Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kprobes: " fmt
11
12#include <linux/kprobes.h>
13#include <linux/ptrace.h>
14#include <linux/preempt.h>
15#include <linux/stop_machine.h>
16#include <linux/kdebug.h>
17#include <linux/uaccess.h>
18#include <linux/extable.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/hardirq.h>
22#include <linux/ftrace.h>
23#include <linux/execmem.h>
24#include <asm/text-patching.h>
25#include <asm/set_memory.h>
26#include <asm/sections.h>
27#include <asm/dis.h>
28#include "entry.h"
29
30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32
33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34
35void *alloc_insn_page(void)
36{
37 void *page;
38
39 page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
40 if (!page)
41 return NULL;
42 set_memory_rox((unsigned long)page, 1);
43 return page;
44}
45
46static void copy_instruction(struct kprobe *p)
47{
48 kprobe_opcode_t insn[MAX_INSN_SIZE];
49 s64 disp, new_disp;
50 u64 addr, new_addr;
51 unsigned int len;
52
53 len = insn_length(*p->addr >> 8);
54 memcpy(&insn, p->addr, len);
55 p->opcode = insn[0];
56 if (probe_is_insn_relative_long(&insn[0])) {
57 /*
58 * For pc-relative instructions in RIL-b or RIL-c format patch
59 * the RI2 displacement field. The insn slot for the to be
60 * patched instruction is within the same 4GB area like the
61 * original instruction. Therefore the new displacement will
62 * always fit.
63 */
64 disp = *(s32 *)&insn[1];
65 addr = (u64)(unsigned long)p->addr;
66 new_addr = (u64)(unsigned long)p->ainsn.insn;
67 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
68 *(s32 *)&insn[1] = new_disp;
69 }
70 s390_kernel_write(p->ainsn.insn, &insn, len);
71}
72NOKPROBE_SYMBOL(copy_instruction);
73
74/* Check if paddr is at an instruction boundary */
75static bool can_probe(unsigned long paddr)
76{
77 unsigned long addr, offset = 0;
78 kprobe_opcode_t insn;
79 struct kprobe *kp;
80
81 if (paddr & 0x01)
82 return false;
83
84 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
85 return false;
86
87 /* Decode instructions */
88 addr = paddr - offset;
89 while (addr < paddr) {
90 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
91 return false;
92
93 if (insn >> 8 == 0) {
94 if (insn != BREAKPOINT_INSTRUCTION) {
95 /*
96 * Note that QEMU inserts opcode 0x0000 to implement
97 * software breakpoints for guests. Since the size of
98 * the original instruction is unknown, stop following
99 * instructions and prevent setting a kprobe.
100 */
101 return false;
102 }
103 /*
104 * Check if the instruction has been modified by another
105 * kprobe, in which case the original instruction is
106 * decoded.
107 */
108 kp = get_kprobe((void *)addr);
109 if (!kp) {
110 /* not a kprobe */
111 return false;
112 }
113 insn = kp->opcode;
114 }
115 addr += insn_length(insn >> 8);
116 }
117 return addr == paddr;
118}
119
120int arch_prepare_kprobe(struct kprobe *p)
121{
122 if (!can_probe((unsigned long)p->addr))
123 return -EINVAL;
124 /* Make sure the probe isn't going on a difficult instruction */
125 if (probe_is_prohibited_opcode(p->addr))
126 return -EINVAL;
127 p->ainsn.insn = get_insn_slot();
128 if (!p->ainsn.insn)
129 return -ENOMEM;
130 copy_instruction(p);
131 return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
135struct swap_insn_args {
136 struct kprobe *p;
137 unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142 struct swap_insn_args *args = data;
143 struct kprobe *p = args->p;
144 u16 opc;
145
146 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147 s390_kernel_write(p->addr, &opc, sizeof(opc));
148 return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156 if (MACHINE_HAS_SEQ_INSN) {
157 swap_instruction(&args);
158 text_poke_sync();
159 } else {
160 stop_machine_cpuslocked(swap_instruction, &args, NULL);
161 }
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169 if (MACHINE_HAS_SEQ_INSN) {
170 swap_instruction(&args);
