are done outside the scope of the
2318 * global state machine log lock.
2319 */
2320STATIC void
2321xlog_state_done_syncing(
2322	xlog_in_core_t	*iclog,
2323	int		aborted)
2324{
2325	xlog_t		   *log = iclog->ic_log;
2326
2327	spin_lock(&log->l_icloglock);
2328
2329	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2330	       iclog->ic_state == XLOG_STATE_IOERROR);
2331	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2332	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2333
2334
2335	/*
2336	 * If we got an error, either on the first buffer, or in the case of
2337	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2338	 * and none should ever be attempted to be written to disk
2339	 * again.
2340	 */
2341	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2342		if (--iclog->ic_bwritecnt == 1) {
2343			spin_unlock(&log->l_icloglock);
2344			return;
2345		}
2346		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2347	}
2348
2349	/*
2350	 * Someone could be sleeping prior to writing out the next
2351	 * iclog buffer, we wake them all, one will get to do the
2352	 * I/O, the others get to wait for the result.
2353	 */
2354	wake_up_all(&iclog->ic_write_wait);
2355	spin_unlock(&log->l_icloglock);
2356	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2357}	/* xlog_state_done_syncing */
2358
2359
2360/*
2361 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2362 * sleep.  We wait on the flush queue on the head iclog as that should be
2363 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2364 * we will wait here and all new writes will sleep until a sync completes.
2365 *
2366 * The in-core logs are used in a circular fashion. They are not used
2367 * out-of-order even when an iclog past the head is free.
2368 *
2369 * return:
2370 *	* log_offset where xlog_write() can start writing into the in-core
2371 *		log's data space.
2372 *	* in-core log pointer to which xlog_write() should write.
2373 *	* boolean indicating this is a continued write to an in-core log.
2374 *		If this is the last write, then the in-core log's offset field
2375 *		needs to be incremented, depending on the amount of data which
2376 *		is copied.
2377 */
2378STATIC int
2379xlog_state_get_iclog_space(xlog_t	  *log,
2380			   int		  len,
2381			   xlog_in_core_t **iclogp,
2382			   xlog_ticket_t  *ticket,
2383			   int		  *continued_write,
2384			   int		  *logoffsetp)
2385{
2386	int		  log_offset;
2387	xlog_rec_header_t *head;
2388	xlog_in_core_t	  *iclog;
2389	int		  error;
2390
2391restart:
2392	spin_lock(&log->l_icloglock);
2393	if (XLOG_FORCED_SHUTDOWN(log)) {
2394		spin_unlock(&log->l_icloglock);
2395		return XFS_ERROR(EIO);
2396	}
2397
2398	iclog = log->l_iclog;
2399	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2400		XFS_STATS_INC(xs_log_noiclogs);
2401
2402		/* Wait for log writes to have flushed */
2403		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2404		goto restart;
2405	}
2406
2407	head = &iclog->ic_header;
2408
2409	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2410	log_offset = iclog->ic_offset;
2411
 
 
2412	/* On the 1st write to an iclog, figure out lsn.  This works
2413	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2414	 * committing to.  If the offset is set, that's how many blocks
2415	 * must be written.
2416	 */
2417	if (log_offset == 0) {
2418		ticket->t_curr_res -= log->l_iclog_hsize;
2419		xlog_tic_add_region(ticket,
2420				    log->l_iclog_hsize,
2421				    XLOG_REG_TYPE_LRHEADER);
2422		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2423		head->h_lsn = cpu_to_be64(
2424			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2425		ASSERT(log->l_curr_block >= 0);
2426	}
2427
2428	/* If there is enough room to write everything, then do it.  Otherwise,
2429	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2430	 * bit is on, so this will get flushed out.  Don't update ic_offset
2431	 * until you know exactly how many bytes get copied.  Therefore, wait
2432	 * until later to update ic_offset.
2433	 *
2434	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2435	 * can fit into remaining data section.
2436	 */
2437	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
 
