Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/memblock.h>
23#include <linux/export.h>
24#include <linux/init.h>
25#include <linux/mm.h>
26#include <linux/err.h>
27#include <linux/spinlock.h>
28#include <linux/kernel_stat.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/irqflags.h>
32#include <linux/irq_work.h>
33#include <linux/cpu.h>
34#include <linux/slab.h>
35#include <linux/sched/hotplug.h>
36#include <linux/sched/task_stack.h>
37#include <linux/crash_dump.h>
38#include <linux/kprobes.h>
39#include <asm/access-regs.h>
40#include <asm/asm-offsets.h>
41#include <asm/ctlreg.h>
42#include <asm/pfault.h>
43#include <asm/diag.h>
44#include <asm/facility.h>
45#include <asm/fpu.h>
46#include <asm/ipl.h>
47#include <asm/setup.h>
48#include <asm/irq.h>
49#include <asm/tlbflush.h>
50#include <asm/vtimer.h>
51#include <asm/abs_lowcore.h>
52#include <asm/sclp.h>
53#include <asm/debug.h>
54#include <asm/os_info.h>
55#include <asm/sigp.h>
56#include <asm/idle.h>
57#include <asm/nmi.h>
58#include <asm/stacktrace.h>
59#include <asm/topology.h>
60#include <asm/vdso.h>
61#include <asm/maccess.h>
62#include "entry.h"
63
64enum {
65 ec_schedule = 0,
66 ec_call_function_single,
67 ec_stop_cpu,
68 ec_mcck_pending,
69 ec_irq_work,
70};
71
72enum {
73 CPU_STATE_STANDBY,
74 CPU_STATE_CONFIGURED,
75};
76
77static u8 boot_core_type;
78DEFINE_PER_CPU(struct pcpu, pcpu_devices);
79/*
80 * Pointer to the pcpu area of the boot CPU. This is required when a restart
81 * interrupt is triggered on an offline CPU. For that case accessing percpu
82 * data with the common primitives does not work, since the percpu offset is
83 * stored in a non existent lowcore.
84 */
85static struct pcpu *ipl_pcpu;
86
87unsigned int smp_cpu_mt_shift;
88EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90unsigned int smp_cpu_mtid;
91EXPORT_SYMBOL(smp_cpu_mtid);
92
93#ifdef CONFIG_CRASH_DUMP
94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95#endif
96
97static unsigned int smp_max_threads __initdata = -1U;
98cpumask_t cpu_setup_mask;
99
100static int __init early_nosmt(char *s)
101{
102 smp_max_threads = 1;
103 return 0;
104}
105early_param("nosmt", early_nosmt);
106
107static int __init early_smt(char *s)
108{
109 get_option(&s, &smp_max_threads);
110 return 0;
111}
112early_param("smt", early_smt);
113
114/*
115 * The smp_cpu_state_mutex must be held when changing the state or polarization
116 * member of a pcpu data structure within the pcpu_devices array.
117 */
118DEFINE_MUTEX(smp_cpu_state_mutex);
119
120/*
121 * Signal processor helper functions.
122 */
123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124{
125 int cc;
126
127 while (1) {
128 cc = __pcpu_sigp(addr, order, parm, NULL);
129 if (cc != SIGP_CC_BUSY)
130 return cc;
131 cpu_relax();
132 }
133}
134
135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136{
137 int cc, retry;
138
139 for (retry = 0; ; retry++) {
140 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 if (cc != SIGP_CC_BUSY)
142 break;
143 if (retry >= 3)
144 udelay(10);
145 }
146 return cc;
147}
148
149static inline int pcpu_stopped(struct pcpu *pcpu)
150{
151 u32 status;
152
153 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 0, &status) != SIGP_CC_STATUS_STORED)
155 return 0;
156 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157}
158
159static inline int pcpu_running(struct pcpu *pcpu)
160{
161 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 0, NULL) != SIGP_CC_STATUS_STORED)
163 return 1;
164 /* Status stored condition code is equivalent to cpu not running. */
165 return 0;
166}
167
168/*
169 * Find struct pcpu by cpu address.
170 */
171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172{
173 int cpu;
174
175 for_each_cpu(cpu, mask)
176 if (per_cpu(pcpu_devices, cpu).address == address)
177 return &per_cpu(pcpu_devices, cpu);
178 return NULL;
179}
180
181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182{
183 int order;
184
185 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186 return;
187 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 pcpu->ec_clk = get_tod_clock_fast();
189 pcpu_sigp_retry(pcpu, order, 0);
190}
191
192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193{
194 unsigned long async_stack, nodat_stack, mcck_stack;
195 struct lowcore *lc;
196
197 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199 async_stack = stack_alloc();
200 mcck_stack = stack_alloc();
201 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202 goto out;
203 memcpy(lc, get_lowcore(), 512);
204 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205 lc->async_stack = async_stack + STACK_INIT_OFFSET;
206 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208 lc->cpu_nr = cpu;
209 lc->spinlock_lockval = arch_spin_lockval(cpu);
210 lc->spinlock_index = 0;
211 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213 lc->preempt_count = PREEMPT_DISABLED;
214 if (nmi_alloc_mcesa(&lc->mcesad))
215 goto out;
216 if (abs_lowcore_map(cpu, lc, true))
217 goto out_mcesa;
218 lowcore_ptr[cpu] = lc;
219 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
220 return 0;
221
222out_mcesa:
223 nmi_free_mcesa(&lc->mcesad);
224out:
225 stack_free(mcck_stack);
226 stack_free(async_stack);
227 free_pages(nodat_stack, THREAD_SIZE_ORDER);
228 free_pages((unsigned long) lc, LC_ORDER);
229 return -ENOMEM;
230}
231
232static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
233{
234 unsigned long async_stack, nodat_stack, mcck_stack;
235 struct lowcore *lc;
236
237 lc = lowcore_ptr[cpu];
238 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
239 async_stack = lc->async_stack - STACK_INIT_OFFSET;
240 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
241 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242 lowcore_ptr[cpu] = NULL;
243 abs_lowcore_unmap(cpu);
244 nmi_free_mcesa(&lc->mcesad);
245 stack_free(async_stack);
246 stack_free(mcck_stack);
247 free_pages(nodat_stack, THREAD_SIZE_ORDER);
248 free_pages((unsigned long) lc, LC_ORDER);
249}
250
251static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
252{
253 struct lowcore *lc, *abs_lc;
254
255 lc = lowcore_ptr[cpu];
256 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258 lc->cpu_nr = cpu;
259 lc->pcpu = (unsigned long)pcpu;
260 lc->restart_flags = RESTART_FLAG_CTLREGS;
261 lc->spinlock_lockval = arch_spin_lockval(cpu);
262 lc->spinlock_index = 0;
263 lc->percpu_offset = __per_cpu_offset[cpu];
264 lc->kernel_asce = get_lowcore()->kernel_asce;
265 lc->user_asce = s390_invalid_asce;
266 lc->machine_flags = get_lowcore()->machine_flags;
267 lc->user_timer = lc->system_timer =
268 lc->steal_timer = lc->avg_steal_timer = 0;
269 abs_lc = get_abs_lowcore();
270 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
271 put_abs_lowcore(abs_lc);
272 lc->cregs_save_area[1] = lc->kernel_asce;
273 lc->cregs_save_area[7] = lc->user_asce;
274 save_access_regs((unsigned int *) lc->access_regs_save_area);
275 arch_spin_lock_setup(cpu);
276}
277
278static void pcpu_attach_task(int cpu, struct task_struct *tsk)
279{
280 struct lowcore *lc;
281
282 lc = lowcore_ptr[cpu];
283 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
284 lc->current_task = (unsigned long)tsk;
285 lc->lpp = LPP_MAGIC;
286 lc->current_pid = tsk->pid;
287 lc->user_timer = tsk->thread.user_timer;
288 lc->guest_timer = tsk->thread.guest_timer;
289 lc->system_timer = tsk->thread.system_timer;
290 lc->hardirq_timer = tsk->thread.hardirq_timer;
291 lc->softirq_timer = tsk->thread.softirq_timer;
292 lc->steal_timer = 0;
293}
294
295static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
296{
297 struct lowcore *lc;
298
299 lc = lowcore_ptr[cpu];
300 lc->restart_stack = lc->kernel_stack;
301 lc->restart_fn = (unsigned long) func;
302 lc->restart_data = (unsigned long) data;
303 lc->restart_source = -1U;
304 pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
305}
306
307typedef void (pcpu_delegate_fn)(void *);
308
309/*
310 * Call function via PSW restart on pcpu and stop the current cpu.
