Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/kprobes.h>
 13#include <linux/ptrace.h>
 14#include <linux/preempt.h>
 15#include <linux/stop_machine.h>
 16#include <linux/kdebug.h>
 17#include <linux/uaccess.h>
 18#include <linux/extable.h>
 
 19#include <linux/module.h>
 20#include <linux/slab.h>
 21#include <linux/hardirq.h>
 22#include <linux/ftrace.h>
 23#include <linux/execmem.h>
 24#include <asm/text-patching.h>
 25#include <asm/set_memory.h>
 26#include <asm/sections.h>
 27#include <asm/dis.h>
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35void *alloc_insn_page(void)
 36{
 37	void *page;
 38
 39	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 40	if (!page)
 41		return NULL;
 42	set_memory_rox((unsigned long)page, 1);
 43	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 44}
 45
 46static void copy_instruction(struct kprobe *p)
 47{
 48	kprobe_opcode_t insn[MAX_INSN_SIZE];
 49	s64 disp, new_disp;
 50	u64 addr, new_addr;
 51	unsigned int len;
 52
 53	len = insn_length(*p->addr >> 8);
 54	memcpy(&insn, p->addr, len);
 55	p->opcode = insn[0];
 56	if (probe_is_insn_relative_long(&insn[0])) {
 57		/*
 58		 * For pc-relative instructions in RIL-b or RIL-c format patch
 59		 * the RI2 displacement field. The insn slot for the to be
 60		 * patched instruction is within the same 4GB area like the
 61		 * original instruction. Therefore the new displacement will
 62		 * always fit.
 63		 */
 64		disp = *(s32 *)&insn[1];
 65		addr = (u64)(unsigned long)p->addr;
 66		new_addr = (u64)(unsigned long)p->ainsn.insn;
 67		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 68		*(s32 *)&insn[1] = new_disp;
 69	}
 70	s390_kernel_write(p->ainsn.insn, &insn, len);
 71}
 72NOKPROBE_SYMBOL(copy_instruction);
 73
 74/* Check if paddr is at an instruction boundary */
 75static bool can_probe(unsigned long paddr)
 76{
 77	unsigned long addr, offset = 0;
 78	kprobe_opcode_t insn;
 79	struct kprobe *kp;
 80
 81	if (paddr & 0x01)
 82		return false;
 83
 84	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 85		return false;
 86
 87	/* Decode instructions */
 88	addr = paddr - offset;
 89	while (addr < paddr) {
 90		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
 91			return false;
 92
 93		if (insn >> 8 == 0) {
 94			if (insn != BREAKPOINT_INSTRUCTION) {
 95				/*
 96				 * Note that QEMU inserts opcode 0x0000 to implement
 97				 * software breakpoints for guests. Since the size of
 98				 * the original instruction is unknown, stop following
 99				 * instructions and prevent setting a kprobe.
100				 */
101				return false;
102			}
103			/*
104			 * Check if the instruction has been modified by another
105			 * kprobe, in which case the original instruction is
106			 * decoded.
107			 */
108			kp = get_kprobe((void *)addr);
109			if (!kp) {
110				/* not a kprobe */
111				return false;
112			}
113			insn = kp->opcode;
114		}
115		addr += insn_length(insn >> 8);
116	}
117	return addr == paddr;
118}
119
120int arch_prepare_kprobe(struct kprobe *p)
121{
122	if (!can_probe((unsigned long)p->addr))
123		return -EINVAL;
 
