Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 
 145DEFINE_MUTEX(tty_mutex);
 
 
 
 
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 
 
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 169static void free_tty_struct(struct tty_struct *tty)
 
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 
 
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 
 
 
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 244const char *tty_name(const struct tty_struct *tty)
 
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 
 
 249}
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 
 
 
 
 
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353
 354	guard(mutex)(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				return 0;
 362			}
 363		}
 364
 365	return -ENODEV;
 366}
 367EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 368
 369#ifdef CONFIG_CONSOLE_POLL
 370
 371/**
 372 * tty_find_polling_driver - find device of a polled tty
 373 * @name: name string to match
 374 * @line: pointer to resulting tty line nr
 375 *
 376 * This routine returns a tty driver structure, given a name and the condition
 377 * that the tty driver is capable of polled operation.
 
 378 */
 379struct tty_driver *tty_find_polling_driver(char *name, int *line)
 380{
 381	struct tty_driver *p, *res = NULL;
 382	int tty_line = 0;
 383	int len;
 384	char *str, *stp;
 385
 386	for (str = name; *str; str++)
 387		if ((*str >= '0' && *str <= '9') || *str == ',')
 388			break;
 389	if (!*str)
 390		return NULL;
 391
 392	len = str - name;
 393	tty_line = simple_strtoul(str, &str, 10);
 394
 395	mutex_lock(&tty_mutex);
 396	/* Search through the tty devices to look for a match */
 397	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 398		if (!len || strncmp(name, p->name, len) != 0)
 399			continue;
 400		stp = str;
 401		if (*stp == ',')
 402			stp++;
 403		if (*stp == '\0')
 404			stp = NULL;
 405
 406		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 407		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 408			res = tty_driver_kref_get(p);
 409			*line = tty_line;
 410			break;
 411		}
 412	}
 413	mutex_unlock(&tty_mutex);
 414
 415	return res;
 416}
 417EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 418#endif
 419
 420static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	return 0;
 423}
 424
 425static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 426{
 427	return -EIO;
 428}
 429
 430/* No kernel lock held - none needed ;) */
 431static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 432{
 433	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 434}
 435
 436static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 437		unsigned long arg)
 438{
 439	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 440}
 441
 442static long hung_up_tty_compat_ioctl(struct file *file,
 443				     unsigned int cmd, unsigned long arg)
 444{
 445	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 446}
 447
 448static int hung_up_tty_fasync(int fd, struct file *file, int on)
 449{
 450	return -ENOTTY;
 451}
 452
 453static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 454{
 455	struct tty_struct *tty = file_tty(file);
 456
 457	if (tty && tty->ops && tty->ops->show_fdinfo)
 458		tty->ops->show_fdinfo(tty, m);
 459}
 460
 461static const struct file_operations tty_fops = {
 462	.read_iter	= tty_read,
 463	.write_iter	= tty_write,
 464	.splice_read	= copy_splice_read,
 465	.splice_write	= iter_file_splice_write,
 466	.poll		= tty_poll,
 467	.unlocked_ioctl	= tty_ioctl,
 468	.compat_ioctl	= tty_compat_ioctl,
 469	.open		= tty_open,
 470	.release	= tty_release,
 471	.fasync		= tty_fasync,
 472	.show_fdinfo	= tty_show_fdinfo,
 473};
 474
 475static const struct file_operations console_fops = {
 476	.read_iter	= tty_read,
 477	.write_iter	= redirected_tty_write,
 478	.splice_read	= copy_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations hung_up_tty_fops = {
 489	.read_iter	= hung_up_tty_read,
 490	.write_iter	= hung_up_tty_write,
 
 491	.poll		= hung_up_tty_poll,
 492	.unlocked_ioctl	= hung_up_tty_ioctl,
 493	.compat_ioctl	= hung_up_tty_compat_ioctl,
 494	.release	= tty_release,
 495	.fasync		= hung_up_tty_fasync,
 496};
 497
 498static DEFINE_SPINLOCK(redirect_lock);
 499static struct file *redirect;
 500
 501/**
 502 * tty_wakeup - request more data
 503 * @tty: terminal
 504 *
 505 * Internal and external helper for wakeups of tty. This function informs the
 506 * line discipline if present that the driver is ready to receive more output
 507 * data.
 508 */
 
 509void tty_wakeup(struct tty_struct *tty)
 510{
 511	struct tty_ldisc *ld;
 512
 513	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 514		ld = tty_ldisc_ref(tty);
 515		if (ld) {
 516			if (ld->ops->write_wakeup)
 517				ld->ops->write_wakeup(tty);
 518			tty_ldisc_deref(ld);
 519		}
 520	}
 521	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 522}
 
 523EXPORT_SYMBOL_GPL(tty_wakeup);
 524
 525/**
 526 * tty_release_redirect - Release a redirect on a pty if present
 527 * @tty: tty device
 528 *
 529 * This is available to the pty code so if the master closes, if the slave is a
 530 * redirect it can release the redirect.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531 */
 532static struct file *tty_release_redirect(struct tty_struct *tty)
 533{
 534	struct file *f = NULL;
 535
 536	spin_lock(&redirect_lock);
 537	if (redirect && file_tty(redirect) == tty) {
 538		f = redirect;
 539		redirect = NULL;
 540	}
 541	spin_unlock(&redirect_lock);
 542
 543	return f;
 544}
 545
 546/**
 547 * __tty_hangup - actual handler for hangup events
 548 * @tty: tty device
 549 * @exit_session: if non-zero, signal all foreground group processes
 550 *
 551 * This can be called by a "kworker" kernel thread. That is process synchronous
 552 * but doesn't hold any locks, so we need to make sure we have the appropriate
 553 * locks for what we're doing.
 554 *
 555 * The hangup event clears any pending redirections onto the hung up device. It
 556 * ensures future writes will error and it does the needed line discipline
 557 * hangup and signal delivery. The tty object itself remains intact.
 558 *
 559 * Locking:
 560 *  * BTM
 561 *
 562 *   * redirect lock for undoing redirection
 563 *   * file list lock for manipulating list of ttys
 564 *   * tty_ldiscs_lock from called functions
 565 *   * termios_rwsem resetting termios data
 566 *   * tasklist_lock to walk task list for hangup event
 567 *
 568 *    * ->siglock to protect ->signal/->sighand
 569 *
 570 */
 571static void __tty_hangup(struct tty_struct *tty, int exit_session)
 572{
 573	struct file *cons_filp = NULL;
 574	struct file *filp, *f;
 
 575	struct tty_file_private *priv;
 576	int    closecount = 0, n;
 577	int refs;
 
 578
 579	if (!tty)
 580		return;
 581
 582	f = tty_release_redirect(tty);
 583
 584	tty_lock(tty);
 585
 586	if (test_bit(TTY_HUPPED, &tty->flags)) {
 587		tty_unlock(tty);
 588		return;
 
 589	}
 
 590
 591	/*
 592	 * Some console devices aren't actually hung up for technical and
 593	 * historical reasons, which can lead to indefinite interruptible
 594	 * sleep in n_tty_read().  The following explicitly tells
 595	 * n_tty_read() to abort readers.
 596	 */
 597	set_bit(TTY_HUPPING, &tty->flags);
 598
 599	/* inuse_filps is protected by the single tty lock,
 600	 * this really needs to change if we want to flush the
 601	 * workqueue with the lock held.
 602	 */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write_iter == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write_iter != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626	spin_lock_irq(&tty->ctrl.lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->ctrl.session);
 630	put_pid(tty->ctrl.pgrp);
 631	tty->ctrl.session = NULL;
 632	tty->ctrl.pgrp = NULL;
 633	tty->ctrl.pktstatus = 0;
 634	spin_unlock_irq(&tty->ctrl.lock);
 
