Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 
 145DEFINE_MUTEX(tty_mutex);
 
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 
 
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 169static void free_tty_struct(struct tty_struct *tty)
 
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 244const char *tty_name(const struct tty_struct *tty)
 
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 
 
 249}
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 
 
 
 
 
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353
 354	guard(mutex)(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				return 0;
 362			}
 363		}
 364
 365	return -ENODEV;
 366}
 367EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 368
 369#ifdef CONFIG_CONSOLE_POLL
 370
 371/**
 372 * tty_find_polling_driver - find device of a polled tty
 373 * @name: name string to match
 374 * @line: pointer to resulting tty line nr
 375 *
 376 * This routine returns a tty driver structure, given a name and the condition
 377 * that the tty driver is capable of polled operation.
 
 378 */
 379struct tty_driver *tty_find_polling_driver(char *name, int *line)
 380{
 381	struct tty_driver *p, *res = NULL;
 382	int tty_line = 0;
 383	int len;
 384	char *str, *stp;
 385
 386	for (str = name; *str; str++)
 387		if ((*str >= '0' && *str <= '9') || *str == ',')
 388			break;
 389	if (!*str)
 390		return NULL;
 391
 392	len = str - name;
 393	tty_line = simple_strtoul(str, &str, 10);
 394
 395	mutex_lock(&tty_mutex);
 396	/* Search through the tty devices to look for a match */
 397	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 398		if (!len || strncmp(name, p->name, len) != 0)
 399			continue;
 400		stp = str;
 401		if (*stp == ',')
 402			stp++;
 403		if (*stp == '\0')
 404			stp = NULL;
 405
 406		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 407		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 408			res = tty_driver_kref_get(p);
 409			*line = tty_line;
 410			break;
 411		}
 412	}
 413	mutex_unlock(&tty_mutex);
 414
 415	return res;
 416}
 417EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 418#endif
 419
 420static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	return 0;
 423}
 424
 425static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 426{
 427	return -EIO;
 428}
 429
 430/* No kernel lock held - none needed ;) */
 431static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 432{
 433	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 434}
 435
 436static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 437		unsigned long arg)
 438{
 439	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 440}
 441
 442static long hung_up_tty_compat_ioctl(struct file *file,
 443				     unsigned int cmd, unsigned long arg)
 444{
 445	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 446}
 447
 448static int hung_up_tty_fasync(int fd, struct file *file, int on)
 449{
 450	return -ENOTTY;
 451}
 452
 453static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 454{
 455	struct tty_struct *tty = file_tty(file);
 456
 457	if (tty && tty->ops && tty->ops->show_fdinfo)
 458		tty->ops->show_fdinfo(tty, m);
 459}
 460
 461static const struct file_operations tty_fops = {
 462	.read_iter	= tty_read,
 463	.write_iter	= tty_write,
 464	.splice_read	= copy_splice_read,
 465	.splice_write	= iter_file_splice_write,
 466	.poll		= tty_poll,
 467	.unlocked_ioctl	= tty_ioctl,
 468	.compat_ioctl	= tty_compat_ioctl,
 469	.open		= tty_open,
 470	.release	= tty_release,
 471	.fasync		= tty_fasync,
 472	.show_fdinfo	= tty_show_fdinfo,
 473};
 474
 475static const struct file_operations console_fops = {
 476	.read_iter	= tty_read,
 477	.write_iter	= redirected_tty_write,
 478	.splice_read	= copy_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations hung_up_tty_fops = {
 489	.read_iter	= hung_up_tty_read,
 490	.write_iter	= hung_up_tty_write,
 
 491	.poll		= hung_up_tty_poll,
 492	.unlocked_ioctl	= hung_up_tty_ioctl,
 493	.compat_ioctl	= hung_up_tty_compat_ioctl,
 494	.release	= tty_release,
 495	.fasync		= hung_up_tty_fasync,
 496};
 497
 498static DEFINE_SPINLOCK(redirect_lock);
 499static struct file *redirect;
 500
 501/**
 502 * tty_wakeup - request more data
 503 * @tty: terminal
 504 *
 505 * Internal and external helper for wakeups of tty. This function informs the
 506 * line discipline if present that the driver is ready to receive more output
 507 * data.
 508 */
 
 509void tty_wakeup(struct tty_struct *tty)
 510{
 511	struct tty_ldisc *ld;
 512
 513	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 514		ld = tty_ldisc_ref(tty);
 515		if (ld) {
 516			if (ld->ops->write_wakeup)
 517				ld->ops->write_wakeup(tty);
 518			tty_ldisc_deref(ld);
 519		}
 520	}
 521	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 522}
 523EXPORT_SYMBOL_GPL(tty_wakeup);
 524
 525/**
 526 * tty_release_redirect - Release a redirect on a pty if present
 527 * @tty: tty device
 528 *
 529 * This is available to the pty code so if the master closes, if the slave is a
 530 * redirect it can release the redirect.
 531 */
 532static struct file *tty_release_redirect(struct tty_struct *tty)
 533{
 534	struct file *f = NULL;
 535
 536	spin_lock(&redirect_lock);
 537	if (redirect && file_tty(redirect) == tty) {
 538		f = redirect;
 539		redirect = NULL;
 540	}
 541	spin_unlock(&redirect_lock);
 542
 543	return f;
 544}
 545
 546/**
 547 * __tty_hangup - actual handler for hangup events
 548 * @tty: tty device
 549 * @exit_session: if non-zero, signal all foreground group processes
 550 *
 551 * This can be called by a "kworker" kernel thread. That is process synchronous
 552 * but doesn't hold any locks, so we need to make sure we have the appropriate
 553 * locks for what we're doing.
 554 *
 555 * The hangup event clears any pending redirections onto the hung up device. It
 556 * ensures future writes will error and it does the needed line discipline
 557 * hangup and signal delivery. The tty object itself remains intact.
 558 *
 559 * Locking:
 560 *  * BTM
 561 *
 562 *   * redirect lock for undoing redirection
 563 *   * file list lock for manipulating list of ttys
 564 *   * tty_ldiscs_lock from called functions
 565 *   * termios_rwsem resetting termios data
 566 *   * tasklist_lock to walk task list for hangup event
 567 *
 568 *    * ->siglock to protect ->signal/->sighand
 569 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570 */
 571static void __tty_hangup(struct tty_struct *tty, int exit_session)
 572{
 573	struct file *cons_filp = NULL;
 574	struct file *filp, *f;
 
 575	struct tty_file_private *priv;
 576	int    closecount = 0, n;
 577	int refs;
 
 578
 579	if (!tty)
 580		return;
 581
 582	f = tty_release_redirect(tty);
 583
 584	tty_lock(tty);
 585
 586	if (test_bit(TTY_HUPPED, &tty->flags)) {
 587		tty_unlock(tty);
 588		return;
 589	}
 
 590
 591	/*
 592	 * Some console devices aren't actually hung up for technical and
 593	 * historical reasons, which can lead to indefinite interruptible
 594	 * sleep in n_tty_read().  The following explicitly tells
 595	 * n_tty_read() to abort readers.
 596	 */
 597	set_bit(TTY_HUPPING, &tty->flags);
 598
 599	/* inuse_filps is protected by the single tty lock,
 600	 * this really needs to change if we want to flush the
 601	 * workqueue with the lock held.
 602	 */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write_iter == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write_iter != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626	spin_lock_irq(&tty->ctrl.lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->ctrl.session);
 630	put_pid(tty->ctrl.pgrp);
 631	tty->ctrl.session = NULL;
 632	tty->ctrl.pgrp = NULL;
 633	tty->ctrl.pktstatus = 0;
 634	spin_unlock_irq(&tty->ctrl.lock);
 
 
 
 
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 
 
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 * tty_hangup - trigger a hangup event
 671 * @tty: tty to hangup
 672 *
 673 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 674 * hangup sequence to run after this event.
 675 */
 
 676void tty_hangup(struct tty_struct *tty)
 677{
 678	tty_debug_hangup(tty, "hangup\n");
 
 
 
 679	schedule_work(&tty->hangup_work);
 680}
 
 681EXPORT_SYMBOL(tty_hangup);
 682
 683/**
 684 * tty_vhangup - process vhangup
 685 * @tty: tty to hangup
 686 *
 687 * The user has asked via system call for the terminal to be hung up. We do
 688 * this synchronously so that when the syscall returns the process is complete.
 689 * That guarantee is necessary for security reasons.
 690 */
 
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 
 
 
 
 695}
 
 696EXPORT_SYMBOL(tty_vhangup);
 697
 698
 699/**
 700 * tty_vhangup_self - process vhangup for own ctty
 701 *
 702 * Perform a vhangup on the current controlling tty
 703 */
 
 704void tty_vhangup_self(void)
 705{
 706	struct tty_struct *tty;
 707
 708	tty = get_current_tty();
 709	if (tty) {
 710		tty_vhangup(tty);
 711		tty_kref_put(tty);
 712	}
 713}
 714
 715/**
 716 * tty_vhangup_session - hangup session leader exit
 717 * @tty: tty to hangup
 718 *
 719 * The session leader is exiting and hanging up its controlling terminal.
 720 * Every process in the foreground process group is signalled %SIGHUP.
 721 *
 722 * We do this synchronously so that when the syscall returns the process is
 723 * complete. That guarantee is necessary for security reasons.
 724 */
 725void tty_vhangup_session(struct tty_struct *tty)
 726{
 727	tty_debug_hangup(tty, "session hangup\n");
 728	__tty_hangup(tty, 1);
 729}
 730
 731/**
 732 * tty_hung_up_p - was tty hung up
 733 * @filp: file pointer of tty
 734 *
 735 * Return: true if the tty has been subject to a vhangup or a carrier loss
 736 */
 737int tty_hung_up_p(struct file *filp)
 738{
 739	return (filp && filp->f_op == &hung_up_tty_fops);
 740}
 
 741EXPORT_SYMBOL(tty_hung_up_p);
 742
 743void __stop_tty(struct tty_struct *tty)
 744{
 745	if (tty->flow.stopped)
 746		return;
 747	tty->flow.stopped = true;
 748	if (tty->ops->stop)
 749		tty->ops->stop(tty);
 750}
 751
 752/**
 753 * stop_tty - propagate flow control
 754 * @tty: tty to stop
 755 *
 756 * Perform flow control to the driver. May be called on an already stopped
 757 * device and will not re-call the &tty_driver->stop() method.
 758 *
 759 * This functionality is used by both the line disciplines for halting incoming
 760 * flow and by the driver. It may therefore be called from any context, may be
 761 * under the tty %atomic_write_lock but not always.
 762 *
 763 * Locking:
 764 *	flow.lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765 */
 766void stop_tty(struct tty_struct *tty)
 
 767{
 768	unsigned long flags;
 769
 770	spin_lock_irqsave(&tty->flow.lock, flags);
 771	__stop_tty(tty);
 772	spin_unlock_irqrestore(&tty->flow.lock, flags);
 773}
 774EXPORT_SYMBOL(stop_tty);
 775
 776void __start_tty(struct tty_struct *tty)
 777{
 778	if (!tty->flow.stopped || tty->flow.tco_stopped)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779		return;
 780	tty->flow.stopped = false;
 781	if (tty->ops->start)
 782		tty->ops->start(tty);
 783	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784}
 785
 786/**
 787 * start_tty - propagate flow control
 788 * @tty: tty to start
 789 *
 790 * Start a tty that has been stopped if at all possible. If @tty was previously
 791 * stopped and is now being started, the &tty_driver->start() method is invoked
 792 * and the line discipline woken.
 793 *
 794 * Locking:
 795 *	flow.lock
 796 */
 797void start_tty(struct tty_struct *tty)
 798{
 799	unsigned long flags;
 800
 801	spin_lock_irqsave(&tty->flow.lock, flags);
 802	__start_tty(tty);
 803	spin_unlock_irqrestore(&tty->flow.lock, flags);
 
 804}
 805EXPORT_SYMBOL(start_tty);
 806
 807static void tty_update_time(struct tty_struct *tty, bool mtime)
 808{
 809	time64_t sec = ktime_get_real_seconds();
 810	struct tty_file_private *priv;
 811
 812	spin_lock(&tty->files_lock);
 813	list_for_each_entry(priv, &tty->tty_files, list) {
 814		struct inode *inode = file_inode(priv->file);
 815		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817		/*
 818		 * We only care if the two values differ in anything other than the
 819		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 820		 * the time of the tty device, otherwise it could be construded as a
 821		 * security leak to let userspace know the exact timing of the tty.
 822		 */
 823		if ((sec ^ time.tv_sec) & ~7) {
 824			if (mtime)
 825				inode_set_mtime(inode, sec, 0);
 826			else
 827				inode_set_atime(inode, sec, 0);
 828		}
 
 829	}
 830	spin_unlock(&tty->files_lock);
 
 
 831}
 832
 833/*
 834 * Iterate on the ldisc ->read() function until we've gotten all
 835 * the data the ldisc has for us.
 
 
 836 *
 837 * The "cookie" is something that the ldisc read function can fill
 838 * in to let us know that there is more data to be had.
 
 
 839 *
 840 * We promise to continue to call the ldisc until it stops returning
 841 * data or clears the cookie. The cookie may be something that the
 842 * ldisc maintains state for and needs to free.
 843 */
 844static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 845				struct file *file, struct iov_iter *to)
 846{
 847	void *cookie = NULL;
 848	unsigned long offset = 0;
 849	ssize_t retval = 0;
 850	size_t copied, count = iov_iter_count(to);
 851	u8 kernel_buf[64];
 852
 853	do {
 854		ssize_t size = min(count, sizeof(kernel_buf));
 855
 856		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 857		if (!size)
 858			break;
 859
 860		if (size < 0) {
 861			/* Did we have an earlier error (ie -EFAULT)? */
 862			if (retval)
 863				break;
 864			retval = size;
 865
 866			/*
 867			 * -EOVERFLOW means we didn't have enough space
 868			 * for a whole packet, and we shouldn't return
 869			 * a partial result.
 870			 */
 871			if (retval == -EOVERFLOW)
 872				offset = 0;
 873			break;
 874		}
 875
 876		copied = copy_to_iter(kernel_buf, size, to);
 877		offset += copied;
 878		count -= copied;
 879
 880		/*
 881		 * If the user copy failed, we still need to do another ->read()
 882		 * call if we had a cookie to let the ldisc clear up.
 883		 *
 884		 * But make sure size is zeroed.
 885		 */
 886		if (unlikely(copied != size)) {
 887			count = 0;
 888			retval = -EFAULT;
 889		}
 890	} while (cookie);
 891
 892	/* We always clear tty buffer in case they contained passwords */
 893	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 894	return offset ? offset : retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 
 897
 898/**
 899 * tty_read - read method for tty device files
 900 * @iocb: kernel I/O control block
 901 * @to: destination for the data read
 902 *
 903 * Perform the read system call function on this terminal device. Checks
 904 * for hung up devices before calling the line discipline method.
 905 *
 906 * Locking:
 907 *	Locks the line discipline internally while needed. Multiple read calls
 908 *	may be outstanding in parallel.
 
