Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 145DEFINE_MUTEX(tty_mutex);
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 
 244const char *tty_name(const struct tty_struct *tty)
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 249}
 
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 
 
 
 
 
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353
 354	guard(mutex)(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				return 0;
 362			}
 363		}
 364
 365	return -ENODEV;
 366}
 367EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 368
 369#ifdef CONFIG_CONSOLE_POLL
 370
 371/**
 372 * tty_find_polling_driver - find device of a polled tty
 373 * @name: name string to match
 374 * @line: pointer to resulting tty line nr
 375 *
 376 * This routine returns a tty driver structure, given a name and the condition
 377 * that the tty driver is capable of polled operation.
 
 378 */
 379struct tty_driver *tty_find_polling_driver(char *name, int *line)
 380{
 381	struct tty_driver *p, *res = NULL;
 382	int tty_line = 0;
 383	int len;
 384	char *str, *stp;
 385
 386	for (str = name; *str; str++)
 387		if ((*str >= '0' && *str <= '9') || *str == ',')
 388			break;
 389	if (!*str)
 390		return NULL;
 391
 392	len = str - name;
 393	tty_line = simple_strtoul(str, &str, 10);
 394
 395	mutex_lock(&tty_mutex);
 396	/* Search through the tty devices to look for a match */
 397	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 398		if (!len || strncmp(name, p->name, len) != 0)
 399			continue;
 400		stp = str;
 401		if (*stp == ',')
 402			stp++;
 403		if (*stp == '\0')
 404			stp = NULL;
 405
 406		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 407		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 408			res = tty_driver_kref_get(p);
 409			*line = tty_line;
 410			break;
 411		}
 412	}
 413	mutex_unlock(&tty_mutex);
 414
 415	return res;
 416}
 417EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 418#endif
 419
 420static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	return 0;
 423}
 424
 425static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 426{
 427	return -EIO;
 428}
 429
 430/* No kernel lock held - none needed ;) */
 431static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 432{
 433	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 434}
 435
 436static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 437		unsigned long arg)
 438{
 439	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 440}
 441
 442static long hung_up_tty_compat_ioctl(struct file *file,
 443				     unsigned int cmd, unsigned long arg)
 444{
 445	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 446}
 447
 448static int hung_up_tty_fasync(int fd, struct file *file, int on)
 449{
 450	return -ENOTTY;
 451}
 452
 453static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 454{
 455	struct tty_struct *tty = file_tty(file);
 456
 457	if (tty && tty->ops && tty->ops->show_fdinfo)
 458		tty->ops->show_fdinfo(tty, m);
 459}
 460
 461static const struct file_operations tty_fops = {
 462	.read_iter	= tty_read,
 463	.write_iter	= tty_write,
 464	.splice_read	= copy_splice_read,
 465	.splice_write	= iter_file_splice_write,
 466	.poll		= tty_poll,
 467	.unlocked_ioctl	= tty_ioctl,
 468	.compat_ioctl	= tty_compat_ioctl,
 469	.open		= tty_open,
 470	.release	= tty_release,
 471	.fasync		= tty_fasync,
 472	.show_fdinfo	= tty_show_fdinfo,
 473};
 474
 475static const struct file_operations console_fops = {
 476	.read_iter	= tty_read,
 477	.write_iter	= redirected_tty_write,
 478	.splice_read	= copy_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations hung_up_tty_fops = {
 489	.read_iter	= hung_up_tty_read,
 490	.write_iter	= hung_up_tty_write,
 
 491	.poll		= hung_up_tty_poll,
 492	.unlocked_ioctl	= hung_up_tty_ioctl,
 493	.compat_ioctl	= hung_up_tty_compat_ioctl,
 494	.release	= tty_release,
 495	.fasync		= hung_up_tty_fasync,
 496};
 497
 498static DEFINE_SPINLOCK(redirect_lock);
 499static struct file *redirect;
 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501/**
 502 * tty_wakeup - request more data
 503 * @tty: terminal
 504 *
 505 * Internal and external helper for wakeups of tty. This function informs the
 506 * line discipline if present that the driver is ready to receive more output
 507 * data.
 508 */
 
 509void tty_wakeup(struct tty_struct *tty)
 510{
 511	struct tty_ldisc *ld;
 512
 513	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 514		ld = tty_ldisc_ref(tty);
 515		if (ld) {
 516			if (ld->ops->write_wakeup)
 517				ld->ops->write_wakeup(tty);
 518			tty_ldisc_deref(ld);
 519		}
 520	}
 521	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 522}
 
 523EXPORT_SYMBOL_GPL(tty_wakeup);
 524
 525/**
 526 * tty_release_redirect - Release a redirect on a pty if present
 527 * @tty: tty device
 528 *
 529 * This is available to the pty code so if the master closes, if the slave is a
 530 * redirect it can release the redirect.
 531 */
 532static struct file *tty_release_redirect(struct tty_struct *tty)
 533{
 534	struct file *f = NULL;
 
 
 
 
 
 
 
 535
 536	spin_lock(&redirect_lock);
 537	if (redirect && file_tty(redirect) == tty) {
 538		f = redirect;
 539		redirect = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540	}
 541	spin_unlock(&redirect_lock);
 542
 543	return f;
 
 
 
 
 
 
 544}
 545
 546/**
 547 * __tty_hangup - actual handler for hangup events
 548 * @tty: tty device
 549 * @exit_session: if non-zero, signal all foreground group processes
 550 *
 551 * This can be called by a "kworker" kernel thread. That is process synchronous
 552 * but doesn't hold any locks, so we need to make sure we have the appropriate
 553 * locks for what we're doing.
 554 *
 555 * The hangup event clears any pending redirections onto the hung up device. It
 556 * ensures future writes will error and it does the needed line discipline
 557 * hangup and signal delivery. The tty object itself remains intact.
 558 *
 559 * Locking:
 560 *  * BTM
 561 *
 562 *   * redirect lock for undoing redirection
 563 *   * file list lock for manipulating list of ttys
 564 *   * tty_ldiscs_lock from called functions
 565 *   * termios_rwsem resetting termios data
 566 *   * tasklist_lock to walk task list for hangup event
 567 *
 568 *    * ->siglock to protect ->signal/->sighand
 569 *
 
 
 
 
 
 
 
 
 570 */
 571static void __tty_hangup(struct tty_struct *tty, int exit_session)
 572{
 573	struct file *cons_filp = NULL;
 574	struct file *filp, *f;
 575	struct tty_file_private *priv;
 576	int    closecount = 0, n;
 577	int refs;
 578
 579	if (!tty)
 580		return;
 581
 582	f = tty_release_redirect(tty);
 
 
 
 
 
 
 583
 584	tty_lock(tty);
 585
 586	if (test_bit(TTY_HUPPED, &tty->flags)) {
 587		tty_unlock(tty);
 588		return;
 589	}
 590
 591	/*
 592	 * Some console devices aren't actually hung up for technical and
 593	 * historical reasons, which can lead to indefinite interruptible
 594	 * sleep in n_tty_read().  The following explicitly tells
 595	 * n_tty_read() to abort readers.
 596	 */
 597	set_bit(TTY_HUPPING, &tty->flags);
 598
 599	/* inuse_filps is protected by the single tty lock,
 600	 * this really needs to change if we want to flush the
 601	 * workqueue with the lock held.
 602	 */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write_iter == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write_iter != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 625
 626	spin_lock_irq(&tty->ctrl.lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->ctrl.session);
 630	put_pid(tty->ctrl.pgrp);
 631	tty->ctrl.session = NULL;
 632	tty->ctrl.pgrp = NULL;
 633	tty->ctrl.pktstatus = 0;
 634	spin_unlock_irq(&tty->ctrl.lock);
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 * tty_hangup - trigger a hangup event
 671 * @tty: tty to hangup
 672 *
 673 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 674 * hangup sequence to run after this event.
 675 */
 
