Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
 
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
 
 
 
 
 
 
 
  36#include <uapi/linux/sched/types.h>
 
 
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
 
 
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 
 
 
 
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_message *msg)
 316{
 
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if (spi_valid_txbuf(msg, xfer))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if (spi_valid_rxbuf(msg, xfer))
 334		u64_stats_add(&stats->bytes_rx, xfer->len);
 335
 336	u64_stats_update_end(&stats->syncp);
 337	put_cpu();
 338}
 
 339
 340/*
 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 342 * and the sysfs version makes coldplug work too.
 343 */
 344static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 345{
 346	while (id->name[0]) {
 347		if (!strcmp(name, id->name))
 348			return id;
 349		id++;
 350	}
 351	return NULL;
 352}
 353
 354const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 355{
 356	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 357
 358	return spi_match_id(sdrv->id_table, sdev->modalias);
 359}
 360EXPORT_SYMBOL_GPL(spi_get_device_id);
 361
 362const void *spi_get_device_match_data(const struct spi_device *sdev)
 363{
 364	const void *match;
 365
 366	match = device_get_match_data(&sdev->dev);
 367	if (match)
 368		return match;
 369
 370	return (const void *)spi_get_device_id(sdev)->driver_data;
 371}
 372EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 373
 374static int spi_match_device(struct device *dev, const struct device_driver *drv)
 375{
 376	const struct spi_device	*spi = to_spi_device(dev);
 377	const struct spi_driver	*sdrv = to_spi_driver(drv);
 378
 379	/* Check override first, and if set, only use the named driver */
 380	if (spi->driver_override)
 381		return strcmp(spi->driver_override, drv->name) == 0;
 382
 383	/* Attempt an OF style match */
 384	if (of_driver_match_device(dev, drv))
 385		return 1;
 386
 387	/* Then try ACPI */
 388	if (acpi_driver_match_device(dev, drv))
 389		return 1;
 390
 391	if (sdrv->id_table)
 392		return !!spi_match_id(sdrv->id_table, spi->modalias);
 393
 394	return strcmp(spi->modalias, drv->name) == 0;
 395}
 396
 397static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 398{
 399	const struct spi_device		*spi = to_spi_device(dev);
 400	int rc;
 401
 402	rc = acpi_device_uevent_modalias(dev, env);
 403	if (rc != -ENODEV)
 404		return rc;
 405
 406	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 407}
 408
 409static int spi_probe(struct device *dev)
 410{
 411	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 412	struct spi_device		*spi = to_spi_device(dev);
 413	int ret;
 414
 415	ret = of_clk_set_defaults(dev->of_node, false);
 416	if (ret)
 417		return ret;
 418
 419	if (dev->of_node) {
 420		spi->irq = of_irq_get(dev->of_node, 0);
 421		if (spi->irq == -EPROBE_DEFER)
 422			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
 423		if (spi->irq < 0)
 424			spi->irq = 0;
 425	}
 426
 427	if (has_acpi_companion(dev) && spi->irq < 0) {
 428		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
 429
 430		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
 431		if (spi->irq == -EPROBE_DEFER)
 432			return -EPROBE_DEFER;
 433		if (spi->irq < 0)
 434			spi->irq = 0;
 435	}
 436
 437	ret = dev_pm_domain_attach(dev, true);
 438	if (ret)
 439		return ret;
 440
 441	if (sdrv->probe) {
 442		ret = sdrv->probe(spi);
 443		if (ret)
 444			dev_pm_domain_detach(dev, true);
 445	}
 446
 447	return ret;
 448}
 449
 450static void spi_remove(struct device *dev)
 451{
 452	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 453
 454	if (sdrv->remove)
 455		sdrv->remove(to_spi_device(dev));
 
 
 
 
 
 
 
 456
 457	dev_pm_domain_detach(dev, true);
 
 
 458}
 459
 460static void spi_shutdown(struct device *dev)
 461{
 462	if (dev->driver) {
 463		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 464
 465		if (sdrv->shutdown)
 466			sdrv->shutdown(to_spi_device(dev));
 467	}
 468}
 469
 470const struct bus_type spi_bus_type = {
 471	.name		= "spi",
 472	.dev_groups	= spi_dev_groups,
 473	.match		= spi_match_device,
 474	.uevent		= spi_uevent,
 475	.probe		= spi_probe,
 476	.remove		= spi_remove,
 477	.shutdown	= spi_shutdown,
 478};
 479EXPORT_SYMBOL_GPL(spi_bus_type);
 480
 481/**
 482 * __spi_register_driver - register a SPI driver
 483 * @owner: owner module of the driver to register
 484 * @sdrv: the driver to register
 485 * Context: can sleep
 486 *
 487 * Return: zero on success, else a negative error code.
 488 */
 489int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 490{
 491	sdrv->driver.owner = owner;
 492	sdrv->driver.bus = &spi_bus_type;
 493
 494	/*
 495	 * For Really Good Reasons we use spi: modaliases not of:
 496	 * modaliases for DT so module autoloading won't work if we
 497	 * don't have a spi_device_id as well as a compatible string.
 498	 */
 499	if (sdrv->driver.of_match_table) {
 500		const struct of_device_id *of_id;
 501
 502		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 503		     of_id++) {
 504			const char *of_name;
 505
 506			/* Strip off any vendor prefix */
 507			of_name = strnchr(of_id->compatible,
 508					  sizeof(of_id->compatible), ',');
 509			if (of_name)
 510				of_name++;
 511			else
 512				of_name = of_id->compatible;
 513
 514			if (sdrv->id_table) {
 515				const struct spi_device_id *spi_id;
 516
 517				spi_id = spi_match_id(sdrv->id_table, of_name);
 518				if (spi_id)
 519					continue;
 520			} else {
 521				if (strcmp(sdrv->driver.name, of_name) == 0)
 522					continue;
 523			}
 524
 525			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 526				sdrv->driver.name, of_id->compatible);
 527		}
 528	}
 529
 530	return driver_register(&sdrv->driver);
 531}
 532EXPORT_SYMBOL_GPL(__spi_register_driver);
 533
 534/*-------------------------------------------------------------------------*/
 535
 536/*
 537 * SPI devices should normally not be created by SPI device drivers; that
 538 * would make them board-specific.  Similarly with SPI controller drivers.
 539 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 540 * with other readonly (flashable) information about mainboard devices.
 541 */
 542
 543struct boardinfo {
 544	struct list_head	list;
 545	struct spi_board_info	board_info;
 546};
 547
 548static LIST_HEAD(board_list);
 549static LIST_HEAD(spi_controller_list);
 550
 551/*
 552 * Used to protect add/del operation for board_info list and
 553 * spi_controller list, and their matching process also used
 554 * to protect object of type struct idr.
 555 */
 556static DEFINE_MUTEX(board_lock);
 557
 558/**
 559 * spi_alloc_device - Allocate a new SPI device
 560 * @ctlr: Controller to which device is connected
 561 * Context: can sleep
 562 *
 563 * Allows a driver to allocate and initialize a spi_device without
 564 * registering it immediately.  This allows a driver to directly
 565 * fill the spi_device with device parameters before calling
 566 * spi_add_device() on it.
 567 *
 568 * Caller is responsible to call spi_add_device() on the returned
 569 * spi_device structure to add it to the SPI controller.  If the caller
 570 * needs to discard the spi_device without adding it, then it should
 571 * call spi_dev_put() on it.
 572 *
 573 * Return: a pointer to the new device, or NULL.
 574 */
 575struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 576{
 577	struct spi_device	*spi;
 578
 579	if (!spi_controller_get(ctlr))
 580		return NULL;
 581
 582	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 583	if (!spi) {
 584		spi_controller_put(ctlr);
 585		return NULL;
 586	}
 587
 588	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 589	if (!spi->pcpu_statistics) {
 590		kfree(spi);
 591		spi_controller_put(ctlr);
 592		return NULL;
 593	}
 594
 595	spi->controller = ctlr;
 596	spi->dev.parent = &ctlr->dev;
 597	spi->dev.bus = &spi_bus_type;
 598	spi->dev.release = spidev_release;
 
 599	spi->mode = ctlr->buswidth_override_bits;
 600
 
 
 601	device_initialize(&spi->dev);
 602	return spi;
 603}
 604EXPORT_SYMBOL_GPL(spi_alloc_device);
 605
 606static void spi_dev_set_name(struct spi_device *spi)
 607{
 608	struct device *dev = &spi->dev;
 609	struct fwnode_handle *fwnode = dev_fwnode(dev);
 610
 611	if (is_acpi_device_node(fwnode)) {
 612		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
 613		return;
 614	}
 615
 616	if (is_software_node(fwnode)) {
 617		dev_set_name(dev, "spi-%pfwP", fwnode);
 618		return;
 619	}
 620
 621	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 622		     spi_get_chipselect(spi, 0));
 623}
 624
 625/*
 626 * Zero(0) is a valid physical CS value and can be located at any
 627 * logical CS in the spi->chip_select[]. If all the physical CS
 628 * are initialized to 0 then It would be difficult to differentiate
 629 * between a valid physical CS 0 & an unused logical CS whose physical
 630 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 631 * Now all the unused logical CS will have -1 physical CS value & can be
 632 * ignored while performing physical CS validity checks.
 633 */
 634#define SPI_INVALID_CS		((s8)-1)
 635
 636static inline bool is_valid_cs(s8 chip_select)
 637{
 638	return chip_select != SPI_INVALID_CS;
 639}
 640
 641static inline int spi_dev_check_cs(struct device *dev,
 642				   struct spi_device *spi, u8 idx,
 643				   struct spi_device *new_spi, u8 new_idx)
 644{
 645	u8 cs, cs_new;
 646	u8 idx_new;
 647
 648	cs = spi_get_chipselect(spi, idx);
 649	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 650		cs_new = spi_get_chipselect(new_spi, idx_new);
 651		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 652			dev_err(dev, "chipselect %u already in use\n", cs_new);
 653			return -EBUSY;
 654		}
 655	}
 656	return 0;
 657}
 658
 659static int spi_dev_check(struct device *dev, void *data)
 660{
 661	struct spi_device *spi = to_spi_device(dev);
 662	struct spi_device *new_spi = data;
 663	int status, idx;
 664
 665	if (spi->controller == new_spi->controller) {
 666		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 667			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 668			if (status)
 669				return status;
 670		}
 671	}
 672	return 0;
 673}
 674
 675static void spi_cleanup(struct spi_device *spi)
 676{
 677	if (spi->controller->cleanup)
 678		spi->controller->cleanup(spi);
 679}
 680
 681static int __spi_add_device(struct spi_device *spi)
 682{
 683	struct spi_controller *ctlr = spi->controller;
 684	struct device *dev = ctlr->dev.parent;
 685	int status, idx;
 686	u8 cs;
 687
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		/* Chipselects are numbered 0..max; validate. */
 690		cs = spi_get_chipselect(spi, idx);
 691		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 692			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 693				ctlr->num_chipselect);
 694			return -EINVAL;
 695		}
 696	}
 697
 698	/*
 699	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 700	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 701	 */
 702	if (!spi_controller_is_target(ctlr)) {
 703		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 704			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 705			if (status)
 706				return status;
 707		}
 708	}
 709
 710	/* Set the bus ID string */
 711	spi_dev_set_name(spi);
 712
 713	/*
 714	 * We need to make sure there's no other device with this
 715	 * chipselect **BEFORE** we call setup(), else we'll trash
 716	 * its configuration.
 717	 */
 718	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 719	if (status)
 
 
 720		return status;
 
 721
 722	/* Controller may unregister concurrently */
 723	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 724	    !device_is_registered(&ctlr->dev)) {
 725		return -ENODEV;
 726	}
 727
 728	if (ctlr->cs_gpiods) {
 729		u8 cs;
 
 
 
 730
 731		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 732			cs = spi_get_chipselect(spi, idx);
 733			if (is_valid_cs(cs))
 734				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 735		}
 736	}
 737
 738	/*
 739	 * Drivers may modify this initial i/o setup, but will
 740	 * normally rely on the device being setup.  Devices
 741	 * using SPI_CS_HIGH can't coexist well otherwise...
 742	 */
 743	status = spi_setup(spi);
 744	if (status < 0) {
 745		dev_err(dev, "can't setup %s, status %d\n",
 746				dev_name(&spi->dev), status);
 747		return status;
 748	}
 749
 750	/* Device may be bound to an active driver when this returns */
 751	status = device_add(&spi->dev);
 752	if (status < 0) {
 753		dev_err(dev, "can't add %s, status %d\n",
 754				dev_name(&spi->dev), status);
 755		spi_cleanup(spi);
 756	} else {
 757		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 758	}
 759
 760	return status;
 761}
 762
 763/**
 764 * spi_add_device - Add spi_device allocated with spi_alloc_device
 765 * @spi: spi_device to register
 766 *
 767 * Companion function to spi_alloc_device.  Devices allocated with
 768 * spi_alloc_device can be added onto the SPI bus with this function.
 769 *
 770 * Return: 0 on success; negative errno on failure
 771 */
 772int spi_add_device(struct spi_device *spi)
 773{
 774	struct spi_controller *ctlr = spi->controller;
 
 775	int status;
 776
 
 
 
 
 
 
 
 777	/* Set the bus ID string */
 778	spi_dev_set_name(spi);
 779
 
 
 
 
 780	mutex_lock(&ctlr->add_lock);
 781	status = __spi_add_device(spi);
 782	mutex_unlock(&ctlr->add_lock);
 783	return status;
 784}
 785EXPORT_SYMBOL_GPL(spi_add_device);
 786
 787static void spi_set_all_cs_unused(struct spi_device *spi)
 788{
 789	u8 idx;
 
 790
 791	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 792		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 
 
 
 
 
 
 
 
 
 
 793}
 794
 795/**
 796 * spi_new_device - instantiate one new SPI device
 797 * @ctlr: Controller to which device is connected
 798 * @chip: Describes the SPI device
 799 * Context: can sleep
 800 *
 801 * On typical mainboards, this is purely internal; and it's not needed
 802 * after board init creates the hard-wired devices.  Some development
 803 * platforms may not be able to use spi_register_board_info though, and
 804 * this is exported so that for example a USB or parport based adapter
 805 * driver could add devices (which it would learn about out-of-band).
 806 *
 807 * Return: the new device, or NULL.
 808 */
 809struct spi_device *spi_new_device(struct spi_controller *ctlr,
 810				  struct spi_board_info *chip)
 811{
 812	struct spi_device	*proxy;
 813	int			status;
 814
 815	/*
 816	 * NOTE:  caller did any chip->bus_num checks necessary.
 817	 *
 818	 * Also, unless we change the return value convention to use
 819	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 820	 * suggests syslogged diagnostics are best here (ugh).
 821	 */
 822
 823	proxy = spi_alloc_device(ctlr);
 824	if (!proxy)
 825		return NULL;
 826
 827	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 828
 829	/* Use provided chip-select for proxy device */
 830	spi_set_all_cs_unused(proxy);
 831	spi_set_chipselect(proxy, 0, chip->chip_select);
 832
 833	proxy->max_speed_hz = chip->max_speed_hz;
 834	proxy->mode = chip->mode;
 835	proxy->irq = chip->irq;
 836	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 837	proxy->dev.platform_data = (void *) chip->platform_data;
 838	proxy->controller_data = chip->controller_data;
 839	proxy->controller_state = NULL;
 840	/*
 841	 * By default spi->chip_select[0] will hold the physical CS number,
 842	 * so set bit 0 in spi->cs_index_mask.
 843	 */
 844	proxy->cs_index_mask = BIT(0);
 845
 846	if (chip->swnode) {
 847		status = device_add_software_node(&proxy->dev, chip->swnode);
 848		if (status) {
 849			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 850				chip->modalias, status);
 851			goto err_dev_put;
 852		}
 853	}
 854
 855	status = spi_add_device(proxy);
 856	if (status < 0)
 857		goto err_dev_put;
 858
 859	return proxy;
 860
 861err_dev_put:
 862	device_remove_software_node(&proxy->dev);
 863	spi_dev_put(proxy);
 864	return NULL;
 865}
 866EXPORT_SYMBOL_GPL(spi_new_device);
 867
 868/**
 869 * spi_unregister_device - unregister a single SPI device
 870 * @spi: spi_device to unregister
 871 *
 872 * Start making the passed SPI device vanish. Normally this would be handled
 873 * by spi_unregister_controller().
 874 */
 875void spi_unregister_device(struct spi_device *spi)
 876{
 877	if (!spi)
 878		return;
 879
 880	if (spi->dev.of_node) {
 881		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 882		of_node_put(spi->dev.of_node);
 883	}
 884	if (ACPI_COMPANION(&spi->dev))
 885		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 886	device_remove_software_node(&spi->dev);
 887	device_del(&spi->dev);
 888	spi_cleanup(spi);
 889	put_device(&spi->dev);
 890}
 891EXPORT_SYMBOL_GPL(spi_unregister_device);
 892
 893static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 894					      struct spi_board_info *bi)
 895{
 896	struct spi_device *dev;
 897
 898	if (ctlr->bus_num != bi->bus_num)
 899		return;
 900
 901	dev = spi_new_device(ctlr, bi);
 902	if (!dev)
 903		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 904			bi->modalias);
 905}
 906
 907/**
 908 * spi_register_board_info - register SPI devices for a given board
 909 * @info: array of chip descriptors
 910 * @n: how many descriptors are provided
 911 * Context: can sleep
 912 *
 913 * Board-specific early init code calls this (probably during arch_initcall)
 914 * with segments of the SPI device table.  Any device nodes are created later,
 915 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 916 * this table of devices forever, so that reloading a controller driver will
 917 * not make Linux forget about these hard-wired devices.
 918 *
 919 * Other code can also call this, e.g. a particular add-on board might provide
 920 * SPI devices through its expansion connector, so code initializing that board
 921 * would naturally declare its SPI devices.
 922 *
 923 * The board info passed can safely be __initdata ... but be careful of
 924 * any embedded pointers (platform_data, etc), they're copied as-is.
 925 *
 926 * Return: zero on success, else a negative error code.
 927 */
 928int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 929{
 930	struct boardinfo *bi;
 931	int i;
 932
 933	if (!n)
 934		return 0;
 935
 936	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 937	if (!bi)
 938		return -ENOMEM;
 939
 940	for (i = 0; i < n; i++, bi++, info++) {
 941		struct spi_controller *ctlr;
 942
 943		memcpy(&bi->board_info, info, sizeof(*info));
 944
 945		mutex_lock(&board_lock);
 946		list_add_tail(&bi->list, &board_list);
 947		list_for_each_entry(ctlr, &spi_controller_list, list)
 948			spi_match_controller_to_boardinfo(ctlr,
 949							  &bi->board_info);
 950		mutex_unlock(&board_lock);
 951	}
 952
 953	return 0;
 954}
 955
 956/*-------------------------------------------------------------------------*/
 957
 958/* Core methods for SPI resource management */
 959
 960/**
 961 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 962 *                 during the processing of a spi_message while using
 963 *                 spi_transfer_one
 964 * @spi:     the SPI device for which we allocate memory
 965 * @release: the release code to execute for this resource
 966 * @size:    size to alloc and return
 967 * @gfp:     GFP allocation flags
 968 *
 969 * Return: the pointer to the allocated data
 970 *
 971 * This may get enhanced in the future to allocate from a memory pool
 972 * of the @spi_device or @spi_controller to avoid repeated allocations.
 973 */
 974static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 975			   size_t size, gfp_t gfp)
 976{
 977	struct spi_res *sres;
 978
 979	sres = kzalloc(sizeof(*sres) + size, gfp);
 980	if (!sres)
 981		return NULL;
 982
 983	INIT_LIST_HEAD(&sres->entry);
 984	sres->release = release;
 985
 986	return sres->data;
 987}
 988
 989/**
 990 * spi_res_free - free an SPI resource
 991 * @res: pointer to the custom data of a resource
 992 */
 993static void spi_res_free(void *res)
 994{
 995	struct spi_res *sres = container_of(res, struct spi_res, data);
 996
 997	WARN_ON(!list_empty(&sres->entry));
 998	kfree(sres);
 999}
1000
1001/**
1002 * spi_res_add - add a spi_res to the spi_message
1003 * @message: the SPI message
1004 * @res:     the spi_resource
1005 */
1006static void spi_res_add(struct spi_message *message, void *res)
1007{
1008	struct spi_res *sres = container_of(res, struct spi_res, data);
1009
1010	WARN_ON(!list_empty(&sres->entry));
1011	list_add_tail(&sres->entry, &message->resources);
1012}
1013
1014/**
1015 * spi_res_release - release all SPI resources for this message
1016 * @ctlr:  the @spi_controller
1017 * @message: the @spi_message
1018 */
1019static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020{
1021	struct spi_res *res, *tmp;
1022
1023	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024		if (res->release)
1025			res->release(ctlr, message, res->data);
1026
1027		list_del(&res->entry);
1028
1029		kfree(res);
1030	}
1031}
1032
1033/*-------------------------------------------------------------------------*/
1034#define spi_for_each_valid_cs(spi, idx)				\
1035	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1036		if (!(spi->cs_index_mask & BIT(idx))) {} else
1037
1038static inline bool spi_is_last_cs(struct spi_device *spi)
1039{
1040	u8 idx;
1041	bool last = false;
1042
1043	spi_for_each_valid_cs(spi, idx) {
1044		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045			last = true;
1046	}
1047	return last;
1048}
1049
1050static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051{
1052	/*
1053	 * Historically ACPI has no means of the GPIO polarity and
1054	 * thus the SPISerialBus() resource defines it on the per-chip
1055	 * basis. In order to avoid a chain of negations, the GPIO
1056	 * polarity is considered being Active High. Even for the cases
1057	 * when _DSD() is involved (in the updated versions of ACPI)
1058	 * the GPIO CS polarity must be defined Active High to avoid
1059	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060	 * into account.
1061	 */
1062	if (has_acpi_companion(&spi->dev))
1063		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064	else
1065		/* Polarity handled by GPIO library */
1066		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067
1068	if (activate)
1069		spi_delay_exec(&spi->cs_setup, NULL);
1070	else
1071		spi_delay_exec(&spi->cs_inactive, NULL);
1072}
1073
1074static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075{
1076	bool activate = enable;
1077	u8 idx;
1078
1079	/*
1080	 * Avoid calling into the driver (or doing delays) if the chip select
1081	 * isn't actually changing from the last time this was called.
1082	 */
1083	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084			spi_is_last_cs(spi)) ||
1085		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086			!spi_is_last_cs(spi))) &&
1087	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088		return;
1089
1090	trace_spi_set_cs(spi, activate);
1091
1092	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096
 
 
 
 
 
 
 
 
1097	if (spi->mode & SPI_CS_HIGH)
1098		enable = !enable;
1099
1100	/*
1101	 * Handle chip select delays for GPIO based CS or controllers without
1102	 * programmable chip select timing.
1103	 */
1104	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105		spi_delay_exec(&spi->cs_hold, NULL);
1106
1107	if (spi_is_csgpiod(spi)) {
1108		if (!(spi->mode & SPI_NO_CS)) {
1109			spi_for_each_valid_cs(spi, idx) {
1110				if (spi_get_csgpiod(spi, idx))
1111					spi_toggle_csgpiod(spi, idx, enable, activate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112			}
1113		}
1114		/* Some SPI masters need both GPIO CS & slave_select */
1115		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116		    spi->controller->set_cs)
1117			spi->controller->set_cs(spi, !enable);
1118	} else if (spi->controller->set_cs) {
1119		spi->controller->set_cs(spi, !enable);
1120	}
1121
1122	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123		if (activate)
1124			spi_delay_exec(&spi->cs_setup, NULL);
1125		else
1126			spi_delay_exec(&spi->cs_inactive, NULL);
1127	}
1128}
1129
1130#ifdef CONFIG_HAS_DMA
1131static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132			     struct sg_table *sgt, void *buf, size_t len,
1133			     enum dma_data_direction dir, unsigned long attrs)
1134{
1135	const bool vmalloced_buf = is_vmalloc_addr(buf);
1136	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137#ifdef CONFIG_HIGHMEM
1138	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139				(unsigned long)buf < (PKMAP_BASE +
1140					(LAST_PKMAP * PAGE_SIZE)));
1141#else
1142	const bool kmap_buf = false;
1143#endif
1144	int desc_len;
1145	int sgs;
1146	struct page *vm_page;
1147	struct scatterlist *sg;
1148	void *sg_buf;
1149	size_t min;
1150	int i, ret;
1151
1152	if (vmalloced_buf || kmap_buf) {
1153		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155	} else if (virt_addr_valid(buf)) {
1156		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157		sgs = DIV_ROUND_UP(len, desc_len);
1158	} else {
1159		return -EINVAL;
1160	}
1161
1162	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163	if (ret != 0)
1164		return ret;
1165
1166	sg = &sgt->sgl[0];
1167	for (i = 0; i < sgs; i++) {
1168
1169		if (vmalloced_buf || kmap_buf) {
1170			/*
1171			 * Next scatterlist entry size is the minimum between
1172			 * the desc_len and the remaining buffer length that
1173			 * fits in a page.
1174			 */
1175			min = min_t(size_t, desc_len,
1176				    min_t(size_t, len,
1177					  PAGE_SIZE - offset_in_page(buf)));
1178			if (vmalloced_buf)
1179				vm_page = vmalloc_to_page(buf);
1180			else
1181				vm_page = kmap_to_page(buf);
1182			if (!vm_page) {
1183				sg_free_table(sgt);
1184				return -ENOMEM;
1185			}
1186			sg_set_page(sg, vm_page,
1187				    min, offset_in_page(buf));
1188		} else {
1189			min = min_t(size_t, len, desc_len);
1190			sg_buf = buf;
1191			sg_set_buf(sg, sg_buf, min);
1192		}
1193
1194		buf += min;
1195		len -= min;
1196		sg = sg_next(sg);
1197	}
1198
1199	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1200	if (ret < 0) {
1201		sg_free_table(sgt);
1202		return ret;
1203	}
1204
1205	return 0;
1206}
1207
1208int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209		struct sg_table *sgt, void *buf, size_t len,
1210		enum dma_data_direction dir)
1211{
1212	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213}
1214
1215static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216				struct device *dev, struct sg_table *sgt,
1217				enum dma_data_direction dir,
1218				unsigned long attrs)
1219{
1220	dma_unmap_sgtable(dev, sgt, dir, attrs);
1221	sg_free_table(sgt);
1222	sgt->orig_nents = 0;
1223	sgt->nents = 0;
1224}
1225
1226void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227		   struct sg_table *sgt, enum dma_data_direction dir)
1228{
1229	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
 
 
 
1230}
1231
1232static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233{
1234	struct device *tx_dev, *rx_dev;
1235	struct spi_transfer *xfer;
1236	int ret;
1237
1238	if (!ctlr->can_dma)
1239		return 0;
1240
1241	if (ctlr->dma_tx)
1242		tx_dev = ctlr->dma_tx->device->dev;
1243	else if (ctlr->dma_map_dev)
1244		tx_dev = ctlr->dma_map_dev;
1245	else
1246		tx_dev = ctlr->dev.parent;
1247
1248	if (ctlr->dma_rx)
1249		rx_dev = ctlr->dma_rx->device->dev;
1250	else if (ctlr->dma_map_dev)
1251		rx_dev = ctlr->dma_map_dev;
1252	else
1253		rx_dev = ctlr->dev.parent;
1254
1255	ret = -ENOMSG;
1256	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257		/* The sync is done before each transfer. */
1258		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259
1260		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261			continue;
1262
1263		if (xfer->tx_buf != NULL) {
1264			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265						(void *)xfer->tx_buf,
1266						xfer->len, DMA_TO_DEVICE,
1267						attrs);
1268			if (ret != 0)
1269				return ret;
1270
1271			xfer->tx_sg_mapped = true;
1272		}
1273
1274		if (xfer->rx_buf != NULL) {
1275			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276						xfer->rx_buf, xfer->len,
1277						DMA_FROM_DEVICE, attrs);
1278			if (ret != 0) {
1279				spi_unmap_buf_attrs(ctlr, tx_dev,
1280						&xfer->tx_sg, DMA_TO_DEVICE,
1281						attrs);
1282
1283				return ret;
1284			}
1285
1286			xfer->rx_sg_mapped = true;
1287		}
1288	}
1289	/* No transfer has been mapped, bail out with success */
1290	if (ret)
1291		return 0;
1292
1293	ctlr->cur_rx_dma_dev = rx_dev;
1294	ctlr->cur_tx_dma_dev = tx_dev;
1295
1296	return 0;
1297}
1298
1299static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300{
1301	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303	struct spi_transfer *xfer;
 
1304
1305	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306		/* The sync has already been done after each transfer. */
1307		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308
1309		if (xfer->rx_sg_mapped)
1310			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311					    DMA_FROM_DEVICE, attrs);
1312		xfer->rx_sg_mapped = false;
1313
1314		if (xfer->tx_sg_mapped)
1315			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316					    DMA_TO_DEVICE, attrs);
1317		xfer->tx_sg_mapped = false;
1318	}
1319
1320	return 0;
1321}
 
 
1322
1323static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324				    struct spi_transfer *xfer)
1325{
1326	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329	if (xfer->tx_sg_mapped)
1330		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331	if (xfer->rx_sg_mapped)
1332		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333}
1334
1335static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336				 struct spi_transfer *xfer)
1337{
1338	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340
1341	if (xfer->rx_sg_mapped)
1342		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343	if (xfer->tx_sg_mapped)
1344		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345}
1346#else /* !CONFIG_HAS_DMA */
1347static inline int __spi_map_msg(struct spi_controller *ctlr,
1348				struct spi_message *msg)
1349{
1350	return 0;
1351}
1352
1353static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354				  struct spi_message *msg)
1355{
1356	return 0;
1357}
1358
1359static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360				    struct spi_transfer *xfer)
1361{
1362}
1363
1364static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365				 struct spi_transfer *xfer)
1366{
1367}
1368#endif /* !CONFIG_HAS_DMA */
1369
1370static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371				struct spi_message *msg)
1372{
1373	struct spi_transfer *xfer;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		/*
1377		 * Restore the original value of tx_buf or rx_buf if they are
1378		 * NULL.
1379		 */
1380		if (xfer->tx_buf == ctlr->dummy_tx)
1381			xfer->tx_buf = NULL;
1382		if (xfer->rx_buf == ctlr->dummy_rx)
1383			xfer->rx_buf = NULL;
1384	}
1385
1386	return __spi_unmap_msg(ctlr, msg);
1387}
1388
1389static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390{
1391	struct spi_transfer *xfer;
1392	void *tmp;
1393	unsigned int max_tx, max_rx;
1394
1395	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396		&& !(msg->spi->mode & SPI_3WIRE)) {
1397		max_tx = 0;
1398		max_rx = 0;
1399
1400		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402			    !xfer->tx_buf)
1403				max_tx = max(xfer->len, max_tx);
1404			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405			    !xfer->rx_buf)
1406				max_rx = max(xfer->len, max_rx);
1407		}
1408
1409		if (max_tx) {
1410			tmp = krealloc(ctlr->dummy_tx, max_tx,
1411				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412			if (!tmp)
1413				return -ENOMEM;
1414			ctlr->dummy_tx = tmp;
 