 
 909 */
 910static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 911{
 912	struct file *file = iocb->ki_filp;
 913	struct inode *inode = file_inode(file);
 914	struct tty_struct *tty = file_tty(file);
 915	struct tty_ldisc *ld;
 916	ssize_t ret;
 917
 918	if (tty_paranoia_check(tty, inode, "tty_read"))
 919		return -EIO;
 920	if (!tty || tty_io_error(tty))
 921		return -EIO;
 922
 923	/* We want to wait for the line discipline to sort out in this
 924	 * situation.
 925	 */
 926	ld = tty_ldisc_ref_wait(tty);
 927	if (!ld)
 928		return hung_up_tty_read(iocb, to);
 929	ret = -EIO;
 930	if (ld->ops->read)
 931		ret = iterate_tty_read(ld, tty, file, to);
 
 
 932	tty_ldisc_deref(ld);
 933
 934	if (ret > 0)
 935		tty_update_time(tty, false);
 936
 937	return ret;
 938}
 939
 940void tty_write_unlock(struct tty_struct *tty)
 
 941{
 942	mutex_unlock(&tty->atomic_write_lock);
 943	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 944}
 945
 946int tty_write_lock(struct tty_struct *tty, bool ndelay)
 
 947{
 948	if (!mutex_trylock(&tty->atomic_write_lock)) {
 949		if (ndelay)
 950			return -EAGAIN;
 951		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 952			return -ERESTARTSYS;
 953	}
 954	return 0;
 955}
 956
 957/*
 958 * Split writes up in sane blocksizes to avoid
 959 * denial-of-service type attacks
 960 */
 961static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 962				 struct file *file, struct iov_iter *from)
 
 
 
 
 963{
 964	size_t chunk, count = iov_iter_count(from);
 965	ssize_t ret, written = 0;
 
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		u8 *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = min(chunk, count);
1010
 
1011		ret = -EFAULT;
1012		if (copy_from_iter(tty->write_buf, size, from) != size)
1013			break;
1014
1015		ret = ld->ops->write(tty, file, tty->write_buf, size);
1016		if (ret <= 0)
1017			break;
1018
1019		written += ret;
1020		if (ret > size)
1021			break;
1022
1023		/* FIXME! Have Al check this! */
1024		if (ret != size)
1025			iov_iter_revert(from, size-ret);
1026
1027		count -= ret;
1028		if (!count)
1029			break;
1030		ret = -ERESTARTSYS;
1031		if (signal_pending(current))
1032			break;
1033		cond_resched();
1034	}
1035	if (written) {
1036		tty_update_time(tty, true);
 
1037		ret = written;
1038	}
1039out:
1040	tty_write_unlock(tty);
1041	return ret;
1042}
1043
1044#ifdef CONFIG_PRINT_QUOTA_WARNING
1045/**
1046 * tty_write_message - write a message to a certain tty, not just the console.
1047 * @tty: the destination tty_struct
1048 * @msg: the message to write
1049 *
1050 * This is used for messages that need to be redirected to a specific tty. We
1051 * don't put it into the syslog queue right now maybe in the future if really
1052 * needed.
1053 *
1054 * We must still hold the BTM and test the CLOSING flag for the moment.
1055 *
1056 * This function is DEPRECATED, do not use in new code.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
 
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
 
1066		tty_write_unlock(tty);
1067	}
 
1068}
1069#endif
1070
1071static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
 
1073	struct tty_struct *tty = file_tty(file);
1074	struct tty_ldisc *ld;
1075	ssize_t ret;
1076
1077	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1078		return -EIO;
1079	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1080		return -EIO;
 
 
 
1081	/* Short term debug to catch buggy drivers */
1082	if (tty->ops->write_room == NULL)
1083		tty_err(tty, "missing write_room method\n");
 
1084	ld = tty_ldisc_ref_wait(tty);
1085	if (!ld)
1086		return hung_up_tty_write(iocb, from);
1087	if (!ld->ops->write)
1088		ret = -EIO;
1089	else
1090		ret = iterate_tty_write(ld, tty, file, from);
1091	tty_ldisc_deref(ld);
1092	return ret;
1093}
1094
1095/**
1096 * tty_write - write method for tty device file
1097 * @iocb: kernel I/O control block
1098 * @from: iov_iter with data to write
1099 *
1100 * Write data to a tty device via the line discipline.
1101 *
1102 * Locking:
1103 *	Locks the line discipline as required
1104 *	Writes to the tty driver are serialized by the atomic_write_lock
1105 *	and are then processed in chunks to the device. The line
1106 *	discipline write method will not be invoked in parallel for
1107 *	each device.
1108 */
1109static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1110{
1111	return file_tty_write(iocb->ki_filp, iocb, from);
1112}
1113
1114ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1115{
1116	struct file *p = NULL;
1117
1118	spin_lock(&redirect_lock);
1119	if (redirect)
1120		p = get_file(redirect);
 
 
1121	spin_unlock(&redirect_lock);
1122
1123	/*
1124	 * We know the redirected tty is just another tty, we can
1125	 * call file_tty_write() directly with that file pointer.
1126	 */
1127	if (p) {
1128		ssize_t res;
1129
1130		res = file_tty_write(p, iocb, iter);
1131		fput(p);
1132		return res;
1133	}
1134	return tty_write(iocb, iter);
1135}
1136
1137/**
1138 * tty_send_xchar - send priority character
1139 * @tty: the tty to send to
1140 * @ch: xchar to send
1141 *
1142 * Send a high priority character to the tty even if stopped.
1143 *
1144 * Locking: none for xchar method, write ordering for write method.
1145 */
1146int tty_send_xchar(struct tty_struct *tty, u8 ch)
1147{
1148	bool was_stopped = tty->flow.stopped;
1149
1150	if (tty->ops->send_xchar) {
1151		down_read(&tty->termios_rwsem);
1152		tty->ops->send_xchar(tty, ch);
1153		up_read(&tty->termios_rwsem);
1154		return 0;
1155	}
1156
1157	if (tty_write_lock(tty, false) < 0)
1158		return -ERESTARTSYS;
1159
1160	down_read(&tty->termios_rwsem);
1161	if (was_stopped)
1162		start_tty(tty);
1163	tty->ops->write(tty, &ch, 1);
1164	if (was_stopped)
1165		stop_tty(tty);
1166	up_read(&tty->termios_rwsem);
1167	tty_write_unlock(tty);
1168	return 0;
1169}
1170
1171/**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a @driver reference and write it to the output buffer
1178 * @p.
1179 *
1180 * Locking: None
1181 */
1182static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183{
1184	static const char ptychar[] = "pqrstuvwxyzabcde";
1185	int i = index + driver->name_base;
1186	/* ->name is initialized to "ttyp", but "tty" is expected */
1187	sprintf(p, "%s%c%x",
1188		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1189		ptychar[i >> 4 & 0xf], i & 0xf);
1190}
1191
1192/**
1193 * tty_line_name - generate name for a tty
1194 * @driver: the tty driver in use
1195 * @index: the minor number
1196 * @p: output buffer of at least 7 bytes
1197 *
1198 * Generate a name from a @driver reference and write it to the output buffer
1199 * @p.
1200 *
1201 * Locking: None
1202 */
1203static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1204{
1205	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1206		return sprintf(p, "%s", driver->name);
1207	else
1208		return sprintf(p, "%s%d", driver->name,
1209			       index + driver->name_base);
1210}
1211
1212/**
1213 * tty_driver_lookup_tty() - find an existing tty, if any
1214 * @driver: the driver for the tty
1215 * @file: file object
1216 * @idx: the minor number
1217 *
1218 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1219 * driver lookup() method returns an error.
1220 *
1221 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1222 */
1223static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1224		struct file *file, int idx)
1225{
1226	struct tty_struct *tty;
 
1227
1228	if (driver->ops->lookup) {
1229		if (!file)
1230			tty = ERR_PTR(-EIO);
1231		else
1232			tty = driver->ops->lookup(driver, file, idx);
1233	} else {
1234		if (idx >= driver->num)
1235			return ERR_PTR(-EINVAL);
1236		tty = driver->ttys[idx];
1237	}
1238	if (!IS_ERR(tty))
1239		tty_kref_get(tty);
1240	return tty;
1241}
1242
1243/**
1244 * tty_init_termios - helper for termios setup
1245 * @tty: the tty to set up
1246 *
1247 * Initialise the termios structure for this tty. This runs under the
1248 * %tty_mutex currently so we can be relaxed about ordering.
1249 */
1250void tty_init_termios(struct tty_struct *tty)
 
1251{
1252	struct ktermios *tp;
1253	int idx = tty->index;
1254
1255	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256		tty->termios = tty->driver->init_termios;
1257	else {
1258		/* Check for lazy saved data */
1259		tp = tty->driver->termios[idx];
1260		if (tp != NULL) {
1261			tty->termios = *tp;
1262			tty->termios.c_line  = tty->driver->init_termios.c_line;
1263		} else
1264			tty->termios = tty->driver->init_termios;
1265	}
 
 
 
1266	/* Compatibility until drivers always set this */
1267	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1269}
1270EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272/**
1273 * tty_standard_install - usual tty->ops->install
1274 * @driver: the driver for the tty
1275 * @tty: the tty
1276 *
1277 * If the @driver overrides @tty->ops->install, it still can call this function
1278 * to perform the standard install operations.
1279 */
1280int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281{
1282	tty_init_termios(tty);
 
 
 
1283	tty_driver_kref_get(driver);
1284	tty->count++;
1285	driver->ttys[tty->index] = tty;
1286	return 0;
1287}
1288EXPORT_SYMBOL_GPL(tty_standard_install);
1289
1290/**
1291 * tty_driver_install_tty() - install a tty entry in the driver
1292 * @driver: the driver for the tty
1293 * @tty: the tty
1294 *
1295 * Install a tty object into the driver tables. The @tty->index field will be
1296 * set by the time this is called. This method is responsible for ensuring any
1297 * need additional structures are allocated and configured.
 
1298 *
1299 * Locking: tty_mutex for now
1300 */
1301static int tty_driver_install_tty(struct tty_driver *driver,
1302						struct tty_struct *tty)
1303{
1304	return driver->ops->install ? driver->ops->install(driver, tty) :
1305		tty_standard_install(driver, tty);
1306}
1307
1308/**
1309 * tty_driver_remove_tty() - remove a tty from the driver tables
1310 * @driver: the driver for the tty
1311 * @tty: tty to remove
1312 *
1313 * Remove a tty object from the driver tables. The tty->index field will be set
1314 * by the time this is called.
1315 *
1316 * Locking: tty_mutex for now
1317 */
1318static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1319{
1320	if (driver->ops->remove)
1321		driver->ops->remove(driver, tty);
1322	else
1323		driver->ttys[tty->index] = NULL;
1324}
1325
1326/**
1327 * tty_reopen() - fast re-open of an open tty
1328 * @tty: the tty to open
1329 *
1330 * Re-opens on master ptys are not allowed and return -%EIO.
1331 *
1332 * Locking: Caller must hold tty_lock
1333 * Return: 0 on success, -errno on error.
1334 */
1335static int tty_reopen(struct tty_struct *tty)
1336{
1337	struct tty_driver *driver = tty->driver;
1338	struct tty_ldisc *ld;
1339	int retval = 0;
1340
1341	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342	    driver->subtype == PTY_TYPE_MASTER)
 
1343		return -EIO;
1344
1345	if (!tty->count)
1346		return -EAGAIN;
1347
1348	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1349		return -EBUSY;
1350
1351	ld = tty_ldisc_ref_wait(tty);
1352	if (ld) {
1353		tty_ldisc_deref(ld);
1354	} else {
1355		retval = tty_ldisc_lock(tty, 5 * HZ);
1356		if (retval)
1357			return retval;
1358
1359		if (!tty->ldisc)
1360			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1361		tty_ldisc_unlock(tty);
1362	}
 
1363
1364	if (retval == 0)
1365		tty->count++;
 
1366
1367	return retval;
1368}
1369
1370/**
1371 * tty_init_dev - initialise a tty device
1372 * @driver: tty driver we are opening a device on
1373 * @idx: device index
1374 *
1375 * Prepare a tty device. This may not be a "new" clean device but could also be
1376 * an active device. The pty drivers require special handling because of this.
1377 *
1378 * Locking:
1379 *	The function is called under the tty_mutex, which protects us from the
1380 *	tty struct or driver itself going away.
1381 *
1382 * On exit the tty device has the line discipline attached and a reference
1383 * count of 1. If a pair was created for pty/tty use and the other was a pty
1384 * master then it too has a reference count of 1.
1385 *
1386 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1387 * open. The new code protects the open with a mutex, so it's really quite
1388 * straightforward. The mutex locking can probably be relaxed for the (most
1389 * common) case of reopening a tty.
1390 *
1391 * Return: new tty structure
1392 */
 
1393struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1394{
1395	struct tty_struct *tty;
1396	int retval;
1397
1398	/*
1399	 * First time open is complex, especially for PTY devices.
1400	 * This code guarantees that either everything succeeds and the
1401	 * TTY is ready for operation, or else the table slots are vacated
1402	 * and the allocated memory released.  (Except that the termios
1403	 * may be retained.)
1404	 */
1405
1406	if (!try_module_get(driver->owner))
1407		return ERR_PTR(-ENODEV);
1408
1409	tty = alloc_tty_struct(driver, idx);
1410	if (!tty) {
1411		retval = -ENOMEM;
1412		goto err_module_put;
1413	}
 
1414
1415	tty_lock(tty);
1416	retval = tty_driver_install_tty(driver, tty);
1417	if (retval < 0)
1418		goto err_free_tty;
1419
1420	if (!tty->port)
1421		tty->port = driver->ports[idx];
1422
1423	if (WARN_RATELIMIT(!tty->port,
1424			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1425			__func__, tty->driver->name)) {
1426		retval = -EINVAL;
1427		goto err_release_lock;
1428	}
1429
1430	retval = tty_ldisc_lock(tty, 5 * HZ);
1431	if (retval)
1432		goto err_release_lock;
1433	tty->port->itty = tty;
1434
1435	/*
1436	 * Structures all installed ... call the ldisc open routines.
1437	 * If we fail here just call release_tty to clean up.  No need
1438	 * to decrement the use counts, as release_tty doesn't care.
1439	 */
1440	retval = tty_ldisc_setup(tty, tty->link);
1441	if (retval)
1442		goto err_release_tty;
1443	tty_ldisc_unlock(tty);
1444	/* Return the tty locked so that it cannot vanish under the caller */
1445	return tty;
1446
1447err_free_tty:
1448	tty_unlock(tty);
1449	free_tty_struct(tty);
1450err_module_put:
1451	module_put(driver->owner);
1452	return ERR_PTR(retval);
1453
1454	/* call the tty release_tty routine to clean out this slot */
1455err_release_tty:
1456	tty_ldisc_unlock(tty);
1457	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1458			     retval, idx);
1459err_release_lock:
1460	tty_unlock(tty);
1461	release_tty(tty, idx);
1462	return ERR_PTR(retval);
1463}
1464
1465/**
1466 * tty_save_termios() - save tty termios data in driver table
1467 * @tty: tty whose termios data to save
1468 *
1469 * Locking: Caller guarantees serialisation with tty_init_termios().
1470 */
1471void tty_save_termios(struct tty_struct *tty)
1472{
1473	struct ktermios *tp;
1474	int idx = tty->index;
1475
1476	/* If the port is going to reset then it has no termios to save */
1477	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1478		return;
1479
1480	/* Stash the termios data */
1481	tp = tty->driver->termios[idx];
1482	if (tp == NULL) {
1483		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1484		if (tp == NULL)
1485			return;
1486		tty->driver->termios[idx] = tp;
1487	}
1488	*tp = tty->termios;
1489}
1490EXPORT_SYMBOL_GPL(tty_save_termios);
1491
1492/**
1493 * tty_flush_works - flush all works of a tty/pty pair
1494 * @tty: tty device to flush works for (or either end of a pty pair)
1495 *
1496 * Sync flush all works belonging to @tty (and the 'other' tty).
1497 */
1498static void tty_flush_works(struct tty_struct *tty)
1499{
1500	flush_work(&tty->SAK_work);
1501	flush_work(&tty->hangup_work);
1502	if (tty->link) {
1503		flush_work(&tty->link->SAK_work);
1504		flush_work(&tty->link->hangup_work);
1505	}
1506}
 
1507
1508/**
1509 * release_one_tty - release tty structure memory
1510 * @work: work of tty we are obliterating
1511 *
1512 * Releases memory associated with a tty structure, and clears out the
1513 * driver table slots. This function is called when a device is no longer
1514 * in use. It also gets called when setup of a device fails.
1515 *
1516 * Locking:
1517 *	takes the file list lock internally when working on the list of ttys
1518 *	that the driver keeps.
 