171 text_poke_sync();
172 } else {
173 stop_machine_cpuslocked(swap_instruction, &args, NULL);
174 }
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180 if (!p->ainsn.insn)
181 return;
182 free_insn_slot(p->ainsn.insn, 0);
183 p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188 struct pt_regs *regs,
189 unsigned long ip)
190{
191 union {
192 struct ctlreg regs[3];
193 struct {
194 struct ctlreg control;
195 struct ctlreg start;
196 struct ctlreg end;
197 };
198 } per_kprobe;
199
200 /* Set up the PER control registers %cr9-%cr11 */
201 per_kprobe.control.val = PER_EVENT_IFETCH;
202 per_kprobe.start.val = ip;
203 per_kprobe.end.val = ip;
204
205 /* Save control regs and psw mask */
206 __local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207 kcb->kprobe_saved_imask = regs->psw.mask &
208 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210 /* Set PER control regs, turns on single step for the given address */
211 __local_ctl_load(9, 11, per_kprobe.regs);
212 regs->psw.mask |= PSW_MASK_PER;
213 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214 regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219 struct pt_regs *regs,
220 unsigned long ip)
221{
222 /* Restore control regs and psw mask, set new psw address */
223 __local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224 regs->psw.mask &= ~PSW_MASK_PER;
225 regs->psw.mask |= kcb->kprobe_saved_imask;
226 regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238 kcb->prev_kprobe.status = kcb->kprobe_status;
239 __this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251 kcb->kprobe_status = kcb->prev_kprobe.status;
252 kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
257{
258 switch (kcb->kprobe_status) {
259 case KPROBE_HIT_SSDONE:
260 case KPROBE_HIT_ACTIVE:
261 kprobes_inc_nmissed_count(p);
262 break;
263 case KPROBE_HIT_SS:
264 case KPROBE_REENTER:
265 default:
266 /*
267 * A kprobe on the code path to single step an instruction
268 * is a BUG. The code path resides in the .kprobes.text
269 * section and is executed with interrupts disabled.
270 */
271 pr_err("Failed to recover from reentered kprobes.\n");
272 dump_kprobe(p);
273 BUG();
274 }
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280 struct kprobe_ctlblk *kcb;
281 struct kprobe *p;
282
283 /*
284 * We want to disable preemption for the entire duration of kprobe
285 * processing. That includes the calls to the pre/post handlers
286 * and single stepping the kprobe instruction.
287 */
288 preempt_disable();
289 kcb = get_kprobe_ctlblk();
290 p = get_kprobe((void *)(regs->psw.addr - 2));
291
292 if (p) {
293 if (kprobe_running()) {
294 /*
295 * We have hit a kprobe while another is still
296 * active. This can happen in the pre and post
297 * handler. Single step the instruction of the
298 * new probe but do not call any handler function
299 * of this secondary kprobe.
300 * push_kprobe and pop_kprobe saves and restores
301 * the currently active kprobe.
302 */
303 kprobe_reenter_check(kcb, p);
304 push_kprobe(kcb, p);
305 kcb->kprobe_status = KPROBE_REENTER;
306 } else {
307 /*
308 * If we have no pre-handler or it returned 0, we
309 * continue with single stepping. If we have a
310 * pre-handler and it returned non-zero, it prepped
311 * for changing execution path, so get out doing
312 * nothing more here.
313 */
314 push_kprobe(kcb, p);
315 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316 if (p->pre_handler && p->pre_handler(p, regs)) {
317 pop_kprobe(kcb);
318 preempt_enable_no_resched();
319 return 1;
320 }
321 kcb->kprobe_status = KPROBE_HIT_SS;
322 }
323 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324 return 1;
325 } /* else:
326 * No kprobe at this address and no active kprobe. The trap has
327 * not been caused by a kprobe breakpoint. The race of breakpoint
328 * vs. kprobe remove does not exist because on s390 as we use
329 * stop_machine to arm/disarm the breakpoints.