 676void tty_hangup(struct tty_struct *tty)
 677{
 678	tty_debug_hangup(tty, "hangup\n");
 679	schedule_work(&tty->hangup_work);
 680}
 
 681EXPORT_SYMBOL(tty_hangup);
 682
 683/**
 684 * tty_vhangup - process vhangup
 685 * @tty: tty to hangup
 686 *
 687 * The user has asked via system call for the terminal to be hung up. We do
 688 * this synchronously so that when the syscall returns the process is complete.
 689 * That guarantee is necessary for security reasons.
 690 */
 
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 695}
 
 696EXPORT_SYMBOL(tty_vhangup);
 697
 698
 699/**
 700 * tty_vhangup_self - process vhangup for own ctty
 701 *
 702 * Perform a vhangup on the current controlling tty
 703 */
 
 704void tty_vhangup_self(void)
 705{
 706	struct tty_struct *tty;
 707
 708	tty = get_current_tty();
 709	if (tty) {
 710		tty_vhangup(tty);
 711		tty_kref_put(tty);
 712	}
 713}
 714
 715/**
 716 * tty_vhangup_session - hangup session leader exit
 717 * @tty: tty to hangup
 718 *
 719 * The session leader is exiting and hanging up its controlling terminal.
 720 * Every process in the foreground process group is signalled %SIGHUP.
 721 *
 722 * We do this synchronously so that when the syscall returns the process is
 723 * complete. That guarantee is necessary for security reasons.
 724 */
 725void tty_vhangup_session(struct tty_struct *tty)
 
 726{
 727	tty_debug_hangup(tty, "session hangup\n");
 728	__tty_hangup(tty, 1);
 729}
 730
 731/**
 732 * tty_hung_up_p - was tty hung up
 733 * @filp: file pointer of tty
 734 *
 735 * Return: true if the tty has been subject to a vhangup or a carrier loss
 
 736 */
 
 737int tty_hung_up_p(struct file *filp)
 738{
 739	return (filp && filp->f_op == &hung_up_tty_fops);
 740}
 
 741EXPORT_SYMBOL(tty_hung_up_p);
 742
 743void __stop_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744{
 745	if (tty->flow.stopped)
 
 
 746		return;
 747	tty->flow.stopped = true;
 748	if (tty->ops->stop)
 749		tty->ops->stop(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 751
 
 752/**
 753 * stop_tty - propagate flow control
 754 * @tty: tty to stop
 755 *
 756 * Perform flow control to the driver. May be called on an already stopped
 757 * device and will not re-call the &tty_driver->stop() method.
 
 758 *
 759 * This functionality is used by both the line disciplines for halting incoming
 760 * flow and by the driver. It may therefore be called from any context, may be
 761 * under the tty %atomic_write_lock but not always.
 
 762 *
 763 * Locking:
 764 *	flow.lock
 765 */
 
 
 
 
 
 
 
 
 
 
 766void stop_tty(struct tty_struct *tty)
 767{
 768	unsigned long flags;
 769
 770	spin_lock_irqsave(&tty->flow.lock, flags);
 771	__stop_tty(tty);
 772	spin_unlock_irqrestore(&tty->flow.lock, flags);
 773}
 774EXPORT_SYMBOL(stop_tty);
 775
 
 
 
 
 
 
 
 
 
 
 
 
 776void __start_tty(struct tty_struct *tty)
 777{
 778	if (!tty->flow.stopped || tty->flow.tco_stopped)
 779		return;
 780	tty->flow.stopped = false;
 781	if (tty->ops->start)
 782		tty->ops->start(tty);
 783	tty_wakeup(tty);
 784}
 785
 786/**
 787 * start_tty - propagate flow control
 788 * @tty: tty to start
 789 *
 790 * Start a tty that has been stopped if at all possible. If @tty was previously
 791 * stopped and is now being started, the &tty_driver->start() method is invoked
 792 * and the line discipline woken.
 793 *
 794 * Locking:
 795 *	flow.lock
 796 */
 797void start_tty(struct tty_struct *tty)
 798{
 799	unsigned long flags;
 800
 801	spin_lock_irqsave(&tty->flow.lock, flags);
 802	__start_tty(tty);
 803	spin_unlock_irqrestore(&tty->flow.lock, flags);
 804}
 805EXPORT_SYMBOL(start_tty);
 806
 807static void tty_update_time(struct tty_struct *tty, bool mtime)
 808{
 809	time64_t sec = ktime_get_real_seconds();
 810	struct tty_file_private *priv;
 811
 812	spin_lock(&tty->files_lock);
 813	list_for_each_entry(priv, &tty->tty_files, list) {
 814		struct inode *inode = file_inode(priv->file);
 815		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 816
 817		/*
 818		 * We only care if the two values differ in anything other than the
 819		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 820		 * the time of the tty device, otherwise it could be construded as a
 821		 * security leak to let userspace know the exact timing of the tty.
 822		 */
 823		if ((sec ^ time.tv_sec) & ~7) {
 824			if (mtime)
 825				inode_set_mtime(inode, sec, 0);
 826			else
 827				inode_set_atime(inode, sec, 0);
 828		}
 829	}
 830	spin_unlock(&tty->files_lock);
 831}
 832
 833/*
 834 * Iterate on the ldisc ->read() function until we've gotten all
 835 * the data the ldisc has for us.
 836 *
 837 * The "cookie" is something that the ldisc read function can fill
 838 * in to let us know that there is more data to be had.
 839 *
 840 * We promise to continue to call the ldisc until it stops returning
 841 * data or clears the cookie. The cookie may be something that the
 842 * ldisc maintains state for and needs to free.
 843 */
 844static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 845				struct file *file, struct iov_iter *to)
 846{
 847	void *cookie = NULL;
 848	unsigned long offset = 0;
 849	ssize_t retval = 0;
 850	size_t copied, count = iov_iter_count(to);
 851	u8 kernel_buf[64];
 852
 853	do {
 854		ssize_t size = min(count, sizeof(kernel_buf));
 855
 856		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 857		if (!size)
 858			break;
 859
 860		if (size < 0) {
 861			/* Did we have an earlier error (ie -EFAULT)? */
 862			if (retval)
 863				break;
 864			retval = size;
 865
 866			/*
 867			 * -EOVERFLOW means we didn't have enough space
 868			 * for a whole packet, and we shouldn't return
 869			 * a partial result.
 870			 */
 871			if (retval == -EOVERFLOW)
 872				offset = 0;
 873			break;
 874		}
 875
 876		copied = copy_to_iter(kernel_buf, size, to);
 877		offset += copied;
 878		count -= copied;
 879
 880		/*
 881		 * If the user copy failed, we still need to do another ->read()
 882		 * call if we had a cookie to let the ldisc clear up.
 883		 *
 884		 * But make sure size is zeroed.
 885		 */
 886		if (unlikely(copied != size)) {
 887			count = 0;
 888			retval = -EFAULT;
 889		}
 890	} while (cookie);
 891
 892	/* We always clear tty buffer in case they contained passwords */
 893	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 894	return offset ? offset : retval;
 
