Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/kprobes.h>
 13#include <linux/ptrace.h>
 14#include <linux/preempt.h>
 15#include <linux/stop_machine.h>
 16#include <linux/kdebug.h>
 17#include <linux/uaccess.h>
 18#include <linux/extable.h>
 19#include <linux/module.h>
 20#include <linux/slab.h>
 21#include <linux/hardirq.h>
 22#include <linux/ftrace.h>
 23#include <linux/execmem.h>
 24#include <asm/text-patching.h>
 25#include <asm/set_memory.h>
 26#include <asm/sections.h>
 27#include <asm/dis.h>
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35void *alloc_insn_page(void)
 
 
 36{
 37	void *page;
 
 38
 39	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 40	if (!page)
 41		return NULL;
 42	set_memory_rox((unsigned long)page, 1);
 43	return page;
 44}
 45
 46static void copy_instruction(struct kprobe *p)
 
 
 
 
 
 
 
 
 47{
 48	kprobe_opcode_t insn[MAX_INSN_SIZE];
 49	s64 disp, new_disp;
 50	u64 addr, new_addr;
 51	unsigned int len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52
 53	len = insn_length(*p->addr >> 8);
 54	memcpy(&insn, p->addr, len);
 55	p->opcode = insn[0];
 56	if (probe_is_insn_relative_long(&insn[0])) {
 57		/*
 58		 * For pc-relative instructions in RIL-b or RIL-c format patch
 59		 * the RI2 displacement field. The insn slot for the to be
 60		 * patched instruction is within the same 4GB area like the
 61		 * original instruction. Therefore the new displacement will
 62		 * always fit.
 63		 */
 64		disp = *(s32 *)&insn[1];
 65		addr = (u64)(unsigned long)p->addr;
 66		new_addr = (u64)(unsigned long)p->ainsn.insn;
 67		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 68		*(s32 *)&insn[1] = new_disp;
 69	}
 70	s390_kernel_write(p->ainsn.insn, &insn, len);
 71}
 72NOKPROBE_SYMBOL(copy_instruction);
 73
 74/* Check if paddr is at an instruction boundary */
 75static bool can_probe(unsigned long paddr)
 76{
 77	unsigned long addr, offset = 0;
 78	kprobe_opcode_t insn;
 79	struct kprobe *kp;
 80
 81	if (paddr & 0x01)
 82		return false;
 83
 84	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 85		return false;
 86
 87	/* Decode instructions */
 88	addr = paddr - offset;
 89	while (addr < paddr) {
 90		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
 91			return false;
 92
 93		if (insn >> 8 == 0) {
 94			if (insn != BREAKPOINT_INSTRUCTION) {
 95				/*
 96				 * Note that QEMU inserts opcode 0x0000 to implement
 97				 * software breakpoints for guests. Since the size of
 98				 * the original instruction is unknown, stop following
 99				 * instructions and prevent setting a kprobe.
100				 */
101				return false;
102			}
103			/*
104			 * Check if the instruction has been modified by another
105			 * kprobe, in which case the original instruction is
106			 * decoded.
107			 */
108			kp = get_kprobe((void *)addr);
109			if (!kp) {
110				/* not a kprobe */
111				return false;
112			}
113			insn = kp->opcode;
114		}
115		addr += insn_length(insn >> 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116	}
117	return addr == paddr;
118}
119
120int arch_prepare_kprobe(struct kprobe *p)
121{
122	if (!can_probe((unsigned long)p->addr))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123		return -EINVAL;
124	/* Make sure the probe isn't going on a difficult instruction */
125	if (probe_is_prohibited_opcode(p->addr))
126		return -EINVAL;
127	p->ainsn.insn = get_insn_slot();
128	if (!p->ainsn.insn)
129		return -ENOMEM;
 
