Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/kprobes.h>
 13#include <linux/ptrace.h>
 14#include <linux/preempt.h>
 15#include <linux/stop_machine.h>
 16#include <linux/kdebug.h>
 17#include <linux/uaccess.h>
 18#include <linux/extable.h>
 19#include <linux/module.h>
 20#include <linux/slab.h>
 21#include <linux/hardirq.h>
 22#include <linux/ftrace.h>
 23#include <linux/execmem.h>
 24#include <asm/text-patching.h>
 25#include <asm/set_memory.h>
 26#include <asm/sections.h>
 27#include <asm/dis.h>
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35void *alloc_insn_page(void)
 
 
 36{
 37	void *page;
 38
 39	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 40	if (!page)
 41		return NULL;
 42	set_memory_rox((unsigned long)page, 1);
 43	return page;
 44}
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46static void copy_instruction(struct kprobe *p)
 47{
 48	kprobe_opcode_t insn[MAX_INSN_SIZE];
 49	s64 disp, new_disp;
 50	u64 addr, new_addr;
 51	unsigned int len;
 52
 53	len = insn_length(*p->addr >> 8);
 54	memcpy(&insn, p->addr, len);
 55	p->opcode = insn[0];
 56	if (probe_is_insn_relative_long(&insn[0])) {
 57		/*
 58		 * For pc-relative instructions in RIL-b or RIL-c format patch
 59		 * the RI2 displacement field. The insn slot for the to be
 60		 * patched instruction is within the same 4GB area like the
 61		 * original instruction. Therefore the new displacement will
 62		 * always fit.
 63		 */
 64		disp = *(s32 *)&insn[1];
 65		addr = (u64)(unsigned long)p->addr;
 66		new_addr = (u64)(unsigned long)p->ainsn.insn;
 67		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 68		*(s32 *)&insn[1] = new_disp;
 69	}
 70	s390_kernel_write(p->ainsn.insn, &insn, len);
 
 
 
 
 
 
 
 
 
 
 
 
 71}
 72NOKPROBE_SYMBOL(copy_instruction);
 73
 74/* Check if paddr is at an instruction boundary */
 75static bool can_probe(unsigned long paddr)
 76{
 77	unsigned long addr, offset = 0;
 78	kprobe_opcode_t insn;
 79	struct kprobe *kp;
 80
 81	if (paddr & 0x01)
 82		return false;
 83
 84	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 85		return false;
 86
 87	/* Decode instructions */
 88	addr = paddr - offset;
 89	while (addr < paddr) {
 90		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
 91			return false;
 92
 93		if (insn >> 8 == 0) {
 94			if (insn != BREAKPOINT_INSTRUCTION) {
 95				/*
 96				 * Note that QEMU inserts opcode 0x0000 to implement
 97				 * software breakpoints for guests. Since the size of
 98				 * the original instruction is unknown, stop following
 99				 * instructions and prevent setting a kprobe.
100				 */
101				return false;
102			}
103			/*
104			 * Check if the instruction has been modified by another
105			 * kprobe, in which case the original instruction is
106			 * decoded.
107			 */
108			kp = get_kprobe((void *)addr);
109			if (!kp) {
110				/* not a kprobe */
111				return false;
112			}
113			insn = kp->opcode;
114		}
115		addr += insn_length(insn >> 8);
116	}
117	return addr == paddr;
118}
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120int arch_prepare_kprobe(struct kprobe *p)
121{
122	if (!can_probe((unsigned long)p->addr))
123		return -EINVAL;
124	/* Make sure the probe isn't going on a difficult instruction */
125	if (probe_is_prohibited_opcode(p->addr))
126		return -EINVAL;
127	p->ainsn.insn = get_insn_slot();
128	if (!p->ainsn.insn)
129		return -ENOMEM;
130	copy_instruction(p);
131	return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
 
 
 
 
 
135struct swap_insn_args {
136	struct kprobe *p;
137	unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142	struct swap_insn_args *args = data;
 