 
 
 
 
 895}
 896
 897
 898/**
 899 * tty_read - read method for tty device files
 900 * @iocb: kernel I/O control block
 901 * @to: destination for the data read
 
 
 902 *
 903 * Perform the read system call function on this terminal device. Checks
 904 * for hung up devices before calling the line discipline method.
 905 *
 906 * Locking:
 907 *	Locks the line discipline internally while needed. Multiple read calls
 908 *	may be outstanding in parallel.
 909 */
 910static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 911{
 912	struct file *file = iocb->ki_filp;
 913	struct inode *inode = file_inode(file);
 914	struct tty_struct *tty = file_tty(file);
 915	struct tty_ldisc *ld;
 916	ssize_t ret;
 917
 918	if (tty_paranoia_check(tty, inode, "tty_read"))
 919		return -EIO;
 920	if (!tty || tty_io_error(tty))
 921		return -EIO;
 922
 923	/* We want to wait for the line discipline to sort out in this
 924	 * situation.
 925	 */
 926	ld = tty_ldisc_ref_wait(tty);
 927	if (!ld)
 928		return hung_up_tty_read(iocb, to);
 929	ret = -EIO;
 930	if (ld->ops->read)
 931		ret = iterate_tty_read(ld, tty, file, to);
 
 
 932	tty_ldisc_deref(ld);
 933
 934	if (ret > 0)
 935		tty_update_time(tty, false);
 936
 937	return ret;
 938}
 939
 940void tty_write_unlock(struct tty_struct *tty)
 941{
 942	mutex_unlock(&tty->atomic_write_lock);
 943	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 944}
 945
 946int tty_write_lock(struct tty_struct *tty, bool ndelay)
 947{
 948	if (!mutex_trylock(&tty->atomic_write_lock)) {
 949		if (ndelay)
 950			return -EAGAIN;
 951		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 952			return -ERESTARTSYS;
 953	}
 954	return 0;
 955}
 956
 957/*
 958 * Split writes up in sane blocksizes to avoid
 959 * denial-of-service type attacks
 960 */
 961static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 962				 struct file *file, struct iov_iter *from)
 
 
 
 
 963{
 964	size_t chunk, count = iov_iter_count(from);
 965	ssize_t ret, written = 0;
 
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		u8 *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = min(chunk, count);
1010
 
1011		ret = -EFAULT;
1012		if (copy_from_iter(tty->write_buf, size, from) != size)
1013			break;
1014
1015		ret = ld->ops->write(tty, file, tty->write_buf, size);
1016		if (ret <= 0)
1017			break;
1018
1019		written += ret;
1020		if (ret > size)
1021			break;
1022
1023		/* FIXME! Have Al check this! */
1024		if (ret != size)
1025			iov_iter_revert(from, size-ret);
1026
1027		count -= ret;
1028		if (!count)
1029			break;
1030		ret = -ERESTARTSYS;
1031		if (signal_pending(current))
1032			break;
1033		cond_resched();
1034	}
1035	if (written) {
1036		tty_update_time(tty, true);
1037		ret = written;
1038	}
1039out:
1040	tty_write_unlock(tty);
1041	return ret;
1042}
1043
1044#ifdef CONFIG_PRINT_QUOTA_WARNING
1045/**
1046 * tty_write_message - write a message to a certain tty, not just the console.
1047 * @tty: the destination tty_struct
1048 * @msg: the message to write
1049 *
1050 * This is used for messages that need to be redirected to a specific tty. We
1051 * don't put it into the syslog queue right now maybe in the future if really
1052 * needed.
1053 *
1054 * We must still hold the BTM and test the CLOSING flag for the moment.
1055 *
1056 * This function is DEPRECATED, do not use in new code.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
1066		tty_write_unlock(tty);
1067	}
 
1068}
1069#endif
1070
1071static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct tty_struct *tty = file_tty(file);
1074	struct tty_ldisc *ld;
1075	ssize_t ret;
1076
1077	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1078		return -EIO;
1079	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1080		return -EIO;
 
1081	/* Short term debug to catch buggy drivers */
1082	if (tty->ops->write_room == NULL)
1083		tty_err(tty, "missing write_room method\n");
1084	ld = tty_ldisc_ref_wait(tty);
1085	if (!ld)
1086		return hung_up_tty_write(iocb, from);
1087	if (!ld->ops->write)
1088		ret = -EIO;
1089	else
1090		ret = iterate_tty_write(ld, tty, file, from);
1091	tty_ldisc_deref(ld);
1092	return ret;
1093}
1094
1095/**
1096 * tty_write - write method for tty device file
1097 * @iocb: kernel I/O control block
1098 * @from: iov_iter with data to write
1099 *
1100 * Write data to a tty device via the line discipline.
1101 *
1102 * Locking:
1103 *	Locks the line discipline as required
1104 *	Writes to the tty driver are serialized by the atomic_write_lock
1105 *	and are then processed in chunks to the device. The line
1106 *	discipline write method will not be invoked in parallel for
1107 *	each device.
1108 */
1109static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1110{
1111	return file_tty_write(iocb->ki_filp, iocb, from);
1112}
1113
1114ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1115{
1116	struct file *p = NULL;
1117
1118	spin_lock(&redirect_lock);
1119	if (redirect)
1120		p = get_file(redirect);
1121	spin_unlock(&redirect_lock);
1122
1123	/*
1124	 * We know the redirected tty is just another tty, we can
1125	 * call file_tty_write() directly with that file pointer.
1126	 */
1127	if (p) {
1128		ssize_t res;
1129
1130		res = file_tty_write(p, iocb, iter);
1131		fput(p);
1132		return res;
1133	}
1134	return tty_write(iocb, iter);
1135}
1136
1137/**
1138 * tty_send_xchar - send priority character
1139 * @tty: the tty to send to
1140 * @ch: xchar to send
1141 *
1142 * Send a high priority character to the tty even if stopped.
1143 *
1144 * Locking: none for xchar method, write ordering for write method.
1145 */
1146int tty_send_xchar(struct tty_struct *tty, u8 ch)
 
1147{
1148	bool was_stopped = tty->flow.stopped;
1149
1150	if (tty->ops->send_xchar) {
1151		down_read(&tty->termios_rwsem);
1152		tty->ops->send_xchar(tty, ch);
1153		up_read(&tty->termios_rwsem);
1154		return 0;
1155	}
1156
1157	if (tty_write_lock(tty, false) < 0)
1158		return -ERESTARTSYS;
1159
1160	down_read(&tty->termios_rwsem);
1161	if (was_stopped)
1162		start_tty(tty);
1163	tty->ops->write(tty, &ch, 1);
1164	if (was_stopped)
1165		stop_tty(tty);
1166	up_read(&tty->termios_rwsem);
1167	tty_write_unlock(tty);
1168	return 0;
1169}
1170
 