130	copy_instruction(p);
131	return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
135struct swap_insn_args {
136	struct kprobe *p;
137	unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142	struct swap_insn_args *args = data;
143	struct kprobe *p = args->p;
144	u16 opc;
145
146	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
148	return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156	if (MACHINE_HAS_SEQ_INSN) {
157		swap_instruction(&args);
158		text_poke_sync();
159	} else {
160		stop_machine_cpuslocked(swap_instruction, &args, NULL);
161	}
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169	if (MACHINE_HAS_SEQ_INSN) {
170		swap_instruction(&args);
171		text_poke_sync();
172	} else {
173		stop_machine_cpuslocked(swap_instruction, &args, NULL);
174	}
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180	if (!p->ainsn.insn)
181		return;
182	free_insn_slot(p->ainsn.insn, 0);
183	p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188			      struct pt_regs *regs,
189			      unsigned long ip)
190{
191	union {
192		struct ctlreg regs[3];
193		struct {
194			struct ctlreg control;
195			struct ctlreg start;
196			struct ctlreg end;
197		};
198	} per_kprobe;
199
200	/* Set up the PER control registers %cr9-%cr11 */
201	per_kprobe.control.val = PER_EVENT_IFETCH;
202	per_kprobe.start.val = ip;
203	per_kprobe.end.val = ip;
204
205	/* Save control regs and psw mask */
206	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207	kcb->kprobe_saved_imask = regs->psw.mask &
208		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210	/* Set PER control regs, turns on single step for the given address */
211	__local_ctl_load(9, 11, per_kprobe.regs);
212	regs->psw.mask |= PSW_MASK_PER;
213	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214	regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219			       struct pt_regs *regs,
220			       unsigned long ip)
221{
222	/* Restore control regs and psw mask, set new psw address */
223	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224	regs->psw.mask &= ~PSW_MASK_PER;
225	regs->psw.mask |= kcb->kprobe_saved_imask;
226	regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238	kcb->prev_kprobe.status = kcb->kprobe_status;
239	__this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251	kcb->kprobe_status = kcb->prev_kprobe.status;
252	kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
257{
258	switch (kcb->kprobe_status) {
259	case KPROBE_HIT_SSDONE:
260	case KPROBE_HIT_ACTIVE:
261		kprobes_inc_nmissed_count(p);
262		break;
263	case KPROBE_HIT_SS:
264	case KPROBE_REENTER:
265	default:
266		/*
267		 * A kprobe on the code path to single step an instruction
268		 * is a BUG. The code path resides in the .kprobes.text
269		 * section and is executed with interrupts disabled.
270		 */
271		pr_err("Failed to recover from reentered kprobes.\n");
272		dump_kprobe(p);
273		BUG();
274	}
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280	struct kprobe_ctlblk *kcb;
281	struct kprobe *p;
282
283	/*
284	 * We want to disable preemption for the entire duration of kprobe
285	 * processing. That includes the calls to the pre/post handlers
286	 * and single stepping the kprobe instruction.
287	 */
288	preempt_disable();
289	kcb = get_kprobe_ctlblk();
290	p = get_kprobe((void *)(regs->psw.addr - 2));
291
292	if (p) {
293		if (kprobe_running()) {
294			/*
295			 * We have hit a kprobe while another is still
296			 * active. This can happen in the pre and post
297			 * handler. Single step the instruction of the
298			 * new probe but do not call any handler function
299			 * of this secondary kprobe.
300			 * push_kprobe and pop_kprobe saves and restores
301			 * the currently active kprobe.
302			 */
303			kprobe_reenter_check(kcb, p);
304			push_kprobe(kcb, p);
305			kcb->kprobe_status = KPROBE_REENTER;
306		} else {
307			/*
308			 * If we have no pre-handler or it returned 0, we
309			 * continue with single stepping. If we have a
310			 * pre-handler and it returned non-zero, it prepped
311			 * for changing execution path, so get out doing
312			 * nothing more here.
 
313			 */
314			push_kprobe(kcb, p);
315			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316			if (p->pre_handler && p->pre_handler(p, regs)) {
317				pop_kprobe(kcb);
318				preempt_enable_no_resched();
319				return 1;
320			}
321			kcb->kprobe_status = KPROBE_HIT_SS;
322		}
323		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325	} /* else:
326	   * No kprobe at this address and no active kprobe. The trap has
327	   * not been caused by a kprobe breakpoint. The race of breakpoint
328	   * vs. kprobe remove does not exist because on s390 as we use
329	   * stop_machine to arm/disarm the breakpoints.
330	   */
331	preempt_enable_no_resched();
332	return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
336/*
337 * Called after single-stepping.  p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction.  To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction.  The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347	unsigned long ip = regs->psw.addr;
348	int fixup = probe_get_fixup_type(p->ainsn.insn);
349
350	if (fixup & FIXUP_PSW_NORMAL)
351		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354		int ilen = insn_length(p->ainsn.insn[0] >> 8);
355		if (ip - (unsigned long) p->ainsn.insn == ilen)
356			ip = (unsigned long) p->addr + ilen;
357	}
358
359	if (fixup & FIXUP_RETURN_REGISTER) {
360		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361		regs->gprs[reg] += (unsigned long) p->addr -
362				   (unsigned long) p->ainsn.insn;
363	}
364
365	disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372	struct kprobe *p = kprobe_running();
373
374	if (!p)
375		return 0;
376
377	resume_execution(p, regs);
378	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379		kcb->kprobe_status = KPROBE_HIT_SSDONE;
380		p->post_handler(p, regs, 0);
381	}
 