143	struct kprobe *p = args->p;
144	u16 opc;
145
146	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148	return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156	if (MACHINE_HAS_SEQ_INSN) {
157		swap_instruction(&args);
158		text_poke_sync();
159	} else {
160		stop_machine_cpuslocked(swap_instruction, &args, NULL);
161	}
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169	if (MACHINE_HAS_SEQ_INSN) {
170		swap_instruction(&args);
171		text_poke_sync();
172	} else {
173		stop_machine_cpuslocked(swap_instruction, &args, NULL);
174	}
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180	if (!p->ainsn.insn)
181		return;
182	free_insn_slot(p->ainsn.insn, 0);
183	p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188			      struct pt_regs *regs,
189			      unsigned long ip)
190{
191	union {
192		struct ctlreg regs[3];
193		struct {
194			struct ctlreg control;
195			struct ctlreg start;
196			struct ctlreg end;
197		};
198	} per_kprobe;
199
200	/* Set up the PER control registers %cr9-%cr11 */
201	per_kprobe.control.val = PER_EVENT_IFETCH;
202	per_kprobe.start.val = ip;
203	per_kprobe.end.val = ip;
204
205	/* Save control regs and psw mask */
206	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207	kcb->kprobe_saved_imask = regs->psw.mask &
208		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210	/* Set PER control regs, turns on single step for the given address */
211	__local_ctl_load(9, 11, per_kprobe.regs);
212	regs->psw.mask |= PSW_MASK_PER;
213	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214	regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219			       struct pt_regs *regs,
220			       unsigned long ip)
221{
222	/* Restore control regs and psw mask, set new psw address */
223	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224	regs->psw.mask &= ~PSW_MASK_PER;
225	regs->psw.mask |= kcb->kprobe_saved_imask;
226	regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238	kcb->prev_kprobe.status = kcb->kprobe_status;
239	__this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251	kcb->kprobe_status = kcb->prev_kprobe.status;
252	kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
 
 
 
 
 
 
 
 
 
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
257{
258	switch (kcb->kprobe_status) {
259	case KPROBE_HIT_SSDONE:
260	case KPROBE_HIT_ACTIVE:
261		kprobes_inc_nmissed_count(p);
262		break;
263	case KPROBE_HIT_SS:
264	case KPROBE_REENTER:
265	default:
266		/*
267		 * A kprobe on the code path to single step an instruction
268		 * is a BUG. The code path resides in the .kprobes.text
269		 * section and is executed with interrupts disabled.
270		 */
271		pr_err("Failed to recover from reentered kprobes.\n");
272		dump_kprobe(p);
273		BUG();
274	}
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280	struct kprobe_ctlblk *kcb;
281	struct kprobe *p;
282
283	/*
284	 * We want to disable preemption for the entire duration of kprobe
285	 * processing. That includes the calls to the pre/post handlers
286	 * and single stepping the kprobe instruction.
287	 */
288	preempt_disable();
289	kcb = get_kprobe_ctlblk();
290	p = get_kprobe((void *)(regs->psw.addr - 2));
291
292	if (p) {
293		if (kprobe_running()) {
294			/*
295			 * We have hit a kprobe while another is still
296			 * active. This can happen in the pre and post
297			 * handler. Single step the instruction of the
298			 * new probe but do not call any handler function
299			 * of this secondary kprobe.
300			 * push_kprobe and pop_kprobe saves and restores
301			 * the currently active kprobe.
302			 */
303			kprobe_reenter_check(kcb, p);
304			push_kprobe(kcb, p);
305			kcb->kprobe_status = KPROBE_REENTER;
306		} else {
307			/*
308			 * If we have no pre-handler or it returned 0, we
309			 * continue with single stepping. If we have a
310			 * pre-handler and it returned non-zero, it prepped
311			 * for changing execution path, so get out doing
312			 * nothing more here.
 