1415		}
1416
1417		if (max_rx) {
1418			tmp = krealloc(ctlr->dummy_rx, max_rx,
1419				       GFP_KERNEL | GFP_DMA);
1420			if (!tmp)
1421				return -ENOMEM;
1422			ctlr->dummy_rx = tmp;
1423		}
1424
1425		if (max_tx || max_rx) {
1426			list_for_each_entry(xfer, &msg->transfers,
1427					    transfer_list) {
1428				if (!xfer->len)
1429					continue;
1430				if (!xfer->tx_buf)
1431					xfer->tx_buf = ctlr->dummy_tx;
1432				if (!xfer->rx_buf)
1433					xfer->rx_buf = ctlr->dummy_rx;
1434			}
1435		}
1436	}
1437
1438	return __spi_map_msg(ctlr, msg);
1439}
1440
1441static int spi_transfer_wait(struct spi_controller *ctlr,
1442			     struct spi_message *msg,
1443			     struct spi_transfer *xfer)
1444{
1445	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447	u32 speed_hz = xfer->speed_hz;
1448	unsigned long long ms;
1449
1450	if (spi_controller_is_target(ctlr)) {
1451		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453			return -EINTR;
1454		}
1455	} else {
1456		if (!speed_hz)
1457			speed_hz = 100000;
1458
1459		/*
1460		 * For each byte we wait for 8 cycles of the SPI clock.
1461		 * Since speed is defined in Hz and we want milliseconds,
1462		 * use respective multiplier, but before the division,
1463		 * otherwise we may get 0 for short transfers.
1464		 */
1465		ms = 8LL * MSEC_PER_SEC * xfer->len;
1466		do_div(ms, speed_hz);
1467
1468		/*
1469		 * Increase it twice and add 200 ms tolerance, use
1470		 * predefined maximum in case of overflow.
1471		 */
1472		ms += ms + 200;
1473		if (ms > UINT_MAX)
1474			ms = UINT_MAX;
1475
1476		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477						 msecs_to_jiffies(ms));
1478
1479		if (ms == 0) {
1480			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482			dev_err(&msg->spi->dev,
1483				"SPI transfer timed out\n");
1484			return -ETIMEDOUT;
1485		}
1486
1487		if (xfer->error & SPI_TRANS_FAIL_IO)
1488			return -EIO;
1489	}
1490
1491	return 0;
1492}
1493
1494static void _spi_transfer_delay_ns(u32 ns)
1495{
1496	if (!ns)
1497		return;
1498	if (ns <= NSEC_PER_USEC) {
1499		ndelay(ns);
1500	} else {
1501		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502
1503		if (us <= 10)
1504			udelay(us);
1505		else
1506			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507	}
1508}
1509
1510int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1511{
1512	u32 delay = _delay->value;
1513	u32 unit = _delay->unit;
1514	u32 hz;
1515
1516	if (!delay)
1517		return 0;
1518
1519	switch (unit) {
1520	case SPI_DELAY_UNIT_USECS:
1521		delay *= NSEC_PER_USEC;
1522		break;
1523	case SPI_DELAY_UNIT_NSECS:
1524		/* Nothing to do here */
1525		break;
1526	case SPI_DELAY_UNIT_SCK:
1527		/* Clock cycles need to be obtained from spi_transfer */
1528		if (!xfer)
1529			return -EINVAL;
1530		/*
1531		 * If there is unknown effective speed, approximate it
1532		 * by underestimating with half of the requested Hz.
1533		 */
1534		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535		if (!hz)
1536			return -EINVAL;
1537
1538		/* Convert delay to nanoseconds */
1539		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540		break;
1541	default:
1542		return -EINVAL;
1543	}
1544
1545	return delay;
1546}
1547EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548
1549int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550{
1551	int delay;
1552
1553	might_sleep();
1554
1555	if (!_delay)
1556		return -EINVAL;
1557
1558	delay = spi_delay_to_ns(_delay, xfer);
1559	if (delay < 0)
1560		return delay;
1561
1562	_spi_transfer_delay_ns(delay);
1563
1564	return 0;
1565}
1566EXPORT_SYMBOL_GPL(spi_delay_exec);
1567
1568static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569					  struct spi_transfer *xfer)
1570{
1571	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572	u32 delay = xfer->cs_change_delay.value;
1573	u32 unit = xfer->cs_change_delay.unit;
1574	int ret;
1575
1576	/* Return early on "fast" mode - for everything but USECS */
1577	if (!delay) {
1578		if (unit == SPI_DELAY_UNIT_USECS)
1579			_spi_transfer_delay_ns(default_delay_ns);
1580		return;
1581	}
1582
1583	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584	if (ret) {
1585		dev_err_once(&msg->spi->dev,
1586			     "Use of unsupported delay unit %i, using default of %luus\n",
1587			     unit, default_delay_ns / NSEC_PER_USEC);
1588		_spi_transfer_delay_ns(default_delay_ns);
1589	}
1590}
1591
1592void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593						  struct spi_transfer *xfer)
1594{
1595	_spi_transfer_cs_change_delay(msg, xfer);
1596}
1597EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598
1599/*
1600 * spi_transfer_one_message - Default implementation of transfer_one_message()
1601 *
1602 * This is a standard implementation of transfer_one_message() for
1603 * drivers which implement a transfer_one() operation.  It provides
1604 * standard handling of delays and chip select management.
1605 */
1606static int spi_transfer_one_message(struct spi_controller *ctlr,
1607				    struct spi_message *msg)
1608{
1609	struct spi_transfer *xfer;
1610	bool keep_cs = false;
1611	int ret = 0;
1612	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1614
1615	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616	spi_set_cs(msg->spi, !xfer->cs_off, false);
1617
1618	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620
1621	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622		trace_spi_transfer_start(msg, xfer);
1623
1624		spi_statistics_add_transfer_stats(statm, xfer, msg);
1625		spi_statistics_add_transfer_stats(stats, xfer, msg);
1626
1627		if (!ctlr->ptp_sts_supported) {
1628			xfer->ptp_sts_word_pre = 0;
1629			ptp_read_system_prets(xfer->ptp_sts);
1630		}
1631
1632		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633			reinit_completion(&ctlr->xfer_completion);
1634
1635fallback_pio:
1636			spi_dma_sync_for_device(ctlr, xfer);
1637			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638			if (ret < 0) {
1639				spi_dma_sync_for_cpu(ctlr, xfer);
1640
1641				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643					__spi_unmap_msg(ctlr, msg);
1644					ctlr->fallback = true;
1645					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646					goto fallback_pio;
1647				}
1648
1649				SPI_STATISTICS_INCREMENT_FIELD(statm,
1650							       errors);
1651				SPI_STATISTICS_INCREMENT_FIELD(stats,
1652							       errors);
1653				dev_err(&msg->spi->dev,
1654					"SPI transfer failed: %d\n", ret);
1655				goto out;
1656			}
1657
1658			if (ret > 0) {
1659				ret = spi_transfer_wait(ctlr, msg, xfer);
1660				if (ret < 0)
1661					msg->status = ret;
1662			}
1663
1664			spi_dma_sync_for_cpu(ctlr, xfer);
1665		} else {
1666			if (xfer->len)
1667				dev_err(&msg->spi->dev,
1668					"Bufferless transfer has length %u\n",
1669					xfer->len);
1670		}
1671
1672		if (!ctlr->ptp_sts_supported) {
1673			ptp_read_system_postts(xfer->ptp_sts);
1674			xfer->ptp_sts_word_post = xfer->len;
1675		}
1676
1677		trace_spi_transfer_stop(msg, xfer);
1678
1679		if (msg->status != -EINPROGRESS)
1680			goto out;
1681
1682		spi_transfer_delay_exec(xfer);
1683
1684		if (xfer->cs_change) {
1685			if (list_is_last(&xfer->transfer_list,
1686					 &msg->transfers)) {
1687				keep_cs = true;
1688			} else {
1689				if (!xfer->cs_off)
1690					spi_set_cs(msg->spi, false, false);
1691				_spi_transfer_cs_change_delay(msg, xfer);
1692				if (!list_next_entry(xfer, transfer_list)->cs_off)
1693					spi_set_cs(msg->spi, true, false);
1694			}
1695		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697			spi_set_cs(msg->spi, xfer->cs_off, false);
1698		}
1699
1700		msg->actual_length += xfer->len;
1701	}
1702
1703out:
1704	if (ret != 0 || !keep_cs)
1705		spi_set_cs(msg->spi, false, false);
1706
1707	if (msg->status == -EINPROGRESS)
1708		msg->status = ret;
1709
1710	if (msg->status && ctlr->handle_err)
1711		ctlr->handle_err(ctlr, msg);
1712
1713	spi_finalize_current_message(ctlr);
1714
1715	return ret;
1716}
1717
1718/**
1719 * spi_finalize_current_transfer - report completion of a transfer
1720 * @ctlr: the controller reporting completion
1721 *
1722 * Called by SPI drivers using the core transfer_one_message()
1723 * implementation to notify it that the current interrupt driven
1724 * transfer has finished and the next one may be scheduled.
1725 */
1726void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727{
1728	complete(&ctlr->xfer_completion);
1729}
1730EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731
1732static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733{
1734	if (ctlr->auto_runtime_pm) {
1735		pm_runtime_mark_last_busy(ctlr->dev.parent);
1736		pm_runtime_put_autosuspend(ctlr->dev.parent);
1737	}
1738}
1739
1740static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741		struct spi_message *msg, bool was_busy)
1742{
1743	struct spi_transfer *xfer;
1744	int ret;
1745
1746	if (!was_busy && ctlr->auto_runtime_pm) {
1747		ret = pm_runtime_get_sync(ctlr->dev.parent);
1748		if (ret < 0) {
1749			pm_runtime_put_noidle(ctlr->dev.parent);
1750			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751				ret);
1752
1753			msg->status = ret;
1754			spi_finalize_current_message(ctlr);
1755
1756			return ret;
1757		}
1758	}
1759
1760	if (!was_busy)
1761		trace_spi_controller_busy(ctlr);
1762
1763	if (!was_busy && ctlr->prepare_transfer_hardware) {
1764		ret = ctlr->prepare_transfer_hardware(ctlr);
1765		if (ret) {
1766			dev_err(&ctlr->dev,
1767				"failed to prepare transfer hardware: %d\n",
1768				ret);
1769
1770			if (ctlr->auto_runtime_pm)
1771				pm_runtime_put(ctlr->dev.parent);
1772
1773			msg->status = ret;
1774			spi_finalize_current_message(ctlr);
1775
1776			return ret;
1777		}
1778	}
1779
1780	trace_spi_message_start(msg);
1781
1782	if (ctlr->prepare_message) {
1783		ret = ctlr->prepare_message(ctlr, msg);
1784		if (ret) {
1785			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786				ret);
1787			msg->status = ret;
1788			spi_finalize_current_message(ctlr);
1789			return ret;
1790		}
1791		msg->prepared = true;
1792	}
1793
1794	ret = spi_map_msg(ctlr, msg);
1795	if (ret) {
1796		msg->status = ret;
1797		spi_finalize_current_message(ctlr);
1798		return ret;
1799	}
1800
1801	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803			xfer->ptp_sts_word_pre = 0;
1804			ptp_read_system_prets(xfer->ptp_sts);
1805		}
1806	}
1807
1808	/*
1809	 * Drivers implementation of transfer_one_message() must arrange for
1810	 * spi_finalize_current_message() to get called. Most drivers will do
1811	 * this in the calling context, but some don't. For those cases, a
1812	 * completion is used to guarantee that this function does not return
1813	 * until spi_finalize_current_message() is done accessing
1814	 * ctlr->cur_msg.
1815	 * Use of the following two flags enable to opportunistically skip the
1816	 * use of the completion since its use involves expensive spin locks.
1817	 * In case of a race with the context that calls
1818	 * spi_finalize_current_message() the completion will always be used,
1819	 * due to strict ordering of these flags using barriers.
1820	 */
1821	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823	reinit_completion(&ctlr->cur_msg_completion);
1824	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825
1826	ret = ctlr->transfer_one_message(ctlr, msg);
1827	if (ret) {
1828		dev_err(&ctlr->dev,
1829			"failed to transfer one message from queue\n");
1830		return ret;
1831	}
1832
1833	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834	smp_mb(); /* See spi_finalize_current_message()... */
1835	if (READ_ONCE(ctlr->cur_msg_incomplete))
1836		wait_for_completion(&ctlr->cur_msg_completion);
1837
1838	return 0;
1839}
1840
1841/**
1842 * __spi_pump_messages - function which processes SPI message queue
1843 * @ctlr: controller to process queue for
1844 * @in_kthread: true if we are in the context of the message pump thread
1845 *
1846 * This function checks if there is any SPI message in the queue that
1847 * needs processing and if so call out to the driver to initialize hardware
1848 * and transfer each message.
1849 *
1850 * Note that it is called both from the kthread itself and also from
1851 * inside spi_sync(); the queue extraction handling at the top of the
1852 * function should deal with this safely.
1853 */
1854static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1855{
 
1856	struct spi_message *msg;
1857	bool was_busy = false;
1858	unsigned long flags;
1859	int ret;
1860
1861	/* Take the I/O mutex */
1862	mutex_lock(&ctlr->io_mutex);
1863
1864	/* Lock queue */
1865	spin_lock_irqsave(&ctlr->queue_lock, flags);
1866
1867	/* Make sure we are not already running a message */
1868	if (ctlr->cur_msg)
1869		goto out_unlock;
 
 
 
 
 
 
 
 
 
1870
1871	/* Check if the queue is idle */
1872	if (list_empty(&ctlr->queue) || !ctlr->running) {
1873		if (!ctlr->busy)
1874			goto out_unlock;
 
 
1875
1876		/* Defer any non-atomic teardown to the thread */
1877		if (!in_kthread) {
1878			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879			    !ctlr->unprepare_transfer_hardware) {
1880				spi_idle_runtime_pm(ctlr);
1881				ctlr->busy = false;
1882				ctlr->queue_empty = true;
1883				trace_spi_controller_idle(ctlr);
1884			} else {
1885				kthread_queue_work(ctlr->kworker,
1886						   &ctlr->pump_messages);
1887			}
1888			goto out_unlock;
 
1889		}
1890
1891		ctlr->busy = false;
 
1892		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894		kfree(ctlr->dummy_rx);
1895		ctlr->dummy_rx = NULL;
1896		kfree(ctlr->dummy_tx);
1897		ctlr->dummy_tx = NULL;
1898		if (ctlr->unprepare_transfer_hardware &&
1899		    ctlr->unprepare_transfer_hardware(ctlr))
1900			dev_err(&ctlr->dev,
1901				"failed to unprepare transfer hardware\n");
1902		spi_idle_runtime_pm(ctlr);
1903		trace_spi_controller_idle(ctlr);
1904
1905		spin_lock_irqsave(&ctlr->queue_lock, flags);
1906		ctlr->queue_empty = true;
1907		goto out_unlock;
 
1908	}
1909
1910	/* Extract head of queue */
1911	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912	ctlr->cur_msg = msg;
1913
1914	list_del_init(&msg->queue);
1915	if (ctlr->busy)
1916		was_busy = true;
1917	else
1918		ctlr->busy = true;
1919	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920
1921	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923
1924	ctlr->cur_msg = NULL;
1925	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
1926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927	mutex_unlock(&ctlr->io_mutex);
1928
1929	/* Prod the scheduler in case transfer_one() was busy waiting */
1930	if (!ret)
1931		cond_resched();
1932	return;
1933
1934out_unlock:
1935	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936	mutex_unlock(&ctlr->io_mutex);
1937}
1938
1939/**
1940 * spi_pump_messages - kthread work function which processes spi message queue
1941 * @work: pointer to kthread work struct contained in the controller struct
1942 */
1943static void spi_pump_messages(struct kthread_work *work)
1944{
1945	struct spi_controller *ctlr =
1946		container_of(work, struct spi_controller, pump_messages);
1947
1948	__spi_pump_messages(ctlr, true);
1949}
1950
1951/**
1952 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
 
 
 
 
 
 
 
 
 
1953 * @ctlr: Pointer to the spi_controller structure of the driver
1954 * @xfer: Pointer to the transfer being timestamped
1955 * @progress: How many words (not bytes) have been transferred so far
1956 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957 *	      transfer, for less jitter in time measurement. Only compatible
1958 *	      with PIO drivers. If true, must follow up with
1959 *	      spi_take_timestamp_post or otherwise system will crash.
1960 *	      WARNING: for fully predictable results, the CPU frequency must
1961 *	      also be under control (governor).
1962 *
1963 * This is a helper for drivers to collect the beginning of the TX timestamp
1964 * for the requested byte from the SPI transfer. The frequency with which this
1965 * function must be called (once per word, once for the whole transfer, once
1966 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967 * greater than or equal to the requested byte at the time of the call. The
1968 * timestamp is only taken once, at the first such call. It is assumed that
1969 * the driver advances its @tx buffer pointer monotonically.
1970 */
1971void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972			    struct spi_transfer *xfer,
1973			    size_t progress, bool irqs_off)
1974{
1975	if (!xfer->ptp_sts)
1976		return;
1977
1978	if (xfer->timestamped)
1979		return;
1980
1981	if (progress > xfer->ptp_sts_word_pre)
1982		return;
1983
1984	/* Capture the resolution of the timestamp */
1985	xfer->ptp_sts_word_pre = progress;
1986
1987	if (irqs_off) {
1988		local_irq_save(ctlr->irq_flags);
1989		preempt_disable();
1990	}
1991
1992	ptp_read_system_prets(xfer->ptp_sts);
1993}
1994EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995
1996/**
1997 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
 
 
 
 
 
1998 * @ctlr: Pointer to the spi_controller structure of the driver
1999 * @xfer: Pointer to the transfer being timestamped
2000 * @progress: How many words (not bytes) have been transferred so far
2001 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002 *
2003 * This is a helper for drivers to collect the end of the TX timestamp for
2004 * the requested byte from the SPI transfer. Can be called with an arbitrary
2005 * frequency: only the first call where @tx exceeds or is equal to the
2006 * requested word will be timestamped.
2007 */
2008void spi_take_timestamp_post(struct spi_controller *ctlr,
2009			     struct spi_transfer *xfer,
2010			     size_t progress, bool irqs_off)
2011{
2012	if (!xfer->ptp_sts)
2013		return;
2014
2015	if (xfer->timestamped)
2016		return;
2017
2018	if (progress < xfer->ptp_sts_word_post)
2019		return;
2020
2021	ptp_read_system_postts(xfer->ptp_sts);
2022
2023	if (irqs_off) {
2024		local_irq_restore(ctlr->irq_flags);
2025		preempt_enable();
2026	}
2027
2028	/* Capture the resolution of the timestamp */
2029	xfer->ptp_sts_word_post = progress;
2030
2031	xfer->timestamped = 1;
2032}
2033EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034
2035/**
2036 * spi_set_thread_rt - set the controller to pump at realtime priority
2037 * @ctlr: controller to boost priority of
2038 *
2039 * This can be called because the controller requested realtime priority
2040 * (by setting the ->rt value before calling spi_register_controller()) or
2041 * because a device on the bus said that its transfers needed realtime
2042 * priority.
2043 *
2044 * NOTE: at the moment if any device on a bus says it needs realtime then
2045 * the thread will be at realtime priority for all transfers on that
2046 * controller.  If this eventually becomes a problem we may see if we can
2047 * find a way to boost the priority only temporarily during relevant
2048 * transfers.
2049 */
2050static void spi_set_thread_rt(struct spi_controller *ctlr)
2051{
2052	dev_info(&ctlr->dev,
2053		"will run message pump with realtime priority\n");
2054	sched_set_fifo(ctlr->kworker->task);
2055}
2056
2057static int spi_init_queue(struct spi_controller *ctlr)
2058{
2059	ctlr->running = false;
2060	ctlr->busy = false;
2061	ctlr->queue_empty = true;
2062
2063	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064	if (IS_ERR(ctlr->kworker)) {
2065		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066		return PTR_ERR(ctlr->kworker);
2067	}
2068
2069	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070
2071	/*
2072	 * Controller config will indicate if this controller should run the
2073	 * message pump with high (realtime) priority to reduce the transfer
2074	 * latency on the bus by minimising the delay between a transfer
2075	 * request and the scheduling of the message pump thread. Without this
2076	 * setting the message pump thread will remain at default priority.
2077	 */
2078	if (ctlr->rt)
2079		spi_set_thread_rt(ctlr);
2080
2081	return 0;
2082}
2083
2084/**
2085 * spi_get_next_queued_message() - called by driver to check for queued
2086 * messages
2087 * @ctlr: the controller to check for queued messages
2088 *
2089 * If there are more messages in the queue, the next message is returned from
2090 * this call.
2091 *
2092 * Return: the next message in the queue, else NULL if the queue is empty.
2093 */
2094struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095{
2096	struct spi_message *next;
2097	unsigned long flags;
2098
2099	/* Get a pointer to the next message, if any */
2100	spin_lock_irqsave(&ctlr->queue_lock, flags);
2101	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102					queue);
2103	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104
2105	return next;
2106}
2107EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108
2109/*
2110 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111 *                            and spi_maybe_unoptimize_message()
2112 * @msg: the message to unoptimize
2113 *
2114 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115 * core should use spi_maybe_unoptimize_message() rather than calling this
2116 * function directly.
2117 *
2118 * It is not valid to call this on a message that is not currently optimized.
2119 */
2120static void __spi_unoptimize_message(struct spi_message *msg)
2121{
2122	struct spi_controller *ctlr = msg->spi->controller;
2123
2124	if (ctlr->unoptimize_message)
2125		ctlr->unoptimize_message(msg);
2126
2127	spi_res_release(ctlr, msg);
2128
2129	msg->optimized = false;
2130	msg->opt_state = NULL;
2131}
2132
2133/*
2134 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135 * @msg: the message to unoptimize
2136 *
2137 * This function is used to unoptimize a message if and only if it was
2138 * optimized by the core (via spi_maybe_optimize_message()).
2139 */
2140static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141{
2142	if (!msg->pre_optimized && msg->optimized &&
2143	    !msg->spi->controller->defer_optimize_message)
2144		__spi_unoptimize_message(msg);
2145}
2146
2147/**
2148 * spi_finalize_current_message() - the current message is complete
2149 * @ctlr: the controller to return the message to
2150 *
2151 * Called by the driver to notify the core that the message in the front of the
2152 * queue is complete and can be removed from the queue.
2153 */
2154void spi_finalize_current_message(struct spi_controller *ctlr)
2155{
2156	struct spi_transfer *xfer;
2157	struct spi_message *mesg;
 
2158	int ret;
2159
 
2160	mesg = ctlr->cur_msg;
 
2161
2162	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164			ptp_read_system_postts(xfer->ptp_sts);
2165			xfer->ptp_sts_word_post = xfer->len;
2166		}
2167	}
2168
2169	if (unlikely(ctlr->ptp_sts_supported))
2170		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172
2173	spi_unmap_msg(ctlr, mesg);
2174
2175	if (mesg->prepared && ctlr->unprepare_message) {
 
 
 
 
 
 
 
2176		ret = ctlr->unprepare_message(ctlr, mesg);
2177		if (ret) {
2178			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179				ret);
2180		}
2181	}
2182
2183	mesg->prepared = false;
2184
2185	spi_maybe_unoptimize_message(mesg);
2186
2187	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188	smp_mb(); /* See __spi_pump_transfer_message()... */
2189	if (READ_ONCE(ctlr->cur_msg_need_completion))
2190		complete(&ctlr->cur_msg_completion);
2191
2192	trace_spi_message_done(mesg);
2193
2194	mesg->state = NULL;
2195	if (mesg->complete)
2196		mesg->complete(mesg->context);
2197}
2198EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199
2200static int spi_start_queue(struct spi_controller *ctlr)
2201{
2202	unsigned long flags;
2203
2204	spin_lock_irqsave(&ctlr->queue_lock, flags);
2205
2206	if (ctlr->running || ctlr->busy) {
2207		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208		return -EBUSY;
2209	}
2210
2211	ctlr->running = true;
2212	ctlr->cur_msg = NULL;
2213	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214
2215	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216
2217	return 0;
2218}
2219
2220static int spi_stop_queue(struct spi_controller *ctlr)
2221{
2222	unsigned int limit = 500;
2223	unsigned long flags;
 
 
 
 
2224
2225	/*
2226	 * This is a bit lame, but is optimized for the common execution path.
2227	 * A wait_queue on the ctlr->busy could be used, but then the common
2228	 * execution path (pump_messages) would be required to call wake_up or
2229	 * friends on every SPI message. Do this instead.
2230	 */
2231	do {
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234			ctlr->running = false;
2235			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236			return 0;
2237		}
2238		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239		usleep_range(10000, 11000);
2240	} while (--limit);
 
 
 
 
 
 
2241
2242	return -EBUSY;
 
 
 
 
 
 
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_target(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_present(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
 
 
 
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
 
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
 
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
 
 
 
2879	acpi_device_set_enumerated(adev);
2880
2881	adev->power.flags.ignore_parent = true;
2882	if (spi_add_device(spi)) {
2883		adev->power.flags.ignore_parent = false;
2884		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885			dev_name(&adev->dev));
2886		spi_dev_put(spi);
2887	}
2888
2889	return AE_OK;
2890}
2891
2892static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893				       void *data, void **return_value)
2894{
2895	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896	struct spi_controller *ctlr = data;
 
2897
2898	if (!adev)
2899		return AE_OK;
2900
2901	return acpi_register_spi_device(ctlr, adev);
2902}
2903
2904#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2905
2906static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907{
2908	acpi_status status;
2909	acpi_handle handle;
2910
2911	handle = ACPI_HANDLE(ctlr->dev.parent);
2912	if (!handle)
2913		return;
2914
2915	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917				     acpi_spi_add_device, NULL, ctlr, NULL);
2918	if (ACPI_FAILURE(status))
2919		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920}
2921#else
2922static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923#endif /* CONFIG_ACPI */
2924
2925static void spi_controller_release(struct device *dev)
2926{
2927	struct spi_controller *ctlr;
2928
2929	ctlr = container_of(dev, struct spi_controller, dev);
2930	kfree(ctlr);
2931}
2932
2933static const struct class spi_master_class = {
2934	.name		= "spi_master",
 
2935	.dev_release	= spi_controller_release,
2936	.dev_groups	= spi_master_groups,
2937};
2938
2939#ifdef CONFIG_SPI_SLAVE
2940/**
2941 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942 *		     controller
2943 * @spi: device used for the current transfer
2944 */
2945int spi_target_abort(struct spi_device *spi)
2946{
2947	struct spi_controller *ctlr = spi->controller;
2948
2949	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950		return ctlr->target_abort(ctlr);
2951
2952	return -ENOTSUPP;
2953}
2954EXPORT_SYMBOL_GPL(spi_target_abort);
 
 
 
 
 
2955
2956static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957			  char *buf)
2958{
2959	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960						   dev);
2961	struct device *child;
2962
2963	child = device_find_any_child(&ctlr->dev);
2964	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
 
2965}
2966
2967static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968			   const char *buf, size_t count)
2969{
2970	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971						   dev);
2972	struct spi_device *spi;
2973	struct device *child;
2974	char name[32];
2975	int rc;
2976
2977	rc = sscanf(buf, "%31s", name);
2978	if (rc != 1 || !name[0])
2979		return -EINVAL;
2980
2981	child = device_find_any_child(&ctlr->dev);
2982	if (child) {
2983		/* Remove registered slave */
2984		device_unregister(child);
2985		put_device(child);
2986	}
2987
2988	if (strcmp(name, "(null)")) {
2989		/* Register new slave */
2990		spi = spi_alloc_device(ctlr);
2991		if (!spi)
2992			return -ENOMEM;
2993
2994		strscpy(spi->modalias, name, sizeof(spi->modalias));
2995
2996		rc = spi_add_device(spi);
2997		if (rc) {
2998			spi_dev_put(spi);
2999			return rc;
3000		}
3001	}
3002
3003	return count;
3004}
3005
3006static DEVICE_ATTR_RW(slave);
3007
3008static struct attribute *spi_slave_attrs[] = {
3009	&dev_attr_slave.attr,
3010	NULL,
3011};
3012
3013static const struct attribute_group spi_slave_group = {
3014	.attrs = spi_slave_attrs,
3015};
3016
3017static const struct attribute_group *spi_slave_groups[] = {
3018	&spi_controller_statistics_group,
3019	&spi_slave_group,
3020	NULL,
3021};
3022
3023static const struct class spi_slave_class = {
3024	.name		= "spi_slave",
 