124	/* Make sure the probe isn't going on a difficult instruction */
125	if (probe_is_prohibited_opcode(p->addr))
126		return -EINVAL;
127	p->ainsn.insn = get_insn_slot();
128	if (!p->ainsn.insn)
129		return -ENOMEM;
130	copy_instruction(p);
131	return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
135struct swap_insn_args {
136	struct kprobe *p;
137	unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142	struct swap_insn_args *args = data;
143	struct kprobe *p = args->p;
144	u16 opc;
145
146	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
148	return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156	if (MACHINE_HAS_SEQ_INSN) {
157		swap_instruction(&args);
158		text_poke_sync();
159	} else {
160		stop_machine_cpuslocked(swap_instruction, &args, NULL);
161	}
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169	if (MACHINE_HAS_SEQ_INSN) {
170		swap_instruction(&args);
171		text_poke_sync();
172	} else {
173		stop_machine_cpuslocked(swap_instruction, &args, NULL);
174	}
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180	if (!p->ainsn.insn)
181		return;
182	free_insn_slot(p->ainsn.insn, 0);
183	p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188			      struct pt_regs *regs,
189			      unsigned long ip)
190{
191	union {
192		struct ctlreg regs[3];
193		struct {
194			struct ctlreg control;
195			struct ctlreg start;
196			struct ctlreg end;
197		};
198	} per_kprobe;
199
200	/* Set up the PER control registers %cr9-%cr11 */
201	per_kprobe.control.val = PER_EVENT_IFETCH;
202	per_kprobe.start.val = ip;
203	per_kprobe.end.val = ip;
204
205	/* Save control regs and psw mask */
206	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207	kcb->kprobe_saved_imask = regs->psw.mask &
208		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210	/* Set PER control regs, turns on single step for the given address */
211	__local_ctl_load(9, 11, per_kprobe.regs);
212	regs->psw.mask |= PSW_MASK_PER;
213	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214	regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219			       struct pt_regs *regs,
220			       unsigned long ip)
221{
222	/* Restore control regs and psw mask, set new psw address */
223	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224	regs->psw.mask &= ~PSW_MASK_PER;
225	regs->psw.mask |= kcb->kprobe_saved_imask;
226	regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238	kcb->prev_kprobe.status = kcb->kprobe_status;
239	__this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251	kcb->kprobe_status = kcb->prev_kprobe.status;
252	kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
257{
258	switch (kcb->kprobe_status) {
259	case KPROBE_HIT_SSDONE:
260	case KPROBE_HIT_ACTIVE:
261		kprobes_inc_nmissed_count(p);
262		break;
263	case KPROBE_HIT_SS:
264	case KPROBE_REENTER:
265	default:
266		/*
267		 * A kprobe on the code path to single step an instruction
268		 * is a BUG. The code path resides in the .kprobes.text
269		 * section and is executed with interrupts disabled.
270		 */
271		pr_err("Failed to recover from reentered kprobes.\n");
272		dump_kprobe(p);
273		BUG();
274	}
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280	struct kprobe_ctlblk *kcb;
281	struct kprobe *p;
282
283	/*
284	 * We want to disable preemption for the entire duration of kprobe
285	 * processing. That includes the calls to the pre/post handlers
286	 * and single stepping the kprobe instruction.
287	 */
288	preempt_disable();
289	kcb = get_kprobe_ctlblk();
290	p = get_kprobe((void *)(regs->psw.addr - 2));
291
292	if (p) {
293		if (kprobe_running()) {
294			/*
295			 * We have hit a kprobe while another is still
296			 * active. This can happen in the pre and post
297			 * handler. Single step the instruction of the
298			 * new probe but do not call any handler function
299			 * of this secondary kprobe.
300			 * push_kprobe and pop_kprobe saves and restores
301			 * the currently active kprobe.
302			 */
303			kprobe_reenter_check(kcb, p);
304			push_kprobe(kcb, p);
305			kcb->kprobe_status = KPROBE_REENTER;
306		} else {
307			/*
308			 * If we have no pre-handler or it returned 0, we
309			 * continue with single stepping. If we have a
310			 * pre-handler and it returned non-zero, it prepped
311			 * for changing execution path, so get out doing
312			 * nothing more here.
 
