Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 145DEFINE_MUTEX(tty_mutex);
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 150static int tty_open(struct inode *, struct file *);
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 
 244const char *tty_name(const struct tty_struct *tty)
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 249}
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 
 
 
 
 
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353
 354	guard(mutex)(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				return 0;
 362			}
 363		}
 364
 365	return -ENODEV;
 
 
 
 
 366}
 367EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 368
 369#ifdef CONFIG_CONSOLE_POLL
 370
 371/**
 372 * tty_find_polling_driver - find device of a polled tty
 373 * @name: name string to match
 374 * @line: pointer to resulting tty line nr
 375 *
 376 * This routine returns a tty driver structure, given a name and the condition
 377 * that the tty driver is capable of polled operation.
 
 378 */
 379struct tty_driver *tty_find_polling_driver(char *name, int *line)
 380{
 381	struct tty_driver *p, *res = NULL;
 382	int tty_line = 0;
 383	int len;
 384	char *str, *stp;
 385
 386	for (str = name; *str; str++)
 387		if ((*str >= '0' && *str <= '9') || *str == ',')
 388			break;
 389	if (!*str)
 390		return NULL;
 391
 392	len = str - name;
 393	tty_line = simple_strtoul(str, &str, 10);
 394
 395	mutex_lock(&tty_mutex);
 396	/* Search through the tty devices to look for a match */
 397	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 398		if (!len || strncmp(name, p->name, len) != 0)
 399			continue;
 400		stp = str;
 401		if (*stp == ',')
 402			stp++;
 403		if (*stp == '\0')
 404			stp = NULL;
 405
 406		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 407		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 408			res = tty_driver_kref_get(p);
 409			*line = tty_line;
 410			break;
 411		}
 412	}
 413	mutex_unlock(&tty_mutex);
 414
 415	return res;
 416}
 417EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 418#endif
 419
 420static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 421{
 422	return 0;
 423}
 424
 425static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 426{
 427	return -EIO;
 428}
 429
 430/* No kernel lock held - none needed ;) */
 431static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 432{
 433	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 434}
 435
 436static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 437		unsigned long arg)
 438{
 439	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 440}
 441
 442static long hung_up_tty_compat_ioctl(struct file *file,
 443				     unsigned int cmd, unsigned long arg)
 444{
 445	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 446}
 447
 448static int hung_up_tty_fasync(int fd, struct file *file, int on)
 449{
 450	return -ENOTTY;
 451}
 452
 453static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 454{
 455	struct tty_struct *tty = file_tty(file);
 456
 457	if (tty && tty->ops && tty->ops->show_fdinfo)
 458		tty->ops->show_fdinfo(tty, m);
 459}
 460
 461static const struct file_operations tty_fops = {
 
 462	.read_iter	= tty_read,
 463	.write_iter	= tty_write,
 464	.splice_read	= copy_splice_read,
 465	.splice_write	= iter_file_splice_write,
 466	.poll		= tty_poll,
 467	.unlocked_ioctl	= tty_ioctl,
 468	.compat_ioctl	= tty_compat_ioctl,
 469	.open		= tty_open,
 470	.release	= tty_release,
 471	.fasync		= tty_fasync,
 472	.show_fdinfo	= tty_show_fdinfo,
 473};
 474
 475static const struct file_operations console_fops = {
 
 476	.read_iter	= tty_read,
 477	.write_iter	= redirected_tty_write,
 478	.splice_read	= copy_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations hung_up_tty_fops = {
 
 489	.read_iter	= hung_up_tty_read,
 490	.write_iter	= hung_up_tty_write,
 491	.poll		= hung_up_tty_poll,
 492	.unlocked_ioctl	= hung_up_tty_ioctl,
 493	.compat_ioctl	= hung_up_tty_compat_ioctl,
 494	.release	= tty_release,
 495	.fasync		= hung_up_tty_fasync,
 496};
 497
 498static DEFINE_SPINLOCK(redirect_lock);
 499static struct file *redirect;
 500
 501/**
 502 * tty_wakeup - request more data
 503 * @tty: terminal
 504 *
 505 * Internal and external helper for wakeups of tty. This function informs the
 506 * line discipline if present that the driver is ready to receive more output
 507 * data.
 508 */
 
 509void tty_wakeup(struct tty_struct *tty)
 510{
 511	struct tty_ldisc *ld;
 512
 513	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 514		ld = tty_ldisc_ref(tty);
 515		if (ld) {
 516			if (ld->ops->write_wakeup)
 517				ld->ops->write_wakeup(tty);
 518			tty_ldisc_deref(ld);
 519		}
 520	}
 521	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 522}
 523EXPORT_SYMBOL_GPL(tty_wakeup);
 524
 525/**
 526 * tty_release_redirect - Release a redirect on a pty if present
 527 * @tty: tty device
 528 *
 529 * This is available to the pty code so if the master closes, if the slave is a
 530 * redirect it can release the redirect.
 531 */
 532static struct file *tty_release_redirect(struct tty_struct *tty)
 533{
 534	struct file *f = NULL;
 535
 536	spin_lock(&redirect_lock);
 537	if (redirect && file_tty(redirect) == tty) {
 538		f = redirect;
 539		redirect = NULL;
 540	}
 541	spin_unlock(&redirect_lock);
 542
 543	return f;
 544}
 545
 546/**
 547 * __tty_hangup - actual handler for hangup events
 548 * @tty: tty device
 549 * @exit_session: if non-zero, signal all foreground group processes
 550 *
 551 * This can be called by a "kworker" kernel thread. That is process synchronous
 552 * but doesn't hold any locks, so we need to make sure we have the appropriate
 553 * locks for what we're doing.
 554 *
 555 * The hangup event clears any pending redirections onto the hung up device. It
 556 * ensures future writes will error and it does the needed line discipline
 557 * hangup and signal delivery. The tty object itself remains intact.
 558 *
 559 * Locking:
 560 *  * BTM
 561 *
 562 *   * redirect lock for undoing redirection
 563 *   * file list lock for manipulating list of ttys
 564 *   * tty_ldiscs_lock from called functions
 565 *   * termios_rwsem resetting termios data
 566 *   * tasklist_lock to walk task list for hangup event
 567 *
 568 *    * ->siglock to protect ->signal/->sighand
 569 *
 570 */
 571static void __tty_hangup(struct tty_struct *tty, int exit_session)
 572{
 573	struct file *cons_filp = NULL;
 574	struct file *filp, *f;
 575	struct tty_file_private *priv;
 576	int    closecount = 0, n;
 577	int refs;
 578
 579	if (!tty)
 580		return;
 581
 582	f = tty_release_redirect(tty);
 583
 584	tty_lock(tty);
 585
 586	if (test_bit(TTY_HUPPED, &tty->flags)) {
 587		tty_unlock(tty);
 588		return;
 589	}
 590
 591	/*
 592	 * Some console devices aren't actually hung up for technical and
 593	 * historical reasons, which can lead to indefinite interruptible
 594	 * sleep in n_tty_read().  The following explicitly tells
 595	 * n_tty_read() to abort readers.
 596	 */
 597	set_bit(TTY_HUPPING, &tty->flags);
 598
 599	/* inuse_filps is protected by the single tty lock,
 600	 * this really needs to change if we want to flush the
 601	 * workqueue with the lock held.
 602	 */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write_iter == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write_iter != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 625
 626	spin_lock_irq(&tty->ctrl.lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->ctrl.session);
 630	put_pid(tty->ctrl.pgrp);
 631	tty->ctrl.session = NULL;
 632	tty->ctrl.pgrp = NULL;
 633	tty->ctrl.pktstatus = 0;
 634	spin_unlock_irq(&tty->ctrl.lock);
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 * tty_hangup - trigger a hangup event
 671 * @tty: tty to hangup
 672 *
 673 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 674 * hangup sequence to run after this event.
 675 */
 
 676void tty_hangup(struct tty_struct *tty)
 677{
 678	tty_debug_hangup(tty, "hangup\n");
 679	schedule_work(&tty->hangup_work);
 680}
 681EXPORT_SYMBOL(tty_hangup);
 682
 683/**
 684 * tty_vhangup - process vhangup
 685 * @tty: tty to hangup
 686 *
 687 * The user has asked via system call for the terminal to be hung up. We do
 688 * this synchronously so that when the syscall returns the process is complete.
 689 * That guarantee is necessary for security reasons.
 690 */
 
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 695}
 696EXPORT_SYMBOL(tty_vhangup);
 697
 698
 699/**
 700 * tty_vhangup_self - process vhangup for own ctty
 701 *
 702 * Perform a vhangup on the current controlling tty
 703 */
 
 704void tty_vhangup_self(void)
 705{
 706	struct tty_struct *tty;
 707
 708	tty = get_current_tty();
 709	if (tty) {
 710		tty_vhangup(tty);
 711		tty_kref_put(tty);
 712	}
 713}
 714
 715/**
 716 * tty_vhangup_session - hangup session leader exit
 717 * @tty: tty to hangup
 718 *
 719 * The session leader is exiting and hanging up its controlling terminal.
 720 * Every process in the foreground process group is signalled %SIGHUP.
 721 *
 722 * We do this synchronously so that when the syscall returns the process is
 723 * complete. That guarantee is necessary for security reasons.
 724 */
 
 725void tty_vhangup_session(struct tty_struct *tty)
 726{
 727	tty_debug_hangup(tty, "session hangup\n");
 728	__tty_hangup(tty, 1);
 729}
 730
 731/**
 732 * tty_hung_up_p - was tty hung up
 733 * @filp: file pointer of tty
 734 *
 735 * Return: true if the tty has been subject to a vhangup or a carrier loss
 
 736 */
 
 737int tty_hung_up_p(struct file *filp)
 738{
 739	return (filp && filp->f_op == &hung_up_tty_fops);
 740}
 741EXPORT_SYMBOL(tty_hung_up_p);
 742
 743void __stop_tty(struct tty_struct *tty)
 744{
 745	if (tty->flow.stopped)
 746		return;
 747	tty->flow.stopped = true;
 748	if (tty->ops->stop)
 749		tty->ops->stop(tty);
 750}
 751
 752/**
 753 * stop_tty - propagate flow control
 754 * @tty: tty to stop
 755 *
 756 * Perform flow control to the driver. May be called on an already stopped
 757 * device and will not re-call the &tty_driver->stop() method.
 
 
 
 
 
 
 758 *
 759 * This functionality is used by both the line disciplines for halting incoming
 760 * flow and by the driver. It may therefore be called from any context, may be
 761 * under the tty %atomic_write_lock but not always.
 762 *
 763 * Locking:
 764 *	flow.lock
 765 */
 766void stop_tty(struct tty_struct *tty)
 767{
 768	unsigned long flags;
 769
 770	spin_lock_irqsave(&tty->flow.lock, flags);
 771	__stop_tty(tty);
 772	spin_unlock_irqrestore(&tty->flow.lock, flags);
 773}
 774EXPORT_SYMBOL(stop_tty);
 775
 776void __start_tty(struct tty_struct *tty)
 777{
 778	if (!tty->flow.stopped || tty->flow.tco_stopped)
 779		return;
 780	tty->flow.stopped = false;
 781	if (tty->ops->start)
 782		tty->ops->start(tty);
 783	tty_wakeup(tty);
 784}
 785
 786/**
 787 * start_tty - propagate flow control
 788 * @tty: tty to start
 789 *
 790 * Start a tty that has been stopped if at all possible. If @tty was previously
 791 * stopped and is now being started, the &tty_driver->start() method is invoked
 792 * and the line discipline woken.
 793 *
 794 * Locking:
 795 *	flow.lock
 796 */
 797void start_tty(struct tty_struct *tty)
 798{
 799	unsigned long flags;
 800
 801	spin_lock_irqsave(&tty->flow.lock, flags);
 802	__start_tty(tty);
 803	spin_unlock_irqrestore(&tty->flow.lock, flags);
 804}
 805EXPORT_SYMBOL(start_tty);
 806
 807static void tty_update_time(struct tty_struct *tty, bool mtime)
 808{
 809	time64_t sec = ktime_get_real_seconds();
 810	struct tty_file_private *priv;
 811
 812	spin_lock(&tty->files_lock);
 813	list_for_each_entry(priv, &tty->tty_files, list) {
 814		struct inode *inode = file_inode(priv->file);
 815		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 816
 817		/*
 818		 * We only care if the two values differ in anything other than the
 819		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 820		 * the time of the tty device, otherwise it could be construded as a
 821		 * security leak to let userspace know the exact timing of the tty.
 822		 */
 823		if ((sec ^ time.tv_sec) & ~7) {
 824			if (mtime)
 825				inode_set_mtime(inode, sec, 0);
 826			else
 827				inode_set_atime(inode, sec, 0);
 828		}
 829	}
 830	spin_unlock(&tty->files_lock);
 831}
 832
 833/*
 834 * Iterate on the ldisc ->read() function until we've gotten all
 835 * the data the ldisc has for us.
 836 *
 837 * The "cookie" is something that the ldisc read function can fill
 838 * in to let us know that there is more data to be had.
 839 *
 840 * We promise to continue to call the ldisc until it stops returning
 841 * data or clears the cookie. The cookie may be something that the
 842 * ldisc maintains state for and needs to free.
 843 */
 844static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 845				struct file *file, struct iov_iter *to)
 846{
 
 847	void *cookie = NULL;
 848	unsigned long offset = 0;
 849	ssize_t retval = 0;
 850	size_t copied, count = iov_iter_count(to);
 851	u8 kernel_buf[64];
 852
 853	do {
 854		ssize_t size = min(count, sizeof(kernel_buf));
 855
 
 856		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 857		if (!size)
 858			break;
 859
 860		if (size < 0) {
 861			/* Did we have an earlier error (ie -EFAULT)? */
 862			if (retval)
 863				break;
 864			retval = size;
 865
 866			/*
 867			 * -EOVERFLOW means we didn't have enough space
 868			 * for a whole packet, and we shouldn't return
 869			 * a partial result.
 870			 */
 871			if (retval == -EOVERFLOW)
 872				offset = 0;
 873			break;
 874		}
 875
 876		copied = copy_to_iter(kernel_buf, size, to);
 877		offset += copied;
 878		count -= copied;
 879
 880		/*
 881		 * If the user copy failed, we still need to do another ->read()
 882		 * call if we had a cookie to let the ldisc clear up.
 883		 *
 884		 * But make sure size is zeroed.
 885		 */
 886		if (unlikely(copied != size)) {
 887			count = 0;
 888			retval = -EFAULT;
 889		}
 890	} while (cookie);
 891
 892	/* We always clear tty buffer in case they contained passwords */
 893	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 894	return offset ? offset : retval;
 895}
 896
 897
 898/**
 899 * tty_read - read method for tty device files
 900 * @iocb: kernel I/O control block
 901 * @to: destination for the data read
 902 *
 903 * Perform the read system call function on this terminal device. Checks
 904 * for hung up devices before calling the line discipline method.
 905 *
 906 * Locking:
 907 *	Locks the line discipline internally while needed. Multiple read calls
 908 *	may be outstanding in parallel.
 909 */
 
 910static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 911{
 
 912	struct file *file = iocb->ki_filp;
 913	struct inode *inode = file_inode(file);
 914	struct tty_struct *tty = file_tty(file);
 915	struct tty_ldisc *ld;
 916	ssize_t ret;
 917
 918	if (tty_paranoia_check(tty, inode, "tty_read"))
 919		return -EIO;
 920	if (!tty || tty_io_error(tty))
 921		return -EIO;
 922
 923	/* We want to wait for the line discipline to sort out in this
 924	 * situation.
 925	 */
 926	ld = tty_ldisc_ref_wait(tty);
 927	if (!ld)
 928		return hung_up_tty_read(iocb, to);
 929	ret = -EIO;
 930	if (ld->ops->read)
 931		ret = iterate_tty_read(ld, tty, file, to);
 932	tty_ldisc_deref(ld);
 933
 934	if (ret > 0)
 935		tty_update_time(tty, false);
 936
 937	return ret;
 938}
 939
 940void tty_write_unlock(struct tty_struct *tty)
 941{
 942	mutex_unlock(&tty->atomic_write_lock);
 943	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 944}
 945
 946int tty_write_lock(struct tty_struct *tty, bool ndelay)
 947{
 948	if (!mutex_trylock(&tty->atomic_write_lock)) {
 949		if (ndelay)
 950			return -EAGAIN;
 951		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 952			return -ERESTARTSYS;
 953	}
 954	return 0;
 955}
 956
 957/*
 958 * Split writes up in sane blocksizes to avoid
 959 * denial-of-service type attacks
 960 */
 961static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 962				 struct file *file, struct iov_iter *from)
 
 
 
 963{
 964	size_t chunk, count = iov_iter_count(from);
 965	ssize_t ret, written = 0;
 
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		u8 *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = min(chunk, count);
 
 
 
1010
1011		ret = -EFAULT;
1012		if (copy_from_iter(tty->write_buf, size, from) != size)
1013			break;
1014
1015		ret = ld->ops->write(tty, file, tty->write_buf, size);
1016		if (ret <= 0)
1017			break;
1018
1019		written += ret;
1020		if (ret > size)
1021			break;
1022
1023		/* FIXME! Have Al check this! */
1024		if (ret != size)
1025			iov_iter_revert(from, size-ret);
1026
1027		count -= ret;
1028		if (!count)
1029			break;
1030		ret = -ERESTARTSYS;
1031		if (signal_pending(current))
1032			break;
1033		cond_resched();
1034	}
1035	if (written) {
1036		tty_update_time(tty, true);
1037		ret = written;
1038	}
1039out:
1040	tty_write_unlock(tty);
1041	return ret;
1042}
1043
1044#ifdef CONFIG_PRINT_QUOTA_WARNING
1045/**
1046 * tty_write_message - write a message to a certain tty, not just the console.
1047 * @tty: the destination tty_struct
1048 * @msg: the message to write
1049 *
1050 * This is used for messages that need to be redirected to a specific tty. We
1051 * don't put it into the syslog queue right now maybe in the future if really
1052 * needed.
1053 *
1054 * We must still hold the BTM and test the CLOSING flag for the moment.
1055 *
1056 * This function is DEPRECATED, do not use in new code.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
1066		tty_write_unlock(tty);
1067	}
1068}
1069#endif
1070
1071static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1072{
1073	struct tty_struct *tty = file_tty(file);
1074	struct tty_ldisc *ld;
1075	ssize_t ret;
1076
1077	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1078		return -EIO;
1079	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1080		return -EIO;
1081	/* Short term debug to catch buggy drivers */
1082	if (tty->ops->write_room == NULL)
1083		tty_err(tty, "missing write_room method\n");
1084	ld = tty_ldisc_ref_wait(tty);
1085	if (!ld)
1086		return hung_up_tty_write(iocb, from);
1087	if (!ld->ops->write)
1088		ret = -EIO;
1089	else
1090		ret = iterate_tty_write(ld, tty, file, from);
1091	tty_ldisc_deref(ld);
1092	return ret;
1093}
1094
1095/**
1096 * tty_write - write method for tty device file
1097 * @iocb: kernel I/O control block
1098 * @from: iov_iter with data to write
1099 *
1100 * Write data to a tty device via the line discipline.
1101 *
1102 * Locking:
1103 *	Locks the line discipline as required
1104 *	Writes to the tty driver are serialized by the atomic_write_lock
1105 *	and are then processed in chunks to the device. The line
1106 *	discipline write method will not be invoked in parallel for
1107 *	each device.
1108 */
1109static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1110{
1111	return file_tty_write(iocb->ki_filp, iocb, from);
1112}
1113
1114ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1115{
1116	struct file *p = NULL;
1117
1118	spin_lock(&redirect_lock);
1119	if (redirect)
1120		p = get_file(redirect);
1121	spin_unlock(&redirect_lock);
1122
1123	/*
1124	 * We know the redirected tty is just another tty, we can
1125	 * call file_tty_write() directly with that file pointer.
1126	 */
1127	if (p) {
1128		ssize_t res;
1129
1130		res = file_tty_write(p, iocb, iter);
1131		fput(p);
1132		return res;
1133	}
1134	return tty_write(iocb, iter);
1135}
1136
1137/**
1138 * tty_send_xchar - send priority character
1139 * @tty: the tty to send to
1140 * @ch: xchar to send
1141 *
1142 * Send a high priority character to the tty even if stopped.
1143 *
1144 * Locking: none for xchar method, write ordering for write method.
1145 */
1146int tty_send_xchar(struct tty_struct *tty, u8 ch)
 