 
382	pop_kprobe(kcb);
383	preempt_enable_no_resched();
384
385	/*
386	 * if somebody else is singlestepping across a probe point, psw mask
387	 * will have PER set, in which case, continue the remaining processing
388	 * of do_single_step, as if this is not a probe hit.
389	 */
390	if (regs->psw.mask & PSW_MASK_PER)
391		return 0;
392
393	return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400	struct kprobe *p = kprobe_running();
 
401
402	switch(kcb->kprobe_status) {
 
 
 
403	case KPROBE_HIT_SS:
404	case KPROBE_REENTER:
405		/*
406		 * We are here because the instruction being single
407		 * stepped caused a page fault. We reset the current
408		 * kprobe and the nip points back to the probe address
409		 * and allow the page fault handler to continue as a
410		 * normal page fault.
411		 */
412		disable_singlestep(kcb, regs, (unsigned long) p->addr);
413		pop_kprobe(kcb);
414		preempt_enable_no_resched();
415		break;
416	case KPROBE_HIT_ACTIVE:
417	case KPROBE_HIT_SSDONE:
418		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419		 * In case the user-specified fault handler returned
420		 * zero, try to fix up.
421		 */
422		if (fixup_exception(regs))
 
 
423			return 1;
 
 
424		/*
425		 * fixup_exception() could not handle it,
426		 * Let do_page_fault() fix it.
427		 */
428		break;
429	default:
430		break;
431	}
432	return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438	int ret;
439
440	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441		local_irq_disable();
442	ret = kprobe_trap_handler(regs, trapnr);
443	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445	return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453			     unsigned long val, void *data)
454{
455	struct die_args *args = (struct die_args *) data;
456	struct pt_regs *regs = args->regs;
457	int ret = NOTIFY_DONE;
458
459	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460		local_irq_disable();
461
462	switch (val) {
463	case DIE_BPT:
464		if (kprobe_handler(regs))
465			ret = NOTIFY_STOP;
466		break;
467	case DIE_SSTEP:
468		if (post_kprobe_handler(regs))
469			ret = NOTIFY_STOP;
470		break;
471	case DIE_TRAP:
472		if (!preemptible() && kprobe_running() &&
473		    kprobe_trap_handler(regs, args->trapnr))
474			ret = NOTIFY_STOP;
475		break;
476	default:
477		break;
478	}
479
480	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483	return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490}
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494	return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495					 (unsigned long)__irqentry_text_end);
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.15
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright IBM Corp. 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 
 
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 
 29#include <linux/module.h>
 30#include <linux/slab.h>
 31#include <linux/hardirq.h>
 32#include <asm/cacheflush.h>
 
 
 
 33#include <asm/sections.h>
 34#include <asm/dis.h>
 
 35
 36DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 37DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 38
 39struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 40
 41DEFINE_INSN_CACHE_OPS(dmainsn);
 42
 43static void *alloc_dmainsn_page(void)
 44{
 45	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 46}
 47
 48static void free_dmainsn_page(void *page)
 49{
 50	free_page((unsigned long)page);
 
