Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/kprobes.h>
 13#include <linux/ptrace.h>
 14#include <linux/preempt.h>
 15#include <linux/stop_machine.h>
 16#include <linux/kdebug.h>
 17#include <linux/uaccess.h>
 18#include <linux/extable.h>
 19#include <linux/module.h>
 20#include <linux/slab.h>
 21#include <linux/hardirq.h>
 22#include <linux/ftrace.h>
 23#include <linux/execmem.h>
 24#include <asm/text-patching.h>
 25#include <asm/set_memory.h>
 26#include <asm/sections.h>
 27#include <asm/dis.h>
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 
 
 
 
 35void *alloc_insn_page(void)
 36{
 37	void *page;
 38
 39	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 40	if (!page)
 41		return NULL;
 42	set_memory_rox((unsigned long)page, 1);
 43	return page;
 44}
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46static void copy_instruction(struct kprobe *p)
 47{
 48	kprobe_opcode_t insn[MAX_INSN_SIZE];
 49	s64 disp, new_disp;
 50	u64 addr, new_addr;
 51	unsigned int len;
 52
 53	len = insn_length(*p->addr >> 8);
 54	memcpy(&insn, p->addr, len);
 55	p->opcode = insn[0];
 56	if (probe_is_insn_relative_long(&insn[0])) {
 57		/*
 58		 * For pc-relative instructions in RIL-b or RIL-c format patch
 59		 * the RI2 displacement field. The insn slot for the to be
 60		 * patched instruction is within the same 4GB area like the
 61		 * original instruction. Therefore the new displacement will
 62		 * always fit.
 63		 */
 64		disp = *(s32 *)&insn[1];
 65		addr = (u64)(unsigned long)p->addr;
 66		new_addr = (u64)(unsigned long)p->ainsn.insn;
 67		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 68		*(s32 *)&insn[1] = new_disp;
 69	}
 70	s390_kernel_write(p->ainsn.insn, &insn, len);
 71}
 72NOKPROBE_SYMBOL(copy_instruction);
 73
 74/* Check if paddr is at an instruction boundary */
 75static bool can_probe(unsigned long paddr)
 76{
 77	unsigned long addr, offset = 0;
 78	kprobe_opcode_t insn;
 79	struct kprobe *kp;
 80
 81	if (paddr & 0x01)
 82		return false;
 83
 84	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 85		return false;
 86
 87	/* Decode instructions */
 88	addr = paddr - offset;
 89	while (addr < paddr) {
 90		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
 91			return false;
 92
 93		if (insn >> 8 == 0) {
 94			if (insn != BREAKPOINT_INSTRUCTION) {
 95				/*
 96				 * Note that QEMU inserts opcode 0x0000 to implement
 97				 * software breakpoints for guests. Since the size of
 98				 * the original instruction is unknown, stop following
 99				 * instructions and prevent setting a kprobe.
100				 */
101				return false;
102			}
103			/*
104			 * Check if the instruction has been modified by another
105			 * kprobe, in which case the original instruction is
106			 * decoded.
107			 */
108			kp = get_kprobe((void *)addr);
109			if (!kp) {
110				/* not a kprobe */
111				return false;
112			}
113			insn = kp->opcode;
114		}
115		addr += insn_length(insn >> 8);
116	}
117	return addr == paddr;
118}
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120int arch_prepare_kprobe(struct kprobe *p)
121{
122	if (!can_probe((unsigned long)p->addr))
123		return -EINVAL;
124	/* Make sure the probe isn't going on a difficult instruction */
125	if (probe_is_prohibited_opcode(p->addr))
126		return -EINVAL;
127	p->ainsn.insn = get_insn_slot();
128	if (!p->ainsn.insn)
129		return -ENOMEM;
130	copy_instruction(p);
131	return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
135struct swap_insn_args {
136	struct kprobe *p;
137	unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142	struct swap_insn_args *args = data;
143	struct kprobe *p = args->p;
144	u16 opc;
145
146	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147	s390_kernel_write(p->addr, &opc, sizeof(opc));
148	return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156	if (MACHINE_HAS_SEQ_INSN) {
157		swap_instruction(&args);
158		text_poke_sync();
159	} else {
160		stop_machine_cpuslocked(swap_instruction, &args, NULL);
161	}
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169	if (MACHINE_HAS_SEQ_INSN) {
170		swap_instruction(&args);
171		text_poke_sync();
172	} else {
173		stop_machine_cpuslocked(swap_instruction, &args, NULL);
174	}
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180	if (!p->ainsn.insn)
181		return;
182	free_insn_slot(p->ainsn.insn, 0);
183	p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188			      struct pt_regs *regs,
189			      unsigned long ip)
190{
191	union {
192		struct ctlreg regs[3];
193		struct {
194			struct ctlreg control;
195			struct ctlreg start;
196			struct ctlreg end;
197		};
198	} per_kprobe;
199
200	/* Set up the PER control registers %cr9-%cr11 */
201	per_kprobe.control.val = PER_EVENT_IFETCH;
202	per_kprobe.start.val = ip;
203	per_kprobe.end.val = ip;
204
205	/* Save control regs and psw mask */
206	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207	kcb->kprobe_saved_imask = regs->psw.mask &
208		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210	/* Set PER control regs, turns on single step for the given address */
211	__local_ctl_load(9, 11, per_kprobe.regs);
212	regs->psw.mask |= PSW_MASK_PER;
213	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214	regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219			       struct pt_regs *regs,
220			       unsigned long ip)
221{
222	/* Restore control regs and psw mask, set new psw address */
223	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224	regs->psw.mask &= ~PSW_MASK_PER;
225	regs->psw.mask |= kcb->kprobe_saved_imask;
226	regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238	kcb->prev_kprobe.status = kcb->kprobe_status;
239	__this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251	kcb->kprobe_status = kcb->prev_kprobe.status;
252	kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
 