3025	.dev_release	= spi_controller_release,
3026	.dev_groups	= spi_slave_groups,
3027};
3028#else
3029extern struct class spi_slave_class;	/* dummy */
3030#endif
3031
3032/**
3033 * __spi_alloc_controller - allocate an SPI master or slave controller
3034 * @dev: the controller, possibly using the platform_bus
3035 * @size: how much zeroed driver-private data to allocate; the pointer to this
3036 *	memory is in the driver_data field of the returned device, accessible
3037 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3038 *	drivers granting DMA access to portions of their private data need to
3039 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3040 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041 *	slave (true) controller
3042 * Context: can sleep
3043 *
3044 * This call is used only by SPI controller drivers, which are the
3045 * only ones directly touching chip registers.  It's how they allocate
3046 * an spi_controller structure, prior to calling spi_register_controller().
3047 *
3048 * This must be called from context that can sleep.
3049 *
3050 * The caller is responsible for assigning the bus number and initializing the
3051 * controller's methods before calling spi_register_controller(); and (after
3052 * errors adding the device) calling spi_controller_put() to prevent a memory
3053 * leak.
3054 *
3055 * Return: the SPI controller structure on success, else NULL.
3056 */
3057struct spi_controller *__spi_alloc_controller(struct device *dev,
3058					      unsigned int size, bool slave)
3059{
3060	struct spi_controller	*ctlr;
3061	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062
3063	if (!dev)
3064		return NULL;
3065
3066	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067	if (!ctlr)
3068		return NULL;
3069
3070	device_initialize(&ctlr->dev);
3071	INIT_LIST_HEAD(&ctlr->queue);
3072	spin_lock_init(&ctlr->queue_lock);
3073	spin_lock_init(&ctlr->bus_lock_spinlock);
3074	mutex_init(&ctlr->bus_lock_mutex);
3075	mutex_init(&ctlr->io_mutex);
3076	mutex_init(&ctlr->add_lock);
3077	ctlr->bus_num = -1;
3078	ctlr->num_chipselect = 1;
3079	ctlr->slave = slave;
3080	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081		ctlr->dev.class = &spi_slave_class;
3082	else
3083		ctlr->dev.class = &spi_master_class;
3084	ctlr->dev.parent = dev;
3085	pm_suspend_ignore_children(&ctlr->dev, true);
3086	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087
3088	return ctlr;
3089}
3090EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091
3092static void devm_spi_release_controller(struct device *dev, void *ctlr)
3093{
3094	spi_controller_put(*(struct spi_controller **)ctlr);
3095}
3096
3097/**
3098 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099 * @dev: physical device of SPI controller
3100 * @size: how much zeroed driver-private data to allocate
3101 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102 * Context: can sleep
3103 *
3104 * Allocate an SPI controller and automatically release a reference on it
3105 * when @dev is unbound from its driver.  Drivers are thus relieved from
3106 * having to call spi_controller_put().
3107 *
3108 * The arguments to this function are identical to __spi_alloc_controller().
3109 *
3110 * Return: the SPI controller structure on success, else NULL.
3111 */
3112struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113						   unsigned int size,
3114						   bool slave)
3115{
3116	struct spi_controller **ptr, *ctlr;
3117
3118	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119			   GFP_KERNEL);
3120	if (!ptr)
3121		return NULL;
3122
3123	ctlr = __spi_alloc_controller(dev, size, slave);
3124	if (ctlr) {
3125		ctlr->devm_allocated = true;
3126		*ptr = ctlr;
3127		devres_add(dev, ptr);
3128	} else {
3129		devres_free(ptr);
3130	}
3131
3132	return ctlr;
3133}
3134EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136/**
3137 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138 * @ctlr: The SPI master to grab GPIO descriptors for
3139 */
3140static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141{
3142	int nb, i;
3143	struct gpio_desc **cs;
3144	struct device *dev = &ctlr->dev;
3145	unsigned long native_cs_mask = 0;
3146	unsigned int num_cs_gpios = 0;
3147
3148	nb = gpiod_count(dev, "cs");
3149	if (nb < 0) {
3150		/* No GPIOs at all is fine, else return the error */
3151		if (nb == -ENOENT)
3152			return 0;
3153		return nb;
3154	}
3155
3156	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157
3158	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3159			  GFP_KERNEL);
3160	if (!cs)
3161		return -ENOMEM;
3162	ctlr->cs_gpiods = cs;
3163
3164	for (i = 0; i < nb; i++) {
3165		/*
3166		 * Most chipselects are active low, the inverted
3167		 * semantics are handled by special quirks in gpiolib,
3168		 * so initializing them GPIOD_OUT_LOW here means
3169		 * "unasserted", in most cases this will drive the physical
3170		 * line high.
3171		 */
3172		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173						      GPIOD_OUT_LOW);
3174		if (IS_ERR(cs[i]))
3175			return PTR_ERR(cs[i]);
3176
3177		if (cs[i]) {
3178			/*
3179			 * If we find a CS GPIO, name it after the device and
3180			 * chip select line.
3181			 */
3182			char *gpioname;
3183
3184			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185						  dev_name(dev), i);
3186			if (!gpioname)
3187				return -ENOMEM;
3188			gpiod_set_consumer_name(cs[i], gpioname);
3189			num_cs_gpios++;
3190			continue;
3191		}
3192
3193		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194			dev_err(dev, "Invalid native chip select %d\n", i);
3195			return -EINVAL;
3196		}
3197		native_cs_mask |= BIT(i);
3198	}
3199
3200	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201
3202	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204		dev_err(dev, "No unused native chip select available\n");
3205		return -EINVAL;
3206	}
3207
3208	return 0;
3209}
3210
3211static int spi_controller_check_ops(struct spi_controller *ctlr)
3212{
3213	/*
3214	 * The controller may implement only the high-level SPI-memory like
3215	 * operations if it does not support regular SPI transfers, and this is
3216	 * valid use case.
3217	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218	 * one of the ->transfer_xxx() method be implemented.
3219	 */
3220	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221		if (!ctlr->transfer && !ctlr->transfer_one &&
3222		   !ctlr->transfer_one_message) {
3223			return -EINVAL;
3224		}
 
 
3225	}
3226
3227	return 0;
3228}
3229
3230/* Allocate dynamic bus number using Linux idr */
3231static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232{
3233	int id;
3234
3235	mutex_lock(&board_lock);
3236	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237	mutex_unlock(&board_lock);
3238	if (WARN(id < 0, "couldn't get idr"))
3239		return id == -ENOSPC ? -EBUSY : id;
3240	ctlr->bus_num = id;
3241	return 0;
3242}
3243
3244/**
3245 * spi_register_controller - register SPI host or target controller
3246 * @ctlr: initialized controller, originally from spi_alloc_host() or
3247 *	spi_alloc_target()
3248 * Context: can sleep
3249 *
3250 * SPI controllers connect to their drivers using some non-SPI bus,
3251 * such as the platform bus.  The final stage of probe() in that code
3252 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253 *
3254 * SPI controllers use board specific (often SOC specific) bus numbers,
3255 * and board-specific addressing for SPI devices combines those numbers
3256 * with chip select numbers.  Since SPI does not directly support dynamic
3257 * device identification, boards need configuration tables telling which
3258 * chip is at which address.
3259 *
3260 * This must be called from context that can sleep.  It returns zero on
3261 * success, else a negative error code (dropping the controller's refcount).
3262 * After a successful return, the caller is responsible for calling
3263 * spi_unregister_controller().
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267int spi_register_controller(struct spi_controller *ctlr)
3268{
3269	struct device		*dev = ctlr->dev.parent;
3270	struct boardinfo	*bi;
3271	int			first_dynamic;
3272	int			status;
3273	int			idx;
3274
3275	if (!dev)
3276		return -ENODEV;
3277
3278	/*
3279	 * Make sure all necessary hooks are implemented before registering
3280	 * the SPI controller.
3281	 */
3282	status = spi_controller_check_ops(ctlr);
3283	if (status)
3284		return status;
3285
3286	if (ctlr->bus_num < 0)
3287		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288	if (ctlr->bus_num >= 0) {
3289		/* Devices with a fixed bus num must check-in with the num */
3290		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291		if (status)
3292			return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293	}
3294	if (ctlr->bus_num < 0) {
3295		first_dynamic = of_alias_get_highest_id("spi");
3296		if (first_dynamic < 0)
3297			first_dynamic = 0;
3298		else
3299			first_dynamic++;
3300
3301		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302		if (status)
3303			return status;
 
 
 
 
3304	}
3305	ctlr->bus_lock_flag = 0;
3306	init_completion(&ctlr->xfer_completion);
3307	init_completion(&ctlr->cur_msg_completion);
3308	if (!ctlr->max_dma_len)
3309		ctlr->max_dma_len = INT_MAX;
3310
3311	/*
3312	 * Register the device, then userspace will see it.
3313	 * Registration fails if the bus ID is in use.
3314	 */
3315	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3316
3317	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318		status = spi_get_gpio_descs(ctlr);
3319		if (status)
3320			goto free_bus_id;
3321		/*
3322		 * A controller using GPIO descriptors always
3323		 * supports SPI_CS_HIGH if need be.
3324		 */
3325		ctlr->mode_bits |= SPI_CS_HIGH;
 
 
 
 
 
 
 
3326	}
3327
3328	/*
3329	 * Even if it's just one always-selected device, there must
3330	 * be at least one chipselect.
3331	 */
3332	if (!ctlr->num_chipselect) {
3333		status = -EINVAL;
3334		goto free_bus_id;
3335	}
3336
3337	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339		ctlr->last_cs[idx] = SPI_INVALID_CS;
3340
3341	status = device_add(&ctlr->dev);
3342	if (status < 0)
3343		goto free_bus_id;
3344	dev_dbg(dev, "registered %s %s\n",
3345			spi_controller_is_target(ctlr) ? "target" : "host",
3346			dev_name(&ctlr->dev));
3347
3348	/*
3349	 * If we're using a queued driver, start the queue. Note that we don't
3350	 * need the queueing logic if the driver is only supporting high-level
3351	 * memory operations.
3352	 */
3353	if (ctlr->transfer) {
3354		dev_info(dev, "controller is unqueued, this is deprecated\n");
3355	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356		status = spi_controller_initialize_queue(ctlr);
3357		if (status) {
3358			device_del(&ctlr->dev);
3359			goto free_bus_id;
3360		}
3361	}
3362	/* Add statistics */
3363	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364	if (!ctlr->pcpu_statistics) {
3365		dev_err(dev, "Error allocating per-cpu statistics\n");
3366		status = -ENOMEM;
3367		goto destroy_queue;
3368	}
3369
3370	mutex_lock(&board_lock);
3371	list_add_tail(&ctlr->list, &spi_controller_list);
3372	list_for_each_entry(bi, &board_list, list)
3373		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374	mutex_unlock(&board_lock);
3375
3376	/* Register devices from the device tree and ACPI */
3377	of_register_spi_devices(ctlr);
3378	acpi_register_spi_devices(ctlr);
3379	return status;
3380
3381destroy_queue:
3382	spi_destroy_queue(ctlr);
3383free_bus_id:
3384	mutex_lock(&board_lock);
3385	idr_remove(&spi_master_idr, ctlr->bus_num);
3386	mutex_unlock(&board_lock);
3387	return status;
3388}
3389EXPORT_SYMBOL_GPL(spi_register_controller);
3390
3391static void devm_spi_unregister(struct device *dev, void *res)
3392{
3393	spi_unregister_controller(*(struct spi_controller **)res);
3394}
3395
3396/**
3397 * devm_spi_register_controller - register managed SPI host or target
3398 *	controller
3399 * @dev:    device managing SPI controller
3400 * @ctlr: initialized controller, originally from spi_alloc_host() or
3401 *	spi_alloc_target()
3402 * Context: can sleep
3403 *
3404 * Register a SPI device as with spi_register_controller() which will
3405 * automatically be unregistered and freed.
3406 *
3407 * Return: zero on success, else a negative error code.
3408 */
3409int devm_spi_register_controller(struct device *dev,
3410				 struct spi_controller *ctlr)
3411{
3412	struct spi_controller **ptr;
3413	int ret;
3414
3415	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416	if (!ptr)
3417		return -ENOMEM;
3418
3419	ret = spi_register_controller(ctlr);
3420	if (!ret) {
3421		*ptr = ctlr;
3422		devres_add(dev, ptr);
3423	} else {
3424		devres_free(ptr);
3425	}
3426
3427	return ret;
3428}
3429EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430
3431static int __unregister(struct device *dev, void *null)
3432{
3433	spi_unregister_device(to_spi_device(dev));
3434	return 0;
3435}
3436
3437/**
3438 * spi_unregister_controller - unregister SPI master or slave controller
3439 * @ctlr: the controller being unregistered
3440 * Context: can sleep
3441 *
3442 * This call is used only by SPI controller drivers, which are the
3443 * only ones directly touching chip registers.
3444 *
3445 * This must be called from context that can sleep.
3446 *
3447 * Note that this function also drops a reference to the controller.
3448 */
3449void spi_unregister_controller(struct spi_controller *ctlr)
3450{
3451	struct spi_controller *found;
3452	int id = ctlr->bus_num;
3453
3454	/* Prevent addition of new devices, unregister existing ones */
3455	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456		mutex_lock(&ctlr->add_lock);
3457
3458	device_for_each_child(&ctlr->dev, NULL, __unregister);
3459
3460	/* First make sure that this controller was ever added */
3461	mutex_lock(&board_lock);
3462	found = idr_find(&spi_master_idr, id);
3463	mutex_unlock(&board_lock);
3464	if (ctlr->queued) {
3465		if (spi_destroy_queue(ctlr))
3466			dev_err(&ctlr->dev, "queue remove failed\n");
3467	}
3468	mutex_lock(&board_lock);
3469	list_del(&ctlr->list);
3470	mutex_unlock(&board_lock);
3471
3472	device_del(&ctlr->dev);
3473
3474	/* Free bus id */
 
 
 
 
 
 
3475	mutex_lock(&board_lock);
3476	if (found == ctlr)
3477		idr_remove(&spi_master_idr, id);
3478	mutex_unlock(&board_lock);
3479
3480	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481		mutex_unlock(&ctlr->add_lock);
3482
3483	/*
3484	 * Release the last reference on the controller if its driver
3485	 * has not yet been converted to devm_spi_alloc_host/target().
3486	 */
3487	if (!ctlr->devm_allocated)
3488		put_device(&ctlr->dev);
3489}
3490EXPORT_SYMBOL_GPL(spi_unregister_controller);
3491
3492static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493{
3494	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
 
 
 
 
 
 
 
 
 
 
3495}
 
3496
3497static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3498{
3499	mutex_lock(&ctlr->bus_lock_mutex);
3500	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
 
3502}
 
3503
3504static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3505{
3506	mutex_lock(&ctlr->bus_lock_mutex);
3507	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
3509}
3510
3511int spi_controller_suspend(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
3512{
3513	int ret = 0;
 
3514
3515	/* Basically no-ops for non-queued controllers */
3516	if (ctlr->queued) {
3517		ret = spi_stop_queue(ctlr);
3518		if (ret)
3519			dev_err(&ctlr->dev, "queue stop failed\n");
3520	}
 
 
3521
3522	__spi_mark_suspended(ctlr);
3523	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524}
3525EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526
3527int spi_controller_resume(struct spi_controller *ctlr)
 
 
 
 
 
3528{
3529	int ret = 0;
3530
3531	__spi_mark_resumed(ctlr);
 
3532
3533	if (ctlr->queued) {
3534		ret = spi_start_queue(ctlr);
3535		if (ret)
3536			dev_err(&ctlr->dev, "queue restart failed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3537	}
3538	return ret;
3539}
3540EXPORT_SYMBOL_GPL(spi_controller_resume);
3541
3542/*-------------------------------------------------------------------------*/
3543
3544/* Core methods for spi_message alterations */
3545
3546static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547					    struct spi_message *msg,
3548					    void *res)
3549{
3550	struct spi_replaced_transfers *rxfer = res;
3551	size_t i;
3552
3553	/* Call extra callback if requested */
3554	if (rxfer->release)
3555		rxfer->release(ctlr, msg, res);
3556
3557	/* Insert replaced transfers back into the message */
3558	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559
3560	/* Remove the formerly inserted entries */
3561	for (i = 0; i < rxfer->inserted; i++)
3562		list_del(&rxfer->inserted_transfers[i].transfer_list);
3563}
3564
3565/**
3566 * spi_replace_transfers - replace transfers with several transfers
3567 *                         and register change with spi_message.resources
3568 * @msg:           the spi_message we work upon
3569 * @xfer_first:    the first spi_transfer we want to replace
3570 * @remove:        number of transfers to remove
3571 * @insert:        the number of transfers we want to insert instead
3572 * @release:       extra release code necessary in some circumstances
3573 * @extradatasize: extra data to allocate (with alignment guarantees
3574 *                 of struct @spi_transfer)
3575 * @gfp:           gfp flags
3576 *
3577 * Returns: pointer to @spi_replaced_transfers,
3578 *          PTR_ERR(...) in case of errors.
3579 */
3580static struct spi_replaced_transfers *spi_replace_transfers(
3581	struct spi_message *msg,
3582	struct spi_transfer *xfer_first,
3583	size_t remove,
3584	size_t insert,
3585	spi_replaced_release_t release,
3586	size_t extradatasize,
3587	gfp_t gfp)
3588{
3589	struct spi_replaced_transfers *rxfer;
3590	struct spi_transfer *xfer;
3591	size_t i;
3592
3593	/* Allocate the structure using spi_res */
3594	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595			      struct_size(rxfer, inserted_transfers, insert)
3596			      + extradatasize,
3597			      gfp);
3598	if (!rxfer)
3599		return ERR_PTR(-ENOMEM);
3600
3601	/* The release code to invoke before running the generic release */
3602	rxfer->release = release;
3603
3604	/* Assign extradata */
3605	if (extradatasize)
3606		rxfer->extradata =
3607			&rxfer->inserted_transfers[insert];
3608
3609	/* Init the replaced_transfers list */
3610	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611
3612	/*
3613	 * Assign the list_entry after which we should reinsert
3614	 * the @replaced_transfers - it may be spi_message.messages!
3615	 */
3616	rxfer->replaced_after = xfer_first->transfer_list.prev;
3617
3618	/* Remove the requested number of transfers */
3619	for (i = 0; i < remove; i++) {
3620		/*
3621		 * If the entry after replaced_after it is msg->transfers
3622		 * then we have been requested to remove more transfers
3623		 * than are in the list.
3624		 */
3625		if (rxfer->replaced_after->next == &msg->transfers) {
3626			dev_err(&msg->spi->dev,
3627				"requested to remove more spi_transfers than are available\n");
3628			/* Insert replaced transfers back into the message */
3629			list_splice(&rxfer->replaced_transfers,
3630				    rxfer->replaced_after);
3631
3632			/* Free the spi_replace_transfer structure... */
3633			spi_res_free(rxfer);
3634
3635			/* ...and return with an error */
3636			return ERR_PTR(-EINVAL);
3637		}
3638
3639		/*
3640		 * Remove the entry after replaced_after from list of
3641		 * transfers and add it to list of replaced_transfers.
3642		 */
3643		list_move_tail(rxfer->replaced_after->next,
3644			       &rxfer->replaced_transfers);
3645	}
3646
3647	/*
3648	 * Create copy of the given xfer with identical settings
3649	 * based on the first transfer to get removed.
3650	 */
3651	for (i = 0; i < insert; i++) {
3652		/* We need to run in reverse order */
3653		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654
3655		/* Copy all spi_transfer data */
3656		memcpy(xfer, xfer_first, sizeof(*xfer));
3657
3658		/* Add to list */
3659		list_add(&xfer->transfer_list, rxfer->replaced_after);
3660
3661		/* Clear cs_change and delay for all but the last */
3662		if (i) {
3663			xfer->cs_change = false;
3664			xfer->delay.value = 0;
3665		}
3666	}
3667
3668	/* Set up inserted... */
3669	rxfer->inserted = insert;
3670
3671	/* ...and register it with spi_res/spi_message */
3672	spi_res_add(msg, rxfer);
3673
3674	return rxfer;
3675}
 
3676
3677static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678					struct spi_message *msg,
3679					struct spi_transfer **xferp,
3680					size_t maxsize)
 
3681{
3682	struct spi_transfer *xfer = *xferp, *xfers;
3683	struct spi_replaced_transfers *srt;
3684	size_t offset;
3685	size_t count, i;
3686
3687	/* Calculate how many we have to replace */
3688	count = DIV_ROUND_UP(xfer->len, maxsize);
3689
3690	/* Create replacement */
3691	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692	if (IS_ERR(srt))
3693		return PTR_ERR(srt);
3694	xfers = srt->inserted_transfers;
3695
3696	/*
3697	 * Now handle each of those newly inserted spi_transfers.
3698	 * Note that the replacements spi_transfers all are preset
3699	 * to the same values as *xferp, so tx_buf, rx_buf and len
3700	 * are all identical (as well as most others)
3701	 * so we just have to fix up len and the pointers.
 
 
 
3702	 */
3703
3704	/*
3705	 * The first transfer just needs the length modified, so we
3706	 * run it outside the loop.
3707	 */
3708	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709
3710	/* All the others need rx_buf/tx_buf also set */
3711	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712		/* Update rx_buf, tx_buf and DMA */
3713		if (xfers[i].rx_buf)
3714			xfers[i].rx_buf += offset;
 
 
3715		if (xfers[i].tx_buf)
3716			xfers[i].tx_buf += offset;
 
 
3717
3718		/* Update length */
3719		xfers[i].len = min(maxsize, xfers[i].len - offset);
3720	}
3721
3722	/*
3723	 * We set up xferp to the last entry we have inserted,
3724	 * so that we skip those already split transfers.
3725	 */
3726	*xferp = &xfers[count - 1];
3727
3728	/* Increment statistics counters */
3729	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730				       transfers_split_maxsize);
3731	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732				       transfers_split_maxsize);
3733
3734	return 0;
3735}
3736
3737/**
3738 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739 *                               when an individual transfer exceeds a
3740 *                               certain size
3741 * @ctlr:    the @spi_controller for this transfer
3742 * @msg:   the @spi_message to transform
3743 * @maxsize:  the maximum when to apply this
3744 *
3745 * This function allocates resources that are automatically freed during the
3746 * spi message unoptimize phase so this function should only be called from
3747 * optimize_message callbacks.
3748 *
3749 * Return: status of transformation
3750 */
3751int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752				struct spi_message *msg,
3753				size_t maxsize)
 
3754{
3755	struct spi_transfer *xfer;
3756	int ret;
3757
3758	/*
3759	 * Iterate over the transfer_list,
3760	 * but note that xfer is advanced to the last transfer inserted
3761	 * to avoid checking sizes again unnecessarily (also xfer does
3762	 * potentially belong to a different list by the time the
3763	 * replacement has happened).
3764	 */
3765	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766		if (xfer->len > maxsize) {
3767			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768							   maxsize);
3769			if (ret)
3770				return ret;
3771		}
3772	}
3773
3774	return 0;
3775}
3776EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777
3778
3779/**
3780 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781 *                                when an individual transfer exceeds a
3782 *                                certain number of SPI words
3783 * @ctlr:     the @spi_controller for this transfer
3784 * @msg:      the @spi_message to transform
3785 * @maxwords: the number of words to limit each transfer to
3786 *
3787 * This function allocates resources that are automatically freed during the
3788 * spi message unoptimize phase so this function should only be called from
3789 * optimize_message callbacks.
3790 *
3791 * Return: status of transformation
3792 */
3793int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794				 struct spi_message *msg,
3795				 size_t maxwords)
3796{
3797	struct spi_transfer *xfer;
3798
3799	/*
3800	 * Iterate over the transfer_list,
3801	 * but note that xfer is advanced to the last transfer inserted
3802	 * to avoid checking sizes again unnecessarily (also xfer does
3803	 * potentially belong to a different list by the time the
3804	 * replacement has happened).
3805	 */
3806	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807		size_t maxsize;
3808		int ret;
3809
3810		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811		if (xfer->len > maxsize) {
3812			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813							   maxsize);
3814			if (ret)
3815				return ret;
3816		}
3817	}
3818
3819	return 0;
3820}
3821EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822
3823/*-------------------------------------------------------------------------*/
3824
3825/*
3826 * Core methods for SPI controller protocol drivers. Some of the
3827 * other core methods are currently defined as inline functions.
3828 */
3829
3830static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831					u8 bits_per_word)
3832{
3833	if (ctlr->bits_per_word_mask) {
3834		/* Only 32 bits fit in the mask */
3835		if (bits_per_word > 32)
3836			return -EINVAL;
3837		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3838			return -EINVAL;
3839	}
3840
3841	return 0;
3842}
3843
3844/**
3845 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846 * @spi: the device that requires specific CS timing configuration
3847 *
3848 * Return: zero on success, else a negative error code.
3849 */
3850static int spi_set_cs_timing(struct spi_device *spi)
3851{
3852	struct device *parent = spi->controller->dev.parent;
3853	int status = 0;
3854
3855	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856		if (spi->controller->auto_runtime_pm) {
3857			status = pm_runtime_get_sync(parent);
3858			if (status < 0) {
3859				pm_runtime_put_noidle(parent);
3860				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861					status);
3862				return status;
3863			}
3864
3865			status = spi->controller->set_cs_timing(spi);
3866			pm_runtime_mark_last_busy(parent);
3867			pm_runtime_put_autosuspend(parent);
3868		} else {
3869			status = spi->controller->set_cs_timing(spi);
3870		}
3871	}
3872	return status;
3873}
3874
3875/**
3876 * spi_setup - setup SPI mode and clock rate
3877 * @spi: the device whose settings are being modified
3878 * Context: can sleep, and no requests are queued to the device
3879 *
3880 * SPI protocol drivers may need to update the transfer mode if the
3881 * device doesn't work with its default.  They may likewise need
3882 * to update clock rates or word sizes from initial values.  This function
3883 * changes those settings, and must be called from a context that can sleep.
3884 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885 * effect the next time the device is selected and data is transferred to
3886 * or from it.  When this function returns, the SPI device is deselected.
3887 *
3888 * Note that this call will fail if the protocol driver specifies an option
3889 * that the underlying controller or its driver does not support.  For
3890 * example, not all hardware supports wire transfers using nine bit words,
3891 * LSB-first wire encoding, or active-high chipselects.
3892 *
3893 * Return: zero on success, else a negative error code.
3894 */
3895int spi_setup(struct spi_device *spi)
3896{
3897	unsigned	bad_bits, ugly_bits;
3898	int		status;
3899
3900	/*
3901	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902	 * are set at the same time.
3903	 */
3904	if ((hweight_long(spi->mode &
3905		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906	    (hweight_long(spi->mode &
3907		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908		dev_err(&spi->dev,
3909		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910		return -EINVAL;
3911	}
3912	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3913	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916		return -EINVAL;
3917	/* Check against conflicting MOSI idle configuration */
3918	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919		dev_err(&spi->dev,
3920			"setup: MOSI configured to idle low and high at the same time.\n");
3921		return -EINVAL;
3922	}
3923	/*
3924	 * Help drivers fail *cleanly* when they need options
3925	 * that aren't supported with their current controller.
3926	 * SPI_CS_WORD has a fallback software implementation,
3927	 * so it is ignored here.
3928	 */
3929	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930				 SPI_NO_TX | SPI_NO_RX);
 
 
 
 
 
3931	ugly_bits = bad_bits &
3932		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934	if (ugly_bits) {
3935		dev_warn(&spi->dev,
3936			 "setup: ignoring unsupported mode bits %x\n",
3937			 ugly_bits);
3938		spi->mode &= ~ugly_bits;
3939		bad_bits &= ~ugly_bits;
3940	}
3941	if (bad_bits) {
3942		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943			bad_bits);
3944		return -EINVAL;
3945	}
3946
3947	if (!spi->bits_per_word) {
3948		spi->bits_per_word = 8;
3949	} else {
3950		/*
3951		 * Some controllers may not support the default 8 bits-per-word
3952		 * so only perform the check when this is explicitly provided.
3953		 */
3954		status = __spi_validate_bits_per_word(spi->controller,
3955						      spi->bits_per_word);
3956		if (status)
3957			return status;
3958	}
3959
3960	if (spi->controller->max_speed_hz &&
3961	    (!spi->max_speed_hz ||
3962	     spi->max_speed_hz > spi->controller->max_speed_hz))
3963		spi->max_speed_hz = spi->controller->max_speed_hz;
3964
3965	mutex_lock(&spi->controller->io_mutex);
3966
3967	if (spi->controller->setup) {
3968		status = spi->controller->setup(spi);
3969		if (status) {
3970			mutex_unlock(&spi->controller->io_mutex);
3971			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972				status);
3973			return status;
3974		}
3975	}
3976
3977	status = spi_set_cs_timing(spi);
3978	if (status) {
3979		mutex_unlock(&spi->controller->io_mutex);
3980		return status;
3981	}
3982
3983	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985		if (status < 0) {
3986			mutex_unlock(&spi->controller->io_mutex);
 