 
 51}
 52
 53struct kprobe_insn_cache kprobe_dmainsn_slots = {
 54	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 55	.alloc = alloc_dmainsn_page,
 56	.free = free_dmainsn_page,
 57	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 58	.insn_size = MAX_INSN_SIZE,
 59};
 60
 61static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
 62{
 63	if (!is_known_insn((unsigned char *)insn))
 64		return -EINVAL;
 65	switch (insn[0] >> 8) {
 66	case 0x0c:	/* bassm */
 67	case 0x0b:	/* bsm	 */
 68	case 0x83:	/* diag  */
 69	case 0x44:	/* ex	 */
 70	case 0xac:	/* stnsm */
 71	case 0xad:	/* stosm */
 72		return -EINVAL;
 73	case 0xc6:
 74		switch (insn[0] & 0x0f) {
 75		case 0x00: /* exrl   */
 76			return -EINVAL;
 77		}
 78	}
 79	switch (insn[0]) {
 80	case 0x0101:	/* pr	 */
 81	case 0xb25a:	/* bsa	 */
 82	case 0xb240:	/* bakr  */
 83	case 0xb258:	/* bsg	 */
 84	case 0xb218:	/* pc	 */
 85	case 0xb228:	/* pt	 */
 86	case 0xb98d:	/* epsw	 */
 87		return -EINVAL;
 88	}
 89	return 0;
 90}
 91
 92static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
 93{
 94	/* default fixup method */
 95	int fixup = FIXUP_PSW_NORMAL;
 96
 97	switch (insn[0] >> 8) {
 98	case 0x05:	/* balr	*/
 99	case 0x0d:	/* basr */
100		fixup = FIXUP_RETURN_REGISTER;
101		/* if r2 = 0, no branch will be taken */
102		if ((insn[0] & 0x0f) == 0)
103			fixup |= FIXUP_BRANCH_NOT_TAKEN;
104		break;
105	case 0x06:	/* bctr	*/
106	case 0x07:	/* bcr	*/
107		fixup = FIXUP_BRANCH_NOT_TAKEN;
108		break;
109	case 0x45:	/* bal	*/
110	case 0x4d:	/* bas	*/
111		fixup = FIXUP_RETURN_REGISTER;
112		break;
113	case 0x47:	/* bc	*/
114	case 0x46:	/* bct	*/
115	case 0x86:	/* bxh	*/
116	case 0x87:	/* bxle	*/
117		fixup = FIXUP_BRANCH_NOT_TAKEN;
118		break;
119	case 0x82:	/* lpsw	*/
120		fixup = FIXUP_NOT_REQUIRED;
121		break;
122	case 0xb2:	/* lpswe */
123		if ((insn[0] & 0xff) == 0xb2)
124			fixup = FIXUP_NOT_REQUIRED;
125		break;
126	case 0xa7:	/* bras	*/
127		if ((insn[0] & 0x0f) == 0x05)
128			fixup |= FIXUP_RETURN_REGISTER;
129		break;
130	case 0xc0:
131		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
132			fixup |= FIXUP_RETURN_REGISTER;
133		break;
134	case 0xeb:
135		switch (insn[2] & 0xff) {
136		case 0x44: /* bxhg  */
137		case 0x45: /* bxleg */
138			fixup = FIXUP_BRANCH_NOT_TAKEN;
139			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
140		}
141		break;
142	case 0xe3:	/* bctg	*/
143		if ((insn[2] & 0xff) == 0x46)
144			fixup = FIXUP_BRANCH_NOT_TAKEN;
145		break;
146	case 0xec:
147		switch (insn[2] & 0xff) {
148		case 0xe5: /* clgrb */
149		case 0xe6: /* cgrb  */
150		case 0xf6: /* crb   */
151		case 0xf7: /* clrb  */
152		case 0xfc: /* cgib  */
153		case 0xfd: /* cglib */
154		case 0xfe: /* cib   */
155		case 0xff: /* clib  */
156			fixup = FIXUP_BRANCH_NOT_TAKEN;
157			break;
158		}
159		break;
160	}
161	return fixup;
162}
163
164static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
165{
166	/* Check if we have a RIL-b or RIL-c format instruction which
167	 * we need to modify in order to avoid instruction emulation. */
168	switch (insn[0] >> 8) {
169	case 0xc0:
170		if ((insn[0] & 0x0f) == 0x00) /* larl */
171			return true;
172		break;
173	case 0xc4:
174		switch (insn[0] & 0x0f) {
175		case 0x02: /* llhrl  */
176		case 0x04: /* lghrl  */
177		case 0x05: /* lhrl   */
178		case 0x06: /* llghrl */
179		case 0x07: /* sthrl  */
180		case 0x08: /* lgrl   */
181		case 0x0b: /* stgrl  */
182		case 0x0c: /* lgfrl  */
183		case 0x0d: /* lrl    */
184		case 0x0e: /* llgfrl */
185		case 0x0f: /* strl   */
186			return true;
187		}
188		break;
189	case 0xc6:
190		switch (insn[0] & 0x0f) {
191		case 0x02: /* pfdrl  */
192		case 0x04: /* cghrl  */
193		case 0x05: /* chrl   */
194		case 0x06: /* clghrl */
195		case 0x07: /* clhrl  */
196		case 0x08: /* cgrl   */
197		case 0x0a: /* clgrl  */
198		case 0x0c: /* cgfrl  */
199		case 0x0d: /* crl    */
200		case 0x0e: /* clgfrl */
201		case 0x0f: /* clrl   */
202			return true;
203		}
204		break;
205	}
206	return false;
207}
208
209static void __kprobes copy_instruction(struct kprobe *p)
210{
211	s64 disp, new_disp;
212	u64 addr, new_addr;
213
214	memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
215	if (!is_insn_relative_long(p->ainsn.insn))
216		return;
217	/*
218	 * For pc-relative instructions in RIL-b or RIL-c format patch the
219	 * RI2 displacement field. We have already made sure that the insn
220	 * slot for the patched instruction is within the same 2GB area
221	 * as the original instruction (either kernel image or module area).
222	 * Therefore the new displacement will always fit.
223	 */
224	disp = *(s32 *)&p->ainsn.insn[1];
225	addr = (u64)(unsigned long)p->addr;
226	new_addr = (u64)(unsigned long)p->ainsn.insn;
227	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
228	*(s32 *)&p->ainsn.insn[1] = new_disp;
229}
230
231static inline int is_kernel_addr(void *addr)
232{
233	return addr < (void *)_end;
234}
235
236static inline int is_module_addr(void *addr)
237{
238#ifdef CONFIG_64BIT
239	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
240	if (addr < (void *)MODULES_VADDR)
241		return 0;
242	if (addr > (void *)MODULES_END)
243		return 0;
244#endif
245	return 1;
246}
247
248static int __kprobes s390_get_insn_slot(struct kprobe *p)
249{
250	/*
251	 * Get an insn slot that is within the same 2GB area like the original
252	 * instruction. That way instructions with a 32bit signed displacement
253	 * field can be patched and executed within the insn slot.
254	 */
255	p->ainsn.insn = NULL;
256	if (is_kernel_addr(p->addr))
257		p->ainsn.insn = get_dmainsn_slot();
258	else if (is_module_addr(p->addr))
259		p->ainsn.insn = get_insn_slot();
260	return p->ainsn.insn ? 0 : -ENOMEM;
261}
262
263static void __kprobes s390_free_insn_slot(struct kprobe *p)
264{
265	if (!p->ainsn.insn)
266		return;
267	if (is_kernel_addr(p->addr))
268		free_dmainsn_slot(p->ainsn.insn, 0);
269	else
270		free_insn_slot(p->ainsn.insn, 0);
271	p->ainsn.insn = NULL;
272}
273
274int __kprobes arch_prepare_kprobe(struct kprobe *p)
275{
276	if ((unsigned long) p->addr & 0x01)
277		return -EINVAL;
278	/* Make sure the probe isn't going on a difficult instruction */
279	if (is_prohibited_opcode(p->addr))
280		return -EINVAL;
281	if (s390_get_insn_slot(p))
 