1519 *
1520 * This method gets called from a work queue so that the driver private
1521 * cleanup ops can sleep (needed for USB at least)
1522 */
1523static void release_one_tty(struct work_struct *work)
1524{
1525	struct tty_struct *tty =
1526		container_of(work, struct tty_struct, hangup_work);
1527	struct tty_driver *driver = tty->driver;
1528	struct module *owner = driver->owner;
1529
1530	if (tty->ops->cleanup)
1531		tty->ops->cleanup(tty);
1532
 
1533	tty_driver_kref_put(driver);
1534	module_put(owner);
1535
1536	spin_lock(&tty->files_lock);
1537	list_del_init(&tty->tty_files);
1538	spin_unlock(&tty->files_lock);
1539
1540	put_pid(tty->ctrl.pgrp);
1541	put_pid(tty->ctrl.session);
1542	free_tty_struct(tty);
1543}
1544
1545static void queue_release_one_tty(struct kref *kref)
1546{
1547	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1548
 
 
 
 
 
1549	/* The hangup queue is now free so we can reuse it rather than
1550	 *  waste a chunk of memory for each port.
1551	 */
1552	INIT_WORK(&tty->hangup_work, release_one_tty);
1553	schedule_work(&tty->hangup_work);
1554}
1555
1556/**
1557 * tty_kref_put - release a tty kref
1558 * @tty: tty device
1559 *
1560 * Release a reference to the @tty device and if need be let the kref layer
1561 * destruct the object for us.
1562 */
 
1563void tty_kref_put(struct tty_struct *tty)
1564{
1565	if (tty)
1566		kref_put(&tty->kref, queue_release_one_tty);
1567}
1568EXPORT_SYMBOL(tty_kref_put);
1569
1570/**
1571 * release_tty - release tty structure memory
1572 * @tty: tty device release
1573 * @idx: index of the tty device release
1574 *
1575 * Release both @tty and a possible linked partner (think pty pair),
1576 * and decrement the refcount of the backing module.
1577 *
1578 * Locking:
1579 *	tty_mutex
1580 *	takes the file list lock internally when working on the list of ttys
1581 *	that the driver keeps.
1582 */
1583static void release_tty(struct tty_struct *tty, int idx)
1584{
1585	/* This should always be true but check for the moment */
1586	WARN_ON(tty->index != idx);
1587	WARN_ON(!mutex_is_locked(&tty_mutex));
1588	if (tty->ops->shutdown)
1589		tty->ops->shutdown(tty);
1590	tty_save_termios(tty);
1591	tty_driver_remove_tty(tty->driver, tty);
1592	if (tty->port)
1593		tty->port->itty = NULL;
1594	if (tty->link)
1595		tty->link->port->itty = NULL;
1596	if (tty->port)
1597		tty_buffer_cancel_work(tty->port);
1598	if (tty->link)
1599		tty_buffer_cancel_work(tty->link->port);
1600
1601	tty_kref_put(tty->link);
 
1602	tty_kref_put(tty);
1603}
1604
1605/**
1606 * tty_release_checks - check a tty before real release
1607 * @tty: tty to check
1608 * @idx: index of the tty
 
1609 *
1610 * Performs some paranoid checking before true release of the @tty. This is a
1611 * no-op unless %TTY_PARANOIA_CHECK is defined.
1612 */
1613static int tty_release_checks(struct tty_struct *tty, int idx)
 
1614{
1615#ifdef TTY_PARANOIA_CHECK
1616	if (idx < 0 || idx >= tty->driver->num) {
1617		tty_debug(tty, "bad idx %d\n", idx);
 
1618		return -1;
1619	}
1620
1621	/* not much to check for devpts */
1622	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1623		return 0;
1624
1625	if (tty != tty->driver->ttys[idx]) {
1626		tty_debug(tty, "bad driver table[%d] = %p\n",
1627			  idx, tty->driver->ttys[idx]);
 
 
 
 
 
1628		return -1;
1629	}
1630	if (tty->driver->other) {
1631		struct tty_struct *o_tty = tty->link;
1632
1633		if (o_tty != tty->driver->other->ttys[idx]) {
1634			tty_debug(tty, "bad other table[%d] = %p\n",
1635				  idx, tty->driver->other->ttys[idx]);
 
 
 
 
 
1636			return -1;
1637		}
1638		if (o_tty->link != tty) {
1639			tty_debug(tty, "bad link = %p\n", o_tty->link);
1640			return -1;
1641		}
1642	}
1643#endif
1644	return 0;
1645}
1646
1647/**
1648 * tty_kclose - closes tty opened by tty_kopen
1649 * @tty: tty device
1650 *
1651 * Performs the final steps to release and free a tty device. It is the same as
1652 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1653 * @tty->port.
1654 */
1655void tty_kclose(struct tty_struct *tty)
1656{
1657	/*
1658	 * Ask the line discipline code to release its structures
1659	 */
1660	tty_ldisc_release(tty);
1661
1662	/* Wait for pending work before tty destruction commences */
1663	tty_flush_works(tty);
1664
1665	tty_debug_hangup(tty, "freeing structure\n");
1666	/*
1667	 * The release_tty function takes care of the details of clearing
1668	 * the slots and preserving the termios structure.
1669	 */
1670	mutex_lock(&tty_mutex);
1671	tty_port_set_kopened(tty->port, 0);
1672	release_tty(tty, tty->index);
1673	mutex_unlock(&tty_mutex);
1674}
1675EXPORT_SYMBOL_GPL(tty_kclose);
1676
1677/**
1678 * tty_release_struct - release a tty struct
1679 * @tty: tty device
1680 * @idx: index of the tty
1681 *
1682 * Performs the final steps to release and free a tty device. It is roughly the
1683 * reverse of tty_init_dev().
1684 */
1685void tty_release_struct(struct tty_struct *tty, int idx)
1686{
1687	/*
1688	 * Ask the line discipline code to release its structures
1689	 */
1690	tty_ldisc_release(tty);
1691
1692	/* Wait for pending work before tty destruction commmences */
1693	tty_flush_works(tty);
1694
1695	tty_debug_hangup(tty, "freeing structure\n");
1696	/*
1697	 * The release_tty function takes care of the details of clearing
1698	 * the slots and preserving the termios structure.
1699	 */
1700	mutex_lock(&tty_mutex);
1701	release_tty(tty, idx);
1702	mutex_unlock(&tty_mutex);
1703}
1704EXPORT_SYMBOL_GPL(tty_release_struct);
1705
1706/**
1707 * tty_release - vfs callback for close
1708 * @inode: inode of tty
1709 * @filp: file pointer for handle to tty
1710 *
1711 * Called the last time each file handle is closed that references this tty.
1712 * There may however be several such references.
1713 *
1714 * Locking:
1715 *	Takes BKL. See tty_release_dev().
1716 *
1717 * Even releasing the tty structures is a tricky business. We have to be very
1718 * careful that the structures are all released at the same time, as interrupts
1719 * might otherwise get the wrong pointers.
1720 *
1721 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1722 * lead to double frees or releasing memory still in use.
1723 */
 
1724int tty_release(struct inode *inode, struct file *filp)
1725{
1726	struct tty_struct *tty = file_tty(filp);
1727	struct tty_struct *o_tty = NULL;
1728	int	do_sleep, final;
 
1729	int	idx;
1730	long	timeout = 0;
1731	int	once = 1;
1732
1733	if (tty_paranoia_check(tty, inode, __func__))
1734		return 0;
1735
1736	tty_lock(tty);
1737	check_tty_count(tty, __func__);
1738
1739	__tty_fasync(-1, filp, 0);
1740
1741	idx = tty->index;
1742	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1743	    tty->driver->subtype == PTY_TYPE_MASTER)
1744		o_tty = tty->link;
 
1745
1746	if (tty_release_checks(tty, idx)) {
1747		tty_unlock(tty);
1748		return 0;
1749	}
1750
1751	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1752
1753	if (tty->ops->close)
1754		tty->ops->close(tty, filp);
1755
1756	/* If tty is pty master, lock the slave pty (stable lock order) */
1757	tty_lock_slave(o_tty);
1758
1759	/*
1760	 * Sanity check: if tty->count is going to zero, there shouldn't be
1761	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1762	 * wait queues and kick everyone out _before_ actually starting to
1763	 * close.  This ensures that we won't block while releasing the tty
1764	 * structure.
1765	 *
1766	 * The test for the o_tty closing is necessary, since the master and
1767	 * slave sides may close in any order.  If the slave side closes out
1768	 * first, its count will be one, since the master side holds an open.
1769	 * Thus this test wouldn't be triggered at the time the slave closed,
1770	 * so we do it now.
 
 
 
 
1771	 */
1772	while (1) {
 
 
 
 
 
 
 
 
1773		do_sleep = 0;
1774
1775		if (tty->count <= 1) {
1776			if (waitqueue_active(&tty->read_wait)) {
1777				wake_up_poll(&tty->read_wait, EPOLLIN);
1778				do_sleep++;
1779			}
1780			if (waitqueue_active(&tty->write_wait)) {
1781				wake_up_poll(&tty->write_wait, EPOLLOUT);
1782				do_sleep++;
1783			}
1784		}
1785		if (o_tty && o_tty->count <= 1) {
1786			if (waitqueue_active(&o_tty->read_wait)) {
1787				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1788				do_sleep++;
1789			}
1790			if (waitqueue_active(&o_tty->write_wait)) {
1791				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1792				do_sleep++;
1793			}
1794		}
1795		if (!do_sleep)
1796			break;
1797
1798		if (once) {
1799			once = 0;
1800			tty_warn(tty, "read/write wait queue active!\n");
1801		}
1802		schedule_timeout_killable(timeout);
1803		if (timeout < 120 * HZ)
1804			timeout = 2 * timeout + 1;
1805		else
1806			timeout = MAX_SCHEDULE_TIMEOUT;
1807	}
1808
1809	if (o_tty) {
 
 
 
 
 
1810		if (--o_tty->count < 0) {
1811			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1812			o_tty->count = 0;
1813		}
1814	}
1815	if (--tty->count < 0) {
1816		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1817		tty->count = 0;
1818	}
1819
1820	/*
1821	 * We've decremented tty->count, so we need to remove this file
1822	 * descriptor off the tty->tty_files list; this serves two
1823	 * purposes:
1824	 *  - check_tty_count sees the correct number of file descriptors
1825	 *    associated with this tty.
1826	 *  - do_tty_hangup no longer sees this file descriptor as
1827	 *    something that needs to be handled for hangups.
1828	 */
1829	tty_del_file(filp);
1830
1831	/*
1832	 * Perform some housekeeping before deciding whether to return.
1833	 *
 
 
 
 
 
 
 
 
 
 
1834	 * If _either_ side is closing, make sure there aren't any
1835	 * processes that still think tty or o_tty is their controlling
1836	 * tty.
1837	 */
1838	if (!tty->count) {
1839		read_lock(&tasklist_lock);
1840		session_clear_tty(tty->ctrl.session);
1841		if (o_tty)
1842			session_clear_tty(o_tty->ctrl.session);
1843		read_unlock(&tasklist_lock);
1844	}
1845
1846	/* check whether both sides are closing ... */
1847	final = !tty->count && !(o_tty && o_tty->count);
1848
1849	tty_unlock_slave(o_tty);
1850	tty_unlock(tty);
1851
1852	/* At this point, the tty->count == 0 should ensure a dead tty
1853	 * cannot be re-opened by a racing opener.
1854	 */
1855
1856	if (!final)
 
 
1857		return 0;
 
1858
1859	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1860
1861	tty_release_struct(tty, idx);
 
 
 
1862	return 0;
1863}
1864
1865/**
1866 * tty_open_current_tty - get locked tty of current task
1867 * @device: device number
1868 * @filp: file pointer to tty
1869 * @return: locked tty of the current task iff @device is /dev/tty
1870 *
1871 * Performs a re-open of the current task's controlling tty.
 
1872 *
1873 * We cannot return driver and index like for the other nodes because devpts
1874 * will not work then. It expects inodes to be from devpts FS.
1875 */
1876static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1877{
1878	struct tty_struct *tty;
1879	int retval;
1880
1881	if (device != MKDEV(TTYAUX_MAJOR, 0))
1882		return NULL;
1883
1884	tty = get_current_tty();
1885	if (!tty)
1886		return ERR_PTR(-ENXIO);
1887
1888	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1889	/* noctty = 1; */
1890	tty_lock(tty);
1891	tty_kref_put(tty);	/* safe to drop the kref now */
1892
1893	retval = tty_reopen(tty);
1894	if (retval < 0) {
1895		tty_unlock(tty);
1896		tty = ERR_PTR(retval);
1897	}
1898	return tty;
1899}
1900
1901/**
1902 * tty_lookup_driver - lookup a tty driver for a given device file
1903 * @device: device number
1904 * @filp: file pointer to tty
1905 * @index: index for the device in the @return driver
 
 
1906 *
1907 * If returned value is not erroneous, the caller is responsible to decrement
1908 * the refcount by tty_driver_kref_put().
1909 *
1910 * Locking: %tty_mutex protects get_tty_driver()
1911 *
1912 * Return: driver for this inode (with increased refcount)
1913 */
1914static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1915		int *index)
1916{
1917	struct tty_driver *driver = NULL;
1918
1919	switch (device) {
1920#ifdef CONFIG_VT
1921	case MKDEV(TTY_MAJOR, 0): {
1922		extern struct tty_driver *console_driver;
1923
1924		driver = tty_driver_kref_get(console_driver);
1925		*index = fg_console;
 
1926		break;
1927	}
1928#endif
1929	case MKDEV(TTYAUX_MAJOR, 1): {
1930		struct tty_driver *console_driver = console_device(index);
1931
1932		if (console_driver) {
1933			driver = tty_driver_kref_get(console_driver);
1934			if (driver && filp) {
1935				/* Don't let /dev/console block */
1936				filp->f_flags |= O_NONBLOCK;
 
1937				break;
1938			}
1939		}
1940		if (driver)
1941			tty_driver_kref_put(driver);
1942		return ERR_PTR(-ENODEV);
1943	}
1944	default:
1945		driver = get_tty_driver(device, index);
1946		if (!driver)
1947			return ERR_PTR(-ENODEV);
1948		break;
1949	}
1950	return driver;
1951}
1952
1953static struct tty_struct *tty_kopen(dev_t device, int shared)
1954{
1955	struct tty_struct *tty;
1956	struct tty_driver *driver;
1957	int index = -1;
1958
1959	mutex_lock(&tty_mutex);
1960	driver = tty_lookup_driver(device, NULL, &index);
1961	if (IS_ERR(driver)) {
1962		mutex_unlock(&tty_mutex);
1963		return ERR_CAST(driver);
1964	}
1965
1966	/* check whether we're reopening an existing tty */
1967	tty = tty_driver_lookup_tty(driver, NULL, index);
1968	if (IS_ERR(tty) || shared)
1969		goto out;
1970
1971	if (tty) {
1972		/* drop kref from tty_driver_lookup_tty() */
1973		tty_kref_put(tty);
1974		tty = ERR_PTR(-EBUSY);
1975	} else { /* tty_init_dev returns tty with the tty_lock held */
1976		tty = tty_init_dev(driver, index);
1977		if (IS_ERR(tty))
1978			goto out;
1979		tty_port_set_kopened(tty->port, 1);
1980	}
1981out:
1982	mutex_unlock(&tty_mutex);
1983	tty_driver_kref_put(driver);
1984	return tty;
1985}
1986
1987/**
1988 * tty_kopen_exclusive - open a tty device for kernel
1989 * @device: dev_t of device to open
1990 *
1991 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1992 * it's not already opened and performs the first-time tty initialization.
1993 *
1994 * Claims the global %tty_mutex to serialize:
1995 *  * concurrent first-time tty initialization
1996 *  * concurrent tty driver removal w/ lookup
1997 *  * concurrent tty removal from driver table
1998 *
1999 * Return: the locked initialized &tty_struct
2000 */
2001struct tty_struct *tty_kopen_exclusive(dev_t device)
2002{
2003	return tty_kopen(device, 0);
2004}
2005EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2006
2007/**
2008 * tty_kopen_shared - open a tty device for shared in-kernel use
2009 * @device: dev_t of device to open
2010 *
2011 * Opens an already existing tty for in-kernel use. Compared to
2012 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2013 *
2014 * Locking: identical to tty_kopen() above.
2015 */
2016struct tty_struct *tty_kopen_shared(dev_t device)
2017{
2018	return tty_kopen(device, 1);
2019}
2020EXPORT_SYMBOL_GPL(tty_kopen_shared);
2021
2022/**
2023 * tty_open_by_driver - open a tty device
2024 * @device: dev_t of device to open
2025 * @filp: file pointer to tty
2026 *
2027 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2028 * first-time tty initialization.
2029 *
2030 *
2031 * Claims the global tty_mutex to serialize:
2032 *  * concurrent first-time tty initialization
2033 *  * concurrent tty driver removal w/ lookup
2034 *  * concurrent tty removal from driver table
2035 *
2036 * Return: the locked initialized or re-opened &tty_struct
 
 
 
 
2037 */
2038static struct tty_struct *tty_open_by_driver(dev_t device,
2039					     struct file *filp)
2040{
2041	struct tty_struct *tty;
2042	struct tty_driver *driver = NULL;
2043	int index = -1;
2044	int retval;
2045
2046	mutex_lock(&tty_mutex);
2047	driver = tty_lookup_driver(device, filp, &index);
2048	if (IS_ERR(driver)) {
2049		mutex_unlock(&tty_mutex);
2050		return ERR_CAST(driver);
2051	}
2052
2053	/* check whether we're reopening an existing tty */
2054	tty = tty_driver_lookup_tty(driver, filp, index);
2055	if (IS_ERR(tty)) {
2056		mutex_unlock(&tty_mutex);
2057		goto out;
2058	}
2059
2060	if (tty) {
2061		if (tty_port_kopened(tty->port)) {
2062			tty_kref_put(tty);
2063			mutex_unlock(&tty_mutex);
2064			tty = ERR_PTR(-EBUSY);
2065			goto out;
2066		}
2067		mutex_unlock(&tty_mutex);
2068		retval = tty_lock_interruptible(tty);
2069		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2070		if (retval) {
2071			if (retval == -EINTR)
2072				retval = -ERESTARTSYS;
2073			tty = ERR_PTR(retval);
2074			goto out;
2075		}
2076		retval = tty_reopen(tty);
2077		if (retval < 0) {
2078			tty_unlock(tty);
2079			tty = ERR_PTR(retval);
2080		}
2081	} else { /* Returns with the tty_lock held for now */
2082		tty = tty_init_dev(driver, index);
2083		mutex_unlock(&tty_mutex);
2084	}
2085out:
2086	tty_driver_kref_put(driver);
2087	return tty;
2088}
2089
2090/**
2091 * tty_open - open a tty device
2092 * @inode: inode of device file
2093 * @filp: file pointer to tty
2094 *
2095 * tty_open() and tty_release() keep up the tty count that contains the number
2096 * of opens done on a tty. We cannot use the inode-count, as different inodes
2097 * might point to the same tty.
2098 *
2099 * Open-counting is needed for pty masters, as well as for keeping track of
2100 * serial lines: DTR is dropped when the last close happens.
2101 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2102 *
2103 * The termios state of a pty is reset on the first open so that settings don't
2104 * persist across reuse.
2105 *
2106 * Locking:
2107 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2108 *  * @tty->count should protect the rest.
2109 *  * ->siglock protects ->signal/->sighand
2110 *
2111 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2112 */
2113static int tty_open(struct inode *inode, struct file *filp)
2114{
2115	struct tty_struct *tty;
2116	int noctty, retval;
 