1147{
1148	bool was_stopped = tty->flow.stopped;
1149
1150	if (tty->ops->send_xchar) {
1151		down_read(&tty->termios_rwsem);
1152		tty->ops->send_xchar(tty, ch);
1153		up_read(&tty->termios_rwsem);
1154		return 0;
1155	}
1156
1157	if (tty_write_lock(tty, false) < 0)
1158		return -ERESTARTSYS;
1159
1160	down_read(&tty->termios_rwsem);
1161	if (was_stopped)
1162		start_tty(tty);
1163	tty->ops->write(tty, &ch, 1);
1164	if (was_stopped)
1165		stop_tty(tty);
1166	up_read(&tty->termios_rwsem);
1167	tty_write_unlock(tty);
1168	return 0;
1169}
1170
1171/**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a @driver reference and write it to the output buffer
1178 * @p.
1179 *
1180 * Locking: None
1181 */
1182static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183{
1184	static const char ptychar[] = "pqrstuvwxyzabcde";
1185	int i = index + driver->name_base;
1186	/* ->name is initialized to "ttyp", but "tty" is expected */
1187	sprintf(p, "%s%c%x",
1188		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1189		ptychar[i >> 4 & 0xf], i & 0xf);
1190}
1191
1192/**
1193 * tty_line_name - generate name for a tty
1194 * @driver: the tty driver in use
1195 * @index: the minor number
1196 * @p: output buffer of at least 7 bytes
1197 *
1198 * Generate a name from a @driver reference and write it to the output buffer
1199 * @p.
1200 *
1201 * Locking: None
1202 */
1203static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1204{
1205	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1206		return sprintf(p, "%s", driver->name);
1207	else
1208		return sprintf(p, "%s%d", driver->name,
1209			       index + driver->name_base);
1210}
1211
1212/**
1213 * tty_driver_lookup_tty() - find an existing tty, if any
1214 * @driver: the driver for the tty
1215 * @file: file object
1216 * @idx: the minor number
1217 *
1218 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1219 * driver lookup() method returns an error.
1220 *
1221 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1222 */
1223static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1224		struct file *file, int idx)
1225{
1226	struct tty_struct *tty;
1227
1228	if (driver->ops->lookup) {
1229		if (!file)
1230			tty = ERR_PTR(-EIO);
1231		else
1232			tty = driver->ops->lookup(driver, file, idx);
1233	} else {
1234		if (idx >= driver->num)
1235			return ERR_PTR(-EINVAL);
1236		tty = driver->ttys[idx];
1237	}
1238	if (!IS_ERR(tty))
1239		tty_kref_get(tty);
1240	return tty;
1241}
1242
1243/**
1244 * tty_init_termios - helper for termios setup
1245 * @tty: the tty to set up
1246 *
1247 * Initialise the termios structure for this tty. This runs under the
1248 * %tty_mutex currently so we can be relaxed about ordering.
1249 */
 
1250void tty_init_termios(struct tty_struct *tty)
1251{
1252	struct ktermios *tp;
1253	int idx = tty->index;
1254
1255	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256		tty->termios = tty->driver->init_termios;
1257	else {
1258		/* Check for lazy saved data */
1259		tp = tty->driver->termios[idx];
1260		if (tp != NULL) {
1261			tty->termios = *tp;
1262			tty->termios.c_line  = tty->driver->init_termios.c_line;
1263		} else
1264			tty->termios = tty->driver->init_termios;
1265	}
1266	/* Compatibility until drivers always set this */
1267	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1269}
1270EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272/**
1273 * tty_standard_install - usual tty->ops->install
1274 * @driver: the driver for the tty
1275 * @tty: the tty
1276 *
1277 * If the @driver overrides @tty->ops->install, it still can call this function
1278 * to perform the standard install operations.
1279 */
1280int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281{
1282	tty_init_termios(tty);
1283	tty_driver_kref_get(driver);
1284	tty->count++;
1285	driver->ttys[tty->index] = tty;
1286	return 0;
1287}
1288EXPORT_SYMBOL_GPL(tty_standard_install);
1289
1290/**
1291 * tty_driver_install_tty() - install a tty entry in the driver
1292 * @driver: the driver for the tty
1293 * @tty: the tty
1294 *
1295 * Install a tty object into the driver tables. The @tty->index field will be
1296 * set by the time this is called. This method is responsible for ensuring any
1297 * need additional structures are allocated and configured.
 
1298 *
1299 * Locking: tty_mutex for now
1300 */
1301static int tty_driver_install_tty(struct tty_driver *driver,
1302						struct tty_struct *tty)
1303{
1304	return driver->ops->install ? driver->ops->install(driver, tty) :
1305		tty_standard_install(driver, tty);
1306}
1307
1308/**
1309 * tty_driver_remove_tty() - remove a tty from the driver tables
1310 * @driver: the driver for the tty
1311 * @tty: tty to remove
1312 *
1313 * Remove a tty object from the driver tables. The tty->index field will be set
1314 * by the time this is called.
1315 *
1316 * Locking: tty_mutex for now
1317 */
1318static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1319{
1320	if (driver->ops->remove)
1321		driver->ops->remove(driver, tty);
1322	else
1323		driver->ttys[tty->index] = NULL;
1324}
1325
1326/**
1327 * tty_reopen() - fast re-open of an open tty
1328 * @tty: the tty to open
1329 *
1330 * Re-opens on master ptys are not allowed and return -%EIO.
 
1331 *
1332 * Locking: Caller must hold tty_lock
1333 * Return: 0 on success, -errno on error.
1334 */
1335static int tty_reopen(struct tty_struct *tty)
1336{
1337	struct tty_driver *driver = tty->driver;
1338	struct tty_ldisc *ld;
1339	int retval = 0;
1340
1341	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342	    driver->subtype == PTY_TYPE_MASTER)
1343		return -EIO;
1344
1345	if (!tty->count)
1346		return -EAGAIN;
1347
1348	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1349		return -EBUSY;
1350
1351	ld = tty_ldisc_ref_wait(tty);
1352	if (ld) {
1353		tty_ldisc_deref(ld);
1354	} else {
1355		retval = tty_ldisc_lock(tty, 5 * HZ);
1356		if (retval)
1357			return retval;
1358
1359		if (!tty->ldisc)
1360			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1361		tty_ldisc_unlock(tty);
1362	}
1363
1364	if (retval == 0)
1365		tty->count++;
1366
1367	return retval;
1368}
1369
1370/**
1371 * tty_init_dev - initialise a tty device
1372 * @driver: tty driver we are opening a device on
1373 * @idx: device index
1374 *
1375 * Prepare a tty device. This may not be a "new" clean device but could also be
1376 * an active device. The pty drivers require special handling because of this.
1377 *
1378 * Locking:
1379 *	The function is called under the tty_mutex, which protects us from the
1380 *	tty struct or driver itself going away.
1381 *
1382 * On exit the tty device has the line discipline attached and a reference
1383 * count of 1. If a pair was created for pty/tty use and the other was a pty
1384 * master then it too has a reference count of 1.
1385 *
1386 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1387 * open. The new code protects the open with a mutex, so it's really quite
1388 * straightforward. The mutex locking can probably be relaxed for the (most
1389 * common) case of reopening a tty.
 
1390 *
1391 * Return: new tty structure
1392 */
 
1393struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1394{
1395	struct tty_struct *tty;
1396	int retval;
1397
1398	/*
1399	 * First time open is complex, especially for PTY devices.
1400	 * This code guarantees that either everything succeeds and the
1401	 * TTY is ready for operation, or else the table slots are vacated
1402	 * and the allocated memory released.  (Except that the termios
1403	 * may be retained.)
1404	 */
1405
1406	if (!try_module_get(driver->owner))
1407		return ERR_PTR(-ENODEV);
1408
1409	tty = alloc_tty_struct(driver, idx);
1410	if (!tty) {
1411		retval = -ENOMEM;
1412		goto err_module_put;
1413	}
1414
1415	tty_lock(tty);
1416	retval = tty_driver_install_tty(driver, tty);
1417	if (retval < 0)
1418		goto err_free_tty;
1419
1420	if (!tty->port)
1421		tty->port = driver->ports[idx];
1422
1423	if (WARN_RATELIMIT(!tty->port,
1424			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1425			__func__, tty->driver->name)) {
1426		retval = -EINVAL;
1427		goto err_release_lock;
1428	}
1429
1430	retval = tty_ldisc_lock(tty, 5 * HZ);
1431	if (retval)
1432		goto err_release_lock;
1433	tty->port->itty = tty;
1434
1435	/*
1436	 * Structures all installed ... call the ldisc open routines.
1437	 * If we fail here just call release_tty to clean up.  No need
1438	 * to decrement the use counts, as release_tty doesn't care.
1439	 */
1440	retval = tty_ldisc_setup(tty, tty->link);
1441	if (retval)
1442		goto err_release_tty;
1443	tty_ldisc_unlock(tty);
1444	/* Return the tty locked so that it cannot vanish under the caller */
1445	return tty;
1446
1447err_free_tty:
1448	tty_unlock(tty);
1449	free_tty_struct(tty);
1450err_module_put:
1451	module_put(driver->owner);
1452	return ERR_PTR(retval);
1453
1454	/* call the tty release_tty routine to clean out this slot */
1455err_release_tty:
1456	tty_ldisc_unlock(tty);
1457	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1458			     retval, idx);
1459err_release_lock:
1460	tty_unlock(tty);
1461	release_tty(tty, idx);
1462	return ERR_PTR(retval);
1463}
1464
1465/**
1466 * tty_save_termios() - save tty termios data in driver table
1467 * @tty: tty whose termios data to save
1468 *
1469 * Locking: Caller guarantees serialisation with tty_init_termios().
1470 */
1471void tty_save_termios(struct tty_struct *tty)
1472{
1473	struct ktermios *tp;
1474	int idx = tty->index;
1475
1476	/* If the port is going to reset then it has no termios to save */
1477	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1478		return;
1479
1480	/* Stash the termios data */
1481	tp = tty->driver->termios[idx];
1482	if (tp == NULL) {
1483		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1484		if (tp == NULL)
1485			return;
1486		tty->driver->termios[idx] = tp;
1487	}
1488	*tp = tty->termios;
1489}
1490EXPORT_SYMBOL_GPL(tty_save_termios);
1491
1492/**
1493 * tty_flush_works - flush all works of a tty/pty pair
1494 * @tty: tty device to flush works for (or either end of a pty pair)
1495 *
1496 * Sync flush all works belonging to @tty (and the 'other' tty).
1497 */
1498static void tty_flush_works(struct tty_struct *tty)
1499{
1500	flush_work(&tty->SAK_work);
1501	flush_work(&tty->hangup_work);
1502	if (tty->link) {
1503		flush_work(&tty->link->SAK_work);
1504		flush_work(&tty->link->hangup_work);
1505	}
1506}
1507
1508/**
1509 * release_one_tty - release tty structure memory
1510 * @work: work of tty we are obliterating
1511 *
1512 * Releases memory associated with a tty structure, and clears out the
1513 * driver table slots. This function is called when a device is no longer
1514 * in use. It also gets called when setup of a device fails.
1515 *
1516 * Locking:
1517 *	takes the file list lock internally when working on the list of ttys
1518 *	that the driver keeps.
1519 *
1520 * This method gets called from a work queue so that the driver private
1521 * cleanup ops can sleep (needed for USB at least)
1522 */
1523static void release_one_tty(struct work_struct *work)
1524{
1525	struct tty_struct *tty =
1526		container_of(work, struct tty_struct, hangup_work);
1527	struct tty_driver *driver = tty->driver;
1528	struct module *owner = driver->owner;
1529
1530	if (tty->ops->cleanup)
1531		tty->ops->cleanup(tty);
1532
 
1533	tty_driver_kref_put(driver);
1534	module_put(owner);
1535
1536	spin_lock(&tty->files_lock);
1537	list_del_init(&tty->tty_files);
1538	spin_unlock(&tty->files_lock);
1539
1540	put_pid(tty->ctrl.pgrp);
1541	put_pid(tty->ctrl.session);
1542	free_tty_struct(tty);
1543}
1544
1545static void queue_release_one_tty(struct kref *kref)
1546{
1547	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1548
1549	/* The hangup queue is now free so we can reuse it rather than
1550	 *  waste a chunk of memory for each port.
1551	 */
1552	INIT_WORK(&tty->hangup_work, release_one_tty);
1553	schedule_work(&tty->hangup_work);
1554}
1555
1556/**
1557 * tty_kref_put - release a tty kref
1558 * @tty: tty device
1559 *
1560 * Release a reference to the @tty device and if need be let the kref layer
1561 * destruct the object for us.
1562 */
 
1563void tty_kref_put(struct tty_struct *tty)
1564{
1565	if (tty)
1566		kref_put(&tty->kref, queue_release_one_tty);
1567}
1568EXPORT_SYMBOL(tty_kref_put);
1569
1570/**
1571 * release_tty - release tty structure memory
1572 * @tty: tty device release
1573 * @idx: index of the tty device release
1574 *
1575 * Release both @tty and a possible linked partner (think pty pair),
1576 * and decrement the refcount of the backing module.
 
 
 
 
 
1577 *
1578 * Locking:
1579 *	tty_mutex
1580 *	takes the file list lock internally when working on the list of ttys
1581 *	that the driver keeps.
1582 */
1583static void release_tty(struct tty_struct *tty, int idx)
1584{
1585	/* This should always be true but check for the moment */
1586	WARN_ON(tty->index != idx);
1587	WARN_ON(!mutex_is_locked(&tty_mutex));
1588	if (tty->ops->shutdown)
1589		tty->ops->shutdown(tty);
1590	tty_save_termios(tty);
1591	tty_driver_remove_tty(tty->driver, tty);
1592	if (tty->port)
1593		tty->port->itty = NULL;
1594	if (tty->link)
1595		tty->link->port->itty = NULL;
1596	if (tty->port)
1597		tty_buffer_cancel_work(tty->port);
1598	if (tty->link)
1599		tty_buffer_cancel_work(tty->link->port);
1600
1601	tty_kref_put(tty->link);
1602	tty_kref_put(tty);
1603}
1604
1605/**
1606 * tty_release_checks - check a tty before real release
1607 * @tty: tty to check
1608 * @idx: index of the tty
1609 *
1610 * Performs some paranoid checking before true release of the @tty. This is a
1611 * no-op unless %TTY_PARANOIA_CHECK is defined.
1612 */
1613static int tty_release_checks(struct tty_struct *tty, int idx)
1614{
1615#ifdef TTY_PARANOIA_CHECK
1616	if (idx < 0 || idx >= tty->driver->num) {
1617		tty_debug(tty, "bad idx %d\n", idx);
1618		return -1;
1619	}
1620
1621	/* not much to check for devpts */
1622	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1623		return 0;
1624
1625	if (tty != tty->driver->ttys[idx]) {
1626		tty_debug(tty, "bad driver table[%d] = %p\n",
1627			  idx, tty->driver->ttys[idx]);
1628		return -1;
1629	}
1630	if (tty->driver->other) {
1631		struct tty_struct *o_tty = tty->link;
1632
1633		if (o_tty != tty->driver->other->ttys[idx]) {
1634			tty_debug(tty, "bad other table[%d] = %p\n",
1635				  idx, tty->driver->other->ttys[idx]);
1636			return -1;
1637		}
1638		if (o_tty->link != tty) {
1639			tty_debug(tty, "bad link = %p\n", o_tty->link);
1640			return -1;
1641		}
1642	}
1643#endif
1644	return 0;
1645}
1646
1647/**
1648 * tty_kclose - closes tty opened by tty_kopen
1649 * @tty: tty device
1650 *
1651 * Performs the final steps to release and free a tty device. It is the same as
1652 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1653 * @tty->port.
1654 */
1655void tty_kclose(struct tty_struct *tty)
1656{
1657	/*
1658	 * Ask the line discipline code to release its structures
1659	 */
1660	tty_ldisc_release(tty);
1661
1662	/* Wait for pending work before tty destruction commences */
1663	tty_flush_works(tty);
1664
1665	tty_debug_hangup(tty, "freeing structure\n");
1666	/*
1667	 * The release_tty function takes care of the details of clearing
1668	 * the slots and preserving the termios structure.
1669	 */
1670	mutex_lock(&tty_mutex);
1671	tty_port_set_kopened(tty->port, 0);
1672	release_tty(tty, tty->index);
1673	mutex_unlock(&tty_mutex);
1674}
1675EXPORT_SYMBOL_GPL(tty_kclose);
1676
1677/**
1678 * tty_release_struct - release a tty struct
1679 * @tty: tty device
1680 * @idx: index of the tty
1681 *
1682 * Performs the final steps to release and free a tty device. It is roughly the
1683 * reverse of tty_init_dev().
1684 */
1685void tty_release_struct(struct tty_struct *tty, int idx)
1686{
1687	/*
1688	 * Ask the line discipline code to release its structures
1689	 */
1690	tty_ldisc_release(tty);
1691
1692	/* Wait for pending work before tty destruction commmences */
1693	tty_flush_works(tty);
1694
1695	tty_debug_hangup(tty, "freeing structure\n");
1696	/*
1697	 * The release_tty function takes care of the details of clearing
1698	 * the slots and preserving the termios structure.
1699	 */
1700	mutex_lock(&tty_mutex);
1701	release_tty(tty, idx);
1702	mutex_unlock(&tty_mutex);
1703}
1704EXPORT_SYMBOL_GPL(tty_release_struct);
1705
1706/**
1707 * tty_release - vfs callback for close
1708 * @inode: inode of tty
1709 * @filp: file pointer for handle to tty
1710 *
1711 * Called the last time each file handle is closed that references this tty.
1712 * There may however be several such references.
1713 *
1714 * Locking:
1715 *	Takes BKL. See tty_release_dev().
1716 *
1717 * Even releasing the tty structures is a tricky business. We have to be very
1718 * careful that the structures are all released at the same time, as interrupts
1719 * might otherwise get the wrong pointers.
1720 *
1721 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1722 * lead to double frees or releasing memory still in use.
1723 */
 