313			 */
314			push_kprobe(kcb, p);
315			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316			if (p->pre_handler && p->pre_handler(p, regs)) {
317				pop_kprobe(kcb);
318				preempt_enable_no_resched();
319				return 1;
320			}
321			kcb->kprobe_status = KPROBE_HIT_SS;
322		}
323		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325	} /* else:
326	   * No kprobe at this address and no active kprobe. The trap has
327	   * not been caused by a kprobe breakpoint. The race of breakpoint
328	   * vs. kprobe remove does not exist because on s390 as we use
329	   * stop_machine to arm/disarm the breakpoints.
330	   */
331	preempt_enable_no_resched();
332	return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
335
336/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337 * Called after single-stepping.  p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction.  To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction.  The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347	unsigned long ip = regs->psw.addr;
348	int fixup = probe_get_fixup_type(p->ainsn.insn);
349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350	if (fixup & FIXUP_PSW_NORMAL)
351		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354		int ilen = insn_length(p->ainsn.insn[0] >> 8);
355		if (ip - (unsigned long) p->ainsn.insn == ilen)
356			ip = (unsigned long) p->addr + ilen;
357	}
358
359	if (fixup & FIXUP_RETURN_REGISTER) {
360		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361		regs->gprs[reg] += (unsigned long) p->addr -
362				   (unsigned long) p->ainsn.insn;
363	}
364
365	disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372	struct kprobe *p = kprobe_running();
373
374	if (!p)
375		return 0;
376
377	resume_execution(p, regs);
378	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379		kcb->kprobe_status = KPROBE_HIT_SSDONE;
380		p->post_handler(p, regs, 0);
381	}
 
 
382	pop_kprobe(kcb);
383	preempt_enable_no_resched();
384
385	/*
386	 * if somebody else is singlestepping across a probe point, psw mask
387	 * will have PER set, in which case, continue the remaining processing
388	 * of do_single_step, as if this is not a probe hit.
389	 */
390	if (regs->psw.mask & PSW_MASK_PER)
391		return 0;
392
393	return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400	struct kprobe *p = kprobe_running();
 
401
402	switch(kcb->kprobe_status) {
403	case KPROBE_HIT_SS:
404	case KPROBE_REENTER:
405		/*
406		 * We are here because the instruction being single
407		 * stepped caused a page fault. We reset the current
408		 * kprobe and the nip points back to the probe address
409		 * and allow the page fault handler to continue as a
410		 * normal page fault.
411		 */
412		disable_singlestep(kcb, regs, (unsigned long) p->addr);
413		pop_kprobe(kcb);
414		preempt_enable_no_resched();
415		break;
416	case KPROBE_HIT_ACTIVE:
417	case KPROBE_HIT_SSDONE:
418		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419		 * In case the user-specified fault handler returned
420		 * zero, try to fix up.
421		 */
422		if (fixup_exception(regs))
 
 
423			return 1;
 
 
424		/*
425		 * fixup_exception() could not handle it,
426		 * Let do_page_fault() fix it.
427		 */
428		break;
429	default:
430		break;
431	}
432	return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438	int ret;
439
440	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441		local_irq_disable();
442	ret = kprobe_trap_handler(regs, trapnr);
443	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445	return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453			     unsigned long val, void *data)
454{
455	struct die_args *args = (struct die_args *) data;
456	struct pt_regs *regs = args->regs;
457	int ret = NOTIFY_DONE;
458
459	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460		local_irq_disable();
461
462	switch (val) {
463	case DIE_BPT:
464		if (kprobe_handler(regs))
465			ret = NOTIFY_STOP;
466		break;
467	case DIE_SSTEP:
468		if (post_kprobe_handler(regs))
469			ret = NOTIFY_STOP;
470		break;
471	case DIE_TRAP:
472		if (!preemptible() && kprobe_running() &&
473		    kprobe_trap_handler(regs, args->trapnr))
474			ret = NOTIFY_STOP;
475		break;
476	default:
477		break;
478	}
479
480	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483	return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490}
 
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494	return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495					 (unsigned long)__irqentry_text_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500	return 0;
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v4.17
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 
 
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 
 
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(dmainsn);
 31
 32static void *alloc_dmainsn_page(void)
 33{
 34	void *page;
 35
 36	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
 37	if (page)
 38		set_memory_x((unsigned long) page, 1);
 
 39	return page;
 40}
 41
 42static void free_dmainsn_page(void *page)
 43{
 44	set_memory_nx((unsigned long) page, 1);
 45	free_page((unsigned long)page);
 46}
 47
 48struct kprobe_insn_cache kprobe_dmainsn_slots = {
 49	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 50	.alloc = alloc_dmainsn_page,
 51	.free = free_dmainsn_page,
 52	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 53	.insn_size = MAX_INSN_SIZE,
 54};
 55
 56static void copy_instruction(struct kprobe *p)
 57{
 58	unsigned long ip = (unsigned long) p->addr;
 59	s64 disp, new_disp;
 60	u64 addr, new_addr;
 
 61
 62	if (ftrace_location(ip) == ip) {
 
 
 
 63		/*
 64		 * If kprobes patches the instruction that is morphed by
 65		 * ftrace make sure that kprobes always sees the branch
 66		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 67		 * in case of hotpatch.
 