 
 
 
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 
 
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 * tty_hangup - trigger a hangup event
 671 * @tty: tty to hangup
 672 *
 673 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 674 * hangup sequence to run after this event.
 675 */
 
 676void tty_hangup(struct tty_struct *tty)
 677{
 678	tty_debug_hangup(tty, "hangup\n");
 
 
 
 679	schedule_work(&tty->hangup_work);
 680}
 
 681EXPORT_SYMBOL(tty_hangup);
 682
 683/**
 684 * tty_vhangup - process vhangup
 685 * @tty: tty to hangup
 686 *
 687 * The user has asked via system call for the terminal to be hung up. We do
 688 * this synchronously so that when the syscall returns the process is complete.
 689 * That guarantee is necessary for security reasons.
 690 */
 
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 
 
 
 
 695}
 
 696EXPORT_SYMBOL(tty_vhangup);
 697
 698
 699/**
 700 * tty_vhangup_self - process vhangup for own ctty
 701 *
 702 * Perform a vhangup on the current controlling tty
 703 */
 
 704void tty_vhangup_self(void)
 705{
 706	struct tty_struct *tty;
 707
 708	tty = get_current_tty();
 709	if (tty) {
 710		tty_vhangup(tty);
 711		tty_kref_put(tty);
 712	}
 713}
 714
 715/**
 716 * tty_vhangup_session - hangup session leader exit
 717 * @tty: tty to hangup
 718 *
 719 * The session leader is exiting and hanging up its controlling terminal.
 720 * Every process in the foreground process group is signalled %SIGHUP.
 721 *
 722 * We do this synchronously so that when the syscall returns the process is
 723 * complete. That guarantee is necessary for security reasons.
 724 */
 725void tty_vhangup_session(struct tty_struct *tty)
 726{
 727	tty_debug_hangup(tty, "session hangup\n");
 728	__tty_hangup(tty, 1);
 729}
 730
 731/**
 732 * tty_hung_up_p - was tty hung up
 733 * @filp: file pointer of tty
 734 *
 735 * Return: true if the tty has been subject to a vhangup or a carrier loss
 736 */
 737int tty_hung_up_p(struct file *filp)
 738{
 739	return (filp && filp->f_op == &hung_up_tty_fops);
 740}
 
 741EXPORT_SYMBOL(tty_hung_up_p);
 742
 743void __stop_tty(struct tty_struct *tty)
 744{
 745	if (tty->flow.stopped)
 746		return;
 747	tty->flow.stopped = true;
 748	if (tty->ops->stop)
 749		tty->ops->stop(tty);
 750}
 751
 752/**
 753 * stop_tty - propagate flow control
 754 * @tty: tty to stop
 755 *
 756 * Perform flow control to the driver. May be called on an already stopped
 757 * device and will not re-call the &tty_driver->stop() method.
 758 *
 759 * This functionality is used by both the line disciplines for halting incoming
 760 * flow and by the driver. It may therefore be called from any context, may be
 761 * under the tty %atomic_write_lock but not always.
 762 *
 763 * Locking:
 764 *	flow.lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765 */
 766void stop_tty(struct tty_struct *tty)
 
 767{
 768	unsigned long flags;
 
 769
 770	spin_lock_irqsave(&tty->flow.lock, flags);
 771	__stop_tty(tty);
 772	spin_unlock_irqrestore(&tty->flow.lock, flags);
 773}
 774EXPORT_SYMBOL(stop_tty);
 775
 776void __start_tty(struct tty_struct *tty)
 777{
 778	if (!tty->flow.stopped || tty->flow.tco_stopped)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779		return;
 780	tty->flow.stopped = false;
 781	if (tty->ops->start)
 782		tty->ops->start(tty);
 783	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784}
 785
 786/**
 787 * start_tty - propagate flow control
 788 * @tty: tty to start
 789 *
 790 * Start a tty that has been stopped if at all possible. If @tty was previously
 791 * stopped and is now being started, the &tty_driver->start() method is invoked
 792 * and the line discipline woken.
 793 *
 794 * Locking:
 795 *	flow.lock
 796 */
 797void start_tty(struct tty_struct *tty)
 798{
 799	unsigned long flags;
 800
 801	spin_lock_irqsave(&tty->flow.lock, flags);
 802	__start_tty(tty);
 803	spin_unlock_irqrestore(&tty->flow.lock, flags);
 804}
 805EXPORT_SYMBOL(start_tty);
 806
 807static void tty_update_time(struct tty_struct *tty, bool mtime)
 808{
 809	time64_t sec = ktime_get_real_seconds();
 810	struct tty_file_private *priv;
 811
 812	spin_lock(&tty->files_lock);
 813	list_for_each_entry(priv, &tty->tty_files, list) {
 814		struct inode *inode = file_inode(priv->file);
 815		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817		/*
 818		 * We only care if the two values differ in anything other than the
 819		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 820		 * the time of the tty device, otherwise it could be construded as a
 821		 * security leak to let userspace know the exact timing of the tty.
 822		 */
 823		if ((sec ^ time.tv_sec) & ~7) {
 824			if (mtime)
 825				inode_set_mtime(inode, sec, 0);
 826			else
 827				inode_set_atime(inode, sec, 0);
 828		}
 829	}
 830	spin_unlock(&tty->files_lock);
 
 
 
 
 
 
 
 
 831}
 832
 833/*
 834 * Iterate on the ldisc ->read() function until we've gotten all
 835 * the data the ldisc has for us.
 
 
 836 *
 837 * The "cookie" is something that the ldisc read function can fill
 838 * in to let us know that there is more data to be had.
 
 
 839 *
 840 * We promise to continue to call the ldisc until it stops returning
 841 * data or clears the cookie. The cookie may be something that the
 842 * ldisc maintains state for and needs to free.
 843 */
 844static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 845				struct file *file, struct iov_iter *to)
 846{
 847	void *cookie = NULL;
 848	unsigned long offset = 0;
 849	ssize_t retval = 0;
 850	size_t copied, count = iov_iter_count(to);
 851	u8 kernel_buf[64];
 852
 853	do {
 854		ssize_t size = min(count, sizeof(kernel_buf));
 855
 856		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 857		if (!size)
 858			break;
 859
 860		if (size < 0) {
 861			/* Did we have an earlier error (ie -EFAULT)? */
 862			if (retval)
 863				break;
 864			retval = size;
 865
 866			/*
 867			 * -EOVERFLOW means we didn't have enough space
 868			 * for a whole packet, and we shouldn't return
 869			 * a partial result.
 870			 */
 871			if (retval == -EOVERFLOW)
 872				offset = 0;
 873			break;
 874		}
 875
 876		copied = copy_to_iter(kernel_buf, size, to);
 877		offset += copied;
 878		count -= copied;
 879
 880		/*
 881		 * If the user copy failed, we still need to do another ->read()
 882		 * call if we had a cookie to let the ldisc clear up.
 883		 *
 884		 * But make sure size is zeroed.
 885		 */
 886		if (unlikely(copied != size)) {
 887			count = 0;
 888			retval = -EFAULT;
 889		}
 890	} while (cookie);
 891
 892	/* We always clear tty buffer in case they contained passwords */
 893	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 894	return offset ? offset : retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 
 897
 898/**
 899 * tty_read - read method for tty device files
 900 * @iocb: kernel I/O control block
 901 * @to: destination for the data read
 902 *
 903 * Perform the read system call function on this terminal device. Checks
 904 * for hung up devices before calling the line discipline method.
 905 *
 906 * Locking:
 907 *	Locks the line discipline internally while needed. Multiple read calls
 908 *	may be outstanding in parallel.
 