 
2117	dev_t device = inode->i_rdev;
2118	unsigned saved_flags = filp->f_flags;
2119
2120	nonseekable_open(inode, filp);
2121
2122retry_open:
2123	retval = tty_alloc_file(filp);
2124	if (retval)
2125		return -ENOMEM;
2126
 
 
 
 
 
 
 
2127	tty = tty_open_current_tty(device, filp);
2128	if (!tty)
2129		tty = tty_open_by_driver(device, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130
 
 
 
 
 
 
 
 
 
 
2131	if (IS_ERR(tty)) {
2132		tty_free_file(filp);
2133		retval = PTR_ERR(tty);
2134		if (retval != -EAGAIN || signal_pending(current))
2135			return retval;
2136		schedule();
2137		goto retry_open;
2138	}
2139
2140	tty_add_file(tty, filp);
2141
2142	check_tty_count(tty, __func__);
2143	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2144
 
 
 
 
2145	if (tty->ops->open)
2146		retval = tty->ops->open(tty, filp);
2147	else
2148		retval = -ENODEV;
2149	filp->f_flags = saved_flags;
2150
2151	if (retval) {
2152		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
 
2153
2154		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
 
 
 
2155		tty_release(inode, filp);
2156		if (retval != -ERESTARTSYS)
2157			return retval;
2158
2159		if (signal_pending(current))
2160			return retval;
2161
2162		schedule();
2163		/*
2164		 * Need to reset f_op in case a hangup happened.
2165		 */
2166		if (tty_hung_up_p(filp))
 
2167			filp->f_op = &tty_fops;
 
2168		goto retry_open;
2169	}
2170	clear_bit(TTY_HUPPED, &tty->flags);
 
2171
2172	noctty = (filp->f_flags & O_NOCTTY) ||
2173		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2174		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2175		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2176		  tty->driver->subtype == PTY_TYPE_MASTER);
2177	if (!noctty)
2178		tty_open_proc_set_tty(filp, tty);
2179	tty_unlock(tty);
 
 
 
2180	return 0;
 
 
 
 
 
 
 
 
 
2181}
2182
2183
 
2184/**
2185 * tty_poll - check tty status
2186 * @filp: file being polled
2187 * @wait: poll wait structures to update
2188 *
2189 * Call the line discipline polling method to obtain the poll status of the
2190 * device.
2191 *
2192 * Locking: locks called line discipline but ldisc poll method may be
2193 * re-entered freely by other callers.
2194 */
2195static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2196{
2197	struct tty_struct *tty = file_tty(filp);
2198	struct tty_ldisc *ld;
2199	__poll_t ret = 0;
2200
2201	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2202		return 0;
2203
2204	ld = tty_ldisc_ref_wait(tty);
2205	if (!ld)
2206		return hung_up_tty_poll(filp, wait);
2207	if (ld->ops->poll)
2208		ret = ld->ops->poll(tty, filp, wait);
2209	tty_ldisc_deref(ld);
2210	return ret;
2211}
2212
2213static int __tty_fasync(int fd, struct file *filp, int on)
2214{
2215	struct tty_struct *tty = file_tty(filp);
2216	unsigned long flags;
2217	int retval = 0;
2218
2219	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220		goto out;
2221
2222	if (on) {
2223		retval = file_f_owner_allocate(filp);
2224		if (retval)
2225			goto out;
2226	}
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
 
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
 
 
 
 
2249	}
 
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
 
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
 
 
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
 
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
 
 
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
 
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
 
 
2453 */
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
 
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
 
 
 
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
2478static int send_break(struct tty_struct *tty, unsigned int duration)
 
2479{
2480	int retval;
 
 
 
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
 
 
 
 
 
 
 
 
 
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
 
 
 
 
 
 
 
2504
2505	return retval;
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
 
 
 
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
 
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
 
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
 
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
 
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
 
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
 
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
 
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
 
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
 
 
 
 
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
 
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
 
3218}
 
 
 
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
 
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
 
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
 
 
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
 
3445	struct device *d;
3446
 
 
 
 
 
 
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
 
 
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
 
 
3495	return error;
3496}
 
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!(c->flags & CON_NBCON) && !c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec_minmax,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
 
 
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v3.5.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (tty->dev)
 185		put_device(tty->dev);
 186	kfree(tty->write_buf);
 187	tty_buffer_free_all(tty);
 188	kfree(tty);
 189}
 190
 191static inline struct tty_struct *file_tty(struct file *file)
 192{
 193	return ((struct tty_file_private *)file->private_data)->tty;
 194}
 195
 196int tty_alloc_file(struct file *file)
 197{
 198	struct tty_file_private *priv;
 199
 200	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 201	if (!priv)
 202		return -ENOMEM;
 203
 204	file->private_data = priv;
 205
 206	return 0;
 207}
 208
 209/* Associate a new file with the tty structure */
 210void tty_add_file(struct tty_struct *tty, struct file *file)
 211{
 212	struct tty_file_private *priv = file->private_data;
 213
 214	priv->tty = tty;
 215	priv->file = file;
 216
 217	spin_lock(&tty_files_lock);
 218	list_add(&priv->list, &tty->tty_files);
 219	spin_unlock(&tty_files_lock);
 220}
 221
 222/**
 223 * tty_free_file - free file->private_data
 
 224 *
 225 * This shall be used only for fail path handling when tty_add_file was not
 226 * called yet.
 227 */
 228void tty_free_file(struct file *file)
 229{
 230	struct tty_file_private *priv = file->private_data;
 231
 232	file->private_data = NULL;
 233	kfree(priv);
 234}
 235
 236/* Delete file from its tty */
 237void tty_del_file(struct file *file)
 238{
 239	struct tty_file_private *priv = file->private_data;
 
 240
 241	spin_lock(&tty_files_lock);
 242	list_del(&priv->list);
 243	spin_unlock(&tty_files_lock);
 244	tty_free_file(file);
 245}
 246
 247
 248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 249
 250/**
 251 *	tty_name	-	return tty naming
 252 *	@tty: tty structure
 253 *	@buf: buffer for output
 254 *
 255 *	Convert a tty structure into a name. The name reflects the kernel
 256 *	naming policy and if udev is in use may not reflect user space
 257 *
 258 *	Locking: none
 259 */
 260
 261char *tty_name(struct tty_struct *tty, char *buf)
 262{
 263	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 264		strcpy(buf, "NULL tty");
 265	else
 266		strcpy(buf, tty->name);
 267	return buf;
 268}
 
 269
 270EXPORT_SYMBOL(tty_name);
 
 
 
 
 
 271
 272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 273			      const char *routine)
 274{
 275#ifdef TTY_PARANOIA_CHECK
 276	if (!tty) {
 277		printk(KERN_WARNING
 278			"null TTY for (%d:%d) in %s\n",
 279			imajor(inode), iminor(inode), routine);
 280		return 1;
 281	}
 282	if (tty->magic != TTY_MAGIC) {
 283		printk(KERN_WARNING
 284			"bad magic number for tty struct (%d:%d) in %s\n",
 285			imajor(inode), iminor(inode), routine);
 286		return 1;
 287	}
 288#endif
 289	return 0;
 290}
 291
 292static int check_tty_count(struct tty_struct *tty, const char *routine)
 
 293{
 294#ifdef CHECK_TTY_COUNT
 295	struct list_head *p;
 296	int count = 0;
 297
 298	spin_lock(&tty_files_lock);
 299	list_for_each(p, &tty->tty_files) {
 300		count++;
 301	}
 302	spin_unlock(&tty_files_lock);
 303	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 304	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 305	    tty->link && tty->link->count)
 306		count++;
 307	if (tty->count != count) {
 308		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 309				    "!= #fd's(%d) in %s\n",
 310		       tty->name, tty->count, count, routine);
 311		return count;
 312	}
 313#endif
 314	return 0;
 315}
 316
 317/**
 318 *	get_tty_driver		-	find device of a tty
 319 *	@dev_t: device identifier
 320 *	@index: returns the index of the tty
 321 *
 322 *	This routine returns a tty driver structure, given a device number
 323 *	and also passes back the index number.
 324 *
 325 *	Locking: caller must hold tty_mutex
 326 */
 327
 328static struct tty_driver *get_tty_driver(dev_t device, int *index)
 329{
 330	struct tty_driver *p;
 331
 332	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 333		dev_t base = MKDEV(p->major, p->minor_start);
 
 334		if (device < base || device >= base + p->num)
 335			continue;
 336		*index = device - base;
 337		return tty_driver_kref_get(p);
 338	}
 339	return NULL;
 340}
 341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342#ifdef CONFIG_CONSOLE_POLL
 343
 344/**
 345 *	tty_find_polling_driver	-	find device of a polled tty
 346 *	@name: name string to match
 347 *	@line: pointer to resulting tty line nr
 348 *
 349 *	This routine returns a tty driver structure, given a name
 350 *	and the condition that the tty driver is capable of polled
 351 *	operation.
 352 */
 353struct tty_driver *tty_find_polling_driver(char *name, int *line)
 354{
 355	struct tty_driver *p, *res = NULL;
 356	int tty_line = 0;
 357	int len;
 358	char *str, *stp;
 359
 360	for (str = name; *str; str++)
 361		if ((*str >= '0' && *str <= '9') || *str == ',')
 362			break;
 363	if (!*str)
 364		return NULL;
 365
 366	len = str - name;
 367	tty_line = simple_strtoul(str, &str, 10);
 368
 369	mutex_lock(&tty_mutex);
 370	/* Search through the tty devices to look for a match */
 371	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 372		if (strncmp(name, p->name, len) != 0)
 373			continue;
 374		stp = str;
 375		if (*stp == ',')
 376			stp++;
 377		if (*stp == '\0')
 378			stp = NULL;
 379
 380		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 381		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 382			res = tty_driver_kref_get(p);
 383			*line = tty_line;
 384			break;
 385		}
 386	}
 387	mutex_unlock(&tty_mutex);
 388
 389	return res;
 390}
 391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 392#endif
 393
 394/**
 395 *	tty_check_change	-	check for POSIX terminal changes
 396 *	@tty: tty to check
 397 *
 398 *	If we try to write to, or set the state of, a terminal and we're
 399 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 400 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 401 *
 402 *	Locking: ctrl_lock
 403 */
 404
 405int tty_check_change(struct tty_struct *tty)
 406{
 407	unsigned long flags;
 408	int ret = 0;
 409
 410	if (current->signal->tty != tty)
 411		return 0;
 412
 413	spin_lock_irqsave(&tty->ctrl_lock, flags);
 414
 415	if (!tty->pgrp) {
 416		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 417		goto out_unlock;
 418	}
 419	if (task_pgrp(current) == tty->pgrp)
 420		goto out_unlock;
 421	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 422	if (is_ignored(SIGTTOU))
 423		goto out;
 424	if (is_current_pgrp_orphaned()) {
 425		ret = -EIO;
 426		goto out;
 427	}
 428	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 429	set_thread_flag(TIF_SIGPENDING);
 430	ret = -ERESTARTSYS;
 431out:
 432	return ret;
 433out_unlock:
 434	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 435	return ret;
 436}
 437
 438EXPORT_SYMBOL(tty_check_change);
 439
 440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 441				size_t count, loff_t *ppos)
 442{
 443	return 0;
 444}
 445
 446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 447				 size_t count, loff_t *ppos)
 448{
 449	return -EIO;
 450}
 451
 452/* No kernel lock held - none needed ;) */
 453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 454{
 455	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 456}
 457
 458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 459		unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static long hung_up_tty_compat_ioctl(struct file *file,
 465				     unsigned int cmd, unsigned long arg)
 466{
 467	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 470static const struct file_operations tty_fops = {
 471	.llseek		= no_llseek,
 472	.read		= tty_read,
 473	.write		= tty_write,
 
 474	.poll		= tty_poll,
 475	.unlocked_ioctl	= tty_ioctl,
 476	.compat_ioctl	= tty_compat_ioctl,
 477	.open		= tty_open,
 478	.release	= tty_release,
 479	.fasync		= tty_fasync,
 
 480};
 481
 482static const struct file_operations console_fops = {
 483	.llseek		= no_llseek,
 484	.read		= tty_read,
 485	.write		= redirected_tty_write,
 
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read		= hung_up_tty_read,
 497	.write		= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 *	tty_wakeup	-	request more data
 509 *	@tty: terminal
 510 *
 511 *	Internal and external helper for wakeups of tty. This function
 512 *	informs the line discipline if present that the driver is ready
 513 *	to receive more output data.
 514 */
 515
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 529}
 
 530
 531EXPORT_SYMBOL_GPL(tty_wakeup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533/**
 534 *	__tty_hangup		-	actual handler for hangup events
 535 *	@work: tty device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536 *
 537 *	This can be called by the "eventd" kernel thread.  That is process
 538 *	synchronous but doesn't hold any locks, so we need to make sure we
 539 *	have the appropriate locks for what we're doing.
 540 *
 541 *	The hangup event clears any pending redirections onto the hung up
 542 *	device. It ensures future writes will error and it does the needed
 543 *	line discipline hangup and signal delivery. The tty object itself
 544 *	remains intact.
 545 *
 546 *	Locking:
 547 *		BTM
 548 *		  redirect lock for undoing redirection
 549 *		  file list lock for manipulating list of ttys
 550 *		  tty_ldisc_lock from called functions
 551 *		  termios_mutex resetting termios data
 552 *		  tasklist_lock to walk task list for hangup event
 553 *		    ->siglock to protect ->signal/->sighand
 554 */
 555void __tty_hangup(struct tty_struct *tty)
 556{
 557	struct file *cons_filp = NULL;
 558	struct file *filp, *f = NULL;
 559	struct task_struct *p;
 560	struct tty_file_private *priv;
 561	int    closecount = 0, n;
 562	unsigned long flags;
 563	int refs = 0;
 564
 565	if (!tty)
 566		return;
 567
 
 568
 569	spin_lock(&redirect_lock);
 570	if (redirect && file_tty(redirect) == tty) {
 571		f = redirect;
 572		redirect = NULL;
 
 573	}
 574	spin_unlock(&redirect_lock);
 575
 576	tty_lock();
 577
 578	/* some functions below drop BTM, so we need this bit */
 
 
 
 579	set_bit(TTY_HUPPING, &tty->flags);
 580
 581	/* inuse_filps is protected by the single tty lock,
 582	   this really needs to change if we want to flush the
 583	   workqueue with the lock held */
 