 
1171/**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a @driver reference and write it to the output buffer
1178 * @p.
1179 *
1180 * Locking: None
1181 */
1182static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183{
1184	static const char ptychar[] = "pqrstuvwxyzabcde";
1185	int i = index + driver->name_base;
1186	/* ->name is initialized to "ttyp", but "tty" is expected */
1187	sprintf(p, "%s%c%x",
1188		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1189		ptychar[i >> 4 & 0xf], i & 0xf);
1190}
1191
1192/**
1193 * tty_line_name - generate name for a tty
1194 * @driver: the tty driver in use
1195 * @index: the minor number
1196 * @p: output buffer of at least 7 bytes
1197 *
1198 * Generate a name from a @driver reference and write it to the output buffer
1199 * @p.
1200 *
1201 * Locking: None
1202 */
1203static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1204{
1205	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1206		return sprintf(p, "%s", driver->name);
1207	else
1208		return sprintf(p, "%s%d", driver->name,
1209			       index + driver->name_base);
1210}
1211
1212/**
1213 * tty_driver_lookup_tty() - find an existing tty, if any
1214 * @driver: the driver for the tty
1215 * @file: file object
1216 * @idx: the minor number
1217 *
1218 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1219 * driver lookup() method returns an error.
1220 *
1221 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1222 */
1223static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1224		struct file *file, int idx)
1225{
1226	struct tty_struct *tty;
1227
1228	if (driver->ops->lookup) {
1229		if (!file)
1230			tty = ERR_PTR(-EIO);
1231		else
1232			tty = driver->ops->lookup(driver, file, idx);
1233	} else {
1234		if (idx >= driver->num)
1235			return ERR_PTR(-EINVAL);
1236		tty = driver->ttys[idx];
1237	}
1238	if (!IS_ERR(tty))
1239		tty_kref_get(tty);
1240	return tty;
1241}
1242
1243/**
1244 * tty_init_termios - helper for termios setup
1245 * @tty: the tty to set up
1246 *
1247 * Initialise the termios structure for this tty. This runs under the
1248 * %tty_mutex currently so we can be relaxed about ordering.
1249 */
 
1250void tty_init_termios(struct tty_struct *tty)
1251{
1252	struct ktermios *tp;
1253	int idx = tty->index;
1254
1255	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256		tty->termios = tty->driver->init_termios;
1257	else {
1258		/* Check for lazy saved data */
1259		tp = tty->driver->termios[idx];
1260		if (tp != NULL) {
1261			tty->termios = *tp;
1262			tty->termios.c_line  = tty->driver->init_termios.c_line;
1263		} else
1264			tty->termios = tty->driver->init_termios;
1265	}
1266	/* Compatibility until drivers always set this */
1267	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1269}
1270EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272/**
1273 * tty_standard_install - usual tty->ops->install
1274 * @driver: the driver for the tty
1275 * @tty: the tty
1276 *
1277 * If the @driver overrides @tty->ops->install, it still can call this function
1278 * to perform the standard install operations.
1279 */
1280int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281{
1282	tty_init_termios(tty);
1283	tty_driver_kref_get(driver);
1284	tty->count++;
1285	driver->ttys[tty->index] = tty;
1286	return 0;
1287}
1288EXPORT_SYMBOL_GPL(tty_standard_install);
1289
1290/**
1291 * tty_driver_install_tty() - install a tty entry in the driver
1292 * @driver: the driver for the tty
1293 * @tty: the tty
1294 *
1295 * Install a tty object into the driver tables. The @tty->index field will be
1296 * set by the time this is called. This method is responsible for ensuring any
1297 * need additional structures are allocated and configured.
 
1298 *
1299 * Locking: tty_mutex for now
1300 */
1301static int tty_driver_install_tty(struct tty_driver *driver,
1302						struct tty_struct *tty)
1303{
1304	return driver->ops->install ? driver->ops->install(driver, tty) :
1305		tty_standard_install(driver, tty);
1306}
1307
1308/**
1309 * tty_driver_remove_tty() - remove a tty from the driver tables
1310 * @driver: the driver for the tty
1311 * @tty: tty to remove
1312 *
1313 * Remove a tty object from the driver tables. The tty->index field will be set
1314 * by the time this is called.
1315 *
1316 * Locking: tty_mutex for now
1317 */
1318static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1319{
1320	if (driver->ops->remove)
1321		driver->ops->remove(driver, tty);
1322	else
1323		driver->ttys[tty->index] = NULL;
1324}
1325
1326/**
1327 * tty_reopen() - fast re-open of an open tty
1328 * @tty: the tty to open
1329 *
1330 * Re-opens on master ptys are not allowed and return -%EIO.
 
1331 *
1332 * Locking: Caller must hold tty_lock
1333 * Return: 0 on success, -errno on error.
1334 */
1335static int tty_reopen(struct tty_struct *tty)
1336{
1337	struct tty_driver *driver = tty->driver;
1338	struct tty_ldisc *ld;
1339	int retval = 0;
1340
1341	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342	    driver->subtype == PTY_TYPE_MASTER)
1343		return -EIO;
1344
1345	if (!tty->count)
1346		return -EAGAIN;
1347
1348	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1349		return -EBUSY;
1350
1351	ld = tty_ldisc_ref_wait(tty);
1352	if (ld) {
1353		tty_ldisc_deref(ld);
1354	} else {
1355		retval = tty_ldisc_lock(tty, 5 * HZ);
1356		if (retval)
1357			return retval;
1358
1359		if (!tty->ldisc)
1360			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1361		tty_ldisc_unlock(tty);
1362	}
1363
1364	if (retval == 0)
1365		tty->count++;
1366
1367	return retval;
1368}
1369
1370/**
1371 * tty_init_dev - initialise a tty device
1372 * @driver: tty driver we are opening a device on
1373 * @idx: device index
1374 *
1375 * Prepare a tty device. This may not be a "new" clean device but could also be
1376 * an active device. The pty drivers require special handling because of this.
1377 *
1378 * Locking:
1379 *	The function is called under the tty_mutex, which protects us from the
1380 *	tty struct or driver itself going away.
1381 *
1382 * On exit the tty device has the line discipline attached and a reference
1383 * count of 1. If a pair was created for pty/tty use and the other was a pty
1384 * master then it too has a reference count of 1.
1385 *
1386 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1387 * open. The new code protects the open with a mutex, so it's really quite
1388 * straightforward. The mutex locking can probably be relaxed for the (most
1389 * common) case of reopening a tty.
1390 *
1391 * Return: new tty structure
1392 */
 