 
 909 */
 910static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 911{
 912	struct file *file = iocb->ki_filp;
 913	struct inode *inode = file_inode(file);
 914	struct tty_struct *tty = file_tty(file);
 915	struct tty_ldisc *ld;
 916	ssize_t ret;
 917
 918	if (tty_paranoia_check(tty, inode, "tty_read"))
 919		return -EIO;
 920	if (!tty || tty_io_error(tty))
 921		return -EIO;
 922
 923	/* We want to wait for the line discipline to sort out in this
 924	 * situation.
 925	 */
 926	ld = tty_ldisc_ref_wait(tty);
 927	if (!ld)
 928		return hung_up_tty_read(iocb, to);
 929	ret = -EIO;
 930	if (ld->ops->read)
 931		ret = iterate_tty_read(ld, tty, file, to);
 
 
 932	tty_ldisc_deref(ld);
 933
 934	if (ret > 0)
 935		tty_update_time(tty, false);
 936
 937	return ret;
 938}
 939
 940void tty_write_unlock(struct tty_struct *tty)
 
 941{
 942	mutex_unlock(&tty->atomic_write_lock);
 943	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 944}
 945
 946int tty_write_lock(struct tty_struct *tty, bool ndelay)
 
 947{
 948	if (!mutex_trylock(&tty->atomic_write_lock)) {
 949		if (ndelay)
 950			return -EAGAIN;
 951		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 952			return -ERESTARTSYS;
 953	}
 954	return 0;
 955}
 956
 957/*
 958 * Split writes up in sane blocksizes to avoid
 959 * denial-of-service type attacks
 960 */
 961static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 962				 struct file *file, struct iov_iter *from)
 
 
 
 
 963{
 964	size_t chunk, count = iov_iter_count(from);
 965	ssize_t ret, written = 0;
 
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		u8 *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = min(chunk, count);
1010
 
1011		ret = -EFAULT;
1012		if (copy_from_iter(tty->write_buf, size, from) != size)
1013			break;
1014
1015		ret = ld->ops->write(tty, file, tty->write_buf, size);
1016		if (ret <= 0)
1017			break;
1018
1019		written += ret;
1020		if (ret > size)
1021			break;
1022
1023		/* FIXME! Have Al check this! */
1024		if (ret != size)
1025			iov_iter_revert(from, size-ret);
1026
1027		count -= ret;
1028		if (!count)
1029			break;
1030		ret = -ERESTARTSYS;
1031		if (signal_pending(current))
1032			break;
1033		cond_resched();
1034	}
1035	if (written) {
1036		tty_update_time(tty, true);
 
1037		ret = written;
1038	}
1039out:
1040	tty_write_unlock(tty);
1041	return ret;
1042}
1043
1044#ifdef CONFIG_PRINT_QUOTA_WARNING
1045/**
1046 * tty_write_message - write a message to a certain tty, not just the console.
1047 * @tty: the destination tty_struct
1048 * @msg: the message to write
1049 *
1050 * This is used for messages that need to be redirected to a specific tty. We
1051 * don't put it into the syslog queue right now maybe in the future if really
1052 * needed.
1053 *
1054 * We must still hold the BTM and test the CLOSING flag for the moment.
1055 *
1056 * This function is DEPRECATED, do not use in new code.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
 
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
 
1066		tty_write_unlock(tty);
1067	}
 
1068}
1069#endif
1070
1071static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
 
1073	struct tty_struct *tty = file_tty(file);
1074	struct tty_ldisc *ld;
1075	ssize_t ret;
1076
1077	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1078		return -EIO;
1079	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1080		return -EIO;
 
 
 
1081	/* Short term debug to catch buggy drivers */
1082	if (tty->ops->write_room == NULL)
1083		tty_err(tty, "missing write_room method\n");
 
1084	ld = tty_ldisc_ref_wait(tty);
1085	if (!ld)
1086		return hung_up_tty_write(iocb, from);
1087	if (!ld->ops->write)
1088		ret = -EIO;
1089	else
1090		ret = iterate_tty_write(ld, tty, file, from);
1091	tty_ldisc_deref(ld);
1092	return ret;
1093}
1094
1095/**
1096 * tty_write - write method for tty device file
1097 * @iocb: kernel I/O control block
1098 * @from: iov_iter with data to write
1099 *
1100 * Write data to a tty device via the line discipline.
1101 *
1102 * Locking:
1103 *	Locks the line discipline as required
1104 *	Writes to the tty driver are serialized by the atomic_write_lock
1105 *	and are then processed in chunks to the device. The line
1106 *	discipline write method will not be invoked in parallel for
1107 *	each device.
1108 */
1109static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1110{
1111	return file_tty_write(iocb->ki_filp, iocb, from);
1112}
1113
1114ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1115{
1116	struct file *p = NULL;
1117
1118	spin_lock(&redirect_lock);
1119	if (redirect)
1120		p = get_file(redirect);
 