 584	check_tty_count(tty, "tty_hangup");
 585
 586	spin_lock(&tty_files_lock);
 587	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 588	list_for_each_entry(priv, &tty->tty_files, list) {
 589		filp = priv->file;
 590		if (filp->f_op->write == redirected_tty_write)
 591			cons_filp = filp;
 592		if (filp->f_op->write != tty_write)
 593			continue;
 594		closecount++;
 595		__tty_fasync(-1, filp, 0);	/* can't block */
 596		filp->f_op = &hung_up_tty_fops;
 597	}
 598	spin_unlock(&tty_files_lock);
 599
 600	/*
 601	 * it drops BTM and thus races with reopen
 602	 * we protect the race by TTY_HUPPING
 603	 */
 604	tty_ldisc_hangup(tty);
 605
 606	read_lock(&tasklist_lock);
 607	if (tty->session) {
 608		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609			spin_lock_irq(&p->sighand->siglock);
 610			if (p->signal->tty == tty) {
 611				p->signal->tty = NULL;
 612				/* We defer the dereferences outside fo
 613				   the tasklist lock */
 614				refs++;
 615			}
 616			if (!p->signal->leader) {
 617				spin_unlock_irq(&p->sighand->siglock);
 618				continue;
 619			}
 620			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623			spin_lock_irqsave(&tty->ctrl_lock, flags);
 624			if (tty->pgrp)
 625				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 626			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 627			spin_unlock_irq(&p->sighand->siglock);
 628		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 629	}
 630	read_unlock(&tasklist_lock);
 631
 632	spin_lock_irqsave(&tty->ctrl_lock, flags);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_PUSH, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->session);
 637	put_pid(tty->pgrp);
 638	tty->session = NULL;
 639	tty->pgrp = NULL;
 640	tty->ctrl_status = 0;
 641	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 642
 643	/* Account for the p->signal references we killed */
 644	while (refs--)
 645		tty_kref_put(tty);
 646
 647	/*
 648	 * If one of the devices matches a console pointer, we
 649	 * cannot just call hangup() because that will cause
 650	 * tty->count and state->count to go out of sync.
 651	 * So we just call close() the right number of times.
 652	 */
 653	if (cons_filp) {
 654		if (tty->ops->close)
 655			for (n = 0; n < closecount; n++)
 656				tty->ops->close(tty, cons_filp);
 657	} else if (tty->ops->hangup)
 658		(tty->ops->hangup)(tty);
 659	/*
 660	 * We don't want to have driver/ldisc interactions beyond
 661	 * the ones we did here. The driver layer expects no
 662	 * calls after ->hangup() from the ldisc side. However we
 663	 * can't yet guarantee all that.
 664	 */
 665	set_bit(TTY_HUPPED, &tty->flags);
 666	clear_bit(TTY_HUPPING, &tty->flags);
 667	tty_ldisc_enable(tty);
 668
 669	tty_unlock();
 670
 671	if (f)
 672		fput(f);
 673}
 674
 675static void do_tty_hangup(struct work_struct *work)
 676{
 677	struct tty_struct *tty =
 678		container_of(work, struct tty_struct, hangup_work);
 679
 680	__tty_hangup(tty);
 681}
 682
 683/**
 684 *	tty_hangup		-	trigger a hangup event
 685 *	@tty: tty to hangup
 686 *
 687 *	A carrier loss (virtual or otherwise) has occurred on this like
 688 *	schedule a hangup sequence to run after this event.
 689 */
 690
 691void tty_hangup(struct tty_struct *tty)
 692{
 693#ifdef TTY_DEBUG_HANGUP
 694	char	buf[64];
 695	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 696#endif
 697	schedule_work(&tty->hangup_work);
 698}
 699
 700EXPORT_SYMBOL(tty_hangup);
 701
 702/**
 703 *	tty_vhangup		-	process vhangup
 704 *	@tty: tty to hangup
 705 *
 706 *	The user has asked via system call for the terminal to be hung up.
 707 *	We do this synchronously so that when the syscall returns the process
 708 *	is complete. That guarantee is necessary for security reasons.
 709 */
 710
 711void tty_vhangup(struct tty_struct *tty)
 712{
 713#ifdef TTY_DEBUG_HANGUP
 714	char	buf[64];
 715
 716	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 717#endif
 718	__tty_hangup(tty);
 719}
 720
 721EXPORT_SYMBOL(tty_vhangup);
 722
 723
 724/**
 725 *	tty_vhangup_self	-	process vhangup for own ctty
 726 *
 727 *	Perform a vhangup on the current controlling tty
 728 */
 729
 730void tty_vhangup_self(void)
 731{
 732	struct tty_struct *tty;
 733
 734	tty = get_current_tty();
 735	if (tty) {
 736		tty_vhangup(tty);
 737		tty_kref_put(tty);
 738	}
 739}
 740
 741/**
 742 *	tty_hung_up_p		-	was tty hung up
 743 *	@filp: file pointer of tty
 744 *
 745 *	Return true if the tty has been subject to a vhangup or a carrier
 746 *	loss
 
 
 
 747 */
 
 
 
 
 
 748
 
 
 
 
 
 
 749int tty_hung_up_p(struct file *filp)
 750{
 751	return (filp->f_op == &hung_up_tty_fops);
 752}
 753
 754EXPORT_SYMBOL(tty_hung_up_p);
 755
 756static void session_clear_tty(struct pid *session)
 757{
 758	struct task_struct *p;
 759	do_each_pid_task(session, PIDTYPE_SID, p) {
 760		proc_clear_tty(p);
 761	} while_each_pid_task(session, PIDTYPE_SID, p);
 
 762}
 763
 764/**
 765 *	disassociate_ctty	-	disconnect controlling tty
 766 *	@on_exit: true if exiting so need to "hang up" the session
 
 
 
 767 *
 768 *	This function is typically called only by the session leader, when
 769 *	it wants to disassociate itself from its controlling tty.
 
 770 *
 771 *	It performs the following functions:
 772 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 773 * 	(2)  Clears the tty from being controlling the session
 774 * 	(3)  Clears the controlling tty for all processes in the
 775 * 		session group.
 776 *
 777 *	The argument on_exit is set to 1 if called when a process is
 778 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 779 *
 780 *	Locking:
 781 *		BTM is taken for hysterical raisins, and held when
 782 *		  called from no_tty().
 783 *		  tty_mutex is taken to protect tty
 784 *		  ->siglock is taken to protect ->signal/->sighand
 785 *		  tasklist_lock is taken to walk process list for sessions
 786 *		    ->siglock is taken to protect ->signal/->sighand
 787 */
 788
 789void disassociate_ctty(int on_exit)
 790{
 791	struct tty_struct *tty;
 792
 793	if (!current->signal->leader)
 794		return;
 
 
 
 795
 796	tty = get_current_tty();
 797	if (tty) {
 798		struct pid *tty_pgrp = get_pid(tty->pgrp);
 799		if (on_exit) {
 800			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 801				tty_vhangup(tty);
 802		}
 803		tty_kref_put(tty);
 804		if (tty_pgrp) {
 805			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 806			if (!on_exit)
 807				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 808			put_pid(tty_pgrp);
 809		}
 810	} else if (on_exit) {
 811		struct pid *old_pgrp;
 812		spin_lock_irq(&current->sighand->siglock);
 813		old_pgrp = current->signal->tty_old_pgrp;
 814		current->signal->tty_old_pgrp = NULL;
 815		spin_unlock_irq(&current->sighand->siglock);
 816		if (old_pgrp) {
 817			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 818			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 819			put_pid(old_pgrp);
 820		}
 821		return;
 822	}
 823
 824	spin_lock_irq(&current->sighand->siglock);
 825	put_pid(current->signal->tty_old_pgrp);
 826	current->signal->tty_old_pgrp = NULL;
 827	spin_unlock_irq(&current->sighand->siglock);
 828
 829	tty = get_current_tty();
 830	if (tty) {
 831		unsigned long flags;
 832		spin_lock_irqsave(&tty->ctrl_lock, flags);
 833		put_pid(tty->session);
 834		put_pid(tty->pgrp);
 835		tty->session = NULL;
 836		tty->pgrp = NULL;
 837		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 838		tty_kref_put(tty);
 839	} else {
 840#ifdef TTY_DEBUG_HANGUP
 841		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 842		       " = NULL", tty);
 843#endif
 844	}
 845
 846	/* Now clear signal->tty under the lock */
 847	read_lock(&tasklist_lock);
 848	session_clear_tty(task_session(current));
 849	read_unlock(&tasklist_lock);
 850}
 851
 852/**
 
 
 853 *
 854 *	no_tty	- Ensure the current process does not have a controlling tty
 
 
 
 
 
 855 */
 856void no_tty(void)
 857{
 858	/* FIXME: Review locking here. The tty_lock never covered any race
 859	   between a new association and proc_clear_tty but possible we need
 860	   to protect against this anyway */
 861	struct task_struct *tsk = current;
 862	disassociate_ctty(0);
 863	proc_clear_tty(tsk);
 864}
 
 865
 
 
 
 
 866
 867/**
 868 *	stop_tty	-	propagate flow control
 869 *	@tty: tty to stop
 870 *
 871 *	Perform flow control to the driver. For PTY/TTY pairs we
 872 *	must also propagate the TIOCKPKT status. May be called
 873 *	on an already stopped device and will not re-call the driver
 874 *	method.
 875 *
 876 *	This functionality is used by both the line disciplines for
 877 *	halting incoming flow and by the driver. It may therefore be
 878 *	called from any context, may be under the tty atomic_write_lock
 879 *	but not always.
 880 *
 881 *	Locking:
 882 *		Uses the tty control lock internally
 883 */
 884
 885void stop_tty(struct tty_struct *tty)
 886{
 887	unsigned long flags;
 888	spin_lock_irqsave(&tty->ctrl_lock, flags);
 889	if (tty->stopped) {
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		return;
 892	}
 893	tty->stopped = 1;
 894	if (tty->link && tty->link->packet) {
 895		tty->ctrl_status &= ~TIOCPKT_START;
 896		tty->ctrl_status |= TIOCPKT_STOP;
 897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 898	}
 899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 900	if (tty->ops->stop)
 901		(tty->ops->stop)(tty);
 902}
 903
 904EXPORT_SYMBOL(stop_tty);
 905
 906/**
 907 *	start_tty	-	propagate flow control
 908 *	@tty: tty to start
 909 *
 910 *	Start a tty that has been stopped if at all possible. Perform
 911 *	any necessary wakeups and propagate the TIOCPKT status. If this
 912 *	is the tty was previous stopped and is being started then the
 913 *	driver start method is invoked and the line discipline woken.
 914 *
 915 *	Locking:
 916 *		ctrl_lock
 917 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919void start_tty(struct tty_struct *tty)
 920{
 921	unsigned long flags;
 922	spin_lock_irqsave(&tty->ctrl_lock, flags);
 923	if (!tty->stopped || tty->flow_stopped) {
 924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 925		return;
 926	}
 927	tty->stopped = 0;
 928	if (tty->link && tty->link->packet) {
 929		tty->ctrl_status &= ~TIOCPKT_STOP;
 930		tty->ctrl_status |= TIOCPKT_START;
 931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 932	}
 933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 934	if (tty->ops->start)
 935		(tty->ops->start)(tty);
 936	/* If we have a running line discipline it may need kicking */
 937	tty_wakeup(tty);
 938}
 939
 940EXPORT_SYMBOL(start_tty);
 941
 942/**
 943 *	tty_read	-	read method for tty device files
 944 *	@file: pointer to tty file
 945 *	@buf: user buffer
 946 *	@count: size of user buffer
 947 *	@ppos: unused
 948 *
 949 *	Perform the read system call function on this terminal device. Checks
 950 *	for hung up devices before calling the line discipline method.
 951 *
 952 *	Locking:
 953 *		Locks the line discipline internally while needed. Multiple
 954 *	read calls may be outstanding in parallel.
 955 */
 956
 957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 958			loff_t *ppos)
 959{
 960	int i;
 961	struct inode *inode = file->f_path.dentry->d_inode;
 962	struct tty_struct *tty = file_tty(file);
 963	struct tty_ldisc *ld;
 
 964
 965	if (tty_paranoia_check(tty, inode, "tty_read"))
 966		return -EIO;
 967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 968		return -EIO;
 969
 970	/* We want to wait for the line discipline to sort out in this
 971	   situation */
 
 972	ld = tty_ldisc_ref_wait(tty);
 
 
 
 973	if (ld->ops->read)
 974		i = (ld->ops->read)(tty, file, buf, count);
 975	else
 976		i = -EIO;
 977	tty_ldisc_deref(ld);
 978	if (i > 0)
 979		inode->i_atime = current_fs_time(inode->i_sb);
 980	return i;
 
 
 981}
 982
 983void tty_write_unlock(struct tty_struct *tty)
 984	__releases(&tty->atomic_write_lock)
 985{
 986	mutex_unlock(&tty->atomic_write_lock);
 987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 988}
 989
 990int tty_write_lock(struct tty_struct *tty, int ndelay)
 991	__acquires(&tty->atomic_write_lock)
 992{
 993	if (!mutex_trylock(&tty->atomic_write_lock)) {
 994		if (ndelay)
 995			return -EAGAIN;
 996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 997			return -ERESTARTSYS;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
 
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
1062		if (size > chunk)
1063			size = chunk;
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
1067		ret = write(tty, file, tty->write_buf, size);
 
1068		if (ret <= 0)
1069			break;
 
1070		written += ret;
1071		buf += ret;
 
 
 
 
 
 
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
 
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
 
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
 
 
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
 
 
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
 
 
 
 
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
 
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
 
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
 
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
 
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
1233	if (driver->ops->lookup)
1234		return driver->ops->lookup(driver, inode, idx);
1235
1236	return driver->ttys[idx];
 
 
 
 
 
 
 
 
 
 
 
 
1237}
1238
1239/**
1240 *	tty_init_termios	-  helper for termios setup
1241 *	@tty: the tty to set up
1242 *
1243 *	Initialise the termios structures for this tty. Thus runs under
1244 *	the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	tp = tty->driver->termios[idx];
1253	if (tp == NULL) {
1254		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255		if (tp == NULL)
1256			return -ENOMEM;
1257		memcpy(tp, &tty->driver->init_termios,
1258						sizeof(struct ktermios));
1259		tty->driver->termios[idx] = tp;
 
 
1260	}
1261	tty->termios = tp;
1262	tty->termios_locked = tp + 1;
1263
1264	/* Compatibility until drivers always set this */
1265	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
 
 
 
 
 
 
 
 
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273	int ret = tty_init_termios(tty);
1274	if (ret)
1275		return ret;
1276
1277	tty_driver_kref_get(driver);
1278	tty->count++;
1279	driver->ttys[tty->index] = tty;
1280	return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 *	tty_driver_install_tty() - install a tty entry in the driver
1286 *	@driver: the driver for the tty
1287 *	@tty: the tty
1288 *
1289 *	Install a tty object into the driver tables. The tty->index field
1290 *	will be set by the time this is called. This method is responsible
1291 *	for ensuring any need additional structures are allocated and
1292 *	configured.
1293 *
1294 *	Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297						struct tty_struct *tty)
1298{
1299	return driver->ops->install ? driver->ops->install(driver, tty) :
1300		tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 *	tty_driver_remove_tty() - remove a tty from the driver tables
1305 *	@driver: the driver for the tty
1306 *	@idx:	 the minor number
1307 *
1308 *	Remvoe a tty object from the driver tables. The tty->index field
1309 *	will be set by the time this is called.
1310 *
1311 *	Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315	if (driver->ops->remove)
1316		driver->ops->remove(driver, tty);
1317	else
1318		driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * 	tty_reopen()	- fast re-open of an open tty
1323 * 	@tty	- the tty to open
1324 *
1325 *	Return 0 on success, -errno on error.
1326 *
1327 *	Locking: tty_mutex must be held from the time the tty was found
1328 *		 till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332	struct tty_driver *driver = tty->driver;
 
 
1333
1334	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335			test_bit(TTY_HUPPING, &tty->flags) ||
1336			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337		return -EIO;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER) {
1341		/*
1342		 * special case for PTY masters: only one open permitted,
1343		 * and the slave side open count is incremented as well.
1344		 */
1345		if (tty->count)
1346			return -EIO;
 
 
 
 
 
1347
1348		tty->link->count++;
 
 
1349	}
1350	tty->count++;
1351
1352	mutex_lock(&tty->ldisc_mutex);
1353	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354	mutex_unlock(&tty->ldisc_mutex);
1355
1356	return 0;
1357}
1358
1359/**
1360 *	tty_init_dev		-	initialise a tty device
1361 *	@driver: tty driver we are opening a device on
1362 *	@idx: device index
1363 *	@ret_tty: returned tty structure
1364 *
1365 *	Prepare a tty device. This may not be a "new" clean device but
1366 *	could also be an active device. The pty drivers require special
1367 *	handling because of this.
1368 *
1369 *	Locking:
1370 *		The function is called under the tty_mutex, which
1371 *	protects us from the tty struct or driver itself going away.
1372 *
1373 *	On exit the tty device has the line discipline attached and
1374 *	a reference count of 1. If a pair was created for pty/tty use
1375 *	and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open.  The new code protects the open with a mutex, so it's
1379 * really quite straightforward.  The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385	struct tty_struct *tty;
1386	int retval;
1387
1388	/*
1389	 * First time open is complex, especially for PTY devices.
1390	 * This code guarantees that either everything succeeds and the
1391	 * TTY is ready for operation, or else the table slots are vacated
1392	 * and the allocated memory released.  (Except that the termios
1393	 * and locked termios may be retained.)
1394	 */
1395
1396	if (!try_module_get(driver->owner))
1397		return ERR_PTR(-ENODEV);
1398
1399	tty = alloc_tty_struct();
1400	if (!tty) {
1401		retval = -ENOMEM;
1402		goto err_module_put;
1403	}
1404	initialize_tty_struct(tty, driver, idx);
1405
 