1724int tty_release(struct inode *inode, struct file *filp)
1725{
1726	struct tty_struct *tty = file_tty(filp);
1727	struct tty_struct *o_tty = NULL;
1728	int	do_sleep, final;
1729	int	idx;
1730	long	timeout = 0;
1731	int	once = 1;
1732
1733	if (tty_paranoia_check(tty, inode, __func__))
1734		return 0;
1735
1736	tty_lock(tty);
1737	check_tty_count(tty, __func__);
1738
1739	__tty_fasync(-1, filp, 0);
1740
1741	idx = tty->index;
1742	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1743	    tty->driver->subtype == PTY_TYPE_MASTER)
1744		o_tty = tty->link;
1745
1746	if (tty_release_checks(tty, idx)) {
1747		tty_unlock(tty);
1748		return 0;
1749	}
1750
1751	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1752
1753	if (tty->ops->close)
1754		tty->ops->close(tty, filp);
1755
1756	/* If tty is pty master, lock the slave pty (stable lock order) */
1757	tty_lock_slave(o_tty);
1758
1759	/*
1760	 * Sanity check: if tty->count is going to zero, there shouldn't be
1761	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1762	 * wait queues and kick everyone out _before_ actually starting to
1763	 * close.  This ensures that we won't block while releasing the tty
1764	 * structure.
1765	 *
1766	 * The test for the o_tty closing is necessary, since the master and
1767	 * slave sides may close in any order.  If the slave side closes out
1768	 * first, its count will be one, since the master side holds an open.
1769	 * Thus this test wouldn't be triggered at the time the slave closed,
1770	 * so we do it now.
1771	 */
1772	while (1) {
1773		do_sleep = 0;
1774
1775		if (tty->count <= 1) {
1776			if (waitqueue_active(&tty->read_wait)) {
1777				wake_up_poll(&tty->read_wait, EPOLLIN);
1778				do_sleep++;
1779			}
1780			if (waitqueue_active(&tty->write_wait)) {
1781				wake_up_poll(&tty->write_wait, EPOLLOUT);
1782				do_sleep++;
1783			}
1784		}
1785		if (o_tty && o_tty->count <= 1) {
1786			if (waitqueue_active(&o_tty->read_wait)) {
1787				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1788				do_sleep++;
1789			}
1790			if (waitqueue_active(&o_tty->write_wait)) {
1791				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1792				do_sleep++;
1793			}
1794		}
1795		if (!do_sleep)
1796			break;
1797
1798		if (once) {
1799			once = 0;
1800			tty_warn(tty, "read/write wait queue active!\n");
1801		}
1802		schedule_timeout_killable(timeout);
1803		if (timeout < 120 * HZ)
1804			timeout = 2 * timeout + 1;
1805		else
1806			timeout = MAX_SCHEDULE_TIMEOUT;
1807	}
1808
1809	if (o_tty) {
1810		if (--o_tty->count < 0) {
1811			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1812			o_tty->count = 0;
1813		}
1814	}
1815	if (--tty->count < 0) {
1816		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1817		tty->count = 0;
1818	}
1819
1820	/*
1821	 * We've decremented tty->count, so we need to remove this file
1822	 * descriptor off the tty->tty_files list; this serves two
1823	 * purposes:
1824	 *  - check_tty_count sees the correct number of file descriptors
1825	 *    associated with this tty.
1826	 *  - do_tty_hangup no longer sees this file descriptor as
1827	 *    something that needs to be handled for hangups.
1828	 */
1829	tty_del_file(filp);
1830
1831	/*
1832	 * Perform some housekeeping before deciding whether to return.
1833	 *
1834	 * If _either_ side is closing, make sure there aren't any
1835	 * processes that still think tty or o_tty is their controlling
1836	 * tty.
1837	 */
1838	if (!tty->count) {
1839		read_lock(&tasklist_lock);
1840		session_clear_tty(tty->ctrl.session);
1841		if (o_tty)
1842			session_clear_tty(o_tty->ctrl.session);
1843		read_unlock(&tasklist_lock);
1844	}
1845
1846	/* check whether both sides are closing ... */
1847	final = !tty->count && !(o_tty && o_tty->count);
1848
1849	tty_unlock_slave(o_tty);
1850	tty_unlock(tty);
1851
1852	/* At this point, the tty->count == 0 should ensure a dead tty
1853	 * cannot be re-opened by a racing opener.
1854	 */
1855
1856	if (!final)
1857		return 0;
1858
1859	tty_debug_hangup(tty, "final close\n");
1860
1861	tty_release_struct(tty, idx);
1862	return 0;
1863}
1864
1865/**
1866 * tty_open_current_tty - get locked tty of current task
1867 * @device: device number
1868 * @filp: file pointer to tty
1869 * @return: locked tty of the current task iff @device is /dev/tty
1870 *
1871 * Performs a re-open of the current task's controlling tty.
1872 *
1873 * We cannot return driver and index like for the other nodes because devpts
1874 * will not work then. It expects inodes to be from devpts FS.
1875 */
1876static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1877{
1878	struct tty_struct *tty;
1879	int retval;
1880
1881	if (device != MKDEV(TTYAUX_MAJOR, 0))
1882		return NULL;
1883
1884	tty = get_current_tty();
1885	if (!tty)
1886		return ERR_PTR(-ENXIO);
1887
1888	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1889	/* noctty = 1; */
1890	tty_lock(tty);
1891	tty_kref_put(tty);	/* safe to drop the kref now */
1892
1893	retval = tty_reopen(tty);
1894	if (retval < 0) {
1895		tty_unlock(tty);
1896		tty = ERR_PTR(retval);
1897	}
1898	return tty;
1899}
1900
1901/**
1902 * tty_lookup_driver - lookup a tty driver for a given device file
1903 * @device: device number
1904 * @filp: file pointer to tty
1905 * @index: index for the device in the @return driver
 
1906 *
1907 * If returned value is not erroneous, the caller is responsible to decrement
1908 * the refcount by tty_driver_kref_put().
1909 *
1910 * Locking: %tty_mutex protects get_tty_driver()
1911 *
1912 * Return: driver for this inode (with increased refcount)
1913 */
1914static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1915		int *index)
1916{
1917	struct tty_driver *driver = NULL;
1918
1919	switch (device) {
1920#ifdef CONFIG_VT
1921	case MKDEV(TTY_MAJOR, 0): {
1922		extern struct tty_driver *console_driver;
1923
1924		driver = tty_driver_kref_get(console_driver);
1925		*index = fg_console;
1926		break;
1927	}
1928#endif
1929	case MKDEV(TTYAUX_MAJOR, 1): {
1930		struct tty_driver *console_driver = console_device(index);
1931
1932		if (console_driver) {
1933			driver = tty_driver_kref_get(console_driver);
1934			if (driver && filp) {
1935				/* Don't let /dev/console block */
1936				filp->f_flags |= O_NONBLOCK;
1937				break;
1938			}
1939		}
1940		if (driver)
1941			tty_driver_kref_put(driver);
1942		return ERR_PTR(-ENODEV);
1943	}
1944	default:
1945		driver = get_tty_driver(device, index);
1946		if (!driver)
1947			return ERR_PTR(-ENODEV);
1948		break;
1949	}
1950	return driver;
1951}
1952
1953static struct tty_struct *tty_kopen(dev_t device, int shared)
1954{
1955	struct tty_struct *tty;
1956	struct tty_driver *driver;
1957	int index = -1;
1958
1959	mutex_lock(&tty_mutex);
1960	driver = tty_lookup_driver(device, NULL, &index);
1961	if (IS_ERR(driver)) {
1962		mutex_unlock(&tty_mutex);
1963		return ERR_CAST(driver);
1964	}
1965
1966	/* check whether we're reopening an existing tty */
1967	tty = tty_driver_lookup_tty(driver, NULL, index);
1968	if (IS_ERR(tty) || shared)
1969		goto out;
1970
1971	if (tty) {
1972		/* drop kref from tty_driver_lookup_tty() */
1973		tty_kref_put(tty);
1974		tty = ERR_PTR(-EBUSY);
1975	} else { /* tty_init_dev returns tty with the tty_lock held */
1976		tty = tty_init_dev(driver, index);
1977		if (IS_ERR(tty))
1978			goto out;
1979		tty_port_set_kopened(tty->port, 1);
1980	}
1981out:
1982	mutex_unlock(&tty_mutex);
1983	tty_driver_kref_put(driver);
1984	return tty;
1985}
1986
1987/**
1988 * tty_kopen_exclusive - open a tty device for kernel
1989 * @device: dev_t of device to open
1990 *
1991 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1992 * it's not already opened and performs the first-time tty initialization.
1993 *
1994 * Claims the global %tty_mutex to serialize:
1995 *  * concurrent first-time tty initialization
1996 *  * concurrent tty driver removal w/ lookup
1997 *  * concurrent tty removal from driver table
1998 *
1999 * Return: the locked initialized &tty_struct
 
 
 
 
 
 
 
 
 
2000 */
2001struct tty_struct *tty_kopen_exclusive(dev_t device)
2002{
2003	return tty_kopen(device, 0);
2004}
2005EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2006
2007/**
2008 * tty_kopen_shared - open a tty device for shared in-kernel use
2009 * @device: dev_t of device to open
2010 *
2011 * Opens an already existing tty for in-kernel use. Compared to
2012 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2013 *
2014 * Locking: identical to tty_kopen() above.
2015 */
2016struct tty_struct *tty_kopen_shared(dev_t device)
2017{
2018	return tty_kopen(device, 1);
2019}
2020EXPORT_SYMBOL_GPL(tty_kopen_shared);
2021
2022/**
2023 * tty_open_by_driver - open a tty device
2024 * @device: dev_t of device to open
2025 * @filp: file pointer to tty
2026 *
2027 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2028 * first-time tty initialization.
2029 *
2030 *
2031 * Claims the global tty_mutex to serialize:
2032 *  * concurrent first-time tty initialization
2033 *  * concurrent tty driver removal w/ lookup
2034 *  * concurrent tty removal from driver table
2035 *
2036 * Return: the locked initialized or re-opened &tty_struct
2037 */
2038static struct tty_struct *tty_open_by_driver(dev_t device,
2039					     struct file *filp)
2040{
2041	struct tty_struct *tty;
2042	struct tty_driver *driver = NULL;
2043	int index = -1;
2044	int retval;
2045
2046	mutex_lock(&tty_mutex);
2047	driver = tty_lookup_driver(device, filp, &index);
2048	if (IS_ERR(driver)) {
2049		mutex_unlock(&tty_mutex);
2050		return ERR_CAST(driver);
2051	}
2052
2053	/* check whether we're reopening an existing tty */
2054	tty = tty_driver_lookup_tty(driver, filp, index);
2055	if (IS_ERR(tty)) {
2056		mutex_unlock(&tty_mutex);
2057		goto out;
2058	}
2059
2060	if (tty) {
2061		if (tty_port_kopened(tty->port)) {
2062			tty_kref_put(tty);
2063			mutex_unlock(&tty_mutex);
2064			tty = ERR_PTR(-EBUSY);
2065			goto out;
2066		}
2067		mutex_unlock(&tty_mutex);
2068		retval = tty_lock_interruptible(tty);
2069		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2070		if (retval) {
2071			if (retval == -EINTR)
2072				retval = -ERESTARTSYS;
2073			tty = ERR_PTR(retval);
2074			goto out;
2075		}
2076		retval = tty_reopen(tty);
2077		if (retval < 0) {
2078			tty_unlock(tty);
2079			tty = ERR_PTR(retval);
2080		}
2081	} else { /* Returns with the tty_lock held for now */
2082		tty = tty_init_dev(driver, index);
2083		mutex_unlock(&tty_mutex);
2084	}
2085out:
2086	tty_driver_kref_put(driver);
2087	return tty;
2088}
2089
2090/**
2091 * tty_open - open a tty device
2092 * @inode: inode of device file
2093 * @filp: file pointer to tty
2094 *
2095 * tty_open() and tty_release() keep up the tty count that contains the number
2096 * of opens done on a tty. We cannot use the inode-count, as different inodes
2097 * might point to the same tty.
2098 *
2099 * Open-counting is needed for pty masters, as well as for keeping track of
2100 * serial lines: DTR is dropped when the last close happens.
2101 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2102 *
2103 * The termios state of a pty is reset on the first open so that settings don't
2104 * persist across reuse.
2105 *
2106 * Locking:
2107 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2108 *  * @tty->count should protect the rest.
2109 *  * ->siglock protects ->signal/->sighand
2110 *
2111 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
 
2112 */
 
2113static int tty_open(struct inode *inode, struct file *filp)
2114{
2115	struct tty_struct *tty;
2116	int noctty, retval;
2117	dev_t device = inode->i_rdev;
2118	unsigned saved_flags = filp->f_flags;
2119
2120	nonseekable_open(inode, filp);
2121
2122retry_open:
2123	retval = tty_alloc_file(filp);
2124	if (retval)
2125		return -ENOMEM;
2126
2127	tty = tty_open_current_tty(device, filp);
2128	if (!tty)
2129		tty = tty_open_by_driver(device, filp);
2130
2131	if (IS_ERR(tty)) {
2132		tty_free_file(filp);
2133		retval = PTR_ERR(tty);
2134		if (retval != -EAGAIN || signal_pending(current))
2135			return retval;
2136		schedule();
2137		goto retry_open;
2138	}
2139
2140	tty_add_file(tty, filp);
2141
2142	check_tty_count(tty, __func__);
2143	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2144
2145	if (tty->ops->open)
2146		retval = tty->ops->open(tty, filp);
2147	else
2148		retval = -ENODEV;
2149	filp->f_flags = saved_flags;
2150
2151	if (retval) {
2152		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2153
2154		tty_unlock(tty); /* need to call tty_release without BTM */
2155		tty_release(inode, filp);
2156		if (retval != -ERESTARTSYS)
2157			return retval;
2158
2159		if (signal_pending(current))
2160			return retval;
2161
2162		schedule();
2163		/*
2164		 * Need to reset f_op in case a hangup happened.
2165		 */
2166		if (tty_hung_up_p(filp))
2167			filp->f_op = &tty_fops;
2168		goto retry_open;
2169	}
2170	clear_bit(TTY_HUPPED, &tty->flags);
2171
2172	noctty = (filp->f_flags & O_NOCTTY) ||
2173		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2174		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2175		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2176		  tty->driver->subtype == PTY_TYPE_MASTER);
2177	if (!noctty)
2178		tty_open_proc_set_tty(filp, tty);
2179	tty_unlock(tty);
2180	return 0;
2181}
2182
2183
 
2184/**
2185 * tty_poll - check tty status
2186 * @filp: file being polled
2187 * @wait: poll wait structures to update
2188 *
2189 * Call the line discipline polling method to obtain the poll status of the
2190 * device.
2191 *
2192 * Locking: locks called line discipline but ldisc poll method may be
2193 * re-entered freely by other callers.
2194 */
 
2195static __poll_t tty_poll(struct file *filp, poll_table *wait)
2196{
2197	struct tty_struct *tty = file_tty(filp);
2198	struct tty_ldisc *ld;
2199	__poll_t ret = 0;
2200
2201	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2202		return 0;
2203
2204	ld = tty_ldisc_ref_wait(tty);
2205	if (!ld)
2206		return hung_up_tty_poll(filp, wait);
2207	if (ld->ops->poll)
2208		ret = ld->ops->poll(tty, filp, wait);
2209	tty_ldisc_deref(ld);
2210	return ret;
2211}
2212
2213static int __tty_fasync(int fd, struct file *filp, int on)
2214{
2215	struct tty_struct *tty = file_tty(filp);
2216	unsigned long flags;
2217	int retval = 0;
2218
2219	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220		goto out;
2221
2222	if (on) {
2223		retval = file_f_owner_allocate(filp);
2224		if (retval)
2225			goto out;
2226	}
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
 
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
 
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
2440
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
2453 */
 
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
 
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
 
2478static int send_break(struct tty_struct *tty, unsigned int duration)
2479{
2480	int retval;
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
 
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
 
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
2504
2505	return retval;
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
 
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
 
 
 
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
3033
 
 
 
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
 
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
3092EXPORT_SYMBOL(do_SAK);
3093
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
 
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
3120	kref_init(&tty->kref);
 
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
 
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
 
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
 
 
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
 
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
3218}
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
 
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
 
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
3445	struct device *d;
3446
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
3495	return error;
3496}
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
3512}
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!(c->flags & CON_NBCON) && !c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec_minmax,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102
 103#include <linux/uaccess.h>
 
 
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111#include "tty.h"
 112
 113#undef TTY_DEBUG_HANGUP
 114#ifdef TTY_DEBUG_HANGUP
 115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 116#else
 117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 118#endif
 119
 120#define TTY_PARANOIA_CHECK 1
 121#define CHECK_TTY_COUNT 1
 122
 123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 124	.c_iflag = ICRNL | IXON,
 125	.c_oflag = OPOST | ONLCR,
 126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 128		   ECHOCTL | ECHOKE | IEXTEN,
 129	.c_cc = INIT_C_CC,
 130	.c_ispeed = 38400,
 131	.c_ospeed = 38400,
 132	/* .c_line = N_TTY, */
 133};
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137 * could do with some rationalisation such as pulling the tty proc function
 138 * into this file.
 139 */
 140
 141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 142
 143/* Mutex to protect creating and releasing a tty */
 144DEFINE_MUTEX(tty_mutex);
 145
 146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 149static int tty_open(struct inode *, struct file *);
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 207}
 208
 209/*
 210 * tty_free_file - free file->private_data
 