313			 */
314			push_kprobe(kcb, p);
315			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316			if (p->pre_handler && p->pre_handler(p, regs)) {
317				pop_kprobe(kcb);
318				preempt_enable_no_resched();
319				return 1;
320			}
321			kcb->kprobe_status = KPROBE_HIT_SS;
322		}
323		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325	} /* else:
326	   * No kprobe at this address and no active kprobe. The trap has
327	   * not been caused by a kprobe breakpoint. The race of breakpoint
328	   * vs. kprobe remove does not exist because on s390 as we use
329	   * stop_machine to arm/disarm the breakpoints.
330	   */
331	preempt_enable_no_resched();
332	return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
336/*
337 * Called after single-stepping.  p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction.  To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction.  The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347	unsigned long ip = regs->psw.addr;
348	int fixup = probe_get_fixup_type(p->ainsn.insn);
349
350	if (fixup & FIXUP_PSW_NORMAL)
351		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354		int ilen = insn_length(p->ainsn.insn[0] >> 8);
355		if (ip - (unsigned long) p->ainsn.insn == ilen)
356			ip = (unsigned long) p->addr + ilen;
357	}
358
359	if (fixup & FIXUP_RETURN_REGISTER) {
360		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361		regs->gprs[reg] += (unsigned long) p->addr -
362				   (unsigned long) p->ainsn.insn;
363	}
364
365	disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372	struct kprobe *p = kprobe_running();
373
374	if (!p)
375		return 0;
376
377	resume_execution(p, regs);
378	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379		kcb->kprobe_status = KPROBE_HIT_SSDONE;
380		p->post_handler(p, regs, 0);
381	}
 
 
382	pop_kprobe(kcb);
383	preempt_enable_no_resched();
384
385	/*
386	 * if somebody else is singlestepping across a probe point, psw mask
387	 * will have PER set, in which case, continue the remaining processing
388	 * of do_single_step, as if this is not a probe hit.
389	 */
390	if (regs->psw.mask & PSW_MASK_PER)
391		return 0;
392
393	return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400	struct kprobe *p = kprobe_running();
 
401
402	switch(kcb->kprobe_status) {
 
 
 
403	case KPROBE_HIT_SS:
404	case KPROBE_REENTER:
405		/*
406		 * We are here because the instruction being single
407		 * stepped caused a page fault. We reset the current
408		 * kprobe and the nip points back to the probe address
409		 * and allow the page fault handler to continue as a
410		 * normal page fault.
411		 */
412		disable_singlestep(kcb, regs, (unsigned long) p->addr);
413		pop_kprobe(kcb);
414		preempt_enable_no_resched();
415		break;
416	case KPROBE_HIT_ACTIVE:
417	case KPROBE_HIT_SSDONE:
418		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419		 * In case the user-specified fault handler returned
420		 * zero, try to fix up.
421		 */
422		if (fixup_exception(regs))
 
 
423			return 1;
 
 
424		/*
425		 * fixup_exception() could not handle it,
426		 * Let do_page_fault() fix it.
427		 */
428		break;
429	default:
430		break;
431	}
432	return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438	int ret;
439
440	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441		local_irq_disable();
442	ret = kprobe_trap_handler(regs, trapnr);
443	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445	return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453			     unsigned long val, void *data)
454{
455	struct die_args *args = (struct die_args *) data;
456	struct pt_regs *regs = args->regs;
457	int ret = NOTIFY_DONE;
458
459	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460		local_irq_disable();
461
462	switch (val) {
463	case DIE_BPT:
464		if (kprobe_handler(regs))
465			ret = NOTIFY_STOP;
466		break;
467	case DIE_SSTEP:
468		if (post_kprobe_handler(regs))
469			ret = NOTIFY_STOP;
470		break;
471	case DIE_TRAP:
472		if (!preemptible() && kprobe_running() &&
473		    kprobe_trap_handler(regs, args->trapnr))
474			ret = NOTIFY_STOP;
475		break;
476	default:
477		break;
478	}
479
480	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483	return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490}
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494	return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495					 (unsigned long)__irqentry_text_end);
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.5.6
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 
 
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 31#include <linux/module.h>
 32#include <linux/slab.h>
 33#include <linux/hardirq.h>
 
 
 
 
 
 
 
 34
 35DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 36DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 37
 38struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 39
 40static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
 41{
 42	switch (insn[0] >> 8) {
 43	case 0x0c:	/* bassm */
 44	case 0x0b:	/* bsm	 */
 45	case 0x83:	/* diag  */
 46	case 0x44:	/* ex	 */
 47	case 0xac:	/* stnsm */
 48	case 0xad:	/* stosm */
 49		return -EINVAL;
 50	}
 51	switch (insn[0]) {
 52	case 0x0101:	/* pr	 */
 53	case 0xb25a:	/* bsa	 */
 54	case 0xb240:	/* bakr  */
 55	case 0xb258:	/* bsg	 */
 56	case 0xb218:	/* pc	 */
 57	case 0xb228:	/* pt	 */
 58	case 0xb98d:	/* epsw	 */
 59		return -EINVAL;
 60	}
 61	return 0;
 62}
 63
 64static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
 65{
 66	/* default fixup method */
 67	int fixup = FIXUP_PSW_NORMAL;
 