330 */
331 preempt_enable_no_resched();
332 return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
335
336/*
337 * Called after single-stepping. p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction. To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction. The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347 unsigned long ip = regs->psw.addr;
348 int fixup = probe_get_fixup_type(p->ainsn.insn);
349
350 if (fixup & FIXUP_PSW_NORMAL)
351 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354 int ilen = insn_length(p->ainsn.insn[0] >> 8);
355 if (ip - (unsigned long) p->ainsn.insn == ilen)
356 ip = (unsigned long) p->addr + ilen;
357 }
358
359 if (fixup & FIXUP_RETURN_REGISTER) {
360 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361 regs->gprs[reg] += (unsigned long) p->addr -
362 (unsigned long) p->ainsn.insn;
363 }
364
365 disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372 struct kprobe *p = kprobe_running();
373
374 if (!p)
375 return 0;
376
377 resume_execution(p, regs);
378 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379 kcb->kprobe_status = KPROBE_HIT_SSDONE;
380 p->post_handler(p, regs, 0);
381 }
382 pop_kprobe(kcb);
383 preempt_enable_no_resched();
384
385 /*
386 * if somebody else is singlestepping across a probe point, psw mask
387 * will have PER set, in which case, continue the remaining processing
388 * of do_single_step, as if this is not a probe hit.
389 */
390 if (regs->psw.mask & PSW_MASK_PER)
391 return 0;
392
393 return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400 struct kprobe *p = kprobe_running();
401
402 switch(kcb->kprobe_status) {
403 case KPROBE_HIT_SS:
404 case KPROBE_REENTER:
405 /*
406 * We are here because the instruction being single
407 * stepped caused a page fault. We reset the current
408 * kprobe and the nip points back to the probe address
409 * and allow the page fault handler to continue as a
410 * normal page fault.
411 */
412 disable_singlestep(kcb, regs, (unsigned long) p->addr);
413 pop_kprobe(kcb);
414 preempt_enable_no_resched();
415 break;
416 case KPROBE_HIT_ACTIVE:
417 case KPROBE_HIT_SSDONE:
418 /*
419 * In case the user-specified fault handler returned
420 * zero, try to fix up.
421 */
422 if (fixup_exception(regs))
423 return 1;
424 /*
425 * fixup_exception() could not handle it,
426 * Let do_page_fault() fix it.
427 */
428 break;
429 default:
430 break;
431 }
432 return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438 int ret;
439
440 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441 local_irq_disable();
442 ret = kprobe_trap_handler(regs, trapnr);
443 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445 return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453 unsigned long val, void *data)
454{
455 struct die_args *args = (struct die_args *) data;
456 struct pt_regs *regs = args->regs;
457 int ret = NOTIFY_DONE;
458
459 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460 local_irq_disable();
461
462 switch (val) {
463 case DIE_BPT:
464 if (kprobe_handler(regs))
465 ret = NOTIFY_STOP;
466 break;
467 case DIE_SSTEP:
468 if (post_kprobe_handler(regs))
469 ret = NOTIFY_STOP;
470 break;
471 case DIE_TRAP:
472 if (!preemptible() && kprobe_running() &&
473 kprobe_trap_handler(regs, args->trapnr))
474 ret = NOTIFY_STOP;
475 break;
476 default:
477 break;
478 }
479
480 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483 return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489 return 0;
490}
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494 return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495 (unsigned long)__irqentry_text_end);
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500 return 0;
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#include <linux/kprobes.h>
11#include <linux/ptrace.h>
12#include <linux/preempt.h>
13#include <linux/stop_machine.h>
14#include <linux/kdebug.h>
15#include <linux/uaccess.h>
16#include <linux/extable.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/hardirq.h>
20#include <linux/ftrace.h>
21#include <asm/set_memory.h>
22#include <asm/sections.h>
23#include <asm/dis.h>
24
25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30DEFINE_INSN_CACHE_OPS(s390_insn);
31
32static int insn_page_in_use;
33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35static void *alloc_s390_insn_page(void)
36{
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
41}
42
43static void free_s390_insn_page(void *page)
44{
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
47}
48
49struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
55};
56
57static void copy_instruction(struct kprobe *p)
58{
59 s64 disp, new_disp;
60 u64 addr, new_addr;
61
62 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63 p->opcode = p->ainsn.insn[0];
64 if (!probe_is_insn_relative_long(p->ainsn.insn))
65 return;
66 /*
67 * For pc-relative instructions in RIL-b or RIL-c format patch the
68 * RI2 displacement field. We have already made sure that the insn
69 * slot for the patched instruction is within the same 2GB area
70 * as the original instruction (either kernel image or module area).