 68		 */
 69		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 70		p->ainsn.is_ftrace_insn = 1;
 71	} else
 72		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 73	p->opcode = p->ainsn.insn[0];
 74	if (!probe_is_insn_relative_long(p->ainsn.insn))
 75		return;
 76	/*
 77	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 78	 * RI2 displacement field. We have already made sure that the insn
 79	 * slot for the patched instruction is within the same 2GB area
 80	 * as the original instruction (either kernel image or module area).
 81	 * Therefore the new displacement will always fit.
 82	 */
 83	disp = *(s32 *)&p->ainsn.insn[1];
 84	addr = (u64)(unsigned long)p->addr;
 85	new_addr = (u64)(unsigned long)p->ainsn.insn;
 86	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 87	*(s32 *)&p->ainsn.insn[1] = new_disp;
 88}
 89NOKPROBE_SYMBOL(copy_instruction);
 90
 91static inline int is_kernel_addr(void *addr)
 
 92{
 93	return addr < (void *)_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94}
 95
 96static int s390_get_insn_slot(struct kprobe *p)
 97{
 98	/*
 99	 * Get an insn slot that is within the same 2GB area like the original
100	 * instruction. That way instructions with a 32bit signed displacement
101	 * field can be patched and executed within the insn slot.
102	 */
103	p->ainsn.insn = NULL;
104	if (is_kernel_addr(p->addr))
105		p->ainsn.insn = get_dmainsn_slot();
106	else if (is_module_addr(p->addr))
107		p->ainsn.insn = get_insn_slot();
108	return p->ainsn.insn ? 0 : -ENOMEM;
109}
110NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112static void s390_free_insn_slot(struct kprobe *p)
113{
114	if (!p->ainsn.insn)
115		return;
116	if (is_kernel_addr(p->addr))
117		free_dmainsn_slot(p->ainsn.insn, 0);
118	else
119		free_insn_slot(p->ainsn.insn, 0);
120	p->ainsn.insn = NULL;
121}
122NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124int arch_prepare_kprobe(struct kprobe *p)
125{
126	if ((unsigned long) p->addr & 0x01)
127		return -EINVAL;
128	/* Make sure the probe isn't going on a difficult instruction */
129	if (probe_is_prohibited_opcode(p->addr))
130		return -EINVAL;
131	if (s390_get_insn_slot(p))
 
132		return -ENOMEM;
133	copy_instruction(p);
134	return 0;
135}
136NOKPROBE_SYMBOL(arch_prepare_kprobe);
137
138int arch_check_ftrace_location(struct kprobe *p)
139{
140	return 0;
141}
142
143struct swap_insn_args {
144	struct kprobe *p;
145	unsigned int arm_kprobe : 1;
146};
147
148static int swap_instruction(void *data)
149{
150	struct swap_insn_args *args = data;
151	struct ftrace_insn new_insn, *insn;
152	struct kprobe *p = args->p;
153	size_t len;
154
155	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
156	len = sizeof(new_insn.opc);
157	if (!p->ainsn.is_ftrace_insn)
158		goto skip_ftrace;
159	len = sizeof(new_insn);
160	insn = (struct ftrace_insn *) p->addr;
161	if (args->arm_kprobe) {
162		if (is_ftrace_nop(insn))
163			new_insn.disp = KPROBE_ON_FTRACE_NOP;
164		else
165			new_insn.disp = KPROBE_ON_FTRACE_CALL;
166	} else {
167		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
168		if (insn->disp == KPROBE_ON_FTRACE_NOP)
169			ftrace_generate_nop_insn(&new_insn);
170	}
171skip_ftrace:
172	s390_kernel_write(p->addr, &new_insn, len);
173	return 0;
174}
175NOKPROBE_SYMBOL(swap_instruction);
176
177void arch_arm_kprobe(struct kprobe *p)
178{
179	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
180
181	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
 