 
 
 
 
 
 
 
 
 
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
257{
258	switch (kcb->kprobe_status) {
259	case KPROBE_HIT_SSDONE:
260	case KPROBE_HIT_ACTIVE:
261		kprobes_inc_nmissed_count(p);
262		break;
263	case KPROBE_HIT_SS:
264	case KPROBE_REENTER:
265	default:
266		/*
267		 * A kprobe on the code path to single step an instruction
268		 * is a BUG. The code path resides in the .kprobes.text
269		 * section and is executed with interrupts disabled.
270		 */
271		pr_err("Failed to recover from reentered kprobes.\n");
272		dump_kprobe(p);
273		BUG();
274	}
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280	struct kprobe_ctlblk *kcb;
281	struct kprobe *p;
282
283	/*
284	 * We want to disable preemption for the entire duration of kprobe
285	 * processing. That includes the calls to the pre/post handlers
286	 * and single stepping the kprobe instruction.
287	 */
288	preempt_disable();
289	kcb = get_kprobe_ctlblk();
290	p = get_kprobe((void *)(regs->psw.addr - 2));
291
292	if (p) {
293		if (kprobe_running()) {
294			/*
295			 * We have hit a kprobe while another is still
296			 * active. This can happen in the pre and post
297			 * handler. Single step the instruction of the
298			 * new probe but do not call any handler function
299			 * of this secondary kprobe.
300			 * push_kprobe and pop_kprobe saves and restores
301			 * the currently active kprobe.
302			 */
303			kprobe_reenter_check(kcb, p);
304			push_kprobe(kcb, p);
305			kcb->kprobe_status = KPROBE_REENTER;
306		} else {
307			/*
308			 * If we have no pre-handler or it returned 0, we
309			 * continue with single stepping. If we have a
310			 * pre-handler and it returned non-zero, it prepped
311			 * for changing execution path, so get out doing
312			 * nothing more here.
313			 */
314			push_kprobe(kcb, p);
315			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316			if (p->pre_handler && p->pre_handler(p, regs)) {
317				pop_kprobe(kcb);
318				preempt_enable_no_resched();
319				return 1;
320			}
321			kcb->kprobe_status = KPROBE_HIT_SS;
322		}
323		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324		return 1;
325	} /* else:
326	   * No kprobe at this address and no active kprobe. The trap has
327	   * not been caused by a kprobe breakpoint. The race of breakpoint
328	   * vs. kprobe remove does not exist because on s390 as we use
329	   * stop_machine to arm/disarm the breakpoints.
330	   */
331	preempt_enable_no_resched();
332	return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
335
336/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337 * Called after single-stepping.  p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction.  To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction.  The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347	unsigned long ip = regs->psw.addr;
348	int fixup = probe_get_fixup_type(p->ainsn.insn);
349
350	if (fixup & FIXUP_PSW_NORMAL)
351		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354		int ilen = insn_length(p->ainsn.insn[0] >> 8);
355		if (ip - (unsigned long) p->ainsn.insn == ilen)
356			ip = (unsigned long) p->addr + ilen;
357	}
358
359	if (fixup & FIXUP_RETURN_REGISTER) {
360		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361		regs->gprs[reg] += (unsigned long) p->addr -
362				   (unsigned long) p->ainsn.insn;
363	}
364
365	disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372	struct kprobe *p = kprobe_running();
373
374	if (!p)
375		return 0;
376
377	resume_execution(p, regs);
378	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379		kcb->kprobe_status = KPROBE_HIT_SSDONE;
380		p->post_handler(p, regs, 0);
381	}
 