311 */
312static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
313{
314 func(data); /* should not return */
315}
316
317static void pcpu_delegate(struct pcpu *pcpu, int cpu,
318 pcpu_delegate_fn *func,
319 void *data, unsigned long stack)
320{
321 struct lowcore *lc, *abs_lc;
322 unsigned int source_cpu;
323
324 lc = lowcore_ptr[cpu];
325 source_cpu = stap();
326
327 if (pcpu->address == source_cpu) {
328 call_on_stack(2, stack, void, __pcpu_delegate,
329 pcpu_delegate_fn *, func, void *, data);
330 }
331 /* Stop target cpu (if func returns this stops the current cpu). */
332 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
334 /* Restart func on the target cpu and stop the current cpu. */
335 if (lc) {
336 lc->restart_stack = stack;
337 lc->restart_fn = (unsigned long)func;
338 lc->restart_data = (unsigned long)data;
339 lc->restart_source = source_cpu;
340 } else {
341 abs_lc = get_abs_lowcore();
342 abs_lc->restart_stack = stack;
343 abs_lc->restart_fn = (unsigned long)func;
344 abs_lc->restart_data = (unsigned long)data;
345 abs_lc->restart_source = source_cpu;
346 put_abs_lowcore(abs_lc);
347 }
348 asm volatile(
349 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
350 " brc 2,0b # busy, try again\n"
351 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
352 " brc 2,1b # busy, try again\n"
353 : : "d" (pcpu->address), "d" (source_cpu),
354 "K" (SIGP_RESTART), "K" (SIGP_STOP)
355 : "0", "1", "cc");
356 for (;;) ;
357}
358
359/*
360 * Enable additional logical cpus for multi-threading.
361 */
362static int pcpu_set_smt(unsigned int mtid)
363{
364 int cc;
365
366 if (smp_cpu_mtid == mtid)
367 return 0;
368 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
369 if (cc == 0) {
370 smp_cpu_mtid = mtid;
371 smp_cpu_mt_shift = 0;
372 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
373 smp_cpu_mt_shift++;
374 per_cpu(pcpu_devices, 0).address = stap();
375 }
376 return cc;
377}
378
379/*
380 * Call function on the ipl CPU.
381 */
382void smp_call_ipl_cpu(void (*func)(void *), void *data)
383{
384 struct lowcore *lc = lowcore_ptr[0];
385
386 if (ipl_pcpu->address == stap())
387 lc = get_lowcore();
388
389 pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
390}
391
392int smp_find_processor_id(u16 address)
393{
394 int cpu;
395
396 for_each_present_cpu(cpu)
397 if (per_cpu(pcpu_devices, cpu).address == address)
398 return cpu;
399 return -1;
400}
401
402void schedule_mcck_handler(void)
403{
404 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
405}
406
407bool notrace arch_vcpu_is_preempted(int cpu)
408{
409 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
410 return false;
411 if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
412 return false;
413 return true;
414}
415EXPORT_SYMBOL(arch_vcpu_is_preempted);
416
417void notrace smp_yield_cpu(int cpu)
418{
419 if (!MACHINE_HAS_DIAG9C)
420 return;
421 diag_stat_inc_norecursion(DIAG_STAT_X09C);
422 asm volatile("diag %0,0,0x9c"
423 : : "d" (per_cpu(pcpu_devices, cpu).address));
424}
425EXPORT_SYMBOL_GPL(smp_yield_cpu);
426
427/*
428 * Send cpus emergency shutdown signal. This gives the cpus the
429 * opportunity to complete outstanding interrupts.
430 */
431void notrace smp_emergency_stop(void)
432{
433 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
434 static cpumask_t cpumask;
435 u64 end;
436 int cpu;
437
438 arch_spin_lock(&lock);
439 cpumask_copy(&cpumask, cpu_online_mask);
440 cpumask_clear_cpu(smp_processor_id(), &cpumask);
441
442 end = get_tod_clock() + (1000000UL << 12);
443 for_each_cpu(cpu, &cpumask) {
444 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
445 set_bit(ec_stop_cpu, &pcpu->ec_mask);
446 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
447 0, NULL) == SIGP_CC_BUSY &&
448 get_tod_clock() < end)
449 cpu_relax();
450 }
451 while (get_tod_clock() < end) {
452 for_each_cpu(cpu, &cpumask)
453 if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
454 cpumask_clear_cpu(cpu, &cpumask);
455 if (cpumask_empty(&cpumask))
456 break;
457 cpu_relax();
458 }
459 arch_spin_unlock(&lock);
460}
461NOKPROBE_SYMBOL(smp_emergency_stop);
462
463/*
464 * Stop all cpus but the current one.
465 */
466void smp_send_stop(void)
467{
468 struct pcpu *pcpu;
469 int cpu;
470
471 /* Disable all interrupts/machine checks */
472 __load_psw_mask(PSW_KERNEL_BITS);
473 trace_hardirqs_off();
474
475 debug_set_critical();
476
477 if (oops_in_progress)
478 smp_emergency_stop();
479
480 /* stop all processors */
481 for_each_online_cpu(cpu) {
482 if (cpu == smp_processor_id())
483 continue;
484 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
485 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
486 while (!pcpu_stopped(pcpu))
487 cpu_relax();
488 }
489}
490
491/*
492 * This is the main routine where commands issued by other
493 * cpus are handled.
494 */
495static void smp_handle_ext_call(void)
496{
497 unsigned long bits;
498
499 /* handle bit signal external calls */
500 bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
501 if (test_bit(ec_stop_cpu, &bits))
502 smp_stop_cpu();
503 if (test_bit(ec_schedule, &bits))
504 scheduler_ipi();
505 if (test_bit(ec_call_function_single, &bits))
506 generic_smp_call_function_single_interrupt();
507 if (test_bit(ec_mcck_pending, &bits))
508 s390_handle_mcck();
509 if (test_bit(ec_irq_work, &bits))
510 irq_work_run();
511}
512
513static void do_ext_call_interrupt(struct ext_code ext_code,
514 unsigned int param32, unsigned long param64)
515{
516 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517 smp_handle_ext_call();
518}
519
520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521{
522 int cpu;
523
524 for_each_cpu(cpu, mask)
525 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
526}
527
528void arch_send_call_function_single_ipi(int cpu)
529{
530 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
531}
532
533/*
534 * this function sends a 'reschedule' IPI to another CPU.
535 * it goes straight through and wastes no time serializing
536 * anything. Worst case is that we lose a reschedule ...
537 */
538void arch_smp_send_reschedule(int cpu)
539{
540 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
541}
542
543#ifdef CONFIG_IRQ_WORK
544void arch_irq_work_raise(void)
545{
546 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
547}
548#endif
549
550#ifdef CONFIG_CRASH_DUMP
551
552int smp_store_status(int cpu)
553{
554 struct lowcore *lc;
555 struct pcpu *pcpu;
556 unsigned long pa;
557
558 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
559 lc = lowcore_ptr[cpu];
560 pa = __pa(&lc->floating_pt_save_area);
561 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
562 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
563 return -EIO;
564 if (!cpu_has_vx() && !MACHINE_HAS_GS)
565 return 0;
566 pa = lc->mcesad & MCESA_ORIGIN_MASK;
567 if (MACHINE_HAS_GS)
568 pa |= lc->mcesad & MCESA_LC_MASK;
569 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
570 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
571 return -EIO;
572 return 0;
573}
574
575/*
576 * Collect CPU state of the previous, crashed system.