71 * Therefore the new displacement will always fit.
72 */
73 disp = *(s32 *)&p->ainsn.insn[1];
74 addr = (u64)(unsigned long)p->addr;
75 new_addr = (u64)(unsigned long)p->ainsn.insn;
76 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77 *(s32 *)&p->ainsn.insn[1] = new_disp;
78}
79NOKPROBE_SYMBOL(copy_instruction);
80
81static inline int is_kernel_addr(void *addr)
82{
83 return addr < (void *)_end;
84}
85
86static int s390_get_insn_slot(struct kprobe *p)
87{
88 /*
89 * Get an insn slot that is within the same 2GB area like the original
90 * instruction. That way instructions with a 32bit signed displacement
91 * field can be patched and executed within the insn slot.
92 */
93 p->ainsn.insn = NULL;
94 if (is_kernel_addr(p->addr))
95 p->ainsn.insn = get_s390_insn_slot();
96 else if (is_module_addr(p->addr))
97 p->ainsn.insn = get_insn_slot();
98 return p->ainsn.insn ? 0 : -ENOMEM;
99}
100NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102static void s390_free_insn_slot(struct kprobe *p)
103{
104 if (!p->ainsn.insn)
105 return;
106 if (is_kernel_addr(p->addr))
107 free_s390_insn_slot(p->ainsn.insn, 0);
108 else
109 free_insn_slot(p->ainsn.insn, 0);
110 p->ainsn.insn = NULL;
111}
112NOKPROBE_SYMBOL(s390_free_insn_slot);
113
114int arch_prepare_kprobe(struct kprobe *p)
115{
116 if ((unsigned long) p->addr & 0x01)
117 return -EINVAL;
118 /* Make sure the probe isn't going on a difficult instruction */
119 if (probe_is_prohibited_opcode(p->addr))
120 return -EINVAL;
121 if (s390_get_insn_slot(p))
122 return -ENOMEM;
123 copy_instruction(p);
124 return 0;
125}
126NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
128struct swap_insn_args {
129 struct kprobe *p;
130 unsigned int arm_kprobe : 1;
131};
132
133static int swap_instruction(void *data)
134{
135 struct swap_insn_args *args = data;
136 struct kprobe *p = args->p;
137 u16 opc;
138
139 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140 s390_kernel_write(p->addr, &opc, sizeof(opc));
141 return 0;
142}
143NOKPROBE_SYMBOL(swap_instruction);
144
145void arch_arm_kprobe(struct kprobe *p)
146{
147 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149 stop_machine_cpuslocked(swap_instruction, &args, NULL);
150}
151NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153void arch_disarm_kprobe(struct kprobe *p)
154{
155 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157 stop_machine_cpuslocked(swap_instruction, &args, NULL);
158}
159NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161void arch_remove_kprobe(struct kprobe *p)
162{
163 s390_free_insn_slot(p);
164}
165NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167static void enable_singlestep(struct kprobe_ctlblk *kcb,
168 struct pt_regs *regs,
169 unsigned long ip)
170{
171 struct per_regs per_kprobe;
172
173 /* Set up the PER control registers %cr9-%cr11 */
174 per_kprobe.control = PER_EVENT_IFETCH;
175 per_kprobe.start = ip;
176 per_kprobe.end = ip;
177
178 /* Save control regs and psw mask */
179 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180 kcb->kprobe_saved_imask = regs->psw.mask &
181 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183 /* Set PER control regs, turns on single step for the given address */
184 __ctl_load(per_kprobe, 9, 11);
185 regs->psw.mask |= PSW_MASK_PER;
186 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187 regs->psw.addr = ip;
188}
189NOKPROBE_SYMBOL(enable_singlestep);
190
191static void disable_singlestep(struct kprobe_ctlblk *kcb,
192 struct pt_regs *regs,
193 unsigned long ip)
194{
195 /* Restore control regs and psw mask, set new psw address */
196 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197 regs->psw.mask &= ~PSW_MASK_PER;
198 regs->psw.mask |= kcb->kprobe_saved_imask;
199 regs->psw.addr = ip;
200}
201NOKPROBE_SYMBOL(disable_singlestep);
202
203/*
204 * Activate a kprobe by storing its pointer to current_kprobe. The
205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206 * two kprobes can be active, see KPROBE_REENTER.