 
382	pop_kprobe(kcb);
383	preempt_enable_no_resched();
384
385	/*
386	 * if somebody else is singlestepping across a probe point, psw mask
387	 * will have PER set, in which case, continue the remaining processing
388	 * of do_single_step, as if this is not a probe hit.
389	 */
390	if (regs->psw.mask & PSW_MASK_PER)
391		return 0;
392
393	return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400	struct kprobe *p = kprobe_running();
 
401
402	switch(kcb->kprobe_status) {
403	case KPROBE_HIT_SS:
404	case KPROBE_REENTER:
405		/*
406		 * We are here because the instruction being single
407		 * stepped caused a page fault. We reset the current
408		 * kprobe and the nip points back to the probe address
409		 * and allow the page fault handler to continue as a
410		 * normal page fault.
411		 */
412		disable_singlestep(kcb, regs, (unsigned long) p->addr);
413		pop_kprobe(kcb);
414		preempt_enable_no_resched();
415		break;
416	case KPROBE_HIT_ACTIVE:
417	case KPROBE_HIT_SSDONE:
418		/*
419		 * In case the user-specified fault handler returned
420		 * zero, try to fix up.
421		 */
422		if (fixup_exception(regs))
 
423			return 1;
 
424		/*
425		 * fixup_exception() could not handle it,
426		 * Let do_page_fault() fix it.
427		 */
428		break;
429	default:
430		break;
431	}
432	return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438	int ret;
439
440	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441		local_irq_disable();
442	ret = kprobe_trap_handler(regs, trapnr);
443	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445	return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453			     unsigned long val, void *data)
454{
455	struct die_args *args = (struct die_args *) data;
456	struct pt_regs *regs = args->regs;
457	int ret = NOTIFY_DONE;
458
459	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460		local_irq_disable();
461
462	switch (val) {
463	case DIE_BPT:
464		if (kprobe_handler(regs))
465			ret = NOTIFY_STOP;
466		break;
467	case DIE_SSTEP:
468		if (post_kprobe_handler(regs))
469			ret = NOTIFY_STOP;
470		break;
471	case DIE_TRAP:
472		if (!preemptible() && kprobe_running() &&
473		    kprobe_trap_handler(regs, args->trapnr))
474			ret = NOTIFY_STOP;
475		break;
476	default:
477		break;
478	}
479
480	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483	return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489	return 0;
490}
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494	return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495					 (unsigned long)__irqentry_text_end);
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500	return 0;
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/moduleloader.h>
 