 
2438		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2439
2440		/*
2441		 * If I'm the only one writing to this iclog, sync it to disk.
2442		 * We need to do an atomic compare and decrement here to avoid
2443		 * racing with concurrent atomic_dec_and_lock() calls in
2444		 * xlog_state_release_iclog() when there is more than one
2445		 * reference to the iclog.
2446		 */
2447		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2448			/* we are the only one */
2449			spin_unlock(&log->l_icloglock);
2450			error = xlog_state_release_iclog(log, iclog);
2451			if (error)
2452				return error;
2453		} else {
2454			spin_unlock(&log->l_icloglock);
2455		}
2456		goto restart;
2457	}
2458
2459	/* Do we have enough room to write the full amount in the remainder
2460	 * of this iclog?  Or must we continue a write on the next iclog and
2461	 * mark this iclog as completely taken?  In the case where we switch
2462	 * iclogs (to mark it taken), this particular iclog will release/sync
2463	 * to disk in xlog_write().
2464	 */
2465	if (len <= iclog->ic_size - iclog->ic_offset) {
2466		*continued_write = 0;
2467		iclog->ic_offset += len;
2468	} else {
2469		*continued_write = 1;
2470		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2471	}
2472	*iclogp = iclog;
2473
2474	ASSERT(iclog->ic_offset <= iclog->ic_size);
2475	spin_unlock(&log->l_icloglock);
2476
2477	*logoffsetp = log_offset;
2478	return 0;
2479}	/* xlog_state_get_iclog_space */
2480
2481/*
2482 * Atomically get the log space required for a log ticket.
2483 *
2484 * Once a ticket gets put onto the reserveq, it will only return after
2485 * the needed reservation is satisfied.
2486 *
2487 * This function is structured so that it has a lock free fast path. This is
2488 * necessary because every new transaction reservation will come through this
2489 * path. Hence any lock will be globally hot if we take it unconditionally on
2490 * every pass.
2491 *
2492 * As tickets are only ever moved on and off the reserveq under the
2493 * l_grant_reserve_lock, we only need to take that lock if we are going
2494 * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2495 * ticket was never added to the reserveq because the t_queue list head will be
2496 * empty and we hold the only reference to it so it can safely be checked
2497 * unlocked.
2498 */
2499STATIC int
2500xlog_grant_log_space(xlog_t	   *log,
2501		     xlog_ticket_t *tic)
2502{
2503	int		 free_bytes;
2504	int		 need_bytes;
2505
2506#ifdef DEBUG
2507	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2508		panic("grant Recovery problem");
2509#endif
2510
2511	trace_xfs_log_grant_enter(log, tic);
2512
2513	need_bytes = tic->t_unit_res;
2514	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2515		need_bytes *= tic->t_ocnt;
2516
2517	/* something is already sleeping; insert new transaction at end */
2518	if (!list_empty_careful(&log->l_reserveq)) {
2519		spin_lock(&log->l_grant_reserve_lock);
2520		/* recheck the queue now we are locked */
2521		if (list_empty(&log->l_reserveq)) {
2522			spin_unlock(&log->l_grant_reserve_lock);
2523			goto redo;
2524		}
2525		list_add_tail(&tic->t_queue, &log->l_reserveq);
2526
2527		trace_xfs_log_grant_sleep1(log, tic);
2528
2529		/*
2530		 * Gotta check this before going to sleep, while we're
2531		 * holding the grant lock.
2532		 */
2533		if (XLOG_FORCED_SHUTDOWN(log))
2534			goto error_return;
2535
2536		XFS_STATS_INC(xs_sleep_logspace);
2537		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2538
2539		/*
2540		 * If we got an error, and the filesystem is shutting down,
2541		 * we'll catch it down below. So just continue...
2542		 */
2543		trace_xfs_log_grant_wake1(log, tic);
2544	}
2545
2546redo:
2547	if (XLOG_FORCED_SHUTDOWN(log))
2548		goto error_return_unlocked;
2549
2550	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2551	if (free_bytes < need_bytes) {
2552		spin_lock(&log->l_grant_reserve_lock);
2553		if (list_empty(&tic->t_queue))
2554			list_add_tail(&tic->t_queue, &log->l_reserveq);
2555
2556		trace_xfs_log_grant_sleep2(log, tic);
2557
2558		if (XLOG_FORCED_SHUTDOWN(log))
2559			goto error_return;
2560
2561		xlog_grant_push_ail(log, need_bytes);
2562
2563		XFS_STATS_INC(xs_sleep_logspace);
2564		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2565
2566		trace_xfs_log_grant_wake2(log, tic);
2567		goto redo;
2568	}
2569
2570	if (!list_empty(&tic->t_queue)) {
2571		spin_lock(&log->l_grant_reserve_lock);
2572		list_del_init(&tic->t_queue);
2573		spin_unlock(&log->l_grant_reserve_lock);
2574	}
2575
2576	/* we've got enough space */
2577	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2578	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2579	trace_xfs_log_grant_exit(log, tic);
2580	xlog_verify_grant_tail(log);
2581	return 0;
2582
2583error_return_unlocked:
2584	spin_lock(&log->l_grant_reserve_lock);
2585error_return:
2586	list_del_init(&tic->t_queue);
2587	spin_unlock(&log->l_grant_reserve_lock);
2588	trace_xfs_log_grant_error(log, tic);
2589
2590	/*
2591	 * If we are failing, make sure the ticket doesn't have any
2592	 * current reservations. We don't want to add this back when
2593	 * the ticket/transaction gets cancelled.
2594	 */
2595	tic->t_curr_res = 0;
2596	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2597	return XFS_ERROR(EIO);
2598}	/* xlog_grant_log_space */
2599
2600
2601/*
2602 * Replenish the byte reservation required by moving the grant write head.
2603 *
2604 * Similar to xlog_grant_log_space, the function is structured to have a lock
2605 * free fast path.
2606 */
2607STATIC int
2608xlog_regrant_write_log_space(xlog_t	   *log,
2609			     xlog_ticket_t *tic)
2610{
2611	int		free_bytes, need_bytes;
2612
2613	tic->t_curr_res = tic->t_unit_res;
2614	xlog_tic_reset_res(tic);
2615
2616	if (tic->t_cnt > 0)
2617		return 0;
2618
2619#ifdef DEBUG
2620	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2621		panic("regrant Recovery problem");
2622#endif
2623
2624	trace_xfs_log_regrant_write_enter(log, tic);
2625	if (XLOG_FORCED_SHUTDOWN(log))
2626		goto error_return_unlocked;
2627
2628	/* If there are other waiters on the queue then give them a
2629	 * chance at logspace before us. Wake up the first waiters,
2630	 * if we do not wake up all the waiters then go to sleep waiting
2631	 * for more free space, otherwise try to get some space for
2632	 * this transaction.
2633	 */
2634	need_bytes = tic->t_unit_res;
2635	if (!list_empty_careful(&log->l_writeq)) {
2636		struct xlog_ticket *ntic;
2637
2638		spin_lock(&log->l_grant_write_lock);
2639		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2640		list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2641			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2642
2643			if (free_bytes < ntic->t_unit_res)
2644				break;
2645			free_bytes -= ntic->t_unit_res;
2646			wake_up(&ntic->t_wait);
2647		}
2648
2649		if (ntic != list_first_entry(&log->l_writeq,
2650						struct xlog_ticket, t_queue)) {
2651			if (list_empty(&tic->t_queue))
2652				list_add_tail(&tic->t_queue, &log->l_writeq);
2653			trace_xfs_log_regrant_write_sleep1(log, tic);
2654
2655			xlog_grant_push_ail(log, need_bytes);
2656
2657			XFS_STATS_INC(xs_sleep_logspace);
2658			xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2659			trace_xfs_log_regrant_write_wake1(log, tic);
2660		} else
2661			spin_unlock(&log->l_grant_write_lock);
2662	}
2663
2664redo:
2665	if (XLOG_FORCED_SHUTDOWN(log))
2666		goto error_return_unlocked;
2667
2668	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2669	if (free_bytes < need_bytes) {
2670		spin_lock(&log->l_grant_write_lock);
2671		if (list_empty(&tic->t_queue))
2672			list_add_tail(&tic->t_queue, &log->l_writeq);
2673
2674		if (XLOG_FORCED_SHUTDOWN(log))
2675			goto error_return;
2676
2677		xlog_grant_push_ail(log, need_bytes);
2678
2679		XFS_STATS_INC(xs_sleep_logspace);
2680		trace_xfs_log_regrant_write_sleep2(log, tic);
2681		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2682
2683		trace_xfs_log_regrant_write_wake2(log, tic);
2684		goto redo;
2685	}
2686
2687	if (!list_empty(&tic->t_queue)) {
2688		spin_lock(&log->l_grant_write_lock);
2689		list_del_init(&tic->t_queue);
2690		spin_unlock(&log->l_grant_write_lock);
2691	}
2692
2693	/* we've got enough space */
2694	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2695	trace_xfs_log_regrant_write_exit(log, tic);
2696	xlog_verify_grant_tail(log);
2697	return 0;
2698
2699
2700 error_return_unlocked:
2701	spin_lock(&log->l_grant_write_lock);
2702 error_return:
2703	list_del_init(&tic->t_queue);
2704	spin_unlock(&log->l_grant_write_lock);
2705	trace_xfs_log_regrant_write_error(log, tic);
2706
2707	/*
2708	 * If we are failing, make sure the ticket doesn't have any
2709	 * current reservations. We don't want to add this back when
2710	 * the ticket/transaction gets cancelled.
2711	 */
2712	tic->t_curr_res = 0;
2713	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2714	return XFS_ERROR(EIO);
2715}	/* xlog_regrant_write_log_space */
2716
2717
2718/* The first cnt-1 times through here we don't need to
2719 * move the grant write head because the permanent
2720 * reservation has reserved cnt times the unit amount.
2721 * Release part of current permanent unit reservation and
2722 * reset current reservation to be one units worth.  Also
2723 * move grant reservation head forward.
2724 */
2725STATIC void
2726xlog_regrant_reserve_log_space(xlog_t	     *log,
2727			       xlog_ticket_t *ticket)
2728{
2729	trace_xfs_log_regrant_reserve_enter(log, ticket);
2730
2731	if (ticket->t_cnt > 0)
2732		ticket->t_cnt--;
2733
2734	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2735					ticket->t_curr_res);
2736	xlog_grant_sub_space(log, &log->l_grant_write_head,
2737					ticket->t_curr_res);
2738	ticket->t_curr_res = ticket->t_unit_res;
2739	xlog_tic_reset_res(ticket);
2740
2741	trace_xfs_log_regrant_reserve_sub(log, ticket);
2742
2743	/* just return if we still have some of the pre-reserved space */
2744	if (ticket->t_cnt > 0)
2745		return;
 