207 */
208static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209{
210 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211 kcb->prev_kprobe.status = kcb->kprobe_status;
212 __this_cpu_write(current_kprobe, p);
213}
214NOKPROBE_SYMBOL(push_kprobe);
215
216/*
217 * Deactivate a kprobe by backing up to the previous state. If the
218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219 * for any other state prev_kprobe.kp will be NULL.
220 */
221static void pop_kprobe(struct kprobe_ctlblk *kcb)
222{
223 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224 kcb->kprobe_status = kcb->prev_kprobe.status;
225}
226NOKPROBE_SYMBOL(pop_kprobe);
227
228void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229{
230 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232 /* Replace the return addr with trampoline addr */
233 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234}
235NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238{
239 switch (kcb->kprobe_status) {
240 case KPROBE_HIT_SSDONE:
241 case KPROBE_HIT_ACTIVE:
242 kprobes_inc_nmissed_count(p);
243 break;
244 case KPROBE_HIT_SS:
245 case KPROBE_REENTER:
246 default:
247 /*
248 * A kprobe on the code path to single step an instruction
249 * is a BUG. The code path resides in the .kprobes.text
250 * section and is executed with interrupts disabled.
251 */
252 pr_err("Invalid kprobe detected.\n");
253 dump_kprobe(p);
254 BUG();
255 }
256}
257NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259static int kprobe_handler(struct pt_regs *regs)
260{
261 struct kprobe_ctlblk *kcb;
262 struct kprobe *p;
263
264 /*
265 * We want to disable preemption for the entire duration of kprobe
266 * processing. That includes the calls to the pre/post handlers
267 * and single stepping the kprobe instruction.
268 */
269 preempt_disable();
270 kcb = get_kprobe_ctlblk();
271 p = get_kprobe((void *)(regs->psw.addr - 2));
272
273 if (p) {
274 if (kprobe_running()) {
275 /*
276 * We have hit a kprobe while another is still
277 * active. This can happen in the pre and post
278 * handler. Single step the instruction of the
279 * new probe but do not call any handler function
280 * of this secondary kprobe.
281 * push_kprobe and pop_kprobe saves and restores
282 * the currently active kprobe.
283 */
284 kprobe_reenter_check(kcb, p);
285 push_kprobe(kcb, p);
286 kcb->kprobe_status = KPROBE_REENTER;
287 } else {
288 /*
289 * If we have no pre-handler or it returned 0, we
290 * continue with single stepping. If we have a
291 * pre-handler and it returned non-zero, it prepped
292 * for changing execution path, so get out doing
293 * nothing more here.
294 */
295 push_kprobe(kcb, p);
296 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297 if (p->pre_handler && p->pre_handler(p, regs)) {
298 pop_kprobe(kcb);
299 preempt_enable_no_resched();
300 return 1;
301 }
302 kcb->kprobe_status = KPROBE_HIT_SS;
303 }
304 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305 return 1;
306 } /* else:
307 * No kprobe at this address and no active kprobe. The trap has
308 * not been caused by a kprobe breakpoint. The race of breakpoint
309 * vs. kprobe remove does not exist because on s390 as we use
310 * stop_machine to arm/disarm the breakpoints.