577 * There are three cases:
578 * 1) standard zfcp/nvme dump
579 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
580 * The state for all CPUs except the boot CPU needs to be collected
581 * with sigp stop-and-store-status. The boot CPU state is located in
582 * the absolute lowcore of the memory stored in the HSA. The zcore code
583 * will copy the boot CPU state from the HSA.
584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
585 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
586 * The state for all CPUs except the boot CPU needs to be collected
587 * with sigp stop-and-store-status. The firmware or the boot-loader
588 * stored the registers of the boot CPU in the absolute lowcore in the
589 * memory of the old system.
590 * 3) kdump or stand-alone kdump for DASD
591 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
592 * The state for all CPUs except the boot CPU needs to be collected
593 * with sigp stop-and-store-status. The kexec code or the boot-loader
594 * stored the registers of the boot CPU in the memory of the old system.
595 *
596 * Note that the legacy kdump mode where the old kernel stored the CPU states
597 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
598 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
599 * of the elfcorehdr= parameter.
600 */
601static bool dump_available(void)
602{
603 return oldmem_data.start || is_ipl_type_dump();
604}
605
606void __init smp_save_dump_ipl_cpu(void)
607{
608 struct save_area *sa;
609 void *regs;
610
611 if (!dump_available())
612 return;
613 sa = save_area_alloc(true);
614 regs = memblock_alloc(512, 8);
615 if (!sa || !regs)
616 panic("could not allocate memory for boot CPU save area\n");
617 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
618 save_area_add_regs(sa, regs);
619 memblock_free(regs, 512);
620 if (cpu_has_vx())
621 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
622}
623
624void __init smp_save_dump_secondary_cpus(void)
625{
626 int addr, boot_cpu_addr, max_cpu_addr;
627 struct save_area *sa;
628 void *page;
629
630 if (!dump_available())
631 return;
632 /* Allocate a page as dumping area for the store status sigps */
633 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
634 if (!page)
635 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
636 PAGE_SIZE, 1UL << 31);
637
638 /* Set multi-threading state to the previous system. */
639 pcpu_set_smt(sclp.mtid_prev);
640 boot_cpu_addr = stap();
641 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
642 for (addr = 0; addr <= max_cpu_addr; addr++) {
643 if (addr == boot_cpu_addr)
644 continue;
645 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
646 SIGP_CC_NOT_OPERATIONAL)
647 continue;
648 sa = save_area_alloc(false);
649 if (!sa)
650 panic("could not allocate memory for save area\n");
651 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
652 save_area_add_regs(sa, page);
653 if (cpu_has_vx()) {
654 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
655 save_area_add_vxrs(sa, page);
656 }
657 }
658 memblock_free(page, PAGE_SIZE);
659 diag_amode31_ops.diag308_reset();
660 pcpu_set_smt(0);
661}
662#endif /* CONFIG_CRASH_DUMP */
663
664void smp_cpu_set_polarization(int cpu, int val)
665{
666 per_cpu(pcpu_devices, cpu).polarization = val;
667}
668
669int smp_cpu_get_polarization(int cpu)
670{
671 return per_cpu(pcpu_devices, cpu).polarization;
672}
673
674void smp_cpu_set_capacity(int cpu, unsigned long val)
675{
676 per_cpu(pcpu_devices, cpu).capacity = val;
677}
678
679unsigned long smp_cpu_get_capacity(int cpu)
680{
681 return per_cpu(pcpu_devices, cpu).capacity;
682}
683
684void smp_set_core_capacity(int cpu, unsigned long val)
685{
686 int i;
687
688 cpu = smp_get_base_cpu(cpu);
689 for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
690 smp_cpu_set_capacity(i, val);
691}
692
693int smp_cpu_get_cpu_address(int cpu)
694{
695 return per_cpu(pcpu_devices, cpu).address;
696}
697
698static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
699{
700 static int use_sigp_detection;
701 int address;
702
703 if (use_sigp_detection || sclp_get_core_info(info, early)) {
704 use_sigp_detection = 1;
705 for (address = 0;
706 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
707 address += (1U << smp_cpu_mt_shift)) {
708 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
709 SIGP_CC_NOT_OPERATIONAL)
710 continue;
711 info->core[info->configured].core_id =
712 address >> smp_cpu_mt_shift;
713 info->configured++;
714 }
715 info->combined = info->configured;
716 }
717}
718
719static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
720 bool configured, bool early)
721{
722 struct pcpu *pcpu;
723 int cpu, nr, i;
724 u16 address;
725
726 nr = 0;
727 if (sclp.has_core_type && core->type != boot_core_type)
728 return nr;
729 cpu = cpumask_first(avail);
730 address = core->core_id << smp_cpu_mt_shift;
731 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
732 if (pcpu_find_address(cpu_present_mask, address + i))
733 continue;
734 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
735 pcpu->address = address + i;
736 if (configured)
737 pcpu->state = CPU_STATE_CONFIGURED;
738 else
739 pcpu->state = CPU_STATE_STANDBY;
740 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
741 smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
742 set_cpu_present(cpu, true);
743 if (!early && arch_register_cpu(cpu))
744 set_cpu_present(cpu, false);
745 else
746 nr++;
747 cpumask_clear_cpu(cpu, avail);
748 cpu = cpumask_next(cpu, avail);
749 }
750 return nr;
751}
752
753static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
754{
755 struct sclp_core_entry *core;
756 static cpumask_t avail;
757 bool configured;
758 u16 core_id;
759 int nr, i;
760
761 cpus_read_lock();
762 mutex_lock(&smp_cpu_state_mutex);
763 nr = 0;
764 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
765 /*
766 * Add IPL core first (which got logical CPU number 0) to make sure
767 * that all SMT threads get subsequent logical CPU numbers.
768 */
769 if (early) {
770 core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
771 for (i = 0; i < info->configured; i++) {
772 core = &info->core[i];
773 if (core->core_id == core_id) {
774 nr += smp_add_core(core, &avail, true, early);
775 break;
776 }
777 }
778 }
779 for (i = 0; i < info->combined; i++) {
780 configured = i < info->configured;
781 nr += smp_add_core(&info->core[i], &avail, configured, early);
782 }
783 mutex_unlock(&smp_cpu_state_mutex);
784 cpus_read_unlock();
785 return nr;
786}
787
788void __init smp_detect_cpus(void)
789{
790 unsigned int cpu, mtid, c_cpus, s_cpus;
791 struct sclp_core_info *info;
792 u16 address;
793
794 /* Get CPU information */
795 info = memblock_alloc(sizeof(*info), 8);
796 if (!info)
797 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
798 __func__, sizeof(*info), 8);
799 smp_get_core_info(info, 1);
800 /* Find boot CPU type */
801 if (sclp.has_core_type) {
802 address = stap();
803 for (cpu = 0; cpu < info->combined; cpu++)
804 if (info->core[cpu].core_id == address) {
805 /* The boot cpu dictates the cpu type. */
806 boot_core_type = info->core[cpu].type;
807 break;
808 }
809 if (cpu >= info->combined)
810 panic("Could not find boot CPU type");
811 }
812
813 /* Set multi-threading state for the current system */
814 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
815 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
816 pcpu_set_smt(mtid);
817
818 /* Print number of CPUs */
819 c_cpus = s_cpus = 0;
820 for (cpu = 0; cpu < info->combined; cpu++) {
821 if (sclp.has_core_type &&
822 info->core[cpu].type != boot_core_type)
823 continue;
824 if (cpu < info->configured)
825 c_cpus += smp_cpu_mtid + 1;
826 else
827 s_cpus += smp_cpu_mtid + 1;
828 }
829 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
830 memblock_free(info, sizeof(*info));
831}
832
833/*
834 * Activate a secondary processor.