3987			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988				status);
3989			return status;
3990		}
3991
3992		/*
3993		 * We do not want to return positive value from pm_runtime_get,
3994		 * there are many instances of devices calling spi_setup() and
3995		 * checking for a non-zero return value instead of a negative
3996		 * return value.
3997		 */
3998		status = 0;
3999
4000		spi_set_cs(spi, false, true);
4001		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003	} else {
4004		spi_set_cs(spi, false, true);
4005	}
4006
4007	mutex_unlock(&spi->controller->io_mutex);
4008
4009	if (spi->rt && !spi->controller->rt) {
4010		spi->controller->rt = true;
4011		spi_set_thread_rt(spi->controller);
4012	}
4013
4014	trace_spi_setup(spi, status);
4015
4016	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017			spi->mode & SPI_MODE_X_MASK,
4018			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4022			spi->bits_per_word, spi->max_speed_hz,
4023			status);
4024
4025	return status;
4026}
4027EXPORT_SYMBOL_GPL(spi_setup);
4028
4029static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030				       struct spi_device *spi)
4031{
4032	int delay1, delay2;
4033
4034	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035	if (delay1 < 0)
4036		return delay1;
4037
4038	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039	if (delay2 < 0)
4040		return delay2;
4041
4042	if (delay1 < delay2)
4043		memcpy(&xfer->word_delay, &spi->word_delay,
4044		       sizeof(xfer->word_delay));
4045
4046	return 0;
4047}
4048
4049static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050{
4051	struct spi_controller *ctlr = spi->controller;
4052	struct spi_transfer *xfer;
4053	int w_size;
4054
4055	if (list_empty(&message->transfers))
4056		return -EINVAL;
4057
4058	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
4059
4060	/*
4061	 * Half-duplex links include original MicroWire, and ones with
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4062	 * only one data pin like SPI_3WIRE (switches direction) or where
4063	 * either MOSI or MISO is missing.  They can also be caused by
4064	 * software limitations.
4065	 */
4066	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067	    (spi->mode & SPI_3WIRE)) {
4068		unsigned flags = ctlr->flags;
4069
4070		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071			if (xfer->rx_buf && xfer->tx_buf)
4072				return -EINVAL;
4073			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074				return -EINVAL;
4075			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076				return -EINVAL;
4077		}
4078	}
4079
4080	/*
4081	 * Set transfer bits_per_word and max speed as spi device default if
4082	 * it is not set for this transfer.
4083	 * Set transfer tx_nbits and rx_nbits as single transfer default
4084	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085	 * Ensure transfer word_delay is at least as long as that required by
4086	 * device itself.
4087	 */
4088	message->frame_length = 0;
4089	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090		xfer->effective_speed_hz = 0;
4091		message->frame_length += xfer->len;
4092		if (!xfer->bits_per_word)
4093			xfer->bits_per_word = spi->bits_per_word;
4094
4095		if (!xfer->speed_hz)
4096			xfer->speed_hz = spi->max_speed_hz;
4097
4098		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099			xfer->speed_hz = ctlr->max_speed_hz;
4100
4101		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102			return -EINVAL;
4103
4104		/*
4105		 * SPI transfer length should be multiple of SPI word size
4106		 * where SPI word size should be power-of-two multiple.
4107		 */
4108		if (xfer->bits_per_word <= 8)
4109			w_size = 1;
4110		else if (xfer->bits_per_word <= 16)
4111			w_size = 2;
4112		else
4113			w_size = 4;
4114
4115		/* No partial transfers accepted */
4116		if (xfer->len % w_size)
4117			return -EINVAL;
4118
4119		if (xfer->speed_hz && ctlr->min_speed_hz &&
4120		    xfer->speed_hz < ctlr->min_speed_hz)
4121			return -EINVAL;
4122
4123		if (xfer->tx_buf && !xfer->tx_nbits)
4124			xfer->tx_nbits = SPI_NBITS_SINGLE;
4125		if (xfer->rx_buf && !xfer->rx_nbits)
4126			xfer->rx_nbits = SPI_NBITS_SINGLE;
4127		/*
4128		 * Check transfer tx/rx_nbits:
4129		 * 1. check the value matches one of single, dual and quad
4130		 * 2. check tx/rx_nbits match the mode in spi_device
4131		 */
4132		if (xfer->tx_buf) {
4133			if (spi->mode & SPI_NO_TX)
4134				return -EINVAL;
4135			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136				xfer->tx_nbits != SPI_NBITS_DUAL &&
4137				xfer->tx_nbits != SPI_NBITS_QUAD &&
4138				xfer->tx_nbits != SPI_NBITS_OCTAL)
4139				return -EINVAL;
4140			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142				return -EINVAL;
4143			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144				!(spi->mode & SPI_TX_QUAD))
4145				return -EINVAL;
4146		}
4147		/* Check transfer rx_nbits */
4148		if (xfer->rx_buf) {
4149			if (spi->mode & SPI_NO_RX)
4150				return -EINVAL;
4151			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152				xfer->rx_nbits != SPI_NBITS_DUAL &&
4153				xfer->rx_nbits != SPI_NBITS_QUAD &&
4154				xfer->rx_nbits != SPI_NBITS_OCTAL)
4155				return -EINVAL;
4156			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158				return -EINVAL;
4159			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160				!(spi->mode & SPI_RX_QUAD))
4161				return -EINVAL;
4162		}
4163
4164		if (_spi_xfer_word_delay_update(xfer, spi))
4165			return -EINVAL;
4166	}
4167
4168	message->status = -EINPROGRESS;
4169
4170	return 0;
4171}
4172
4173/*
4174 * spi_split_transfers - generic handling of transfer splitting
4175 * @msg: the message to split
4176 *
4177 * Under certain conditions, a SPI controller may not support arbitrary
4178 * transfer sizes or other features required by a peripheral. This function
4179 * will split the transfers in the message into smaller transfers that are
4180 * supported by the controller.
4181 *
4182 * Controllers with special requirements not covered here can also split
4183 * transfers in the optimize_message() callback.
4184 *
4185 * Context: can sleep
4186 * Return: zero on success, else a negative error code
4187 */
4188static int spi_split_transfers(struct spi_message *msg)
4189{
4190	struct spi_controller *ctlr = msg->spi->controller;
4191	struct spi_transfer *xfer;
4192	int ret;
4193
4194	/*
4195	 * If an SPI controller does not support toggling the CS line on each
4196	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197	 * for the CS line, we can emulate the CS-per-word hardware function by
4198	 * splitting transfers into one-word transfers and ensuring that
4199	 * cs_change is set for each transfer.
4200	 */
4201	if ((msg->spi->mode & SPI_CS_WORD) &&
4202	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204		if (ret)
4205			return ret;
4206
4207		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208			/* Don't change cs_change on the last entry in the list */
4209			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210				break;
4211
4212			xfer->cs_change = 1;
4213		}
4214	} else {
4215		ret = spi_split_transfers_maxsize(ctlr, msg,
4216						  spi_max_transfer_size(msg->spi));
4217		if (ret)
4218			return ret;
4219	}
4220
4221	return 0;
4222}
4223
4224/*
4225 * __spi_optimize_message - shared implementation for spi_optimize_message()
4226 *                          and spi_maybe_optimize_message()
4227 * @spi: the device that will be used for the message
4228 * @msg: the message to optimize
4229 *
4230 * Peripheral drivers will call spi_optimize_message() and the spi core will
4231 * call spi_maybe_optimize_message() instead of calling this directly.
4232 *
4233 * It is not valid to call this on a message that has already been optimized.
4234 *
4235 * Return: zero on success, else a negative error code
4236 */
4237static int __spi_optimize_message(struct spi_device *spi,
4238				  struct spi_message *msg)
4239{
4240	struct spi_controller *ctlr = spi->controller;
4241	int ret;
4242
4243	ret = __spi_validate(spi, msg);
4244	if (ret)
4245		return ret;
4246
4247	ret = spi_split_transfers(msg);
4248	if (ret)
4249		return ret;
4250
4251	if (ctlr->optimize_message) {
4252		ret = ctlr->optimize_message(msg);
4253		if (ret) {
4254			spi_res_release(ctlr, msg);
4255			return ret;
4256		}
4257	}
4258
4259	msg->optimized = true;
4260
4261	return 0;
4262}
4263
4264/*
4265 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266 * @spi: the device that will be used for the message
4267 * @msg: the message to optimize
4268 * Return: zero on success, else a negative error code
4269 */
4270static int spi_maybe_optimize_message(struct spi_device *spi,
4271				      struct spi_message *msg)
4272{
4273	if (spi->controller->defer_optimize_message) {
4274		msg->spi = spi;
4275		return 0;
4276	}
4277
4278	if (msg->pre_optimized)
4279		return 0;
4280
4281	return __spi_optimize_message(spi, msg);
4282}
4283
4284/**
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4288 *
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4292 * usage.
4293 *
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4297 *
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
4300 *
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4303 */
4304int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305{
4306	int ret;
4307
4308	/*
4309	 * Pre-optimization is not supported and optimization is deferred e.g.
4310	 * when using spi-mux.
4311	 */
4312	if (spi->controller->defer_optimize_message)
4313		return 0;
4314
4315	ret = __spi_optimize_message(spi, msg);
4316	if (ret)
4317		return ret;
4318
4319	/*
4320	 * This flag indicates that the peripheral driver called spi_optimize_message()
4321	 * and therefore we shouldn't unoptimize message automatically when finalizing
4322	 * the message but rather wait until spi_unoptimize_message() is called
4323	 * by the peripheral driver.
4324	 */
4325	msg->pre_optimized = true;
4326
4327	return 0;
4328}
4329EXPORT_SYMBOL_GPL(spi_optimize_message);
4330
4331/**
4332 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333 * @msg: the message to unoptimize
4334 *
4335 * Calls to this function must be balanced with calls to spi_optimize_message().
4336 *
4337 * Context: can sleep
4338 */
4339void spi_unoptimize_message(struct spi_message *msg)
4340{
4341	if (msg->spi->controller->defer_optimize_message)
4342		return;
4343
4344	__spi_unoptimize_message(msg);
4345	msg->pre_optimized = false;
4346}
4347EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350{
4351	struct spi_controller *ctlr = spi->controller;
4352	struct spi_transfer *xfer;
4353
4354	/*
4355	 * Some controllers do not support doing regular SPI transfers. Return
4356	 * ENOTSUPP when this is the case.
4357	 */
4358	if (!ctlr->transfer)
4359		return -ENOTSUPP;
4360
4361	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
 
 
4363
4364	trace_spi_message_submit(message);
4365
4366	if (!ctlr->ptp_sts_supported) {
4367		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368			xfer->ptp_sts_word_pre = 0;
4369			ptp_read_system_prets(xfer->ptp_sts);
4370		}
4371	}
4372
4373	return ctlr->transfer(spi, message);
4374}
4375
4376static void devm_spi_unoptimize_message(void *msg)
4377{
4378	spi_unoptimize_message(msg);
4379}
4380
4381/**
4382 * devm_spi_optimize_message - managed version of spi_optimize_message()
4383 * @dev: the device that manages @msg (usually @spi->dev)
4384 * @spi: the device that will be used for the message
4385 * @msg: the message to optimize
4386 * Return: zero on success, else a negative error code
4387 *
4388 * spi_unoptimize_message() will automatically be called when the device is
4389 * removed.
4390 */
4391int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392			      struct spi_message *msg)
4393{
4394	int ret;
4395
4396	ret = spi_optimize_message(spi, msg);
4397	if (ret)
4398		return ret;
4399
4400	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401}
4402EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403
4404/**
4405 * spi_async - asynchronous SPI transfer
4406 * @spi: device with which data will be exchanged
4407 * @message: describes the data transfers, including completion callback
4408 * Context: any (IRQs may be blocked, etc)
4409 *
4410 * This call may be used in_irq and other contexts which can't sleep,
4411 * as well as from task contexts which can sleep.
4412 *
4413 * The completion callback is invoked in a context which can't sleep.
4414 * Before that invocation, the value of message->status is undefined.
4415 * When the callback is issued, message->status holds either zero (to
4416 * indicate complete success) or a negative error code.  After that
4417 * callback returns, the driver which issued the transfer request may
4418 * deallocate the associated memory; it's no longer in use by any SPI
4419 * core or controller driver code.
4420 *
4421 * Note that although all messages to a spi_device are handled in
4422 * FIFO order, messages may go to different devices in other orders.
4423 * Some device might be higher priority, or have various "hard" access
4424 * time requirements, for example.
4425 *
4426 * On detection of any fault during the transfer, processing of
4427 * the entire message is aborted, and the device is deselected.
4428 * Until returning from the associated message completion callback,
4429 * no other spi_message queued to that device will be processed.
4430 * (This rule applies equally to all the synchronous transfer calls,
4431 * which are wrappers around this core asynchronous primitive.)
4432 *
4433 * Return: zero on success, else a negative error code.
4434 */
4435int spi_async(struct spi_device *spi, struct spi_message *message)
4436{
4437	struct spi_controller *ctlr = spi->controller;
4438	int ret;
4439	unsigned long flags;
4440
4441	ret = spi_maybe_optimize_message(spi, message);
4442	if (ret)
4443		return ret;
4444
4445	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446
4447	if (ctlr->bus_lock_flag)
4448		ret = -EBUSY;
4449	else
4450		ret = __spi_async(spi, message);
4451
4452	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4453
4454	return ret;
4455}
4456EXPORT_SYMBOL_GPL(spi_async);
4457
4458static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459{
4460	bool was_busy;
4461	int ret;
 
4462
4463	mutex_lock(&ctlr->io_mutex);
 
 
4464
4465	was_busy = ctlr->busy;
4466
4467	ctlr->cur_msg = msg;
4468	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469	if (ret)
4470		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471	ctlr->cur_msg = NULL;
4472	ctlr->fallback = false;
4473
4474	if (!was_busy) {
4475		kfree(ctlr->dummy_rx);
4476		ctlr->dummy_rx = NULL;
4477		kfree(ctlr->dummy_tx);
4478		ctlr->dummy_tx = NULL;
4479		if (ctlr->unprepare_transfer_hardware &&
4480		    ctlr->unprepare_transfer_hardware(ctlr))
4481			dev_err(&ctlr->dev,
4482				"failed to unprepare transfer hardware\n");
4483		spi_idle_runtime_pm(ctlr);
4484	}
4485
4486	mutex_unlock(&ctlr->io_mutex);
4487}
 
4488
4489/*-------------------------------------------------------------------------*/
4490
4491/*
4492 * Utility methods for SPI protocol drivers, layered on
4493 * top of the core.  Some other utility methods are defined as
4494 * inline functions.
4495 */
4496
4497static void spi_complete(void *arg)
4498{
4499	complete(arg);
4500}
4501
4502static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4503{
4504	DECLARE_COMPLETION_ONSTACK(done);
4505	unsigned long flags;
4506	int status;
4507	struct spi_controller *ctlr = spi->controller;
 
4508
4509	if (__spi_check_suspended(ctlr)) {
4510		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511		return -ESHUTDOWN;
4512	}
4513
4514	status = spi_maybe_optimize_message(spi, message);
4515	if (status)
4516		return status;
4517
4518	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
 
4520
4521	/*
4522	 * Checking queue_empty here only guarantees async/sync message
4523	 * ordering when coming from the same context. It does not need to
4524	 * guard against reentrancy from a different context. The io_mutex
4525	 * will catch those cases.
 
 
4526	 */
4527	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528		message->actual_length = 0;
4529		message->status = -EINPROGRESS;
4530
4531		trace_spi_message_submit(message);
4532
4533		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535
4536		__spi_transfer_message_noqueue(ctlr, message);
4537
4538		return message->status;
 
 
4539	}
4540
4541	/*
4542	 * There are messages in the async queue that could have originated
4543	 * from the same context, so we need to preserve ordering.
4544	 * Therefor we send the message to the async queue and wait until they
4545	 * are completed.
4546	 */
4547	message->complete = spi_complete;
4548	message->context = &done;
4549
4550	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551	status = __spi_async(spi, message);
4552	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553
4554	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4555		wait_for_completion(&done);
4556		status = message->status;
4557	}
4558	message->complete = NULL;
4559	message->context = NULL;
4560
4561	return status;
4562}
4563
4564/**
4565 * spi_sync - blocking/synchronous SPI data transfers
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4569 *
4570 * This call may only be used from a context that may sleep.  The sleep
4571 * is non-interruptible, and has no timeout.  Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4573 *
4574 * Note that the SPI device's chip select is active during the message,
4575 * and then is normally disabled between messages.  Drivers for some
4576 * frequently-used devices may want to minimize costs of selecting a chip,
4577 * by leaving it selected in anticipation that the next message will go
4578 * to the same chip.  (That may increase power usage.)
4579 *
4580 * Also, the caller is guaranteeing that the memory associated with the
4581 * message will not be freed before this call returns.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync(struct spi_device *spi, struct spi_message *message)
4586{
4587	int ret;
4588
4589	mutex_lock(&spi->controller->bus_lock_mutex);
4590	ret = __spi_sync(spi, message);
4591	mutex_unlock(&spi->controller->bus_lock_mutex);
4592
4593	return ret;
4594}
4595EXPORT_SYMBOL_GPL(spi_sync);
4596
4597/**
4598 * spi_sync_locked - version of spi_sync with exclusive bus usage
4599 * @spi: device with which data will be exchanged
4600 * @message: describes the data transfers
4601 * Context: can sleep
4602 *
4603 * This call may only be used from a context that may sleep.  The sleep
4604 * is non-interruptible, and has no timeout.  Low-overhead controller
4605 * drivers may DMA directly into and out of the message buffers.
4606 *
4607 * This call should be used by drivers that require exclusive access to the
4608 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609 * be released by a spi_bus_unlock call when the exclusive access is over.
4610 *
4611 * Return: zero on success, else a negative error code.
4612 */
4613int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614{
4615	return __spi_sync(spi, message);
4616}
4617EXPORT_SYMBOL_GPL(spi_sync_locked);
4618
4619/**
4620 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621 * @ctlr: SPI bus master that should be locked for exclusive bus access
4622 * Context: can sleep
4623 *
4624 * This call may only be used from a context that may sleep.  The sleep
4625 * is non-interruptible, and has no timeout.
4626 *
4627 * This call should be used by drivers that require exclusive access to the
4628 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629 * exclusive access is over. Data transfer must be done by spi_sync_locked
4630 * and spi_async_locked calls when the SPI bus lock is held.
4631 *
4632 * Return: always zero.
4633 */
4634int spi_bus_lock(struct spi_controller *ctlr)
4635{
4636	unsigned long flags;
4637
4638	mutex_lock(&ctlr->bus_lock_mutex);
4639
4640	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641	ctlr->bus_lock_flag = 1;
4642	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643
4644	/* Mutex remains locked until spi_bus_unlock() is called */
4645
4646	return 0;
4647}
4648EXPORT_SYMBOL_GPL(spi_bus_lock);
4649
4650/**
4651 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652 * @ctlr: SPI bus master that was locked for exclusive bus access
4653 * Context: can sleep
4654 *
4655 * This call may only be used from a context that may sleep.  The sleep
4656 * is non-interruptible, and has no timeout.
4657 *
4658 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659 * call.
4660 *
4661 * Return: always zero.
4662 */
4663int spi_bus_unlock(struct spi_controller *ctlr)
4664{
4665	ctlr->bus_lock_flag = 0;
4666
4667	mutex_unlock(&ctlr->bus_lock_mutex);
4668
4669	return 0;
4670}
4671EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672
4673/* Portable code must never pass more than 32 bytes */
4674#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4675
4676static u8	*buf;
4677
4678/**
4679 * spi_write_then_read - SPI synchronous write followed by read
4680 * @spi: device with which data will be exchanged
4681 * @txbuf: data to be written (need not be DMA-safe)
4682 * @n_tx: size of txbuf, in bytes
4683 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684 * @n_rx: size of rxbuf, in bytes
4685 * Context: can sleep
4686 *
4687 * This performs a half duplex MicroWire style transaction with the
4688 * device, sending txbuf and then reading rxbuf.  The return value
4689 * is zero for success, else a negative errno status code.
4690 * This call may only be used from a context that may sleep.
4691 *
4692 * Parameters to this routine are always copied using a small buffer.
4693 * Performance-sensitive or bulk transfer code should instead use
4694 * spi_{async,sync}() calls with DMA-safe buffers.
4695 *
4696 * Return: zero on success, else a negative error code.
4697 */
4698int spi_write_then_read(struct spi_device *spi,
4699		const void *txbuf, unsigned n_tx,
4700		void *rxbuf, unsigned n_rx)
4701{
4702	static DEFINE_MUTEX(lock);
4703
4704	int			status;
4705	struct spi_message	message;
4706	struct spi_transfer	x[2];
4707	u8			*local_buf;
4708
4709	/*
4710	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711	 * copying here, (as a pure convenience thing), but we can
4712	 * keep heap costs out of the hot path unless someone else is
4713	 * using the pre-allocated buffer or the transfer is too large.
4714	 */
4715	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717				    GFP_KERNEL | GFP_DMA);
4718		if (!local_buf)
4719			return -ENOMEM;
4720	} else {
4721		local_buf = buf;
4722	}
4723
4724	spi_message_init(&message);
4725	memset(x, 0, sizeof(x));
4726	if (n_tx) {
4727		x[0].len = n_tx;
4728		spi_message_add_tail(&x[0], &message);
4729	}
4730	if (n_rx) {
4731		x[1].len = n_rx;
4732		spi_message_add_tail(&x[1], &message);
4733	}
4734
4735	memcpy(local_buf, txbuf, n_tx);
4736	x[0].tx_buf = local_buf;
4737	x[1].rx_buf = local_buf + n_tx;
4738
4739	/* Do the I/O */
4740	status = spi_sync(spi, &message);
4741	if (status == 0)
4742		memcpy(rxbuf, x[1].rx_buf, n_rx);
4743
4744	if (x[0].tx_buf == buf)
4745		mutex_unlock(&lock);
4746	else
4747		kfree(local_buf);
4748
4749	return status;
4750}
4751EXPORT_SYMBOL_GPL(spi_write_then_read);
4752
4753/*-------------------------------------------------------------------------*/
4754
4755#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756/* Must call put_device() when done with returned spi_device device */
4757static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758{
4759	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4760
4761	return dev ? to_spi_device(dev) : NULL;
4762}
 
 
4763
4764/* The spi controllers are not using spi_bus, so we find it with another way */
 
4765static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4766{
4767	struct device *dev;
4768
4769	dev = class_find_device_by_of_node(&spi_master_class, node);
4770	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771		dev = class_find_device_by_of_node(&spi_slave_class, node);
4772	if (!dev)
4773		return NULL;
4774
4775	/* Reference got in class_find_device */
4776	return container_of(dev, struct spi_controller, dev);
4777}
4778
4779static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780			 void *arg)
4781{
4782	struct of_reconfig_data *rd = arg;
4783	struct spi_controller *ctlr;
4784	struct spi_device *spi;
4785
4786	switch (of_reconfig_get_state_change(action, arg)) {
4787	case OF_RECONFIG_CHANGE_ADD:
4788		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789		if (ctlr == NULL)
4790			return NOTIFY_OK;	/* Not for us */
4791
4792		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793			put_device(&ctlr->dev);
4794			return NOTIFY_OK;
4795		}
4796
4797		/*
4798		 * Clear the flag before adding the device so that fw_devlink
4799		 * doesn't skip adding consumers to this device.
4800		 */
4801		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802		spi = of_register_spi_device(ctlr, rd->dn);
4803		put_device(&ctlr->dev);
4804
4805		if (IS_ERR(spi)) {
4806			pr_err("%s: failed to create for '%pOF'\n",
4807					__func__, rd->dn);
4808			of_node_clear_flag(rd->dn, OF_POPULATED);
4809			return notifier_from_errno(PTR_ERR(spi));
4810		}
4811		break;
4812
4813	case OF_RECONFIG_CHANGE_REMOVE:
4814		/* Already depopulated? */
4815		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816			return NOTIFY_OK;
4817
4818		/* Find our device by node */
4819		spi = of_find_spi_device_by_node(rd->dn);
4820		if (spi == NULL)
4821			return NOTIFY_OK;	/* No? not meant for us */
4822
4823		/* Unregister takes one ref away */
4824		spi_unregister_device(spi);
4825
4826		/* And put the reference of the find */
4827		put_device(&spi->dev);
4828		break;
4829	}
4830
4831	return NOTIFY_OK;
4832}
4833
4834static struct notifier_block spi_of_notifier = {
4835	.notifier_call = of_spi_notify,
4836};
4837#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838extern struct notifier_block spi_of_notifier;
4839#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840
4841#if IS_ENABLED(CONFIG_ACPI)
4842static int spi_acpi_controller_match(struct device *dev, const void *data)
4843{
4844	return ACPI_COMPANION(dev->parent) == data;
4845}
4846
4847struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848{
4849	struct device *dev;
4850
4851	dev = class_find_device(&spi_master_class, NULL, adev,
4852				spi_acpi_controller_match);
4853	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854		dev = class_find_device(&spi_slave_class, NULL, adev,
4855					spi_acpi_controller_match);
4856	if (!dev)
4857		return NULL;
4858
4859	return container_of(dev, struct spi_controller, dev);
4860}
4861EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862
4863static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864{
4865	struct device *dev;
4866
4867	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868	return to_spi_device(dev);
4869}
4870
4871static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872			   void *arg)
4873{
4874	struct acpi_device *adev = arg;
4875	struct spi_controller *ctlr;
4876	struct spi_device *spi;
4877
4878	switch (value) {
4879	case ACPI_RECONFIG_DEVICE_ADD:
4880		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881		if (!ctlr)
4882			break;
4883
4884		acpi_register_spi_device(ctlr, adev);
4885		put_device(&ctlr->dev);
4886		break;
4887	case ACPI_RECONFIG_DEVICE_REMOVE:
4888		if (!acpi_device_enumerated(adev))
4889			break;
4890
4891		spi = acpi_spi_find_device_by_adev(adev);
4892		if (!spi)
4893			break;
4894
4895		spi_unregister_device(spi);
4896		put_device(&spi->dev);
4897		break;
4898	}
4899
4900	return NOTIFY_OK;
4901}
4902
4903static struct notifier_block spi_acpi_notifier = {
4904	.notifier_call = acpi_spi_notify,
4905};
4906#else
4907extern struct notifier_block spi_acpi_notifier;
4908#endif
4909
4910static int __init spi_init(void)
4911{
4912	int	status;
4913
4914	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915	if (!buf) {
4916		status = -ENOMEM;
4917		goto err0;
4918	}
4919
4920	status = bus_register(&spi_bus_type);
4921	if (status < 0)
4922		goto err1;
4923
4924	status = class_register(&spi_master_class);
4925	if (status < 0)
4926		goto err2;
4927
4928	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929		status = class_register(&spi_slave_class);
4930		if (status < 0)
4931			goto err3;
4932	}
4933
4934	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936	if (IS_ENABLED(CONFIG_ACPI))
4937		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938
4939	return 0;
4940
4941err3:
4942	class_unregister(&spi_master_class);
4943err2:
4944	bus_unregister(&spi_bus_type);
4945err1:
4946	kfree(buf);
4947	buf = NULL;
4948err0:
4949	return status;
4950}
4951
4952/*
4953 * A board_info is normally registered in arch_initcall(),
4954 * but even essential drivers wait till later.
4955 *
4956 * REVISIT only boardinfo really needs static linking. The rest (device and
4957 * driver registration) _could_ be dynamically linked (modular) ... Costs
4958 * include needing to have boardinfo data structures be much more public.
4959 */
4960postcore_initcall(spi_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
 
 
 
   8#include <linux/device.h>
 
 
 
 
 
 
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
 
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
 
 
 
 
 
 
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	spi_controller_put(spi->controller);
  51	kfree(spi->driver_override);
 
  52	kfree(spi);
  53}
  54
  55static ssize_t
  56modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  57{
  58	const struct spi_device	*spi = to_spi_device(dev);
  59	int len;
  60
  61	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  62	if (len != -ENODEV)
  63		return len;
  64
  65	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  66}
  67static DEVICE_ATTR_RO(modalias);
  68
  69static ssize_t driver_override_store(struct device *dev,
  70				     struct device_attribute *a,
  71				     const char *buf, size_t count)
  72{
  73	struct spi_device *spi = to_spi_device(dev);
  74	const char *end = memchr(buf, '\n', count);
  75	const size_t len = end ? end - buf : count;
  76	const char *driver_override, *old;
  77
  78	/* We need to keep extra room for a newline when displaying value */
  79	if (len >= (PAGE_SIZE - 1))
  80		return -EINVAL;
  81
  82	driver_override = kstrndup(buf, len, GFP_KERNEL);
  83	if (!driver_override)
  84		return -ENOMEM;
  85
  86	device_lock(dev);
  87	old = spi->driver_override;
  88	if (len) {
  89		spi->driver_override = driver_override;
  90	} else {
  91		/* Empty string, disable driver override */
  92		spi->driver_override = NULL;
  93		kfree(driver_override);
  94	}
  95	device_unlock(dev);
  96	kfree(old);
  97
  98	return count;
  99}
 100
 101static ssize_t driver_override_show(struct device *dev,
 102				    struct device_attribute *a, char *buf)
 103{
 104	const struct spi_device *spi = to_spi_device(dev);
 105	ssize_t len;
 106
 107	device_lock(dev);
 108	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 109	device_unlock(dev);
 110	return len;
 111}
 112static DEVICE_ATTR_RW(driver_override);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114#define SPI_STATISTICS_ATTRS(field, file)				\
 115static ssize_t spi_controller_##field##_show(struct device *dev,	\
 116					     struct device_attribute *attr, \
 117					     char *buf)			\
 118{									\
 119	struct spi_controller *ctlr = container_of(dev,			\
 120					 struct spi_controller, dev);	\
 121	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 122}									\
 123static struct device_attribute dev_attr_spi_controller_##field = {	\
 124	.attr = { .name = file, .mode = 0444 },				\
 125	.show = spi_controller_##field##_show,				\
 126};									\
 127static ssize_t spi_device_##field##_show(struct device *dev,		\
 128					 struct device_attribute *attr,	\
 129					char *buf)			\
 130{									\
 131	struct spi_device *spi = to_spi_device(dev);			\
 132	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 133}									\
 134static struct device_attribute dev_attr_spi_device_##field = {		\
 135	.attr = { .name = file, .mode = 0444 },				\
 136	.show = spi_device_##field##_show,				\
 137}
 138
 139#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 140static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 141					    char *buf)			\
 142{									\
 143	unsigned long flags;						\
 144	ssize_t len;							\
 145	spin_lock_irqsave(&stat->lock, flags);				\
 146	len = sprintf(buf, format_string, stat->field);			\
 147	spin_unlock_irqrestore(&stat->lock, flags);			\
 148	return len;							\
 149}									\
 150SPI_STATISTICS_ATTRS(name, file)
 151
 152#define SPI_STATISTICS_SHOW(field, format_string)			\
 153	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 154				 field, format_string)
 155
 156SPI_STATISTICS_SHOW(messages, "%lu");
 157SPI_STATISTICS_SHOW(transfers, "%lu");
 158SPI_STATISTICS_SHOW(errors, "%lu");
 159SPI_STATISTICS_SHOW(timedout, "%lu");
 160
 161SPI_STATISTICS_SHOW(spi_sync, "%lu");
 162SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 163SPI_STATISTICS_SHOW(spi_async, "%lu");
 164
 165SPI_STATISTICS_SHOW(bytes, "%llu");
 166SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 167SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 168
 169#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 170	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 171				 "transfer_bytes_histo_" number,	\
 172				 transfer_bytes_histo[index],  "%lu")
 173SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 174SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 175SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 176SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 190
 191SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 192
 193static struct attribute *spi_dev_attrs[] = {
 194	&dev_attr_modalias.attr,
 195	&dev_attr_driver_override.attr,
 196	NULL,
 197};
 198
 199static const struct attribute_group spi_dev_group = {
 200	.attrs  = spi_dev_attrs,
 201};
 202
 203static struct attribute *spi_device_statistics_attrs[] = {
 204	&dev_attr_spi_device_messages.attr,
 205	&dev_attr_spi_device_transfers.attr,
 206	&dev_attr_spi_device_errors.attr,
 207	&dev_attr_spi_device_timedout.attr,
 208	&dev_attr_spi_device_spi_sync.attr,
 209	&dev_attr_spi_device_spi_sync_immediate.attr,
 210	&dev_attr_spi_device_spi_async.attr,
 211	&dev_attr_spi_device_bytes.attr,
 212	&dev_attr_spi_device_bytes_rx.attr,
 213	&dev_attr_spi_device_bytes_tx.attr,
 214	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 215	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 216	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 217	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 231	&dev_attr_spi_device_transfers_split_maxsize.attr,
 232	NULL,
 233};
 234
 235static const struct attribute_group spi_device_statistics_group = {
 236	.name  = "statistics",
 237	.attrs  = spi_device_statistics_attrs,
 238};
 239
 240static const struct attribute_group *spi_dev_groups[] = {
 241	&spi_dev_group,
 242	&spi_device_statistics_group,
 243	NULL,
 244};
 245
 246static struct attribute *spi_controller_statistics_attrs[] = {
 247	&dev_attr_spi_controller_messages.attr,
 248	&dev_attr_spi_controller_transfers.attr,
 249	&dev_attr_spi_controller_errors.attr,
 250	&dev_attr_spi_controller_timedout.attr,
 251	&dev_attr_spi_controller_spi_sync.attr,
 252	&dev_attr_spi_controller_spi_sync_immediate.attr,
 253	&dev_attr_spi_controller_spi_async.attr,
 254	&dev_attr_spi_controller_bytes.attr,
 255	&dev_attr_spi_controller_bytes_rx.attr,
 256	&dev_attr_spi_controller_bytes_tx.attr,
 257	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 258	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 259	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 260	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 274	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 275	NULL,
 276};
 277
 278static const struct attribute_group spi_controller_statistics_group = {
 279	.name  = "statistics",
 280	.attrs  = spi_controller_statistics_attrs,
 281};
 282
 283static const struct attribute_group *spi_master_groups[] = {
 284	&spi_controller_statistics_group,
 285	NULL,
 286};
 287
 288void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 289				       struct spi_transfer *xfer,
 290				       struct spi_controller *ctlr)
 291{
 292	unsigned long flags;
 293	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 294
 295	if (l2len < 0)
 296		l2len = 0;
 297
 298	spin_lock_irqsave(&stats->lock, flags);
 299
 300	stats->transfers++;
 301	stats->transfer_bytes_histo[l2len]++;
 302
 303	stats->bytes += xfer->len;
 304	if ((xfer->tx_buf) &&
 305	    (xfer->tx_buf != ctlr->dummy_tx))
 306		stats->bytes_tx += xfer->len;
 307	if ((xfer->rx_buf) &&
 308	    (xfer->rx_buf != ctlr->dummy_rx))
 309		stats->bytes_rx += xfer->len;
 310
 311	spin_unlock_irqrestore(&stats->lock, flags);
 