 
 
182}
183NOKPROBE_SYMBOL(arch_arm_kprobe);
184
185void arch_disarm_kprobe(struct kprobe *p)
186{
187	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
188
189	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
 
 
 
190}
191NOKPROBE_SYMBOL(arch_disarm_kprobe);
192
193void arch_remove_kprobe(struct kprobe *p)
194{
195	s390_free_insn_slot(p);
 
 
 
196}
197NOKPROBE_SYMBOL(arch_remove_kprobe);
198
199static void enable_singlestep(struct kprobe_ctlblk *kcb,
200			      struct pt_regs *regs,
201			      unsigned long ip)
202{
203	struct per_regs per_kprobe;
 
 
 
 
 
 
 
204
205	/* Set up the PER control registers %cr9-%cr11 */
206	per_kprobe.control = PER_EVENT_IFETCH;
207	per_kprobe.start = ip;
208	per_kprobe.end = ip;
209
210	/* Save control regs and psw mask */
211	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
212	kcb->kprobe_saved_imask = regs->psw.mask &
213		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
214
215	/* Set PER control regs, turns on single step for the given address */
216	__ctl_load(per_kprobe, 9, 11);
217	regs->psw.mask |= PSW_MASK_PER;
218	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
219	regs->psw.addr = ip;
220}
221NOKPROBE_SYMBOL(enable_singlestep);
222
223static void disable_singlestep(struct kprobe_ctlblk *kcb,
224			       struct pt_regs *regs,
225			       unsigned long ip)
226{
227	/* Restore control regs and psw mask, set new psw address */
228	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
229	regs->psw.mask &= ~PSW_MASK_PER;
230	regs->psw.mask |= kcb->kprobe_saved_imask;
231	regs->psw.addr = ip;
232}
233NOKPROBE_SYMBOL(disable_singlestep);
234
235/*
236 * Activate a kprobe by storing its pointer to current_kprobe. The
237 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
238 * two kprobes can be active, see KPROBE_REENTER.
239 */
240static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
241{
242	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
243	kcb->prev_kprobe.status = kcb->kprobe_status;
244	__this_cpu_write(current_kprobe, p);
245}
246NOKPROBE_SYMBOL(push_kprobe);
247
248/*
249 * Deactivate a kprobe by backing up to the previous state. If the
250 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
251 * for any other state prev_kprobe.kp will be NULL.
252 */
253static void pop_kprobe(struct kprobe_ctlblk *kcb)
254{
255	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
256	kcb->kprobe_status = kcb->prev_kprobe.status;
 
257}
258NOKPROBE_SYMBOL(pop_kprobe);
259
260void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
261{
262	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
263
264	/* Replace the return addr with trampoline addr */
265	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
266}
267NOKPROBE_SYMBOL(arch_prepare_kretprobe);
268
269static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
270{
271	switch (kcb->kprobe_status) {
272	case KPROBE_HIT_SSDONE:
273	case KPROBE_HIT_ACTIVE:
274		kprobes_inc_nmissed_count(p);
275		break;
276	case KPROBE_HIT_SS:
277	case KPROBE_REENTER:
278	default:
279		/*
280		 * A kprobe on the code path to single step an instruction
281		 * is a BUG. The code path resides in the .kprobes.text
282		 * section and is executed with interrupts disabled.
283		 */
284		pr_err("Invalid kprobe detected.\n");
285		dump_kprobe(p);
286		BUG();
287	}
288}
289NOKPROBE_SYMBOL(kprobe_reenter_check);
290
291static int kprobe_handler(struct pt_regs *regs)
292{
293	struct kprobe_ctlblk *kcb;
294	struct kprobe *p;
295
296	/*
297	 * We want to disable preemption for the entire duration of kprobe
298	 * processing. That includes the calls to the pre/post handlers
299	 * and single stepping the kprobe instruction.
300	 */
301	preempt_disable();
302	kcb = get_kprobe_ctlblk();
303	p = get_kprobe((void *)(regs->psw.addr - 2));
304
305	if (p) {
306		if (kprobe_running()) {
307			/*
308			 * We have hit a kprobe while another is still
309			 * active. This can happen in the pre and post
310			 * handler. Single step the instruction of the
311			 * new probe but do not call any handler function
312			 * of this secondary kprobe.
313			 * push_kprobe and pop_kprobe saves and restores
314			 * the currently active kprobe.
315			 */
316			kprobe_reenter_check(kcb, p);
317			push_kprobe(kcb, p);
318			kcb->kprobe_status = KPROBE_REENTER;
319		} else {
320			/*
321			 * If we have no pre-handler or it returned 0, we
322			 * continue with single stepping. If we have a
323			 * pre-handler and it returned non-zero, it prepped
324			 * for calling the break_handler below on re-entry
325			 * for jprobe processing, so get out doing nothing
326			 * more here.
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs))
 