835 */
836static void smp_start_secondary(void *cpuvoid)
837{
838 struct lowcore *lc = get_lowcore();
839 int cpu = raw_smp_processor_id();
840
841 lc->last_update_clock = get_tod_clock();
842 lc->restart_stack = (unsigned long)restart_stack;
843 lc->restart_fn = (unsigned long)do_restart;
844 lc->restart_data = 0;
845 lc->restart_source = -1U;
846 lc->restart_flags = 0;
847 restore_access_regs(lc->access_regs_save_area);
848 cpu_init();
849 rcutree_report_cpu_starting(cpu);
850 init_cpu_timer();
851 vtime_init();
852 vdso_getcpu_init();
853 pfault_init();
854 cpumask_set_cpu(cpu, &cpu_setup_mask);
855 update_cpu_masks();
856 notify_cpu_starting(cpu);
857 if (topology_cpu_dedicated(cpu))
858 set_cpu_flag(CIF_DEDICATED_CPU);
859 else
860 clear_cpu_flag(CIF_DEDICATED_CPU);
861 set_cpu_online(cpu, true);
862 inc_irq_stat(CPU_RST);
863 local_irq_enable();
864 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
865}
866
867/* Upping and downing of CPUs */
868int __cpu_up(unsigned int cpu, struct task_struct *tidle)
869{
870 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
871 int rc;
872
873 if (pcpu->state != CPU_STATE_CONFIGURED)
874 return -EIO;
875 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
876 SIGP_CC_ORDER_CODE_ACCEPTED)
877 return -EIO;
878
879 rc = pcpu_alloc_lowcore(pcpu, cpu);
880 if (rc)
881 return rc;
882 /*
883 * Make sure global control register contents do not change
884 * until new CPU has initialized control registers.
885 */
886 system_ctlreg_lock();
887 pcpu_prepare_secondary(pcpu, cpu);
888 pcpu_attach_task(cpu, tidle);
889 pcpu_start_fn(cpu, smp_start_secondary, NULL);
890 /* Wait until cpu puts itself in the online & active maps */
891 while (!cpu_online(cpu))
892 cpu_relax();
893 system_ctlreg_unlock();
894 return 0;
895}
896
897static unsigned int setup_possible_cpus __initdata;
898
899static int __init _setup_possible_cpus(char *s)
900{
901 get_option(&s, &setup_possible_cpus);
902 return 0;
903}
904early_param("possible_cpus", _setup_possible_cpus);
905
906int __cpu_disable(void)
907{
908 struct ctlreg cregs[16];
909 int cpu;
910
911 /* Handle possible pending IPIs */
912 smp_handle_ext_call();
913 cpu = smp_processor_id();
914 set_cpu_online(cpu, false);
915 cpumask_clear_cpu(cpu, &cpu_setup_mask);
916 update_cpu_masks();
917 /* Disable pseudo page faults on this cpu. */
918 pfault_fini();
919 /* Disable interrupt sources via control register. */
920 __local_ctl_store(0, 15, cregs);
921 cregs[0].val &= ~0x0000ee70UL; /* disable all external interrupts */
922 cregs[6].val &= ~0xff000000UL; /* disable all I/O interrupts */
923 cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
924 __local_ctl_load(0, 15, cregs);
925 clear_cpu_flag(CIF_NOHZ_DELAY);
926 return 0;
927}
928
929void __cpu_die(unsigned int cpu)
930{
931 struct pcpu *pcpu;
932
933 /* Wait until target cpu is down */
934 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
935 while (!pcpu_stopped(pcpu))
936 cpu_relax();
937 pcpu_free_lowcore(pcpu, cpu);
938 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
939 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
940 pcpu->flags = 0;
941}
942
943void __noreturn cpu_die(void)
944{
945 idle_task_exit();
946 pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
947 for (;;) ;
948}
949
950void __init smp_fill_possible_mask(void)
951{
952 unsigned int possible, sclp_max, cpu;
953
954 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
955 sclp_max = min(smp_max_threads, sclp_max);
956 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
957 possible = setup_possible_cpus ?: nr_cpu_ids;
958 possible = min(possible, sclp_max);
959 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
960 set_cpu_possible(cpu, true);
961}
962
963void __init smp_prepare_cpus(unsigned int max_cpus)
964{
965 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
966 panic("Couldn't request external interrupt 0x1201");
967 system_ctl_set_bit(0, 14);
968 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
969 panic("Couldn't request external interrupt 0x1202");
970 system_ctl_set_bit(0, 13);
971 smp_rescan_cpus(true);
972}
973
974void __init smp_prepare_boot_cpu(void)
975{
976 struct lowcore *lc = get_lowcore();
977
978 WARN_ON(!cpu_present(0) || !cpu_online(0));
979 lc->percpu_offset = __per_cpu_offset[0];
980 ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
981 ipl_pcpu->state = CPU_STATE_CONFIGURED;
982 lc->pcpu = (unsigned long)ipl_pcpu;
983 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
984 smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
985}
986
987void __init smp_setup_processor_id(void)
988{
989 struct lowcore *lc = get_lowcore();
990
991 lc->cpu_nr = 0;
992 per_cpu(pcpu_devices, 0).address = stap();
993 lc->spinlock_lockval = arch_spin_lockval(0);
994 lc->spinlock_index = 0;
995}
996
997/*
998 * the frequency of the profiling timer can be changed
999 * by writing a multiplier value into /proc/profile.
1000 *
1001 * usually you want to run this on all CPUs ;)
1002 */
1003int setup_profiling_timer(unsigned int multiplier)
1004{
1005 return 0;
1006}
1007
1008static ssize_t cpu_configure_show(struct device *dev,
1009 struct device_attribute *attr, char *buf)
1010{
1011 ssize_t count;
1012
1013 mutex_lock(&smp_cpu_state_mutex);
1014 count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015 mutex_unlock(&smp_cpu_state_mutex);
1016 return count;
1017}
1018
1019static ssize_t cpu_configure_store(struct device *dev,
1020 struct device_attribute *attr,
1021 const char *buf, size_t count)
1022{
1023 struct pcpu *pcpu;
1024 int cpu, val, rc, i;
1025 char delim;
1026
1027 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028 return -EINVAL;
1029 if (val != 0 && val != 1)
1030 return -EINVAL;
1031 cpus_read_lock();
1032 mutex_lock(&smp_cpu_state_mutex);
1033 rc = -EBUSY;
1034 /* disallow configuration changes of online cpus */
1035 cpu = dev->id;
1036 cpu = smp_get_base_cpu(cpu);
1037 for (i = 0; i <= smp_cpu_mtid; i++)
1038 if (cpu_online(cpu + i))
1039 goto out;
1040 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041 rc = 0;
1042 switch (val) {
1043 case 0:
1044 if (pcpu->state != CPU_STATE_CONFIGURED)
1045 break;
1046 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047 if (rc)
1048 break;
1049 for (i = 0; i <= smp_cpu_mtid; i++) {
1050 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051 continue;
1052 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053 smp_cpu_set_polarization(cpu + i,
1054 POLARIZATION_UNKNOWN);
1055 }
1056 topology_expect_change();
1057 break;
1058 case 1:
1059 if (pcpu->state != CPU_STATE_STANDBY)
1060 break;
1061 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062 if (rc)
1063 break;
1064 for (i = 0; i <= smp_cpu_mtid; i++) {
1065 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066 continue;
1067 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068 smp_cpu_set_polarization(cpu + i,
1069 POLARIZATION_UNKNOWN);
1070 }
1071 topology_expect_change();