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 250}
 251EXPORT_SYMBOL(tty_name);
 252
 253const char *tty_driver_name(const struct tty_struct *tty)
 254{
 255	if (!tty || !tty->driver)
 256		return "";
 257	return tty->driver->name;
 258}
 259
 260static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 261			      const char *routine)
 262{
 263#ifdef TTY_PARANOIA_CHECK
 264	if (!tty) {
 265		pr_warn("(%d:%d): %s: NULL tty\n",
 266			imajor(inode), iminor(inode), routine);
 267		return 1;
 268	}
 269	if (tty->magic != TTY_MAGIC) {
 270		pr_warn("(%d:%d): %s: bad magic number\n",
 271			imajor(inode), iminor(inode), routine);
 272		return 1;
 273	}
 274#endif
 275	return 0;
 276}
 277
 278/* Caller must hold tty_lock */
 279static int check_tty_count(struct tty_struct *tty, const char *routine)
 280{
 281#ifdef CHECK_TTY_COUNT
 282	struct list_head *p;
 283	int count = 0, kopen_count = 0;
 284
 285	spin_lock(&tty->files_lock);
 286	list_for_each(p, &tty->tty_files) {
 287		count++;
 288	}
 289	spin_unlock(&tty->files_lock);
 290	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 291	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 292	    tty->link && tty->link->count)
 293		count++;
 294	if (tty_port_kopened(tty->port))
 295		kopen_count++;
 296	if (tty->count != (count + kopen_count)) {
 297		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 298			 routine, tty->count, count, kopen_count);
 299		return (count + kopen_count);
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@device: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (!len || strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 433static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 434{
 435	return 0;
 436}
 437
 438static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 439{
 440	return -EIO;
 441}
 442
 443/* No kernel lock held - none needed ;) */
 444static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 445{
 446	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 447}
 448
 449static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 450		unsigned long arg)
 451{
 452	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 453}
 454
 455static long hung_up_tty_compat_ioctl(struct file *file,
 456				     unsigned int cmd, unsigned long arg)
 457{
 458	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 459}
 460
 461static int hung_up_tty_fasync(int fd, struct file *file, int on)
 462{
 463	return -ENOTTY;
 464}
 465
 466static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 467{
 468	struct tty_struct *tty = file_tty(file);
 469
 470	if (tty && tty->ops && tty->ops->show_fdinfo)
 471		tty->ops->show_fdinfo(tty, m);
 472}
 473
 474static const struct file_operations tty_fops = {
 475	.llseek		= no_llseek,
 476	.read_iter	= tty_read,
 477	.write_iter	= tty_write,
 478	.splice_read	= generic_file_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read_iter	= tty_read,
 492	.write_iter	= redirected_tty_write,
 493	.splice_read	= generic_file_splice_read,
 494	.splice_write	= iter_file_splice_write,
 495	.poll		= tty_poll,
 496	.unlocked_ioctl	= tty_ioctl,
 497	.compat_ioctl	= tty_compat_ioctl,
 498	.open		= tty_open,
 499	.release	= tty_release,
 500	.fasync		= tty_fasync,
 501};
 502
 503static const struct file_operations hung_up_tty_fops = {
 504	.llseek		= no_llseek,
 505	.read_iter	= hung_up_tty_read,
 506	.write_iter	= hung_up_tty_write,
 507	.poll		= hung_up_tty_poll,
 508	.unlocked_ioctl	= hung_up_tty_ioctl,
 509	.compat_ioctl	= hung_up_tty_compat_ioctl,
 510	.release	= tty_release,
 511	.fasync		= hung_up_tty_fasync,
 512};
 513
 514static DEFINE_SPINLOCK(redirect_lock);
 515static struct file *redirect;
 516
 517/**
 518 *	tty_wakeup	-	request more data
 519 *	@tty: terminal
 520 *
 521 *	Internal and external helper for wakeups of tty. This function
 522 *	informs the line discipline if present that the driver is ready
 523 *	to receive more output data.
 524 */
 525
 526void tty_wakeup(struct tty_struct *tty)
 527{
 528	struct tty_ldisc *ld;
 529
 530	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 531		ld = tty_ldisc_ref(tty);
 532		if (ld) {
 533			if (ld->ops->write_wakeup)
 534				ld->ops->write_wakeup(tty);
 535			tty_ldisc_deref(ld);
 536		}
 537	}
 538	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 539}
 540EXPORT_SYMBOL_GPL(tty_wakeup);
 541
 542/**
 543 *	tty_release_redirect	-	Release a redirect on a pty if present
 544 *	@tty: tty device
 545 *
 546 *	This is available to the pty code so if the master closes, if the
 547 *	slave is a redirect it can release the redirect.
 548 */
 549static struct file *tty_release_redirect(struct tty_struct *tty)
 550{
 551	struct file *f = NULL;
 552
 553	spin_lock(&redirect_lock);
 554	if (redirect && file_tty(redirect) == tty) {
 555		f = redirect;
 556		redirect = NULL;
 557	}
 558	spin_unlock(&redirect_lock);
 559
 560	return f;
 561}
 562
 563/**
 564 *	__tty_hangup		-	actual handler for hangup events
 565 *	@tty: tty device
 566 *	@exit_session: if non-zero, signal all foreground group processes
 567 *
 568 *	This can be called by a "kworker" kernel thread.  That is process
 569 *	synchronous but doesn't hold any locks, so we need to make sure we
 570 *	have the appropriate locks for what we're doing.
 571 *
 572 *	The hangup event clears any pending redirections onto the hung up
 573 *	device. It ensures future writes will error and it does the needed
 574 *	line discipline hangup and signal delivery. The tty object itself
 575 *	remains intact.
 576 *
 577 *	Locking:
 578 *		BTM
 579 *		  redirect lock for undoing redirection
 580 *		  file list lock for manipulating list of ttys
 581 *		  tty_ldiscs_lock from called functions
 582 *		  termios_rwsem resetting termios data
 583 *		  tasklist_lock to walk task list for hangup event
 584 *		    ->siglock to protect ->signal/->sighand
 
 
 585 */
 586static void __tty_hangup(struct tty_struct *tty, int exit_session)
 587{
 588	struct file *cons_filp = NULL;
 589	struct file *filp, *f;
 590	struct tty_file_private *priv;
 591	int    closecount = 0, n;
 592	int refs;
 593
 594	if (!tty)
 595		return;
 596
 597	f = tty_release_redirect(tty);
 598
 599	tty_lock(tty);
 600
 601	if (test_bit(TTY_HUPPED, &tty->flags)) {
 602		tty_unlock(tty);
 603		return;
 604	}
 605
 606	/*
 607	 * Some console devices aren't actually hung up for technical and
 608	 * historical reasons, which can lead to indefinite interruptible
 609	 * sleep in n_tty_read().  The following explicitly tells
 610	 * n_tty_read() to abort readers.
 611	 */
 612	set_bit(TTY_HUPPING, &tty->flags);
 613
 614	/* inuse_filps is protected by the single tty lock,
 615	 * this really needs to change if we want to flush the
 616	 * workqueue with the lock held.
 617	 */
 618	check_tty_count(tty, "tty_hangup");
 619
 620	spin_lock(&tty->files_lock);
 621	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 622	list_for_each_entry(priv, &tty->tty_files, list) {
 623		filp = priv->file;
 624		if (filp->f_op->write_iter == redirected_tty_write)
 625			cons_filp = filp;
 626		if (filp->f_op->write_iter != tty_write)
 627			continue;
 628		closecount++;
 629		__tty_fasync(-1, filp, 0);	/* can't block */
 630		filp->f_op = &hung_up_tty_fops;
 631	}
 632	spin_unlock(&tty->files_lock);
 633
 634	refs = tty_signal_session_leader(tty, exit_session);
 635	/* Account for the p->signal references we killed */
 636	while (refs--)
 637		tty_kref_put(tty);
 638
 639	tty_ldisc_hangup(tty, cons_filp != NULL);
 640
 641	spin_lock_irq(&tty->ctrl.lock);
 642	clear_bit(TTY_THROTTLED, &tty->flags);
 643	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 644	put_pid(tty->ctrl.session);
 645	put_pid(tty->ctrl.pgrp);
 646	tty->ctrl.session = NULL;
 647	tty->ctrl.pgrp = NULL;
 648	tty->ctrl.pktstatus = 0;
 649	spin_unlock_irq(&tty->ctrl.lock);
 650
 651	/*
 652	 * If one of the devices matches a console pointer, we
 653	 * cannot just call hangup() because that will cause
 654	 * tty->count and state->count to go out of sync.
 655	 * So we just call close() the right number of times.
 656	 */
 657	if (cons_filp) {
 658		if (tty->ops->close)
 659			for (n = 0; n < closecount; n++)
 660				tty->ops->close(tty, cons_filp);
 661	} else if (tty->ops->hangup)
 662		tty->ops->hangup(tty);
 663	/*
 664	 * We don't want to have driver/ldisc interactions beyond the ones
 665	 * we did here. The driver layer expects no calls after ->hangup()
 666	 * from the ldisc side, which is now guaranteed.
 667	 */
 668	set_bit(TTY_HUPPED, &tty->flags);
 669	clear_bit(TTY_HUPPING, &tty->flags);
 670	tty_unlock(tty);
 671
 672	if (f)
 673		fput(f);
 674}
 675
 676static void do_tty_hangup(struct work_struct *work)
 677{
 678	struct tty_struct *tty =
 679		container_of(work, struct tty_struct, hangup_work);
 680
 681	__tty_hangup(tty, 0);
 682}
 683
 684/**
 685 *	tty_hangup		-	trigger a hangup event
 686 *	@tty: tty to hangup
 687 *
 688 *	A carrier loss (virtual or otherwise) has occurred on this like
 689 *	schedule a hangup sequence to run after this event.
 690 */
 691
 692void tty_hangup(struct tty_struct *tty)
 693{
 694	tty_debug_hangup(tty, "hangup\n");
 695	schedule_work(&tty->hangup_work);
 696}
 697EXPORT_SYMBOL(tty_hangup);
 698
 699/**
 700 *	tty_vhangup		-	process vhangup
 701 *	@tty: tty to hangup
 702 *
 703 *	The user has asked via system call for the terminal to be hung up.
 704 *	We do this synchronously so that when the syscall returns the process
 705 *	is complete. That guarantee is necessary for security reasons.
 706 */
 707
 708void tty_vhangup(struct tty_struct *tty)
 709{
 710	tty_debug_hangup(tty, "vhangup\n");
 711	__tty_hangup(tty, 0);
 712}
 713EXPORT_SYMBOL(tty_vhangup);
 714
 715
 716/**
 717 *	tty_vhangup_self	-	process vhangup for own ctty
 718 *
 719 *	Perform a vhangup on the current controlling tty
 720 */
 721
 722void tty_vhangup_self(void)
 723{
 724	struct tty_struct *tty;
 725
 726	tty = get_current_tty();
 727	if (tty) {
 728		tty_vhangup(tty);
 729		tty_kref_put(tty);
 730	}
 731}
 732
 733/**
 734 *	tty_vhangup_session		-	hangup session leader exit
 735 *	@tty: tty to hangup
 736 *
 737 *	The session leader is exiting and hanging up its controlling terminal.
 738 *	Every process in the foreground process group is signalled SIGHUP.
 739 *
 740 *	We do this synchronously so that when the syscall returns the process
 741 *	is complete. That guarantee is necessary for security reasons.
 742 */
 743
 744void tty_vhangup_session(struct tty_struct *tty)
 745{
 746	tty_debug_hangup(tty, "session hangup\n");
 747	__tty_hangup(tty, 1);
 748}
 749
 750/**
 751 *	tty_hung_up_p		-	was tty hung up
 752 *	@filp: file pointer of tty
 753 *
 754 *	Return true if the tty has been subject to a vhangup or a carrier
 755 *	loss
 756 */
 757
 758int tty_hung_up_p(struct file *filp)
 759{
 760	return (filp && filp->f_op == &hung_up_tty_fops);
 761}
 762EXPORT_SYMBOL(tty_hung_up_p);
 763
 764void __stop_tty(struct tty_struct *tty)
 765{
 766	if (tty->flow.stopped)
 767		return;
 768	tty->flow.stopped = true;
 769	if (tty->ops->stop)
 770		tty->ops->stop(tty);
 771}
 772
 773/**
 774 *	stop_tty	-	propagate flow control
 775 *	@tty: tty to stop
 776 *
 777 *	Perform flow control to the driver. May be called
 778 *	on an already stopped device and will not re-call the driver
 779 *	method.
 780 *
 781 *	This functionality is used by both the line disciplines for
 782 *	halting incoming flow and by the driver. It may therefore be
 783 *	called from any context, may be under the tty atomic_write_lock
 784 *	but not always.
 785 *
 786 *	Locking:
 787 *		flow.lock
 
 
 
 
 788 */
 789void stop_tty(struct tty_struct *tty)
 790{
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&tty->flow.lock, flags);
 794	__stop_tty(tty);
 795	spin_unlock_irqrestore(&tty->flow.lock, flags);
 796}
 797EXPORT_SYMBOL(stop_tty);
 798
 799void __start_tty(struct tty_struct *tty)
 800{
 801	if (!tty->flow.stopped || tty->flow.tco_stopped)
 802		return;
 803	tty->flow.stopped = false;
 804	if (tty->ops->start)
 805		tty->ops->start(tty);
 806	tty_wakeup(tty);
 807}
 808
 809/**
 810 *	start_tty	-	propagate flow control
 811 *	@tty: tty to start
 812 *
 813 *	Start a tty that has been stopped if at all possible. If this
 814 *	tty was previous stopped and is now being started, the driver
 815 *	start method is invoked and the line discipline woken.
 816 *
 817 *	Locking:
 818 *		flow.lock
 819 */
 820void start_tty(struct tty_struct *tty)
 821{
 822	unsigned long flags;
 823
 824	spin_lock_irqsave(&tty->flow.lock, flags);
 825	__start_tty(tty);
 826	spin_unlock_irqrestore(&tty->flow.lock, flags);
 827}
 828EXPORT_SYMBOL(start_tty);
 829
 830static void tty_update_time(struct timespec64 *time)
 831{
 832	time64_t sec = ktime_get_real_seconds();
 
 833
 834	/*
 835	 * We only care if the two values differ in anything other than the
 836	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 837	 * the time of the tty device, otherwise it could be construded as a
 838	 * security leak to let userspace know the exact timing of the tty.
 839	 */
 840	if ((sec ^ time->tv_sec) & ~7)
 841		time->tv_sec = sec;
 
 
 
 
 
 
 
 
 
 
 
 842}
 843
 844/*
 845 * Iterate on the ldisc ->read() function until we've gotten all
 846 * the data the ldisc has for us.
 847 *
 848 * The "cookie" is something that the ldisc read function can fill
 849 * in to let us know that there is more data to be had.
 850 *
 851 * We promise to continue to call the ldisc until it stops returning
 852 * data or clears the cookie. The cookie may be something that the
 853 * ldisc maintains state for and needs to free.
 854 */
 855static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 856		struct file *file, struct iov_iter *to)
 857{
 858	int retval = 0;
 859	void *cookie = NULL;
 860	unsigned long offset = 0;
 861	char kernel_buf[64];
 862	size_t count = iov_iter_count(to);
 
 863
 864	do {
 865		int size, copied;
 866
 867		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
 868		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 869		if (!size)
 870			break;
 871
 872		if (size < 0) {
 873			/* Did we have an earlier error (ie -EFAULT)? */
 874			if (retval)
 875				break;
 876			retval = size;
 877
 878			/*
 879			 * -EOVERFLOW means we didn't have enough space
 880			 * for a whole packet, and we shouldn't return
 881			 * a partial result.
 882			 */
 883			if (retval == -EOVERFLOW)
 884				offset = 0;
 885			break;
 886		}
 887
 888		copied = copy_to_iter(kernel_buf, size, to);
 889		offset += copied;
 890		count -= copied;
 891
 892		/*
 893		 * If the user copy failed, we still need to do another ->read()
 894		 * call if we had a cookie to let the ldisc clear up.
 895		 *
 896		 * But make sure size is zeroed.
 897		 */
 898		if (unlikely(copied != size)) {
 899			count = 0;
 900			retval = -EFAULT;
 901		}
 902	} while (cookie);
 903
 904	/* We always clear tty buffer in case they contained passwords */
 905	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 906	return offset ? offset : retval;
 907}
 908
 909
 910/**
 911 *	tty_read	-	read method for tty device files
 912 *	@iocb: kernel I/O control block
 913 *	@to: destination for the data read
 914 *
 915 *	Perform the read system call function on this terminal device. Checks
 916 *	for hung up devices before calling the line discipline method.
 917 *
 918 *	Locking:
 919 *		Locks the line discipline internally while needed. Multiple
 920 *	read calls may be outstanding in parallel.
 921 */
 922
 923static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 924{
 925	int i;
 926	struct file *file = iocb->ki_filp;
 927	struct inode *inode = file_inode(file);
 928	struct tty_struct *tty = file_tty(file);
 929	struct tty_ldisc *ld;
 
 930
 931	if (tty_paranoia_check(tty, inode, "tty_read"))
 932		return -EIO;
 933	if (!tty || tty_io_error(tty))
 934		return -EIO;
 935
 936	/* We want to wait for the line discipline to sort out in this
 937	 * situation.
 938	 */
 939	ld = tty_ldisc_ref_wait(tty);
 940	if (!ld)
 941		return hung_up_tty_read(iocb, to);
 942	i = -EIO;
 943	if (ld->ops->read)
 944		i = iterate_tty_read(ld, tty, file, to);
 945	tty_ldisc_deref(ld);
 946
 947	if (i > 0)
 948		tty_update_time(&inode->i_atime);
 949
 950	return i;
 951}
 952
 953static void tty_write_unlock(struct tty_struct *tty)
 954{
 955	mutex_unlock(&tty->atomic_write_lock);
 956	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 957}
 958
 959static int tty_write_lock(struct tty_struct *tty, int ndelay)
 960{
 961	if (!mutex_trylock(&tty->atomic_write_lock)) {
 962		if (ndelay)
 963			return -EAGAIN;
 964		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 965			return -ERESTARTSYS;
 966	}
 967	return 0;
 968}
 969
 970/*
 971 * Split writes up in sane blocksizes to avoid
 972 * denial-of-service type attacks
 973 */
 974static inline ssize_t do_tty_write(
 975	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 976	struct tty_struct *tty,
 977	struct file *file,
 978	struct iov_iter *from)
 979{
 980	size_t count = iov_iter_count(from);
 981	ssize_t ret, written = 0;
 982	unsigned int chunk;
 983
 984	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 985	if (ret < 0)
 986		return ret;
 987
 988	/*
 989	 * We chunk up writes into a temporary buffer. This
 990	 * simplifies low-level drivers immensely, since they
 991	 * don't have locking issues and user mode accesses.
 992	 *
 993	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 994	 * big chunk-size..
 995	 *
 996	 * The default chunk-size is 2kB, because the NTTY
 997	 * layer has problems with bigger chunks. It will
 998	 * claim to be able to handle more characters than
 999	 * it actually does.
1000	 *
1001	 * FIXME: This can probably go away now except that 64K chunks
1002	 * are too likely to fail unless switched to vmalloc...
1003	 */
1004	chunk = 2048;
1005	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1006		chunk = 65536;
1007	if (count < chunk)
1008		chunk = count;
1009
1010	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1011	if (tty->write_cnt < chunk) {
1012		unsigned char *buf_chunk;
1013
1014		if (chunk < 1024)
1015			chunk = 1024;
1016
1017		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1018		if (!buf_chunk) {
1019			ret = -ENOMEM;
1020			goto out;
1021		}
1022		kfree(tty->write_buf);
1023		tty->write_cnt = chunk;
1024		tty->write_buf = buf_chunk;
1025	}
1026
1027	/* Do the write .. */
1028	for (;;) {
1029		size_t size = count;
1030
1031		if (size > chunk)
1032			size = chunk;
1033
1034		ret = -EFAULT;
1035		if (copy_from_iter(tty->write_buf, size, from) != size)
1036			break;
1037
1038		ret = write(tty, file, tty->write_buf, size);
1039		if (ret <= 0)
1040			break;
1041
1042		written += ret;
1043		if (ret > size)
1044			break;
1045
1046		/* FIXME! Have Al check this! */
1047		if (ret != size)
1048			iov_iter_revert(from, size-ret);
1049
1050		count -= ret;
1051		if (!count)
1052			break;
1053		ret = -ERESTARTSYS;
1054		if (signal_pending(current))
1055			break;
1056		cond_resched();
1057	}
1058	if (written) {
1059		tty_update_time(&file_inode(file)->i_mtime);
1060		ret = written;
1061	}
1062out:
1063	tty_write_unlock(tty);
1064	return ret;
1065}
1066
 
1067/**
1068 * tty_write_message - write a message to a certain tty, not just the console.
1069 * @tty: the destination tty_struct
1070 * @msg: the message to write
1071 *
1072 * This is used for messages that need to be redirected to a specific tty.
1073 * We don't put it into the syslog queue right now maybe in the future if
1074 * really needed.
1075 *
1076 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1077 */
1078
1079void tty_write_message(struct tty_struct *tty, char *msg)
1080{
1081	if (tty) {
1082		mutex_lock(&tty->atomic_write_lock);
1083		tty_lock(tty);
1084		if (tty->ops->write && tty->count > 0)
1085			tty->ops->write(tty, msg, strlen(msg));
1086		tty_unlock(tty);
1087		tty_write_unlock(tty);
1088	}
1089}
 