1393struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1394{
1395	struct tty_struct *tty;
1396	int retval;
1397
1398	/*
1399	 * First time open is complex, especially for PTY devices.
1400	 * This code guarantees that either everything succeeds and the
1401	 * TTY is ready for operation, or else the table slots are vacated
1402	 * and the allocated memory released.  (Except that the termios
1403	 * may be retained.)
1404	 */
1405
1406	if (!try_module_get(driver->owner))
1407		return ERR_PTR(-ENODEV);
1408
1409	tty = alloc_tty_struct(driver, idx);
1410	if (!tty) {
1411		retval = -ENOMEM;
1412		goto err_module_put;
1413	}
1414
1415	tty_lock(tty);
1416	retval = tty_driver_install_tty(driver, tty);
1417	if (retval < 0)
1418		goto err_free_tty;
1419
1420	if (!tty->port)
1421		tty->port = driver->ports[idx];
1422
1423	if (WARN_RATELIMIT(!tty->port,
1424			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1425			__func__, tty->driver->name)) {
1426		retval = -EINVAL;
1427		goto err_release_lock;
1428	}
1429
1430	retval = tty_ldisc_lock(tty, 5 * HZ);
1431	if (retval)
1432		goto err_release_lock;
1433	tty->port->itty = tty;
1434
1435	/*
1436	 * Structures all installed ... call the ldisc open routines.
1437	 * If we fail here just call release_tty to clean up.  No need
1438	 * to decrement the use counts, as release_tty doesn't care.
1439	 */
1440	retval = tty_ldisc_setup(tty, tty->link);
1441	if (retval)
1442		goto err_release_tty;
1443	tty_ldisc_unlock(tty);
1444	/* Return the tty locked so that it cannot vanish under the caller */
1445	return tty;
1446
1447err_free_tty:
1448	tty_unlock(tty);
1449	free_tty_struct(tty);
1450err_module_put:
1451	module_put(driver->owner);
1452	return ERR_PTR(retval);
1453
1454	/* call the tty release_tty routine to clean out this slot */
1455err_release_tty:
1456	tty_ldisc_unlock(tty);
1457	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1458			     retval, idx);
1459err_release_lock:
1460	tty_unlock(tty);
1461	release_tty(tty, idx);
1462	return ERR_PTR(retval);
1463}
1464
1465/**
1466 * tty_save_termios() - save tty termios data in driver table
1467 * @tty: tty whose termios data to save
1468 *
1469 * Locking: Caller guarantees serialisation with tty_init_termios().
1470 */
1471void tty_save_termios(struct tty_struct *tty)
1472{
1473	struct ktermios *tp;
1474	int idx = tty->index;
1475
1476	/* If the port is going to reset then it has no termios to save */
1477	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1478		return;
1479
1480	/* Stash the termios data */
1481	tp = tty->driver->termios[idx];
1482	if (tp == NULL) {
1483		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1484		if (tp == NULL)
1485			return;
1486		tty->driver->termios[idx] = tp;
1487	}
1488	*tp = tty->termios;
1489}
1490EXPORT_SYMBOL_GPL(tty_save_termios);
1491
1492/**
1493 * tty_flush_works - flush all works of a tty/pty pair
1494 * @tty: tty device to flush works for (or either end of a pty pair)
1495 *
1496 * Sync flush all works belonging to @tty (and the 'other' tty).
1497 */
1498static void tty_flush_works(struct tty_struct *tty)
1499{
1500	flush_work(&tty->SAK_work);
1501	flush_work(&tty->hangup_work);
1502	if (tty->link) {
1503		flush_work(&tty->link->SAK_work);
1504		flush_work(&tty->link->hangup_work);
1505	}
1506}
1507
1508/**
1509 * release_one_tty - release tty structure memory
1510 * @work: work of tty we are obliterating
1511 *
1512 * Releases memory associated with a tty structure, and clears out the
1513 * driver table slots. This function is called when a device is no longer
1514 * in use. It also gets called when setup of a device fails.
1515 *
1516 * Locking:
1517 *	takes the file list lock internally when working on the list of ttys
1518 *	that the driver keeps.
1519 *
1520 * This method gets called from a work queue so that the driver private
1521 * cleanup ops can sleep (needed for USB at least)
1522 */
1523static void release_one_tty(struct work_struct *work)
1524{
1525	struct tty_struct *tty =
1526		container_of(work, struct tty_struct, hangup_work);
1527	struct tty_driver *driver = tty->driver;
1528	struct module *owner = driver->owner;
1529
1530	if (tty->ops->cleanup)
1531		tty->ops->cleanup(tty);
1532
 
1533	tty_driver_kref_put(driver);
1534	module_put(owner);
1535
1536	spin_lock(&tty->files_lock);
1537	list_del_init(&tty->tty_files);
1538	spin_unlock(&tty->files_lock);
1539
1540	put_pid(tty->ctrl.pgrp);
1541	put_pid(tty->ctrl.session);
1542	free_tty_struct(tty);
1543}
1544
1545static void queue_release_one_tty(struct kref *kref)
1546{
1547	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1548
1549	/* The hangup queue is now free so we can reuse it rather than
1550	 *  waste a chunk of memory for each port.
1551	 */
1552	INIT_WORK(&tty->hangup_work, release_one_tty);
1553	schedule_work(&tty->hangup_work);
1554}
1555
1556/**
1557 * tty_kref_put - release a tty kref
1558 * @tty: tty device
1559 *
1560 * Release a reference to the @tty device and if need be let the kref layer
1561 * destruct the object for us.
1562 */
 
1563void tty_kref_put(struct tty_struct *tty)
1564{
1565	if (tty)
1566		kref_put(&tty->kref, queue_release_one_tty);
1567}
1568EXPORT_SYMBOL(tty_kref_put);
1569
1570/**
1571 * release_tty - release tty structure memory
1572 * @tty: tty device release
1573 * @idx: index of the tty device release
1574 *
1575 * Release both @tty and a possible linked partner (think pty pair),
1576 * and decrement the refcount of the backing module.
 
 
 
 
 
1577 *
1578 * Locking:
1579 *	tty_mutex
1580 *	takes the file list lock internally when working on the list of ttys
1581 *	that the driver keeps.
1582 */
1583static void release_tty(struct tty_struct *tty, int idx)
1584{
1585	/* This should always be true but check for the moment */
1586	WARN_ON(tty->index != idx);
1587	WARN_ON(!mutex_is_locked(&tty_mutex));
1588	if (tty->ops->shutdown)
1589		tty->ops->shutdown(tty);
1590	tty_save_termios(tty);
1591	tty_driver_remove_tty(tty->driver, tty);
1592	if (tty->port)
1593		tty->port->itty = NULL;
1594	if (tty->link)
1595		tty->link->port->itty = NULL;
1596	if (tty->port)
1597		tty_buffer_cancel_work(tty->port);
1598	if (tty->link)
1599		tty_buffer_cancel_work(tty->link->port);
1600
1601	tty_kref_put(tty->link);
1602	tty_kref_put(tty);
1603}
1604
1605/**
1606 * tty_release_checks - check a tty before real release
1607 * @tty: tty to check
1608 * @idx: index of the tty
 