1072 break;
1073 default:
1074 break;
1075 }
1076out:
1077 mutex_unlock(&smp_cpu_state_mutex);
1078 cpus_read_unlock();
1079 return rc ? rc : count;
1080}
1081static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1082
1083static ssize_t show_cpu_address(struct device *dev,
1084 struct device_attribute *attr, char *buf)
1085{
1086 return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087}
1088static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090static struct attribute *cpu_common_attrs[] = {
1091 &dev_attr_configure.attr,
1092 &dev_attr_address.attr,
1093 NULL,
1094};
1095
1096static struct attribute_group cpu_common_attr_group = {
1097 .attrs = cpu_common_attrs,
1098};
1099
1100static struct attribute *cpu_online_attrs[] = {
1101 &dev_attr_idle_count.attr,
1102 &dev_attr_idle_time_us.attr,
1103 NULL,
1104};
1105
1106static struct attribute_group cpu_online_attr_group = {
1107 .attrs = cpu_online_attrs,
1108};
1109
1110static int smp_cpu_online(unsigned int cpu)
1111{
1112 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114 return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115}
1116
1117static int smp_cpu_pre_down(unsigned int cpu)
1118{
1119 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121 sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122 return 0;
1123}
1124
1125bool arch_cpu_is_hotpluggable(int cpu)
1126{
1127 return !!cpu;
1128}
1129
1130int arch_register_cpu(int cpu)
1131{
1132 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1133 int rc;
1134
1135 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1136 rc = register_cpu(c, cpu);
1137 if (rc)
1138 goto out;
1139 rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140 if (rc)
1141 goto out_cpu;
1142 rc = topology_cpu_init(c);
1143 if (rc)
1144 goto out_topology;
1145 return 0;
1146
1147out_topology:
1148 sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149out_cpu:
1150 unregister_cpu(c);
1151out:
1152 return rc;
1153}
1154
1155int __ref smp_rescan_cpus(bool early)
1156{
1157 struct sclp_core_info *info;
1158 int nr;
1159
1160 info = kzalloc(sizeof(*info), GFP_KERNEL);
1161 if (!info)
1162 return -ENOMEM;
1163 smp_get_core_info(info, 0);
1164 nr = __smp_rescan_cpus(info, early);
1165 kfree(info);
1166 if (nr)
1167 topology_schedule_update();
1168 return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172 struct device_attribute *attr,
1173 const char *buf,
1174 size_t count)
1175{
1176 int rc;
1177
1178 rc = lock_device_hotplug_sysfs();
1179 if (rc)
1180 return rc;
1181 rc = smp_rescan_cpus(false);
1182 unlock_device_hotplug();
1183 return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
1186
1187static int __init s390_smp_init(void)
1188{
1189 struct device *dev_root;
1190 int rc;
1191
1192 dev_root = bus_get_dev_root(&cpu_subsys);
1193 if (dev_root) {
1194 rc = device_create_file(dev_root, &dev_attr_rescan);
1195 put_device(dev_root);
1196 if (rc)
1197 return rc;
1198 }
1199 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200 smp_cpu_online, smp_cpu_pre_down);
1201 rc = rc <= 0 ? rc : 0;
1202 return rc;
1203}
1204subsys_initcall(s390_smp_init);
1/*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999,2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/mm.h>
25#include <linux/err.h>
26#include <linux/spinlock.h>
27#include <linux/kernel_stat.h>
28#include <linux/delay.h>
29#include <linux/interrupt.h>
30#include <linux/irqflags.h>
31#include <linux/cpu.h>
32#include <linux/slab.h>
33#include <linux/crash_dump.h>
34#include <asm/asm-offsets.h>
35#include <asm/switch_to.h>
36#include <asm/facility.h>
37#include <asm/ipl.h>
38#include <asm/setup.h>
39#include <asm/irq.h>
40#include <asm/tlbflush.h>
41#include <asm/timer.h>
42#include <asm/lowcore.h>
43#include <asm/sclp.h>
44#include <asm/vdso.h>
45#include <asm/debug.h>
46#include <asm/os_info.h>
47#include "entry.h"
48
49enum {
50 sigp_sense = 1,
51 sigp_external_call = 2,
52 sigp_emergency_signal = 3,
53 sigp_start = 4,
54 sigp_stop = 5,
55 sigp_restart = 6,
56 sigp_stop_and_store_status = 9,
57 sigp_initial_cpu_reset = 11,
58 sigp_cpu_reset = 12,
59 sigp_set_prefix = 13,
60 sigp_store_status_at_address = 14,
61 sigp_store_extended_status_at_address = 15,
62 sigp_set_architecture = 18,
63 sigp_conditional_emergency_signal = 19,
64 sigp_sense_running = 21,
65};
66
67enum {
68 sigp_order_code_accepted = 0,
69 sigp_status_stored = 1,
70 sigp_busy = 2,
71 sigp_not_operational = 3,
72};
73
74enum {
75 ec_schedule = 0,
76 ec_call_function,
77 ec_call_function_single,
78 ec_stop_cpu,
79};
80
81enum {
82 CPU_STATE_STANDBY,
83 CPU_STATE_CONFIGURED,
84};
85
86struct pcpu {
87 struct cpu cpu;
88 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
89 unsigned long async_stack; /* async stack for the cpu */
90 unsigned long panic_stack; /* panic stack for the cpu */
91 unsigned long ec_mask; /* bit mask for ec_xxx functions */
92 int state; /* physical cpu state */
93 u32 status; /* last status received via sigp */
94 u16 address; /* physical cpu address */
95};
96
97static u8 boot_cpu_type;
98static u16 boot_cpu_address;
99static struct pcpu pcpu_devices[NR_CPUS];
100
101DEFINE_MUTEX(smp_cpu_state_mutex);
102
103/*
104 * Signal processor helper functions.
105 */
106static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
107{
108 register unsigned int reg1 asm ("1") = parm;
109 int cc;
110
111 asm volatile(
112 " sigp %1,%2,0(%3)\n"
113 " ipm %0\n"
114 " srl %0,28\n"
115 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
116 if (status && cc == 1)
117 *status = reg1;
118 return cc;
119}
120
121static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
122{
123 int cc;
124
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, status);
127 if (cc != sigp_busy)
128 return cc;
129 cpu_relax();
130 }
131}
132
133static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134{
135 int cc, retry;
136
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
139 if (cc != sigp_busy)
140 break;
141 if (retry >= 3)
142 udelay(10);
143 }
144 return cc;
145}
146
147static inline int pcpu_stopped(struct pcpu *pcpu)
148{
149 if (__pcpu_sigp(pcpu->address, sigp_sense,
150 0, &pcpu->status) != sigp_status_stored)
151 return 0;
152 /* Check for stopped and check stop state */
153 return !!(pcpu->status & 0x50);
154}
155
156static inline int pcpu_running(struct pcpu *pcpu)
157{
158 if (__pcpu_sigp(pcpu->address, sigp_sense_running,
159 0, &pcpu->status) != sigp_status_stored)
160 return 1;
161 /* Check for running status */
162 return !(pcpu->status & 0x400);
163}
164
165/*
166 * Find struct pcpu by cpu address.
167 */
168static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
169{
170 int cpu;
171
172 for_each_cpu(cpu, mask)
173 if (pcpu_devices[cpu].address == address)
174 return pcpu_devices + cpu;
175 return NULL;
176}
177
178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179{
180 int order;
181
182 set_bit(ec_bit, &pcpu->ec_mask);
183 order = pcpu_running(pcpu) ?