2746
2747	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2748					ticket->t_unit_res);
2749
2750	trace_xfs_log_regrant_reserve_exit(log, ticket);
2751
2752	ticket->t_curr_res = ticket->t_unit_res;
2753	xlog_tic_reset_res(ticket);
2754}	/* xlog_regrant_reserve_log_space */
2755
 
 
2756
2757/*
2758 * Give back the space left from a reservation.
2759 *
2760 * All the information we need to make a correct determination of space left
2761 * is present.  For non-permanent reservations, things are quite easy.  The
2762 * count should have been decremented to zero.  We only need to deal with the
2763 * space remaining in the current reservation part of the ticket.  If the
2764 * ticket contains a permanent reservation, there may be left over space which
2765 * needs to be released.  A count of N means that N-1 refills of the current
2766 * reservation can be done before we need to ask for more space.  The first
2767 * one goes to fill up the first current reservation.  Once we run out of
2768 * space, the count will stay at zero and the only space remaining will be
2769 * in the current reservation field.
2770 */
2771STATIC void
2772xlog_ungrant_log_space(xlog_t	     *log,
2773		       xlog_ticket_t *ticket)
 
2774{
2775	int	bytes;
 
 
2776
2777	if (ticket->t_cnt > 0)
2778		ticket->t_cnt--;
2779
2780	trace_xfs_log_ungrant_enter(log, ticket);
2781	trace_xfs_log_ungrant_sub(log, ticket);
2782
2783	/*
2784	 * If this is a permanent reservation ticket, we may be able to free
2785	 * up more space based on the remaining count.
2786	 */
2787	bytes = ticket->t_curr_res;
2788	if (ticket->t_cnt > 0) {
2789		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2790		bytes += ticket->t_unit_res*ticket->t_cnt;
2791	}
2792
2793	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2794	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2795
2796	trace_xfs_log_ungrant_exit(log, ticket);
2797
2798	xfs_log_move_tail(log->l_mp, 1);
2799}	/* xlog_ungrant_log_space */
2800
 
 
 
2801
2802/*
2803 * Flush iclog to disk if this is the last reference to the given iclog and
2804 * the WANT_SYNC bit is set.
2805 *
2806 * When this function is entered, the iclog is not necessarily in the
2807 * WANT_SYNC state.  It may be sitting around waiting to get filled.
2808 *
2809 *
2810 */
2811STATIC int
2812xlog_state_release_iclog(
2813	xlog_t		*log,
2814	xlog_in_core_t	*iclog)
 