1406	retval = tty_driver_install_tty(driver, tty);
1407	if (retval < 0)
1408		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * Structures all installed ... call the ldisc open routines.
1412	 * If we fail here just call release_tty to clean up.  No need
1413	 * to decrement the use counts, as release_tty doesn't care.
1414	 */
1415	retval = tty_ldisc_setup(tty, tty->link);
1416	if (retval)
1417		goto err_release_tty;
 
 
1418	return tty;
1419
1420err_deinit_tty:
1421	deinitialize_tty_struct(tty);
1422	free_tty_struct(tty);
1423err_module_put:
1424	module_put(driver->owner);
1425	return ERR_PTR(retval);
1426
1427	/* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430				 "clearing slot %d\n", idx);
 
 
 
1431	release_tty(tty, idx);
1432	return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1436{
1437	struct ktermios *tp;
1438	int idx = tty->index;
1439	/* Kill this flag and push into drivers for locking etc */
1440	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441		/* FIXME: Locking on ->termios array */
1442		tp = tty->termios;
1443		tty->driver->termios[idx] = NULL;
1444		kfree(tp);
 
 
 
 
 
 
1445	}
 
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1450{
1451	tty_driver_remove_tty(tty->driver, tty);
1452	tty_free_termios(tty);
 
 
 
 
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 *	release_one_tty		-	release tty structure memory
1458 *	@kref: kref of tty we are obliterating
1459 *
1460 *	Releases memory associated with a tty structure, and clears out the
1461 *	driver table slots. This function is called when a device is no longer
1462 *	in use. It also gets called when setup of a device fails.
1463 *
1464 *	Locking:
1465 *		tty_mutex - sometimes only
1466 *		takes the file list lock internally when working on the list
1467 *	of ttys that the driver keeps.
1468 *
1469 *	This method gets called from a work queue so that the driver private
1470 *	cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474	struct tty_struct *tty =
1475		container_of(work, struct tty_struct, hangup_work);
1476	struct tty_driver *driver = tty->driver;
 
1477
1478	if (tty->ops->cleanup)
1479		tty->ops->cleanup(tty);
1480
1481	tty->magic = 0;
1482	tty_driver_kref_put(driver);
1483	module_put(driver->owner);
1484
1485	spin_lock(&tty_files_lock);
1486	list_del_init(&tty->tty_files);
1487	spin_unlock(&tty_files_lock);
1488
1489	put_pid(tty->pgrp);
1490	put_pid(tty->session);
1491	free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498	if (tty->ops->shutdown)
1499		tty->ops->shutdown(tty);
1500	else
1501		tty_shutdown(tty);
1502
1503	/* The hangup queue is now free so we can reuse it rather than
1504	   waste a chunk of memory for each port */
 
1505	INIT_WORK(&tty->hangup_work, release_one_tty);
1506	schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 *	tty_kref_put		-	release a tty kref
1511 *	@tty: tty device
1512 *
1513 *	Release a reference to a tty device and if need be let the kref
1514 *	layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519	if (tty)
1520		kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 *	release_tty		-	release tty structure memory
1526 *
1527 *	Release both @tty and a possible linked partner (think pty pair),
1528 *	and decrement the refcount of the backing module.
1529 *
1530 *	Locking:
1531 *		tty_mutex - sometimes only
1532 *		takes the file list lock internally when working on the list
1533 *	of ttys that the driver keeps.
1534 *		FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539	/* This should always be true but check for the moment */
1540	WARN_ON(tty->index != idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	if (tty->link)
1543		tty_kref_put(tty->link);
1544	tty_kref_put(tty);
1545}
1546
1547/**
1548 *	tty_release_checks - check a tty before real release
1549 *	@tty: tty to check
1550 *	@o_tty: link of @tty (if any)
1551 *	@idx: index of the tty
1552 *
1553 *	Performs some paranoid checking before true release of the @tty.
1554 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557		int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560	if (idx < 0 || idx >= tty->driver->num) {
1561		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562				__func__, tty->name);
1563		return -1;
1564	}
1565
1566	/* not much to check for devpts */
1567	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568		return 0;
1569
1570	if (tty != tty->driver->ttys[idx]) {
1571		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572				__func__, idx, tty->name);
1573		return -1;
1574	}
1575	if (tty->termios != tty->driver->termios[idx]) {
1576		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577				__func__, idx, tty->name);
1578		return -1;
1579	}
1580	if (tty->driver->other) {
 
 
1581		if (o_tty != tty->driver->other->ttys[idx]) {
1582			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583					__func__, idx, tty->name);
1584			return -1;
1585		}
1586		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588					__func__, idx, tty->name);
1589			return -1;
1590		}
1591		if (o_tty->link != tty) {
1592			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593			return -1;
1594		}
1595	}
1596#endif
1597	return 0;
1598}
1599
1600/**
1601 *	tty_release		-	vfs callback for close
1602 *	@inode: inode of tty
1603 *	@filp: file pointer for handle to tty
1604 *
1605 *	Called the last time each file handle is closed that references
1606 *	this tty. There may however be several such references.
1607 *
1608 *	Locking:
1609 *		Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621	struct tty_struct *tty = file_tty(filp);
1622	struct tty_struct *o_tty;
1623	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624	int	devpts;
1625	int	idx;
1626	char	buf[64];
 
1627
1628	if (tty_paranoia_check(tty, inode, __func__))
1629		return 0;
1630
1631	tty_lock();
1632	check_tty_count(tty, __func__);
1633
1634	__tty_fasync(-1, filp, 0);
1635
1636	idx = tty->index;
1637	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638		      tty->driver->subtype == PTY_TYPE_MASTER);
1639	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640	o_tty = tty->link;
1641
1642	if (tty_release_checks(tty, o_tty, idx)) {
1643		tty_unlock();
1644		return 0;
1645	}
1646
1647#ifdef TTY_DEBUG_HANGUP
1648	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649			tty_name(tty, buf), tty->count);
1650#endif
1651
1652	if (tty->ops->close)
1653		tty->ops->close(tty, filp);
1654
1655	tty_unlock();
 
 
1656	/*
1657	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659	 * wait queues and kick everyone out _before_ actually starting to
1660	 * close.  This ensures that we won't block while releasing the tty
1661	 * structure.
1662	 *
1663	 * The test for the o_tty closing is necessary, since the master and
1664	 * slave sides may close in any order.  If the slave side closes out
1665	 * first, its count will be one, since the master side holds an open.
1666	 * Thus this test wouldn't be triggered at the time the slave closes,
1667	 * so we do it now.
1668	 *
1669	 * Note that it's possible for the tty to be opened again while we're
1670	 * flushing out waiters.  By recalculating the closing flags before
1671	 * each iteration we avoid any problems.
1672	 */
1673	while (1) {
1674		/* Guard against races with tty->count changes elsewhere and
1675		   opens on /dev/tty */
1676
1677		mutex_lock(&tty_mutex);
1678		tty_lock();
1679		tty_closing = tty->count <= 1;
1680		o_tty_closing = o_tty &&
1681			(o_tty->count <= (pty_master ? 1 : 0));
1682		do_sleep = 0;
1683
1684		if (tty_closing) {
1685			if (waitqueue_active(&tty->read_wait)) {
1686				wake_up_poll(&tty->read_wait, POLLIN);
1687				do_sleep++;
1688			}
1689			if (waitqueue_active(&tty->write_wait)) {
1690				wake_up_poll(&tty->write_wait, POLLOUT);
1691				do_sleep++;
1692			}
1693		}
1694		if (o_tty_closing) {
1695			if (waitqueue_active(&o_tty->read_wait)) {
1696				wake_up_poll(&o_tty->read_wait, POLLIN);
1697				do_sleep++;
1698			}
1699			if (waitqueue_active(&o_tty->write_wait)) {
1700				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701				do_sleep++;
1702			}
1703		}
1704		if (!do_sleep)
1705			break;
1706
1707		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708				__func__, tty_name(tty, buf));
1709		tty_unlock();
1710		mutex_unlock(&tty_mutex);
1711		schedule();
 
 
 
 
1712	}
1713
1714	/*
1715	 * The closing flags are now consistent with the open counts on
1716	 * both sides, and we've completed the last operation that could
1717	 * block, so it's safe to proceed with closing.
1718	 */
1719	if (pty_master) {
1720		if (--o_tty->count < 0) {
1721			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722				__func__, o_tty->count, tty_name(o_tty, buf));
1723			o_tty->count = 0;
1724		}
1725	}
1726	if (--tty->count < 0) {
1727		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728				__func__, tty->count, tty_name(tty, buf));
1729		tty->count = 0;
1730	}
1731
1732	/*
1733	 * We've decremented tty->count, so we need to remove this file
1734	 * descriptor off the tty->tty_files list; this serves two
1735	 * purposes:
1736	 *  - check_tty_count sees the correct number of file descriptors
1737	 *    associated with this tty.
1738	 *  - do_tty_hangup no longer sees this file descriptor as
1739	 *    something that needs to be handled for hangups.
1740	 */
1741	tty_del_file(filp);
1742
1743	/*
1744	 * Perform some housekeeping before deciding whether to return.
1745	 *
1746	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747	 * case of a pty we may have to wait around for the other side
1748	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749	 */
1750	if (tty_closing)
1751		set_bit(TTY_CLOSING, &tty->flags);
1752	if (o_tty_closing)
1753		set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755	/*
1756	 * If _either_ side is closing, make sure there aren't any
1757	 * processes that still think tty or o_tty is their controlling
1758	 * tty.
1759	 */
1760	if (tty_closing || o_tty_closing) {
1761		read_lock(&tasklist_lock);
1762		session_clear_tty(tty->session);
1763		if (o_tty)
1764			session_clear_tty(o_tty->session);
1765		read_unlock(&tasklist_lock);
1766	}
1767
1768	mutex_unlock(&tty_mutex);
 
 
 
 
 
 
 
 
1769
1770	/* check whether both sides are closing ... */
1771	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772		tty_unlock();
1773		return 0;
1774	}
1775
1776#ifdef TTY_DEBUG_HANGUP
1777	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779	/*
1780	 * Ask the line discipline code to release its structures
1781	 */
1782	tty_ldisc_release(tty, o_tty);
1783	/*
1784	 * The release_tty function takes care of the details of clearing
1785	 * the slots and preserving the termios structure.
1786	 */
1787	release_tty(tty, idx);
1788
1789	/* Make this pty number available for reallocation */
1790	if (devpts)
1791		devpts_kill_index(inode, idx);
1792	tty_unlock();
1793	return 0;
1794}
1795
1796/**
1797 *	tty_open_current_tty - get tty of current task for open
1798 *	@device: device number
1799 *	@filp: file pointer to tty
1800 *	@return: tty of the current task iff @device is /dev/tty
1801 *
1802 *	We cannot return driver and index like for the other nodes because
1803 *	devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 *	We need to move to returning a refcounted object from all the lookup
1806 *	paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810	struct tty_struct *tty;
 
1811
1812	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813		return NULL;
1814
1815	tty = get_current_tty();
1816	if (!tty)
1817		return ERR_PTR(-ENXIO);
1818
1819	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820	/* noctty = 1; */
1821	tty_kref_put(tty);
1822	/* FIXME: we put a reference and return a TTY! */
1823	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1824	return tty;
1825}
1826
1827/**
1828 *	tty_lookup_driver - lookup a tty driver for a given device file
1829 *	@device: device number
1830 *	@filp: file pointer to tty
1831 *	@noctty: set if the device should not become a controlling tty
1832 *	@index: index for the device in the @return driver
1833 *	@return: driver for this inode (with increased refcount)
1834 *
1835 * 	If @return is not erroneous, the caller is responsible to decrement the
1836 * 	refcount by tty_driver_kref_put.
1837 *
1838 *	Locking: tty_mutex protects get_tty_driver
 
 
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841		int *noctty, int *index)
1842{
1843	struct tty_driver *driver;
1844
1845	switch (device) {
1846#ifdef CONFIG_VT
1847	case MKDEV(TTY_MAJOR, 0): {
1848		extern struct tty_driver *console_driver;
 
1849		driver = tty_driver_kref_get(console_driver);
1850		*index = fg_console;
1851		*noctty = 1;
1852		break;
1853	}
1854#endif
1855	case MKDEV(TTYAUX_MAJOR, 1): {
1856		struct tty_driver *console_driver = console_device(index);
 
1857		if (console_driver) {
1858			driver = tty_driver_kref_get(console_driver);
1859			if (driver) {
1860				/* Don't let /dev/console block */
1861				filp->f_flags |= O_NONBLOCK;
1862				*noctty = 1;
1863				break;
1864			}
1865		}
 
 
1866		return ERR_PTR(-ENODEV);
1867	}
1868	default:
1869		driver = get_tty_driver(device, index);
1870		if (!driver)
1871			return ERR_PTR(-ENODEV);
1872		break;
1873	}
1874	return driver;
1875}
1876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877/**
1878 *	tty_open		-	open a tty device
1879 *	@inode: inode of device file
1880 *	@filp: file pointer to tty
1881 *
1882 *	tty_open and tty_release keep up the tty count that contains the
1883 *	number of opens done on a tty. We cannot use the inode-count, as
1884 *	different inodes might point to the same tty.
1885 *
1886 *	Open-counting is needed for pty masters, as well as for keeping
1887 *	track of serial lines: DTR is dropped when the last close happens.
1888 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889 *
1890 *	The termios state of a pty is reset on first open so that
1891 *	settings don't persist across reuse.
1892 *
1893 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 *		 tty->count should protect the rest.
1895 *		 ->siglock protects ->signal/->sighand
1896 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901	int noctty, retval;
1902	struct tty_driver *driver = NULL;
1903	int index;
1904	dev_t device = inode->i_rdev;
1905	unsigned saved_flags = filp->f_flags;
1906
1907	nonseekable_open(inode, filp);
1908
1909retry_open:
1910	retval = tty_alloc_file(filp);
1911	if (retval)
1912		return -ENOMEM;
1913
1914	noctty = filp->f_flags & O_NOCTTY;
1915	index  = -1;
1916	retval = 0;
1917
1918	mutex_lock(&tty_mutex);
1919	tty_lock();
1920
1921	tty = tty_open_current_tty(device, filp);
1922	if (IS_ERR(tty)) {
1923		retval = PTR_ERR(tty);
1924		goto err_unlock;
1925	} else if (!tty) {
1926		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927		if (IS_ERR(driver)) {
1928			retval = PTR_ERR(driver);
1929			goto err_unlock;
1930		}
1931
1932		/* check whether we're reopening an existing tty */
1933		tty = tty_driver_lookup_tty(driver, inode, index);
1934		if (IS_ERR(tty)) {
1935			retval = PTR_ERR(tty);
1936			goto err_unlock;
1937		}
1938	}
1939
1940	if (tty) {
1941		retval = tty_reopen(tty);
1942		if (retval)
1943			tty = ERR_PTR(retval);
1944	} else
1945		tty = tty_init_dev(driver, index);
1946
1947	mutex_unlock(&tty_mutex);
1948	if (driver)
1949		tty_driver_kref_put(driver);
1950	if (IS_ERR(tty)) {
1951		tty_unlock();
1952		retval = PTR_ERR(tty);
1953		goto err_file;
 
 
 
1954	}
1955
1956	tty_add_file(tty, filp);
1957
1958	check_tty_count(tty, __func__);
1959	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960	    tty->driver->subtype == PTY_TYPE_MASTER)
1961		noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965	if (tty->ops->open)
1966		retval = tty->ops->open(tty, filp);
1967	else
1968		retval = -ENODEV;
1969	filp->f_flags = saved_flags;
1970
1971	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972						!capable(CAP_SYS_ADMIN))
1973		retval = -EBUSY;
1974
1975	if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978				retval, tty->name);
1979#endif
1980		tty_unlock(); /* need to call tty_release without BTM */
1981		tty_release(inode, filp);
1982		if (retval != -ERESTARTSYS)
1983			return retval;
1984
1985		if (signal_pending(current))
1986			return retval;
1987
1988		schedule();
1989		/*
1990		 * Need to reset f_op in case a hangup happened.
1991		 */
1992		tty_lock();
1993		if (filp->f_op == &hung_up_tty_fops)
1994			filp->f_op = &tty_fops;
1995		tty_unlock();
1996		goto retry_open;
1997	}
1998	tty_unlock();
1999
2000
2001	mutex_lock(&tty_mutex);
2002	tty_lock();
2003	spin_lock_irq(&current->sighand->siglock);
2004	if (!noctty &&
2005	    current->signal->leader &&
2006	    !current->signal->tty &&
2007	    tty->session == NULL)
2008		__proc_set_tty(current, tty);
2009	spin_unlock_irq(&current->sighand->siglock);
2010	tty_unlock();
2011	mutex_unlock(&tty_mutex);
2012	return 0;
2013err_unlock:
2014	tty_unlock();
2015	mutex_unlock(&tty_mutex);
2016	/* after locks to avoid deadlock */
2017	if (!IS_ERR_OR_NULL(driver))
2018		tty_driver_kref_put(driver);
2019err_file:
2020	tty_free_file(filp);
2021	return retval;
2022}
2023
2024
2025
2026/**
2027 *	tty_poll	-	check tty status
2028 *	@filp: file being polled
2029 *	@wait: poll wait structures to update
2030 *
2031 *	Call the line discipline polling method to obtain the poll
2032 *	status of the device.
2033 *
2034 *	Locking: locks called line discipline but ldisc poll method
2035 *	may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040	struct tty_struct *tty = file_tty(filp);
2041	struct tty_ldisc *ld;
2042	int ret = 0;
2043
2044	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045		return 0;
2046
2047	ld = tty_ldisc_ref_wait(tty);
 