184 sigp_external_call : sigp_emergency_signal;
185 pcpu_sigp_retry(pcpu, order, 0);
186}
187
188static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189{
190 struct _lowcore *lc;
191
192 if (pcpu != &pcpu_devices[0]) {
193 pcpu->lowcore = (struct _lowcore *)
194 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
195 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
196 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
197 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
198 goto out;
199 }
200 lc = pcpu->lowcore;
201 memcpy(lc, &S390_lowcore, 512);
202 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
203 lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
204 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
205 lc->cpu_nr = cpu;
206#ifndef CONFIG_64BIT
207 if (MACHINE_HAS_IEEE) {
208 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
209 if (!lc->extended_save_area_addr)
210 goto out;
211 }
212#else
213 if (vdso_alloc_per_cpu(lc))
214 goto out;
215#endif
216 lowcore_ptr[cpu] = lc;
217 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
218 return 0;
219out:
220 if (pcpu != &pcpu_devices[0]) {
221 free_page(pcpu->panic_stack);
222 free_pages(pcpu->async_stack, ASYNC_ORDER);
223 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224 }
225 return -ENOMEM;
226}
227
228#ifdef CONFIG_HOTPLUG_CPU
229
230static void pcpu_free_lowcore(struct pcpu *pcpu)
231{
232 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
233 lowcore_ptr[pcpu - pcpu_devices] = NULL;
234#ifndef CONFIG_64BIT
235 if (MACHINE_HAS_IEEE) {
236 struct _lowcore *lc = pcpu->lowcore;
237
238 free_page((unsigned long) lc->extended_save_area_addr);
239 lc->extended_save_area_addr = 0;
240 }
241#else
242 vdso_free_per_cpu(pcpu->lowcore);
243#endif
244 if (pcpu != &pcpu_devices[0]) {
245 free_page(pcpu->panic_stack);
246 free_pages(pcpu->async_stack, ASYNC_ORDER);
247 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
248 }
249}
250
251#endif /* CONFIG_HOTPLUG_CPU */
252
253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254{
255 struct _lowcore *lc = pcpu->lowcore;
256
257 atomic_inc(&init_mm.context.attach_count);
258 lc->cpu_nr = cpu;
259 lc->percpu_offset = __per_cpu_offset[cpu];
260 lc->kernel_asce = S390_lowcore.kernel_asce;
261 lc->machine_flags = S390_lowcore.machine_flags;
262 lc->ftrace_func = S390_lowcore.ftrace_func;
263 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
264 __ctl_store(lc->cregs_save_area, 0, 15);
265 save_access_regs((unsigned int *) lc->access_regs_save_area);
266 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
267 MAX_FACILITY_BIT/8);
268}
269
270static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271{
272 struct _lowcore *lc = pcpu->lowcore;
273 struct thread_info *ti = task_thread_info(tsk);
274
275 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
276 lc->thread_info = (unsigned long) task_thread_info(tsk);
277 lc->current_task = (unsigned long) tsk;
278 lc->user_timer = ti->user_timer;
279 lc->system_timer = ti->system_timer;
280 lc->steal_timer = 0;
281}
282
283static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
284{
285 struct _lowcore *lc = pcpu->lowcore;
286
287 lc->restart_stack = lc->kernel_stack;
288 lc->restart_fn = (unsigned long) func;
289 lc->restart_data = (unsigned long) data;
290 lc->restart_source = -1UL;
291 pcpu_sigp_retry(pcpu, sigp_restart, 0);
292}
293
294/*
295 * Call function via PSW restart on pcpu and stop the current cpu.
296 */
297static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
298 void *data, unsigned long stack)
299{
300 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
301 struct {
302 unsigned long stack;
303 void *func;
304 void *data;
305 unsigned long source;
306 } restart = { stack, func, data, stap() };
307
308 __load_psw_mask(psw_kernel_bits);
309 if (pcpu->address == restart.source)
310 func(data); /* should not return */
311 /* Stop target cpu (if func returns this stops the current cpu). */
312 pcpu_sigp_retry(pcpu, sigp_stop, 0);
313 /* Restart func on the target cpu and stop the current cpu. */
314 memcpy_absolute(&lc->restart_stack, &restart, sizeof(restart));
315 asm volatile(
316 "0: sigp 0,%0,6 # sigp restart to target cpu\n"
317 " brc 2,0b # busy, try again\n"
318 "1: sigp 0,%1,5 # sigp stop to current cpu\n"
319 " brc 2,1b # busy, try again\n"
320 : : "d" (pcpu->address), "d" (restart.source) : "0", "1", "cc");
321 for (;;) ;
322}
323
324/*
325 * Call function on an online CPU.
326 */
327void smp_call_online_cpu(void (*func)(void *), void *data)
328{
329 struct pcpu *pcpu;
330
331 /* Use the current cpu if it is online. */
332 pcpu = pcpu_find_address(cpu_online_mask, stap());
333 if (!pcpu)
334 /* Use the first online cpu. */
335 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
336 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
337}
338
339/*
340 * Call function on the ipl CPU.
341 */
342void smp_call_ipl_cpu(void (*func)(void *), void *data)
343{
344 pcpu_delegate(&pcpu_devices[0], func, data,
345 pcpu_devices->panic_stack + PAGE_SIZE);
346}
347
348int smp_find_processor_id(u16 address)
349{
350 int cpu;
351
352 for_each_present_cpu(cpu)
353 if (pcpu_devices[cpu].address == address)
354 return cpu;
355 return -1;
356}
357
358int smp_vcpu_scheduled(int cpu)
359{
360 return pcpu_running(pcpu_devices + cpu);
361}
362
363void smp_yield(void)
364{
365 if (MACHINE_HAS_DIAG44)
366 asm volatile("diag 0,0,0x44");
367}
368
369void smp_yield_cpu(int cpu)
370{
371 if (MACHINE_HAS_DIAG9C)
372 asm volatile("diag %0,0,0x9c"
373 : : "d" (pcpu_devices[cpu].address));
374 else if (MACHINE_HAS_DIAG44)
375 asm volatile("diag 0,0,0x44");
376}
377
378/*
379 * Send cpus emergency shutdown signal. This gives the cpus the
380 * opportunity to complete outstanding interrupts.
381 */
382void smp_emergency_stop(cpumask_t *cpumask)
383{
384 u64 end;
385 int cpu;
386
387 end = get_clock() + (1000000UL << 12);
388 for_each_cpu(cpu, cpumask) {
389 struct pcpu *pcpu = pcpu_devices + cpu;
390 set_bit(ec_stop_cpu, &pcpu->ec_mask);
391 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
392 0, NULL) == sigp_busy &&
393 get_clock() < end)
394 cpu_relax();
395 }
396 while (get_clock() < end) {
397 for_each_cpu(cpu, cpumask)
398 if (pcpu_stopped(pcpu_devices + cpu))
399 cpumask_clear_cpu(cpu, cpumask);
400 if (cpumask_empty(cpumask))
401 break;
402 cpu_relax();
403 }
404}
405
406/*
407 * Stop all cpus but the current one.
408 */
409void smp_send_stop(void)
410{
411 cpumask_t cpumask;
412 int cpu;
413
414 /* Disable all interrupts/machine checks */
415 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
416 trace_hardirqs_off();
417
418 debug_set_critical();
419 cpumask_copy(&cpumask, cpu_online_mask);
420 cpumask_clear_cpu(smp_processor_id(), &cpumask);
421
422 if (oops_in_progress)
423 smp_emergency_stop(&cpumask);
424
425 /* stop all processors */
426 for_each_cpu(cpu, &cpumask) {
427 struct pcpu *pcpu = pcpu_devices + cpu;
428 pcpu_sigp_retry(pcpu, sigp_stop, 0);
429 while (!pcpu_stopped(pcpu))
430 cpu_relax();
431 }
432}
433
434/*
435 * Stop the current cpu.
436 */
437void smp_stop_cpu(void)
438{
439 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
440 for (;;) ;
441}
442
443/*
444 * This is the main routine where commands issued by other
445 * cpus are handled.
446 */
447static void do_ext_call_interrupt(struct ext_code ext_code,
448 unsigned int param32, unsigned long param64)
449{
450 unsigned long bits;
451 int cpu;
452
453 cpu = smp_processor_id();
454 if (ext_code.code == 0x1202)
455 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
456 else
457 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
458 /*
459 * handle bit signal external calls
460 */
461 bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
462
463 if (test_bit(ec_stop_cpu, &bits))
464 smp_stop_cpu();
465
466 if (test_bit(ec_schedule, &bits))
467 scheduler_ipi();
468
469 if (test_bit(ec_call_function, &bits))
470 generic_smp_call_function_interrupt();
471
472 if (test_bit(ec_call_function_single, &bits))
473 generic_smp_call_function_single_interrupt();
474
475}
476
477void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478{
479 int cpu;
480
481 for_each_cpu(cpu, mask)
482 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
483}
484
485void arch_send_call_function_single_ipi(int cpu)
486{
487 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488}
489
490#ifndef CONFIG_64BIT
491/*
492 * this function sends a 'purge tlb' signal to another CPU.
493 */
494static void smp_ptlb_callback(void *info)
495{
496 __tlb_flush_local();
497}
498
499void smp_ptlb_all(void)
500{
501 on_each_cpu(smp_ptlb_callback, NULL, 1);
502}
503EXPORT_SYMBOL(smp_ptlb_all);
504#endif /* ! CONFIG_64BIT */
505
506/*
507 * this function sends a 'reschedule' IPI to another CPU.
508 * it goes straight through and wastes no time serializing
509 * anything. Worst case is that we lose a reschedule ...