 
331				return 1;
 
332			kcb->kprobe_status = KPROBE_HIT_SS;
333		}
334		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
335		return 1;
336	} else if (kprobe_running()) {
337		p = __this_cpu_read(current_kprobe);
338		if (p->break_handler && p->break_handler(p, regs)) {
339			/*
340			 * Continuation after the jprobe completed and
341			 * caused the jprobe_return trap. The jprobe
342			 * break_handler "returns" to the original
343			 * function that still has the kprobe breakpoint
344			 * installed. We continue with single stepping.
345			 */
346			kcb->kprobe_status = KPROBE_HIT_SS;
347			enable_singlestep(kcb, regs,
348					  (unsigned long) p->ainsn.insn);
349			return 1;
350		} /* else:
351		   * No kprobe at this address and the current kprobe
352		   * has no break handler (no jprobe!). The kernel just
353		   * exploded, let the standard trap handler pick up the
354		   * pieces.
355		   */
356	} /* else:
357	   * No kprobe at this address and no active kprobe. The trap has
358	   * not been caused by a kprobe breakpoint. The race of breakpoint
359	   * vs. kprobe remove does not exist because on s390 as we use
360	   * stop_machine to arm/disarm the breakpoints.
361	   */
362	preempt_enable_no_resched();
363	return 0;
364}
365NOKPROBE_SYMBOL(kprobe_handler);
366
367/*
368 * Function return probe trampoline:
369 *	- init_kprobes() establishes a probepoint here
370 *	- When the probed function returns, this probe
371 *		causes the handlers to fire
372 */
373static void __used kretprobe_trampoline_holder(void)
374{
375	asm volatile(".global kretprobe_trampoline\n"
376		     "kretprobe_trampoline: bcr 0,0\n");
377}
378
379/*
380 * Called when the probe at kretprobe trampoline is hit
381 */
382static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
383{
384	struct kretprobe_instance *ri;
385	struct hlist_head *head, empty_rp;
386	struct hlist_node *tmp;
387	unsigned long flags, orig_ret_address;
388	unsigned long trampoline_address;
389	kprobe_opcode_t *correct_ret_addr;
390
391	INIT_HLIST_HEAD(&empty_rp);
392	kretprobe_hash_lock(current, &head, &flags);
393
394	/*
395	 * It is possible to have multiple instances associated with a given
396	 * task either because an multiple functions in the call path
397	 * have a return probe installed on them, and/or more than one return
398	 * return probe was registered for a target function.
399	 *
400	 * We can handle this because:
401	 *     - instances are always inserted at the head of the list
402	 *     - when multiple return probes are registered for the same
403	 *	 function, the first instance's ret_addr will point to the
404	 *	 real return address, and all the rest will point to
405	 *	 kretprobe_trampoline
406	 */
407	ri = NULL;
408	orig_ret_address = 0;
409	correct_ret_addr = NULL;
410	trampoline_address = (unsigned long) &kretprobe_trampoline;
411	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
412		if (ri->task != current)
413			/* another task is sharing our hash bucket */
414			continue;
415
416		orig_ret_address = (unsigned long) ri->ret_addr;
417
418		if (orig_ret_address != trampoline_address)
419			/*
420			 * This is the real return address. Any other
421			 * instances associated with this task are for
422			 * other calls deeper on the call stack
423			 */
424			break;
425	}
426