311 */
312 preempt_enable_no_resched();
313 return 0;
314}
315NOKPROBE_SYMBOL(kprobe_handler);
316
317/*
318 * Function return probe trampoline:
319 * - init_kprobes() establishes a probepoint here
320 * - When the probed function returns, this probe
321 * causes the handlers to fire
322 */
323static void __used kretprobe_trampoline_holder(void)
324{
325 asm volatile(".global kretprobe_trampoline\n"
326 "kretprobe_trampoline: bcr 0,0\n");
327}
328
329/*
330 * Called when the probe at kretprobe trampoline is hit
331 */
332static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333{
334 struct kretprobe_instance *ri;
335 struct hlist_head *head, empty_rp;
336 struct hlist_node *tmp;
337 unsigned long flags, orig_ret_address;
338 unsigned long trampoline_address;
339 kprobe_opcode_t *correct_ret_addr;
340
341 INIT_HLIST_HEAD(&empty_rp);
342 kretprobe_hash_lock(current, &head, &flags);
343
344 /*
345 * It is possible to have multiple instances associated with a given
346 * task either because an multiple functions in the call path
347 * have a return probe installed on them, and/or more than one return
348 * return probe was registered for a target function.
349 *
350 * We can handle this because:
351 * - instances are always inserted at the head of the list
352 * - when multiple return probes are registered for the same
353 * function, the first instance's ret_addr will point to the
354 * real return address, and all the rest will point to
355 * kretprobe_trampoline
356 */
357 ri = NULL;
358 orig_ret_address = 0;
359 correct_ret_addr = NULL;
360 trampoline_address = (unsigned long) &kretprobe_trampoline;
361 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362 if (ri->task != current)
363 /* another task is sharing our hash bucket */
364 continue;
365
366 orig_ret_address = (unsigned long) ri->ret_addr;
367
368 if (orig_ret_address != trampoline_address)
369 /*
370 * This is the real return address. Any other
371 * instances associated with this task are for
372 * other calls deeper on the call stack
373 */
374 break;
375 }
376
377 kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379 correct_ret_addr = ri->ret_addr;
380 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381 if (ri->task != current)
382 /* another task is sharing our hash bucket */
383 continue;
384
385 orig_ret_address = (unsigned long) ri->ret_addr;
386
387 if (ri->rp && ri->rp->handler) {
388 ri->ret_addr = correct_ret_addr;
389 ri->rp->handler(ri, regs);
390 }
391
392 recycle_rp_inst(ri, &empty_rp);
393
394 if (orig_ret_address != trampoline_address)
395 /*
396 * This is the real return address. Any other
397 * instances associated with this task are for
398 * other calls deeper on the call stack
399 */
400 break;
401 }
402
403 regs->psw.addr = orig_ret_address;
404
405 kretprobe_hash_unlock(current, &flags);
406
407 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408 hlist_del(&ri->hlist);
409 kfree(ri);
410 }
411 /*
412 * By returning a non-zero value, we are telling
413 * kprobe_handler() that we don't want the post_handler
414 * to run (and have re-enabled preemption)
415 */
416 return 1;
417}
418NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420/*
421 * Called after single-stepping. p->addr is the address of the
422 * instruction whose first byte has been replaced by the "breakpoint"
423 * instruction. To avoid the SMP problems that can occur when we
424 * temporarily put back the original opcode to single-step, we
425 * single-stepped a copy of the instruction. The address of this
426 * copy is p->ainsn.insn.
427 */
428static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429{
430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431 unsigned long ip = regs->psw.addr;
432 int fixup = probe_get_fixup_type(p->ainsn.insn);
433
434 if (fixup & FIXUP_PSW_NORMAL)
435 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438 int ilen = insn_length(p->ainsn.insn[0] >> 8);
439 if (ip - (unsigned long) p->ainsn.insn == ilen)
440 ip = (unsigned long) p->addr + ilen;
441 }
442
443 if (fixup & FIXUP_RETURN_REGISTER) {
444 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445 regs->gprs[reg] += (unsigned long) p->addr -
446 (unsigned long) p->ainsn.insn;
447 }
448
449 disable_singlestep(kcb, regs, ip);
450}
451NOKPROBE_SYMBOL(resume_execution);
452
453static int post_kprobe_handler(struct pt_regs *regs)
454{
455 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456 struct kprobe *p = kprobe_running();
457
458 if (!p)
459 return 0;
460
461 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462 kcb->kprobe_status = KPROBE_HIT_SSDONE;
463 p->post_handler(p, regs, 0);
464 }
465
466 resume_execution(p, regs);
467 pop_kprobe(kcb);
468 preempt_enable_no_resched();
469
470 /*
471 * if somebody else is singlestepping across a probe point, psw mask
472 * will have PER set, in which case, continue the remaining processing
473 * of do_single_step, as if this is not a probe hit.