 
 68
 69	switch (insn[0] >> 8) {
 70	case 0x05:	/* balr	*/
 71	case 0x0d:	/* basr */
 72		fixup = FIXUP_RETURN_REGISTER;
 73		/* if r2 = 0, no branch will be taken */
 74		if ((insn[0] & 0x0f) == 0)
 75			fixup |= FIXUP_BRANCH_NOT_TAKEN;
 76		break;
 77	case 0x06:	/* bctr	*/
 78	case 0x07:	/* bcr	*/
 79		fixup = FIXUP_BRANCH_NOT_TAKEN;
 80		break;
 81	case 0x45:	/* bal	*/
 82	case 0x4d:	/* bas	*/
 83		fixup = FIXUP_RETURN_REGISTER;
 84		break;
 85	case 0x47:	/* bc	*/
 86	case 0x46:	/* bct	*/
 87	case 0x86:	/* bxh	*/
 88	case 0x87:	/* bxle	*/
 89		fixup = FIXUP_BRANCH_NOT_TAKEN;
 90		break;
 91	case 0x82:	/* lpsw	*/
 92		fixup = FIXUP_NOT_REQUIRED;
 93		break;
 94	case 0xb2:	/* lpswe */
 95		if ((insn[0] & 0xff) == 0xb2)
 96			fixup = FIXUP_NOT_REQUIRED;
 97		break;
 98	case 0xa7:	/* bras	*/
 99		if ((insn[0] & 0x0f) == 0x05)
100			fixup |= FIXUP_RETURN_REGISTER;
101		break;
102	case 0xc0:
103		if ((insn[0] & 0x0f) == 0x00 ||	/* larl  */
104		    (insn[0] & 0x0f) == 0x05)	/* brasl */
105		fixup |= FIXUP_RETURN_REGISTER;
106		break;
107	case 0xeb:
108		if ((insn[2] & 0xff) == 0x44 ||	/* bxhg  */
109		    (insn[2] & 0xff) == 0x45)	/* bxleg */
110			fixup = FIXUP_BRANCH_NOT_TAKEN;
111		break;
112	case 0xe3:	/* bctg	*/
113		if ((insn[2] & 0xff) == 0x46)
114			fixup = FIXUP_BRANCH_NOT_TAKEN;
115		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116	}
117	return fixup;
118}
119
120int __kprobes arch_prepare_kprobe(struct kprobe *p)
121{
122	if ((unsigned long) p->addr & 0x01)
123		return -EINVAL;
124
125	/* Make sure the probe isn't going on a difficult instruction */
126	if (is_prohibited_opcode(p->addr))
127		return -EINVAL;
128
129	p->opcode = *p->addr;
130	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
131
132	return 0;
133}
 
134
135struct ins_replace_args {
136	kprobe_opcode_t *ptr;
137	kprobe_opcode_t opcode;
138};
139
140static int __kprobes swap_instruction(void *aref)
141{
142	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
143	unsigned long status = kcb->kprobe_status;
144	struct ins_replace_args *args = aref;
145
146	kcb->kprobe_status = KPROBE_SWAP_INST;
147	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
148	kcb->kprobe_status = status;
149	return 0;
150}
 
151
152void __kprobes arch_arm_kprobe(struct kprobe *p)
153{
154	struct ins_replace_args args;
155
156	args.ptr = p->addr;
157	args.opcode = BREAKPOINT_INSTRUCTION;
158	stop_machine(swap_instruction, &args, NULL);
 
 
 
159}
 
160
161void __kprobes arch_disarm_kprobe(struct kprobe *p)
162{
163	struct ins_replace_args args;
164
165	args.ptr = p->addr;
166	args.opcode = p->opcode;
167	stop_machine(swap_instruction, &args, NULL);
 
 
 
168}
 
169
170void __kprobes arch_remove_kprobe(struct kprobe *p)
171{
 
 
 
 
172}
 
173
174static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
175					struct pt_regs *regs,
176					unsigned long ip)
177{
178	struct per_regs per_kprobe;
 