1090
1091static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1092{
1093	struct tty_struct *tty = file_tty(file);
1094	struct tty_ldisc *ld;
1095	ssize_t ret;
1096
1097	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1098		return -EIO;
1099	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1100		return -EIO;
1101	/* Short term debug to catch buggy drivers */
1102	if (tty->ops->write_room == NULL)
1103		tty_err(tty, "missing write_room method\n");
1104	ld = tty_ldisc_ref_wait(tty);
1105	if (!ld)
1106		return hung_up_tty_write(iocb, from);
1107	if (!ld->ops->write)
1108		ret = -EIO;
1109	else
1110		ret = do_tty_write(ld->ops->write, tty, file, from);
1111	tty_ldisc_deref(ld);
1112	return ret;
1113}
1114
1115/**
1116 *	tty_write		-	write method for tty device file
1117 *	@iocb: kernel I/O control block
1118 *	@from: iov_iter with data to write
1119 *
1120 *	Write data to a tty device via the line discipline.
1121 *
1122 *	Locking:
1123 *		Locks the line discipline as required
1124 *		Writes to the tty driver are serialized by the atomic_write_lock
1125 *		and are then processed in chunks to the device. The line
1126 *		discipline write method will not be invoked in parallel for
1127 *		each device.
1128 */
1129static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1130{
1131	return file_tty_write(iocb->ki_filp, iocb, from);
1132}
1133
1134ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1135{
1136	struct file *p = NULL;
1137
1138	spin_lock(&redirect_lock);
1139	if (redirect)
1140		p = get_file(redirect);
1141	spin_unlock(&redirect_lock);
1142
1143	/*
1144	 * We know the redirected tty is just another tty, we can
1145	 * call file_tty_write() directly with that file pointer.
1146	 */
1147	if (p) {
1148		ssize_t res;
1149
1150		res = file_tty_write(p, iocb, iter);
1151		fput(p);
1152		return res;
1153	}
1154	return tty_write(iocb, iter);
1155}
1156
1157/*
1158 *	tty_send_xchar	-	send priority character
 
 
1159 *
1160 *	Send a high priority character to the tty even if stopped
1161 *
1162 *	Locking: none for xchar method, write ordering for write method.
1163 */
1164
1165int tty_send_xchar(struct tty_struct *tty, char ch)
1166{
1167	bool was_stopped = tty->flow.stopped;
1168
1169	if (tty->ops->send_xchar) {
1170		down_read(&tty->termios_rwsem);
1171		tty->ops->send_xchar(tty, ch);
1172		up_read(&tty->termios_rwsem);
1173		return 0;
1174	}
1175
1176	if (tty_write_lock(tty, 0) < 0)
1177		return -ERESTARTSYS;
1178
1179	down_read(&tty->termios_rwsem);
1180	if (was_stopped)
1181		start_tty(tty);
1182	tty->ops->write(tty, &ch, 1);
1183	if (was_stopped)
1184		stop_tty(tty);
1185	up_read(&tty->termios_rwsem);
1186	tty_write_unlock(tty);
1187	return 0;
1188}
1189
1190/**
1191 *	pty_line_name	-	generate name for a pty
1192 *	@driver: the tty driver in use
1193 *	@index: the minor number
1194 *	@p: output buffer of at least 6 bytes
1195 *
1196 *	Generate a name from a driver reference and write it to the output
1197 *	buffer.
1198 *
1199 *	Locking: None
1200 */
1201static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202{
1203	static const char ptychar[] = "pqrstuvwxyzabcde";
1204	int i = index + driver->name_base;
1205	/* ->name is initialized to "ttyp", but "tty" is expected */
1206	sprintf(p, "%s%c%x",
1207		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1208		ptychar[i >> 4 & 0xf], i & 0xf);
1209}
1210
1211/**
1212 *	tty_line_name	-	generate name for a tty
1213 *	@driver: the tty driver in use
1214 *	@index: the minor number
1215 *	@p: output buffer of at least 7 bytes
1216 *
1217 *	Generate a name from a driver reference and write it to the output
1218 *	buffer.
1219 *
1220 *	Locking: None
1221 */
1222static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1223{
1224	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1225		return sprintf(p, "%s", driver->name);
1226	else
1227		return sprintf(p, "%s%d", driver->name,
1228			       index + driver->name_base);
1229}
1230
1231/**
1232 *	tty_driver_lookup_tty() - find an existing tty, if any
1233 *	@driver: the driver for the tty
1234 *	@file:   file object
1235 *	@idx:	 the minor number
1236 *
1237 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1238 *	driver lookup() method returns an error.
1239 *
1240 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1241 */
1242static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1243		struct file *file, int idx)
1244{
1245	struct tty_struct *tty;
1246
1247	if (driver->ops->lookup)
1248		if (!file)
1249			tty = ERR_PTR(-EIO);
1250		else
1251			tty = driver->ops->lookup(driver, file, idx);
1252	else
 
 
1253		tty = driver->ttys[idx];
1254
1255	if (!IS_ERR(tty))
1256		tty_kref_get(tty);
1257	return tty;
1258}
1259
1260/**
1261 *	tty_init_termios	-  helper for termios setup
1262 *	@tty: the tty to set up
1263 *
1264 *	Initialise the termios structure for this tty. This runs under
1265 *	the tty_mutex currently so we can be relaxed about ordering.
1266 */
1267
1268void tty_init_termios(struct tty_struct *tty)
1269{
1270	struct ktermios *tp;
1271	int idx = tty->index;
1272
1273	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1274		tty->termios = tty->driver->init_termios;
1275	else {
1276		/* Check for lazy saved data */
1277		tp = tty->driver->termios[idx];
1278		if (tp != NULL) {
1279			tty->termios = *tp;
1280			tty->termios.c_line  = tty->driver->init_termios.c_line;
1281		} else
1282			tty->termios = tty->driver->init_termios;
1283	}
1284	/* Compatibility until drivers always set this */
1285	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1286	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1287}
1288EXPORT_SYMBOL_GPL(tty_init_termios);
1289
 
 
 
 
 
 
 
 
1290int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1291{
1292	tty_init_termios(tty);
1293	tty_driver_kref_get(driver);
1294	tty->count++;
1295	driver->ttys[tty->index] = tty;
1296	return 0;
1297}
1298EXPORT_SYMBOL_GPL(tty_standard_install);
1299
1300/**
1301 *	tty_driver_install_tty() - install a tty entry in the driver
1302 *	@driver: the driver for the tty
1303 *	@tty: the tty
1304 *
1305 *	Install a tty object into the driver tables. The tty->index field
1306 *	will be set by the time this is called. This method is responsible
1307 *	for ensuring any need additional structures are allocated and
1308 *	configured.
1309 *
1310 *	Locking: tty_mutex for now
1311 */
1312static int tty_driver_install_tty(struct tty_driver *driver,
1313						struct tty_struct *tty)
1314{
1315	return driver->ops->install ? driver->ops->install(driver, tty) :
1316		tty_standard_install(driver, tty);
1317}
1318
1319/**
1320 *	tty_driver_remove_tty() - remove a tty from the driver tables
1321 *	@driver: the driver for the tty
1322 *	@tty: tty to remove
1323 *
1324 *	Remvoe a tty object from the driver tables. The tty->index field
1325 *	will be set by the time this is called.
1326 *
1327 *	Locking: tty_mutex for now
1328 */
1329static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1330{
1331	if (driver->ops->remove)
1332		driver->ops->remove(driver, tty);
1333	else
1334		driver->ttys[tty->index] = NULL;
1335}
1336
1337/**
1338 *	tty_reopen()	- fast re-open of an open tty
1339 *	@tty: the tty to open
1340 *
1341 *	Return 0 on success, -errno on error.
1342 *	Re-opens on master ptys are not allowed and return -EIO.
1343 *
1344 *	Locking: Caller must hold tty_lock
 
1345 */
1346static int tty_reopen(struct tty_struct *tty)
1347{
1348	struct tty_driver *driver = tty->driver;
1349	struct tty_ldisc *ld;
1350	int retval = 0;
1351
1352	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1353	    driver->subtype == PTY_TYPE_MASTER)
1354		return -EIO;
1355
1356	if (!tty->count)
1357		return -EAGAIN;
1358
1359	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1360		return -EBUSY;
1361
1362	ld = tty_ldisc_ref_wait(tty);
1363	if (ld) {
1364		tty_ldisc_deref(ld);
1365	} else {
1366		retval = tty_ldisc_lock(tty, 5 * HZ);
1367		if (retval)
1368			return retval;
1369
1370		if (!tty->ldisc)
1371			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1372		tty_ldisc_unlock(tty);
1373	}
1374
1375	if (retval == 0)
1376		tty->count++;
1377
1378	return retval;
1379}
1380
1381/**
1382 *	tty_init_dev		-	initialise a tty device
1383 *	@driver: tty driver we are opening a device on
1384 *	@idx: device index
1385 *
1386 *	Prepare a tty device. This may not be a "new" clean device but
1387 *	could also be an active device. The pty drivers require special
1388 *	handling because of this.
1389 *
1390 *	Locking:
1391 *		The function is called under the tty_mutex, which
1392 *	protects us from the tty struct or driver itself going away.
1393 *
1394 *	On exit the tty device has the line discipline attached and
1395 *	a reference count of 1. If a pair was created for pty/tty use
1396 *	and the other was a pty master then it too has a reference count of 1.
1397 *
1398 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1399 * failed open.  The new code protects the open with a mutex, so it's
1400 * really quite straightforward.  The mutex locking can probably be
1401 * relaxed for the (most common) case of reopening a tty.
1402 *
1403 *	Return: returned tty structure
1404 */
1405
1406struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1407{
1408	struct tty_struct *tty;
1409	int retval;
1410
1411	/*
1412	 * First time open is complex, especially for PTY devices.
1413	 * This code guarantees that either everything succeeds and the
1414	 * TTY is ready for operation, or else the table slots are vacated
1415	 * and the allocated memory released.  (Except that the termios
1416	 * may be retained.)
1417	 */
1418
1419	if (!try_module_get(driver->owner))
1420		return ERR_PTR(-ENODEV);
1421
1422	tty = alloc_tty_struct(driver, idx);
1423	if (!tty) {
1424		retval = -ENOMEM;
1425		goto err_module_put;
1426	}
1427
1428	tty_lock(tty);
1429	retval = tty_driver_install_tty(driver, tty);
1430	if (retval < 0)
1431		goto err_free_tty;
1432
1433	if (!tty->port)
1434		tty->port = driver->ports[idx];
1435
1436	if (WARN_RATELIMIT(!tty->port,
1437			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1438			__func__, tty->driver->name)) {
1439		retval = -EINVAL;
1440		goto err_release_lock;
1441	}
1442
1443	retval = tty_ldisc_lock(tty, 5 * HZ);
1444	if (retval)
1445		goto err_release_lock;
1446	tty->port->itty = tty;
1447
1448	/*
1449	 * Structures all installed ... call the ldisc open routines.
1450	 * If we fail here just call release_tty to clean up.  No need
1451	 * to decrement the use counts, as release_tty doesn't care.
1452	 */
1453	retval = tty_ldisc_setup(tty, tty->link);
1454	if (retval)
1455		goto err_release_tty;
1456	tty_ldisc_unlock(tty);
1457	/* Return the tty locked so that it cannot vanish under the caller */
1458	return tty;
1459
1460err_free_tty:
1461	tty_unlock(tty);
1462	free_tty_struct(tty);
1463err_module_put:
1464	module_put(driver->owner);
1465	return ERR_PTR(retval);
1466
1467	/* call the tty release_tty routine to clean out this slot */
1468err_release_tty:
1469	tty_ldisc_unlock(tty);
1470	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1471			     retval, idx);
1472err_release_lock:
1473	tty_unlock(tty);
1474	release_tty(tty, idx);
1475	return ERR_PTR(retval);
1476}
1477
1478/**
1479 * tty_save_termios() - save tty termios data in driver table
1480 * @tty: tty whose termios data to save
1481 *
1482 * Locking: Caller guarantees serialisation with tty_init_termios().
1483 */
1484void tty_save_termios(struct tty_struct *tty)
1485{
1486	struct ktermios *tp;
1487	int idx = tty->index;
1488
1489	/* If the port is going to reset then it has no termios to save */
1490	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1491		return;
1492
1493	/* Stash the termios data */
1494	tp = tty->driver->termios[idx];
1495	if (tp == NULL) {
1496		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1497		if (tp == NULL)
1498			return;
1499		tty->driver->termios[idx] = tp;
1500	}
1501	*tp = tty->termios;
1502}
1503EXPORT_SYMBOL_GPL(tty_save_termios);
1504
1505/**
1506 *	tty_flush_works		-	flush all works of a tty/pty pair
1507 *	@tty: tty device to flush works for (or either end of a pty pair)
1508 *
1509 *	Sync flush all works belonging to @tty (and the 'other' tty).
1510 */
1511static void tty_flush_works(struct tty_struct *tty)
1512{
1513	flush_work(&tty->SAK_work);
1514	flush_work(&tty->hangup_work);
1515	if (tty->link) {
1516		flush_work(&tty->link->SAK_work);
1517		flush_work(&tty->link->hangup_work);
1518	}
1519}
1520
1521/**
1522 *	release_one_tty		-	release tty structure memory
1523 *	@work: work of tty we are obliterating
1524 *
1525 *	Releases memory associated with a tty structure, and clears out the
1526 *	driver table slots. This function is called when a device is no longer
1527 *	in use. It also gets called when setup of a device fails.
1528 *
1529 *	Locking:
1530 *		takes the file list lock internally when working on the list
1531 *	of ttys that the driver keeps.
1532 *
1533 *	This method gets called from a work queue so that the driver private
1534 *	cleanup ops can sleep (needed for USB at least)
1535 */
1536static void release_one_tty(struct work_struct *work)
1537{
1538	struct tty_struct *tty =
1539		container_of(work, struct tty_struct, hangup_work);
1540	struct tty_driver *driver = tty->driver;
1541	struct module *owner = driver->owner;
1542
1543	if (tty->ops->cleanup)
1544		tty->ops->cleanup(tty);
1545
1546	tty->magic = 0;
1547	tty_driver_kref_put(driver);
1548	module_put(owner);
1549
1550	spin_lock(&tty->files_lock);
1551	list_del_init(&tty->tty_files);
1552	spin_unlock(&tty->files_lock);
1553
1554	put_pid(tty->ctrl.pgrp);
1555	put_pid(tty->ctrl.session);
1556	free_tty_struct(tty);
1557}
1558
1559static void queue_release_one_tty(struct kref *kref)
1560{
1561	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1562
1563	/* The hangup queue is now free so we can reuse it rather than
1564	 *  waste a chunk of memory for each port.
1565	 */
1566	INIT_WORK(&tty->hangup_work, release_one_tty);
1567	schedule_work(&tty->hangup_work);
1568}
1569
1570/**
1571 *	tty_kref_put		-	release a tty kref
1572 *	@tty: tty device
1573 *
1574 *	Release a reference to a tty device and if need be let the kref
1575 *	layer destruct the object for us
1576 */
1577
1578void tty_kref_put(struct tty_struct *tty)
1579{
1580	if (tty)
1581		kref_put(&tty->kref, queue_release_one_tty);
1582}
1583EXPORT_SYMBOL(tty_kref_put);
1584
1585/**
1586 *	release_tty		-	release tty structure memory
1587 *	@tty: tty device release
1588 *	@idx: index of the tty device release
1589 *
1590 *	Release both @tty and a possible linked partner (think pty pair),
1591 *	and decrement the refcount of the backing module.
1592 *
1593 *	Locking:
1594 *		tty_mutex
1595 *		takes the file list lock internally when working on the list
1596 *	of ttys that the driver keeps.
1597 *
 
 
 