282		return -ENOMEM;
283	p->opcode = *p->addr;
284	copy_instruction(p);
285	return 0;
286}
 
287
288struct ins_replace_args {
289	kprobe_opcode_t *ptr;
290	kprobe_opcode_t opcode;
291};
292
293static int __kprobes swap_instruction(void *aref)
294{
295	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296	unsigned long status = kcb->kprobe_status;
297	struct ins_replace_args *args = aref;
298
299	kcb->kprobe_status = KPROBE_SWAP_INST;
300	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
301	kcb->kprobe_status = status;
302	return 0;
303}
 
304
305void __kprobes arch_arm_kprobe(struct kprobe *p)
306{
307	struct ins_replace_args args;
308
309	args.ptr = p->addr;
310	args.opcode = BREAKPOINT_INSTRUCTION;
311	stop_machine(swap_instruction, &args, NULL);
 
 
 
312}
 
313
314void __kprobes arch_disarm_kprobe(struct kprobe *p)
315{
316	struct ins_replace_args args;
317
318	args.ptr = p->addr;
319	args.opcode = p->opcode;
320	stop_machine(swap_instruction, &args, NULL);
 
 
 
321}
 
322
323void __kprobes arch_remove_kprobe(struct kprobe *p)
324{
325	s390_free_insn_slot(p);
 
 
 
326}
 
327
328static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
329					struct pt_regs *regs,
330					unsigned long ip)
331{
332	struct per_regs per_kprobe;
 
 
 
 
 
 
 
333
334	/* Set up the PER control registers %cr9-%cr11 */
335	per_kprobe.control = PER_EVENT_IFETCH;
336	per_kprobe.start = ip;
337	per_kprobe.end = ip;
338
339	/* Save control regs and psw mask */
340	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
341	kcb->kprobe_saved_imask = regs->psw.mask &
342		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
343
344	/* Set PER control regs, turns on single step for the given address */
345	__ctl_load(per_kprobe, 9, 11);
346	regs->psw.mask |= PSW_MASK_PER;
347	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
348	regs->psw.addr = ip | PSW_ADDR_AMODE;
349}
 