 312}
 313EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 314
 315/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 316 * and the sysfs version makes coldplug work too.
 317 */
 318
 319static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 320						const struct spi_device *sdev)
 321{
 322	while (id->name[0]) {
 323		if (!strcmp(sdev->modalias, id->name))
 324			return id;
 325		id++;
 326	}
 327	return NULL;
 328}
 329
 330const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 331{
 332	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 333
 334	return spi_match_id(sdrv->id_table, sdev);
 335}
 336EXPORT_SYMBOL_GPL(spi_get_device_id);
 337
 338static int spi_match_device(struct device *dev, struct device_driver *drv)
 
 
 
 
 
 
 
 
 
 
 
 
 339{
 340	const struct spi_device	*spi = to_spi_device(dev);
 341	const struct spi_driver	*sdrv = to_spi_driver(drv);
 342
 343	/* Check override first, and if set, only use the named driver */
 344	if (spi->driver_override)
 345		return strcmp(spi->driver_override, drv->name) == 0;
 346
 347	/* Attempt an OF style match */
 348	if (of_driver_match_device(dev, drv))
 349		return 1;
 350
 351	/* Then try ACPI */
 352	if (acpi_driver_match_device(dev, drv))
 353		return 1;
 354
 355	if (sdrv->id_table)
 356		return !!spi_match_id(sdrv->id_table, spi);
 357
 358	return strcmp(spi->modalias, drv->name) == 0;
 359}
 360
 361static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 362{
 363	const struct spi_device		*spi = to_spi_device(dev);
 364	int rc;
 365
 366	rc = acpi_device_uevent_modalias(dev, env);
 367	if (rc != -ENODEV)
 368		return rc;
 369
 370	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 371}
 372
 373static int spi_probe(struct device *dev)
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 376	struct spi_device		*spi = to_spi_device(dev);
 377	int ret;
 378
 379	ret = of_clk_set_defaults(dev->of_node, false);
 380	if (ret)
 381		return ret;
 382
 383	if (dev->of_node) {
 384		spi->irq = of_irq_get(dev->of_node, 0);
 385		if (spi->irq == -EPROBE_DEFER)
 
 
 
 
 
 
 
 
 
 
 386			return -EPROBE_DEFER;
 387		if (spi->irq < 0)
 388			spi->irq = 0;
 389	}
 390
 391	ret = dev_pm_domain_attach(dev, true);
 392	if (ret)
 393		return ret;
 394
 395	if (sdrv->probe) {
 396		ret = sdrv->probe(spi);
 397		if (ret)
 398			dev_pm_domain_detach(dev, true);
 399	}
 400
 401	return ret;
 402}
 403
 404static int spi_remove(struct device *dev)
 405{
 406	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 407
 408	if (sdrv->remove) {
 409		int ret;
 410
 411		ret = sdrv->remove(to_spi_device(dev));
 412		if (ret)
 413			dev_warn(dev,
 414				 "Failed to unbind driver (%pe), ignoring\n",
 415				 ERR_PTR(ret));
 416	}
 417
 418	dev_pm_domain_detach(dev, true);
 419
 420	return 0;
 421}
 422
 423static void spi_shutdown(struct device *dev)
 424{
 425	if (dev->driver) {
 426		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 427
 428		if (sdrv->shutdown)
 429			sdrv->shutdown(to_spi_device(dev));
 430	}
 431}
 432
 433struct bus_type spi_bus_type = {
 434	.name		= "spi",
 435	.dev_groups	= spi_dev_groups,
 436	.match		= spi_match_device,
 437	.uevent		= spi_uevent,
 438	.probe		= spi_probe,
 439	.remove		= spi_remove,
 440	.shutdown	= spi_shutdown,
 441};
 442EXPORT_SYMBOL_GPL(spi_bus_type);
 443
 444/**
 445 * __spi_register_driver - register a SPI driver
 446 * @owner: owner module of the driver to register
 447 * @sdrv: the driver to register
 448 * Context: can sleep
 449 *
 450 * Return: zero on success, else a negative error code.
 451 */
 452int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 453{
 454	sdrv->driver.owner = owner;
 455	sdrv->driver.bus = &spi_bus_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456	return driver_register(&sdrv->driver);
 457}
 458EXPORT_SYMBOL_GPL(__spi_register_driver);
 459
 460/*-------------------------------------------------------------------------*/
 461
 462/* SPI devices should normally not be created by SPI device drivers; that
 
 463 * would make them board-specific.  Similarly with SPI controller drivers.
 464 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 465 * with other readonly (flashable) information about mainboard devices.
 466 */
 467
 468struct boardinfo {
 469	struct list_head	list;
 470	struct spi_board_info	board_info;
 471};
 472
 473static LIST_HEAD(board_list);
 474static LIST_HEAD(spi_controller_list);
 475
 476/*
 477 * Used to protect add/del operation for board_info list and
 478 * spi_controller list, and their matching process
 479 * also used to protect object of type struct idr
 480 */
 481static DEFINE_MUTEX(board_lock);
 482
 483/**
 484 * spi_alloc_device - Allocate a new SPI device
 485 * @ctlr: Controller to which device is connected
 486 * Context: can sleep
 487 *
 488 * Allows a driver to allocate and initialize a spi_device without
 489 * registering it immediately.  This allows a driver to directly
 490 * fill the spi_device with device parameters before calling
 491 * spi_add_device() on it.
 492 *
 493 * Caller is responsible to call spi_add_device() on the returned
 494 * spi_device structure to add it to the SPI controller.  If the caller
 495 * needs to discard the spi_device without adding it, then it should
 496 * call spi_dev_put() on it.
 497 *
 498 * Return: a pointer to the new device, or NULL.
 499 */
 500struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 501{
 502	struct spi_device	*spi;
 503
 504	if (!spi_controller_get(ctlr))
 505		return NULL;
 506
 507	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 508	if (!spi) {
 509		spi_controller_put(ctlr);
 510		return NULL;
 511	}
 512
 513	spi->master = spi->controller = ctlr;
 
 
 
 
 
 
 
 514	spi->dev.parent = &ctlr->dev;
 515	spi->dev.bus = &spi_bus_type;
 516	spi->dev.release = spidev_release;
 517	spi->cs_gpio = -ENOENT;
 518	spi->mode = ctlr->buswidth_override_bits;
 519
 520	spin_lock_init(&spi->statistics.lock);
 521
 522	device_initialize(&spi->dev);
 523	return spi;
 524}
 525EXPORT_SYMBOL_GPL(spi_alloc_device);
 526
 527static void spi_dev_set_name(struct spi_device *spi)
 528{
 529	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 
 
 
 
 
 
 530
 531	if (adev) {
 532		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 533		return;
 534	}
 535
 536	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 537		     spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538}
 539
 540static int spi_dev_check(struct device *dev, void *data)
 541{
 542	struct spi_device *spi = to_spi_device(dev);
 543	struct spi_device *new_spi = data;
 
 544
 545	if (spi->controller == new_spi->controller &&
 546	    spi->chip_select == new_spi->chip_select)
 547		return -EBUSY;
 
 
 
 
 548	return 0;
 549}
 550
 551static void spi_cleanup(struct spi_device *spi)
 552{
 553	if (spi->controller->cleanup)
 554		spi->controller->cleanup(spi);
 555}
 556
 557static int __spi_add_device(struct spi_device *spi)
 558{
 559	struct spi_controller *ctlr = spi->controller;
 560	struct device *dev = ctlr->dev.parent;
 561	int status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562
 
 
 
 
 
 563	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 564	if (status) {
 565		dev_err(dev, "chipselect %d already in use\n",
 566				spi->chip_select);
 567		return status;
 568	}
 569
 570	/* Controller may unregister concurrently */
 571	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 572	    !device_is_registered(&ctlr->dev)) {
 573		return -ENODEV;
 574	}
 575
 576	/* Descriptors take precedence */
 577	if (ctlr->cs_gpiods)
 578		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 579	else if (ctlr->cs_gpios)
 580		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 581
 582	/* Drivers may modify this initial i/o setup, but will
 
 
 
 
 
 
 
 
 583	 * normally rely on the device being setup.  Devices
 584	 * using SPI_CS_HIGH can't coexist well otherwise...
 585	 */
 586	status = spi_setup(spi);
 587	if (status < 0) {
 588		dev_err(dev, "can't setup %s, status %d\n",
 589				dev_name(&spi->dev), status);
 590		return status;
 591	}
 592
 593	/* Device may be bound to an active driver when this returns */
 594	status = device_add(&spi->dev);
 595	if (status < 0) {
 596		dev_err(dev, "can't add %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		spi_cleanup(spi);
 599	} else {
 600		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 601	}
 602
 603	return status;
 604}
 605
 606/**
 607 * spi_add_device - Add spi_device allocated with spi_alloc_device
 608 * @spi: spi_device to register
 609 *
 610 * Companion function to spi_alloc_device.  Devices allocated with
 611 * spi_alloc_device can be added onto the spi bus with this function.
 612 *
 613 * Return: 0 on success; negative errno on failure
 614 */
 615int spi_add_device(struct spi_device *spi)
 616{
 617	struct spi_controller *ctlr = spi->controller;
 618	struct device *dev = ctlr->dev.parent;
 619	int status;
 620
 621	/* Chipselects are numbered 0..max; validate. */
 622	if (spi->chip_select >= ctlr->num_chipselect) {
 623		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 624			ctlr->num_chipselect);
 625		return -EINVAL;
 626	}
 627
 628	/* Set the bus ID string */
 629	spi_dev_set_name(spi);
 630
 631	/* We need to make sure there's no other device with this
 632	 * chipselect **BEFORE** we call setup(), else we'll trash
 633	 * its configuration.  Lock against concurrent add() calls.
 634	 */
 635	mutex_lock(&ctlr->add_lock);
 636	status = __spi_add_device(spi);
 637	mutex_unlock(&ctlr->add_lock);
 638	return status;
 639}
 640EXPORT_SYMBOL_GPL(spi_add_device);
 641
 642static int spi_add_device_locked(struct spi_device *spi)
 643{
 644	struct spi_controller *ctlr = spi->controller;
 645	struct device *dev = ctlr->dev.parent;
 646
 647	/* Chipselects are numbered 0..max; validate. */
 648	if (spi->chip_select >= ctlr->num_chipselect) {
 649		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 650			ctlr->num_chipselect);
 651		return -EINVAL;
 652	}
 653
 654	/* Set the bus ID string */
 655	spi_dev_set_name(spi);
 656
 657	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 658	return __spi_add_device(spi);
 659}
 660
 661/**
 662 * spi_new_device - instantiate one new SPI device
 663 * @ctlr: Controller to which device is connected
 664 * @chip: Describes the SPI device
 665 * Context: can sleep
 666 *
 667 * On typical mainboards, this is purely internal; and it's not needed
 668 * after board init creates the hard-wired devices.  Some development
 669 * platforms may not be able to use spi_register_board_info though, and
 670 * this is exported so that for example a USB or parport based adapter
 671 * driver could add devices (which it would learn about out-of-band).
 672 *
 673 * Return: the new device, or NULL.
 674 */
 675struct spi_device *spi_new_device(struct spi_controller *ctlr,
 676				  struct spi_board_info *chip)
 677{
 678	struct spi_device	*proxy;
 679	int			status;
 680
 681	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 682	 *
 683	 * Also, unless we change the return value convention to use
 684	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 685	 * suggests syslogged diagnostics are best here (ugh).
 686	 */
 687
 688	proxy = spi_alloc_device(ctlr);
 689	if (!proxy)
 690		return NULL;
 691
 692	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 693
 694	proxy->chip_select = chip->chip_select;
 
 
 
 695	proxy->max_speed_hz = chip->max_speed_hz;
 696	proxy->mode = chip->mode;
 697	proxy->irq = chip->irq;
 698	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 699	proxy->dev.platform_data = (void *) chip->platform_data;
 700	proxy->controller_data = chip->controller_data;
 701	proxy->controller_state = NULL;
 
 
 
 
 
 702
 703	if (chip->swnode) {
 704		status = device_add_software_node(&proxy->dev, chip->swnode);
 705		if (status) {
 706			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 707				chip->modalias, status);
 708			goto err_dev_put;
 709		}
 710	}
 711
 712	status = spi_add_device(proxy);
 713	if (status < 0)
 714		goto err_dev_put;
 715
 716	return proxy;
 717
 718err_dev_put:
 719	device_remove_software_node(&proxy->dev);
 720	spi_dev_put(proxy);
 721	return NULL;
 722}
 723EXPORT_SYMBOL_GPL(spi_new_device);
 724
 725/**
 726 * spi_unregister_device - unregister a single SPI device
 727 * @spi: spi_device to unregister
 728 *
 729 * Start making the passed SPI device vanish. Normally this would be handled
 730 * by spi_unregister_controller().
 731 */
 732void spi_unregister_device(struct spi_device *spi)
 733{
 734	if (!spi)
 735		return;
 736
 737	if (spi->dev.of_node) {
 738		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 739		of_node_put(spi->dev.of_node);
 740	}
 741	if (ACPI_COMPANION(&spi->dev))
 742		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 743	device_remove_software_node(&spi->dev);
 744	device_del(&spi->dev);
 745	spi_cleanup(spi);
 746	put_device(&spi->dev);
 747}
 748EXPORT_SYMBOL_GPL(spi_unregister_device);
 749
 750static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 751					      struct spi_board_info *bi)
 752{
 753	struct spi_device *dev;
 754
 755	if (ctlr->bus_num != bi->bus_num)
 756		return;
 757
 758	dev = spi_new_device(ctlr, bi);
 759	if (!dev)
 760		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 761			bi->modalias);
 762}
 763
 764/**
 765 * spi_register_board_info - register SPI devices for a given board
 766 * @info: array of chip descriptors
 767 * @n: how many descriptors are provided
 768 * Context: can sleep
 769 *
 770 * Board-specific early init code calls this (probably during arch_initcall)
 771 * with segments of the SPI device table.  Any device nodes are created later,
 772 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 773 * this table of devices forever, so that reloading a controller driver will
 774 * not make Linux forget about these hard-wired devices.
 775 *
 776 * Other code can also call this, e.g. a particular add-on board might provide
 777 * SPI devices through its expansion connector, so code initializing that board
 778 * would naturally declare its SPI devices.
 779 *
 780 * The board info passed can safely be __initdata ... but be careful of
 781 * any embedded pointers (platform_data, etc), they're copied as-is.
 782 *
 783 * Return: zero on success, else a negative error code.
 784 */
 785int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 786{
 787	struct boardinfo *bi;
 788	int i;
 789
 790	if (!n)
 791		return 0;
 792
 793	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 794	if (!bi)
 795		return -ENOMEM;
 796
 797	for (i = 0; i < n; i++, bi++, info++) {
 798		struct spi_controller *ctlr;
 799
 800		memcpy(&bi->board_info, info, sizeof(*info));
 801
 802		mutex_lock(&board_lock);
 803		list_add_tail(&bi->list, &board_list);
 804		list_for_each_entry(ctlr, &spi_controller_list, list)
 805			spi_match_controller_to_boardinfo(ctlr,
 806							  &bi->board_info);
 807		mutex_unlock(&board_lock);
 808	}
 809
 810	return 0;
 811}
 812
 813/*-------------------------------------------------------------------------*/
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 816{
 817	bool activate = enable;
 
 818
 819	/*
 820	 * Avoid calling into the driver (or doing delays) if the chip select
 821	 * isn't actually changing from the last time this was called.
 822	 */
 823	if (!force && (spi->controller->last_cs_enable == enable) &&
 
 
 
 824	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 825		return;
 826
 827	trace_spi_set_cs(spi, activate);
 828
 829	spi->controller->last_cs_enable = enable;
 
 
 830	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 831
 832	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 833	    !spi->controller->set_cs_timing) {
 834		if (activate)
 835			spi_delay_exec(&spi->controller->cs_setup, NULL);
 836		else
 837			spi_delay_exec(&spi->controller->cs_hold, NULL);
 838	}
 839
 840	if (spi->mode & SPI_CS_HIGH)
 841		enable = !enable;
 842
 843	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 
 
 
 
 
 
 
 844		if (!(spi->mode & SPI_NO_CS)) {
 845			if (spi->cs_gpiod) {
 846				/*
 847				 * Historically ACPI has no means of the GPIO polarity and
 848				 * thus the SPISerialBus() resource defines it on the per-chip
 849				 * basis. In order to avoid a chain of negations, the GPIO
 850				 * polarity is considered being Active High. Even for the cases
 851				 * when _DSD() is involved (in the updated versions of ACPI)
 852				 * the GPIO CS polarity must be defined Active High to avoid
 853				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
 854				 * into account.
 855				 */
 856				if (has_acpi_companion(&spi->dev))
 857					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
 858				else
 859					/* Polarity handled by GPIO library */
 860					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
 861			} else {
 862				/*
 863				 * invert the enable line, as active low is
 864				 * default for SPI.
 865				 */
 866				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 867			}
 868		}
 869		/* Some SPI masters need both GPIO CS & slave_select */
 870		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 871		    spi->controller->set_cs)
 872			spi->controller->set_cs(spi, !enable);
 873	} else if (spi->controller->set_cs) {
 874		spi->controller->set_cs(spi, !enable);
 875	}
 876
 877	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 878	    !spi->controller->set_cs_timing) {
 879		if (!activate)
 880			spi_delay_exec(&spi->controller->cs_inactive, NULL);
 
 881	}
 882}
 883
 884#ifdef CONFIG_HAS_DMA
 885int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 886		struct sg_table *sgt, void *buf, size_t len,
 887		enum dma_data_direction dir)
 888{
 889	const bool vmalloced_buf = is_vmalloc_addr(buf);
 890	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 891#ifdef CONFIG_HIGHMEM
 892	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 893				(unsigned long)buf < (PKMAP_BASE +
 894					(LAST_PKMAP * PAGE_SIZE)));
 895#else
 896	const bool kmap_buf = false;
 897#endif
 898	int desc_len;
 899	int sgs;
 900	struct page *vm_page;
 901	struct scatterlist *sg;
 902	void *sg_buf;
 903	size_t min;
 904	int i, ret;
 905
 906	if (vmalloced_buf || kmap_buf) {
 907		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 908		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 909	} else if (virt_addr_valid(buf)) {
 910		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 911		sgs = DIV_ROUND_UP(len, desc_len);
 912	} else {
 913		return -EINVAL;
 914	}
 915
 916	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 917	if (ret != 0)
 918		return ret;
 919
 920	sg = &sgt->sgl[0];
 921	for (i = 0; i < sgs; i++) {
 922
 923		if (vmalloced_buf || kmap_buf) {
 924			/*
 925			 * Next scatterlist entry size is the minimum between
 926			 * the desc_len and the remaining buffer length that
 927			 * fits in a page.
 928			 */
 929			min = min_t(size_t, desc_len,
 930				    min_t(size_t, len,
 931					  PAGE_SIZE - offset_in_page(buf)));
 932			if (vmalloced_buf)
 933				vm_page = vmalloc_to_page(buf);
 934			else
 935				vm_page = kmap_to_page(buf);
 936			if (!vm_page) {
 937				sg_free_table(sgt);
 938				return -ENOMEM;
 939			}
 940			sg_set_page(sg, vm_page,
 941				    min, offset_in_page(buf));
 942		} else {
 943			min = min_t(size_t, len, desc_len);
 944			sg_buf = buf;
 945			sg_set_buf(sg, sg_buf, min);
 946		}
 947
 948		buf += min;
 949		len -= min;
 950		sg = sg_next(sg);
 951	}
 952
 953	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 954	if (!ret)
 955		ret = -ENOMEM;
 956	if (ret < 0) {
 957		sg_free_table(sgt);
 958		return ret;
 959	}
 960
 961	sgt->nents = ret;
 
 962
 963	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 967		   struct sg_table *sgt, enum dma_data_direction dir)
 968{
 969	if (sgt->orig_nents) {
 970		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 971		sg_free_table(sgt);
 972	}
 973}
 974
 975static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 976{
 977	struct device *tx_dev, *rx_dev;
 978	struct spi_transfer *xfer;
 979	int ret;
 980
 981	if (!ctlr->can_dma)
 982		return 0;
 983
 984	if (ctlr->dma_tx)
 985		tx_dev = ctlr->dma_tx->device->dev;
 986	else if (ctlr->dma_map_dev)
 987		tx_dev = ctlr->dma_map_dev;
 988	else
 989		tx_dev = ctlr->dev.parent;
 990
 991	if (ctlr->dma_rx)
 992		rx_dev = ctlr->dma_rx->device->dev;
 993	else if (ctlr->dma_map_dev)
 994		rx_dev = ctlr->dma_map_dev;
 995	else
 996		rx_dev = ctlr->dev.parent;
 997
 
 998	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 999		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1000			continue;
1001
1002		if (xfer->tx_buf != NULL) {
1003			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1004					  (void *)xfer->tx_buf, xfer->len,
1005					  DMA_TO_DEVICE);
 
1006			if (ret != 0)
1007				return ret;
 
 
1008		}
1009
1010		if (xfer->rx_buf != NULL) {
1011			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1012					  xfer->rx_buf, xfer->len,
1013					  DMA_FROM_DEVICE);
1014			if (ret != 0) {
1015				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1016					      DMA_TO_DEVICE);
 
 
1017				return ret;
1018			}
 
 
1019		}
1020	}
 
 
 
1021
1022	ctlr->cur_msg_mapped = true;
 
1023
1024	return 0;
1025}
1026
1027static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1028{
 
 
1029	struct spi_transfer *xfer;
1030	struct device *tx_dev, *rx_dev;
1031
1032	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1033		return 0;
 
1034
1035	if (ctlr->dma_tx)
1036		tx_dev = ctlr->dma_tx->device->dev;
1037	else
1038		tx_dev = ctlr->dev.parent;
 
 
 
 
 
 
1039
1040	if (ctlr->dma_rx)
1041		rx_dev = ctlr->dma_rx->device->dev;
1042	else
1043		rx_dev = ctlr->dev.parent;
1044
1045	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1046		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1047			continue;
 
 
1048
1049		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1050		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1051	}
 
 
1052
1053	ctlr->cur_msg_mapped = false;
 
 
 
 
1054
1055	return 0;
 
 
 
1056}
1057#else /* !CONFIG_HAS_DMA */
1058static inline int __spi_map_msg(struct spi_controller *ctlr,
1059				struct spi_message *msg)
1060{
1061	return 0;
1062}
1063
1064static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1065				  struct spi_message *msg)
1066{
1067	return 0;
1068}
 
 
 
 
 
 
 
 
 
 
1069#endif /* !CONFIG_HAS_DMA */
1070
1071static inline int spi_unmap_msg(struct spi_controller *ctlr,
1072				struct spi_message *msg)
1073{
1074	struct spi_transfer *xfer;
1075
1076	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1077		/*
1078		 * Restore the original value of tx_buf or rx_buf if they are
1079		 * NULL.
1080		 */
1081		if (xfer->tx_buf == ctlr->dummy_tx)
1082			xfer->tx_buf = NULL;
1083		if (xfer->rx_buf == ctlr->dummy_rx)
1084			xfer->rx_buf = NULL;
1085	}
1086
1087	return __spi_unmap_msg(ctlr, msg);
1088}
1089
1090static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1091{
1092	struct spi_transfer *xfer;
1093	void *tmp;
1094	unsigned int max_tx, max_rx;
1095
1096	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1097		&& !(msg->spi->mode & SPI_3WIRE)) {
1098		max_tx = 0;
1099		max_rx = 0;
1100
1101		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1102			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1103			    !xfer->tx_buf)
1104				max_tx = max(xfer->len, max_tx);
1105			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1106			    !xfer->rx_buf)
1107				max_rx = max(xfer->len, max_rx);
1108		}
1109
1110		if (max_tx) {
1111			tmp = krealloc(ctlr->dummy_tx, max_tx,
1112				       GFP_KERNEL | GFP_DMA);
1113			if (!tmp)
1114				return -ENOMEM;
1115			ctlr->dummy_tx = tmp;
1116			memset(tmp, 0, max_tx);
1117		}
1118
1119		if (max_rx) {
1120			tmp = krealloc(ctlr->dummy_rx, max_rx,
1121				       GFP_KERNEL | GFP_DMA);
1122			if (!tmp)
1123				return -ENOMEM;
1124			ctlr->dummy_rx = tmp;
1125		}
1126
1127		if (max_tx || max_rx) {
1128			list_for_each_entry(xfer, &msg->transfers,
1129					    transfer_list) {
1130				if (!xfer->len)
1131					continue;
1132				if (!xfer->tx_buf)
1133					xfer->tx_buf = ctlr->dummy_tx;
1134				if (!xfer->rx_buf)
1135					xfer->rx_buf = ctlr->dummy_rx;
1136			}
1137		}
1138	}
1139
1140	return __spi_map_msg(ctlr, msg);
1141}
1142
1143static int spi_transfer_wait(struct spi_controller *ctlr,
1144			     struct spi_message *msg,
1145			     struct spi_transfer *xfer)
1146{
1147	struct spi_statistics *statm = &ctlr->statistics;
1148	struct spi_statistics *stats = &msg->spi->statistics;
1149	u32 speed_hz = xfer->speed_hz;
1150	unsigned long long ms;
1151
1152	if (spi_controller_is_slave(ctlr)) {
1153		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1154			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1155			return -EINTR;
1156		}
1157	} else {
1158		if (!speed_hz)
1159			speed_hz = 100000;
1160
1161		/*
1162		 * For each byte we wait for 8 cycles of the SPI clock.
1163		 * Since speed is defined in Hz and we want milliseconds,
1164		 * use respective multiplier, but before the division,
1165		 * otherwise we may get 0 for short transfers.
1166		 */
1167		ms = 8LL * MSEC_PER_SEC * xfer->len;
1168		do_div(ms, speed_hz);
1169
1170		/*
1171		 * Increase it twice and add 200 ms tolerance, use
1172		 * predefined maximum in case of overflow.
1173		 */
1174		ms += ms + 200;
1175		if (ms > UINT_MAX)
1176			ms = UINT_MAX;
1177
1178		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1179						 msecs_to_jiffies(ms));
1180
1181		if (ms == 0) {
1182			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1183			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1184			dev_err(&msg->spi->dev,
1185				"SPI transfer timed out\n");
1186			return -ETIMEDOUT;
1187		}
 
 
 
1188	}
1189
1190	return 0;
1191}
1192
1193static void _spi_transfer_delay_ns(u32 ns)
1194{
1195	if (!ns)
1196		return;
1197	if (ns <= NSEC_PER_USEC) {
1198		ndelay(ns);
1199	} else {
1200		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1201
1202		if (us <= 10)
1203			udelay(us);
1204		else
1205			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1206	}
1207}
1208
1209int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1210{
1211	u32 delay = _delay->value;
1212	u32 unit = _delay->unit;
1213	u32 hz;
1214
1215	if (!delay)
1216		return 0;
1217
1218	switch (unit) {
1219	case SPI_DELAY_UNIT_USECS:
1220		delay *= NSEC_PER_USEC;
1221		break;
1222	case SPI_DELAY_UNIT_NSECS:
1223		/* Nothing to do here */
1224		break;
1225	case SPI_DELAY_UNIT_SCK:
1226		/* clock cycles need to be obtained from spi_transfer */
1227		if (!xfer)
1228			return -EINVAL;
1229		/*
1230		 * If there is unknown effective speed, approximate it
1231		 * by underestimating with half of the requested hz.
1232		 */
1233		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1234		if (!hz)
1235			return -EINVAL;
1236
1237		/* Convert delay to nanoseconds */
1238		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1239		break;
1240	default:
1241		return -EINVAL;
1242	}
1243
1244	return delay;
1245}
1246EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1247
1248int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1249{
1250	int delay;
1251
1252	might_sleep();
1253
1254	if (!_delay)
1255		return -EINVAL;
1256
1257	delay = spi_delay_to_ns(_delay, xfer);
1258	if (delay < 0)
1259		return delay;
1260
1261	_spi_transfer_delay_ns(delay);
1262
1263	return 0;
1264}
1265EXPORT_SYMBOL_GPL(spi_delay_exec);
1266
1267static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1268					  struct spi_transfer *xfer)
1269{
1270	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1271	u32 delay = xfer->cs_change_delay.value;
1272	u32 unit = xfer->cs_change_delay.unit;
1273	int ret;
1274
1275	/* return early on "fast" mode - for everything but USECS */
1276	if (!delay) {
1277		if (unit == SPI_DELAY_UNIT_USECS)
1278			_spi_transfer_delay_ns(default_delay_ns);
1279		return;
1280	}
1281
1282	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1283	if (ret) {
1284		dev_err_once(&msg->spi->dev,
1285			     "Use of unsupported delay unit %i, using default of %luus\n",
1286			     unit, default_delay_ns / NSEC_PER_USEC);
1287		_spi_transfer_delay_ns(default_delay_ns);
1288	}
1289}
1290
 
 
 
 
 
 
 
1291/*
1292 * spi_transfer_one_message - Default implementation of transfer_one_message()
1293 *
1294 * This is a standard implementation of transfer_one_message() for
1295 * drivers which implement a transfer_one() operation.  It provides
1296 * standard handling of delays and chip select management.
1297 */
1298static int spi_transfer_one_message(struct spi_controller *ctlr,
1299				    struct spi_message *msg)
1300{
1301	struct spi_transfer *xfer;
1302	bool keep_cs = false;
1303	int ret = 0;
1304	struct spi_statistics *statm = &ctlr->statistics;
1305	struct spi_statistics *stats = &msg->spi->statistics;
1306
1307	spi_set_cs(msg->spi, true, false);
 