427	kretprobe_assert(ri, orig_ret_address, trampoline_address);
428
429	correct_ret_addr = ri->ret_addr;
430	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
431		if (ri->task != current)
432			/* another task is sharing our hash bucket */
433			continue;
434
435		orig_ret_address = (unsigned long) ri->ret_addr;
436
437		if (ri->rp && ri->rp->handler) {
438			ri->ret_addr = correct_ret_addr;
439			ri->rp->handler(ri, regs);
440		}
441
442		recycle_rp_inst(ri, &empty_rp);
443
444		if (orig_ret_address != trampoline_address)
445			/*
446			 * This is the real return address. Any other
447			 * instances associated with this task are for
448			 * other calls deeper on the call stack
449			 */
450			break;
451	}
452
453	regs->psw.addr = orig_ret_address;
454
455	pop_kprobe(get_kprobe_ctlblk());
456	kretprobe_hash_unlock(current, &flags);
457	preempt_enable_no_resched();
458
459	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
460		hlist_del(&ri->hlist);
461		kfree(ri);
462	}
463	/*
464	 * By returning a non-zero value, we are telling
465	 * kprobe_handler() that we don't want the post_handler
466	 * to run (and have re-enabled preemption)
467	 */
468	return 1;
469}
470NOKPROBE_SYMBOL(trampoline_probe_handler);
471
472/*
473 * Called after single-stepping.  p->addr is the address of the
474 * instruction whose first byte has been replaced by the "breakpoint"
475 * instruction.  To avoid the SMP problems that can occur when we
476 * temporarily put back the original opcode to single-step, we
477 * single-stepped a copy of the instruction.  The address of this
478 * copy is p->ainsn.insn.
479 */
480static void resume_execution(struct kprobe *p, struct pt_regs *regs)
481{
482	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
483	unsigned long ip = regs->psw.addr;
484	int fixup = probe_get_fixup_type(p->ainsn.insn);
485
486	/* Check if the kprobes location is an enabled ftrace caller */
487	if (p->ainsn.is_ftrace_insn) {
488		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
489		struct ftrace_insn call_insn;
490
491		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
492		/*
493		 * A kprobe on an enabled ftrace call site actually single
494		 * stepped an unconditional branch (ftrace nop equivalent).
495		 * Now we need to fixup things and pretend that a brasl r0,...
496		 * was executed instead.
497		 */
498		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
499			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
500			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
501		}
502	}
503
504	if (fixup & FIXUP_PSW_NORMAL)
505		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
506
507	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
508		int ilen = insn_length(p->ainsn.insn[0] >> 8);
509		if (ip - (unsigned long) p->ainsn.insn == ilen)
510			ip = (unsigned long) p->addr + ilen;
511	}
512
513	if (fixup & FIXUP_RETURN_REGISTER) {
514		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
515		regs->gprs[reg] += (unsigned long) p->addr -
516				   (unsigned long) p->ainsn.insn;
517	}
518
519	disable_singlestep(kcb, regs, ip);
520}
521NOKPROBE_SYMBOL(resume_execution);
522
523static int post_kprobe_handler(struct pt_regs *regs)
524{
525	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
526	struct kprobe *p = kprobe_running();
527
528	if (!p)
529		return 0;
530
 