 
2048	if (ld->ops->poll)
2049		ret = (ld->ops->poll)(tty, filp, wait);
2050	tty_ldisc_deref(ld);
2051	return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056	struct tty_struct *tty = file_tty(filp);
2057	unsigned long flags;
2058	int retval = 0;
2059
2060	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061		goto out;
2062
 
 
 
 
 
 
2063	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064	if (retval <= 0)
2065		goto out;
2066
2067	if (on) {
2068		enum pid_type type;
2069		struct pid *pid;
2070		if (!waitqueue_active(&tty->read_wait))
2071			tty->minimum_to_wake = 1;
2072		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073		if (tty->pgrp) {
2074			pid = tty->pgrp;
2075			type = PIDTYPE_PGID;
2076		} else {
2077			pid = task_pid(current);
2078			type = PIDTYPE_PID;
2079		}
2080		get_pid(pid);
2081		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082		retval = __f_setown(filp, pid, type, 0);
2083		put_pid(pid);
2084		if (retval)
2085			goto out;
2086	} else {
2087		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089	}
2090	retval = 0;
2091out:
2092	return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097	int retval;
2098	tty_lock();
2099	retval = __tty_fasync(fd, filp, on);
2100	tty_unlock();
 
 
 
 
2101	return retval;
2102}
2103
 
2104/**
2105 *	tiocsti			-	fake input character
2106 *	@tty: tty to fake input into
2107 *	@p: pointer to character
2108 *
2109 *	Fake input to a tty device. Does the necessary locking and
2110 *	input management.
2111 *
2112 *	FIXME: does not honour flow control ??
2113 *
2114 *	Locking:
2115 *		Called functions take tty_ldisc_lock
2116 *		current->signal->tty check is safe without locks
2117 *
2118 *	FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123	char ch, mbz = 0;
2124	struct tty_ldisc *ld;
 
 
 
 
2125
2126	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127		return -EPERM;
2128	if (get_user(ch, p))
2129		return -EFAULT;
2130	tty_audit_tiocsti(tty, ch);
2131	ld = tty_ldisc_ref_wait(tty);
2132	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2133	tty_ldisc_deref(ld);
2134	return 0;
2135}
2136
2137/**
2138 *	tiocgwinsz		-	implement window query ioctl
2139 *	@tty; tty
2140 *	@arg: user buffer for result
2141 *
2142 *	Copies the kernel idea of the window size into the user buffer.
2143 *
2144 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145 *		is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150	int err;
2151
2152	mutex_lock(&tty->termios_mutex);
2153	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154	mutex_unlock(&tty->termios_mutex);
2155
2156	return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 *	tty_do_resize		-	resize event
2161 *	@tty: tty being resized
2162 *	@rows: rows (character)
2163 *	@cols: cols (character)
2164 *
2165 *	Update the termios variables and send the necessary signals to
2166 *	peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171	struct pid *pgrp;
2172	unsigned long flags;
2173
2174	/* Lock the tty */
2175	mutex_lock(&tty->termios_mutex);
2176	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177		goto done;
2178	/* Get the PID values and reference them so we can
2179	   avoid holding the tty ctrl lock while sending signals */
2180	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181	pgrp = get_pid(tty->pgrp);
2182	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
 
 
2184	if (pgrp)
2185		kill_pgrp(pgrp, SIGWINCH, 1);
2186	put_pid(pgrp);
2187
2188	tty->winsize = *ws;
2189done:
2190	mutex_unlock(&tty->termios_mutex);
2191	return 0;
2192}
 
2193
2194/**
2195 *	tiocswinsz		-	implement window size set ioctl
2196 *	@tty; tty side of tty
2197 *	@arg: user buffer for result
2198 *
2199 *	Copies the user idea of the window size to the kernel. Traditionally
2200 *	this is just advisory information but for the Linux console it
2201 *	actually has driver level meaning and triggers a VC resize.
2202 *
2203 *	Locking:
2204 *		Driver dependent. The default do_resize method takes the
2205 *	tty termios mutex and ctrl_lock. The console takes its own lock
2206 *	then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211	struct winsize tmp_ws;
 
2212	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213		return -EFAULT;
2214
2215	if (tty->ops->resize)
2216		return tty->ops->resize(tty, &tmp_ws);
2217	else
2218		return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 *	tioccons	-	allow admin to move logical console
2223 *	@file: the file to become console
2224 *
2225 *	Allow the administrator to move the redirected console device
2226 *
2227 *	Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234	if (file->f_op->write == redirected_tty_write) {
2235		struct file *f;
 
2236		spin_lock(&redirect_lock);
2237		f = redirect;
2238		redirect = NULL;
2239		spin_unlock(&redirect_lock);
2240		if (f)
2241			fput(f);
2242		return 0;
2243	}
 
 
 
 
 
 
2244	spin_lock(&redirect_lock);
2245	if (redirect) {
2246		spin_unlock(&redirect_lock);
2247		return -EBUSY;
2248	}
2249	get_file(file);
2250	redirect = file;
2251	spin_unlock(&redirect_lock);
2252	return 0;
2253}
2254
2255/**
2256 *	fionbio		-	non blocking ioctl
2257 *	@file: file to set blocking value
2258 *	@p: user parameter
2259 *
2260 *	Historical tty interfaces had a blocking control ioctl before
2261 *	the generic functionality existed. This piece of history is preserved
2262 *	in the expected tty API of posix OS's.
2263 *
2264 *	Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269	int nonblock;
 
2270
2271	if (get_user(nonblock, p))
2272		return -EFAULT;
2273
2274	spin_lock(&file->f_lock);
2275	if (nonblock)
2276		file->f_flags |= O_NONBLOCK;
2277	else
2278		file->f_flags &= ~O_NONBLOCK;
2279	spin_unlock(&file->f_lock);
2280	return 0;
2281}
2282
2283/**
2284 *	tiocsctty	-	set controlling tty
2285 *	@tty: tty structure
2286 *	@arg: user argument
2287 *
2288 *	This ioctl is used to manage job control. It permits a session
2289 *	leader to set this tty as the controlling tty for the session.
2290 *
2291 *	Locking:
2292 *		Takes tty_mutex() to protect tty instance
2293 *		Takes tasklist_lock internally to walk sessions
2294 *		Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299	int ret = 0;
2300	if (current->signal->leader && (task_session(current) == tty->session))
2301		return ret;
2302
2303	mutex_lock(&tty_mutex);
2304	/*
2305	 * The process must be a session leader and
2306	 * not have a controlling tty already.
2307	 */
2308	if (!current->signal->leader || current->signal->tty) {
2309		ret = -EPERM;
2310		goto unlock;
2311	}
2312
2313	if (tty->session) {
2314		/*
2315		 * This tty is already the controlling
2316		 * tty for another session group!
2317		 */
2318		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319			/*
2320			 * Steal it away
2321			 */
2322			read_lock(&tasklist_lock);
2323			session_clear_tty(tty->session);
2324			read_unlock(&tasklist_lock);
2325		} else {
2326			ret = -EPERM;
2327			goto unlock;
2328		}
2329	}
2330	proc_set_tty(current, tty);
2331unlock:
2332	mutex_unlock(&tty_mutex);
2333	return ret;
2334}
2335
2336/**
2337 *	tty_get_pgrp	-	return a ref counted pgrp pid
2338 *	@tty: tty to read
 
2339 *
2340 *	Returns a refcounted instance of the pid struct for the process
2341 *	group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346	unsigned long flags;
2347	struct pid *pgrp;
2348
2349	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350	pgrp = get_pid(tty->pgrp);
2351	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353	return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 *	tiocgpgrp		-	get process group
2359 *	@tty: tty passed by user
2360 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361 *	@p: returned pid
2362 *
2363 *	Obtain the process group of the tty. If there is no process group
2364 *	return an error.
2365 *
2366 *	Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371	struct pid *pid;
2372	int ret;
2373	/*
2374	 * (tty == real_tty) is a cheap way of
2375	 * testing if the tty is NOT a master pty.
2376	 */
2377	if (tty == real_tty && current->signal->tty != real_tty)
2378		return -ENOTTY;
2379	pid = tty_get_pgrp(real_tty);
2380	ret =  put_user(pid_vnr(pid), p);
2381	put_pid(pid);
2382	return ret;
2383}
2384
2385/**
2386 *	tiocspgrp		-	attempt to set process group
2387 *	@tty: tty passed by user
2388 *	@real_tty: tty side device matching tty passed by user
2389 *	@p: pid pointer
2390 *
2391 *	Set the process group of the tty to the session passed. Only
2392 *	permitted where the tty session is our session.
2393 *
2394 *	Locking: RCU, ctrl lock
 
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399	struct pid *pgrp;
2400	pid_t pgrp_nr;
2401	int retval = tty_check_change(real_tty);
2402	unsigned long flags;
2403
2404	if (retval == -EIO)
2405		return -ENOTTY;
2406	if (retval)
2407		return retval;
2408	if (!current->signal->tty ||
2409	    (current->signal->tty != real_tty) ||
2410	    (real_tty->session != task_session(current)))
2411		return -ENOTTY;
2412	if (get_user(pgrp_nr, p))
2413		return -EFAULT;
2414	if (pgrp_nr < 0)
2415		return -EINVAL;
2416	rcu_read_lock();
2417	pgrp = find_vpid(pgrp_nr);
2418	retval = -ESRCH;
2419	if (!pgrp)
2420		goto out_unlock;
2421	retval = -EPERM;
2422	if (session_of_pgrp(pgrp) != task_session(current))
2423		goto out_unlock;
2424	retval = 0;
2425	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426	put_pid(real_tty->pgrp);
2427	real_tty->pgrp = get_pid(pgrp);
2428	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430	rcu_read_unlock();
2431	return retval;
2432}
2433
2434/**
2435 *	tiocgsid		-	get session id
2436 *	@tty: tty passed by user
2437 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438 *	@p: pointer to returned session id
2439 *
2440 *	Obtain the session id of the tty. If there is no session
2441 *	return an error.
2442 *
2443 *	Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448	/*
2449	 * (tty == real_tty) is a cheap way of
2450	 * testing if the tty is NOT a master pty.
2451	*/
2452	if (tty == real_tty && current->signal->tty != real_tty)
2453		return -ENOTTY;
2454	if (!real_tty->session)
2455		return -ENOTTY;
2456	return put_user(pid_vnr(real_tty->session), p);
2457}
 
2458
2459/**
2460 *	tiocsetd	-	set line discipline
2461 *	@tty: tty device
2462 *	@p: pointer to user data
2463 *
2464 *	Set the line discipline according to user request.
2465 *
2466 *	Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471	int ldisc;
2472	int ret;
2473
2474	if (get_user(ldisc, p))
2475		return -EFAULT;
2476
2477	ret = tty_set_ldisc(tty, ldisc);
2478
2479	return ret;
2480}
2481
2482/**
2483 *	send_break	-	performed time break
2484 *	@tty: device to break on
2485 *	@duration: timeout in mS
2486 *
2487 *	Perform a timed break on hardware that lacks its own driver level
2488 *	timed break functionality.
2489 *
2490 *	Locking:
2491 *		atomic_write_lock serializes
2492 *
 
 
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497	int retval;
2498
2499	if (tty->ops->break_ctl == NULL)
2500		return 0;
2501
2502	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503		retval = tty->ops->break_ctl(tty, duration);
2504	else {
2505		/* Do the work ourselves */
2506		if (tty_write_lock(tty, 0) < 0)
2507			return -EINTR;
2508		retval = tty->ops->break_ctl(tty, -1);
2509		if (retval)
2510			goto out;
2511		if (!signal_pending(current))
2512			msleep_interruptible(duration);
2513		retval = tty->ops->break_ctl(tty, 0);
2514out:
2515		tty_write_unlock(tty);
2516		if (signal_pending(current))
2517			retval = -EINTR;
2518	}
2519	return retval;
2520}
 
2521
2522/**
2523 *	tty_tiocmget		-	get modem status
2524 *	@tty: tty device
2525 *	@file: user file pointer
2526 *	@p: pointer to result
2527 *
2528 *	Obtain the modem status bits from the tty driver if the feature
2529 *	is supported. Return -EINVAL if it is not available.
2530 *
2531 *	Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536	int retval = -EINVAL;
2537
2538	if (tty->ops->tiocmget) {
2539		retval = tty->ops->tiocmget(tty);
 
2540
2541		if (retval >= 0)
2542			retval = put_user(retval, p);
2543	}
2544	return retval;
2545}
2546
2547/**
2548 *	tty_tiocmset		-	set modem status
2549 *	@tty: tty device
2550 *	@cmd: command - clear bits, set bits or set all
2551 *	@p: pointer to desired bits
2552 *
2553 *	Set the modem status bits from the tty driver if the feature
2554 *	is supported. Return -EINVAL if it is not available.
2555 *
2556 *	Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560	     unsigned __user *p)
2561{
2562	int retval;
2563	unsigned int set, clear, val;
2564
2565	if (tty->ops->tiocmset == NULL)
2566		return -EINVAL;
2567
2568	retval = get_user(val, p);
2569	if (retval)
2570		return retval;
2571	set = clear = 0;
2572	switch (cmd) {
2573	case TIOCMBIS:
2574		set = val;
2575		break;
2576	case TIOCMBIC:
2577		clear = val;
2578		break;
2579	case TIOCMSET:
2580		set = val;
2581		clear = ~val;
2582		break;
2583	}
2584	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	return tty->ops->tiocmset(tty, set, clear);
2587}
2588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591	int retval = -EINVAL;
2592	struct serial_icounter_struct icount;
2593	memset(&icount, 0, sizeof(icount));
2594	if (tty->ops->get_icount)
2595		retval = tty->ops->get_icount(tty, &icount);
2596	if (retval != 0)
2597		return retval;
 
2598	if (copy_to_user(arg, &icount, sizeof(icount)))
2599		return -EFAULT;
2600	return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604{
2605	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606	    tty->driver->subtype == PTY_TYPE_MASTER)
2607		tty = tty->link;
2608	return tty;
 
 
 
 
 
 
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2613{
2614	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615	    tty->driver->subtype == PTY_TYPE_MASTER)
2616	    return tty;
2617	return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626	struct tty_struct *tty = file_tty(file);
2627	struct tty_struct *real_tty;
2628	void __user *p = (void __user *)arg;
2629	int retval;
2630	struct tty_ldisc *ld;
2631	struct inode *inode = file->f_dentry->d_inode;
2632
2633	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634		return -EINVAL;
2635
2636	real_tty = tty_pair_get_tty(tty);
2637
2638	/*
2639	 * Factor out some common prep work
2640	 */
2641	switch (cmd) {
2642	case TIOCSETD:
2643	case TIOCSBRK:
2644	case TIOCCBRK:
2645	case TCSBRK:
2646	case TCSBRKP:
2647		retval = tty_check_change(tty);
2648		if (retval)
2649			return retval;
2650		if (cmd != TIOCCBRK) {
2651			tty_wait_until_sent(tty, 0);
2652			if (signal_pending(current))
2653				return -EINTR;
2654		}
2655		break;
2656	}
2657
2658	/*
2659	 *	Now do the stuff.
2660	 */
2661	switch (cmd) {
2662	case TIOCSTI:
2663		return tiocsti(tty, p);
2664	case TIOCGWINSZ:
2665		return tiocgwinsz(real_tty, p);
2666	case TIOCSWINSZ:
2667		return tiocswinsz(real_tty, p);
2668	case TIOCCONS:
2669		return real_tty != tty ? -EINVAL : tioccons(file);
2670	case FIONBIO:
2671		return fionbio(file, p);
2672	case TIOCEXCL:
2673		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674		return 0;
2675	case TIOCNXCL:
2676		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677		return 0;
2678	case TIOCNOTTY:
2679		if (current->signal->tty != tty)
2680			return -ENOTTY;
2681		no_tty();
2682		return 0;
2683	case TIOCSCTTY:
2684		return tiocsctty(tty, arg);
2685	case TIOCGPGRP:
2686		return tiocgpgrp(tty, real_tty, p);
2687	case TIOCSPGRP:
2688		return tiocspgrp(tty, real_tty, p);
2689	case TIOCGSID:
2690		return tiocgsid(tty, real_tty, p);
2691	case TIOCGETD:
2692		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693	case TIOCSETD:
2694		return tiocsetd(tty, p);
2695	case TIOCVHANGUP:
2696		if (!capable(CAP_SYS_ADMIN))
2697			return -EPERM;
2698		tty_vhangup(tty);
2699		return 0;
2700	case TIOCGDEV:
2701	{
2702		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2703		return put_user(ret, (unsigned int __user *)p);
2704	}
2705	/*
2706	 * Break handling
2707	 */
2708	case TIOCSBRK:	/* Turn break on, unconditionally */
2709		if (tty->ops->break_ctl)
2710			return tty->ops->break_ctl(tty, -1);
2711		return 0;
2712	case TIOCCBRK:	/* Turn break off, unconditionally */
2713		if (tty->ops->break_ctl)
2714			return tty->ops->break_ctl(tty, 0);
2715		return 0;
2716	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717		/* non-zero arg means wait for all output data
2718		 * to be sent (performed above) but don't send break.
2719		 * This is used by the tcdrain() termios function.
2720		 */
2721		if (!arg)
2722			return send_break(tty, 250);
2723		return 0;
2724	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725		return send_break(tty, arg ? arg*100 : 250);
2726
2727	case TIOCMGET:
2728		return tty_tiocmget(tty, p);
2729	case TIOCMSET:
2730	case TIOCMBIC:
2731	case TIOCMBIS:
2732		return tty_tiocmset(tty, cmd, p);
2733	case TIOCGICOUNT:
2734		retval = tty_tiocgicount(tty, p);
2735		/* For the moment allow fall through to the old method */
2736        	if (retval != -EINVAL)
2737			return retval;
2738		break;
2739	case TCFLSH:
2740		switch (arg) {
2741		case TCIFLUSH:
2742		case TCIOFLUSH:
2743		/* flush tty buffer and allow ldisc to process ioctl */
2744			tty_buffer_flush(tty);
2745			break;
2746		}
2747		break;
 