 
1121	spin_unlock(&redirect_lock);
1122
1123	/*
1124	 * We know the redirected tty is just another tty, we can
1125	 * call file_tty_write() directly with that file pointer.
1126	 */
1127	if (p) {
1128		ssize_t res;
1129
1130		res = file_tty_write(p, iocb, iter);
1131		fput(p);
1132		return res;
1133	}
1134	return tty_write(iocb, iter);
1135}
1136
1137/**
1138 * tty_send_xchar - send priority character
1139 * @tty: the tty to send to
1140 * @ch: xchar to send
1141 *
1142 * Send a high priority character to the tty even if stopped.
1143 *
1144 * Locking: none for xchar method, write ordering for write method.
1145 */
1146int tty_send_xchar(struct tty_struct *tty, u8 ch)
1147{
1148	bool was_stopped = tty->flow.stopped;
1149
1150	if (tty->ops->send_xchar) {
1151		down_read(&tty->termios_rwsem);
1152		tty->ops->send_xchar(tty, ch);
1153		up_read(&tty->termios_rwsem);
1154		return 0;
1155	}
1156
1157	if (tty_write_lock(tty, false) < 0)
1158		return -ERESTARTSYS;
1159
1160	down_read(&tty->termios_rwsem);
1161	if (was_stopped)
1162		start_tty(tty);
1163	tty->ops->write(tty, &ch, 1);
1164	if (was_stopped)
1165		stop_tty(tty);
1166	up_read(&tty->termios_rwsem);
1167	tty_write_unlock(tty);
1168	return 0;
1169}
1170
1171/**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a @driver reference and write it to the output buffer
1178 * @p.
1179 *
1180 * Locking: None
1181 */
1182static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183{
1184	static const char ptychar[] = "pqrstuvwxyzabcde";
1185	int i = index + driver->name_base;
1186	/* ->name is initialized to "ttyp", but "tty" is expected */
1187	sprintf(p, "%s%c%x",
1188		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1189		ptychar[i >> 4 & 0xf], i & 0xf);
1190}
1191
1192/**
1193 * tty_line_name - generate name for a tty
1194 * @driver: the tty driver in use
1195 * @index: the minor number
1196 * @p: output buffer of at least 7 bytes
1197 *
1198 * Generate a name from a @driver reference and write it to the output buffer
1199 * @p.
1200 *
1201 * Locking: None
1202 */
1203static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1204{
1205	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1206		return sprintf(p, "%s", driver->name);
1207	else
1208		return sprintf(p, "%s%d", driver->name,
1209			       index + driver->name_base);
1210}
1211
1212/**
1213 * tty_driver_lookup_tty() - find an existing tty, if any
1214 * @driver: the driver for the tty
1215 * @file: file object
1216 * @idx: the minor number
1217 *
1218 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1219 * driver lookup() method returns an error.
1220 *
1221 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1222 */
1223static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1224		struct file *file, int idx)
1225{
1226	struct tty_struct *tty;
1227
1228	if (driver->ops->lookup) {
1229		if (!file)
1230			tty = ERR_PTR(-EIO);
1231		else
1232			tty = driver->ops->lookup(driver, file, idx);
1233	} else {
1234		if (idx >= driver->num)
1235			return ERR_PTR(-EINVAL);
1236		tty = driver->ttys[idx];
1237	}
1238	if (!IS_ERR(tty))
1239		tty_kref_get(tty);
1240	return tty;
1241}
1242
1243/**
1244 * tty_init_termios - helper for termios setup
1245 * @tty: the tty to set up
1246 *
1247 * Initialise the termios structure for this tty. This runs under the
1248 * %tty_mutex currently so we can be relaxed about ordering.
1249 */
1250void tty_init_termios(struct tty_struct *tty)
 
1251{
1252	struct ktermios *tp;
1253	int idx = tty->index;
1254
1255	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256		tty->termios = tty->driver->init_termios;
1257	else {
1258		/* Check for lazy saved data */
1259		tp = tty->driver->termios[idx];
1260		if (tp != NULL) {
1261			tty->termios = *tp;
1262			tty->termios.c_line  = tty->driver->init_termios.c_line;
1263		} else
1264			tty->termios = tty->driver->init_termios;
1265	}
1266	/* Compatibility until drivers always set this */
1267	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1269}
1270EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272/**
1273 * tty_standard_install - usual tty->ops->install
1274 * @driver: the driver for the tty
1275 * @tty: the tty
1276 *
1277 * If the @driver overrides @tty->ops->install, it still can call this function
1278 * to perform the standard install operations.
1279 */
1280int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281{
1282	tty_init_termios(tty);
1283	tty_driver_kref_get(driver);
1284	tty->count++;
1285	driver->ttys[tty->index] = tty;
1286	return 0;
1287}
1288EXPORT_SYMBOL_GPL(tty_standard_install);
1289
1290/**
1291 * tty_driver_install_tty() - install a tty entry in the driver
1292 * @driver: the driver for the tty
1293 * @tty: the tty
1294 *
1295 * Install a tty object into the driver tables. The @tty->index field will be
1296 * set by the time this is called. This method is responsible for ensuring any
1297 * need additional structures are allocated and configured.
 
1298 *
1299 * Locking: tty_mutex for now
1300 */
1301static int tty_driver_install_tty(struct tty_driver *driver,
1302						struct tty_struct *tty)
1303{
1304	return driver->ops->install ? driver->ops->install(driver, tty) :
1305		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1306}
1307
1308/**
1309 * tty_driver_remove_tty() - remove a tty from the driver tables
1310 * @driver: the driver for the tty
1311 * @tty: tty to remove
1312 *
1313 * Remove a tty object from the driver tables. The tty->index field will be set
1314 * by the time this is called.
1315 *
1316 * Locking: tty_mutex for now
1317 */
1318static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1319{
1320	if (driver->ops->remove)
1321		driver->ops->remove(driver, tty);
1322	else
1323		driver->ttys[tty->index] = NULL;
1324}
1325
1326/**
1327 * tty_reopen() - fast re-open of an open tty
1328 * @tty: the tty to open
1329 *
1330 * Re-opens on master ptys are not allowed and return -%EIO.
1331 *
1332 * Locking: Caller must hold tty_lock
1333 * Return: 0 on success, -errno on error.
1334 */
1335static int tty_reopen(struct tty_struct *tty)
1336{
1337	struct tty_driver *driver = tty->driver;
1338	struct tty_ldisc *ld;
1339	int retval = 0;
1340
1341	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342	    driver->subtype == PTY_TYPE_MASTER)
 
1343		return -EIO;
1344
1345	if (!tty->count)
1346		return -EAGAIN;
1347
1348	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1349		return -EBUSY;
1350
1351	ld = tty_ldisc_ref_wait(tty);
1352	if (ld) {
1353		tty_ldisc_deref(ld);
1354	} else {
1355		retval = tty_ldisc_lock(tty, 5 * HZ);
1356		if (retval)
1357			return retval;
1358
1359		if (!tty->ldisc)
1360			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1361		tty_ldisc_unlock(tty);
1362	}
 
 
1363
1364	if (retval == 0)
1365		tty->count++;
 
1366
1367	return retval;
1368}
1369
1370/**
1371 * tty_init_dev - initialise a tty device
1372 * @driver: tty driver we are opening a device on
1373 * @idx: device index
1374 *
1375 * Prepare a tty device. This may not be a "new" clean device but could also be
1376 * an active device. The pty drivers require special handling because of this.
1377 *
1378 * Locking:
1379 *	The function is called under the tty_mutex, which protects us from the
1380 *	tty struct or driver itself going away.
1381 *
1382 * On exit the tty device has the line discipline attached and a reference
1383 * count of 1. If a pair was created for pty/tty use and the other was a pty
1384 * master then it too has a reference count of 1.
1385 *
1386 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1387 * open. The new code protects the open with a mutex, so it's really quite
1388 * straightforward. The mutex locking can probably be relaxed for the (most
1389 * common) case of reopening a tty.
1390 *
1391 * Return: new tty structure
 
1392 */
1393struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
 
1394{
1395	struct tty_struct *tty;
1396	int retval;
1397
 
 
 
 
 
 
1398	/*
1399	 * First time open is complex, especially for PTY devices.
1400	 * This code guarantees that either everything succeeds and the
1401	 * TTY is ready for operation, or else the table slots are vacated
1402	 * and the allocated memory released.  (Except that the termios
1403	 * may be retained.)
1404	 */
1405
1406	if (!try_module_get(driver->owner))
1407		return ERR_PTR(-ENODEV);
1408
1409	tty = alloc_tty_struct(driver, idx);
1410	if (!tty) {
1411		retval = -ENOMEM;
1412		goto err_module_put;
1413	}
 