 
1598 */
1599static void release_tty(struct tty_struct *tty, int idx)
1600{
1601	/* This should always be true but check for the moment */
1602	WARN_ON(tty->index != idx);
1603	WARN_ON(!mutex_is_locked(&tty_mutex));
1604	if (tty->ops->shutdown)
1605		tty->ops->shutdown(tty);
1606	tty_save_termios(tty);
1607	tty_driver_remove_tty(tty->driver, tty);
1608	if (tty->port)
1609		tty->port->itty = NULL;
1610	if (tty->link)
1611		tty->link->port->itty = NULL;
1612	if (tty->port)
1613		tty_buffer_cancel_work(tty->port);
1614	if (tty->link)
1615		tty_buffer_cancel_work(tty->link->port);
1616
1617	tty_kref_put(tty->link);
1618	tty_kref_put(tty);
1619}
1620
1621/**
1622 *	tty_release_checks - check a tty before real release
1623 *	@tty: tty to check
1624 *	@idx: index of the tty
1625 *
1626 *	Performs some paranoid checking before true release of the @tty.
1627 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628 */
1629static int tty_release_checks(struct tty_struct *tty, int idx)
1630{
1631#ifdef TTY_PARANOIA_CHECK
1632	if (idx < 0 || idx >= tty->driver->num) {
1633		tty_debug(tty, "bad idx %d\n", idx);
1634		return -1;
1635	}
1636
1637	/* not much to check for devpts */
1638	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1639		return 0;
1640
1641	if (tty != tty->driver->ttys[idx]) {
1642		tty_debug(tty, "bad driver table[%d] = %p\n",
1643			  idx, tty->driver->ttys[idx]);
1644		return -1;
1645	}
1646	if (tty->driver->other) {
1647		struct tty_struct *o_tty = tty->link;
1648
1649		if (o_tty != tty->driver->other->ttys[idx]) {
1650			tty_debug(tty, "bad other table[%d] = %p\n",
1651				  idx, tty->driver->other->ttys[idx]);
1652			return -1;
1653		}
1654		if (o_tty->link != tty) {
1655			tty_debug(tty, "bad link = %p\n", o_tty->link);
1656			return -1;
1657		}
1658	}
1659#endif
1660	return 0;
1661}
1662
1663/**
1664 *      tty_kclose      -       closes tty opened by tty_kopen
1665 *      @tty: tty device
1666 *
1667 *      Performs the final steps to release and free a tty device. It is the
1668 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1669 *      flag on tty->port.
1670 */
1671void tty_kclose(struct tty_struct *tty)
1672{
1673	/*
1674	 * Ask the line discipline code to release its structures
1675	 */
1676	tty_ldisc_release(tty);
1677
1678	/* Wait for pending work before tty destruction commmences */
1679	tty_flush_works(tty);
1680
1681	tty_debug_hangup(tty, "freeing structure\n");
1682	/*
1683	 * The release_tty function takes care of the details of clearing
1684	 * the slots and preserving the termios structure.
1685	 */
1686	mutex_lock(&tty_mutex);
1687	tty_port_set_kopened(tty->port, 0);
1688	release_tty(tty, tty->index);
1689	mutex_unlock(&tty_mutex);
1690}
1691EXPORT_SYMBOL_GPL(tty_kclose);
1692
1693/**
1694 *	tty_release_struct	-	release a tty struct
1695 *	@tty: tty device
1696 *	@idx: index of the tty
1697 *
1698 *	Performs the final steps to release and free a tty device. It is
1699 *	roughly the reverse of tty_init_dev.
1700 */
1701void tty_release_struct(struct tty_struct *tty, int idx)
1702{
1703	/*
1704	 * Ask the line discipline code to release its structures
1705	 */
1706	tty_ldisc_release(tty);
1707
1708	/* Wait for pending work before tty destruction commmences */
1709	tty_flush_works(tty);
1710
1711	tty_debug_hangup(tty, "freeing structure\n");
1712	/*
1713	 * The release_tty function takes care of the details of clearing
1714	 * the slots and preserving the termios structure.
1715	 */
1716	mutex_lock(&tty_mutex);
1717	release_tty(tty, idx);
1718	mutex_unlock(&tty_mutex);
1719}
1720EXPORT_SYMBOL_GPL(tty_release_struct);
1721
1722/**
1723 *	tty_release		-	vfs callback for close
1724 *	@inode: inode of tty
1725 *	@filp: file pointer for handle to tty
1726 *
1727 *	Called the last time each file handle is closed that references
1728 *	this tty. There may however be several such references.
1729 *
1730 *	Locking:
1731 *		Takes bkl. See tty_release_dev
1732 *
1733 * Even releasing the tty structures is a tricky business.. We have
1734 * to be very careful that the structures are all released at the
1735 * same time, as interrupts might otherwise get the wrong pointers.
1736 *
1737 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1738 * lead to double frees or releasing memory still in use.
1739 */
1740
1741int tty_release(struct inode *inode, struct file *filp)
1742{
1743	struct tty_struct *tty = file_tty(filp);
1744	struct tty_struct *o_tty = NULL;
1745	int	do_sleep, final;
1746	int	idx;
1747	long	timeout = 0;
1748	int	once = 1;
1749
1750	if (tty_paranoia_check(tty, inode, __func__))
1751		return 0;
1752
1753	tty_lock(tty);
1754	check_tty_count(tty, __func__);
1755
1756	__tty_fasync(-1, filp, 0);
1757
1758	idx = tty->index;
1759	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1760	    tty->driver->subtype == PTY_TYPE_MASTER)
1761		o_tty = tty->link;
1762
1763	if (tty_release_checks(tty, idx)) {
1764		tty_unlock(tty);
1765		return 0;
1766	}
1767
1768	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1769
1770	if (tty->ops->close)
1771		tty->ops->close(tty, filp);
1772
1773	/* If tty is pty master, lock the slave pty (stable lock order) */
1774	tty_lock_slave(o_tty);
1775
1776	/*
1777	 * Sanity check: if tty->count is going to zero, there shouldn't be
1778	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1779	 * wait queues and kick everyone out _before_ actually starting to
1780	 * close.  This ensures that we won't block while releasing the tty
1781	 * structure.
1782	 *
1783	 * The test for the o_tty closing is necessary, since the master and
1784	 * slave sides may close in any order.  If the slave side closes out
1785	 * first, its count will be one, since the master side holds an open.
1786	 * Thus this test wouldn't be triggered at the time the slave closed,
1787	 * so we do it now.
1788	 */
1789	while (1) {
1790		do_sleep = 0;
1791
1792		if (tty->count <= 1) {
1793			if (waitqueue_active(&tty->read_wait)) {
1794				wake_up_poll(&tty->read_wait, EPOLLIN);
1795				do_sleep++;
1796			}
1797			if (waitqueue_active(&tty->write_wait)) {
1798				wake_up_poll(&tty->write_wait, EPOLLOUT);
1799				do_sleep++;
1800			}
1801		}
1802		if (o_tty && o_tty->count <= 1) {
1803			if (waitqueue_active(&o_tty->read_wait)) {
1804				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1805				do_sleep++;
1806			}
1807			if (waitqueue_active(&o_tty->write_wait)) {
1808				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1809				do_sleep++;
1810			}
1811		}
1812		if (!do_sleep)
1813			break;
1814
1815		if (once) {
1816			once = 0;
1817			tty_warn(tty, "read/write wait queue active!\n");
1818		}
1819		schedule_timeout_killable(timeout);
1820		if (timeout < 120 * HZ)
1821			timeout = 2 * timeout + 1;
1822		else
1823			timeout = MAX_SCHEDULE_TIMEOUT;
1824	}
1825
1826	if (o_tty) {
1827		if (--o_tty->count < 0) {
1828			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1829			o_tty->count = 0;
1830		}
1831	}
1832	if (--tty->count < 0) {
1833		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1834		tty->count = 0;
1835	}
1836
1837	/*
1838	 * We've decremented tty->count, so we need to remove this file
1839	 * descriptor off the tty->tty_files list; this serves two
1840	 * purposes:
1841	 *  - check_tty_count sees the correct number of file descriptors
1842	 *    associated with this tty.
1843	 *  - do_tty_hangup no longer sees this file descriptor as
1844	 *    something that needs to be handled for hangups.
1845	 */
1846	tty_del_file(filp);
1847
1848	/*
1849	 * Perform some housekeeping before deciding whether to return.
1850	 *
1851	 * If _either_ side is closing, make sure there aren't any
1852	 * processes that still think tty or o_tty is their controlling
1853	 * tty.
1854	 */
1855	if (!tty->count) {
1856		read_lock(&tasklist_lock);
1857		session_clear_tty(tty->ctrl.session);
1858		if (o_tty)
1859			session_clear_tty(o_tty->ctrl.session);
1860		read_unlock(&tasklist_lock);
1861	}
1862
1863	/* check whether both sides are closing ... */
1864	final = !tty->count && !(o_tty && o_tty->count);
1865
1866	tty_unlock_slave(o_tty);
1867	tty_unlock(tty);
1868
1869	/* At this point, the tty->count == 0 should ensure a dead tty
1870	 * cannot be re-opened by a racing opener.
1871	 */
1872
1873	if (!final)
1874		return 0;
1875
1876	tty_debug_hangup(tty, "final close\n");
1877
1878	tty_release_struct(tty, idx);
1879	return 0;
1880}
1881
1882/**
1883 *	tty_open_current_tty - get locked tty of current task
1884 *	@device: device number
1885 *	@filp: file pointer to tty
1886 *	@return: locked tty of the current task iff @device is /dev/tty
1887 *
1888 *	Performs a re-open of the current task's controlling tty.
1889 *
1890 *	We cannot return driver and index like for the other nodes because
1891 *	devpts will not work then. It expects inodes to be from devpts FS.
1892 */
1893static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1894{
1895	struct tty_struct *tty;
1896	int retval;
1897
1898	if (device != MKDEV(TTYAUX_MAJOR, 0))
1899		return NULL;
1900
1901	tty = get_current_tty();
1902	if (!tty)
1903		return ERR_PTR(-ENXIO);
1904
1905	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1906	/* noctty = 1; */
1907	tty_lock(tty);
1908	tty_kref_put(tty);	/* safe to drop the kref now */
1909
1910	retval = tty_reopen(tty);
1911	if (retval < 0) {
1912		tty_unlock(tty);
1913		tty = ERR_PTR(retval);
1914	}
1915	return tty;
1916}
1917
1918/**
1919 *	tty_lookup_driver - lookup a tty driver for a given device file
1920 *	@device: device number
1921 *	@filp: file pointer to tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 *	If @return is not erroneous, the caller is responsible to decrement the
1926 *	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
 
 
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *index)
1932{
1933	struct tty_driver *driver = NULL;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939
1940		driver = tty_driver_kref_get(console_driver);
1941		*index = fg_console;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947
1948		if (console_driver) {
1949			driver = tty_driver_kref_get(console_driver);
1950			if (driver && filp) {
1951				/* Don't let /dev/console block */
1952				filp->f_flags |= O_NONBLOCK;
1953				break;
1954			}
1955		}
1956		if (driver)
1957			tty_driver_kref_put(driver);
1958		return ERR_PTR(-ENODEV);
1959	}
1960	default:
1961		driver = get_tty_driver(device, index);
1962		if (!driver)
1963			return ERR_PTR(-ENODEV);
1964		break;
1965	}
1966	return driver;
1967}
1968
1969static struct tty_struct *tty_kopen(dev_t device, int shared)
1970{
1971	struct tty_struct *tty;
1972	struct tty_driver *driver;
1973	int index = -1;
1974
1975	mutex_lock(&tty_mutex);
1976	driver = tty_lookup_driver(device, NULL, &index);
1977	if (IS_ERR(driver)) {
1978		mutex_unlock(&tty_mutex);
1979		return ERR_CAST(driver);
1980	}
1981
1982	/* check whether we're reopening an existing tty */
1983	tty = tty_driver_lookup_tty(driver, NULL, index);
1984	if (IS_ERR(tty) || shared)
1985		goto out;
1986
1987	if (tty) {
1988		/* drop kref from tty_driver_lookup_tty() */
1989		tty_kref_put(tty);
1990		tty = ERR_PTR(-EBUSY);
1991	} else { /* tty_init_dev returns tty with the tty_lock held */
1992		tty = tty_init_dev(driver, index);
1993		if (IS_ERR(tty))
1994			goto out;
1995		tty_port_set_kopened(tty->port, 1);
1996	}
1997out:
1998	mutex_unlock(&tty_mutex);
1999	tty_driver_kref_put(driver);
2000	return tty;
2001}
2002
2003/**
2004 *	tty_kopen_exclusive	-	open a tty device for kernel
2005 *	@device: dev_t of device to open
 
 
 
 
 
 
 
 
2006 *
2007 *	Opens tty exclusively for kernel. Performs the driver lookup,
2008 *	makes sure it's not already opened and performs the first-time
2009 *	tty initialization.
2010 *
2011 *	Returns the locked initialized &tty_struct
2012 *
2013 *	Claims the global tty_mutex to serialize:
2014 *	  - concurrent first-time tty initialization
2015 *	  - concurrent tty driver removal w/ lookup
2016 *	  - concurrent tty removal from driver table
2017 */
2018struct tty_struct *tty_kopen_exclusive(dev_t device)
2019{
2020	return tty_kopen(device, 0);
2021}
2022EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2023
2024/**
2025 *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2026 *	@device: dev_t of device to open
2027 *
2028 *	Opens an already existing tty for in-kernel use. Compared to
2029 *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2030 *
2031 *	Locking is identical to tty_kopen() above.
2032 */
2033struct tty_struct *tty_kopen_shared(dev_t device)
2034{
2035	return tty_kopen(device, 1);
2036}
2037EXPORT_SYMBOL_GPL(tty_kopen_shared);
2038
2039/**
2040 *	tty_open_by_driver	-	open a tty device
2041 *	@device: dev_t of device to open
2042 *	@filp: file pointer to tty
2043 *
2044 *	Performs the driver lookup, checks for a reopen, or otherwise
2045 *	performs the first-time tty initialization.
2046 *
2047 *	Returns the locked initialized or re-opened &tty_struct
2048 *
2049 *	Claims the global tty_mutex to serialize:
2050 *	  - concurrent first-time tty initialization
2051 *	  - concurrent tty driver removal w/ lookup
2052 *	  - concurrent tty removal from driver table
 
2053 */
2054static struct tty_struct *tty_open_by_driver(dev_t device,
2055					     struct file *filp)
2056{
2057	struct tty_struct *tty;
2058	struct tty_driver *driver = NULL;
2059	int index = -1;
2060	int retval;
2061
2062	mutex_lock(&tty_mutex);
2063	driver = tty_lookup_driver(device, filp, &index);
2064	if (IS_ERR(driver)) {
2065		mutex_unlock(&tty_mutex);
2066		return ERR_CAST(driver);
2067	}
2068
2069	/* check whether we're reopening an existing tty */
2070	tty = tty_driver_lookup_tty(driver, filp, index);
2071	if (IS_ERR(tty)) {
2072		mutex_unlock(&tty_mutex);
2073		goto out;
2074	}
2075
2076	if (tty) {
2077		if (tty_port_kopened(tty->port)) {
2078			tty_kref_put(tty);
2079			mutex_unlock(&tty_mutex);
2080			tty = ERR_PTR(-EBUSY);
2081			goto out;
2082		}
2083		mutex_unlock(&tty_mutex);
2084		retval = tty_lock_interruptible(tty);
2085		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2086		if (retval) {
2087			if (retval == -EINTR)
2088				retval = -ERESTARTSYS;
2089			tty = ERR_PTR(retval);
2090			goto out;
2091		}
2092		retval = tty_reopen(tty);
2093		if (retval < 0) {
2094			tty_unlock(tty);
2095			tty = ERR_PTR(retval);
2096		}
2097	} else { /* Returns with the tty_lock held for now */
2098		tty = tty_init_dev(driver, index);
2099		mutex_unlock(&tty_mutex);
2100	}
2101out:
2102	tty_driver_kref_put(driver);
2103	return tty;
2104}
2105
2106/**
2107 *	tty_open		-	open a tty device
2108 *	@inode: inode of device file
2109 *	@filp: file pointer to tty
2110 *
2111 *	tty_open and tty_release keep up the tty count that contains the
2112 *	number of opens done on a tty. We cannot use the inode-count, as
2113 *	different inodes might point to the same tty.
2114 *
2115 *	Open-counting is needed for pty masters, as well as for keeping
2116 *	track of serial lines: DTR is dropped when the last close happens.
2117 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2118 *
2119 *	The termios state of a pty is reset on first open so that
2120 *	settings don't persist across reuse.
2121 *
2122 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2123 *		 tty->count should protect the rest.
2124 *		 ->siglock protects ->signal/->sighand
 
2125 *
2126 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2127 *	tty_mutex
2128 */
2129
2130static int tty_open(struct inode *inode, struct file *filp)
2131{
2132	struct tty_struct *tty;
2133	int noctty, retval;
2134	dev_t device = inode->i_rdev;
2135	unsigned saved_flags = filp->f_flags;
2136
2137	nonseekable_open(inode, filp);
2138
2139retry_open:
2140	retval = tty_alloc_file(filp);
2141	if (retval)
2142		return -ENOMEM;
2143
2144	tty = tty_open_current_tty(device, filp);
2145	if (!tty)
2146		tty = tty_open_by_driver(device, filp);
2147
2148	if (IS_ERR(tty)) {
2149		tty_free_file(filp);
2150		retval = PTR_ERR(tty);
2151		if (retval != -EAGAIN || signal_pending(current))
2152			return retval;
2153		schedule();
2154		goto retry_open;
2155	}
2156
2157	tty_add_file(tty, filp);
2158
2159	check_tty_count(tty, __func__);
2160	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2161
2162	if (tty->ops->open)
2163		retval = tty->ops->open(tty, filp);
2164	else
2165		retval = -ENODEV;
2166	filp->f_flags = saved_flags;
2167
2168	if (retval) {
2169		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2170
2171		tty_unlock(tty); /* need to call tty_release without BTM */
2172		tty_release(inode, filp);
2173		if (retval != -ERESTARTSYS)
2174			return retval;
2175
2176		if (signal_pending(current))
2177			return retval;
2178
2179		schedule();
2180		/*
2181		 * Need to reset f_op in case a hangup happened.
2182		 */
2183		if (tty_hung_up_p(filp))
2184			filp->f_op = &tty_fops;
2185		goto retry_open;
2186	}
2187	clear_bit(TTY_HUPPED, &tty->flags);
2188
2189	noctty = (filp->f_flags & O_NOCTTY) ||
2190		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2191		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2192		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2193		  tty->driver->subtype == PTY_TYPE_MASTER);
2194	if (!noctty)
2195		tty_open_proc_set_tty(filp, tty);
2196	tty_unlock(tty);
2197	return 0;
2198}
2199
2200
2201
2202/**
2203 *	tty_poll	-	check tty status
2204 *	@filp: file being polled
2205 *	@wait: poll wait structures to update
2206 *
2207 *	Call the line discipline polling method to obtain the poll
2208 *	status of the device.
2209 *
2210 *	Locking: locks called line discipline but ldisc poll method
2211 *	may be re-entered freely by other callers.
2212 */
2213
2214static __poll_t tty_poll(struct file *filp, poll_table *wait)
2215{
2216	struct tty_struct *tty = file_tty(filp);
2217	struct tty_ldisc *ld;
2218	__poll_t ret = 0;
2219
2220	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2221		return 0;
2222
2223	ld = tty_ldisc_ref_wait(tty);
2224	if (!ld)
2225		return hung_up_tty_poll(filp, wait);
2226	if (ld->ops->poll)
2227		ret = ld->ops->poll(tty, filp, wait);
2228	tty_ldisc_deref(ld);
2229	return ret;
2230}
2231
2232static int __tty_fasync(int fd, struct file *filp, int on)
2233{
2234	struct tty_struct *tty = file_tty(filp);
2235	unsigned long flags;
2236	int retval = 0;
2237
2238	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2239		goto out;
2240
 
 
 
 
 
 
2241	retval = fasync_helper(fd, filp, on, &tty->fasync);
2242	if (retval <= 0)
2243		goto out;
2244
2245	if (on) {
2246		enum pid_type type;
2247		struct pid *pid;
2248
2249		spin_lock_irqsave(&tty->ctrl.lock, flags);
2250		if (tty->ctrl.pgrp) {
2251			pid = tty->ctrl.pgrp;
2252			type = PIDTYPE_PGID;
2253		} else {
2254			pid = task_pid(current);
2255			type = PIDTYPE_TGID;
2256		}
2257		get_pid(pid);
2258		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2259		__f_setown(filp, pid, type, 0);
2260		put_pid(pid);
2261		retval = 0;
2262	}
2263out:
2264	return retval;
2265}
2266
2267static int tty_fasync(int fd, struct file *filp, int on)
2268{
2269	struct tty_struct *tty = file_tty(filp);
2270	int retval = -ENOTTY;
2271
2272	tty_lock(tty);
2273	if (!tty_hung_up_p(filp))
2274		retval = __tty_fasync(fd, filp, on);
2275	tty_unlock(tty);
2276
2277	return retval;
2278}
2279
 
2280/**
2281 *	tiocsti			-	fake input character
2282 *	@tty: tty to fake input into
2283 *	@p: pointer to character
2284 *
2285 *	Fake input to a tty device. Does the necessary locking and
2286 *	input management.
2287 *
2288 *	FIXME: does not honour flow control ??
2289 *
2290 *	Locking:
2291 *		Called functions take tty_ldiscs_lock
2292 *		current->signal->tty check is safe without locks
2293 */
2294
2295static int tiocsti(struct tty_struct *tty, char __user *p)
2296{
2297	char ch, mbz = 0;
2298	struct tty_ldisc *ld;
 
 
 