474 */
475 if (regs->psw.mask & PSW_MASK_PER)
476 return 0;
477
478 return 1;
479}
480NOKPROBE_SYMBOL(post_kprobe_handler);
481
482static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483{
484 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 struct kprobe *p = kprobe_running();
486 const struct exception_table_entry *entry;
487
488 switch(kcb->kprobe_status) {
489 case KPROBE_HIT_SS:
490 case KPROBE_REENTER:
491 /*
492 * We are here because the instruction being single
493 * stepped caused a page fault. We reset the current
494 * kprobe and the nip points back to the probe address
495 * and allow the page fault handler to continue as a
496 * normal page fault.
497 */
498 disable_singlestep(kcb, regs, (unsigned long) p->addr);
499 pop_kprobe(kcb);
500 preempt_enable_no_resched();
501 break;
502 case KPROBE_HIT_ACTIVE:
503 case KPROBE_HIT_SSDONE:
504 /*
505 * We increment the nmissed count for accounting,
506 * we can also use npre/npostfault count for accounting
507 * these specific fault cases.
508 */
509 kprobes_inc_nmissed_count(p);
510
511 /*
512 * We come here because instructions in the pre/post
513 * handler caused the page_fault, this could happen
514 * if handler tries to access user space by
515 * copy_from_user(), get_user() etc. Let the
516 * user-specified handler try to fix it first.
517 */
518 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519 return 1;
520
521 /*
522 * In case the user-specified fault handler returned
523 * zero, try to fix up.
524 */
525 entry = s390_search_extables(regs->psw.addr);
526 if (entry && ex_handle(entry, regs))
527 return 1;
528
529 /*
530 * fixup_exception() could not handle it,
531 * Let do_page_fault() fix it.
532 */
533 break;
534 default:
535 break;
536 }
537 return 0;
538}
539NOKPROBE_SYMBOL(kprobe_trap_handler);
540
541int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542{
543 int ret;
544
545 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
546 local_irq_disable();
547 ret = kprobe_trap_handler(regs, trapnr);
548 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
549 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
550 return ret;
551}
552NOKPROBE_SYMBOL(kprobe_fault_handler);
553
554/*
555 * Wrapper routine to for handling exceptions.
556 */
557int kprobe_exceptions_notify(struct notifier_block *self,
558 unsigned long val, void *data)
559{
560 struct die_args *args = (struct die_args *) data;
561 struct pt_regs *regs = args->regs;
562 int ret = NOTIFY_DONE;
563
564 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
565 local_irq_disable();
566
567 switch (val) {
568 case DIE_BPT:
569 if (kprobe_handler(regs))
570 ret = NOTIFY_STOP;
571 break;
572 case DIE_SSTEP:
573 if (post_kprobe_handler(regs))
574 ret = NOTIFY_STOP;
575 break;
576 case DIE_TRAP:
577 if (!preemptible() && kprobe_running() &&
578 kprobe_trap_handler(regs, args->trapnr))
579 ret = NOTIFY_STOP;
580 break;
581 default:
582 break;
583 }
584
585 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
586 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
587
588 return ret;
589}
590NOKPROBE_SYMBOL(kprobe_exceptions_notify);
591
592static struct kprobe trampoline = {
593 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
594 .pre_handler = trampoline_probe_handler
595};
596
597int __init arch_init_kprobes(void)
598{
599 return register_kprobe(&trampoline);
600}
601
602int arch_trampoline_kprobe(struct kprobe *p)
603{
604 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
605}
606NOKPROBE_SYMBOL(arch_trampoline_kprobe);