 11#include <linux/kprobes.h>
 12#include <linux/ptrace.h>
 13#include <linux/preempt.h>
 14#include <linux/stop_machine.h>
 15#include <linux/kdebug.h>
 16#include <linux/uaccess.h>
 17#include <linux/extable.h>
 18#include <linux/module.h>
 19#include <linux/slab.h>
 20#include <linux/hardirq.h>
 21#include <linux/ftrace.h>
 
 
 22#include <asm/set_memory.h>
 23#include <asm/sections.h>
 24#include <asm/dis.h>
 25#include "entry.h"
 26
 27DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 28DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 29
 30struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 31
 32DEFINE_INSN_CACHE_OPS(s390_insn);
 33
 34static int insn_page_in_use;
 35
 36void *alloc_insn_page(void)
 37{
 38	void *page;
 39
 40	page = module_alloc(PAGE_SIZE);
 41	if (!page)
 42		return NULL;
 43	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
 44	return page;
 45}
 46
 47static void *alloc_s390_insn_page(void)
 48{
 49	if (xchg(&insn_page_in_use, 1) == 1)
 50		return NULL;
 51	return &kprobes_insn_page;
 52}
 53
 54static void free_s390_insn_page(void *page)
 55{
 56	xchg(&insn_page_in_use, 0);
 57}
 58
 59struct kprobe_insn_cache kprobe_s390_insn_slots = {
 60	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 61	.alloc = alloc_s390_insn_page,
 62	.free = free_s390_insn_page,
 63	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 64	.insn_size = MAX_INSN_SIZE,
 65};
 66
 67static void copy_instruction(struct kprobe *p)
 68{
 69	kprobe_opcode_t insn[MAX_INSN_SIZE];
 70	s64 disp, new_disp;
 71	u64 addr, new_addr;
 72	unsigned int len;
 73
 74	len = insn_length(*p->addr >> 8);
 75	memcpy(&insn, p->addr, len);
 76	p->opcode = insn[0];
 77	if (probe_is_insn_relative_long(&insn[0])) {
 78		/*
 79		 * For pc-relative instructions in RIL-b or RIL-c format patch
 80		 * the RI2 displacement field. We have already made sure that
 81		 * the insn slot for the patched instruction is within the same
 82		 * 2GB area as the original instruction (either kernel image or
 83		 * module area). Therefore the new displacement will always fit.
 84		 */
 85		disp = *(s32 *)&insn[1];
 86		addr = (u64)(unsigned long)p->addr;
 87		new_addr = (u64)(unsigned long)p->ainsn.insn;
 88		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 89		*(s32 *)&insn[1] = new_disp;
 90	}
 91	s390_kernel_write(p->ainsn.insn, &insn, len);
 92}
 93NOKPROBE_SYMBOL(copy_instruction);
 94
 95static int s390_get_insn_slot(struct kprobe *p)
 
 96{
 97	/*
 98	 * Get an insn slot that is within the same 2GB area like the original
 99	 * instruction. That way instructions with a 32bit signed displacement
100	 * field can be patched and executed within the insn slot.
101	 */
102	p->ainsn.insn = NULL;
103	if (is_kernel((unsigned long)p->addr))
104		p->ainsn.insn = get_s390_insn_slot();
105	else if (is_module_addr(p->addr))
106		p->ainsn.insn = get_insn_slot();
107	return p->ainsn.insn ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108}
109NOKPROBE_SYMBOL(s390_get_insn_slot);
110
111static void s390_free_insn_slot(struct kprobe *p)
112{
113	if (!p->ainsn.insn)
114		return;
115	if (is_kernel((unsigned long)p->addr))
116		free_s390_insn_slot(p->ainsn.insn, 0);
117	else
118		free_insn_slot(p->ainsn.insn, 0);
119	p->ainsn.insn = NULL;
120}
121NOKPROBE_SYMBOL(s390_free_insn_slot);
122
123int arch_prepare_kprobe(struct kprobe *p)
124{
125	if ((unsigned long) p->addr & 0x01)
126		return -EINVAL;
127	/* Make sure the probe isn't going on a difficult instruction */
128	if (probe_is_prohibited_opcode(p->addr))
129		return -EINVAL;
130	if (s390_get_insn_slot(p))
 