510 */
511void smp_send_reschedule(int cpu)
512{
513 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
514}
515
516/*
517 * parameter area for the set/clear control bit callbacks
518 */
519struct ec_creg_mask_parms {
520 unsigned long orval;
521 unsigned long andval;
522 int cr;
523};
524
525/*
526 * callback for setting/clearing control bits
527 */
528static void smp_ctl_bit_callback(void *info)
529{
530 struct ec_creg_mask_parms *pp = info;
531 unsigned long cregs[16];
532
533 __ctl_store(cregs, 0, 15);
534 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
535 __ctl_load(cregs, 0, 15);
536}
537
538/*
539 * Set a bit in a control register of all cpus
540 */
541void smp_ctl_set_bit(int cr, int bit)
542{
543 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
544
545 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
546}
547EXPORT_SYMBOL(smp_ctl_set_bit);
548
549/*
550 * Clear a bit in a control register of all cpus
551 */
552void smp_ctl_clear_bit(int cr, int bit)
553{
554 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
555
556 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
557}
558EXPORT_SYMBOL(smp_ctl_clear_bit);
559
560#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
561
562struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
563EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
564
565static void __init smp_get_save_area(int cpu, u16 address)
566{
567 void *lc = pcpu_devices[0].lowcore;
568 struct save_area *save_area;
569
570 if (is_kdump_kernel())
571 return;
572 if (!OLDMEM_BASE && (address == boot_cpu_address ||
573 ipl_info.type != IPL_TYPE_FCP_DUMP))
574 return;
575 if (cpu >= NR_CPUS) {
576 pr_warning("CPU %i exceeds the maximum %i and is excluded "
577 "from the dump\n", cpu, NR_CPUS - 1);
578 return;
579 }
580 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
581 if (!save_area)
582 panic("could not allocate memory for save area\n");
583 zfcpdump_save_areas[cpu] = save_area;
584#ifdef CONFIG_CRASH_DUMP
585 if (address == boot_cpu_address) {
586 /* Copy the registers of the boot cpu. */
587 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
588 SAVE_AREA_BASE - PAGE_SIZE, 0);
589 return;
590 }
591#endif
592 /* Get the registers of a non-boot cpu. */
593 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
594 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
595}
596
597int smp_store_status(int cpu)
598{
599 struct pcpu *pcpu;
600
601 pcpu = pcpu_devices + cpu;
602 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
603 0, NULL) != sigp_order_code_accepted)
604 return -EIO;
605 return 0;
606}
607
608#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609
610static inline void smp_get_save_area(int cpu, u16 address) { }
611
612#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
613
614static struct sclp_cpu_info *smp_get_cpu_info(void)
615{
616 static int use_sigp_detection;
617 struct sclp_cpu_info *info;
618 int address;
619
620 info = kzalloc(sizeof(*info), GFP_KERNEL);
621 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
622 use_sigp_detection = 1;
623 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
624 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
625 sigp_not_operational)
626 continue;
627 info->cpu[info->configured].address = address;
628 info->configured++;
629 }
630 info->combined = info->configured;
631 }
632 return info;
633}
634
635static int __devinit smp_add_present_cpu(int cpu);
636
637static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
638 int sysfs_add)
639{
640 struct pcpu *pcpu;
641 cpumask_t avail;
642 int cpu, nr, i;
643
644 nr = 0;
645 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
646 cpu = cpumask_first(&avail);
647 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
648 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
649 continue;
650 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
651 continue;
652 pcpu = pcpu_devices + cpu;
653 pcpu->address = info->cpu[i].address;
654 pcpu->state = (cpu >= info->configured) ?
655 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
656 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
657 set_cpu_present(cpu, true);
658 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
659 set_cpu_present(cpu, false);
660 else
661 nr++;
662 cpu = cpumask_next(cpu, &avail);
663 }
664 return nr;
665}
666
667static void __init smp_detect_cpus(void)
668{
669 unsigned int cpu, c_cpus, s_cpus;
670 struct sclp_cpu_info *info;
671
672 info = smp_get_cpu_info();
673 if (!info)
674 panic("smp_detect_cpus failed to allocate memory\n");
675 if (info->has_cpu_type) {
676 for (cpu = 0; cpu < info->combined; cpu++) {
677 if (info->cpu[cpu].address != boot_cpu_address)
678 continue;
679 /* The boot cpu dictates the cpu type. */
680 boot_cpu_type = info->cpu[cpu].type;
681 break;
682 }
683 }
684 c_cpus = s_cpus = 0;
685 for (cpu = 0; cpu < info->combined; cpu++) {
686 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
687 continue;
688 if (cpu < info->configured) {
689 smp_get_save_area(c_cpus, info->cpu[cpu].address);
690 c_cpus++;
691 } else
692 s_cpus++;
693 }
694 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
695 get_online_cpus();
696 __smp_rescan_cpus(info, 0);
697 put_online_cpus();
698 kfree(info);
699}
700
701/*
702 * Activate a secondary processor.
703 */
704static void __cpuinit smp_start_secondary(void *cpuvoid)
705{
706 S390_lowcore.last_update_clock = get_clock();
707 S390_lowcore.restart_stack = (unsigned long) restart_stack;
708 S390_lowcore.restart_fn = (unsigned long) do_restart;
709 S390_lowcore.restart_data = 0;
710 S390_lowcore.restart_source = -1UL;
711 restore_access_regs(S390_lowcore.access_regs_save_area);
712 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
713 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
714 cpu_init();
715 preempt_disable();
716 init_cpu_timer();
717 init_cpu_vtimer();
718 pfault_init();
719 notify_cpu_starting(smp_processor_id());
720 ipi_call_lock();
721 set_cpu_online(smp_processor_id(), true);
722 ipi_call_unlock();
723 local_irq_enable();
724 /* cpu_idle will call schedule for us */
725 cpu_idle();
726}
727
728/* Upping and downing of CPUs */
729int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
730{
731 struct pcpu *pcpu;
732 int rc;
733
734 pcpu = pcpu_devices + cpu;
735 if (pcpu->state != CPU_STATE_CONFIGURED)
736 return -EIO;
737 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
738 sigp_order_code_accepted)
739 return -EIO;
740
741 rc = pcpu_alloc_lowcore(pcpu, cpu);
742 if (rc)
743 return rc;
744 pcpu_prepare_secondary(pcpu, cpu);
745 pcpu_attach_task(pcpu, tidle);
746 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
747 while (!cpu_online(cpu))
748 cpu_relax();
749 return 0;
750}
751
752static int __init setup_possible_cpus(char *s)
753{
754 int max, cpu;
755
756 if (kstrtoint(s, 0, &max) < 0)
757 return 0;
758 init_cpu_possible(cpumask_of(0));
759 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
760 set_cpu_possible(cpu, true);
761 return 0;
762}
763early_param("possible_cpus", setup_possible_cpus);
764
765#ifdef CONFIG_HOTPLUG_CPU
766
767int __cpu_disable(void)
768{
769 unsigned long cregs[16];
770
771 set_cpu_online(smp_processor_id(), false);
772 /* Disable pseudo page faults on this cpu. */
773 pfault_fini();
774 /* Disable interrupt sources via control register. */
775 __ctl_store(cregs, 0, 15);
776 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
777 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
778 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
779 __ctl_load(cregs, 0, 15);
780 return 0;
781}
782
783void __cpu_die(unsigned int cpu)
784{
785 struct pcpu *pcpu;
786
787 /* Wait until target cpu is down */
788 pcpu = pcpu_devices + cpu;
789 while (!pcpu_stopped(pcpu))
790 cpu_relax();
791 pcpu_free_lowcore(pcpu);
792 atomic_dec(&init_mm.context.attach_count);
793}
794
795void __noreturn cpu_die(void)
796{
797 idle_task_exit();
798 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
799 for (;;) ;
800}
801
802#endif /* CONFIG_HOTPLUG_CPU */
803
804void __init smp_prepare_cpus(unsigned int max_cpus)
805{
806 /* request the 0x1201 emergency signal external interrupt */
807 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
808 panic("Couldn't request external interrupt 0x1201");
809 /* request the 0x1202 external call external interrupt */
810 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
811 panic("Couldn't request external interrupt 0x1202");
812 smp_detect_cpus();
813}
814
815void __init smp_prepare_boot_cpu(void)
816{
817 struct pcpu *pcpu = pcpu_devices;
818
819 boot_cpu_address = stap();
820 pcpu->state = CPU_STATE_CONFIGURED;
821 pcpu->address = boot_cpu_address;
822 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
823 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
824 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
825 S390_lowcore.percpu_offset = __per_cpu_offset[0];
826 cpu_set_polarization(0, POLARIZATION_UNKNOWN);
827 set_cpu_present(0, true);
828 set_cpu_online(0, true);
829}
830
831void __init smp_cpus_done(unsigned int max_cpus)
832{
833}
834
835void __init smp_setup_processor_id(void)
836{
837 S390_lowcore.cpu_nr = 0;
838}
839
840/*
841 * the frequency of the profiling timer can be changed
842 * by writing a multiplier value into /proc/profile.