2815{
2816	int		sync = 0;	/* do we sync? */
2817
2818	if (iclog->ic_state & XLOG_STATE_IOERROR)
2819		return XFS_ERROR(EIO);
2820
2821	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2822	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2823		return 0;
2824
2825	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2826		spin_unlock(&log->l_icloglock);
2827		return XFS_ERROR(EIO);
2828	}
2829	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2830	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2831
2832	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2833		/* update tail before writing to iclog */
2834		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2835		sync++;
2836		iclog->ic_state = XLOG_STATE_SYNCING;
2837		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2838		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2839		/* cycle incremented when incrementing curr_block */
2840	}
2841	spin_unlock(&log->l_icloglock);
2842
2843	/*
2844	 * We let the log lock go, so it's possible that we hit a log I/O
2845	 * error or some other SHUTDOWN condition that marks the iclog
2846	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2847	 * this iclog has consistent data, so we ignore IOERROR
2848	 * flags after this point.
2849	 */
2850	if (sync)
2851		return xlog_sync(log, iclog);
2852	return 0;
2853}	/* xlog_state_release_iclog */
2854
2855
2856/*
2857 * This routine will mark the current iclog in the ring as WANT_SYNC
2858 * and move the current iclog pointer to the next iclog in the ring.
2859 * When this routine is called from xlog_state_get_iclog_space(), the
2860 * exact size of the iclog has not yet been determined.  All we know is
2861 * that every data block.  We have run out of space in this log record.
2862 */
2863STATIC void
2864xlog_state_switch_iclogs(xlog_t		*log,
2865			 xlog_in_core_t *iclog,
2866			 int		eventual_size)
2867{
2868	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2869	if (!eventual_size)
2870		eventual_size = iclog->ic_offset;
2871	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2872	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2873	log->l_prev_block = log->l_curr_block;
2874	log->l_prev_cycle = log->l_curr_cycle;
2875
2876	/* roll log?: ic_offset changed later */
2877	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2878
2879	/* Round up to next log-sunit */
2880	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2881	    log->l_mp->m_sb.sb_logsunit > 1) {
2882		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2883		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2884	}
2885
2886	if (log->l_curr_block >= log->l_logBBsize) {
 
 
 
 
 
 
 
 
 
 
2887		log->l_curr_cycle++;
2888		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2889			log->l_curr_cycle++;
2890		log->l_curr_block -= log->l_logBBsize;
2891		ASSERT(log->l_curr_block >= 0);
2892	}
2893	ASSERT(iclog == log->l_iclog);
2894	log->l_iclog = iclog->ic_next;
2895}	/* xlog_state_switch_iclogs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2896
2897/*
2898 * Write out all data in the in-core log as of this exact moment in time.
2899 *
2900 * Data may be written to the in-core log during this call.  However,
2901 * we don't guarantee this data will be written out.  A change from past
2902 * implementation means this routine will *not* write out zero length LRs.
2903 *
2904 * Basically, we try and perform an intelligent scan of the in-core logs.
2905 * If we determine there is no flushable data, we just return.  There is no
2906 * flushable data if:
2907 *
2908 *	1. the current iclog is active and has no data; the previous iclog
2909 *		is in the active or dirty state.
2910 *	2. the current iclog is drity, and the previous iclog is in the
2911 *		active or dirty state.
2912 *
2913 * We may sleep if:
2914 *
2915 *	1. the current iclog is not in the active nor dirty state.
2916 *	2. the current iclog dirty, and the previous iclog is not in the
2917 *		active nor dirty state.
2918 *	3. the current iclog is active, and there is another thread writing
2919 *		to this particular iclog.
2920 *	4. a) the current iclog is active and has no other writers
2921 *	   b) when we return from flushing out this iclog, it is still
2922 *		not in the active nor dirty state.
2923 */
2924int
2925_xfs_log_force(
2926	struct xfs_mount	*mp,
2927	uint			flags,
2928	int			*log_flushed)
2929{
2930	struct log		*log = mp->m_log;
2931	struct xlog_in_core	*iclog;
2932	xfs_lsn_t		lsn;
2933
2934	XFS_STATS_INC(xs_log_force);
 
2935
2936	if (log->l_cilp)
2937		xlog_cil_force(log);
2938
2939	spin_lock(&log->l_icloglock);
 
 
2940
2941	iclog = log->l_iclog;
2942	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2943		spin_unlock(&log->l_icloglock);
2944		return XFS_ERROR(EIO);
2945	}
2946
2947	/* If the head iclog is not active nor dirty, we just attach
2948	 * ourselves to the head and go to sleep.
2949	 */
2950	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2951	    iclog->ic_state == XLOG_STATE_DIRTY) {
2952		/*
2953		 * If the head is dirty or (active and empty), then
2954		 * we need to look at the previous iclog.  If the previous
2955		 * iclog is active or dirty we are done.  There is nothing
2956		 * to sync out.  Otherwise, we attach ourselves to the
 
2957		 * previous iclog and go to sleep.
2958		 */
2959		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2960		    (atomic_read(&iclog->ic_refcnt) == 0
2961		     && iclog->ic_offset == 0)) {
2962			iclog = iclog->ic_prev;
2963			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2964			    iclog->ic_state == XLOG_STATE_DIRTY)
2965				goto no_sleep;
2966			else
2967				goto maybe_sleep;
 
 
2968		} else {
2969			if (atomic_read(&iclog->ic_refcnt) == 0) {
2970				/* We are the only one with access to this
2971				 * iclog.  Flush it out now.  There should
2972				 * be a roundoff of zero to show that someone
2973				 * has already taken care of the roundoff from
2974				 * the previous sync.
2975				 */
2976				atomic_inc(&iclog->ic_refcnt);
2977				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2978				xlog_state_switch_iclogs(log, iclog, 0);
2979				spin_unlock(&log->l_icloglock);
2980
2981				if (xlog_state_release_iclog(log, iclog))
2982					return XFS_ERROR(EIO);
2983
2984				if (log_flushed)
2985					*log_flushed = 1;
2986				spin_lock(&log->l_icloglock);
2987				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2988				    iclog->ic_state != XLOG_STATE_DIRTY)
2989					goto maybe_sleep;
2990				else
2991					goto no_sleep;
2992			} else {
2993				/* Someone else is writing to this iclog.
2994				 * Use its call to flush out the data.  However,
2995				 * the other thread may not force out this LR,
2996				 * so we mark it WANT_SYNC.
2997				 */
2998				xlog_state_switch_iclogs(log, iclog, 0);
2999				goto maybe_sleep;
3000			}
3001		}
3002	}
3003
3004	/* By the time we come around again, the iclog could've been filled
3005	 * which would give it another lsn.  If we have a new lsn, just
3006	 * return because the relevant data has been flushed.
3007	 */
3008maybe_sleep:
3009	if (flags & XFS_LOG_SYNC) {
3010		/*
3011		 * We must check if we're shutting down here, before
3012		 * we wait, while we're holding the l_icloglock.
3013		 * Then we check again after waking up, in case our
3014		 * sleep was disturbed by a bad news.
3015		 */
3016		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3017			spin_unlock(&log->l_icloglock);
3018			return XFS_ERROR(EIO);
3019		}
3020		XFS_STATS_INC(xs_log_force_sleep);
3021		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3022		/*
3023		 * No need to grab the log lock here since we're
3024		 * only deciding whether or not to return EIO
3025		 * and the memory read should be atomic.
3026		 */
3027		if (iclog->ic_state & XLOG_STATE_IOERROR)
3028			return XFS_ERROR(EIO);
3029		if (log_flushed)
3030			*log_flushed = 1;
3031	} else {
3032
3033no_sleep:
3034		spin_unlock(&log->l_icloglock);
3035	}
3036	return 0;
 