131		return -ENOMEM;
132	copy_instruction(p);
133	return 0;
134}
135NOKPROBE_SYMBOL(arch_prepare_kprobe);
136
137struct swap_insn_args {
138	struct kprobe *p;
139	unsigned int arm_kprobe : 1;
140};
141
142static int swap_instruction(void *data)
143{
144	struct swap_insn_args *args = data;
145	struct kprobe *p = args->p;
146	u16 opc;
147
148	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
149	s390_kernel_write(p->addr, &opc, sizeof(opc));
150	return 0;
151}
152NOKPROBE_SYMBOL(swap_instruction);
153
154void arch_arm_kprobe(struct kprobe *p)
155{
156	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
157
158	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
 
 
 
159}
160NOKPROBE_SYMBOL(arch_arm_kprobe);
161
162void arch_disarm_kprobe(struct kprobe *p)
163{
164	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
165
166	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
 
 
 
167}
168NOKPROBE_SYMBOL(arch_disarm_kprobe);
169
170void arch_remove_kprobe(struct kprobe *p)
171{
172	s390_free_insn_slot(p);
 
 
 
173}
174NOKPROBE_SYMBOL(arch_remove_kprobe);
175
176static void enable_singlestep(struct kprobe_ctlblk *kcb,
177			      struct pt_regs *regs,
178			      unsigned long ip)
179{
180	struct per_regs per_kprobe;
 
 
 
 
 
 
 
181
182	/* Set up the PER control registers %cr9-%cr11 */
183	per_kprobe.control = PER_EVENT_IFETCH;
184	per_kprobe.start = ip;
185	per_kprobe.end = ip;
186
187	/* Save control regs and psw mask */
188	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
189	kcb->kprobe_saved_imask = regs->psw.mask &
190		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
191
192	/* Set PER control regs, turns on single step for the given address */
193	__ctl_load(per_kprobe, 9, 11);
194	regs->psw.mask |= PSW_MASK_PER;
195	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
196	regs->psw.addr = ip;
197}
198NOKPROBE_SYMBOL(enable_singlestep);
199
200static void disable_singlestep(struct kprobe_ctlblk *kcb,
201			       struct pt_regs *regs,
202			       unsigned long ip)
203{
204	/* Restore control regs and psw mask, set new psw address */
205	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
206	regs->psw.mask &= ~PSW_MASK_PER;
207	regs->psw.mask |= kcb->kprobe_saved_imask;
208	regs->psw.addr = ip;
209}
210NOKPROBE_SYMBOL(disable_singlestep);
211
212/*
213 * Activate a kprobe by storing its pointer to current_kprobe. The
214 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
215 * two kprobes can be active, see KPROBE_REENTER.
216 */
217static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
218{
219	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
220	kcb->prev_kprobe.status = kcb->kprobe_status;
221	__this_cpu_write(current_kprobe, p);
222}
223NOKPROBE_SYMBOL(push_kprobe);
224
225/*
226 * Deactivate a kprobe by backing up to the previous state. If the
227 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
228 * for any other state prev_kprobe.kp will be NULL.
229 */
230static void pop_kprobe(struct kprobe_ctlblk *kcb)
231{
232	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
233	kcb->kprobe_status = kcb->prev_kprobe.status;
 