1308
1309	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1310	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1311
1312	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1313		trace_spi_transfer_start(msg, xfer);
1314
1315		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1316		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1317
1318		if (!ctlr->ptp_sts_supported) {
1319			xfer->ptp_sts_word_pre = 0;
1320			ptp_read_system_prets(xfer->ptp_sts);
1321		}
1322
1323		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1324			reinit_completion(&ctlr->xfer_completion);
1325
1326fallback_pio:
 
1327			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1328			if (ret < 0) {
1329				if (ctlr->cur_msg_mapped &&
1330				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
 
 
1331					__spi_unmap_msg(ctlr, msg);
1332					ctlr->fallback = true;
1333					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1334					goto fallback_pio;
1335				}
1336
1337				SPI_STATISTICS_INCREMENT_FIELD(statm,
1338							       errors);
1339				SPI_STATISTICS_INCREMENT_FIELD(stats,
1340							       errors);
1341				dev_err(&msg->spi->dev,
1342					"SPI transfer failed: %d\n", ret);
1343				goto out;
1344			}
1345
1346			if (ret > 0) {
1347				ret = spi_transfer_wait(ctlr, msg, xfer);
1348				if (ret < 0)
1349					msg->status = ret;
1350			}
 
 
1351		} else {
1352			if (xfer->len)
1353				dev_err(&msg->spi->dev,
1354					"Bufferless transfer has length %u\n",
1355					xfer->len);
1356		}
1357
1358		if (!ctlr->ptp_sts_supported) {
1359			ptp_read_system_postts(xfer->ptp_sts);
1360			xfer->ptp_sts_word_post = xfer->len;
1361		}
1362
1363		trace_spi_transfer_stop(msg, xfer);
1364
1365		if (msg->status != -EINPROGRESS)
1366			goto out;
1367
1368		spi_transfer_delay_exec(xfer);
1369
1370		if (xfer->cs_change) {
1371			if (list_is_last(&xfer->transfer_list,
1372					 &msg->transfers)) {
1373				keep_cs = true;
1374			} else {
1375				spi_set_cs(msg->spi, false, false);
 
1376				_spi_transfer_cs_change_delay(msg, xfer);
1377				spi_set_cs(msg->spi, true, false);
 
1378			}
 
 
 
1379		}
1380
1381		msg->actual_length += xfer->len;
1382	}
1383
1384out:
1385	if (ret != 0 || !keep_cs)
1386		spi_set_cs(msg->spi, false, false);
1387
1388	if (msg->status == -EINPROGRESS)
1389		msg->status = ret;
1390
1391	if (msg->status && ctlr->handle_err)
1392		ctlr->handle_err(ctlr, msg);
1393
1394	spi_finalize_current_message(ctlr);
1395
1396	return ret;
1397}
1398
1399/**
1400 * spi_finalize_current_transfer - report completion of a transfer
1401 * @ctlr: the controller reporting completion
1402 *
1403 * Called by SPI drivers using the core transfer_one_message()
1404 * implementation to notify it that the current interrupt driven
1405 * transfer has finished and the next one may be scheduled.
1406 */
1407void spi_finalize_current_transfer(struct spi_controller *ctlr)
1408{
1409	complete(&ctlr->xfer_completion);
1410}
1411EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1412
1413static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1414{
1415	if (ctlr->auto_runtime_pm) {
1416		pm_runtime_mark_last_busy(ctlr->dev.parent);
1417		pm_runtime_put_autosuspend(ctlr->dev.parent);
1418	}
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421/**
1422 * __spi_pump_messages - function which processes spi message queue
1423 * @ctlr: controller to process queue for
1424 * @in_kthread: true if we are in the context of the message pump thread
1425 *
1426 * This function checks if there is any spi message in the queue that
1427 * needs processing and if so call out to the driver to initialize hardware
1428 * and transfer each message.
1429 *
1430 * Note that it is called both from the kthread itself and also from
1431 * inside spi_sync(); the queue extraction handling at the top of the
1432 * function should deal with this safely.
1433 */
1434static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1435{
1436	struct spi_transfer *xfer;
1437	struct spi_message *msg;
1438	bool was_busy = false;
1439	unsigned long flags;
1440	int ret;
1441
 
 
 
1442	/* Lock queue */
1443	spin_lock_irqsave(&ctlr->queue_lock, flags);
1444
1445	/* Make sure we are not already running a message */
1446	if (ctlr->cur_msg) {
1447		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1448		return;
1449	}
1450
1451	/* If another context is idling the device then defer */
1452	if (ctlr->idling) {
1453		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1454		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1455		return;
1456	}
1457
1458	/* Check if the queue is idle */
1459	if (list_empty(&ctlr->queue) || !ctlr->running) {
1460		if (!ctlr->busy) {
1461			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1462			return;
1463		}
1464
1465		/* Defer any non-atomic teardown to the thread */
1466		if (!in_kthread) {
1467			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1468			    !ctlr->unprepare_transfer_hardware) {
1469				spi_idle_runtime_pm(ctlr);
1470				ctlr->busy = false;
 
1471				trace_spi_controller_idle(ctlr);
1472			} else {
1473				kthread_queue_work(ctlr->kworker,
1474						   &ctlr->pump_messages);
1475			}
1476			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1477			return;
1478		}
1479
1480		ctlr->busy = false;
1481		ctlr->idling = true;
1482		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1483
1484		kfree(ctlr->dummy_rx);
1485		ctlr->dummy_rx = NULL;
1486		kfree(ctlr->dummy_tx);
1487		ctlr->dummy_tx = NULL;
1488		if (ctlr->unprepare_transfer_hardware &&
1489		    ctlr->unprepare_transfer_hardware(ctlr))
1490			dev_err(&ctlr->dev,
1491				"failed to unprepare transfer hardware\n");
1492		spi_idle_runtime_pm(ctlr);
1493		trace_spi_controller_idle(ctlr);
1494
1495		spin_lock_irqsave(&ctlr->queue_lock, flags);
1496		ctlr->idling = false;
1497		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1498		return;
1499	}
1500
1501	/* Extract head of queue */
1502	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1503	ctlr->cur_msg = msg;
1504
1505	list_del_init(&msg->queue);
1506	if (ctlr->busy)
1507		was_busy = true;
1508	else
1509		ctlr->busy = true;
1510	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1511
1512	mutex_lock(&ctlr->io_mutex);
 
1513
1514	if (!was_busy && ctlr->auto_runtime_pm) {
1515		ret = pm_runtime_get_sync(ctlr->dev.parent);
1516		if (ret < 0) {
1517			pm_runtime_put_noidle(ctlr->dev.parent);
1518			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1519				ret);
1520			mutex_unlock(&ctlr->io_mutex);
1521			return;
1522		}
1523	}
1524
1525	if (!was_busy)
1526		trace_spi_controller_busy(ctlr);
1527
1528	if (!was_busy && ctlr->prepare_transfer_hardware) {
1529		ret = ctlr->prepare_transfer_hardware(ctlr);
1530		if (ret) {
1531			dev_err(&ctlr->dev,
1532				"failed to prepare transfer hardware: %d\n",
1533				ret);
1534
1535			if (ctlr->auto_runtime_pm)
1536				pm_runtime_put(ctlr->dev.parent);
1537
1538			msg->status = ret;
1539			spi_finalize_current_message(ctlr);
1540
1541			mutex_unlock(&ctlr->io_mutex);
1542			return;
1543		}
1544	}
1545
1546	trace_spi_message_start(msg);
1547
1548	if (ctlr->prepare_message) {
1549		ret = ctlr->prepare_message(ctlr, msg);
1550		if (ret) {
1551			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1552				ret);
1553			msg->status = ret;
1554			spi_finalize_current_message(ctlr);
1555			goto out;
1556		}
1557		ctlr->cur_msg_prepared = true;
1558	}
1559
1560	ret = spi_map_msg(ctlr, msg);
1561	if (ret) {
1562		msg->status = ret;
1563		spi_finalize_current_message(ctlr);
1564		goto out;
1565	}
1566
1567	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1568		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1569			xfer->ptp_sts_word_pre = 0;
1570			ptp_read_system_prets(xfer->ptp_sts);
1571		}
1572	}
1573
1574	ret = ctlr->transfer_one_message(ctlr, msg);
1575	if (ret) {
1576		dev_err(&ctlr->dev,
1577			"failed to transfer one message from queue\n");
1578		goto out;
1579	}
1580
1581out:
1582	mutex_unlock(&ctlr->io_mutex);
1583
1584	/* Prod the scheduler in case transfer_one() was busy waiting */
1585	if (!ret)
1586		cond_resched();
 
 
 
 
 
1587}
1588
1589/**
1590 * spi_pump_messages - kthread work function which processes spi message queue
1591 * @work: pointer to kthread work struct contained in the controller struct
1592 */
1593static void spi_pump_messages(struct kthread_work *work)
1594{
1595	struct spi_controller *ctlr =
1596		container_of(work, struct spi_controller, pump_messages);
1597
1598	__spi_pump_messages(ctlr, true);
1599}
1600
1601/**
1602 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1603 *			    TX timestamp for the requested byte from the SPI
1604 *			    transfer. The frequency with which this function
1605 *			    must be called (once per word, once for the whole
1606 *			    transfer, once per batch of words etc) is arbitrary
1607 *			    as long as the @tx buffer offset is greater than or
1608 *			    equal to the requested byte at the time of the
1609 *			    call. The timestamp is only taken once, at the
1610 *			    first such call. It is assumed that the driver
1611 *			    advances its @tx buffer pointer monotonically.
1612 * @ctlr: Pointer to the spi_controller structure of the driver
1613 * @xfer: Pointer to the transfer being timestamped
1614 * @progress: How many words (not bytes) have been transferred so far
1615 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1616 *	      transfer, for less jitter in time measurement. Only compatible
1617 *	      with PIO drivers. If true, must follow up with
1618 *	      spi_take_timestamp_post or otherwise system will crash.
1619 *	      WARNING: for fully predictable results, the CPU frequency must
1620 *	      also be under control (governor).
 
 
 
 
 
 
 
 
1621 */
1622void spi_take_timestamp_pre(struct spi_controller *ctlr,
1623			    struct spi_transfer *xfer,
1624			    size_t progress, bool irqs_off)
1625{
1626	if (!xfer->ptp_sts)
1627		return;
1628
1629	if (xfer->timestamped)
1630		return;
1631
1632	if (progress > xfer->ptp_sts_word_pre)
1633		return;
1634
1635	/* Capture the resolution of the timestamp */
1636	xfer->ptp_sts_word_pre = progress;
1637
1638	if (irqs_off) {
1639		local_irq_save(ctlr->irq_flags);
1640		preempt_disable();
1641	}
1642
1643	ptp_read_system_prets(xfer->ptp_sts);
1644}
1645EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1646
1647/**
1648 * spi_take_timestamp_post - helper for drivers to collect the end of the
1649 *			     TX timestamp for the requested byte from the SPI
1650 *			     transfer. Can be called with an arbitrary
1651 *			     frequency: only the first call where @tx exceeds
1652 *			     or is equal to the requested word will be
1653 *			     timestamped.
1654 * @ctlr: Pointer to the spi_controller structure of the driver
1655 * @xfer: Pointer to the transfer being timestamped
1656 * @progress: How many words (not bytes) have been transferred so far
1657 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
 
 
 
 
 
1658 */
1659void spi_take_timestamp_post(struct spi_controller *ctlr,
1660			     struct spi_transfer *xfer,
1661			     size_t progress, bool irqs_off)
1662{
1663	if (!xfer->ptp_sts)
1664		return;
1665
1666	if (xfer->timestamped)
1667		return;
1668
1669	if (progress < xfer->ptp_sts_word_post)
1670		return;
1671
1672	ptp_read_system_postts(xfer->ptp_sts);
1673
1674	if (irqs_off) {
1675		local_irq_restore(ctlr->irq_flags);
1676		preempt_enable();
1677	}
1678
1679	/* Capture the resolution of the timestamp */
1680	xfer->ptp_sts_word_post = progress;
1681
1682	xfer->timestamped = true;
1683}
1684EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1685
1686/**
1687 * spi_set_thread_rt - set the controller to pump at realtime priority
1688 * @ctlr: controller to boost priority of
1689 *
1690 * This can be called because the controller requested realtime priority
1691 * (by setting the ->rt value before calling spi_register_controller()) or
1692 * because a device on the bus said that its transfers needed realtime
1693 * priority.
1694 *
1695 * NOTE: at the moment if any device on a bus says it needs realtime then
1696 * the thread will be at realtime priority for all transfers on that
1697 * controller.  If this eventually becomes a problem we may see if we can
1698 * find a way to boost the priority only temporarily during relevant
1699 * transfers.
1700 */
1701static void spi_set_thread_rt(struct spi_controller *ctlr)
1702{
1703	dev_info(&ctlr->dev,
1704		"will run message pump with realtime priority\n");
1705	sched_set_fifo(ctlr->kworker->task);
1706}
1707
1708static int spi_init_queue(struct spi_controller *ctlr)
1709{
1710	ctlr->running = false;
1711	ctlr->busy = false;
 
1712
1713	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1714	if (IS_ERR(ctlr->kworker)) {
1715		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1716		return PTR_ERR(ctlr->kworker);
1717	}
1718
1719	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1720
1721	/*
1722	 * Controller config will indicate if this controller should run the
1723	 * message pump with high (realtime) priority to reduce the transfer
1724	 * latency on the bus by minimising the delay between a transfer
1725	 * request and the scheduling of the message pump thread. Without this
1726	 * setting the message pump thread will remain at default priority.
1727	 */
1728	if (ctlr->rt)
1729		spi_set_thread_rt(ctlr);
1730
1731	return 0;
1732}
1733
1734/**
1735 * spi_get_next_queued_message() - called by driver to check for queued
1736 * messages
1737 * @ctlr: the controller to check for queued messages
1738 *
1739 * If there are more messages in the queue, the next message is returned from
1740 * this call.
1741 *
1742 * Return: the next message in the queue, else NULL if the queue is empty.
1743 */
1744struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1745{
1746	struct spi_message *next;
1747	unsigned long flags;
1748
1749	/* get a pointer to the next message, if any */
1750	spin_lock_irqsave(&ctlr->queue_lock, flags);
1751	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1752					queue);
1753	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754
1755	return next;
1756}
1757EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759/**
1760 * spi_finalize_current_message() - the current message is complete
1761 * @ctlr: the controller to return the message to
1762 *
1763 * Called by the driver to notify the core that the message in the front of the
1764 * queue is complete and can be removed from the queue.
1765 */
1766void spi_finalize_current_message(struct spi_controller *ctlr)
1767{
1768	struct spi_transfer *xfer;
1769	struct spi_message *mesg;
1770	unsigned long flags;
1771	int ret;
1772
1773	spin_lock_irqsave(&ctlr->queue_lock, flags);
1774	mesg = ctlr->cur_msg;
1775	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1776
1777	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1778		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1779			ptp_read_system_postts(xfer->ptp_sts);
1780			xfer->ptp_sts_word_post = xfer->len;
1781		}
1782	}
1783
1784	if (unlikely(ctlr->ptp_sts_supported))
1785		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1786			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1787
1788	spi_unmap_msg(ctlr, mesg);
1789
1790	/* In the prepare_messages callback the spi bus has the opportunity to
1791	 * split a transfer to smaller chunks.
1792	 * Release splited transfers here since spi_map_msg is done on the
1793	 * splited transfers.
1794	 */
1795	spi_res_release(ctlr, mesg);
1796
1797	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1798		ret = ctlr->unprepare_message(ctlr, mesg);
1799		if (ret) {
1800			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1801				ret);
1802		}
1803	}
1804
1805	spin_lock_irqsave(&ctlr->queue_lock, flags);
1806	ctlr->cur_msg = NULL;
1807	ctlr->cur_msg_prepared = false;
1808	ctlr->fallback = false;
1809	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1810	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
1811
1812	trace_spi_message_done(mesg);
1813
1814	mesg->state = NULL;
1815	if (mesg->complete)
1816		mesg->complete(mesg->context);
1817}
1818EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1819
1820static int spi_start_queue(struct spi_controller *ctlr)
1821{
1822	unsigned long flags;
1823
1824	spin_lock_irqsave(&ctlr->queue_lock, flags);
1825
1826	if (ctlr->running || ctlr->busy) {
1827		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1828		return -EBUSY;
1829	}
1830
1831	ctlr->running = true;
1832	ctlr->cur_msg = NULL;
1833	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834
1835	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1836
1837	return 0;
1838}
1839
1840static int spi_stop_queue(struct spi_controller *ctlr)
1841{
 
1842	unsigned long flags;
1843	unsigned limit = 500;
1844	int ret = 0;
1845
1846	spin_lock_irqsave(&ctlr->queue_lock, flags);
1847
1848	/*
1849	 * This is a bit lame, but is optimized for the common execution path.
1850	 * A wait_queue on the ctlr->busy could be used, but then the common
1851	 * execution path (pump_messages) would be required to call wake_up or
1852	 * friends on every SPI message. Do this instead.
1853	 */
1854	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
 
 
 
 
 
 
1855		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1856		usleep_range(10000, 11000);
1857		spin_lock_irqsave(&ctlr->queue_lock, flags);
1858	}
1859
1860	if (!list_empty(&ctlr->queue) || ctlr->busy)
1861		ret = -EBUSY;
1862	else
1863		ctlr->running = false;
1864
1865	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866
1867	if (ret) {
1868		dev_warn(&ctlr->dev, "could not stop message queue\n");
1869		return ret;
1870	}
1871	return ret;
1872}
1873
1874static int spi_destroy_queue(struct spi_controller *ctlr)
1875{
1876	int ret;
1877
1878	ret = spi_stop_queue(ctlr);
1879
1880	/*
1881	 * kthread_flush_worker will block until all work is done.
1882	 * If the reason that stop_queue timed out is that the work will never
1883	 * finish, then it does no good to call flush/stop thread, so
1884	 * return anyway.
1885	 */
1886	if (ret) {
1887		dev_err(&ctlr->dev, "problem destroying queue\n");
1888		return ret;
1889	}
1890
1891	kthread_destroy_worker(ctlr->kworker);
1892
1893	return 0;
1894}
1895
1896static int __spi_queued_transfer(struct spi_device *spi,
1897				 struct spi_message *msg,
1898				 bool need_pump)
1899{
1900	struct spi_controller *ctlr = spi->controller;
1901	unsigned long flags;
1902
1903	spin_lock_irqsave(&ctlr->queue_lock, flags);
1904
1905	if (!ctlr->running) {
1906		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1907		return -ESHUTDOWN;
1908	}
1909	msg->actual_length = 0;
1910	msg->status = -EINPROGRESS;
1911
1912	list_add_tail(&msg->queue, &ctlr->queue);
 
1913	if (!ctlr->busy && need_pump)
1914		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1915
1916	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917	return 0;
1918}
1919
1920/**
1921 * spi_queued_transfer - transfer function for queued transfers
1922 * @spi: spi device which is requesting transfer
1923 * @msg: spi message which is to handled is queued to driver queue
1924 *
1925 * Return: zero on success, else a negative error code.
1926 */
1927static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1928{
1929	return __spi_queued_transfer(spi, msg, true);
1930}
1931
1932static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1933{
1934	int ret;
1935
1936	ctlr->transfer = spi_queued_transfer;
1937	if (!ctlr->transfer_one_message)
1938		ctlr->transfer_one_message = spi_transfer_one_message;
1939
1940	/* Initialize and start queue */
1941	ret = spi_init_queue(ctlr);
1942	if (ret) {
1943		dev_err(&ctlr->dev, "problem initializing queue\n");
1944		goto err_init_queue;
1945	}
1946	ctlr->queued = true;
1947	ret = spi_start_queue(ctlr);
1948	if (ret) {
1949		dev_err(&ctlr->dev, "problem starting queue\n");
1950		goto err_start_queue;
1951	}
1952
1953	return 0;
1954
1955err_start_queue:
1956	spi_destroy_queue(ctlr);
1957err_init_queue:
1958	return ret;
1959}
1960
1961/**
1962 * spi_flush_queue - Send all pending messages in the queue from the callers'
1963 *		     context
1964 * @ctlr: controller to process queue for
1965 *
1966 * This should be used when one wants to ensure all pending messages have been
1967 * sent before doing something. Is used by the spi-mem code to make sure SPI
1968 * memory operations do not preempt regular SPI transfers that have been queued
1969 * before the spi-mem operation.
1970 */
1971void spi_flush_queue(struct spi_controller *ctlr)
1972{
1973	if (ctlr->transfer == spi_queued_transfer)
1974		__spi_pump_messages(ctlr, false);
1975}
1976
1977/*-------------------------------------------------------------------------*/
1978
1979#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1981			   struct device_node *nc)
1982{
1983	u32 value;
1984	int rc;
1985
1986	/* Mode (clock phase/polarity/etc.) */
1987	if (of_property_read_bool(nc, "spi-cpha"))
1988		spi->mode |= SPI_CPHA;
1989	if (of_property_read_bool(nc, "spi-cpol"))
1990		spi->mode |= SPI_CPOL;
1991	if (of_property_read_bool(nc, "spi-3wire"))
1992		spi->mode |= SPI_3WIRE;
1993	if (of_property_read_bool(nc, "spi-lsb-first"))
1994		spi->mode |= SPI_LSB_FIRST;
1995	if (of_property_read_bool(nc, "spi-cs-high"))
1996		spi->mode |= SPI_CS_HIGH;
1997
1998	/* Device DUAL/QUAD mode */
1999	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2000		switch (value) {
2001		case 0:
2002			spi->mode |= SPI_NO_TX;
2003			break;
2004		case 1:
2005			break;
2006		case 2:
2007			spi->mode |= SPI_TX_DUAL;
2008			break;
2009		case 4:
2010			spi->mode |= SPI_TX_QUAD;
2011			break;
2012		case 8:
2013			spi->mode |= SPI_TX_OCTAL;
2014			break;
2015		default:
2016			dev_warn(&ctlr->dev,
2017				"spi-tx-bus-width %d not supported\n",
2018				value);
2019			break;
2020		}
2021	}
2022
2023	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2024		switch (value) {
2025		case 0:
2026			spi->mode |= SPI_NO_RX;
2027			break;
2028		case 1:
2029			break;
2030		case 2:
2031			spi->mode |= SPI_RX_DUAL;
2032			break;
2033		case 4:
2034			spi->mode |= SPI_RX_QUAD;
2035			break;
2036		case 8:
2037			spi->mode |= SPI_RX_OCTAL;
2038			break;
2039		default:
2040			dev_warn(&ctlr->dev,
2041				"spi-rx-bus-width %d not supported\n",
2042				value);
2043			break;
2044		}
2045	}
2046
2047	if (spi_controller_is_slave(ctlr)) {
2048		if (!of_node_name_eq(nc, "slave")) {
2049			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2050				nc);
2051			return -EINVAL;
2052		}
2053		return 0;
2054	}
2055
 
 
 
 
 
 
 
2056	/* Device address */
2057	rc = of_property_read_u32(nc, "reg", &value);
2058	if (rc) {
 
2059		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2060			nc, rc);
2061		return rc;
2062	}
2063	spi->chip_select = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065	/* Device speed */
2066	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2067		spi->max_speed_hz = value;
2068
 
 
 
 
 
2069	return 0;
2070}
2071
2072static struct spi_device *
2073of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2074{
2075	struct spi_device *spi;
2076	int rc;
2077
2078	/* Alloc an spi_device */
2079	spi = spi_alloc_device(ctlr);
2080	if (!spi) {
2081		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2082		rc = -ENOMEM;
2083		goto err_out;
2084	}
2085
2086	/* Select device driver */
2087	rc = of_modalias_node(nc, spi->modalias,
2088				sizeof(spi->modalias));
2089	if (rc < 0) {
2090		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2091		goto err_out;
2092	}
2093
2094	rc = of_spi_parse_dt(ctlr, spi, nc);
2095	if (rc)
2096		goto err_out;
2097
2098	/* Store a pointer to the node in the device structure */
2099	of_node_get(nc);
2100	spi->dev.of_node = nc;
2101	spi->dev.fwnode = of_fwnode_handle(nc);
2102
2103	/* Register the new device */
2104	rc = spi_add_device(spi);
2105	if (rc) {
2106		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2107		goto err_of_node_put;
2108	}
2109
2110	return spi;
2111
2112err_of_node_put:
2113	of_node_put(nc);
2114err_out:
2115	spi_dev_put(spi);
2116	return ERR_PTR(rc);
2117}
2118
2119/**
2120 * of_register_spi_devices() - Register child devices onto the SPI bus
2121 * @ctlr:	Pointer to spi_controller device
2122 *
2123 * Registers an spi_device for each child node of controller node which
2124 * represents a valid SPI slave.
2125 */
2126static void of_register_spi_devices(struct spi_controller *ctlr)
2127{
2128	struct spi_device *spi;
2129	struct device_node *nc;
2130
2131	if (!ctlr->dev.of_node)
2132		return;
2133
2134	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2135		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2136			continue;
2137		spi = of_register_spi_device(ctlr, nc);
2138		if (IS_ERR(spi)) {
2139			dev_warn(&ctlr->dev,
2140				 "Failed to create SPI device for %pOF\n", nc);
2141			of_node_clear_flag(nc, OF_POPULATED);
2142		}
2143	}
2144}
2145#else
2146static void of_register_spi_devices(struct spi_controller *ctlr) { }
2147#endif
2148
2149/**
2150 * spi_new_ancillary_device() - Register ancillary SPI device
2151 * @spi:         Pointer to the main SPI device registering the ancillary device
2152 * @chip_select: Chip Select of the ancillary device
2153 *
2154 * Register an ancillary SPI device; for example some chips have a chip-select
2155 * for normal device usage and another one for setup/firmware upload.
2156 *
2157 * This may only be called from main SPI device's probe routine.
2158 *
2159 * Return: 0 on success; negative errno on failure
2160 */
2161struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2162					     u8 chip_select)
2163{
 
2164	struct spi_device *ancillary;
2165	int rc = 0;
2166
2167	/* Alloc an spi_device */
2168	ancillary = spi_alloc_device(spi->controller);
2169	if (!ancillary) {
2170		rc = -ENOMEM;
2171		goto err_out;
2172	}
2173
2174	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2175
2176	/* Use provided chip-select for ancillary device */
2177	ancillary->chip_select = chip_select;
 
2178
2179	/* Take over SPI mode/speed from SPI main device */
2180	ancillary->max_speed_hz = spi->max_speed_hz;
2181	ancillary->mode = spi->mode;
 
 
 
 
 
 
 
2182
2183	/* Register the new device */
2184	rc = spi_add_device_locked(ancillary);
2185	if (rc) {
2186		dev_err(&spi->dev, "failed to register ancillary device\n");
2187		goto err_out;
2188	}
2189
2190	return ancillary;
2191
2192err_out:
2193	spi_dev_put(ancillary);
2194	return ERR_PTR(rc);
2195}
2196EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2197
2198#ifdef CONFIG_ACPI
2199struct acpi_spi_lookup {
2200	struct spi_controller 	*ctlr;
2201	u32			max_speed_hz;
2202	u32			mode;
2203	int			irq;
2204	u8			bits_per_word;
2205	u8			chip_select;
 
 
2206};
2207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2209					    struct acpi_spi_lookup *lookup)
2210{
2211	const union acpi_object *obj;
2212
2213	if (!x86_apple_machine)
2214		return;
2215
2216	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2217	    && obj->buffer.length >= 4)
2218		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2219
2220	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2221	    && obj->buffer.length == 8)
2222		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2223
2224	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2225	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2226		lookup->mode |= SPI_LSB_FIRST;
2227
2228	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2229	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2230		lookup->mode |= SPI_CPOL;
2231
2232	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2233	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2234		lookup->mode |= SPI_CPHA;
2235}
2236
2237static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2238{
2239	struct acpi_spi_lookup *lookup = data;
2240	struct spi_controller *ctlr = lookup->ctlr;
2241
2242	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2243		struct acpi_resource_spi_serialbus *sb;
2244		acpi_handle parent_handle;
2245		acpi_status status;
2246
2247		sb = &ares->data.spi_serial_bus;
2248		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2249
 
 
 
2250			status = acpi_get_handle(NULL,
2251						 sb->resource_source.string_ptr,
2252						 &parent_handle);
2253
2254			if (ACPI_FAILURE(status) ||
2255			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2256				return -ENODEV;
2257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258			/*
2259			 * ACPI DeviceSelection numbering is handled by the
2260			 * host controller driver in Windows and can vary
2261			 * from driver to driver. In Linux we always expect
2262			 * 0 .. max - 1 so we need to ask the driver to
2263			 * translate between the two schemes.
2264			 */
2265			if (ctlr->fw_translate_cs) {
2266				int cs = ctlr->fw_translate_cs(ctlr,
2267						sb->device_selection);
2268				if (cs < 0)
2269					return cs;
2270				lookup->chip_select = cs;
2271			} else {
2272				lookup->chip_select = sb->device_selection;
2273			}
2274
2275			lookup->max_speed_hz = sb->connection_speed;
2276			lookup->bits_per_word = sb->data_bit_length;
2277
2278			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2279				lookup->mode |= SPI_CPHA;
2280			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2281				lookup->mode |= SPI_CPOL;
2282			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2283				lookup->mode |= SPI_CS_HIGH;
2284		}
2285	} else if (lookup->irq < 0) {
2286		struct resource r;
2287
2288		if (acpi_dev_resource_interrupt(ares, 0, &r))
2289			lookup->irq = r.start;
2290	}
2291
2292	/* Always tell the ACPI core to skip this resource */
2293	return 1;
2294}
2295
2296static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2297					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298{
2299	acpi_handle parent_handle = NULL;
2300	struct list_head resource_list;
2301	struct acpi_spi_lookup lookup = {};
2302	struct spi_device *spi;
2303	int ret;
2304
2305	if (acpi_bus_get_status(adev) || !adev->status.present ||
2306	    acpi_device_enumerated(adev))
2307		return AE_OK;
2308
2309	lookup.ctlr		= ctlr;
2310	lookup.irq		= -1;
 