350
351static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
352					 struct pt_regs *regs,
353					 unsigned long ip)
354{
355	/* Restore control regs and psw mask, set new psw address */
356	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
357	regs->psw.mask &= ~PSW_MASK_PER;
358	regs->psw.mask |= kcb->kprobe_saved_imask;
359	regs->psw.addr = ip | PSW_ADDR_AMODE;
360}
 
361
362/*
363 * Activate a kprobe by storing its pointer to current_kprobe. The
364 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
365 * two kprobes can be active, see KPROBE_REENTER.
366 */
367static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
368{
369	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
370	kcb->prev_kprobe.status = kcb->kprobe_status;
371	__get_cpu_var(current_kprobe) = p;
372}
 
373
374/*
375 * Deactivate a kprobe by backing up to the previous state. If the
376 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
377 * for any other state prev_kprobe.kp will be NULL.
378 */
379static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
380{
381	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
382	kcb->kprobe_status = kcb->prev_kprobe.status;
 
383}
 
384
385void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
386					struct pt_regs *regs)
387{
388	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
389
390	/* Replace the return addr with trampoline addr */
391	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
392}
393
394static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
395					   struct kprobe *p)
396{
397	switch (kcb->kprobe_status) {
398	case KPROBE_HIT_SSDONE:
399	case KPROBE_HIT_ACTIVE:
400		kprobes_inc_nmissed_count(p);
401		break;
402	case KPROBE_HIT_SS:
403	case KPROBE_REENTER:
404	default:
405		/*
406		 * A kprobe on the code path to single step an instruction
407		 * is a BUG. The code path resides in the .kprobes.text
408		 * section and is executed with interrupts disabled.
409		 */
410		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
411		dump_kprobe(p);
412		BUG();
413	}
414}
 
415
416static int __kprobes kprobe_handler(struct pt_regs *regs)
417{
418	struct kprobe_ctlblk *kcb;
419	struct kprobe *p;
420
421	/*
422	 * We want to disable preemption for the entire duration of kprobe
423	 * processing. That includes the calls to the pre/post handlers
424	 * and single stepping the kprobe instruction.
425	 */
426	preempt_disable();
427	kcb = get_kprobe_ctlblk();
428	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
429
430	if (p) {
431		if (kprobe_running()) {
432			/*
433			 * We have hit a kprobe while another is still
434			 * active. This can happen in the pre and post
435			 * handler. Single step the instruction of the
436			 * new probe but do not call any handler function
437			 * of this secondary kprobe.
438			 * push_kprobe and pop_kprobe saves and restores
439			 * the currently active kprobe.
440			 */
441			kprobe_reenter_check(kcb, p);
442			push_kprobe(kcb, p);
443			kcb->kprobe_status = KPROBE_REENTER;
444		} else {
445			/*
446			 * If we have no pre-handler or it returned 0, we
447			 * continue with single stepping. If we have a
448			 * pre-handler and it returned non-zero, it prepped
449			 * for calling the break_handler below on re-entry
450			 * for jprobe processing, so get out doing nothing
451			 * more here.
452			 */
453			push_kprobe(kcb, p);
454			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
455			if (p->pre_handler && p->pre_handler(p, regs))
 
 
456				return 1;
 