234}
235NOKPROBE_SYMBOL(pop_kprobe);
236
237void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
238{
239	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
240	ri->fp = NULL;
241
242	/* Replace the return addr with trampoline addr */
243	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
244}
245NOKPROBE_SYMBOL(arch_prepare_kretprobe);
246
247static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
248{
249	switch (kcb->kprobe_status) {
250	case KPROBE_HIT_SSDONE:
251	case KPROBE_HIT_ACTIVE:
252		kprobes_inc_nmissed_count(p);
253		break;
254	case KPROBE_HIT_SS:
255	case KPROBE_REENTER:
256	default:
257		/*
258		 * A kprobe on the code path to single step an instruction
259		 * is a BUG. The code path resides in the .kprobes.text
260		 * section and is executed with interrupts disabled.
261		 */
262		pr_err("Invalid kprobe detected.\n");
263		dump_kprobe(p);
264		BUG();
265	}
266}
267NOKPROBE_SYMBOL(kprobe_reenter_check);
268
269static int kprobe_handler(struct pt_regs *regs)
270{
271	struct kprobe_ctlblk *kcb;
272	struct kprobe *p;
273
274	/*
275	 * We want to disable preemption for the entire duration of kprobe
276	 * processing. That includes the calls to the pre/post handlers
277	 * and single stepping the kprobe instruction.
278	 */
279	preempt_disable();
280	kcb = get_kprobe_ctlblk();
281	p = get_kprobe((void *)(regs->psw.addr - 2));
282
283	if (p) {
284		if (kprobe_running()) {
285			/*
286			 * We have hit a kprobe while another is still
287			 * active. This can happen in the pre and post
288			 * handler. Single step the instruction of the
289			 * new probe but do not call any handler function
290			 * of this secondary kprobe.
291			 * push_kprobe and pop_kprobe saves and restores
292			 * the currently active kprobe.
293			 */
294			kprobe_reenter_check(kcb, p);
295			push_kprobe(kcb, p);
296			kcb->kprobe_status = KPROBE_REENTER;
297		} else {
298			/*
299			 * If we have no pre-handler or it returned 0, we
300			 * continue with single stepping. If we have a
301			 * pre-handler and it returned non-zero, it prepped
302			 * for changing execution path, so get out doing
303			 * nothing more here.
304			 */
305			push_kprobe(kcb, p);
306			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
307			if (p->pre_handler && p->pre_handler(p, regs)) {
308				pop_kprobe(kcb);
309				preempt_enable_no_resched();
310				return 1;
311			}
312			kcb->kprobe_status = KPROBE_HIT_SS;
313		}
314		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
315		return 1;
316	} /* else:
317	   * No kprobe at this address and no active kprobe. The trap has
318	   * not been caused by a kprobe breakpoint. The race of breakpoint
319	   * vs. kprobe remove does not exist because on s390 as we use
320	   * stop_machine to arm/disarm the breakpoints.
321	   */
322	preempt_enable_no_resched();
323	return 0;
324}
325NOKPROBE_SYMBOL(kprobe_handler);
326
327/*
328 * Function return probe trampoline:
329 *	- init_kprobes() establishes a probepoint here
330 *	- When the probed function returns, this probe
331 *		causes the handlers to fire
332 */
333static void __used kretprobe_trampoline_holder(void)
334{
335	asm volatile(".global kretprobe_trampoline\n"
336		     "kretprobe_trampoline: bcr 0,0\n");
337}
338
339/*
340 * Called when the probe at kretprobe trampoline is hit
341 */
342static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
343{
344	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
345	/*
346	 * By returning a non-zero value, we are telling
347	 * kprobe_handler() that we don't want the post_handler
348	 * to run (and have re-enabled preemption)
349	 */
350	return 1;
351}
352NOKPROBE_SYMBOL(trampoline_probe_handler);
353
354/*
355 * Called after single-stepping.  p->addr is the address of the
356 * instruction whose first byte has been replaced by the "breakpoint"
357 * instruction.  To avoid the SMP problems that can occur when we
358 * temporarily put back the original opcode to single-step, we
359 * single-stepped a copy of the instruction.  The address of this
360 * copy is p->ainsn.insn.
361 */
362static void resume_execution(struct kprobe *p, struct pt_regs *regs)
363{
364	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
365	unsigned long ip = regs->psw.addr;
366	int fixup = probe_get_fixup_type(p->ainsn.insn);
367
368	if (fixup & FIXUP_PSW_NORMAL)
369		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
370
371	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
372		int ilen = insn_length(p->ainsn.insn[0] >> 8);
373		if (ip - (unsigned long) p->ainsn.insn == ilen)
374			ip = (unsigned long) p->addr + ilen;
375	}
376
377	if (fixup & FIXUP_RETURN_REGISTER) {
378		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
379		regs->gprs[reg] += (unsigned long) p->addr -
380				   (unsigned long) p->ainsn.insn;
381	}
382
383	disable_singlestep(kcb, regs, ip);
384}
385NOKPROBE_SYMBOL(resume_execution);
386
387static int post_kprobe_handler(struct pt_regs *regs)
388{
389	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
390	struct kprobe *p = kprobe_running();
391
392	if (!p)
393		return 0;
394
 