 
 
3037}
3038
3039/*
3040 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3041 * about errors or whether the log was flushed or not. This is the normal
3042 * interface to use when trying to unpin items or move the log forward.
3043 */
3044void
3045xfs_log_force(
3046	xfs_mount_t	*mp,
3047	uint		flags)
3048{
3049	int	error;
3050
3051	error = _xfs_log_force(mp, flags, NULL);
3052	if (error)
3053		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3054}
3055
3056/*
3057 * Force the in-core log to disk for a specific LSN.
3058 *
3059 * Find in-core log with lsn.
3060 *	If it is in the DIRTY state, just return.
3061 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3062 *		state and go to sleep or return.
3063 *	If it is in any other state, go to sleep or return.
3064 *
3065 * Synchronous forces are implemented with a signal variable. All callers
3066 * to force a given lsn to disk will wait on a the sv attached to the
3067 * specific in-core log.  When given in-core log finally completes its
3068 * write to disk, that thread will wake up all threads waiting on the
3069 * sv.
3070 */
3071int
3072_xfs_log_force_lsn(
3073	struct xfs_mount	*mp,
3074	xfs_lsn_t		lsn,
3075	uint			flags,
3076	int			*log_flushed)
 
3077{
3078	struct log		*log = mp->m_log;
3079	struct xlog_in_core	*iclog;
3080	int			already_slept = 0;
3081
3082	ASSERT(lsn != 0);
3083
3084	XFS_STATS_INC(xs_log_force);
3085
3086	if (log->l_cilp) {
3087		lsn = xlog_cil_force_lsn(log, lsn);
3088		if (lsn == NULLCOMMITLSN)
3089			return 0;
3090	}
3091
3092try_again:
3093	spin_lock(&log->l_icloglock);
3094	iclog = log->l_iclog;
3095	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3096		spin_unlock(&log->l_icloglock);
3097		return XFS_ERROR(EIO);
 
 
3098	}
3099
3100	do {
3101		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3102			iclog = iclog->ic_next;
3103			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105
3106		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3107			spin_unlock(&log->l_icloglock);
3108			return 0;
3109		}
3110
3111		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3112			/*
3113			 * We sleep here if we haven't already slept (e.g.
3114			 * this is the first time we've looked at the correct
3115			 * iclog buf) and the buffer before us is going to
3116			 * be sync'ed. The reason for this is that if we
3117			 * are doing sync transactions here, by waiting for
3118			 * the previous I/O to complete, we can allow a few
3119			 * more transactions into this iclog before we close
3120			 * it down.
3121			 *
3122			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3123			 * up the refcnt so we can release the log (which
3124			 * drops the ref count).  The state switch keeps new
3125			 * transaction commits from using this buffer.  When
3126			 * the current commits finish writing into the buffer,
3127			 * the refcount will drop to zero and the buffer will
3128			 * go out then.
3129			 */
3130			if (!already_slept &&
3131			    (iclog->ic_prev->ic_state &
3132			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3133				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3134
3135				XFS_STATS_INC(xs_log_force_sleep);
3136
3137				xlog_wait(&iclog->ic_prev->ic_write_wait,
3138							&log->l_icloglock);
3139				if (log_flushed)
3140					*log_flushed = 1;
3141				already_slept = 1;
3142				goto try_again;
3143			}
3144			atomic_inc(&iclog->ic_refcnt);
3145			xlog_state_switch_iclogs(log, iclog, 0);
3146			spin_unlock(&log->l_icloglock);
3147			if (xlog_state_release_iclog(log, iclog))
3148				return XFS_ERROR(EIO);
3149			if (log_flushed)
3150				*log_flushed = 1;
3151			spin_lock(&log->l_icloglock);
3152		}
3153
3154		if ((flags & XFS_LOG_SYNC) && /* sleep */
3155		    !(iclog->ic_state &
3156		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3157			/*
3158			 * Don't wait on completion if we know that we've
3159			 * gotten a log write error.
3160			 */
3161			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3162				spin_unlock(&log->l_icloglock);
3163				return XFS_ERROR(EIO);
3164			}
3165			XFS_STATS_INC(xs_log_force_sleep);
3166			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3167			/*
3168			 * No need to grab the log lock here since we're
3169			 * only deciding whether or not to return EIO
3170			 * and the memory read should be atomic.
3171			 */
3172			if (iclog->ic_state & XLOG_STATE_IOERROR)
3173				return XFS_ERROR(EIO);
3174
3175			if (log_flushed)
3176				*log_flushed = 1;
3177		} else {		/* just return */
3178			spin_unlock(&log->l_icloglock);
3179		}
3180
3181		return 0;
3182	} while (iclog != log->l_iclog);
3183
3184	spin_unlock(&log->l_icloglock);
3185	return 0;
 
 
 
3186}
3187
3188/*
3189 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3190 * about errors or whether the log was flushed or not. This is the normal
3191 * interface to use when trying to unpin items or move the log forward.
 