1414
1415	tty_lock(tty);
1416	retval = tty_driver_install_tty(driver, tty);
1417	if (retval < 0)
1418		goto err_free_tty;
1419
1420	if (!tty->port)
1421		tty->port = driver->ports[idx];
1422
1423	if (WARN_RATELIMIT(!tty->port,
1424			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1425			__func__, tty->driver->name)) {
1426		retval = -EINVAL;
1427		goto err_release_lock;
1428	}
1429
1430	retval = tty_ldisc_lock(tty, 5 * HZ);
1431	if (retval)
1432		goto err_release_lock;
1433	tty->port->itty = tty;
1434
1435	/*
1436	 * Structures all installed ... call the ldisc open routines.
1437	 * If we fail here just call release_tty to clean up.  No need
1438	 * to decrement the use counts, as release_tty doesn't care.
1439	 */
1440	retval = tty_ldisc_setup(tty, tty->link);
1441	if (retval)
1442		goto err_release_tty;
1443	tty_ldisc_unlock(tty);
1444	/* Return the tty locked so that it cannot vanish under the caller */
1445	return tty;
1446
1447err_free_tty:
1448	tty_unlock(tty);
1449	free_tty_struct(tty);
1450err_module_put:
1451	module_put(driver->owner);
1452	return ERR_PTR(retval);
1453
1454	/* call the tty release_tty routine to clean out this slot */
1455err_release_tty:
1456	tty_ldisc_unlock(tty);
1457	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1458			     retval, idx);
1459err_release_lock:
1460	tty_unlock(tty);
1461	release_tty(tty, idx);
1462	return ERR_PTR(retval);
1463}
1464
1465/**
1466 * tty_save_termios() - save tty termios data in driver table
1467 * @tty: tty whose termios data to save
1468 *
1469 * Locking: Caller guarantees serialisation with tty_init_termios().
1470 */
1471void tty_save_termios(struct tty_struct *tty)
1472{
1473	struct ktermios *tp;
1474	int idx = tty->index;
1475
1476	/* If the port is going to reset then it has no termios to save */
1477	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1478		return;
1479
1480	/* Stash the termios data */
1481	tp = tty->driver->termios[idx];
1482	if (tp == NULL) {
1483		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1484		if (tp == NULL)
1485			return;
1486		tty->driver->termios[idx] = tp;
1487	}
1488	*tp = tty->termios;
1489}
1490EXPORT_SYMBOL_GPL(tty_save_termios);
1491
1492/**
1493 * tty_flush_works - flush all works of a tty/pty pair
1494 * @tty: tty device to flush works for (or either end of a pty pair)
1495 *
1496 * Sync flush all works belonging to @tty (and the 'other' tty).
1497 */
1498static void tty_flush_works(struct tty_struct *tty)
1499{
1500	flush_work(&tty->SAK_work);
1501	flush_work(&tty->hangup_work);
1502	if (tty->link) {
1503		flush_work(&tty->link->SAK_work);
1504		flush_work(&tty->link->hangup_work);
1505	}
1506}
 
1507
1508/**
1509 * release_one_tty - release tty structure memory
1510 * @work: work of tty we are obliterating
1511 *
1512 * Releases memory associated with a tty structure, and clears out the
1513 * driver table slots. This function is called when a device is no longer
1514 * in use. It also gets called when setup of a device fails.
1515 *
1516 * Locking:
1517 *	takes the file list lock internally when working on the list of ttys
1518 *	that the driver keeps.
 
1519 *
1520 * This method gets called from a work queue so that the driver private
1521 * cleanup ops can sleep (needed for USB at least)
1522 */
1523static void release_one_tty(struct work_struct *work)
1524{
1525	struct tty_struct *tty =
1526		container_of(work, struct tty_struct, hangup_work);
1527	struct tty_driver *driver = tty->driver;
1528	struct module *owner = driver->owner;
1529
1530	if (tty->ops->cleanup)
1531		tty->ops->cleanup(tty);
1532
 
1533	tty_driver_kref_put(driver);
1534	module_put(owner);
1535
1536	spin_lock(&tty->files_lock);
1537	list_del_init(&tty->tty_files);
1538	spin_unlock(&tty->files_lock);
1539
1540	put_pid(tty->ctrl.pgrp);
1541	put_pid(tty->ctrl.session);
1542	free_tty_struct(tty);
1543}
1544
1545static void queue_release_one_tty(struct kref *kref)
1546{
1547	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1548
 
 
 
 
 
1549	/* The hangup queue is now free so we can reuse it rather than
1550	 *  waste a chunk of memory for each port.
1551	 */
1552	INIT_WORK(&tty->hangup_work, release_one_tty);
1553	schedule_work(&tty->hangup_work);
1554}
1555
1556/**
1557 * tty_kref_put - release a tty kref
1558 * @tty: tty device
1559 *
1560 * Release a reference to the @tty device and if need be let the kref layer
1561 * destruct the object for us.
1562 */
 
1563void tty_kref_put(struct tty_struct *tty)
1564{
1565	if (tty)
1566		kref_put(&tty->kref, queue_release_one_tty);
1567}
1568EXPORT_SYMBOL(tty_kref_put);
1569
1570/**
1571 * release_tty - release tty structure memory
1572 * @tty: tty device release
1573 * @idx: index of the tty device release
1574 *
1575 * Release both @tty and a possible linked partner (think pty pair),
1576 * and decrement the refcount of the backing module.
1577 *
1578 * Locking:
1579 *	tty_mutex
1580 *	takes the file list lock internally when working on the list of ttys
1581 *	that the driver keeps.
1582 */
1583static void release_tty(struct tty_struct *tty, int idx)
1584{
1585	/* This should always be true but check for the moment */
1586	WARN_ON(tty->index != idx);
1587	WARN_ON(!mutex_is_locked(&tty_mutex));
1588	if (tty->ops->shutdown)
1589		tty->ops->shutdown(tty);
1590	tty_save_termios(tty);
1591	tty_driver_remove_tty(tty->driver, tty);
1592	if (tty->port)
1593		tty->port->itty = NULL;
1594	if (tty->link)
1595		tty->link->port->itty = NULL;
1596	if (tty->port)
1597		tty_buffer_cancel_work(tty->port);
1598	if (tty->link)
1599		tty_buffer_cancel_work(tty->link->port);
1600
1601	tty_kref_put(tty->link);
 