1609 *
1610 * Performs some paranoid checking before true release of the @tty. This is a
1611 * no-op unless %TTY_PARANOIA_CHECK is defined.
1612 */
1613static int tty_release_checks(struct tty_struct *tty, int idx)
1614{
1615#ifdef TTY_PARANOIA_CHECK
1616	if (idx < 0 || idx >= tty->driver->num) {
1617		tty_debug(tty, "bad idx %d\n", idx);
1618		return -1;
1619	}
1620
1621	/* not much to check for devpts */
1622	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1623		return 0;
1624
1625	if (tty != tty->driver->ttys[idx]) {
1626		tty_debug(tty, "bad driver table[%d] = %p\n",
1627			  idx, tty->driver->ttys[idx]);
1628		return -1;
1629	}
1630	if (tty->driver->other) {
1631		struct tty_struct *o_tty = tty->link;
1632
1633		if (o_tty != tty->driver->other->ttys[idx]) {
1634			tty_debug(tty, "bad other table[%d] = %p\n",
1635				  idx, tty->driver->other->ttys[idx]);
1636			return -1;
1637		}
1638		if (o_tty->link != tty) {
1639			tty_debug(tty, "bad link = %p\n", o_tty->link);
1640			return -1;
1641		}
1642	}
1643#endif
1644	return 0;
1645}
1646
1647/**
1648 * tty_kclose - closes tty opened by tty_kopen
1649 * @tty: tty device
1650 *
1651 * Performs the final steps to release and free a tty device. It is the same as
1652 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1653 * @tty->port.
1654 */
1655void tty_kclose(struct tty_struct *tty)
1656{
1657	/*
1658	 * Ask the line discipline code to release its structures
1659	 */
1660	tty_ldisc_release(tty);
1661
1662	/* Wait for pending work before tty destruction commences */
1663	tty_flush_works(tty);
1664
1665	tty_debug_hangup(tty, "freeing structure\n");
1666	/*
1667	 * The release_tty function takes care of the details of clearing
1668	 * the slots and preserving the termios structure.
1669	 */
1670	mutex_lock(&tty_mutex);
1671	tty_port_set_kopened(tty->port, 0);
1672	release_tty(tty, tty->index);
1673	mutex_unlock(&tty_mutex);
1674}
1675EXPORT_SYMBOL_GPL(tty_kclose);
1676
1677/**
1678 * tty_release_struct - release a tty struct
1679 * @tty: tty device
1680 * @idx: index of the tty
1681 *
1682 * Performs the final steps to release and free a tty device. It is roughly the
1683 * reverse of tty_init_dev().
1684 */
1685void tty_release_struct(struct tty_struct *tty, int idx)
1686{
1687	/*
1688	 * Ask the line discipline code to release its structures
1689	 */
1690	tty_ldisc_release(tty);
1691
1692	/* Wait for pending work before tty destruction commmences */
1693	tty_flush_works(tty);
1694
1695	tty_debug_hangup(tty, "freeing structure\n");
1696	/*
1697	 * The release_tty function takes care of the details of clearing
1698	 * the slots and preserving the termios structure.
1699	 */
1700	mutex_lock(&tty_mutex);
1701	release_tty(tty, idx);
1702	mutex_unlock(&tty_mutex);
1703}
1704EXPORT_SYMBOL_GPL(tty_release_struct);
1705
1706/**
1707 * tty_release - vfs callback for close
1708 * @inode: inode of tty
1709 * @filp: file pointer for handle to tty
1710 *
1711 * Called the last time each file handle is closed that references this tty.
1712 * There may however be several such references.
1713 *
1714 * Locking:
1715 *	Takes BKL. See tty_release_dev().
1716 *
1717 * Even releasing the tty structures is a tricky business. We have to be very
1718 * careful that the structures are all released at the same time, as interrupts
1719 * might otherwise get the wrong pointers.
1720 *
1721 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1722 * lead to double frees or releasing memory still in use.
1723 */
 
1724int tty_release(struct inode *inode, struct file *filp)
1725{
1726	struct tty_struct *tty = file_tty(filp);
1727	struct tty_struct *o_tty = NULL;
1728	int	do_sleep, final;
1729	int	idx;
1730	long	timeout = 0;
1731	int	once = 1;
1732
1733	if (tty_paranoia_check(tty, inode, __func__))
1734		return 0;
1735
1736	tty_lock(tty);
1737	check_tty_count(tty, __func__);
1738
1739	__tty_fasync(-1, filp, 0);
1740
1741	idx = tty->index;
1742	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1743	    tty->driver->subtype == PTY_TYPE_MASTER)
1744		o_tty = tty->link;
1745
1746	if (tty_release_checks(tty, idx)) {
1747		tty_unlock(tty);
1748		return 0;
1749	}
1750
1751	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1752
1753	if (tty->ops->close)
1754		tty->ops->close(tty, filp);
1755
1756	/* If tty is pty master, lock the slave pty (stable lock order) */
1757	tty_lock_slave(o_tty);
1758
1759	/*
1760	 * Sanity check: if tty->count is going to zero, there shouldn't be
1761	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1762	 * wait queues and kick everyone out _before_ actually starting to
1763	 * close.  This ensures that we won't block while releasing the tty
1764	 * structure.
1765	 *
1766	 * The test for the o_tty closing is necessary, since the master and
1767	 * slave sides may close in any order.  If the slave side closes out
1768	 * first, its count will be one, since the master side holds an open.
1769	 * Thus this test wouldn't be triggered at the time the slave closed,
1770	 * so we do it now.
1771	 */
1772	while (1) {
1773		do_sleep = 0;
1774
1775		if (tty->count <= 1) {
1776			if (waitqueue_active(&tty->read_wait)) {
1777				wake_up_poll(&tty->read_wait, EPOLLIN);
1778				do_sleep++;
1779			}
1780			if (waitqueue_active(&tty->write_wait)) {
1781				wake_up_poll(&tty->write_wait, EPOLLOUT);
1782				do_sleep++;
1783			}
1784		}
1785		if (o_tty && o_tty->count <= 1) {
1786			if (waitqueue_active(&o_tty->read_wait)) {
1787				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1788				do_sleep++;
1789			}
1790			if (waitqueue_active(&o_tty->write_wait)) {
1791				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1792				do_sleep++;
1793			}
1794		}
1795		if (!do_sleep)
1796			break;
1797
1798		if (once) {
1799			once = 0;
1800			tty_warn(tty, "read/write wait queue active!\n");
1801		}
1802		schedule_timeout_killable(timeout);
1803		if (timeout < 120 * HZ)
1804			timeout = 2 * timeout + 1;
1805		else
1806			timeout = MAX_SCHEDULE_TIMEOUT;
1807	}
1808
1809	if (o_tty) {
1810		if (--o_tty->count < 0) {
1811			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1812			o_tty->count = 0;
1813		}
1814	}
1815	if (--tty->count < 0) {
1816		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1817		tty->count = 0;
1818	}
1819
1820	/*
1821	 * We've decremented tty->count, so we need to remove this file
1822	 * descriptor off the tty->tty_files list; this serves two
1823	 * purposes:
1824	 *  - check_tty_count sees the correct number of file descriptors
1825	 *    associated with this tty.
1826	 *  - do_tty_hangup no longer sees this file descriptor as
1827	 *    something that needs to be handled for hangups.
1828	 */
1829	tty_del_file(filp);
1830
1831	/*
1832	 * Perform some housekeeping before deciding whether to return.
1833	 *
1834	 * If _either_ side is closing, make sure there aren't any
1835	 * processes that still think tty or o_tty is their controlling
1836	 * tty.
1837	 */
1838	if (!tty->count) {
1839		read_lock(&tasklist_lock);
1840		session_clear_tty(tty->ctrl.session);
1841		if (o_tty)
1842			session_clear_tty(o_tty->ctrl.session);
1843		read_unlock(&tasklist_lock);
1844	}
1845
1846	/* check whether both sides are closing ... */
1847	final = !tty->count && !(o_tty && o_tty->count);
1848
1849	tty_unlock_slave(o_tty);
1850	tty_unlock(tty);
1851
1852	/* At this point, the tty->count == 0 should ensure a dead tty
1853	 * cannot be re-opened by a racing opener.
1854	 */
1855
1856	if (!final)
1857		return 0;
1858
1859	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861	tty_release_struct(tty, idx);
1862	return 0;
1863}
1864
1865/**
1866 * tty_open_current_tty - get locked tty of current task
1867 * @device: device number
1868 * @filp: file pointer to tty
1869 * @return: locked tty of the current task iff @device is /dev/tty
1870 *
1871 * Performs a re-open of the current task's controlling tty.
1872 *
1873 * We cannot return driver and index like for the other nodes because devpts
1874 * will not work then. It expects inodes to be from devpts FS.
1875 */
1876static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1877{
1878	struct tty_struct *tty;
1879	int retval;
1880
1881	if (device != MKDEV(TTYAUX_MAJOR, 0))
1882		return NULL;
1883
1884	tty = get_current_tty();
1885	if (!tty)
1886		return ERR_PTR(-ENXIO);
1887
1888	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1889	/* noctty = 1; */
1890	tty_lock(tty);
1891	tty_kref_put(tty);	/* safe to drop the kref now */
1892
1893	retval = tty_reopen(tty);
1894	if (retval < 0) {
1895		tty_unlock(tty);
1896		tty = ERR_PTR(retval);
1897	}
1898	return tty;
1899}
1900
1901/**
1902 * tty_lookup_driver - lookup a tty driver for a given device file
1903 * @device: device number
1904 * @filp: file pointer to tty
1905 * @index: index for the device in the @return driver
1906 *
1907 * If returned value is not erroneous, the caller is responsible to decrement
1908 * the refcount by tty_driver_kref_put().
1909 *
1910 * Locking: %tty_mutex protects get_tty_driver()
 