 
2299
2300	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2301		return -EPERM;
2302	if (get_user(ch, p))
2303		return -EFAULT;
2304	tty_audit_tiocsti(tty, ch);
2305	ld = tty_ldisc_ref_wait(tty);
2306	if (!ld)
2307		return -EIO;
2308	tty_buffer_lock_exclusive(tty->port);
2309	if (ld->ops->receive_buf)
2310		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2311	tty_buffer_unlock_exclusive(tty->port);
2312	tty_ldisc_deref(ld);
2313	return 0;
2314}
2315
2316/**
2317 *	tiocgwinsz		-	implement window query ioctl
2318 *	@tty: tty
2319 *	@arg: user buffer for result
2320 *
2321 *	Copies the kernel idea of the window size into the user buffer.
2322 *
2323 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2324 *		is consistent.
2325 */
2326
2327static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2328{
2329	int err;
2330
2331	mutex_lock(&tty->winsize_mutex);
2332	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2333	mutex_unlock(&tty->winsize_mutex);
2334
2335	return err ? -EFAULT : 0;
2336}
2337
2338/**
2339 *	tty_do_resize		-	resize event
2340 *	@tty: tty being resized
2341 *	@ws: new dimensions
2342 *
2343 *	Update the termios variables and send the necessary signals to
2344 *	peform a terminal resize correctly
2345 */
2346
2347int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2348{
2349	struct pid *pgrp;
2350
2351	/* Lock the tty */
2352	mutex_lock(&tty->winsize_mutex);
2353	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2354		goto done;
2355
2356	/* Signal the foreground process group */
2357	pgrp = tty_get_pgrp(tty);
2358	if (pgrp)
2359		kill_pgrp(pgrp, SIGWINCH, 1);
2360	put_pid(pgrp);
2361
2362	tty->winsize = *ws;
2363done:
2364	mutex_unlock(&tty->winsize_mutex);
2365	return 0;
2366}
2367EXPORT_SYMBOL(tty_do_resize);
2368
2369/**
2370 *	tiocswinsz		-	implement window size set ioctl
2371 *	@tty: tty side of tty
2372 *	@arg: user buffer for result
2373 *
2374 *	Copies the user idea of the window size to the kernel. Traditionally
2375 *	this is just advisory information but for the Linux console it
2376 *	actually has driver level meaning and triggers a VC resize.
2377 *
2378 *	Locking:
2379 *		Driver dependent. The default do_resize method takes the
2380 *	tty termios mutex and ctrl.lock. The console takes its own lock
2381 *	then calls into the default method.
2382 */
2383
2384static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2385{
2386	struct winsize tmp_ws;
2387
2388	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2389		return -EFAULT;
2390
2391	if (tty->ops->resize)
2392		return tty->ops->resize(tty, &tmp_ws);
2393	else
2394		return tty_do_resize(tty, &tmp_ws);
2395}
2396
2397/**
2398 *	tioccons	-	allow admin to move logical console
2399 *	@file: the file to become console
2400 *
2401 *	Allow the administrator to move the redirected console device
2402 *
2403 *	Locking: uses redirect_lock to guard the redirect information
2404 */
2405
2406static int tioccons(struct file *file)
2407{
2408	if (!capable(CAP_SYS_ADMIN))
2409		return -EPERM;
2410	if (file->f_op->write_iter == redirected_tty_write) {
2411		struct file *f;
2412
2413		spin_lock(&redirect_lock);
2414		f = redirect;
2415		redirect = NULL;
2416		spin_unlock(&redirect_lock);
2417		if (f)
2418			fput(f);
2419		return 0;
2420	}
2421	if (file->f_op->write_iter != tty_write)
2422		return -ENOTTY;
2423	if (!(file->f_mode & FMODE_WRITE))
2424		return -EBADF;
2425	if (!(file->f_mode & FMODE_CAN_WRITE))
2426		return -EINVAL;
2427	spin_lock(&redirect_lock);
2428	if (redirect) {
2429		spin_unlock(&redirect_lock);
2430		return -EBUSY;
2431	}
2432	redirect = get_file(file);
2433	spin_unlock(&redirect_lock);
2434	return 0;
2435}
2436
2437/**
2438 *	tiocsetd	-	set line discipline
2439 *	@tty: tty device
2440 *	@p: pointer to user data
2441 *
2442 *	Set the line discipline according to user request.
2443 *
2444 *	Locking: see tty_set_ldisc, this function is just a helper
2445 */
2446
2447static int tiocsetd(struct tty_struct *tty, int __user *p)
2448{
2449	int disc;
2450	int ret;
2451
2452	if (get_user(disc, p))
2453		return -EFAULT;
2454
2455	ret = tty_set_ldisc(tty, disc);
2456
2457	return ret;
2458}
2459
2460/**
2461 *	tiocgetd	-	get line discipline
2462 *	@tty: tty device
2463 *	@p: pointer to user data
2464 *
2465 *	Retrieves the line discipline id directly from the ldisc.
2466 *
2467 *	Locking: waits for ldisc reference (in case the line discipline
2468 *		is changing or the tty is being hungup)
2469 */
2470
2471static int tiocgetd(struct tty_struct *tty, int __user *p)
2472{
2473	struct tty_ldisc *ld;
2474	int ret;
2475
2476	ld = tty_ldisc_ref_wait(tty);
2477	if (!ld)
2478		return -EIO;
2479	ret = put_user(ld->ops->num, p);
2480	tty_ldisc_deref(ld);
2481	return ret;
2482}
2483
2484/**
2485 *	send_break	-	performed time break
2486 *	@tty: device to break on
2487 *	@duration: timeout in mS
2488 *
2489 *	Perform a timed break on hardware that lacks its own driver level
2490 *	timed break functionality.
2491 *
2492 *	Locking:
2493 *		atomic_write_lock serializes
2494 *
 
 
2495 */
2496
2497static int send_break(struct tty_struct *tty, unsigned int duration)
2498{
2499	int retval;
2500
2501	if (tty->ops->break_ctl == NULL)
2502		return 0;
2503
2504	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2505		retval = tty->ops->break_ctl(tty, duration);
2506	else {
2507		/* Do the work ourselves */
2508		if (tty_write_lock(tty, 0) < 0)
2509			return -EINTR;
2510		retval = tty->ops->break_ctl(tty, -1);
2511		if (retval)
2512			goto out;
2513		if (!signal_pending(current))
2514			msleep_interruptible(duration);
2515		retval = tty->ops->break_ctl(tty, 0);
2516out:
2517		tty_write_unlock(tty);
2518		if (signal_pending(current))
2519			retval = -EINTR;
2520	}
 
 
 
 
 
2521	return retval;
2522}
2523
2524/**
2525 *	tty_tiocmget		-	get modem status
2526 *	@tty: tty device
2527 *	@p: pointer to result
2528 *
2529 *	Obtain the modem status bits from the tty driver if the feature
2530 *	is supported. Return -ENOTTY if it is not available.
2531 *
2532 *	Locking: none (up to the driver)
 
2533 */
2534
2535static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2536{
2537	int retval = -ENOTTY;
2538
2539	if (tty->ops->tiocmget) {
2540		retval = tty->ops->tiocmget(tty);
2541
2542		if (retval >= 0)
2543			retval = put_user(retval, p);
2544	}
2545	return retval;
2546}
 
2547
2548/**
2549 *	tty_tiocmset		-	set modem status
2550 *	@tty: tty device
2551 *	@cmd: command - clear bits, set bits or set all
2552 *	@p: pointer to desired bits
2553 *
2554 *	Set the modem status bits from the tty driver if the feature
2555 *	is supported. Return -ENOTTY if it is not available.
2556 *
2557 *	Locking: none (up to the driver)
2558 */
 
 
 
 
 
 
 
2559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2561	     unsigned __user *p)
2562{
2563	int retval;
2564	unsigned int set, clear, val;
2565
2566	if (tty->ops->tiocmset == NULL)
2567		return -ENOTTY;
2568
2569	retval = get_user(val, p);
2570	if (retval)
2571		return retval;
2572	set = clear = 0;
2573	switch (cmd) {
2574	case TIOCMBIS:
2575		set = val;
2576		break;
2577	case TIOCMBIC:
2578		clear = val;
2579		break;
2580	case TIOCMSET:
2581		set = val;
2582		clear = ~val;
2583		break;
2584	}
2585	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2587	return tty->ops->tiocmset(tty, set, clear);
2588}
2589
2590/**
2591 *	tty_get_icount		-	get tty statistics
2592 *	@tty: tty device
2593 *	@icount: output parameter
2594 *
2595 *	Gets a copy of the tty's icount statistics.
2596 *
2597 *	Locking: none (up to the driver)
2598 */
2599int tty_get_icount(struct tty_struct *tty,
2600		   struct serial_icounter_struct *icount)
2601{
2602	memset(icount, 0, sizeof(*icount));
2603
2604	if (tty->ops->get_icount)
2605		return tty->ops->get_icount(tty, icount);
2606	else
2607		return -ENOTTY;
2608}
2609EXPORT_SYMBOL_GPL(tty_get_icount);
2610
2611static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2612{
2613	struct serial_icounter_struct icount;
2614	int retval;
2615
2616	retval = tty_get_icount(tty, &icount);
2617	if (retval != 0)
2618		return retval;
2619
2620	if (copy_to_user(arg, &icount, sizeof(icount)))
2621		return -EFAULT;
2622	return 0;
2623}
2624
2625static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2626{
2627	char comm[TASK_COMM_LEN];
2628	int flags;
2629
2630	flags = ss->flags & ASYNC_DEPRECATED;
2631
2632	if (flags)
2633		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2634				__func__, get_task_comm(comm, current), flags);
2635
2636	if (!tty->ops->set_serial)
2637		return -ENOTTY;
2638
2639	return tty->ops->set_serial(tty, ss);
2640}
2641
2642static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2643{
2644	struct serial_struct v;
2645
2646	if (copy_from_user(&v, ss, sizeof(*ss)))
2647		return -EFAULT;
2648
2649	return tty_set_serial(tty, &v);
2650}
2651
2652static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2653{
2654	struct serial_struct v;
2655	int err;
2656
2657	memset(&v, 0, sizeof(v));
2658	if (!tty->ops->get_serial)
2659		return -ENOTTY;
2660	err = tty->ops->get_serial(tty, &v);
2661	if (!err && copy_to_user(ss, &v, sizeof(v)))
2662		err = -EFAULT;
2663	return err;
2664}
2665
2666/*
2667 * if pty, return the slave side (real_tty)
2668 * otherwise, return self
2669 */
2670static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2671{
2672	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2673	    tty->driver->subtype == PTY_TYPE_MASTER)
2674		tty = tty->link;
2675	return tty;
2676}
2677
2678/*
2679 * Split this up, as gcc can choke on it otherwise..
2680 */
2681long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2682{
2683	struct tty_struct *tty = file_tty(file);
2684	struct tty_struct *real_tty;
2685	void __user *p = (void __user *)arg;
2686	int retval;
2687	struct tty_ldisc *ld;
2688
2689	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2690		return -EINVAL;
2691
2692	real_tty = tty_pair_get_tty(tty);
2693
2694	/*
2695	 * Factor out some common prep work
2696	 */
2697	switch (cmd) {
2698	case TIOCSETD:
2699	case TIOCSBRK:
2700	case TIOCCBRK:
2701	case TCSBRK:
2702	case TCSBRKP:
2703		retval = tty_check_change(tty);
2704		if (retval)
2705			return retval;
2706		if (cmd != TIOCCBRK) {
2707			tty_wait_until_sent(tty, 0);
2708			if (signal_pending(current))
2709				return -EINTR;
2710		}
2711		break;
2712	}
2713
2714	/*
2715	 *	Now do the stuff.
2716	 */
2717	switch (cmd) {
2718	case TIOCSTI:
2719		return tiocsti(tty, p);
2720	case TIOCGWINSZ:
2721		return tiocgwinsz(real_tty, p);
2722	case TIOCSWINSZ:
2723		return tiocswinsz(real_tty, p);
2724	case TIOCCONS:
2725		return real_tty != tty ? -EINVAL : tioccons(file);
2726	case TIOCEXCL:
2727		set_bit(TTY_EXCLUSIVE, &tty->flags);
2728		return 0;
2729	case TIOCNXCL:
2730		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2731		return 0;
2732	case TIOCGEXCL:
2733	{
2734		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2735
2736		return put_user(excl, (int __user *)p);
2737	}
2738	case TIOCGETD:
2739		return tiocgetd(tty, p);
2740	case TIOCSETD:
2741		return tiocsetd(tty, p);
2742	case TIOCVHANGUP:
2743		if (!capable(CAP_SYS_ADMIN))
2744			return -EPERM;
2745		tty_vhangup(tty);
2746		return 0;
2747	case TIOCGDEV:
2748	{
2749		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2750
2751		return put_user(ret, (unsigned int __user *)p);
2752	}
2753	/*
2754	 * Break handling
2755	 */
2756	case TIOCSBRK:	/* Turn break on, unconditionally */
2757		if (tty->ops->break_ctl)
2758			return tty->ops->break_ctl(tty, -1);
2759		return 0;
2760	case TIOCCBRK:	/* Turn break off, unconditionally */
2761		if (tty->ops->break_ctl)
2762			return tty->ops->break_ctl(tty, 0);
2763		return 0;
2764	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2765		/* non-zero arg means wait for all output data
2766		 * to be sent (performed above) but don't send break.
2767		 * This is used by the tcdrain() termios function.
2768		 */
2769		if (!arg)
2770			return send_break(tty, 250);
2771		return 0;
2772	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2773		return send_break(tty, arg ? arg*100 : 250);
2774
2775	case TIOCMGET:
2776		return tty_tiocmget(tty, p);
2777	case TIOCMSET:
2778	case TIOCMBIC:
2779	case TIOCMBIS:
2780		return tty_tiocmset(tty, cmd, p);
2781	case TIOCGICOUNT:
2782		return tty_tiocgicount(tty, p);
2783	case TCFLSH:
2784		switch (arg) {
2785		case TCIFLUSH:
2786		case TCIOFLUSH:
2787		/* flush tty buffer and allow ldisc to process ioctl */
2788			tty_buffer_flush(tty, NULL);
2789			break;
2790		}
2791		break;
2792	case TIOCSSERIAL:
2793		return tty_tiocsserial(tty, p);
2794	case TIOCGSERIAL:
2795		return tty_tiocgserial(tty, p);
2796	case TIOCGPTPEER:
2797		/* Special because the struct file is needed */
2798		return ptm_open_peer(file, tty, (int)arg);
2799	default:
2800		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2801		if (retval != -ENOIOCTLCMD)
2802			return retval;
2803	}
2804	if (tty->ops->ioctl) {
2805		retval = tty->ops->ioctl(tty, cmd, arg);
2806		if (retval != -ENOIOCTLCMD)
2807			return retval;
2808	}
2809	ld = tty_ldisc_ref_wait(tty);
2810	if (!ld)
2811		return hung_up_tty_ioctl(file, cmd, arg);
2812	retval = -EINVAL;
2813	if (ld->ops->ioctl) {
2814		retval = ld->ops->ioctl(tty, file, cmd, arg);
2815		if (retval == -ENOIOCTLCMD)
2816			retval = -ENOTTY;
2817	}
2818	tty_ldisc_deref(ld);
2819	return retval;
2820}
2821
2822#ifdef CONFIG_COMPAT
2823
2824struct serial_struct32 {
2825	compat_int_t    type;
2826	compat_int_t    line;
2827	compat_uint_t   port;
2828	compat_int_t    irq;
2829	compat_int_t    flags;
2830	compat_int_t    xmit_fifo_size;
2831	compat_int_t    custom_divisor;
2832	compat_int_t    baud_base;
2833	unsigned short  close_delay;
2834	char    io_type;
2835	char    reserved_char;
2836	compat_int_t    hub6;
2837	unsigned short  closing_wait; /* time to wait before closing */
2838	unsigned short  closing_wait2; /* no longer used... */
2839	compat_uint_t   iomem_base;
2840	unsigned short  iomem_reg_shift;
2841	unsigned int    port_high;
2842	/* compat_ulong_t  iomap_base FIXME */
2843	compat_int_t    reserved;
2844};
2845
2846static int compat_tty_tiocsserial(struct tty_struct *tty,
2847		struct serial_struct32 __user *ss)
2848{
2849	struct serial_struct32 v32;
2850	struct serial_struct v;
2851
2852	if (copy_from_user(&v32, ss, sizeof(*ss)))
2853		return -EFAULT;
2854
2855	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2856	v.iomem_base = compat_ptr(v32.iomem_base);
2857	v.iomem_reg_shift = v32.iomem_reg_shift;
2858	v.port_high = v32.port_high;
2859	v.iomap_base = 0;
2860
2861	return tty_set_serial(tty, &v);
2862}
2863
2864static int compat_tty_tiocgserial(struct tty_struct *tty,
2865			struct serial_struct32 __user *ss)
2866{
2867	struct serial_struct32 v32;
2868	struct serial_struct v;
2869	int err;
2870
2871	memset(&v, 0, sizeof(v));
2872	memset(&v32, 0, sizeof(v32));
2873
2874	if (!tty->ops->get_serial)
2875		return -ENOTTY;
2876	err = tty->ops->get_serial(tty, &v);
2877	if (!err) {
2878		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2879		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2880			0xfffffff : ptr_to_compat(v.iomem_base);
2881		v32.iomem_reg_shift = v.iomem_reg_shift;
2882		v32.port_high = v.port_high;
2883		if (copy_to_user(ss, &v32, sizeof(v32)))
2884			err = -EFAULT;
2885	}
2886	return err;
2887}
2888static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2889				unsigned long arg)
2890{
2891	struct tty_struct *tty = file_tty(file);
2892	struct tty_ldisc *ld;
2893	int retval = -ENOIOCTLCMD;
2894
2895	switch (cmd) {
2896	case TIOCOUTQ:
2897	case TIOCSTI:
2898	case TIOCGWINSZ:
2899	case TIOCSWINSZ:
2900	case TIOCGEXCL:
2901	case TIOCGETD:
2902	case TIOCSETD:
2903	case TIOCGDEV:
2904	case TIOCMGET:
2905	case TIOCMSET:
2906	case TIOCMBIC:
2907	case TIOCMBIS:
2908	case TIOCGICOUNT:
2909	case TIOCGPGRP:
2910	case TIOCSPGRP:
2911	case TIOCGSID:
2912	case TIOCSERGETLSR:
2913	case TIOCGRS485:
2914	case TIOCSRS485:
2915#ifdef TIOCGETP
2916	case TIOCGETP:
2917	case TIOCSETP:
2918	case TIOCSETN:
2919#endif
2920#ifdef TIOCGETC
2921	case TIOCGETC:
2922	case TIOCSETC:
2923#endif
2924#ifdef TIOCGLTC
2925	case TIOCGLTC:
2926	case TIOCSLTC:
2927#endif
2928	case TCSETSF:
2929	case TCSETSW:
2930	case TCSETS:
2931	case TCGETS:
2932#ifdef TCGETS2
2933	case TCGETS2:
2934	case TCSETSF2:
2935	case TCSETSW2:
2936	case TCSETS2:
2937#endif
2938	case TCGETA:
2939	case TCSETAF:
2940	case TCSETAW:
2941	case TCSETA:
2942	case TIOCGLCKTRMIOS:
2943	case TIOCSLCKTRMIOS:
2944#ifdef TCGETX
2945	case TCGETX:
2946	case TCSETX:
2947	case TCSETXW:
2948	case TCSETXF:
2949#endif
2950	case TIOCGSOFTCAR:
2951	case TIOCSSOFTCAR:
2952
2953	case PPPIOCGCHAN:
2954	case PPPIOCGUNIT:
2955		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2956	case TIOCCONS:
2957	case TIOCEXCL:
2958	case TIOCNXCL:
2959	case TIOCVHANGUP:
2960	case TIOCSBRK:
2961	case TIOCCBRK:
2962	case TCSBRK:
2963	case TCSBRKP:
2964	case TCFLSH:
2965	case TIOCGPTPEER:
2966	case TIOCNOTTY:
2967	case TIOCSCTTY:
2968	case TCXONC:
2969	case TIOCMIWAIT:
2970	case TIOCSERCONFIG:
2971		return tty_ioctl(file, cmd, arg);
2972	}
2973
2974	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2975		return -EINVAL;
2976
2977	switch (cmd) {
2978	case TIOCSSERIAL:
2979		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2980	case TIOCGSERIAL:
2981		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2982	}
2983	if (tty->ops->compat_ioctl) {
2984		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2985		if (retval != -ENOIOCTLCMD)
2986			return retval;
2987	}
2988
2989	ld = tty_ldisc_ref_wait(tty);
2990	if (!ld)
2991		return hung_up_tty_compat_ioctl(file, cmd, arg);
2992	if (ld->ops->compat_ioctl)
2993		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2994	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2995		retval = ld->ops->ioctl(tty, file,
2996				(unsigned long)compat_ptr(cmd), arg);
2997	tty_ldisc_deref(ld);
2998
2999	return retval;
3000}
3001#endif
3002
3003static int this_tty(const void *t, struct file *file, unsigned fd)
3004{
3005	if (likely(file->f_op->read_iter != tty_read))
3006		return 0;
3007	return file_tty(file) != t ? 0 : fd + 1;
3008}
3009
3010/*
3011 * This implements the "Secure Attention Key" ---  the idea is to
3012 * prevent trojan horses by killing all processes associated with this
3013 * tty when the user hits the "Secure Attention Key".  Required for
3014 * super-paranoid applications --- see the Orange Book for more details.
3015 *
3016 * This code could be nicer; ideally it should send a HUP, wait a few
3017 * seconds, then send a INT, and then a KILL signal.  But you then
3018 * have to coordinate with the init process, since all processes associated
3019 * with the current tty must be dead before the new getty is allowed
3020 * to spawn.
3021 *
3022 * Now, if it would be correct ;-/ The current code has a nasty hole -
3023 * it doesn't catch files in flight. We may send the descriptor to ourselves
3024 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3025 *
3026 * Nasty bug: do_SAK is being called in interrupt context.  This can
3027 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3028 */
3029void __do_SAK(struct tty_struct *tty)
3030{
3031#ifdef TTY_SOFT_SAK
3032	tty_hangup(tty);
3033#else
3034	struct task_struct *g, *p;
3035	struct pid *session;
3036	int		i;
3037	unsigned long flags;
3038
3039	if (!tty)
3040		return;
3041
3042	spin_lock_irqsave(&tty->ctrl.lock, flags);
3043	session = get_pid(tty->ctrl.session);
3044	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3045
3046	tty_ldisc_flush(tty);
3047
3048	tty_driver_flush_buffer(tty);
3049
3050	read_lock(&tasklist_lock);
3051	/* Kill the entire session */
3052	do_each_pid_task(session, PIDTYPE_SID, p) {
3053		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3054			   task_pid_nr(p), p->comm);
3055		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3056	} while_each_pid_task(session, PIDTYPE_SID, p);
3057
3058	/* Now kill any processes that happen to have the tty open */
3059	do_each_thread(g, p) {
3060		if (p->signal->tty == tty) {
3061			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3062				   task_pid_nr(p), p->comm);
3063			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3064			continue;
3065		}
3066		task_lock(p);
3067		i = iterate_fd(p->files, 0, this_tty, tty);
3068		if (i != 0) {
3069			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3070				   task_pid_nr(p), p->comm, i - 1);
3071			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3072		}
3073		task_unlock(p);
3074	} while_each_thread(g, p);
3075	read_unlock(&tasklist_lock);
3076	put_pid(session);
3077#endif
3078}
3079
3080static void do_SAK_work(struct work_struct *work)
3081{
3082	struct tty_struct *tty =
3083		container_of(work, struct tty_struct, SAK_work);
3084	__do_SAK(tty);
3085}
3086
3087/*
3088 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3089 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3090 * the values which we write to it will be identical to the values which it
3091 * already has. --akpm
3092 */
3093void do_SAK(struct tty_struct *tty)
3094{
3095	if (!tty)
3096		return;
3097	schedule_work(&tty->SAK_work);
3098}
3099EXPORT_SYMBOL(do_SAK);
3100
3101/* Must put_device() after it's unused! */
3102static struct device *tty_get_device(struct tty_struct *tty)
3103{
3104	dev_t devt = tty_devnum(tty);
3105
3106	return class_find_device_by_devt(tty_class, devt);
3107}
3108
3109
3110/*
3111 *	alloc_tty_struct
 