 
 
 
3192 */
3193void
3194xfs_log_force_lsn(
3195	xfs_mount_t	*mp,
3196	xfs_lsn_t	lsn,
3197	uint		flags)
 
3198{
3199	int	error;
 
 
 
3200
3201	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3202	if (error)
3203		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3204}
3205
3206/*
3207 * Called when we want to mark the current iclog as being ready to sync to
3208 * disk.
3209 */
3210STATIC void
3211xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3212{
3213	assert_spin_locked(&log->l_icloglock);
3214
3215	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3216		xlog_state_switch_iclogs(log, iclog, 0);
3217	} else {
3218		ASSERT(iclog->ic_state &
3219			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3220	}
 
3221}
3222
3223
3224/*****************************************************************************
3225 *
3226 *		TICKET functions
3227 *
3228 *****************************************************************************
3229 */
3230
3231/*
3232 * Free a used ticket when its refcount falls to zero.
3233 */
3234void
3235xfs_log_ticket_put(
3236	xlog_ticket_t	*ticket)
3237{
3238	ASSERT(atomic_read(&ticket->t_ref) > 0);
3239	if (atomic_dec_and_test(&ticket->t_ref))
3240		kmem_zone_free(xfs_log_ticket_zone, ticket);
3241}
3242
3243xlog_ticket_t *
3244xfs_log_ticket_get(
3245	xlog_ticket_t	*ticket)
3246{
3247	ASSERT(atomic_read(&ticket->t_ref) > 0);
3248	atomic_inc(&ticket->t_ref);
3249	return ticket;
3250}
3251
3252/*
3253 * Allocate and initialise a new log ticket.
 
3254 */
3255xlog_ticket_t *
3256xlog_ticket_alloc(
3257	struct log	*log,
3258	int		unit_bytes,
3259	int		cnt,
3260	char		client,
3261	uint		xflags,
3262	int		alloc_flags)
3263{
3264	struct xlog_ticket *tic;
3265	uint		num_headers;
3266	int		iclog_space;
3267
3268	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3269	if (!tic)
3270		return NULL;
3271
3272	/*
3273	 * Permanent reservations have up to 'cnt'-1 active log operations
3274	 * in the log.  A unit in this case is the amount of space for one
3275	 * of these log operations.  Normal reservations have a cnt of 1
3276	 * and their unit amount is the total amount of space required.
3277	 *
3278	 * The following lines of code account for non-transaction data
3279	 * which occupy space in the on-disk log.
3280	 *
3281	 * Normal form of a transaction is:
3282	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3283	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3284	 *
3285	 * We need to account for all the leadup data and trailer data
3286	 * around the transaction data.
3287	 * And then we need to account for the worst case in terms of using
3288	 * more space.
3289	 * The worst case will happen if:
3290	 * - the placement of the transaction happens to be such that the
3291	 *   roundoff is at its maximum
3292	 * - the transaction data is synced before the commit record is synced
3293	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3294	 *   Therefore the commit record is in its own Log Record.
3295	 *   This can happen as the commit record is called with its
3296	 *   own region to xlog_write().
3297	 *   This then means that in the worst case, roundoff can happen for
3298	 *   the commit-rec as well.
3299	 *   The commit-rec is smaller than padding in this scenario and so it is
3300	 *   not added separately.
3301	 */
3302
3303	/* for trans header */
3304	unit_bytes += sizeof(xlog_op_header_t);
3305	unit_bytes += sizeof(xfs_trans_header_t);
3306
3307	/* for start-rec */
3308	unit_bytes += sizeof(xlog_op_header_t);
3309
3310	/*
3311	 * for LR headers - the space for data in an iclog is the size minus
3312	 * the space used for the headers. If we use the iclog size, then we
3313	 * undercalculate the number of headers required.
3314	 *
3315	 * Furthermore - the addition of op headers for split-recs might
3316	 * increase the space required enough to require more log and op
3317	 * headers, so take that into account too.
3318	 *
3319	 * IMPORTANT: This reservation makes the assumption that if this
3320	 * transaction is the first in an iclog and hence has the LR headers
3321	 * accounted to it, then the remaining space in the iclog is
3322	 * exclusively for this transaction.  i.e. if the transaction is larger
3323	 * than the iclog, it will be the only thing in that iclog.
3324	 * Fundamentally, this means we must pass the entire log vector to
3325	 * xlog_write to guarantee this.
3326	 */
3327	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3328	num_headers = howmany(unit_bytes, iclog_space);
3329
3330	/* for split-recs - ophdrs added when data split over LRs */
3331	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3332
3333	/* add extra header reservations if we overrun */
3334	while (!num_headers ||
3335	       howmany(unit_bytes, iclog_space) > num_headers) {
3336		unit_bytes += sizeof(xlog_op_header_t);
3337		num_headers++;
3338	}
3339	unit_bytes += log->l_iclog_hsize * num_headers;
3340
3341	/* for commit-rec LR header - note: padding will subsume the ophdr */
3342	unit_bytes += log->l_iclog_hsize;
3343
3344	/* for roundoff padding for transaction data and one for commit record */
3345	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3346	    log->l_mp->m_sb.sb_logsunit > 1) {
3347		/* log su roundoff */
3348		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3349	} else {
3350		/* BB roundoff */
3351		unit_bytes += 2*BBSIZE;
3352        }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353
3354	atomic_set(&tic->t_ref, 1);
 