1602	tty_kref_put(tty);
1603}
1604
1605/**
1606 * tty_release_checks - check a tty before real release
1607 * @tty: tty to check
1608 * @idx: index of the tty
1609 *
1610 * Performs some paranoid checking before true release of the @tty. This is a
1611 * no-op unless %TTY_PARANOIA_CHECK is defined.
1612 */
1613static int tty_release_checks(struct tty_struct *tty, int idx)
1614{
1615#ifdef TTY_PARANOIA_CHECK
1616	if (idx < 0 || idx >= tty->driver->num) {
1617		tty_debug(tty, "bad idx %d\n", idx);
1618		return -1;
1619	}
1620
1621	/* not much to check for devpts */
1622	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1623		return 0;
1624
1625	if (tty != tty->driver->ttys[idx]) {
1626		tty_debug(tty, "bad driver table[%d] = %p\n",
1627			  idx, tty->driver->ttys[idx]);
1628		return -1;
1629	}
1630	if (tty->driver->other) {
1631		struct tty_struct *o_tty = tty->link;
1632
1633		if (o_tty != tty->driver->other->ttys[idx]) {
1634			tty_debug(tty, "bad other table[%d] = %p\n",
1635				  idx, tty->driver->other->ttys[idx]);
1636			return -1;
1637		}
1638		if (o_tty->link != tty) {
1639			tty_debug(tty, "bad link = %p\n", o_tty->link);
1640			return -1;
1641		}
1642	}
1643#endif
1644	return 0;
1645}
1646
1647/**
1648 * tty_kclose - closes tty opened by tty_kopen
1649 * @tty: tty device
1650 *
1651 * Performs the final steps to release and free a tty device. It is the same as
1652 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1653 * @tty->port.
1654 */
1655void tty_kclose(struct tty_struct *tty)
1656{
1657	/*
1658	 * Ask the line discipline code to release its structures
1659	 */
1660	tty_ldisc_release(tty);
1661
1662	/* Wait for pending work before tty destruction commences */
1663	tty_flush_works(tty);
1664
1665	tty_debug_hangup(tty, "freeing structure\n");
1666	/*
1667	 * The release_tty function takes care of the details of clearing
1668	 * the slots and preserving the termios structure.
1669	 */
1670	mutex_lock(&tty_mutex);
1671	tty_port_set_kopened(tty->port, 0);
1672	release_tty(tty, tty->index);
1673	mutex_unlock(&tty_mutex);
1674}
1675EXPORT_SYMBOL_GPL(tty_kclose);
1676
1677/**
1678 * tty_release_struct - release a tty struct
1679 * @tty: tty device
1680 * @idx: index of the tty
1681 *
1682 * Performs the final steps to release and free a tty device. It is roughly the
1683 * reverse of tty_init_dev().
1684 */
1685void tty_release_struct(struct tty_struct *tty, int idx)
1686{
1687	/*
1688	 * Ask the line discipline code to release its structures
1689	 */
1690	tty_ldisc_release(tty);
1691
1692	/* Wait for pending work before tty destruction commmences */
1693	tty_flush_works(tty);
1694
1695	tty_debug_hangup(tty, "freeing structure\n");
1696	/*
1697	 * The release_tty function takes care of the details of clearing
1698	 * the slots and preserving the termios structure.
1699	 */
1700	mutex_lock(&tty_mutex);
1701	release_tty(tty, idx);
1702	mutex_unlock(&tty_mutex);
1703}
1704EXPORT_SYMBOL_GPL(tty_release_struct);
1705
1706/**
1707 * tty_release - vfs callback for close
1708 * @inode: inode of tty
1709 * @filp: file pointer for handle to tty
1710 *
1711 * Called the last time each file handle is closed that references this tty.
1712 * There may however be several such references.
1713 *
1714 * Locking:
1715 *	Takes BKL. See tty_release_dev().
1716 *
1717 * Even releasing the tty structures is a tricky business. We have to be very
1718 * careful that the structures are all released at the same time, as interrupts
1719 * might otherwise get the wrong pointers.
1720 *
1721 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1722 * lead to double frees or releasing memory still in use.
1723 */
 
1724int tty_release(struct inode *inode, struct file *filp)
1725{
1726	struct tty_struct *tty = file_tty(filp);
1727	struct tty_struct *o_tty = NULL;
1728	int	do_sleep, final;
 
1729	int	idx;
1730	long	timeout = 0;
1731	int	once = 1;
1732
1733	if (tty_paranoia_check(tty, inode, __func__))
1734		return 0;
1735
1736	tty_lock(tty);
1737	check_tty_count(tty, __func__);
1738
1739	__tty_fasync(-1, filp, 0);
1740
1741	idx = tty->index;
1742	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1743	    tty->driver->subtype == PTY_TYPE_MASTER)
1744		o_tty = tty->link;
 
1745
1746	if (tty_release_checks(tty, idx)) {
1747		tty_unlock(tty);
 
 
 
1748		return 0;
1749	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750
1751	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	if (tty->ops->close)
1754		tty->ops->close(tty, filp);
1755
1756	/* If tty is pty master, lock the slave pty (stable lock order) */
1757	tty_lock_slave(o_tty);
1758
1759	/*
1760	 * Sanity check: if tty->count is going to zero, there shouldn't be
1761	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1762	 * wait queues and kick everyone out _before_ actually starting to
1763	 * close.  This ensures that we won't block while releasing the tty
1764	 * structure.
1765	 *
1766	 * The test for the o_tty closing is necessary, since the master and
1767	 * slave sides may close in any order.  If the slave side closes out
1768	 * first, its count will be one, since the master side holds an open.
1769	 * Thus this test wouldn't be triggered at the time the slave closed,
1770	 * so we do it now.
 
 
 
 
1771	 */
1772	while (1) {
 
 
 
 
 
 
 
 
1773		do_sleep = 0;
1774
1775		if (tty->count <= 1) {
1776			if (waitqueue_active(&tty->read_wait)) {
1777				wake_up_poll(&tty->read_wait, EPOLLIN);
1778				do_sleep++;
1779			}
1780			if (waitqueue_active(&tty->write_wait)) {
1781				wake_up_poll(&tty->write_wait, EPOLLOUT);
1782				do_sleep++;
1783			}
1784		}
1785		if (o_tty && o_tty->count <= 1) {
1786			if (waitqueue_active(&o_tty->read_wait)) {
1787				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1788				do_sleep++;
1789			}
1790			if (waitqueue_active(&o_tty->write_wait)) {
1791				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1792				do_sleep++;
1793			}
1794		}
1795		if (!do_sleep)
1796			break;
1797
1798		if (once) {
1799			once = 0;
1800			tty_warn(tty, "read/write wait queue active!\n");
1801		}
1802		schedule_timeout_killable(timeout);
1803		if (timeout < 120 * HZ)
1804			timeout = 2 * timeout + 1;
1805		else
1806			timeout = MAX_SCHEDULE_TIMEOUT;
1807	}
1808
1809	if (o_tty) {
 
 
 
 
 
1810		if (--o_tty->count < 0) {
1811			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1812			o_tty->count = 0;
1813		}
1814	}
1815	if (--tty->count < 0) {
1816		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1817		tty->count = 0;
1818	}
1819
1820	/*
1821	 * We've decremented tty->count, so we need to remove this file
1822	 * descriptor off the tty->tty_files list; this serves two
1823	 * purposes:
1824	 *  - check_tty_count sees the correct number of file descriptors
1825	 *    associated with this tty.
1826	 *  - do_tty_hangup no longer sees this file descriptor as
1827	 *    something that needs to be handled for hangups.
1828	 */
1829	tty_del_file(filp);
1830
1831	/*
1832	 * Perform some housekeeping before deciding whether to return.
1833	 *
 
 
 
 
 
 
 
 
 
 
1834	 * If _either_ side is closing, make sure there aren't any
1835	 * processes that still think tty or o_tty is their controlling
1836	 * tty.
1837	 */
1838	if (!tty->count) {
1839		read_lock(&tasklist_lock);
1840		session_clear_tty(tty->ctrl.session);
1841		if (o_tty)
1842			session_clear_tty(o_tty->ctrl.session);
1843		read_unlock(&tasklist_lock);
1844	}
1845
1846	/* check whether both sides are closing ... */
1847	final = !tty->count && !(o_tty && o_tty->count);
1848
1849	tty_unlock_slave(o_tty);
1850	tty_unlock(tty);
1851
1852	/* At this point, the tty->count == 0 should ensure a dead tty
1853	 * cannot be re-opened by a racing opener.
1854	 */
1855
1856	if (!final)
 
 
1857		return 0;
 
1858
1859	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1860
1861	tty_release_struct(tty, idx);
 
 
 
1862	return 0;
1863}
1864
1865/**
1866 * tty_open_current_tty - get locked tty of current task
1867 * @device: device number
1868 * @filp: file pointer to tty
1869 * @return: locked tty of the current task iff @device is /dev/tty
1870 *
1871 * Performs a re-open of the current task's controlling tty.
1872 *
1873 * We cannot return driver and index like for the other nodes because devpts
1874 * will not work then. It expects inodes to be from devpts FS.
 