 
3112 *
3113 *	This subroutine allocates and initializes a tty structure.
3114 *
3115 *	Locking: none - tty in question is not exposed at this point
3116 */
3117
3118struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3119{
3120	struct tty_struct *tty;
3121
3122	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3123	if (!tty)
3124		return NULL;
3125
3126	kref_init(&tty->kref);
3127	tty->magic = TTY_MAGIC;
3128	if (tty_ldisc_init(tty)) {
3129		kfree(tty);
3130		return NULL;
3131	}
3132	tty->ctrl.session = NULL;
3133	tty->ctrl.pgrp = NULL;
3134	mutex_init(&tty->legacy_mutex);
3135	mutex_init(&tty->throttle_mutex);
3136	init_rwsem(&tty->termios_rwsem);
3137	mutex_init(&tty->winsize_mutex);
3138	init_ldsem(&tty->ldisc_sem);
3139	init_waitqueue_head(&tty->write_wait);
3140	init_waitqueue_head(&tty->read_wait);
3141	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3142	mutex_init(&tty->atomic_write_lock);
3143	spin_lock_init(&tty->ctrl.lock);
3144	spin_lock_init(&tty->flow.lock);
3145	spin_lock_init(&tty->files_lock);
3146	INIT_LIST_HEAD(&tty->tty_files);
3147	INIT_WORK(&tty->SAK_work, do_SAK_work);
3148
3149	tty->driver = driver;
3150	tty->ops = driver->ops;
3151	tty->index = idx;
3152	tty_line_name(driver, idx, tty->name);
3153	tty->dev = tty_get_device(tty);
3154
3155	return tty;
3156}
3157
3158/**
3159 *	tty_put_char	-	write one character to a tty
3160 *	@tty: tty
3161 *	@ch: character
 
 
 
3162 *
3163 *	Write one byte to the tty using the provided put_char method
3164 *	if present. Returns the number of characters successfully output.
3165 *
3166 *	Note: the specific put_char operation in the driver layer may go
3167 *	away soon. Don't call it directly, use this method
3168 */
3169
3170int tty_put_char(struct tty_struct *tty, unsigned char ch)
3171{
3172	if (tty->ops->put_char)
3173		return tty->ops->put_char(tty, ch);
3174	return tty->ops->write(tty, &ch, 1);
3175}
3176EXPORT_SYMBOL_GPL(tty_put_char);
3177
3178struct class *tty_class;
3179
3180static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3181		unsigned int index, unsigned int count)
3182{
3183	int err;
3184
3185	/* init here, since reused cdevs cause crashes */
3186	driver->cdevs[index] = cdev_alloc();
3187	if (!driver->cdevs[index])
3188		return -ENOMEM;
3189	driver->cdevs[index]->ops = &tty_fops;
3190	driver->cdevs[index]->owner = driver->owner;
3191	err = cdev_add(driver->cdevs[index], dev, count);
3192	if (err)
3193		kobject_put(&driver->cdevs[index]->kobj);
3194	return err;
3195}
3196
3197/**
3198 *	tty_register_device - register a tty device
3199 *	@driver: the tty driver that describes the tty device
3200 *	@index: the index in the tty driver for this tty device
3201 *	@device: a struct device that is associated with this tty device.
3202 *		This field is optional, if there is no known struct device
3203 *		for this tty device it can be set to NULL safely.
3204 *
3205 *	Returns a pointer to the struct device for this tty device
3206 *	(or ERR_PTR(-EFOO) on error).
3207 *
3208 *	This call is required to be made to register an individual tty device
3209 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210 *	that bit is not set, this function should not be called by a tty
3211 *	driver.
3212 *
3213 *	Locking: ??
 
3214 */
3215
3216struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3217				   struct device *device)
3218{
3219	return tty_register_device_attr(driver, index, device, NULL, NULL);
3220}
3221EXPORT_SYMBOL(tty_register_device);
3222
3223static void tty_device_create_release(struct device *dev)
3224{
3225	dev_dbg(dev, "releasing...\n");
3226	kfree(dev);
3227}
3228
3229/**
3230 *	tty_register_device_attr - register a tty device
3231 *	@driver: the tty driver that describes the tty device
3232 *	@index: the index in the tty driver for this tty device
3233 *	@device: a struct device that is associated with this tty device.
3234 *		This field is optional, if there is no known struct device
3235 *		for this tty device it can be set to NULL safely.
3236 *	@drvdata: Driver data to be set to device.
3237 *	@attr_grp: Attribute group to be set on device.
3238 *
3239 *	Returns a pointer to the struct device for this tty device
3240 *	(or ERR_PTR(-EFOO) on error).
3241 *
3242 *	This call is required to be made to register an individual tty device
3243 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3244 *	that bit is not set, this function should not be called by a tty
3245 *	driver.
3246 *
3247 *	Locking: ??
 
3248 */
3249struct device *tty_register_device_attr(struct tty_driver *driver,
3250				   unsigned index, struct device *device,
3251				   void *drvdata,
3252				   const struct attribute_group **attr_grp)
3253{
3254	char name[64];
3255	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3256	struct ktermios *tp;
3257	struct device *dev;
3258	int retval;
3259
3260	if (index >= driver->num) {
3261		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3262		       driver->name, index);
3263		return ERR_PTR(-EINVAL);
3264	}
3265
3266	if (driver->type == TTY_DRIVER_TYPE_PTY)
3267		pty_line_name(driver, index, name);
3268	else
3269		tty_line_name(driver, index, name);
3270
3271	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272	if (!dev)
3273		return ERR_PTR(-ENOMEM);
3274
3275	dev->devt = devt;
3276	dev->class = tty_class;
3277	dev->parent = device;
3278	dev->release = tty_device_create_release;
3279	dev_set_name(dev, "%s", name);
3280	dev->groups = attr_grp;
3281	dev_set_drvdata(dev, drvdata);
3282
3283	dev_set_uevent_suppress(dev, 1);
3284
3285	retval = device_register(dev);
3286	if (retval)
3287		goto err_put;
3288
3289	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290		/*
3291		 * Free any saved termios data so that the termios state is
3292		 * reset when reusing a minor number.
3293		 */
3294		tp = driver->termios[index];
3295		if (tp) {
3296			driver->termios[index] = NULL;
3297			kfree(tp);
3298		}
3299
3300		retval = tty_cdev_add(driver, devt, index, 1);
3301		if (retval)
3302			goto err_del;
3303	}
3304
3305	dev_set_uevent_suppress(dev, 0);
3306	kobject_uevent(&dev->kobj, KOBJ_ADD);
3307
3308	return dev;
3309
3310err_del:
3311	device_del(dev);
3312err_put:
3313	put_device(dev);
3314
3315	return ERR_PTR(retval);
3316}
3317EXPORT_SYMBOL_GPL(tty_register_device_attr);
3318
3319/**
3320 *	tty_unregister_device - unregister a tty device
3321 *	@driver: the tty driver that describes the tty device
3322 *	@index: the index in the tty driver for this tty device
3323 *
3324 *	If a tty device is registered with a call to tty_register_device() then
3325 *	this function must be called when the tty device is gone.
3326 *
3327 *	Locking: ??
3328 */
3329
3330void tty_unregister_device(struct tty_driver *driver, unsigned index)
3331{
3332	device_destroy(tty_class,
3333		MKDEV(driver->major, driver->minor_start) + index);
3334	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3335		cdev_del(driver->cdevs[index]);
3336		driver->cdevs[index] = NULL;
3337	}
3338}
3339EXPORT_SYMBOL(tty_unregister_device);
3340
3341/**
3342 * __tty_alloc_driver -- allocate tty driver
3343 * @lines: count of lines this driver can handle at most
3344 * @owner: module which is responsible for this driver
3345 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3346 *
3347 * This should not be called directly, some of the provided macros should be
3348 * used instead. Use IS_ERR and friends on @retval.
3349 */
3350struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3351		unsigned long flags)
3352{
3353	struct tty_driver *driver;
3354	unsigned int cdevs = 1;
3355	int err;
3356
3357	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3358		return ERR_PTR(-EINVAL);
3359
3360	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3361	if (!driver)
3362		return ERR_PTR(-ENOMEM);
3363
3364	kref_init(&driver->kref);
3365	driver->magic = TTY_DRIVER_MAGIC;
3366	driver->num = lines;
3367	driver->owner = owner;
3368	driver->flags = flags;
3369
3370	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3371		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3372				GFP_KERNEL);
3373		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3374				GFP_KERNEL);
3375		if (!driver->ttys || !driver->termios) {
3376			err = -ENOMEM;
3377			goto err_free_all;
3378		}
3379	}
3380
3381	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3382		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3383				GFP_KERNEL);
3384		if (!driver->ports) {
3385			err = -ENOMEM;
3386			goto err_free_all;
3387		}
3388		cdevs = lines;
3389	}
3390
3391	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3392	if (!driver->cdevs) {
3393		err = -ENOMEM;
3394		goto err_free_all;
3395	}
3396
3397	return driver;
3398err_free_all:
3399	kfree(driver->ports);
3400	kfree(driver->ttys);
3401	kfree(driver->termios);
3402	kfree(driver->cdevs);
3403	kfree(driver);
3404	return ERR_PTR(err);
3405}
3406EXPORT_SYMBOL(__tty_alloc_driver);
3407
3408static void destruct_tty_driver(struct kref *kref)
3409{
3410	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3411	int i;
3412	struct ktermios *tp;
3413
3414	if (driver->flags & TTY_DRIVER_INSTALLED) {
3415		for (i = 0; i < driver->num; i++) {
3416			tp = driver->termios[i];
3417			if (tp) {
3418				driver->termios[i] = NULL;
3419				kfree(tp);
3420			}
3421			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3422				tty_unregister_device(driver, i);
3423		}
3424		proc_tty_unregister_driver(driver);
3425		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3426			cdev_del(driver->cdevs[0]);
3427	}
3428	kfree(driver->cdevs);
3429	kfree(driver->ports);
3430	kfree(driver->termios);
3431	kfree(driver->ttys);
3432	kfree(driver);
3433}
3434
 
 
 
 
 
 
3435void tty_driver_kref_put(struct tty_driver *driver)
3436{
3437	kref_put(&driver->kref, destruct_tty_driver);
3438}
3439EXPORT_SYMBOL(tty_driver_kref_put);
3440
3441void tty_set_operations(struct tty_driver *driver,
3442			const struct tty_operations *op)
3443{
3444	driver->ops = op;
3445};
3446EXPORT_SYMBOL(tty_set_operations);
3447
3448void put_tty_driver(struct tty_driver *d)
3449{
3450	tty_driver_kref_put(d);
3451}
3452EXPORT_SYMBOL(put_tty_driver);
3453
3454/*
3455 * Called by a tty driver to register itself.
3456 */
3457int tty_register_driver(struct tty_driver *driver)
3458{
3459	int error;
3460	int i;
3461	dev_t dev;
3462	struct device *d;
3463
3464	if (!driver->major) {
3465		error = alloc_chrdev_region(&dev, driver->minor_start,
3466						driver->num, driver->name);
3467		if (!error) {
3468			driver->major = MAJOR(dev);
3469			driver->minor_start = MINOR(dev);
3470		}
3471	} else {
3472		dev = MKDEV(driver->major, driver->minor_start);
3473		error = register_chrdev_region(dev, driver->num, driver->name);
3474	}
3475	if (error < 0)
3476		goto err;
3477
3478	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3479		error = tty_cdev_add(driver, dev, 0, driver->num);
3480		if (error)
3481			goto err_unreg_char;
3482	}
3483
3484	mutex_lock(&tty_mutex);
3485	list_add(&driver->tty_drivers, &tty_drivers);
3486	mutex_unlock(&tty_mutex);
3487
3488	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3489		for (i = 0; i < driver->num; i++) {
3490			d = tty_register_device(driver, i, NULL);
3491			if (IS_ERR(d)) {
3492				error = PTR_ERR(d);
3493				goto err_unreg_devs;
3494			}
3495		}
3496	}
3497	proc_tty_register_driver(driver);
3498	driver->flags |= TTY_DRIVER_INSTALLED;
3499	return 0;
3500
3501err_unreg_devs:
3502	for (i--; i >= 0; i--)
3503		tty_unregister_device(driver, i);
3504
3505	mutex_lock(&tty_mutex);
3506	list_del(&driver->tty_drivers);
3507	mutex_unlock(&tty_mutex);
3508
3509err_unreg_char:
3510	unregister_chrdev_region(dev, driver->num);
3511err:
3512	return error;
3513}
3514EXPORT_SYMBOL(tty_register_driver);
3515
3516/*
 
 
 
3517 * Called by a tty driver to unregister itself.
3518 */
3519void tty_unregister_driver(struct tty_driver *driver)
3520{
3521	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3522				driver->num);
3523	mutex_lock(&tty_mutex);
3524	list_del(&driver->tty_drivers);
3525	mutex_unlock(&tty_mutex);
3526}
3527EXPORT_SYMBOL(tty_unregister_driver);
3528
3529dev_t tty_devnum(struct tty_struct *tty)
3530{
3531	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3532}
3533EXPORT_SYMBOL(tty_devnum);
3534
3535void tty_default_fops(struct file_operations *fops)
3536{
3537	*fops = tty_fops;
3538}
3539
3540static char *tty_devnode(struct device *dev, umode_t *mode)
3541{
3542	if (!mode)
3543		return NULL;
3544	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3545	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3546		*mode = 0666;
3547	return NULL;
3548}
3549
 
 
 
 
 
3550static int __init tty_class_init(void)
3551{
3552	tty_class = class_create(THIS_MODULE, "tty");
3553	if (IS_ERR(tty_class))
3554		return PTR_ERR(tty_class);
3555	tty_class->devnode = tty_devnode;
3556	return 0;
3557}
3558
3559postcore_initcall(tty_class_init);
3560
3561/* 3/2004 jmc: why do these devices exist? */
3562static struct cdev tty_cdev, console_cdev;
3563
3564static ssize_t show_cons_active(struct device *dev,
3565				struct device_attribute *attr, char *buf)
3566{
3567	struct console *cs[16];
3568	int i = 0;
3569	struct console *c;
3570	ssize_t count = 0;
3571
3572	console_lock();
 
 
 
 
 
 
 
3573	for_each_console(c) {
3574		if (!c->device)
3575			continue;
3576		if (!c->write)
3577			continue;
3578		if ((c->flags & CON_ENABLED) == 0)
3579			continue;
3580		cs[i++] = c;
3581		if (i >= ARRAY_SIZE(cs))
3582			break;
3583	}
 
 
 
 
 
 
 
3584	while (i--) {
3585		int index = cs[i]->index;
3586		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3587
3588		/* don't resolve tty0 as some programs depend on it */
3589		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3590			count += tty_line_name(drv, index, buf + count);
3591		else
3592			count += sprintf(buf + count, "%s%d",
3593					 cs[i]->name, cs[i]->index);
3594
3595		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3596	}
3597	console_unlock();
3598
 
 
3599	return count;
3600}
3601static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3602
3603static struct attribute *cons_dev_attrs[] = {
3604	&dev_attr_active.attr,
3605	NULL
3606};
3607
3608ATTRIBUTE_GROUPS(cons_dev);
3609
3610static struct device *consdev;
3611
3612void console_sysfs_notify(void)
3613{
3614	if (consdev)
3615		sysfs_notify(&consdev->kobj, NULL, "active");
3616}
3617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3618/*
3619 * Ok, now we can initialize the rest of the tty devices and can count
3620 * on memory allocations, interrupts etc..
3621 */
3622int __init tty_init(void)
3623{
3624	tty_sysctl_init();
3625	cdev_init(&tty_cdev, &tty_fops);
3626	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3627	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3628		panic("Couldn't register /dev/tty driver\n");
3629	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3630
3631	cdev_init(&console_cdev, &console_fops);
3632	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3633	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3634		panic("Couldn't register /dev/console driver\n");
3635	consdev = device_create_with_groups(tty_class, NULL,
3636					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3637					    cons_dev_groups, "console");
3638	if (IS_ERR(consdev))
3639		consdev = NULL;
3640
3641#ifdef CONFIG_VT
3642	vty_init(&console_fops);
3643#endif
3644	return 0;
3645}
3646