 
2311
2312	INIT_LIST_HEAD(&resource_list);
2313	ret = acpi_dev_get_resources(adev, &resource_list,
2314				     acpi_spi_add_resource, &lookup);
2315	acpi_dev_free_resource_list(&resource_list);
2316
2317	if (ret < 0)
2318		/* found SPI in _CRS but it points to another controller */
2319		return AE_OK;
2320
2321	if (!lookup.max_speed_hz &&
2322	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2323	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2324		/* Apple does not use _CRS but nested devices for SPI slaves */
2325		acpi_spi_parse_apple_properties(adev, &lookup);
2326	}
2327
2328	if (!lookup.max_speed_hz)
2329		return AE_OK;
2330
2331	spi = spi_alloc_device(ctlr);
2332	if (!spi) {
2333		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2334			dev_name(&adev->dev));
2335		return AE_NO_MEMORY;
2336	}
2337
 
 
2338
2339	ACPI_COMPANION_SET(&spi->dev, adev);
2340	spi->max_speed_hz	= lookup.max_speed_hz;
2341	spi->mode		|= lookup.mode;
2342	spi->irq		= lookup.irq;
2343	spi->bits_per_word	= lookup.bits_per_word;
2344	spi->chip_select	= lookup.chip_select;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345
2346	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2347			  sizeof(spi->modalias));
2348
2349	if (spi->irq < 0)
2350		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2351
2352	acpi_device_set_enumerated(adev);
2353
2354	adev->power.flags.ignore_parent = true;
2355	if (spi_add_device(spi)) {
2356		adev->power.flags.ignore_parent = false;
2357		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2358			dev_name(&adev->dev));
2359		spi_dev_put(spi);
2360	}
2361
2362	return AE_OK;
2363}
2364
2365static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2366				       void *data, void **return_value)
2367{
 
2368	struct spi_controller *ctlr = data;
2369	struct acpi_device *adev;
2370
2371	if (acpi_bus_get_device(handle, &adev))
2372		return AE_OK;
2373
2374	return acpi_register_spi_device(ctlr, adev);
2375}
2376
2377#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2378
2379static void acpi_register_spi_devices(struct spi_controller *ctlr)
2380{
2381	acpi_status status;
2382	acpi_handle handle;
2383
2384	handle = ACPI_HANDLE(ctlr->dev.parent);
2385	if (!handle)
2386		return;
2387
2388	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2389				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2390				     acpi_spi_add_device, NULL, ctlr, NULL);
2391	if (ACPI_FAILURE(status))
2392		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2393}
2394#else
2395static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2396#endif /* CONFIG_ACPI */
2397
2398static void spi_controller_release(struct device *dev)
2399{
2400	struct spi_controller *ctlr;
2401
2402	ctlr = container_of(dev, struct spi_controller, dev);
2403	kfree(ctlr);
2404}
2405
2406static struct class spi_master_class = {
2407	.name		= "spi_master",
2408	.owner		= THIS_MODULE,
2409	.dev_release	= spi_controller_release,
2410	.dev_groups	= spi_master_groups,
2411};
2412
2413#ifdef CONFIG_SPI_SLAVE
2414/**
2415 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2416 *		     controller
2417 * @spi: device used for the current transfer
2418 */
2419int spi_slave_abort(struct spi_device *spi)
2420{
2421	struct spi_controller *ctlr = spi->controller;
2422
2423	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2424		return ctlr->slave_abort(ctlr);
2425
2426	return -ENOTSUPP;
2427}
2428EXPORT_SYMBOL_GPL(spi_slave_abort);
2429
2430static int match_true(struct device *dev, void *data)
2431{
2432	return 1;
2433}
2434
2435static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2436			  char *buf)
2437{
2438	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2439						   dev);
2440	struct device *child;
2441
2442	child = device_find_child(&ctlr->dev, NULL, match_true);
2443	return sprintf(buf, "%s\n",
2444		       child ? to_spi_device(child)->modalias : NULL);
2445}
2446
2447static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2448			   const char *buf, size_t count)
2449{
2450	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2451						   dev);
2452	struct spi_device *spi;
2453	struct device *child;
2454	char name[32];
2455	int rc;
2456
2457	rc = sscanf(buf, "%31s", name);
2458	if (rc != 1 || !name[0])
2459		return -EINVAL;
2460
2461	child = device_find_child(&ctlr->dev, NULL, match_true);
2462	if (child) {
2463		/* Remove registered slave */
2464		device_unregister(child);
2465		put_device(child);
2466	}
2467
2468	if (strcmp(name, "(null)")) {
2469		/* Register new slave */
2470		spi = spi_alloc_device(ctlr);
2471		if (!spi)
2472			return -ENOMEM;
2473
2474		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2475
2476		rc = spi_add_device(spi);
2477		if (rc) {
2478			spi_dev_put(spi);
2479			return rc;
2480		}
2481	}
2482
2483	return count;
2484}
2485
2486static DEVICE_ATTR_RW(slave);
2487
2488static struct attribute *spi_slave_attrs[] = {
2489	&dev_attr_slave.attr,
2490	NULL,
2491};
2492
2493static const struct attribute_group spi_slave_group = {
2494	.attrs = spi_slave_attrs,
2495};
2496
2497static const struct attribute_group *spi_slave_groups[] = {
2498	&spi_controller_statistics_group,
2499	&spi_slave_group,
2500	NULL,
2501};
2502
2503static struct class spi_slave_class = {
2504	.name		= "spi_slave",
2505	.owner		= THIS_MODULE,
2506	.dev_release	= spi_controller_release,
2507	.dev_groups	= spi_slave_groups,
2508};
2509#else
2510extern struct class spi_slave_class;	/* dummy */
2511#endif
2512
2513/**
2514 * __spi_alloc_controller - allocate an SPI master or slave controller
2515 * @dev: the controller, possibly using the platform_bus
2516 * @size: how much zeroed driver-private data to allocate; the pointer to this
2517 *	memory is in the driver_data field of the returned device, accessible
2518 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2519 *	drivers granting DMA access to portions of their private data need to
2520 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2521 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2522 *	slave (true) controller
2523 * Context: can sleep
2524 *
2525 * This call is used only by SPI controller drivers, which are the
2526 * only ones directly touching chip registers.  It's how they allocate
2527 * an spi_controller structure, prior to calling spi_register_controller().
2528 *
2529 * This must be called from context that can sleep.
2530 *
2531 * The caller is responsible for assigning the bus number and initializing the
2532 * controller's methods before calling spi_register_controller(); and (after
2533 * errors adding the device) calling spi_controller_put() to prevent a memory
2534 * leak.
2535 *
2536 * Return: the SPI controller structure on success, else NULL.
2537 */
2538struct spi_controller *__spi_alloc_controller(struct device *dev,
2539					      unsigned int size, bool slave)
2540{
2541	struct spi_controller	*ctlr;
2542	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2543
2544	if (!dev)
2545		return NULL;
2546
2547	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2548	if (!ctlr)
2549		return NULL;
2550
2551	device_initialize(&ctlr->dev);
2552	INIT_LIST_HEAD(&ctlr->queue);
2553	spin_lock_init(&ctlr->queue_lock);
2554	spin_lock_init(&ctlr->bus_lock_spinlock);
2555	mutex_init(&ctlr->bus_lock_mutex);
2556	mutex_init(&ctlr->io_mutex);
2557	mutex_init(&ctlr->add_lock);
2558	ctlr->bus_num = -1;
2559	ctlr->num_chipselect = 1;
2560	ctlr->slave = slave;
2561	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2562		ctlr->dev.class = &spi_slave_class;
2563	else
2564		ctlr->dev.class = &spi_master_class;
2565	ctlr->dev.parent = dev;
2566	pm_suspend_ignore_children(&ctlr->dev, true);
2567	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2568
2569	return ctlr;
2570}
2571EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2572
2573static void devm_spi_release_controller(struct device *dev, void *ctlr)
2574{
2575	spi_controller_put(*(struct spi_controller **)ctlr);
2576}
2577
2578/**
2579 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2580 * @dev: physical device of SPI controller
2581 * @size: how much zeroed driver-private data to allocate
2582 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2583 * Context: can sleep
2584 *
2585 * Allocate an SPI controller and automatically release a reference on it
2586 * when @dev is unbound from its driver.  Drivers are thus relieved from
2587 * having to call spi_controller_put().
2588 *
2589 * The arguments to this function are identical to __spi_alloc_controller().
2590 *
2591 * Return: the SPI controller structure on success, else NULL.
2592 */
2593struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2594						   unsigned int size,
2595						   bool slave)
2596{
2597	struct spi_controller **ptr, *ctlr;
2598
2599	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2600			   GFP_KERNEL);
2601	if (!ptr)
2602		return NULL;
2603
2604	ctlr = __spi_alloc_controller(dev, size, slave);
2605	if (ctlr) {
2606		ctlr->devm_allocated = true;
2607		*ptr = ctlr;
2608		devres_add(dev, ptr);
2609	} else {
2610		devres_free(ptr);
2611	}
2612
2613	return ctlr;
2614}
2615EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2616
2617#ifdef CONFIG_OF
2618static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2619{
2620	int nb, i, *cs;
2621	struct device_node *np = ctlr->dev.of_node;
2622
2623	if (!np)
2624		return 0;
2625
2626	nb = of_gpio_named_count(np, "cs-gpios");
2627	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2628
2629	/* Return error only for an incorrectly formed cs-gpios property */
2630	if (nb == 0 || nb == -ENOENT)
2631		return 0;
2632	else if (nb < 0)
2633		return nb;
2634
2635	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2636			  GFP_KERNEL);
2637	ctlr->cs_gpios = cs;
2638
2639	if (!ctlr->cs_gpios)
2640		return -ENOMEM;
2641
2642	for (i = 0; i < ctlr->num_chipselect; i++)
2643		cs[i] = -ENOENT;
2644
2645	for (i = 0; i < nb; i++)
2646		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2647
2648	return 0;
2649}
2650#else
2651static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2652{
2653	return 0;
2654}
2655#endif
2656
2657/**
2658 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2659 * @ctlr: The SPI master to grab GPIO descriptors for
2660 */
2661static int spi_get_gpio_descs(struct spi_controller *ctlr)
2662{
2663	int nb, i;
2664	struct gpio_desc **cs;
2665	struct device *dev = &ctlr->dev;
2666	unsigned long native_cs_mask = 0;
2667	unsigned int num_cs_gpios = 0;
2668
2669	nb = gpiod_count(dev, "cs");
2670	if (nb < 0) {
2671		/* No GPIOs at all is fine, else return the error */
2672		if (nb == -ENOENT)
2673			return 0;
2674		return nb;
2675	}
2676
2677	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2678
2679	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2680			  GFP_KERNEL);
2681	if (!cs)
2682		return -ENOMEM;
2683	ctlr->cs_gpiods = cs;
2684
2685	for (i = 0; i < nb; i++) {
2686		/*
2687		 * Most chipselects are active low, the inverted
2688		 * semantics are handled by special quirks in gpiolib,
2689		 * so initializing them GPIOD_OUT_LOW here means
2690		 * "unasserted", in most cases this will drive the physical
2691		 * line high.
2692		 */
2693		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2694						      GPIOD_OUT_LOW);
2695		if (IS_ERR(cs[i]))
2696			return PTR_ERR(cs[i]);
2697
2698		if (cs[i]) {
2699			/*
2700			 * If we find a CS GPIO, name it after the device and
2701			 * chip select line.
2702			 */
2703			char *gpioname;
2704
2705			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2706						  dev_name(dev), i);
2707			if (!gpioname)
2708				return -ENOMEM;
2709			gpiod_set_consumer_name(cs[i], gpioname);
2710			num_cs_gpios++;
2711			continue;
2712		}
2713
2714		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2715			dev_err(dev, "Invalid native chip select %d\n", i);
2716			return -EINVAL;
2717		}
2718		native_cs_mask |= BIT(i);
2719	}
2720
2721	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2722
2723	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2724	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2725		dev_err(dev, "No unused native chip select available\n");
2726		return -EINVAL;
2727	}
2728
2729	return 0;
2730}
2731
2732static int spi_controller_check_ops(struct spi_controller *ctlr)
2733{
2734	/*
2735	 * The controller may implement only the high-level SPI-memory like
2736	 * operations if it does not support regular SPI transfers, and this is
2737	 * valid use case.
2738	 * If ->mem_ops is NULL, we request that at least one of the
2739	 * ->transfer_xxx() method be implemented.
2740	 */
2741	if (ctlr->mem_ops) {
2742		if (!ctlr->mem_ops->exec_op)
 
2743			return -EINVAL;
2744	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2745		   !ctlr->transfer_one_message) {
2746		return -EINVAL;
2747	}
2748
2749	return 0;
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752/**
2753 * spi_register_controller - register SPI master or slave controller
2754 * @ctlr: initialized master, originally from spi_alloc_master() or
2755 *	spi_alloc_slave()
2756 * Context: can sleep
2757 *
2758 * SPI controllers connect to their drivers using some non-SPI bus,
2759 * such as the platform bus.  The final stage of probe() in that code
2760 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2761 *
2762 * SPI controllers use board specific (often SOC specific) bus numbers,
2763 * and board-specific addressing for SPI devices combines those numbers
2764 * with chip select numbers.  Since SPI does not directly support dynamic
2765 * device identification, boards need configuration tables telling which
2766 * chip is at which address.
2767 *
2768 * This must be called from context that can sleep.  It returns zero on
2769 * success, else a negative error code (dropping the controller's refcount).
2770 * After a successful return, the caller is responsible for calling
2771 * spi_unregister_controller().
2772 *
2773 * Return: zero on success, else a negative error code.
2774 */
2775int spi_register_controller(struct spi_controller *ctlr)
2776{
2777	struct device		*dev = ctlr->dev.parent;
2778	struct boardinfo	*bi;
 
2779	int			status;
2780	int			id, first_dynamic;
2781
2782	if (!dev)
2783		return -ENODEV;
2784
2785	/*
2786	 * Make sure all necessary hooks are implemented before registering
2787	 * the SPI controller.
2788	 */
2789	status = spi_controller_check_ops(ctlr);
2790	if (status)
2791		return status;
2792
 
 
2793	if (ctlr->bus_num >= 0) {
2794		/* devices with a fixed bus num must check-in with the num */
2795		mutex_lock(&board_lock);
2796		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2797			ctlr->bus_num + 1, GFP_KERNEL);
2798		mutex_unlock(&board_lock);
2799		if (WARN(id < 0, "couldn't get idr"))
2800			return id == -ENOSPC ? -EBUSY : id;
2801		ctlr->bus_num = id;
2802	} else if (ctlr->dev.of_node) {
2803		/* allocate dynamic bus number using Linux idr */
2804		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2805		if (id >= 0) {
2806			ctlr->bus_num = id;
2807			mutex_lock(&board_lock);
2808			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2809				       ctlr->bus_num + 1, GFP_KERNEL);
2810			mutex_unlock(&board_lock);
2811			if (WARN(id < 0, "couldn't get idr"))
2812				return id == -ENOSPC ? -EBUSY : id;
2813		}
2814	}
2815	if (ctlr->bus_num < 0) {
2816		first_dynamic = of_alias_get_highest_id("spi");
2817		if (first_dynamic < 0)
2818			first_dynamic = 0;
2819		else
2820			first_dynamic++;
2821
2822		mutex_lock(&board_lock);
2823		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2824			       0, GFP_KERNEL);
2825		mutex_unlock(&board_lock);
2826		if (WARN(id < 0, "couldn't get idr"))
2827			return id;
2828		ctlr->bus_num = id;
2829	}
2830	ctlr->bus_lock_flag = 0;
2831	init_completion(&ctlr->xfer_completion);
 
2832	if (!ctlr->max_dma_len)
2833		ctlr->max_dma_len = INT_MAX;
2834
2835	/* register the device, then userspace will see it.
2836	 * registration fails if the bus ID is in use.
 
2837	 */
2838	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2839
2840	if (!spi_controller_is_slave(ctlr)) {
2841		if (ctlr->use_gpio_descriptors) {
2842			status = spi_get_gpio_descs(ctlr);
2843			if (status)
2844				goto free_bus_id;
2845			/*
2846			 * A controller using GPIO descriptors always
2847			 * supports SPI_CS_HIGH if need be.
2848			 */
2849			ctlr->mode_bits |= SPI_CS_HIGH;
2850		} else {
2851			/* Legacy code path for GPIOs from DT */
2852			status = of_spi_get_gpio_numbers(ctlr);
2853			if (status)
2854				goto free_bus_id;
2855		}
2856	}
2857
2858	/*
2859	 * Even if it's just one always-selected device, there must
2860	 * be at least one chipselect.
2861	 */
2862	if (!ctlr->num_chipselect) {
2863		status = -EINVAL;
2864		goto free_bus_id;
2865	}
2866
 
 
 
 
2867	status = device_add(&ctlr->dev);
2868	if (status < 0)
2869		goto free_bus_id;
2870	dev_dbg(dev, "registered %s %s\n",
2871			spi_controller_is_slave(ctlr) ? "slave" : "master",
2872			dev_name(&ctlr->dev));
2873
2874	/*
2875	 * If we're using a queued driver, start the queue. Note that we don't
2876	 * need the queueing logic if the driver is only supporting high-level
2877	 * memory operations.
2878	 */
2879	if (ctlr->transfer) {
2880		dev_info(dev, "controller is unqueued, this is deprecated\n");
2881	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2882		status = spi_controller_initialize_queue(ctlr);
2883		if (status) {
2884			device_del(&ctlr->dev);
2885			goto free_bus_id;
2886		}
2887	}
2888	/* add statistics */
2889	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2890
2891	mutex_lock(&board_lock);
2892	list_add_tail(&ctlr->list, &spi_controller_list);
2893	list_for_each_entry(bi, &board_list, list)
2894		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2895	mutex_unlock(&board_lock);
2896
2897	/* Register devices from the device tree and ACPI */
2898	of_register_spi_devices(ctlr);
2899	acpi_register_spi_devices(ctlr);
2900	return status;
2901
 
 
2902free_bus_id:
2903	mutex_lock(&board_lock);
2904	idr_remove(&spi_master_idr, ctlr->bus_num);
2905	mutex_unlock(&board_lock);
2906	return status;
2907}
2908EXPORT_SYMBOL_GPL(spi_register_controller);
2909
2910static void devm_spi_unregister(void *ctlr)
2911{
2912	spi_unregister_controller(ctlr);
2913}
2914
2915/**
2916 * devm_spi_register_controller - register managed SPI master or slave
2917 *	controller
2918 * @dev:    device managing SPI controller
2919 * @ctlr: initialized controller, originally from spi_alloc_master() or
2920 *	spi_alloc_slave()
2921 * Context: can sleep
2922 *
2923 * Register a SPI device as with spi_register_controller() which will
2924 * automatically be unregistered and freed.
2925 *
2926 * Return: zero on success, else a negative error code.
2927 */
2928int devm_spi_register_controller(struct device *dev,
2929				 struct spi_controller *ctlr)
2930{
 
2931	int ret;
2932
 
 
 
 
2933	ret = spi_register_controller(ctlr);
2934	if (ret)
2935		return ret;
 
 
 
 
2936
2937	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2938}
2939EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2940
2941static int __unregister(struct device *dev, void *null)
2942{
2943	spi_unregister_device(to_spi_device(dev));
2944	return 0;
2945}
2946
2947/**
2948 * spi_unregister_controller - unregister SPI master or slave controller
2949 * @ctlr: the controller being unregistered
2950 * Context: can sleep
2951 *
2952 * This call is used only by SPI controller drivers, which are the
2953 * only ones directly touching chip registers.
2954 *
2955 * This must be called from context that can sleep.
2956 *
2957 * Note that this function also drops a reference to the controller.
2958 */
2959void spi_unregister_controller(struct spi_controller *ctlr)
2960{
2961	struct spi_controller *found;
2962	int id = ctlr->bus_num;
2963
2964	/* Prevent addition of new devices, unregister existing ones */
2965	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2966		mutex_lock(&ctlr->add_lock);
2967
2968	device_for_each_child(&ctlr->dev, NULL, __unregister);
2969
2970	/* First make sure that this controller was ever added */
2971	mutex_lock(&board_lock);
2972	found = idr_find(&spi_master_idr, id);
2973	mutex_unlock(&board_lock);
2974	if (ctlr->queued) {
2975		if (spi_destroy_queue(ctlr))
2976			dev_err(&ctlr->dev, "queue remove failed\n");
2977	}
2978	mutex_lock(&board_lock);
2979	list_del(&ctlr->list);
2980	mutex_unlock(&board_lock);
2981
2982	device_del(&ctlr->dev);
2983
2984	/* Release the last reference on the controller if its driver
2985	 * has not yet been converted to devm_spi_alloc_master/slave().
2986	 */
2987	if (!ctlr->devm_allocated)
2988		put_device(&ctlr->dev);
2989
2990	/* free bus id */
2991	mutex_lock(&board_lock);
2992	if (found == ctlr)
2993		idr_remove(&spi_master_idr, id);
2994	mutex_unlock(&board_lock);
2995
2996	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2997		mutex_unlock(&ctlr->add_lock);
 
 
 
 
 
 
 
2998}
2999EXPORT_SYMBOL_GPL(spi_unregister_controller);
3000
3001int spi_controller_suspend(struct spi_controller *ctlr)
3002{
3003	int ret;
3004
3005	/* Basically no-ops for non-queued controllers */
3006	if (!ctlr->queued)
3007		return 0;
3008
3009	ret = spi_stop_queue(ctlr);
3010	if (ret)
3011		dev_err(&ctlr->dev, "queue stop failed\n");
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(spi_controller_suspend);
3016
3017int spi_controller_resume(struct spi_controller *ctlr)
3018{
3019	int ret;
3020
3021	if (!ctlr->queued)
3022		return 0;
3023
3024	ret = spi_start_queue(ctlr);
3025	if (ret)
3026		dev_err(&ctlr->dev, "queue restart failed\n");
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(spi_controller_resume);
3031
3032static int __spi_controller_match(struct device *dev, const void *data)
3033{
3034	struct spi_controller *ctlr;
3035	const u16 *bus_num = data;
3036
3037	ctlr = container_of(dev, struct spi_controller, dev);
3038	return ctlr->bus_num == *bus_num;
3039}
3040
3041/**
3042 * spi_busnum_to_master - look up master associated with bus_num
3043 * @bus_num: the master's bus number
3044 * Context: can sleep
3045 *
3046 * This call may be used with devices that are registered after
3047 * arch init time.  It returns a refcounted pointer to the relevant
3048 * spi_controller (which the caller must release), or NULL if there is
3049 * no such master registered.
3050 *
3051 * Return: the SPI master structure on success, else NULL.
3052 */
3053struct spi_controller *spi_busnum_to_master(u16 bus_num)
3054{
3055	struct device		*dev;
3056	struct spi_controller	*ctlr = NULL;
3057
3058	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3059				__spi_controller_match);
3060	if (dev)
3061		ctlr = container_of(dev, struct spi_controller, dev);
3062	/* reference got in class_find_device */
3063	return ctlr;
3064}
3065EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3066
3067/*-------------------------------------------------------------------------*/
3068
3069/* Core methods for SPI resource management */
3070
3071/**
3072 * spi_res_alloc - allocate a spi resource that is life-cycle managed
3073 *                 during the processing of a spi_message while using
3074 *                 spi_transfer_one
3075 * @spi:     the spi device for which we allocate memory
3076 * @release: the release code to execute for this resource
3077 * @size:    size to alloc and return
3078 * @gfp:     GFP allocation flags
3079 *
3080 * Return: the pointer to the allocated data
3081 *
3082 * This may get enhanced in the future to allocate from a memory pool
3083 * of the @spi_device or @spi_controller to avoid repeated allocations.
3084 */
3085void *spi_res_alloc(struct spi_device *spi,
3086		    spi_res_release_t release,
3087		    size_t size, gfp_t gfp)
3088{
3089	struct spi_res *sres;
3090
3091	sres = kzalloc(sizeof(*sres) + size, gfp);
3092	if (!sres)
3093		return NULL;
3094
3095	INIT_LIST_HEAD(&sres->entry);
3096	sres->release = release;
3097
3098	return sres->data;
3099}
3100EXPORT_SYMBOL_GPL(spi_res_alloc);
3101
3102/**
3103 * spi_res_free - free an spi resource
3104 * @res: pointer to the custom data of a resource
3105 *
3106 */
3107void spi_res_free(void *res)
3108{
3109	struct spi_res *sres = container_of(res, struct spi_res, data);
3110
3111	if (!res)
3112		return;
3113
3114	WARN_ON(!list_empty(&sres->entry));
3115	kfree(sres);
3116}
3117EXPORT_SYMBOL_GPL(spi_res_free);
3118
3119/**
3120 * spi_res_add - add a spi_res to the spi_message
3121 * @message: the spi message
3122 * @res:     the spi_resource
3123 */
3124void spi_res_add(struct spi_message *message, void *res)
3125{
3126	struct spi_res *sres = container_of(res, struct spi_res, data);
3127
3128	WARN_ON(!list_empty(&sres->entry));
3129	list_add_tail(&sres->entry, &message->resources);
3130}
3131EXPORT_SYMBOL_GPL(spi_res_add);
3132
3133/**
3134 * spi_res_release - release all spi resources for this message
3135 * @ctlr:  the @spi_controller
3136 * @message: the @spi_message
3137 */
3138void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3139{
3140	struct spi_res *res, *tmp;
3141
3142	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3143		if (res->release)
3144			res->release(ctlr, message, res->data);
3145
3146		list_del(&res->entry);
3147
3148		kfree(res);
3149	}
 
3150}
3151EXPORT_SYMBOL_GPL(spi_res_release);
3152
3153/*-------------------------------------------------------------------------*/
3154
3155/* Core methods for spi_message alterations */
3156
3157static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3158					    struct spi_message *msg,
3159					    void *res)
3160{
3161	struct spi_replaced_transfers *rxfer = res;
3162	size_t i;
3163
3164	/* call extra callback if requested */
3165	if (rxfer->release)
3166		rxfer->release(ctlr, msg, res);
3167
3168	/* insert replaced transfers back into the message */
3169	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3170
3171	/* remove the formerly inserted entries */
3172	for (i = 0; i < rxfer->inserted; i++)
3173		list_del(&rxfer->inserted_transfers[i].transfer_list);
3174}
3175
3176/**
3177 * spi_replace_transfers - replace transfers with several transfers
3178 *                         and register change with spi_message.resources
3179 * @msg:           the spi_message we work upon
3180 * @xfer_first:    the first spi_transfer we want to replace
3181 * @remove:        number of transfers to remove
3182 * @insert:        the number of transfers we want to insert instead
3183 * @release:       extra release code necessary in some circumstances
3184 * @extradatasize: extra data to allocate (with alignment guarantees
3185 *                 of struct @spi_transfer)
3186 * @gfp:           gfp flags
3187 *
3188 * Returns: pointer to @spi_replaced_transfers,
3189 *          PTR_ERR(...) in case of errors.
3190 */
3191struct spi_replaced_transfers *spi_replace_transfers(
3192	struct spi_message *msg,
3193	struct spi_transfer *xfer_first,
3194	size_t remove,
3195	size_t insert,
3196	spi_replaced_release_t release,
3197	size_t extradatasize,
3198	gfp_t gfp)
3199{
3200	struct spi_replaced_transfers *rxfer;
3201	struct spi_transfer *xfer;
3202	size_t i;
3203
3204	/* allocate the structure using spi_res */
3205	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3206			      struct_size(rxfer, inserted_transfers, insert)
3207			      + extradatasize,
3208			      gfp);
3209	if (!rxfer)
3210		return ERR_PTR(-ENOMEM);
3211
3212	/* the release code to invoke before running the generic release */
3213	rxfer->release = release;
3214
3215	/* assign extradata */
3216	if (extradatasize)
3217		rxfer->extradata =
3218			&rxfer->inserted_transfers[insert];
3219
3220	/* init the replaced_transfers list */
3221	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3222
3223	/* assign the list_entry after which we should reinsert
 
3224	 * the @replaced_transfers - it may be spi_message.messages!
3225	 */
3226	rxfer->replaced_after = xfer_first->transfer_list.prev;
3227
3228	/* remove the requested number of transfers */
3229	for (i = 0; i < remove; i++) {
3230		/* if the entry after replaced_after it is msg->transfers
 
3231		 * then we have been requested to remove more transfers
3232		 * than are in the list
3233		 */
3234		if (rxfer->replaced_after->next == &msg->transfers) {
3235			dev_err(&msg->spi->dev,
3236				"requested to remove more spi_transfers than are available\n");
3237			/* insert replaced transfers back into the message */
3238			list_splice(&rxfer->replaced_transfers,
3239				    rxfer->replaced_after);
3240
3241			/* free the spi_replace_transfer structure */
3242			spi_res_free(rxfer);
3243
3244			/* and return with an error */
3245			return ERR_PTR(-EINVAL);
3246		}
3247
3248		/* remove the entry after replaced_after from list of
3249		 * transfers and add it to list of replaced_transfers
 
3250		 */
3251		list_move_tail(rxfer->replaced_after->next,
3252			       &rxfer->replaced_transfers);
3253	}
3254
3255	/* create copy of the given xfer with identical settings
3256	 * based on the first transfer to get removed
 
3257	 */
3258	for (i = 0; i < insert; i++) {
3259		/* we need to run in reverse order */
3260		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3261
3262		/* copy all spi_transfer data */
3263		memcpy(xfer, xfer_first, sizeof(*xfer));
3264
3265		/* add to list */
3266		list_add(&xfer->transfer_list, rxfer->replaced_after);
3267
3268		/* clear cs_change and delay for all but the last */
3269		if (i) {
3270			xfer->cs_change = false;
3271			xfer->delay.value = 0;
3272		}
3273	}
3274
3275	/* set up inserted */
3276	rxfer->inserted = insert;
3277
3278	/* and register it with spi_res/spi_message */
3279	spi_res_add(msg, rxfer);
3280
3281	return rxfer;
3282}
3283EXPORT_SYMBOL_GPL(spi_replace_transfers);
3284
3285static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3286					struct spi_message *msg,
3287					struct spi_transfer **xferp,
3288					size_t maxsize,
3289					gfp_t gfp)
3290{
3291	struct spi_transfer *xfer = *xferp, *xfers;
3292	struct spi_replaced_transfers *srt;
3293	size_t offset;
3294	size_t count, i;
3295
3296	/* calculate how many we have to replace */
3297	count = DIV_ROUND_UP(xfer->len, maxsize);
3298
3299	/* create replacement */
3300	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3301	if (IS_ERR(srt))
3302		return PTR_ERR(srt);
3303	xfers = srt->inserted_transfers;
3304
3305	/* now handle each of those newly inserted spi_transfers
3306	 * note that the replacements spi_transfers all are preset
 