 
 
 
 
 
 
 
 
1875 */
1876static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1877{
1878	struct tty_struct *tty;
1879	int retval;
1880
1881	if (device != MKDEV(TTYAUX_MAJOR, 0))
1882		return NULL;
 
 
 
 
 
 
1883
1884	tty = get_current_tty();
1885	if (!tty)
1886		return ERR_PTR(-ENXIO);
1887
1888	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1889	/* noctty = 1; */
1890	tty_lock(tty);
1891	tty_kref_put(tty);	/* safe to drop the kref now */
1892
1893	retval = tty_reopen(tty);
1894	if (retval < 0) {
1895		tty_unlock(tty);
1896		tty = ERR_PTR(retval);
1897	}
1898	return tty;
1899}
1900
1901/**
1902 * tty_lookup_driver - lookup a tty driver for a given device file
1903 * @device: device number
1904 * @filp: file pointer to tty
1905 * @index: index for the device in the @return driver
1906 *
1907 * If returned value is not erroneous, the caller is responsible to decrement
1908 * the refcount by tty_driver_kref_put().
1909 *
1910 * Locking: %tty_mutex protects get_tty_driver()
1911 *
1912 * Return: driver for this inode (with increased refcount)
1913 */
1914static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1915		int *index)
1916{
1917	struct tty_driver *driver = NULL;
1918
1919	switch (device) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920#ifdef CONFIG_VT
1921	case MKDEV(TTY_MAJOR, 0): {
1922		extern struct tty_driver *console_driver;
1923
1924		driver = tty_driver_kref_get(console_driver);
1925		*index = fg_console;
1926		break;
 
1927	}
1928#endif
1929	case MKDEV(TTYAUX_MAJOR, 1): {
1930		struct tty_driver *console_driver = console_device(index);
1931
1932		if (console_driver) {
1933			driver = tty_driver_kref_get(console_driver);
1934			if (driver && filp) {
1935				/* Don't let /dev/console block */
1936				filp->f_flags |= O_NONBLOCK;
1937				break;
 
1938			}
1939		}
1940		if (driver)
1941			tty_driver_kref_put(driver);
1942		return ERR_PTR(-ENODEV);
1943	}
1944	default:
1945		driver = get_tty_driver(device, index);
1946		if (!driver)
1947			return ERR_PTR(-ENODEV);
1948		break;
1949	}
1950	return driver;
1951}
1952
1953static struct tty_struct *tty_kopen(dev_t device, int shared)
1954{
1955	struct tty_struct *tty;
1956	struct tty_driver *driver;
1957	int index = -1;
1958
1959	mutex_lock(&tty_mutex);
1960	driver = tty_lookup_driver(device, NULL, &index);
1961	if (IS_ERR(driver)) {
1962		mutex_unlock(&tty_mutex);
1963		return ERR_CAST(driver);
1964	}
1965
1966	/* check whether we're reopening an existing tty */
1967	tty = tty_driver_lookup_tty(driver, NULL, index);
1968	if (IS_ERR(tty) || shared)
1969		goto out;
1970
1971	if (tty) {
1972		/* drop kref from tty_driver_lookup_tty() */
1973		tty_kref_put(tty);
1974		tty = ERR_PTR(-EBUSY);
1975	} else { /* tty_init_dev returns tty with the tty_lock held */
1976		tty = tty_init_dev(driver, index);
1977		if (IS_ERR(tty))
1978			goto out;
1979		tty_port_set_kopened(tty->port, 1);
1980	}
1981out:
1982	mutex_unlock(&tty_mutex);
1983	tty_driver_kref_put(driver);
1984	return tty;
1985}
1986
1987/**
1988 * tty_kopen_exclusive - open a tty device for kernel
1989 * @device: dev_t of device to open
1990 *
1991 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1992 * it's not already opened and performs the first-time tty initialization.
1993 *
1994 * Claims the global %tty_mutex to serialize:
1995 *  * concurrent first-time tty initialization
1996 *  * concurrent tty driver removal w/ lookup
1997 *  * concurrent tty removal from driver table
1998 *
1999 * Return: the locked initialized &tty_struct
2000 */
2001struct tty_struct *tty_kopen_exclusive(dev_t device)
2002{
2003	return tty_kopen(device, 0);
2004}
2005EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2006
2007/**
2008 * tty_kopen_shared - open a tty device for shared in-kernel use
2009 * @device: dev_t of device to open
2010 *
2011 * Opens an already existing tty for in-kernel use. Compared to
2012 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2013 *
2014 * Locking: identical to tty_kopen() above.
2015 */
2016struct tty_struct *tty_kopen_shared(dev_t device)
2017{
2018	return tty_kopen(device, 1);
2019}
2020EXPORT_SYMBOL_GPL(tty_kopen_shared);
2021
2022/**
2023 * tty_open_by_driver - open a tty device
2024 * @device: dev_t of device to open
2025 * @filp: file pointer to tty
2026 *
2027 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2028 * first-time tty initialization.
2029 *
2030 *
2031 * Claims the global tty_mutex to serialize:
2032 *  * concurrent first-time tty initialization
2033 *  * concurrent tty driver removal w/ lookup
2034 *  * concurrent tty removal from driver table
2035 *
2036 * Return: the locked initialized or re-opened &tty_struct
2037 */
2038static struct tty_struct *tty_open_by_driver(dev_t device,
2039					     struct file *filp)
2040{
2041	struct tty_struct *tty;
2042	struct tty_driver *driver = NULL;
2043	int index = -1;
2044	int retval;
2045
2046	mutex_lock(&tty_mutex);
2047	driver = tty_lookup_driver(device, filp, &index);
2048	if (IS_ERR(driver)) {
2049		mutex_unlock(&tty_mutex);
2050		return ERR_CAST(driver);
2051	}
 
 
 