 
 
 
 
 
 
 
 
 
 
2748	}
2749	if (tty->ops->ioctl) {
2750		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751		if (retval != -ENOIOCTLCMD)
2752			return retval;
2753	}
2754	ld = tty_ldisc_ref_wait(tty);
 
 
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -EINVAL;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767				unsigned long arg)
2768{
2769	struct inode *inode = file->f_dentry->d_inode;
2770	struct tty_struct *tty = file_tty(file);
2771	struct tty_ldisc *ld;
2772	int retval = -ENOIOCTLCMD;
2773
2774	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775		return -EINVAL;
2776
 
 
 
 
 
 
2777	if (tty->ops->compat_ioctl) {
2778		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779		if (retval != -ENOIOCTLCMD)
2780			return retval;
2781	}
2782
2783	ld = tty_ldisc_ref_wait(tty);
 
 
2784	if (ld->ops->compat_ioctl)
2785		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786	else
2787		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
2788	tty_ldisc_deref(ld);
2789
2790	return retval;
2791}
2792#endif
2793
 
 
 
 
 
 
 
2794/*
2795 * This implements the "Secure Attention Key" ---  the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key".  Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal.  But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context.  This can
2811 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816	tty_hangup(tty);
2817#else
2818	struct task_struct *g, *p;
2819	struct pid *session;
2820	int		i;
2821	struct file	*filp;
2822	struct fdtable *fdt;
2823
2824	if (!tty)
2825		return;
2826	session = tty->session;
2827
2828	tty_ldisc_flush(tty);
2829
2830	tty_driver_flush_buffer(tty);
2831
2832	read_lock(&tasklist_lock);
2833	/* Kill the entire session */
2834	do_each_pid_task(session, PIDTYPE_SID, p) {
2835		printk(KERN_NOTICE "SAK: killed process %d"
2836			" (%s): task_session(p)==tty->session\n",
2837			task_pid_nr(p), p->comm);
2838		send_sig(SIGKILL, p, 1);
2839	} while_each_pid_task(session, PIDTYPE_SID, p);
2840	/* Now kill any processes that happen to have the
2841	 * tty open.
2842	 */
2843	do_each_thread(g, p) {
2844		if (p->signal->tty == tty) {
2845			printk(KERN_NOTICE "SAK: killed process %d"
2846			    " (%s): task_session(p)==tty->session\n",
2847			    task_pid_nr(p), p->comm);
2848			send_sig(SIGKILL, p, 1);
2849			continue;
2850		}
2851		task_lock(p);
2852		if (p->files) {
2853			/*
2854			 * We don't take a ref to the file, so we must
2855			 * hold ->file_lock instead.
2856			 */
2857			spin_lock(&p->files->file_lock);
2858			fdt = files_fdtable(p->files);
2859			for (i = 0; i < fdt->max_fds; i++) {
2860				filp = fcheck_files(p->files, i);
2861				if (!filp)
2862					continue;
2863				if (filp->f_op->read == tty_read &&
2864				    file_tty(filp) == tty) {
2865					printk(KERN_NOTICE "SAK: killed process %d"
2866					    " (%s): fd#%d opened to the tty\n",
2867					    task_pid_nr(p), p->comm, i);
2868					force_sig(SIGKILL, p);
2869					break;
2870				}
2871			}
2872			spin_unlock(&p->files->file_lock);
2873		}
2874		task_unlock(p);
2875	} while_each_thread(g, p);
2876	read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882	struct tty_struct *tty =
2883		container_of(work, struct tty_struct, SAK_work);
2884	__do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895	if (!tty)
2896		return;
2897	schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904	dev_t *devt = data;
2905	return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911	dev_t devt = tty_devnum(tty);
2912	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
2913}
2914
2915
2916/**
2917 *	initialize_tty_struct
2918 *	@tty: tty to initialize
 
2919 *
2920 *	This subroutine initializes a tty structure that has been newly
2921 *	allocated.
2922 *
2923 *	Locking: none - tty in question must not be exposed at this point
2924 */
 
 
 
 
 
 
 
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927		struct tty_driver *driver, int idx)
2928{
2929	memset(tty, 0, sizeof(struct tty_struct));
2930	kref_init(&tty->kref);
2931	tty->magic = TTY_MAGIC;
2932	tty_ldisc_init(tty);
2933	tty->session = NULL;
2934	tty->pgrp = NULL;
2935	tty->overrun_time = jiffies;
2936	tty_buffer_init(tty);
2937	mutex_init(&tty->termios_mutex);
2938	mutex_init(&tty->ldisc_mutex);
 
 
 
2939	init_waitqueue_head(&tty->write_wait);
2940	init_waitqueue_head(&tty->read_wait);
2941	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942	mutex_init(&tty->atomic_read_lock);
2943	mutex_init(&tty->atomic_write_lock);
2944	mutex_init(&tty->output_lock);
2945	mutex_init(&tty->echo_lock);
2946	spin_lock_init(&tty->read_lock);
2947	spin_lock_init(&tty->ctrl_lock);
2948	INIT_LIST_HEAD(&tty->tty_files);
2949	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951	tty->driver = driver;
2952	tty->ops = driver->ops;
2953	tty->index = idx;
2954	tty_line_name(driver, idx, tty->name);
2955	tty->dev = tty_get_device(tty);
 
 
2956}
2957
2958/**
2959 *	deinitialize_tty_struct
2960 *	@tty: tty to deinitialize
 
 
 
 
2961 *
2962 *	This subroutine deinitializes a tty structure that has been newly
2963 *	allocated but tty_release cannot be called on that yet.
2964 *
2965 *	Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
2968{
2969	tty_ldisc_deinit(tty);
 
 
 
 
 
 
 
 
 
 
 
2970}
2971
2972/**
2973 *	tty_put_char	-	write one character to a tty
2974 *	@tty: tty
2975 *	@ch: character
 
 
 
 
 
 
 
 
2976 *
2977 *	Write one byte to the tty using the provided put_char method
2978 *	if present. Returns the number of characters successfully output.
2979 *
2980 *	Note: the specific put_char operation in the driver layer may go
2981 *	away soon. Don't call it directly, use this method
2982 */
 
 
 
 
 
 
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986	if (tty->ops->put_char)
2987		return tty->ops->put_char(tty, ch);
2988	return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
2994/**
2995 *	tty_register_device - register a tty device
2996 *	@driver: the tty driver that describes the tty device
2997 *	@index: the index in the tty driver for this tty device
2998 *	@device: a struct device that is associated with this tty device.
2999 *		This field is optional, if there is no known struct device
3000 *		for this tty device it can be set to NULL safely.
 
 
3001 *
3002 *	Returns a pointer to the struct device for this tty device
3003 *	(or ERR_PTR(-EFOO) on error).
 
3004 *
3005 *	This call is required to be made to register an individual tty device
3006 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007 *	that bit is not set, this function should not be called by a tty
3008 *	driver.
3009 *
3010 *	Locking: ??
 
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014				   struct device *device)
 
3015{
3016	char name[64];
3017	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
3018
3019	if (index >= driver->num) {
3020		printk(KERN_ERR "Attempt to register invalid tty line number "
3021		       " (%d).\n", index);
3022		return ERR_PTR(-EINVAL);
3023	}
3024
3025	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026		pty_line_name(driver, index, name);
3027	else
3028		tty_line_name(driver, index, name);
3029
3030	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * 	tty_unregister_device - unregister a tty device
3036 * 	@driver: the tty driver that describes the tty device
3037 * 	@index: the index in the tty driver for this tty device
3038 *
3039 * 	If a tty device is registered with a call to tty_register_device() then
3040 *	this function must be called when the tty device is gone.
3041 *
3042 *	Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047	device_destroy(tty_class,
3048		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
 
 
 
 
 
 
 
 
 
 
3053{
3054	struct tty_driver *driver;
 
 
3055
3056	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057	if (driver) {
3058		kref_init(&driver->kref);
3059		driver->magic = TTY_DRIVER_MAGIC;
3060		driver->num = lines;
3061		driver->owner = owner;
3062		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064	return driver;
 
 
 
 
 
 
 
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071	int i;
3072	struct ktermios *tp;
3073	void *p;
3074
3075	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076		/*
3077		 * Free the termios and termios_locked structures because
3078		 * we don't want to get memory leaks when modular tty
3079		 * drivers are removed from the kernel.
3080		 */
3081		for (i = 0; i < driver->num; i++) {
3082			tp = driver->termios[i];
3083			if (tp) {
3084				driver->termios[i] = NULL;
3085				kfree(tp);
3086			}
3087			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088				tty_unregister_device(driver, i);
3089		}
3090		p = driver->ttys;
3091		proc_tty_unregister_driver(driver);
3092		driver->ttys = NULL;
3093		driver->termios = NULL;
3094		kfree(p);
3095		cdev_del(&driver->cdev);
3096	}
 
 
 
 
3097	kfree(driver);
3098}
3099
 
 
 
 
 
 
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102	kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107			const struct tty_operations *op)
3108{
3109	driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115	tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124	int error;
3125	int i;
3126	dev_t dev;
3127	void **p = NULL;
3128	struct device *d;
3129
3130	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132		if (!p)
3133			return -ENOMEM;
3134	}
3135
3136	if (!driver->major) {
3137		error = alloc_chrdev_region(&dev, driver->minor_start,
3138						driver->num, driver->name);
3139		if (!error) {
3140			driver->major = MAJOR(dev);
3141			driver->minor_start = MINOR(dev);
3142		}
3143	} else {
3144		dev = MKDEV(driver->major, driver->minor_start);
3145		error = register_chrdev_region(dev, driver->num, driver->name);
3146	}
3147	if (error < 0) {
3148		kfree(p);
3149		return error;
3150	}
3151
3152	if (p) {
3153		driver->ttys = (struct tty_struct **)p;
3154		driver->termios = (struct ktermios **)(p + driver->num);
3155	} else {
3156		driver->ttys = NULL;
3157		driver->termios = NULL;
3158	}
3159
3160	cdev_init(&driver->cdev, &tty_fops);
3161	driver->cdev.owner = driver->owner;
3162	error = cdev_add(&driver->cdev, dev, driver->num);
3163	if (error) {
3164		unregister_chrdev_region(dev, driver->num);
3165		driver->ttys = NULL;
3166		driver->termios = NULL;
3167		kfree(p);
3168		return error;
3169	}
3170
3171	mutex_lock(&tty_mutex);
3172	list_add(&driver->tty_drivers, &tty_drivers);
3173	mutex_unlock(&tty_mutex);
3174
3175	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176		for (i = 0; i < driver->num; i++) {
3177			d = tty_register_device(driver, i, NULL);
3178			if (IS_ERR(d)) {
3179				error = PTR_ERR(d);
3180				goto err;
3181			}
3182		}
3183	}
3184	proc_tty_register_driver(driver);
3185	driver->flags |= TTY_DRIVER_INSTALLED;
3186	return 0;
3187
3188err:
3189	for (i--; i >= 0; i--)
3190		tty_unregister_device(driver, i);
3191
3192	mutex_lock(&tty_mutex);
3193	list_del(&driver->tty_drivers);
3194	mutex_unlock(&tty_mutex);
3195
 
3196	unregister_chrdev_region(dev, driver->num);
3197	driver->ttys = NULL;
3198	driver->termios = NULL;
3199	kfree(p);
3200	return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
 
 
 
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211	/* FIXME */
3212	if (driver->refcount)
3213		return -EBUSY;
3214#endif
3215	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216				driver->num);
3217	mutex_lock(&tty_mutex);
3218	list_del(&driver->tty_drivers);
3219	mutex_unlock(&tty_mutex);
3220	return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233	unsigned long flags;
3234	struct tty_struct *tty;
3235	spin_lock_irqsave(&p->sighand->siglock, flags);
3236	tty = p->signal->tty;
3237	p->signal->tty = NULL;
3238	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239	tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246	if (tty) {
3247		unsigned long flags;
3248		/* We should not have a session or pgrp to put here but.... */
3249		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250		put_pid(tty->session);
3251		put_pid(tty->pgrp);
3252		tty->pgrp = get_pid(task_pgrp(tsk));
3253		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254		tty->session = get_pid(task_session(tsk));
3255		if (tsk->signal->tty) {
3256			printk(KERN_DEBUG "tty not NULL!!\n");
3257			tty_kref_put(tsk->signal->tty);
3258		}
3259	}
3260	put_pid(tsk->signal->tty_old_pgrp);
3261	tsk->signal->tty = tty_kref_get(tty);
3262	tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267	spin_lock_irq(&tsk->sighand->siglock);
3268	__proc_set_tty(tsk, tty);
3269	spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274	struct tty_struct *tty;
3275	unsigned long flags;
3276
3277	spin_lock_irqsave(&current->sighand->siglock, flags);
3278	tty = tty_kref_get(current->signal->tty);
3279	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280	return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286	*fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297	initcall_t *call;
3298
3299	/* Setup the default TTY line discipline. */
3300	tty_ldisc_begin();
3301
3302	/*
3303	 * set up the console device so that later boot sequences can
3304	 * inform about problems etc..
3305	 */
3306	call = __con_initcall_start;
3307	while (call < __con_initcall_end) {
3308		(*call)();
3309		call++;
3310	}
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315	if (!mode)
3316		return NULL;
3317	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319		*mode = 0666;
3320	return NULL;
3321}
3322
 
 
 
 
 
3323static int __init tty_class_init(void)
3324{
3325	tty_class = class_create(THIS_MODULE, "tty");
3326	if (IS_ERR(tty_class))
3327		return PTR_ERR(tty_class);
3328	tty_class->devnode = tty_devnode;
3329	return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338				struct device_attribute *attr, char *buf)
3339{
3340	struct console *cs[16];
3341	int i = 0;
3342	struct console *c;
3343	ssize_t count = 0;
3344
3345	console_lock();
 
 
 
 
 
 
 
3346	for_each_console(c) {
3347		if (!c->device)
3348			continue;
3349		if (!c->write)
3350			continue;
3351		if ((c->flags & CON_ENABLED) == 0)
3352			continue;
3353		cs[i++] = c;
3354		if (i >= ARRAY_SIZE(cs))
3355			break;
3356	}
3357	while (i--)
3358		count += sprintf(buf + count, "%s%d%c",
3359				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360	console_unlock();
3361
 
 
3362	return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
 
 
 
 
 
 
 
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370	if (consdev)
3371		sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
 
3380	cdev_init(&tty_cdev, &tty_fops);
3381	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383		panic("Couldn't register /dev/tty driver\n");
3384	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386	cdev_init(&console_cdev, &console_fops);
3387	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389		panic("Couldn't register /dev/console driver\n");
3390	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391			      "console");
 
3392	if (IS_ERR(consdev))
3393		consdev = NULL;
3394	else
3395		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398	vty_init(&console_fops);
3399#endif
3400	return 0;
3401}
3402