3355	INIT_LIST_HEAD(&tic->t_queue);
3356	tic->t_unit_res		= unit_bytes;
3357	tic->t_curr_res		= unit_bytes;
3358	tic->t_cnt		= cnt;
3359	tic->t_ocnt		= cnt;
3360	tic->t_tid		= random32();
3361	tic->t_clientid		= client;
3362	tic->t_flags		= XLOG_TIC_INITED;
3363	tic->t_trans_type	= 0;
3364	if (xflags & XFS_LOG_PERM_RESERV)
3365		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3366	init_waitqueue_head(&tic->t_wait);
3367
3368	xlog_tic_reset_res(tic);
3369
3370	return tic;
3371}
3372
3373
3374/******************************************************************************
3375 *
3376 *		Log debug routines
3377 *
3378 ******************************************************************************
3379 */
3380#if defined(DEBUG)
3381/*
3382 * Make sure that the destination ptr is within the valid data region of
3383 * one of the iclogs.  This uses backup pointers stored in a different
3384 * part of the log in case we trash the log structure.
3385 */
3386void
3387xlog_verify_dest_ptr(
3388	struct log	*log,
3389	char		*ptr)
3390{
3391	int i;
3392	int good_ptr = 0;
3393
3394	for (i = 0; i < log->l_iclog_bufs; i++) {
3395		if (ptr >= log->l_iclog_bak[i] &&
3396		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3397			good_ptr++;
3398	}
3399
3400	if (!good_ptr)
3401		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
 
 
3402}
3403
3404/*
3405 * Check to make sure the grant write head didn't just over lap the tail.  If
3406 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3407 * the cycles differ by exactly one and check the byte count.
3408 *
3409 * This check is run unlocked, so can give false positives. Rather than assert
3410 * on failures, use a warn-once flag and a panic tag to allow the admin to
3411 * determine if they want to panic the machine when such an error occurs. For
3412 * debug kernels this will have the same effect as using an assert but, unlinke
3413 * an assert, it can be turned off at runtime.
3414 */
3415STATIC void
3416xlog_verify_grant_tail(
3417	struct log	*log)
 
3418{
3419	int		tail_cycle, tail_blocks;
3420	int		cycle, space;
3421
3422	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3423	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3424	if (tail_cycle != cycle) {
3425		if (cycle - 1 != tail_cycle &&
3426		    !(log->l_flags & XLOG_TAIL_WARN)) {
3427			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3428				"%s: cycle - 1 != tail_cycle", __func__);
3429			log->l_flags |= XLOG_TAIL_WARN;
3430		}
 
 
3431
3432		if (space > BBTOB(tail_blocks) &&
3433		    !(log->l_flags & XLOG_TAIL_WARN)) {
3434			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3435				"%s: space > BBTOB(tail_blocks)", __func__);
3436			log->l_flags |= XLOG_TAIL_WARN;
3437		}
3438	}
3439}
3440
3441/* check if it will fit */
3442STATIC void
3443xlog_verify_tail_lsn(xlog_t	    *log,
3444		     xlog_in_core_t *iclog,
3445		     xfs_lsn_t	    tail_lsn)
3446{
3447    int blocks;
3448
3449    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3450	blocks =
3451	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3452	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3453		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3454    } else {
3455	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3456
3457	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3458		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
 
 
 
3459
3460	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3461	if (blocks < BTOBB(iclog->ic_offset) + 1)
3462		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3463    }
3464}	/* xlog_verify_tail_lsn */
 
3465
3466/*
3467 * Perform a number of checks on the iclog before writing to disk.
3468 *
3469 * 1. Make sure the iclogs are still circular
3470 * 2. Make sure we have a good magic number
3471 * 3. Make sure we don't have magic numbers in the data
3472 * 4. Check fields of each log operation header for:
3473 *	A. Valid client identifier
3474 *	B. tid ptr value falls in valid ptr space (user space code)
3475 *	C. Length in log record header is correct according to the
3476 *		individual operation headers within record.
3477 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3478 *	log, check the preceding blocks of the physical log to make sure all
3479 *	the cycle numbers agree with the current cycle number.
3480 */
3481STATIC void
3482xlog_verify_iclog(xlog_t	 *log,
3483		  xlog_in_core_t *iclog,
3484		  int		 count,
3485		  boolean_t	 syncing)
3486{
3487	xlog_op_header_t	*ophead;
3488	xlog_in_core_t		*icptr;
3489	xlog_in_core_2_t	*xhdr;
3490	xfs_caddr_t		ptr;
3491	xfs_caddr_t		base_ptr;
3492	__psint_t		field_offset;
3493	__uint8_t		clientid;
3494	int			len, i, j, k, op_len;
3495	int			idx;
3496
3497	/* check validity of iclog pointers */
3498	spin_lock(&log->l_icloglock);
3499	icptr = log->l_iclog;
3500	for (i=0; i < log->l_iclog_bufs; i++) {
3501		if (icptr == NULL)
3502			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3503		icptr = icptr->ic_next;
3504	}
3505	if (icptr != log->l_iclog)
3506		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3507	spin_unlock(&log->l_icloglock);
3508
3509	/* check log magic numbers */
3510	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3511		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3512
3513	ptr = (xfs_caddr_t) &iclog->ic_header;
3514	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3515	     ptr += BBSIZE) {
3516		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3517			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3518				__func__);
3519	}
3520
3521	/* check fields */
3522	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3523	ptr = iclog->ic_datap;
3524	base_ptr = ptr;
3525	ophead = (xlog_op_header_t *)ptr;
3526	xhdr = iclog->ic_data;
3527	for (i = 0; i < len; i++) {
3528		ophead = (xlog_op_header_t *)ptr;
3529
3530		/* clientid is only 1 byte */
3531		field_offset = (__psint_t)
3532			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3533		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3534			clientid = ophead->oh_clientid;
3535		} else {
3536			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3537			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3538				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3539				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3540				clientid = xlog_get_client_id(
3541					xhdr[j].hic_xheader.xh_cycle_data[k]);
3542			} else {
3543				clientid = xlog_get_client_id(
3544					iclog->ic_header.h_cycle_data[idx]);
3545			}
3546		}
3547		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3548			xfs_warn(log->l_mp,
3549				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3550				__func__, clientid, ophead,
3551				(unsigned long)field_offset);
 