531	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
532		kcb->kprobe_status = KPROBE_HIT_SSDONE;
533		p->post_handler(p, regs, 0);
534	}
535
536	resume_execution(p, regs);
537	pop_kprobe(kcb);
538	preempt_enable_no_resched();
539
540	/*
541	 * if somebody else is singlestepping across a probe point, psw mask
542	 * will have PER set, in which case, continue the remaining processing
543	 * of do_single_step, as if this is not a probe hit.
544	 */
545	if (regs->psw.mask & PSW_MASK_PER)
546		return 0;
547
548	return 1;
549}
550NOKPROBE_SYMBOL(post_kprobe_handler);
551
552static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
553{
554	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
555	struct kprobe *p = kprobe_running();
556	const struct exception_table_entry *entry;
557
558	switch(kcb->kprobe_status) {
559	case KPROBE_HIT_SS:
560	case KPROBE_REENTER:
561		/*
562		 * We are here because the instruction being single
563		 * stepped caused a page fault. We reset the current
564		 * kprobe and the nip points back to the probe address
565		 * and allow the page fault handler to continue as a
566		 * normal page fault.
567		 */
568		disable_singlestep(kcb, regs, (unsigned long) p->addr);
569		pop_kprobe(kcb);
570		preempt_enable_no_resched();
571		break;
572	case KPROBE_HIT_ACTIVE:
573	case KPROBE_HIT_SSDONE:
574		/*
575		 * We increment the nmissed count for accounting,
576		 * we can also use npre/npostfault count for accounting
577		 * these specific fault cases.
578		 */
579		kprobes_inc_nmissed_count(p);
580
581		/*
582		 * We come here because instructions in the pre/post
583		 * handler caused the page_fault, this could happen
584		 * if handler tries to access user space by
585		 * copy_from_user(), get_user() etc. Let the
586		 * user-specified handler try to fix it first.
587		 */
588		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
589			return 1;
590
591		/*
592		 * In case the user-specified fault handler returned
593		 * zero, try to fix up.
594		 */
595		entry = search_exception_tables(regs->psw.addr);
596		if (entry) {
597			regs->psw.addr = extable_fixup(entry);
598			return 1;
599		}
600
601		/*
602		 * fixup_exception() could not handle it,
603		 * Let do_page_fault() fix it.
604		 */
605		break;
606	default:
607		break;
608	}
609	return 0;
610}
611NOKPROBE_SYMBOL(kprobe_trap_handler);
612
613int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
614{
615	int ret;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619	ret = kprobe_trap_handler(regs, trapnr);
620	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
621		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
622	return ret;
623}
624NOKPROBE_SYMBOL(kprobe_fault_handler);
625
626/*
627 * Wrapper routine to for handling exceptions.
628 */
629int kprobe_exceptions_notify(struct notifier_block *self,
630			     unsigned long val, void *data)
631{
632	struct die_args *args = (struct die_args *) data;
633	struct pt_regs *regs = args->regs;
634	int ret = NOTIFY_DONE;
635
636	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
637		local_irq_disable();
638
639	switch (val) {
640	case DIE_BPT:
641		if (kprobe_handler(regs))
642			ret = NOTIFY_STOP;
643		break;
644	case DIE_SSTEP:
645		if (post_kprobe_handler(regs))
646			ret = NOTIFY_STOP;
647		break;
648	case DIE_TRAP:
649		if (!preemptible() && kprobe_running() &&
650		    kprobe_trap_handler(regs, args->trapnr))
651			ret = NOTIFY_STOP;
652		break;
653	default:
654		break;
655	}
656
657	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
658		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
659
660	return ret;
661}
662NOKPROBE_SYMBOL(kprobe_exceptions_notify);
663
664int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
665{
666	struct jprobe *jp = container_of(p, struct jprobe, kp);
667	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
668	unsigned long stack;
669
670	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
671
672	/* setup return addr to the jprobe handler routine */
673	regs->psw.addr = (unsigned long) jp->entry;
674	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
675
676	/* r15 is the stack pointer */
677	stack = (unsigned long) regs->gprs[15];
678
679	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
680
681	/*
682	 * jprobes use jprobe_return() which skips the normal return
683	 * path of the function, and this messes up the accounting of the
684	 * function graph tracer to get messed up.
685	 *
686	 * Pause function graph tracing while performing the jprobe function.
687	 */
688	pause_graph_tracing();
689	return 1;
690}
691NOKPROBE_SYMBOL(setjmp_pre_handler);
692
693void jprobe_return(void)
694{
695	asm volatile(".word 0x0002");
696}
697NOKPROBE_SYMBOL(jprobe_return);
698
699int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
700{
701	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
702	unsigned long stack;
703
704	/* It's OK to start function graph tracing again */
705	unpause_graph_tracing();
706
707	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
708
709	/* Put the regs back */
710	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
711	/* put the stack back */
712	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
713	preempt_enable_no_resched();
714	return 1;
715}
716NOKPROBE_SYMBOL(longjmp_break_handler);
717
718static struct kprobe trampoline = {
719	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
720	.pre_handler = trampoline_probe_handler
721};
722
723int __init arch_init_kprobes(void)
724{
725	return register_kprobe(&trampoline);
726}
727
728int arch_trampoline_kprobe(struct kprobe *p)
729{
730	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
731}
732NOKPROBE_SYMBOL(arch_trampoline_kprobe);