1911 *
1912 * Return: driver for this inode (with increased refcount)
1913 */
1914static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1915		int *index)
1916{
1917	struct tty_driver *driver = NULL;
1918
1919	switch (device) {
1920#ifdef CONFIG_VT
1921	case MKDEV(TTY_MAJOR, 0): {
1922		extern struct tty_driver *console_driver;
1923
1924		driver = tty_driver_kref_get(console_driver);
1925		*index = fg_console;
1926		break;
1927	}
1928#endif
1929	case MKDEV(TTYAUX_MAJOR, 1): {
1930		struct tty_driver *console_driver = console_device(index);
1931
1932		if (console_driver) {
1933			driver = tty_driver_kref_get(console_driver);
1934			if (driver && filp) {
1935				/* Don't let /dev/console block */
1936				filp->f_flags |= O_NONBLOCK;
1937				break;
1938			}
1939		}
1940		if (driver)
1941			tty_driver_kref_put(driver);
1942		return ERR_PTR(-ENODEV);
1943	}
1944	default:
1945		driver = get_tty_driver(device, index);
1946		if (!driver)
1947			return ERR_PTR(-ENODEV);
1948		break;
1949	}
1950	return driver;
1951}
1952
1953static struct tty_struct *tty_kopen(dev_t device, int shared)
1954{
1955	struct tty_struct *tty;
1956	struct tty_driver *driver;
1957	int index = -1;
1958
1959	mutex_lock(&tty_mutex);
1960	driver = tty_lookup_driver(device, NULL, &index);
1961	if (IS_ERR(driver)) {
1962		mutex_unlock(&tty_mutex);
1963		return ERR_CAST(driver);
1964	}
1965
1966	/* check whether we're reopening an existing tty */
1967	tty = tty_driver_lookup_tty(driver, NULL, index);
1968	if (IS_ERR(tty) || shared)
1969		goto out;
1970
1971	if (tty) {
1972		/* drop kref from tty_driver_lookup_tty() */
1973		tty_kref_put(tty);
1974		tty = ERR_PTR(-EBUSY);
1975	} else { /* tty_init_dev returns tty with the tty_lock held */
1976		tty = tty_init_dev(driver, index);
1977		if (IS_ERR(tty))
1978			goto out;
1979		tty_port_set_kopened(tty->port, 1);
1980	}
1981out:
1982	mutex_unlock(&tty_mutex);
1983	tty_driver_kref_put(driver);
1984	return tty;
1985}
1986
1987/**
1988 * tty_kopen_exclusive - open a tty device for kernel
1989 * @device: dev_t of device to open
1990 *
1991 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1992 * it's not already opened and performs the first-time tty initialization.
1993 *
1994 * Claims the global %tty_mutex to serialize:
1995 *  * concurrent first-time tty initialization
1996 *  * concurrent tty driver removal w/ lookup
1997 *  * concurrent tty removal from driver table
1998 *
1999 * Return: the locked initialized &tty_struct
2000 */
2001struct tty_struct *tty_kopen_exclusive(dev_t device)
2002{
2003	return tty_kopen(device, 0);
2004}
2005EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2006
2007/**
2008 * tty_kopen_shared - open a tty device for shared in-kernel use
2009 * @device: dev_t of device to open
2010 *
2011 * Opens an already existing tty for in-kernel use. Compared to
2012 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2013 *
2014 * Locking: identical to tty_kopen() above.
2015 */
2016struct tty_struct *tty_kopen_shared(dev_t device)
2017{
2018	return tty_kopen(device, 1);
2019}
2020EXPORT_SYMBOL_GPL(tty_kopen_shared);
2021
2022/**
2023 * tty_open_by_driver - open a tty device
2024 * @device: dev_t of device to open
2025 * @filp: file pointer to tty
2026 *
2027 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2028 * first-time tty initialization.
2029 *
2030 *
2031 * Claims the global tty_mutex to serialize:
2032 *  * concurrent first-time tty initialization
2033 *  * concurrent tty driver removal w/ lookup
2034 *  * concurrent tty removal from driver table
2035 *
2036 * Return: the locked initialized or re-opened &tty_struct
2037 */
2038static struct tty_struct *tty_open_by_driver(dev_t device,
2039					     struct file *filp)
2040{
2041	struct tty_struct *tty;
2042	struct tty_driver *driver = NULL;
2043	int index = -1;
2044	int retval;
2045
2046	mutex_lock(&tty_mutex);
2047	driver = tty_lookup_driver(device, filp, &index);
2048	if (IS_ERR(driver)) {
2049		mutex_unlock(&tty_mutex);
2050		return ERR_CAST(driver);
2051	}
2052
2053	/* check whether we're reopening an existing tty */
2054	tty = tty_driver_lookup_tty(driver, filp, index);
2055	if (IS_ERR(tty)) {
2056		mutex_unlock(&tty_mutex);
2057		goto out;
2058	}
2059
2060	if (tty) {
2061		if (tty_port_kopened(tty->port)) {
2062			tty_kref_put(tty);
2063			mutex_unlock(&tty_mutex);
2064			tty = ERR_PTR(-EBUSY);
2065			goto out;
2066		}
2067		mutex_unlock(&tty_mutex);
2068		retval = tty_lock_interruptible(tty);
2069		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2070		if (retval) {
2071			if (retval == -EINTR)
2072				retval = -ERESTARTSYS;
2073			tty = ERR_PTR(retval);
2074			goto out;
2075		}
2076		retval = tty_reopen(tty);
2077		if (retval < 0) {
2078			tty_unlock(tty);
2079			tty = ERR_PTR(retval);
2080		}
2081	} else { /* Returns with the tty_lock held for now */
2082		tty = tty_init_dev(driver, index);
2083		mutex_unlock(&tty_mutex);
2084	}
2085out:
2086	tty_driver_kref_put(driver);
2087	return tty;
2088}
2089
2090/**
2091 * tty_open - open a tty device
2092 * @inode: inode of device file
2093 * @filp: file pointer to tty
2094 *
2095 * tty_open() and tty_release() keep up the tty count that contains the number
2096 * of opens done on a tty. We cannot use the inode-count, as different inodes
2097 * might point to the same tty.
2098 *
2099 * Open-counting is needed for pty masters, as well as for keeping track of
2100 * serial lines: DTR is dropped when the last close happens.
2101 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2102 *
2103 * The termios state of a pty is reset on the first open so that settings don't
2104 * persist across reuse.
2105 *
2106 * Locking:
2107 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2108 *  * @tty->count should protect the rest.
2109 *  * ->siglock protects ->signal/->sighand
2110 *
2111 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
 