3307	 * to the same values as *xferp, so tx_buf, rx_buf and len
3308	 * are all identical (as well as most others)
3309	 * so we just have to fix up len and the pointers.
3310	 *
3311	 * this also includes support for the depreciated
3312	 * spi_message.is_dma_mapped interface
3313	 */
3314
3315	/* the first transfer just needs the length modified, so we
3316	 * run it outside the loop
 
3317	 */
3318	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3319
3320	/* all the others need rx_buf/tx_buf also set */
3321	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3322		/* update rx_buf, tx_buf and dma */
3323		if (xfers[i].rx_buf)
3324			xfers[i].rx_buf += offset;
3325		if (xfers[i].rx_dma)
3326			xfers[i].rx_dma += offset;
3327		if (xfers[i].tx_buf)
3328			xfers[i].tx_buf += offset;
3329		if (xfers[i].tx_dma)
3330			xfers[i].tx_dma += offset;
3331
3332		/* update length */
3333		xfers[i].len = min(maxsize, xfers[i].len - offset);
3334	}
3335
3336	/* we set up xferp to the last entry we have inserted,
3337	 * so that we skip those already split transfers
 
3338	 */
3339	*xferp = &xfers[count - 1];
3340
3341	/* increment statistics counters */
3342	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3343				       transfers_split_maxsize);
3344	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3345				       transfers_split_maxsize);
3346
3347	return 0;
3348}
3349
3350/**
3351 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3352 *                               when an individual transfer exceeds a
3353 *                               certain size
3354 * @ctlr:    the @spi_controller for this transfer
3355 * @msg:   the @spi_message to transform
3356 * @maxsize:  the maximum when to apply this
3357 * @gfp: GFP allocation flags
 
 
 
3358 *
3359 * Return: status of transformation
3360 */
3361int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3362				struct spi_message *msg,
3363				size_t maxsize,
3364				gfp_t gfp)
3365{
3366	struct spi_transfer *xfer;
3367	int ret;
3368
3369	/* iterate over the transfer_list,
 
3370	 * but note that xfer is advanced to the last transfer inserted
3371	 * to avoid checking sizes again unnecessarily (also xfer does
3372	 * potentiall belong to a different list by the time the
3373	 * replacement has happened
3374	 */
3375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3376		if (xfer->len > maxsize) {
3377			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3378							   maxsize, gfp);
3379			if (ret)
3380				return ret;
3381		}
3382	}
3383
3384	return 0;
3385}
3386EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388/*-------------------------------------------------------------------------*/
3389
3390/* Core methods for SPI controller protocol drivers.  Some of the
 
3391 * other core methods are currently defined as inline functions.
3392 */
3393
3394static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3395					u8 bits_per_word)
3396{
3397	if (ctlr->bits_per_word_mask) {
3398		/* Only 32 bits fit in the mask */
3399		if (bits_per_word > 32)
3400			return -EINVAL;
3401		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3402			return -EINVAL;
3403	}
3404
3405	return 0;
3406}
3407
3408/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409 * spi_setup - setup SPI mode and clock rate
3410 * @spi: the device whose settings are being modified
3411 * Context: can sleep, and no requests are queued to the device
3412 *
3413 * SPI protocol drivers may need to update the transfer mode if the
3414 * device doesn't work with its default.  They may likewise need
3415 * to update clock rates or word sizes from initial values.  This function
3416 * changes those settings, and must be called from a context that can sleep.
3417 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3418 * effect the next time the device is selected and data is transferred to
3419 * or from it.  When this function returns, the spi device is deselected.
3420 *
3421 * Note that this call will fail if the protocol driver specifies an option
3422 * that the underlying controller or its driver does not support.  For
3423 * example, not all hardware supports wire transfers using nine bit words,
3424 * LSB-first wire encoding, or active-high chipselects.
3425 *
3426 * Return: zero on success, else a negative error code.
3427 */
3428int spi_setup(struct spi_device *spi)
3429{
3430	unsigned	bad_bits, ugly_bits;
3431	int		status;
3432
3433	/*
3434	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3435	 * are set at the same time
3436	 */
3437	if ((hweight_long(spi->mode &
3438		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3439	    (hweight_long(spi->mode &
3440		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3441		dev_err(&spi->dev,
3442		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3443		return -EINVAL;
3444	}
3445	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3446	 */
3447	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3448		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3449		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3450		return -EINVAL;
3451	/* help drivers fail *cleanly* when they need options
3452	 * that aren't supported with their current controller
 
 
 
 
 
 
 
3453	 * SPI_CS_WORD has a fallback software implementation,
3454	 * so it is ignored here.
3455	 */
3456	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3457				 SPI_NO_TX | SPI_NO_RX);
3458	/* nothing prevents from working with active-high CS in case if it
3459	 * is driven by GPIO.
3460	 */
3461	if (gpio_is_valid(spi->cs_gpio))
3462		bad_bits &= ~SPI_CS_HIGH;
3463	ugly_bits = bad_bits &
3464		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3465		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3466	if (ugly_bits) {
3467		dev_warn(&spi->dev,
3468			 "setup: ignoring unsupported mode bits %x\n",
3469			 ugly_bits);
3470		spi->mode &= ~ugly_bits;
3471		bad_bits &= ~ugly_bits;
3472	}
3473	if (bad_bits) {
3474		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3475			bad_bits);
3476		return -EINVAL;
3477	}
3478
3479	if (!spi->bits_per_word)
3480		spi->bits_per_word = 8;
3481
3482	status = __spi_validate_bits_per_word(spi->controller,
3483					      spi->bits_per_word);
3484	if (status)
3485		return status;
 
 
 
 
 
3486
3487	if (spi->controller->max_speed_hz &&
3488	    (!spi->max_speed_hz ||
3489	     spi->max_speed_hz > spi->controller->max_speed_hz))
3490		spi->max_speed_hz = spi->controller->max_speed_hz;
3491
3492	mutex_lock(&spi->controller->io_mutex);
3493
3494	if (spi->controller->setup) {
3495		status = spi->controller->setup(spi);
3496		if (status) {
3497			mutex_unlock(&spi->controller->io_mutex);
3498			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3499				status);
3500			return status;
3501		}
3502	}
3503
 
 
 
 
 
 
3504	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3505		status = pm_runtime_get_sync(spi->controller->dev.parent);
3506		if (status < 0) {
3507			mutex_unlock(&spi->controller->io_mutex);
3508			pm_runtime_put_noidle(spi->controller->dev.parent);
3509			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3510				status);
3511			return status;
3512		}
3513
3514		/*
3515		 * We do not want to return positive value from pm_runtime_get,
3516		 * there are many instances of devices calling spi_setup() and
3517		 * checking for a non-zero return value instead of a negative
3518		 * return value.
3519		 */
3520		status = 0;
3521
3522		spi_set_cs(spi, false, true);
3523		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3524		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3525	} else {
3526		spi_set_cs(spi, false, true);
3527	}
3528
3529	mutex_unlock(&spi->controller->io_mutex);
3530
3531	if (spi->rt && !spi->controller->rt) {
3532		spi->controller->rt = true;
3533		spi_set_thread_rt(spi->controller);
3534	}
3535
3536	trace_spi_setup(spi, status);
3537
3538	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3539			spi->mode & SPI_MODE_X_MASK,
3540			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3541			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3542			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3543			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3544			spi->bits_per_word, spi->max_speed_hz,
3545			status);
3546
3547	return status;
3548}
3549EXPORT_SYMBOL_GPL(spi_setup);
3550
3551static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3552				       struct spi_device *spi)
3553{
3554	int delay1, delay2;
3555
3556	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3557	if (delay1 < 0)
3558		return delay1;
3559
3560	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3561	if (delay2 < 0)
3562		return delay2;
3563
3564	if (delay1 < delay2)
3565		memcpy(&xfer->word_delay, &spi->word_delay,
3566		       sizeof(xfer->word_delay));
3567
3568	return 0;
3569}
3570
3571static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3572{
3573	struct spi_controller *ctlr = spi->controller;
3574	struct spi_transfer *xfer;
3575	int w_size;
3576
3577	if (list_empty(&message->transfers))
3578		return -EINVAL;
3579
3580	/* If an SPI controller does not support toggling the CS line on each
3581	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3582	 * for the CS line, we can emulate the CS-per-word hardware function by
3583	 * splitting transfers into one-word transfers and ensuring that
3584	 * cs_change is set for each transfer.
3585	 */
3586	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3587					  spi->cs_gpiod ||
3588					  gpio_is_valid(spi->cs_gpio))) {
3589		size_t maxsize;
3590		int ret;
3591
3592		maxsize = (spi->bits_per_word + 7) / 8;
3593
3594		/* spi_split_transfers_maxsize() requires message->spi */
3595		message->spi = spi;
3596
3597		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3598						  GFP_KERNEL);
3599		if (ret)
3600			return ret;
3601
3602		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3603			/* don't change cs_change on the last entry in the list */
3604			if (list_is_last(&xfer->transfer_list, &message->transfers))
3605				break;
3606			xfer->cs_change = 1;
3607		}
3608	}
3609
3610	/* Half-duplex links include original MicroWire, and ones with
3611	 * only one data pin like SPI_3WIRE (switches direction) or where
3612	 * either MOSI or MISO is missing.  They can also be caused by
3613	 * software limitations.
3614	 */
3615	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3616	    (spi->mode & SPI_3WIRE)) {
3617		unsigned flags = ctlr->flags;
3618
3619		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3620			if (xfer->rx_buf && xfer->tx_buf)
3621				return -EINVAL;
3622			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3623				return -EINVAL;
3624			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3625				return -EINVAL;
3626		}
3627	}
3628
3629	/**
3630	 * Set transfer bits_per_word and max speed as spi device default if
3631	 * it is not set for this transfer.
3632	 * Set transfer tx_nbits and rx_nbits as single transfer default
3633	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3634	 * Ensure transfer word_delay is at least as long as that required by
3635	 * device itself.
3636	 */
3637	message->frame_length = 0;
3638	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3639		xfer->effective_speed_hz = 0;
3640		message->frame_length += xfer->len;
3641		if (!xfer->bits_per_word)
3642			xfer->bits_per_word = spi->bits_per_word;
3643
3644		if (!xfer->speed_hz)
3645			xfer->speed_hz = spi->max_speed_hz;
3646
3647		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3648			xfer->speed_hz = ctlr->max_speed_hz;
3649
3650		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3651			return -EINVAL;
3652
3653		/*
3654		 * SPI transfer length should be multiple of SPI word size
3655		 * where SPI word size should be power-of-two multiple
3656		 */
3657		if (xfer->bits_per_word <= 8)
3658			w_size = 1;
3659		else if (xfer->bits_per_word <= 16)
3660			w_size = 2;
3661		else
3662			w_size = 4;
3663
3664		/* No partial transfers accepted */
3665		if (xfer->len % w_size)
3666			return -EINVAL;
3667
3668		if (xfer->speed_hz && ctlr->min_speed_hz &&
3669		    xfer->speed_hz < ctlr->min_speed_hz)
3670			return -EINVAL;
3671
3672		if (xfer->tx_buf && !xfer->tx_nbits)
3673			xfer->tx_nbits = SPI_NBITS_SINGLE;
3674		if (xfer->rx_buf && !xfer->rx_nbits)
3675			xfer->rx_nbits = SPI_NBITS_SINGLE;
3676		/* check transfer tx/rx_nbits:
 
3677		 * 1. check the value matches one of single, dual and quad
3678		 * 2. check tx/rx_nbits match the mode in spi_device
3679		 */
3680		if (xfer->tx_buf) {
3681			if (spi->mode & SPI_NO_TX)
3682				return -EINVAL;
3683			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3684				xfer->tx_nbits != SPI_NBITS_DUAL &&
3685				xfer->tx_nbits != SPI_NBITS_QUAD)
 
3686				return -EINVAL;
3687			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3688				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3689				return -EINVAL;
3690			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3691				!(spi->mode & SPI_TX_QUAD))
3692				return -EINVAL;
3693		}
3694		/* check transfer rx_nbits */
3695		if (xfer->rx_buf) {
3696			if (spi->mode & SPI_NO_RX)
3697				return -EINVAL;
3698			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3699				xfer->rx_nbits != SPI_NBITS_DUAL &&
3700				xfer->rx_nbits != SPI_NBITS_QUAD)
 
3701				return -EINVAL;
3702			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3703				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3704				return -EINVAL;
3705			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3706				!(spi->mode & SPI_RX_QUAD))
3707				return -EINVAL;
3708		}
3709
3710		if (_spi_xfer_word_delay_update(xfer, spi))
3711			return -EINVAL;
3712	}
3713
3714	message->status = -EINPROGRESS;
3715
3716	return 0;
3717}
3718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3719static int __spi_async(struct spi_device *spi, struct spi_message *message)
3720{
3721	struct spi_controller *ctlr = spi->controller;
3722	struct spi_transfer *xfer;
3723
3724	/*
3725	 * Some controllers do not support doing regular SPI transfers. Return
3726	 * ENOTSUPP when this is the case.
3727	 */
3728	if (!ctlr->transfer)
3729		return -ENOTSUPP;
3730
3731	message->spi = spi;
3732
3733	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3734	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3735
3736	trace_spi_message_submit(message);
3737
3738	if (!ctlr->ptp_sts_supported) {
3739		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3740			xfer->ptp_sts_word_pre = 0;
3741			ptp_read_system_prets(xfer->ptp_sts);
3742		}
3743	}
3744
3745	return ctlr->transfer(spi, message);
3746}
3747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3748/**
3749 * spi_async - asynchronous SPI transfer
3750 * @spi: device with which data will be exchanged
3751 * @message: describes the data transfers, including completion callback
3752 * Context: any (irqs may be blocked, etc)
3753 *
3754 * This call may be used in_irq and other contexts which can't sleep,
3755 * as well as from task contexts which can sleep.
3756 *
3757 * The completion callback is invoked in a context which can't sleep.
3758 * Before that invocation, the value of message->status is undefined.
3759 * When the callback is issued, message->status holds either zero (to
3760 * indicate complete success) or a negative error code.  After that
3761 * callback returns, the driver which issued the transfer request may
3762 * deallocate the associated memory; it's no longer in use by any SPI
3763 * core or controller driver code.
3764 *
3765 * Note that although all messages to a spi_device are handled in
3766 * FIFO order, messages may go to different devices in other orders.
3767 * Some device might be higher priority, or have various "hard" access
3768 * time requirements, for example.
3769 *
3770 * On detection of any fault during the transfer, processing of
3771 * the entire message is aborted, and the device is deselected.
3772 * Until returning from the associated message completion callback,
3773 * no other spi_message queued to that device will be processed.
3774 * (This rule applies equally to all the synchronous transfer calls,
3775 * which are wrappers around this core asynchronous primitive.)
3776 *
3777 * Return: zero on success, else a negative error code.
3778 */
3779int spi_async(struct spi_device *spi, struct spi_message *message)
3780{
3781	struct spi_controller *ctlr = spi->controller;
3782	int ret;
3783	unsigned long flags;
3784
3785	ret = __spi_validate(spi, message);
3786	if (ret != 0)
3787		return ret;
3788
3789	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3790
3791	if (ctlr->bus_lock_flag)
3792		ret = -EBUSY;
3793	else
3794		ret = __spi_async(spi, message);
3795
3796	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3797
3798	return ret;
3799}
3800EXPORT_SYMBOL_GPL(spi_async);
3801
3802/**
3803 * spi_async_locked - version of spi_async with exclusive bus usage
3804 * @spi: device with which data will be exchanged
3805 * @message: describes the data transfers, including completion callback
3806 * Context: any (irqs may be blocked, etc)
3807 *
3808 * This call may be used in_irq and other contexts which can't sleep,
3809 * as well as from task contexts which can sleep.
3810 *
3811 * The completion callback is invoked in a context which can't sleep.
3812 * Before that invocation, the value of message->status is undefined.
3813 * When the callback is issued, message->status holds either zero (to
3814 * indicate complete success) or a negative error code.  After that
3815 * callback returns, the driver which issued the transfer request may
3816 * deallocate the associated memory; it's no longer in use by any SPI
3817 * core or controller driver code.
3818 *
3819 * Note that although all messages to a spi_device are handled in
3820 * FIFO order, messages may go to different devices in other orders.
3821 * Some device might be higher priority, or have various "hard" access
3822 * time requirements, for example.
3823 *
3824 * On detection of any fault during the transfer, processing of
3825 * the entire message is aborted, and the device is deselected.
3826 * Until returning from the associated message completion callback,
3827 * no other spi_message queued to that device will be processed.
3828 * (This rule applies equally to all the synchronous transfer calls,
3829 * which are wrappers around this core asynchronous primitive.)
3830 *
3831 * Return: zero on success, else a negative error code.
3832 */
3833int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3834{
3835	struct spi_controller *ctlr = spi->controller;
3836	int ret;
3837	unsigned long flags;
3838
3839	ret = __spi_validate(spi, message);
3840	if (ret != 0)
3841		return ret;
3842
3843	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3844
3845	ret = __spi_async(spi, message);
 
 
 
 
 
3846
3847	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3848
3849	return ret;
 
 
 
 
 
 
 
 
3850
 
3851}
3852EXPORT_SYMBOL_GPL(spi_async_locked);
3853
3854/*-------------------------------------------------------------------------*/
3855
3856/* Utility methods for SPI protocol drivers, layered on
 
3857 * top of the core.  Some other utility methods are defined as
3858 * inline functions.
3859 */
3860
3861static void spi_complete(void *arg)
3862{
3863	complete(arg);
3864}
3865
3866static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3867{
3868	DECLARE_COMPLETION_ONSTACK(done);
 
3869	int status;
3870	struct spi_controller *ctlr = spi->controller;
3871	unsigned long flags;
3872
3873	status = __spi_validate(spi, message);
3874	if (status != 0)
 
 
 
 
 
3875		return status;
3876
3877	message->complete = spi_complete;
3878	message->context = &done;
3879	message->spi = spi;
3880
3881	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3882	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3883
3884	/* If we're not using the legacy transfer method then we will
3885	 * try to transfer in the calling context so special case.
3886	 * This code would be less tricky if we could remove the
3887	 * support for driver implemented message queues.
3888	 */
3889	if (ctlr->transfer == spi_queued_transfer) {
3890		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3891
3892		trace_spi_message_submit(message);
3893
3894		status = __spi_queued_transfer(spi, message, false);
 
 
 
3895
3896		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3897	} else {
3898		status = spi_async_locked(spi, message);
3899	}
3900
 
 
 
 
 
 
 
 
 
 
 
 
 
3901	if (status == 0) {
3902		/* Push out the messages in the calling context if we
3903		 * can.
3904		 */
3905		if (ctlr->transfer == spi_queued_transfer) {
3906			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3907						       spi_sync_immediate);
3908			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3909						       spi_sync_immediate);
3910			__spi_pump_messages(ctlr, false);
3911		}
3912
3913		wait_for_completion(&done);
3914		status = message->status;
3915	}
 
3916	message->context = NULL;
 
3917	return status;
3918}
3919
3920/**
3921 * spi_sync - blocking/synchronous SPI data transfers
3922 * @spi: device with which data will be exchanged
3923 * @message: describes the data transfers
3924 * Context: can sleep
3925 *
3926 * This call may only be used from a context that may sleep.  The sleep
3927 * is non-interruptible, and has no timeout.  Low-overhead controller
3928 * drivers may DMA directly into and out of the message buffers.
3929 *
3930 * Note that the SPI device's chip select is active during the message,
3931 * and then is normally disabled between messages.  Drivers for some
3932 * frequently-used devices may want to minimize costs of selecting a chip,
3933 * by leaving it selected in anticipation that the next message will go
3934 * to the same chip.  (That may increase power usage.)
3935 *
3936 * Also, the caller is guaranteeing that the memory associated with the
3937 * message will not be freed before this call returns.
3938 *
3939 * Return: zero on success, else a negative error code.
3940 */
3941int spi_sync(struct spi_device *spi, struct spi_message *message)
3942{
3943	int ret;
3944
3945	mutex_lock(&spi->controller->bus_lock_mutex);
3946	ret = __spi_sync(spi, message);
3947	mutex_unlock(&spi->controller->bus_lock_mutex);
3948
3949	return ret;
3950}
3951EXPORT_SYMBOL_GPL(spi_sync);
3952
3953/**
3954 * spi_sync_locked - version of spi_sync with exclusive bus usage
3955 * @spi: device with which data will be exchanged
3956 * @message: describes the data transfers
3957 * Context: can sleep
3958 *
3959 * This call may only be used from a context that may sleep.  The sleep
3960 * is non-interruptible, and has no timeout.  Low-overhead controller
3961 * drivers may DMA directly into and out of the message buffers.
3962 *
3963 * This call should be used by drivers that require exclusive access to the
3964 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3965 * be released by a spi_bus_unlock call when the exclusive access is over.
3966 *
3967 * Return: zero on success, else a negative error code.
3968 */
3969int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3970{
3971	return __spi_sync(spi, message);
3972}
3973EXPORT_SYMBOL_GPL(spi_sync_locked);
3974
3975/**
3976 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3977 * @ctlr: SPI bus master that should be locked for exclusive bus access
3978 * Context: can sleep
3979 *
3980 * This call may only be used from a context that may sleep.  The sleep
3981 * is non-interruptible, and has no timeout.
3982 *
3983 * This call should be used by drivers that require exclusive access to the
3984 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3985 * exclusive access is over. Data transfer must be done by spi_sync_locked
3986 * and spi_async_locked calls when the SPI bus lock is held.
3987 *
3988 * Return: always zero.
3989 */
3990int spi_bus_lock(struct spi_controller *ctlr)
3991{
3992	unsigned long flags;
3993
3994	mutex_lock(&ctlr->bus_lock_mutex);
3995
3996	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3997	ctlr->bus_lock_flag = 1;
3998	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3999
4000	/* mutex remains locked until spi_bus_unlock is called */
4001
4002	return 0;
4003}
4004EXPORT_SYMBOL_GPL(spi_bus_lock);
4005
4006/**
4007 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4008 * @ctlr: SPI bus master that was locked for exclusive bus access
4009 * Context: can sleep
4010 *
4011 * This call may only be used from a context that may sleep.  The sleep
4012 * is non-interruptible, and has no timeout.
4013 *
4014 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4015 * call.
4016 *
4017 * Return: always zero.
4018 */
4019int spi_bus_unlock(struct spi_controller *ctlr)
4020{
4021	ctlr->bus_lock_flag = 0;
4022
4023	mutex_unlock(&ctlr->bus_lock_mutex);
4024
4025	return 0;
4026}
4027EXPORT_SYMBOL_GPL(spi_bus_unlock);
4028
4029/* portable code must never pass more than 32 bytes */
4030#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4031
4032static u8	*buf;
4033
4034/**
4035 * spi_write_then_read - SPI synchronous write followed by read
4036 * @spi: device with which data will be exchanged
4037 * @txbuf: data to be written (need not be dma-safe)
4038 * @n_tx: size of txbuf, in bytes
4039 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4040 * @n_rx: size of rxbuf, in bytes
4041 * Context: can sleep
4042 *
4043 * This performs a half duplex MicroWire style transaction with the
4044 * device, sending txbuf and then reading rxbuf.  The return value
4045 * is zero for success, else a negative errno status code.
4046 * This call may only be used from a context that may sleep.
4047 *
4048 * Parameters to this routine are always copied using a small buffer.
4049 * Performance-sensitive or bulk transfer code should instead use
4050 * spi_{async,sync}() calls with dma-safe buffers.
4051 *
4052 * Return: zero on success, else a negative error code.
4053 */
4054int spi_write_then_read(struct spi_device *spi,
4055		const void *txbuf, unsigned n_tx,
4056		void *rxbuf, unsigned n_rx)
4057{
4058	static DEFINE_MUTEX(lock);
4059
4060	int			status;
4061	struct spi_message	message;
4062	struct spi_transfer	x[2];
4063	u8			*local_buf;
4064
4065	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
4066	 * copying here, (as a pure convenience thing), but we can
4067	 * keep heap costs out of the hot path unless someone else is
4068	 * using the pre-allocated buffer or the transfer is too large.
4069	 */
4070	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4071		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4072				    GFP_KERNEL | GFP_DMA);
4073		if (!local_buf)
4074			return -ENOMEM;
4075	} else {
4076		local_buf = buf;
4077	}
4078
4079	spi_message_init(&message);
4080	memset(x, 0, sizeof(x));
4081	if (n_tx) {
4082		x[0].len = n_tx;
4083		spi_message_add_tail(&x[0], &message);
4084	}
4085	if (n_rx) {
4086		x[1].len = n_rx;
4087		spi_message_add_tail(&x[1], &message);
4088	}
4089
4090	memcpy(local_buf, txbuf, n_tx);
4091	x[0].tx_buf = local_buf;
4092	x[1].rx_buf = local_buf + n_tx;
4093
4094	/* do the i/o */
4095	status = spi_sync(spi, &message);
4096	if (status == 0)
4097		memcpy(rxbuf, x[1].rx_buf, n_rx);
4098
4099	if (x[0].tx_buf == buf)
4100		mutex_unlock(&lock);
4101	else
4102		kfree(local_buf);
4103
4104	return status;
4105}
4106EXPORT_SYMBOL_GPL(spi_write_then_read);
4107
4108/*-------------------------------------------------------------------------*/
4109
4110#if IS_ENABLED(CONFIG_OF)
4111/* must call put_device() when done with returned spi_device device */
4112struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4113{
4114	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4115
4116	return dev ? to_spi_device(dev) : NULL;
4117}
4118EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4119#endif /* IS_ENABLED(CONFIG_OF) */
4120
4121#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4122/* the spi controllers are not using spi_bus, so we find it with another way */
4123static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4124{
4125	struct device *dev;
4126
4127	dev = class_find_device_by_of_node(&spi_master_class, node);
4128	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4129		dev = class_find_device_by_of_node(&spi_slave_class, node);
4130	if (!dev)
4131		return NULL;
4132
4133	/* reference got in class_find_device */
4134	return container_of(dev, struct spi_controller, dev);
4135}
4136
4137static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4138			 void *arg)
4139{
4140	struct of_reconfig_data *rd = arg;
4141	struct spi_controller *ctlr;
4142	struct spi_device *spi;
4143
4144	switch (of_reconfig_get_state_change(action, arg)) {
4145	case OF_RECONFIG_CHANGE_ADD:
4146		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4147		if (ctlr == NULL)
4148			return NOTIFY_OK;	/* not for us */
4149
4150		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4151			put_device(&ctlr->dev);
4152			return NOTIFY_OK;
4153		}
4154
 
 
 
 
 
4155		spi = of_register_spi_device(ctlr, rd->dn);
4156		put_device(&ctlr->dev);
4157
4158		if (IS_ERR(spi)) {
4159			pr_err("%s: failed to create for '%pOF'\n",
4160					__func__, rd->dn);
4161			of_node_clear_flag(rd->dn, OF_POPULATED);
4162			return notifier_from_errno(PTR_ERR(spi));
4163		}
4164		break;
4165
4166	case OF_RECONFIG_CHANGE_REMOVE:
4167		/* already depopulated? */
4168		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4169			return NOTIFY_OK;
4170
4171		/* find our device by node */
4172		spi = of_find_spi_device_by_node(rd->dn);
4173		if (spi == NULL)
4174			return NOTIFY_OK;	/* no? not meant for us */
4175
4176		/* unregister takes one ref away */
4177		spi_unregister_device(spi);
4178
4179		/* and put the reference of the find */
4180		put_device(&spi->dev);
4181		break;
4182	}
4183
4184	return NOTIFY_OK;
4185}
4186
4187static struct notifier_block spi_of_notifier = {
4188	.notifier_call = of_spi_notify,
4189};
4190#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4191extern struct notifier_block spi_of_notifier;
4192#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4193
4194#if IS_ENABLED(CONFIG_ACPI)
4195static int spi_acpi_controller_match(struct device *dev, const void *data)
4196{
4197	return ACPI_COMPANION(dev->parent) == data;
4198}
4199
4200static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4201{
4202	struct device *dev;
4203
4204	dev = class_find_device(&spi_master_class, NULL, adev,
4205				spi_acpi_controller_match);
4206	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4207		dev = class_find_device(&spi_slave_class, NULL, adev,
4208					spi_acpi_controller_match);
4209	if (!dev)
4210		return NULL;
4211
4212	return container_of(dev, struct spi_controller, dev);
4213}
 
4214
4215static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4216{
4217	struct device *dev;
4218
4219	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4220	return to_spi_device(dev);
4221}
4222
4223static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4224			   void *arg)
4225{
4226	struct acpi_device *adev = arg;
4227	struct spi_controller *ctlr;
4228	struct spi_device *spi;
4229
4230	switch (value) {
4231	case ACPI_RECONFIG_DEVICE_ADD:
4232		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4233		if (!ctlr)
4234			break;
4235
4236		acpi_register_spi_device(ctlr, adev);
4237		put_device(&ctlr->dev);
4238		break;
4239	case ACPI_RECONFIG_DEVICE_REMOVE:
4240		if (!acpi_device_enumerated(adev))
4241			break;
4242
4243		spi = acpi_spi_find_device_by_adev(adev);
4244		if (!spi)
4245			break;
4246
4247		spi_unregister_device(spi);
4248		put_device(&spi->dev);
4249		break;
4250	}
4251
4252	return NOTIFY_OK;
4253}
4254
4255static struct notifier_block spi_acpi_notifier = {
4256	.notifier_call = acpi_spi_notify,
4257};
4258#else
4259extern struct notifier_block spi_acpi_notifier;
4260#endif
4261
4262static int __init spi_init(void)
4263{
4264	int	status;
4265
4266	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4267	if (!buf) {
4268		status = -ENOMEM;
4269		goto err0;
4270	}
4271
4272	status = bus_register(&spi_bus_type);
4273	if (status < 0)
4274		goto err1;
4275
4276	status = class_register(&spi_master_class);
4277	if (status < 0)
4278		goto err2;
4279
4280	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4281		status = class_register(&spi_slave_class);
4282		if (status < 0)
4283			goto err3;
4284	}
4285
4286	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4287		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4288	if (IS_ENABLED(CONFIG_ACPI))
4289		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4290
4291	return 0;
4292
4293err3:
4294	class_unregister(&spi_master_class);
4295err2:
4296	bus_unregister(&spi_bus_type);
4297err1:
4298	kfree(buf);
4299	buf = NULL;
4300err0:
4301	return status;
4302}
4303
4304/* board_info is normally registered in arch_initcall(),
4305 * but even essential drivers wait till later
 
4306 *
4307 * REVISIT only boardinfo really needs static linking. the rest (device and
4308 * driver registration) _could_ be dynamically linked (modular) ... costs
4309 * include needing to have boardinfo data structures be much more public.
4310 */
4311postcore_initcall(spi_init);