457			kcb->kprobe_status = KPROBE_HIT_SS;
458		}
459		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
460		return 1;
461	} else if (kprobe_running()) {
462		p = __get_cpu_var(current_kprobe);
463		if (p->break_handler && p->break_handler(p, regs)) {
464			/*
465			 * Continuation after the jprobe completed and
466			 * caused the jprobe_return trap. The jprobe
467			 * break_handler "returns" to the original
468			 * function that still has the kprobe breakpoint
469			 * installed. We continue with single stepping.
470			 */
471			kcb->kprobe_status = KPROBE_HIT_SS;
472			enable_singlestep(kcb, regs,
473					  (unsigned long) p->ainsn.insn);
474			return 1;
475		} /* else:
476		   * No kprobe at this address and the current kprobe
477		   * has no break handler (no jprobe!). The kernel just
478		   * exploded, let the standard trap handler pick up the
479		   * pieces.
480		   */
481	} /* else:
482	   * No kprobe at this address and no active kprobe. The trap has
483	   * not been caused by a kprobe breakpoint. The race of breakpoint
484	   * vs. kprobe remove does not exist because on s390 as we use
485	   * stop_machine to arm/disarm the breakpoints.
486	   */
487	preempt_enable_no_resched();
488	return 0;
489}
490
491/*
492 * Function return probe trampoline:
493 *	- init_kprobes() establishes a probepoint here
494 *	- When the probed function returns, this probe
495 *		causes the handlers to fire
496 */
497static void __used kretprobe_trampoline_holder(void)
498{
499	asm volatile(".global kretprobe_trampoline\n"
500		     "kretprobe_trampoline: bcr 0,0\n");
501}
502
503/*
504 * Called when the probe at kretprobe trampoline is hit
505 */
506static int __kprobes trampoline_probe_handler(struct kprobe *p,
507					      struct pt_regs *regs)
508{
509	struct kretprobe_instance *ri;
510	struct hlist_head *head, empty_rp;
511	struct hlist_node *tmp;
512	unsigned long flags, orig_ret_address;
513	unsigned long trampoline_address;
514	kprobe_opcode_t *correct_ret_addr;
515
516	INIT_HLIST_HEAD(&empty_rp);
517	kretprobe_hash_lock(current, &head, &flags);
518
519	/*
520	 * It is possible to have multiple instances associated with a given
521	 * task either because an multiple functions in the call path
522	 * have a return probe installed on them, and/or more than one return
523	 * return probe was registered for a target function.
524	 *
525	 * We can handle this because:
526	 *     - instances are always inserted at the head of the list
527	 *     - when multiple return probes are registered for the same
528	 *	 function, the first instance's ret_addr will point to the
529	 *	 real return address, and all the rest will point to
530	 *	 kretprobe_trampoline
531	 */
532	ri = NULL;
533	orig_ret_address = 0;
534	correct_ret_addr = NULL;
535	trampoline_address = (unsigned long) &kretprobe_trampoline;
536	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
537		if (ri->task != current)
538			/* another task is sharing our hash bucket */
539			continue;
540
541		orig_ret_address = (unsigned long) ri->ret_addr;
542
543		if (orig_ret_address != trampoline_address)
544			/*
545			 * This is the real return address. Any other
546			 * instances associated with this task are for
547			 * other calls deeper on the call stack
548			 */
549			break;
550	}
551
552	kretprobe_assert(ri, orig_ret_address, trampoline_address);
553
554	correct_ret_addr = ri->ret_addr;
555	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
556		if (ri->task != current)
557			/* another task is sharing our hash bucket */
558			continue;
559
560		orig_ret_address = (unsigned long) ri->ret_addr;
561
562		if (ri->rp && ri->rp->handler) {
563			ri->ret_addr = correct_ret_addr;
564			ri->rp->handler(ri, regs);
565		}
566
567		recycle_rp_inst(ri, &empty_rp);
568
569		if (orig_ret_address != trampoline_address)
570			/*
571			 * This is the real return address. Any other
572			 * instances associated with this task are for
573			 * other calls deeper on the call stack
574			 */
575			break;
576	}
577
578	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
579
580	pop_kprobe(get_kprobe_ctlblk());
581	kretprobe_hash_unlock(current, &flags);
582	preempt_enable_no_resched();
583
584	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
585		hlist_del(&ri->hlist);
586		kfree(ri);
587	}
588	/*
589	 * By returning a non-zero value, we are telling
590	 * kprobe_handler() that we don't want the post_handler
591	 * to run (and have re-enabled preemption)
592	 */
593	return 1;
594}
595
596/*
597 * Called after single-stepping.  p->addr is the address of the
598 * instruction whose first byte has been replaced by the "breakpoint"
599 * instruction.  To avoid the SMP problems that can occur when we
600 * temporarily put back the original opcode to single-step, we
601 * single-stepped a copy of the instruction.  The address of this
602 * copy is p->ainsn.insn.
603 */
604static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
605{
606	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
608	int fixup = get_fixup_type(p->ainsn.insn);
609
610	if (fixup & FIXUP_PSW_NORMAL)
611		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
612
613	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
614		int ilen = insn_length(p->ainsn.insn[0] >> 8);
615		if (ip - (unsigned long) p->ainsn.insn == ilen)
616			ip = (unsigned long) p->addr + ilen;
617	}
618
619	if (fixup & FIXUP_RETURN_REGISTER) {
620		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
621		regs->gprs[reg] += (unsigned long) p->addr -
622				   (unsigned long) p->ainsn.insn;
623	}
624
625	disable_singlestep(kcb, regs, ip);
626}
 
627
628static int __kprobes post_kprobe_handler(struct pt_regs *regs)
629{
630	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
631	struct kprobe *p = kprobe_running();
632
633	if (!p)
634		return 0;
635
 