2112 */
 
2113static int tty_open(struct inode *inode, struct file *filp)
2114{
2115	struct tty_struct *tty;
2116	int noctty, retval;
2117	dev_t device = inode->i_rdev;
2118	unsigned saved_flags = filp->f_flags;
2119
2120	nonseekable_open(inode, filp);
2121
2122retry_open:
2123	retval = tty_alloc_file(filp);
2124	if (retval)
2125		return -ENOMEM;
2126
2127	tty = tty_open_current_tty(device, filp);
2128	if (!tty)
2129		tty = tty_open_by_driver(device, filp);
2130
2131	if (IS_ERR(tty)) {
2132		tty_free_file(filp);
2133		retval = PTR_ERR(tty);
2134		if (retval != -EAGAIN || signal_pending(current))
2135			return retval;
2136		schedule();
2137		goto retry_open;
2138	}
2139
2140	tty_add_file(tty, filp);
2141
2142	check_tty_count(tty, __func__);
2143	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2144
2145	if (tty->ops->open)
2146		retval = tty->ops->open(tty, filp);
2147	else
2148		retval = -ENODEV;
2149	filp->f_flags = saved_flags;
2150
2151	if (retval) {
2152		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2153
2154		tty_unlock(tty); /* need to call tty_release without BTM */
2155		tty_release(inode, filp);
2156		if (retval != -ERESTARTSYS)
2157			return retval;
2158
2159		if (signal_pending(current))
2160			return retval;
2161
2162		schedule();
2163		/*
2164		 * Need to reset f_op in case a hangup happened.
2165		 */
2166		if (tty_hung_up_p(filp))
2167			filp->f_op = &tty_fops;
2168		goto retry_open;
2169	}
2170	clear_bit(TTY_HUPPED, &tty->flags);
2171
 
 
 
2172	noctty = (filp->f_flags & O_NOCTTY) ||
2173		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2174		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2175		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2176		  tty->driver->subtype == PTY_TYPE_MASTER);
2177	if (!noctty)
2178		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179	tty_unlock(tty);
2180	return 0;
2181}
2182
2183
 
2184/**
2185 * tty_poll - check tty status
2186 * @filp: file being polled
2187 * @wait: poll wait structures to update
2188 *
2189 * Call the line discipline polling method to obtain the poll status of the
2190 * device.
2191 *
2192 * Locking: locks called line discipline but ldisc poll method may be
2193 * re-entered freely by other callers.
2194 */
2195static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2196{
2197	struct tty_struct *tty = file_tty(filp);
2198	struct tty_ldisc *ld;
2199	__poll_t ret = 0;
2200
2201	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2202		return 0;
2203
2204	ld = tty_ldisc_ref_wait(tty);
2205	if (!ld)
2206		return hung_up_tty_poll(filp, wait);
2207	if (ld->ops->poll)
2208		ret = ld->ops->poll(tty, filp, wait);
2209	tty_ldisc_deref(ld);
2210	return ret;
2211}
2212
2213static int __tty_fasync(int fd, struct file *filp, int on)
2214{
2215	struct tty_struct *tty = file_tty(filp);
2216	unsigned long flags;
2217	int retval = 0;
2218
2219	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220		goto out;
2221
2222	if (on) {
2223		retval = file_f_owner_allocate(filp);
2224		if (retval)
2225			goto out;
2226	}
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
 
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
 
 
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426 *
2427 * Set the line discipline according to user request.
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
 
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
2440
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
2453 */
 
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
 
 
 
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
 
2478static int send_break(struct tty_struct *tty, unsigned int duration)
2479{
2480	int retval;
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
 
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
 
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
2504
2505	return retval;
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
 
 
 
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
 
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
 
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
 
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
 
 
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
 
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
3218}
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
 
 
 
 
3233 *
3234 * Locking: ??
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
 
 
 
 
 
 
 
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
 
 
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
 
 
 
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
 
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
 
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
3445	struct device *d;
3446
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
3495	return error;
3496}
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!(c->flags & CON_NBCON) && !c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec_minmax,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v4.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 299		return count;
 
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 
 
 
 
 
 
 
 
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 
 
 
 
 
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 
 
 
 
 
 
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 
 
 
 
 
 
 
 
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 
 769	tty_unlock(tty);
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 811	__tty_hangup(tty, 0);
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 961	disassociate_ctty(0);
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 986		return;
 987	tty->stopped = 1;
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
1017		return;
1018	tty->stopped = 0;
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
1021	tty_wakeup(tty);
1022}
1023
 
 
 
 
 
 
 
 
 
 
 
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
 
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
 
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
 
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
 
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
 
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
1170		if (size > chunk)
1171			size = chunk;
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
1175		ret = write(tty, file, tty->write_buf, size);
 
1176		if (ret <= 0)
1177			break;
 
1178		written += ret;
1179		buf += ret;
 
 
 
 
 
 
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
 
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
 
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
1273	spin_unlock(&redirect_lock);
1274
 
 
 
 
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
 
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
 
 
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
 
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
1362 *	@idx:	 the minor number
 
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
1376	else
 
 
 
 
 
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
 
 
 
 
 
 
 
 
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
 
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
 
 
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
1483
1484	tty->count++;
 
 
 
 
 
 
 
 
 
 
 
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
1488
1489	return 0;
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
 
 
 
1549
 
 
 
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
 
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
 
 
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
1593			return;
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
 
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
 
 
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
1688 *
 
 
 
 
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
 
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
 
 
 
1703
1704	tty_kref_put(tty->link);
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
1794		return 0;
1795	}
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
1817	 */
1818	while (1) {
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
 
1900
1901	if (!final)
1902		return 0;
1903
1904	tty_debug_hangup(tty, "final close\n");
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
 
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940	struct tty_struct *tty;
1941	int retval;
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
 
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
 
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
1987		break;
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
 
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
1997				break;
1998			}
1999		}
 
 
2000		return ERR_PTR(-ENODEV);
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011/**
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
 
 
 
 
 
 
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
 
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
2114
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138		tty_unlock(tty); /* need to call tty_release without BTM */
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
2151			filp->f_op = &tty_fops;
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157	read_lock(&tasklist_lock);
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
2189	return 0;
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
 
 
 
 
 
 
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
2254	}
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
 
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
 
 
 
 
2293
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
 
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
 
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
 
 
 
 
 
 
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
2491			session_clear_tty(tty->session);
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
 
 
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738	return retval;
2739}
 
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
 
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
 
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833	flags &= ASYNC_DEPRECATED;
 
 
 
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
 
 
 
 
2838}
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
 
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
 
 
 
 
 
 
 
 
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
 
 
 
 
 
 
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
 
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
3091			send_sig(SIGKILL, p, 1);
 
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
3099			force_sig(SIGKILL, p);
 
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
 
 
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
 
 
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172	mutex_init(&tty->atomic_write_lock);
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
3184
3185	return tty;
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
 
 
 
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
 
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
 
 
 
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
 
 
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	return dev;
3327
3328error:
 
 
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
 
 
 
 
 
 
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
3486	struct device *d;
3487
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
3536	return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
 
 
 
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
 
 
 
 
 
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
 
 
 
 
 
 
 
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
 
 
 
 
 
 
 
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
 
 
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
 
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700