 
2052
2053	/* check whether we're reopening an existing tty */
2054	tty = tty_driver_lookup_tty(driver, filp, index);
2055	if (IS_ERR(tty)) {
2056		mutex_unlock(&tty_mutex);
2057		goto out;
2058	}
2059
2060	if (tty) {
2061		if (tty_port_kopened(tty->port)) {
2062			tty_kref_put(tty);
2063			mutex_unlock(&tty_mutex);
2064			tty = ERR_PTR(-EBUSY);
2065			goto out;
2066		}
2067		mutex_unlock(&tty_mutex);
2068		retval = tty_lock_interruptible(tty);
2069		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2070		if (retval) {
2071			if (retval == -EINTR)
2072				retval = -ERESTARTSYS;
2073			tty = ERR_PTR(retval);
2074			goto out;
2075		}
2076		retval = tty_reopen(tty);
2077		if (retval < 0) {
2078			tty_unlock(tty);
2079			tty = ERR_PTR(retval);
2080		}
2081	} else { /* Returns with the tty_lock held for now */
2082		tty = tty_init_dev(driver, index);
2083		mutex_unlock(&tty_mutex);
2084	}
2085out:
2086	tty_driver_kref_put(driver);
2087	return tty;
2088}
2089
2090/**
2091 * tty_open - open a tty device
2092 * @inode: inode of device file
2093 * @filp: file pointer to tty
2094 *
2095 * tty_open() and tty_release() keep up the tty count that contains the number
2096 * of opens done on a tty. We cannot use the inode-count, as different inodes
2097 * might point to the same tty.
2098 *
2099 * Open-counting is needed for pty masters, as well as for keeping track of
2100 * serial lines: DTR is dropped when the last close happens.
2101 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2102 *
2103 * The termios state of a pty is reset on the first open so that settings don't
2104 * persist across reuse.
2105 *
2106 * Locking:
2107 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2108 *  * @tty->count should protect the rest.
2109 *  * ->siglock protects ->signal/->sighand
2110 *
2111 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2112 */
2113static int tty_open(struct inode *inode, struct file *filp)
2114{
2115	struct tty_struct *tty;
2116	int noctty, retval;
2117	dev_t device = inode->i_rdev;
2118	unsigned saved_flags = filp->f_flags;
2119
2120	nonseekable_open(inode, filp);
2121
2122retry_open:
2123	retval = tty_alloc_file(filp);
2124	if (retval)
2125		return -ENOMEM;
2126
2127	tty = tty_open_current_tty(device, filp);
2128	if (!tty)
2129		tty = tty_open_by_driver(device, filp);
2130
 
 
2131	if (IS_ERR(tty)) {
2132		tty_free_file(filp);
2133		retval = PTR_ERR(tty);
2134		if (retval != -EAGAIN || signal_pending(current))
2135			return retval;
2136		schedule();
2137		goto retry_open;
2138	}
2139
2140	tty_add_file(tty, filp);
2141
2142	check_tty_count(tty, __func__);
2143	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2144
 
 
 
 
 
 
 
2145	if (tty->ops->open)
2146		retval = tty->ops->open(tty, filp);
2147	else
2148		retval = -ENODEV;
2149	filp->f_flags = saved_flags;
2150
2151	if (retval) {
2152		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
 
2153
2154		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
 
 
 
2155		tty_release(inode, filp);
2156		if (retval != -ERESTARTSYS)
2157			return retval;
2158
2159		if (signal_pending(current))
2160			return retval;
2161
2162		schedule();
2163		/*
2164		 * Need to reset f_op in case a hangup happened.
2165		 */
2166		if (tty_hung_up_p(filp))
 
2167			filp->f_op = &tty_fops;
 
2168		goto retry_open;
2169	}
2170	clear_bit(TTY_HUPPED, &tty->flags);
2171
2172	noctty = (filp->f_flags & O_NOCTTY) ||
2173		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2174		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2175		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2176		  tty->driver->subtype == PTY_TYPE_MASTER);
2177	if (!noctty)
2178		tty_open_proc_set_tty(filp, tty);
2179	tty_unlock(tty);
 
 
 
 
2180	return 0;
2181}
2182
2183
 
2184/**
2185 * tty_poll - check tty status
2186 * @filp: file being polled
2187 * @wait: poll wait structures to update
2188 *
2189 * Call the line discipline polling method to obtain the poll status of the
2190 * device.
2191 *
2192 * Locking: locks called line discipline but ldisc poll method may be
2193 * re-entered freely by other callers.
2194 */
2195static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2196{
2197	struct tty_struct *tty = file_tty(filp);
2198	struct tty_ldisc *ld;
2199	__poll_t ret = 0;
2200
2201	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2202		return 0;
2203
2204	ld = tty_ldisc_ref_wait(tty);
2205	if (!ld)
2206		return hung_up_tty_poll(filp, wait);
2207	if (ld->ops->poll)
2208		ret = ld->ops->poll(tty, filp, wait);
2209	tty_ldisc_deref(ld);
2210	return ret;
2211}
2212
2213static int __tty_fasync(int fd, struct file *filp, int on)
2214{
2215	struct tty_struct *tty = file_tty(filp);
2216	unsigned long flags;
2217	int retval = 0;
2218
2219	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220		goto out;
2221
2222	if (on) {
2223		retval = file_f_owner_allocate(filp);
2224		if (retval)
2225			goto out;
2226	}
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
 
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
 
 
 
 
2249	}
 
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
 
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
 
 
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
 
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
 
 
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
 
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
 
 
2453 */
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
 
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
 
 
 
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
2478static int send_break(struct tty_struct *tty, unsigned int duration)
 
2479{
2480	int retval;
 
 
 
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
 
 
 
 
 
 
 
 
 
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
 
 
 
 
 
 
 
2504
2505	return retval;
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
 
 
 
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
 
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
 
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
 
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
 
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
 
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
 
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
 
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
 
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
 
 
 
 
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
 
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
 
3218}
 
 
 
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
 
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
 
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
 
 
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
 
3445	struct device *d;
3446
 
 
 
 
 
 
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
 
 
 
 
 
 
 
 
 
 
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
 
 
 
 
 
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
 
 
3495	return error;
3496}
 
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!(c->flags & CON_NBCON) && !c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec_minmax,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
 
 
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v3.1
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 
 251
 252EXPORT_SYMBOL(tty_name);
 
 
 
 
 
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 
 
 
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 559
 560	/* some functions below drop BTM, so we need this bit */
 
 
 
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 
 
 
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 
 
 
 
 
 730
 
 
 
 
 
 
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 
 
 
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 
 
 
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 
 
 
 
 
 
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 
 838 */
 839void no_tty(void)
 840{
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 
 847
 
 
 
 
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 
 
 
 
 
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 922EXPORT_SYMBOL(start_tty);
 923
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 962	return i;
 
 
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
 
1050		if (ret <= 0)
1051			break;
 
1052		written += ret;
1053		buf += ret;
 
 
 
 
 
 
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
 
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
 
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
 
 
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
 
 
 
 
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
 
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
 
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
 
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
1219
1220	tty = driver->ttys[idx];
 
 
 
 
 
 
 
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
 
 
 
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
 
 
 
 
 
 
 
 
 
 
 
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
 
 
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
 
 
 
 
 
1332
1333		tty->link->count++;
 
 
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
 
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
 
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536	if (tty->link)
1537		tty_kref_put(tty->link);
1538	tty_kref_put(tty);
1539}
1540
1541/**
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
 
 
 
 
 
 
 
 
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
 
 
 
 
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
 
 
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
 
 
 
 
 
 
 
 
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
 
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
 
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	}
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886	mutex_unlock(&tty_mutex);
1887	tty_driver_kref_put(driver);
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
 
 
 
 
 
 
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
 
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
 
 
 
 
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
 
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
 
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
 
 
 
 
 
 
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
 
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
 
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
 
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
 
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
 
 
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
 
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
 
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
 
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708		return -EINVAL;
2709
 
 
 
 
 
 
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
 
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
 
 
 
 
 
 
 
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
 
 
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
 
 
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
 
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
 
 
 
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
2900{
2901	tty_ldisc_deinit(tty);
 
 
 
 
 
 
 
 
 
 
 
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
 
 
 
 
 
 
 
 
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
 
 
 
 
 
 
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
 
 
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
 
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
 
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
 
2947{
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
 
 
 
 
 
 
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
 
 
 
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
 
 
 
 
 
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
 
 
 
 
 
 
 
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
 
 
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
 
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333