636	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
637		kcb->kprobe_status = KPROBE_HIT_SSDONE;
638		p->post_handler(p, regs, 0);
639	}
640
641	resume_execution(p, regs);
642	pop_kprobe(kcb);
643	preempt_enable_no_resched();
644
645	/*
646	 * if somebody else is singlestepping across a probe point, psw mask
647	 * will have PER set, in which case, continue the remaining processing
648	 * of do_single_step, as if this is not a probe hit.
649	 */
650	if (regs->psw.mask & PSW_MASK_PER)
651		return 0;
652
653	return 1;
654}
 
655
656static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
657{
658	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659	struct kprobe *p = kprobe_running();
660	const struct exception_table_entry *entry;
661
662	switch(kcb->kprobe_status) {
663	case KPROBE_SWAP_INST:
664		/* We are here because the instruction replacement failed */
665		return 0;
666	case KPROBE_HIT_SS:
667	case KPROBE_REENTER:
668		/*
669		 * We are here because the instruction being single
670		 * stepped caused a page fault. We reset the current
671		 * kprobe and the nip points back to the probe address
672		 * and allow the page fault handler to continue as a
673		 * normal page fault.
674		 */
675		disable_singlestep(kcb, regs, (unsigned long) p->addr);
676		pop_kprobe(kcb);
677		preempt_enable_no_resched();
678		break;
679	case KPROBE_HIT_ACTIVE:
680	case KPROBE_HIT_SSDONE:
681		/*
682		 * We increment the nmissed count for accounting,
683		 * we can also use npre/npostfault count for accounting
684		 * these specific fault cases.
685		 */
686		kprobes_inc_nmissed_count(p);
687
688		/*
689		 * We come here because instructions in the pre/post
690		 * handler caused the page_fault, this could happen
691		 * if handler tries to access user space by
692		 * copy_from_user(), get_user() etc. Let the
693		 * user-specified handler try to fix it first.
694		 */
695		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
696			return 1;
697
698		/*
699		 * In case the user-specified fault handler returned
700		 * zero, try to fix up.
701		 */
702		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
703		if (entry) {
704			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
705			return 1;
706		}
707
708		/*
709		 * fixup_exception() could not handle it,
710		 * Let do_page_fault() fix it.
711		 */
712		break;
713	default:
714		break;
715	}
716	return 0;
717}
 
718
719int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
720{
721	int ret;
722
723	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
724		local_irq_disable();
725	ret = kprobe_trap_handler(regs, trapnr);
726	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
727		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
728	return ret;
729}
 
730
731/*
732 * Wrapper routine to for handling exceptions.
733 */
734int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
735				       unsigned long val, void *data)
736{
737	struct die_args *args = (struct die_args *) data;
738	struct pt_regs *regs = args->regs;
739	int ret = NOTIFY_DONE;
740
741	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
742		local_irq_disable();
743
744	switch (val) {
745	case DIE_BPT:
746		if (kprobe_handler(regs))
747			ret = NOTIFY_STOP;
748		break;
749	case DIE_SSTEP:
750		if (post_kprobe_handler(regs))
751			ret = NOTIFY_STOP;
752		break;
753	case DIE_TRAP:
754		if (!preemptible() && kprobe_running() &&
755		    kprobe_trap_handler(regs, args->trapnr))
756			ret = NOTIFY_STOP;
757		break;
758	default:
759		break;
760	}
761
762	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
763		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
764
765	return ret;
766}
 
767
768int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
769{
770	struct jprobe *jp = container_of(p, struct jprobe, kp);
771	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
772	unsigned long stack;
773
774	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
775
776	/* setup return addr to the jprobe handler routine */
777	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
778	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
779
780	/* r15 is the stack pointer */
781	stack = (unsigned long) regs->gprs[15];
782
783	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
784	return 1;
785}
786
787void __kprobes jprobe_return(void)
788{
789	asm volatile(".word 0x0002");
 
790}
791
792static void __used __kprobes jprobe_return_end(void)
793{
794	asm volatile("bcr 0,0");
795}
796
797int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
798{
799	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800	unsigned long stack;
801
802	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
803
804	/* Put the regs back */
805	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
806	/* put the stack back */
807	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
808	preempt_enable_no_resched();
809	return 1;
810}
811
812static struct kprobe trampoline = {
813	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
814	.pre_handler = trampoline_probe_handler
815};
816
817int __init arch_init_kprobes(void)
818{
819	return register_kprobe(&trampoline);
820}
821
822int __kprobes arch_trampoline_kprobe(struct kprobe *p)
823{
824	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
825}