843 *
844 * usually you want to run this on all CPUs ;)
845 */
846int setup_profiling_timer(unsigned int multiplier)
847{
848 return 0;
849}
850
851#ifdef CONFIG_HOTPLUG_CPU
852static ssize_t cpu_configure_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854{
855 ssize_t count;
856
857 mutex_lock(&smp_cpu_state_mutex);
858 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
859 mutex_unlock(&smp_cpu_state_mutex);
860 return count;
861}
862
863static ssize_t cpu_configure_store(struct device *dev,
864 struct device_attribute *attr,
865 const char *buf, size_t count)
866{
867 struct pcpu *pcpu;
868 int cpu, val, rc;
869 char delim;
870
871 if (sscanf(buf, "%d %c", &val, &delim) != 1)
872 return -EINVAL;
873 if (val != 0 && val != 1)
874 return -EINVAL;
875 get_online_cpus();
876 mutex_lock(&smp_cpu_state_mutex);
877 rc = -EBUSY;
878 /* disallow configuration changes of online cpus and cpu 0 */
879 cpu = dev->id;
880 if (cpu_online(cpu) || cpu == 0)
881 goto out;
882 pcpu = pcpu_devices + cpu;
883 rc = 0;
884 switch (val) {
885 case 0:
886 if (pcpu->state != CPU_STATE_CONFIGURED)
887 break;
888 rc = sclp_cpu_deconfigure(pcpu->address);
889 if (rc)
890 break;
891 pcpu->state = CPU_STATE_STANDBY;
892 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
893 topology_expect_change();
894 break;
895 case 1:
896 if (pcpu->state != CPU_STATE_STANDBY)
897 break;
898 rc = sclp_cpu_configure(pcpu->address);
899 if (rc)
900 break;
901 pcpu->state = CPU_STATE_CONFIGURED;
902 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
903 topology_expect_change();
904 break;
905 default:
906 break;
907 }
908out:
909 mutex_unlock(&smp_cpu_state_mutex);
910 put_online_cpus();
911 return rc ? rc : count;
912}
913static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
914#endif /* CONFIG_HOTPLUG_CPU */
915
916static ssize_t show_cpu_address(struct device *dev,
917 struct device_attribute *attr, char *buf)
918{
919 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
920}
921static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
922
923static struct attribute *cpu_common_attrs[] = {
924#ifdef CONFIG_HOTPLUG_CPU
925 &dev_attr_configure.attr,
926#endif
927 &dev_attr_address.attr,
928 NULL,
929};
930
931static struct attribute_group cpu_common_attr_group = {
932 .attrs = cpu_common_attrs,
933};
934
935static ssize_t show_idle_count(struct device *dev,
936 struct device_attribute *attr, char *buf)
937{
938 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
939 unsigned long long idle_count;
940 unsigned int sequence;
941
942 do {
943 sequence = ACCESS_ONCE(idle->sequence);
944 idle_count = ACCESS_ONCE(idle->idle_count);
945 if (ACCESS_ONCE(idle->idle_enter))
946 idle_count++;
947 } while ((sequence & 1) || (idle->sequence != sequence));
948 return sprintf(buf, "%llu\n", idle_count);
949}
950static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
951
952static ssize_t show_idle_time(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
956 unsigned long long now, idle_time, idle_enter, idle_exit;
957 unsigned int sequence;
958
959 do {
960 now = get_clock();
961 sequence = ACCESS_ONCE(idle->sequence);
962 idle_time = ACCESS_ONCE(idle->idle_time);
963 idle_enter = ACCESS_ONCE(idle->idle_enter);
964 idle_exit = ACCESS_ONCE(idle->idle_exit);
965 } while ((sequence & 1) || (idle->sequence != sequence));
966 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
967 return sprintf(buf, "%llu\n", idle_time >> 12);
968}
969static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
970
971static struct attribute *cpu_online_attrs[] = {
972 &dev_attr_idle_count.attr,
973 &dev_attr_idle_time_us.attr,
974 NULL,
975};
976
977static struct attribute_group cpu_online_attr_group = {
978 .attrs = cpu_online_attrs,
979};
980
981static int __cpuinit smp_cpu_notify(struct notifier_block *self,
982 unsigned long action, void *hcpu)
983{
984 unsigned int cpu = (unsigned int)(long)hcpu;
985 struct cpu *c = &pcpu_devices[cpu].cpu;
986 struct device *s = &c->dev;
987 int err = 0;
988
989 switch (action) {
990 case CPU_ONLINE:
991 case CPU_ONLINE_FROZEN:
992 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
993 break;
994 case CPU_DEAD:
995 case CPU_DEAD_FROZEN:
996 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
997 break;
998 }
999 return notifier_from_errno(err);
1000}
1001
1002static struct notifier_block __cpuinitdata smp_cpu_nb = {
1003 .notifier_call = smp_cpu_notify,
1004};
1005
1006static int __devinit smp_add_present_cpu(int cpu)
1007{
1008 struct cpu *c = &pcpu_devices[cpu].cpu;
1009 struct device *s = &c->dev;
1010 int rc;
1011
1012 c->hotpluggable = 1;
1013 rc = register_cpu(c, cpu);
1014 if (rc)
1015 goto out;
1016 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1017 if (rc)
1018 goto out_cpu;
1019 if (cpu_online(cpu)) {
1020 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1021 if (rc)
1022 goto out_online;
1023 }
1024 rc = topology_cpu_init(c);
1025 if (rc)
1026 goto out_topology;
1027 return 0;
1028
1029out_topology:
1030 if (cpu_online(cpu))
1031 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1032out_online:
1033 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1034out_cpu:
1035#ifdef CONFIG_HOTPLUG_CPU
1036 unregister_cpu(c);
1037#endif
1038out:
1039 return rc;
1040}
1041
1042#ifdef CONFIG_HOTPLUG_CPU
1043
1044int __ref smp_rescan_cpus(void)
1045{
1046 struct sclp_cpu_info *info;
1047 int nr;
1048
1049 info = smp_get_cpu_info();
1050 if (!info)
1051 return -ENOMEM;
1052 get_online_cpus();
1053 mutex_lock(&smp_cpu_state_mutex);
1054 nr = __smp_rescan_cpus(info, 1);
1055 mutex_unlock(&smp_cpu_state_mutex);
1056 put_online_cpus();
1057 kfree(info);
1058 if (nr)
1059 topology_schedule_update();
1060 return 0;
1061}
1062
1063static ssize_t __ref rescan_store(struct device *dev,
1064 struct device_attribute *attr,
1065 const char *buf,
1066 size_t count)
1067{
1068 int rc;
1069
1070 rc = smp_rescan_cpus();
1071 return rc ? rc : count;
1072}
1073static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1074#endif /* CONFIG_HOTPLUG_CPU */
1075
1076static int __init s390_smp_init(void)
1077{
1078 int cpu, rc;
1079
1080 register_cpu_notifier(&smp_cpu_nb);
1081#ifdef CONFIG_HOTPLUG_CPU
1082 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1083 if (rc)
1084 return rc;
1085#endif
1086 for_each_present_cpu(cpu) {
1087 rc = smp_add_present_cpu(cpu);
1088 if (rc)
1089 return rc;
1090 }
1091 return 0;
1092}
1093subsys_initcall(s390_smp_init);