3552
3553		/* check length */
3554		field_offset = (__psint_t)
3555			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3556		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3557			op_len = be32_to_cpu(ophead->oh_len);
3558		} else {
3559			idx = BTOBBT((__psint_t)&ophead->oh_len -
3560				    (__psint_t)iclog->ic_datap);
3561			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3562				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3563				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3564				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3565			} else {
3566				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3567			}
3568		}
3569		ptr += sizeof(xlog_op_header_t) + op_len;
3570	}
3571}	/* xlog_verify_iclog */
3572#endif
3573
3574/*
3575 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3576 */
3577STATIC int
3578xlog_state_ioerror(
3579	xlog_t	*log)
3580{
3581	xlog_in_core_t	*iclog, *ic;
3582
3583	iclog = log->l_iclog;
3584	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3585		/*
3586		 * Mark all the incore logs IOERROR.
3587		 * From now on, no log flushes will result.
3588		 */
3589		ic = iclog;
3590		do {
3591			ic->ic_state = XLOG_STATE_IOERROR;
3592			ic = ic->ic_next;
3593		} while (ic != iclog);
3594		return 0;
3595	}
3596	/*
3597	 * Return non-zero, if state transition has already happened.
3598	 */
3599	return 1;
3600}
3601
3602/*
3603 * This is called from xfs_force_shutdown, when we're forcibly
3604 * shutting down the filesystem, typically because of an IO error.
3605 * Our main objectives here are to make sure that:
3606 *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3607 *	   parties to find out, 'atomically'.
3608 *	b. those who're sleeping on log reservations, pinned objects and
3609 *	    other resources get woken up, and be told the bad news.
3610 *	c. nothing new gets queued up after (a) and (b) are done.
3611 *	d. if !logerror, flush the iclogs to disk, then seal them off
3612 *	   for business.
3613 *
3614 * Note: for delayed logging the !logerror case needs to flush the regions
3615 * held in memory out to the iclogs before flushing them to disk. This needs
3616 * to be done before the log is marked as shutdown, otherwise the flush to the
3617 * iclogs will fail.
3618 */
3619int
3620xfs_log_force_umount(
3621	struct xfs_mount	*mp,
3622	int			logerror)
3623{
3624	xlog_ticket_t	*tic;
3625	xlog_t		*log;
3626	int		retval;
3627
3628	log = mp->m_log;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3629
3630	/*
3631	 * If this happens during log recovery, don't worry about
3632	 * locking; the log isn't open for business yet.
 
 
 
 
 
 
 
3633	 */
3634	if (!log ||
3635	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3636		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3637		if (mp->m_sb_bp)
3638			XFS_BUF_DONE(mp->m_sb_bp);
3639		return 0;
3640	}
 
3641
3642	/*
3643	 * Somebody could've already done the hard work for us.
3644	 * No need to get locks for this.
3645	 */
3646	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3647		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3648		return 1;
 
 
 
 
 
3649	}
3650	retval = 0;
3651
3652	/*
3653	 * Flush the in memory commit item list before marking the log as
3654	 * being shut down. We need to do it in this order to ensure all the
3655	 * completed transactions are flushed to disk with the xfs_log_force()
3656	 * call below.
3657	 */
3658	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3659		xlog_cil_force(log);
3660
3661	/*
3662	 * mark the filesystem and the as in a shutdown state and wake
3663	 * everybody up to tell them the bad news.
3664	 */
3665	spin_lock(&log->l_icloglock);
3666	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3667	if (mp->m_sb_bp)
3668		XFS_BUF_DONE(mp->m_sb_bp);
3669
3670	/*
3671	 * This flag is sort of redundant because of the mount flag, but
3672	 * it's good to maintain the separation between the log and the rest
3673	 * of XFS.
3674	 */
3675	log->l_flags |= XLOG_IO_ERROR;
3676
3677	/*
3678	 * If we hit a log error, we want to mark all the iclogs IOERROR
3679	 * while we're still holding the loglock.
3680	 */
3681	if (logerror)
3682		retval = xlog_state_ioerror(log);
3683	spin_unlock(&log->l_icloglock);
3684
3685	/*
3686	 * We don't want anybody waiting for log reservations after this. That
3687	 * means we have to wake up everybody queued up on reserveq as well as
3688	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3689	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3690	 * action is protected by the grant locks.
3691	 */
3692	spin_lock(&log->l_grant_reserve_lock);
3693	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3694		wake_up(&tic->t_wait);
3695	spin_unlock(&log->l_grant_reserve_lock);
3696
3697	spin_lock(&log->l_grant_write_lock);
3698	list_for_each_entry(tic, &log->l_writeq, t_queue)
3699		wake_up(&tic->t_wait);
3700	spin_unlock(&log->l_grant_write_lock);
3701
3702	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3703		ASSERT(!logerror);
3704		/*
3705		 * Force the incore logs to disk before shutting the
3706		 * log down completely.
3707		 */
3708		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 
 
 
3709
3710		spin_lock(&log->l_icloglock);
3711		retval = xlog_state_ioerror(log);
3712		spin_unlock(&log->l_icloglock);
3713	}
3714	/*
3715	 * Wake up everybody waiting on xfs_log_force.
3716	 * Callback all log item committed functions as if the
3717	 * log writes were completed.
3718	 */
3719	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3720
3721#ifdef XFSERRORDEBUG
3722	{
3723		xlog_in_core_t	*iclog;
3724
3725		spin_lock(&log->l_icloglock);
3726		iclog = log->l_iclog;
3727		do {
3728			ASSERT(iclog->ic_callback == 0);
3729			iclog = iclog->ic_next;
3730		} while (iclog != log->l_iclog);
3731		spin_unlock(&log->l_icloglock);
3732	}
3733#endif
3734	/* return non-zero if log IOERROR transition had already happened */
3735	return retval;
3736}
3737
3738STATIC int
3739xlog_iclogs_empty(xlog_t *log)
 
3740{
3741	xlog_in_core_t	*iclog;
3742
3743	iclog = log->l_iclog;
3744	do {
3745		/* endianness does not matter here, zero is zero in
3746		 * any language.
3747		 */
3748		if (iclog->ic_header.h_num_logops)
3749			return 0;
3750		iclog = iclog->ic_next;
3751	} while (iclog != log->l_iclog);
3752	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753}