395	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
396		kcb->kprobe_status = KPROBE_HIT_SSDONE;
397		p->post_handler(p, regs, 0);
398	}
399
400	resume_execution(p, regs);
401	pop_kprobe(kcb);
402	preempt_enable_no_resched();
403
404	/*
405	 * if somebody else is singlestepping across a probe point, psw mask
406	 * will have PER set, in which case, continue the remaining processing
407	 * of do_single_step, as if this is not a probe hit.
408	 */
409	if (regs->psw.mask & PSW_MASK_PER)
410		return 0;
411
412	return 1;
413}
414NOKPROBE_SYMBOL(post_kprobe_handler);
415
416static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
417{
418	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
419	struct kprobe *p = kprobe_running();
420	const struct exception_table_entry *entry;
421
422	switch(kcb->kprobe_status) {
423	case KPROBE_HIT_SS:
424	case KPROBE_REENTER:
425		/*
426		 * We are here because the instruction being single
427		 * stepped caused a page fault. We reset the current
428		 * kprobe and the nip points back to the probe address
429		 * and allow the page fault handler to continue as a
430		 * normal page fault.
431		 */
432		disable_singlestep(kcb, regs, (unsigned long) p->addr);
433		pop_kprobe(kcb);
434		preempt_enable_no_resched();
435		break;
436	case KPROBE_HIT_ACTIVE:
437	case KPROBE_HIT_SSDONE:
438		/*
439		 * In case the user-specified fault handler returned
440		 * zero, try to fix up.
441		 */
442		entry = s390_search_extables(regs->psw.addr);
443		if (entry && ex_handle(entry, regs))
444			return 1;
445
446		/*
447		 * fixup_exception() could not handle it,
448		 * Let do_page_fault() fix it.
449		 */
450		break;
451	default:
452		break;
453	}
454	return 0;
455}
456NOKPROBE_SYMBOL(kprobe_trap_handler);
457
458int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
459{
460	int ret;
461
462	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
463		local_irq_disable();
464	ret = kprobe_trap_handler(regs, trapnr);
465	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
466		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
467	return ret;
468}
469NOKPROBE_SYMBOL(kprobe_fault_handler);
470
471/*
472 * Wrapper routine to for handling exceptions.
473 */
474int kprobe_exceptions_notify(struct notifier_block *self,
475			     unsigned long val, void *data)
476{
477	struct die_args *args = (struct die_args *) data;
478	struct pt_regs *regs = args->regs;
479	int ret = NOTIFY_DONE;
480
481	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
482		local_irq_disable();
483
484	switch (val) {
485	case DIE_BPT:
486		if (kprobe_handler(regs))
487			ret = NOTIFY_STOP;
488		break;
489	case DIE_SSTEP:
490		if (post_kprobe_handler(regs))
491			ret = NOTIFY_STOP;
492		break;
493	case DIE_TRAP:
494		if (!preemptible() && kprobe_running() &&
495		    kprobe_trap_handler(regs, args->trapnr))
496			ret = NOTIFY_STOP;
497		break;
498	default:
499		break;
500	}
501
502	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
503		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
504
505	return ret;
506}
507NOKPROBE_SYMBOL(kprobe_exceptions_notify);
508
509static struct kprobe trampoline = {
510	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
511	.pre_handler = trampoline_probe_handler
512};
513
514int __init arch_init_kprobes(void)
515{
516	return register_kprobe(&trampoline);
 
517}
518
519int arch_trampoline_kprobe(struct kprobe *p)
520{
521	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
522}
523NOKPROBE_SYMBOL(arch_trampoline_kprobe);