 
 
 
 
 
 
179
180	/* Set up the PER control registers %cr9-%cr11 */
181	per_kprobe.control = PER_EVENT_IFETCH;
182	per_kprobe.start = ip;
183	per_kprobe.end = ip;
184
185	/* Save control regs and psw mask */
186	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
187	kcb->kprobe_saved_imask = regs->psw.mask &
188		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
189
190	/* Set PER control regs, turns on single step for the given address */
191	__ctl_load(per_kprobe, 9, 11);
192	regs->psw.mask |= PSW_MASK_PER;
193	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
194	regs->psw.addr = ip | PSW_ADDR_AMODE;
195}
 
196
197static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
198					 struct pt_regs *regs,
199					 unsigned long ip)
200{
201	/* Restore control regs and psw mask, set new psw address */
202	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
203	regs->psw.mask &= ~PSW_MASK_PER;
204	regs->psw.mask |= kcb->kprobe_saved_imask;
205	regs->psw.addr = ip | PSW_ADDR_AMODE;
206}
 
207
208/*
209 * Activate a kprobe by storing its pointer to current_kprobe. The
210 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
211 * two kprobes can be active, see KPROBE_REENTER.
212 */
213static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
214{
215	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
216	kcb->prev_kprobe.status = kcb->kprobe_status;
217	__get_cpu_var(current_kprobe) = p;
218}
 
219
220/*
221 * Deactivate a kprobe by backing up to the previous state. If the
222 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
223 * for any other state prev_kprobe.kp will be NULL.
224 */
225static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
226{
227	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
228	kcb->kprobe_status = kcb->prev_kprobe.status;
 
229}
 
230
231void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
232					struct pt_regs *regs)
233{
234	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
235
236	/* Replace the return addr with trampoline addr */
237	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
238}
239
240static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
241					   struct kprobe *p)
242{
243	switch (kcb->kprobe_status) {
244	case KPROBE_HIT_SSDONE:
245	case KPROBE_HIT_ACTIVE:
246		kprobes_inc_nmissed_count(p);
247		break;
248	case KPROBE_HIT_SS:
249	case KPROBE_REENTER:
250	default:
251		/*
252		 * A kprobe on the code path to single step an instruction
253		 * is a BUG. The code path resides in the .kprobes.text
254		 * section and is executed with interrupts disabled.
255		 */
256		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
257		dump_kprobe(p);
258		BUG();
259	}
260}
 
261
262static int __kprobes kprobe_handler(struct pt_regs *regs)
263{
264	struct kprobe_ctlblk *kcb;
265	struct kprobe *p;
266
267	/*
268	 * We want to disable preemption for the entire duration of kprobe
269	 * processing. That includes the calls to the pre/post handlers
270	 * and single stepping the kprobe instruction.
271	 */
272	preempt_disable();
273	kcb = get_kprobe_ctlblk();
274	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
275
276	if (p) {
277		if (kprobe_running()) {
278			/*
279			 * We have hit a kprobe while another is still
280			 * active. This can happen in the pre and post
281			 * handler. Single step the instruction of the
282			 * new probe but do not call any handler function
283			 * of this secondary kprobe.
284			 * push_kprobe and pop_kprobe saves and restores
285			 * the currently active kprobe.
286			 */
287			kprobe_reenter_check(kcb, p);
288			push_kprobe(kcb, p);
289			kcb->kprobe_status = KPROBE_REENTER;
290		} else {
291			/*
292			 * If we have no pre-handler or it returned 0, we
293			 * continue with single stepping. If we have a
294			 * pre-handler and it returned non-zero, it prepped
295			 * for calling the break_handler below on re-entry
296			 * for jprobe processing, so get out doing nothing
297			 * more here.
298			 */
299			push_kprobe(kcb, p);
300			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
301			if (p->pre_handler && p->pre_handler(p, regs))
 
 
302				return 1;
 
303			kcb->kprobe_status = KPROBE_HIT_SS;
304		}
305		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
306		return 1;
307	} else if (kprobe_running()) {
308		p = __get_cpu_var(current_kprobe);
309		if (p->break_handler && p->break_handler(p, regs)) {
310			/*
311			 * Continuation after the jprobe completed and
312			 * caused the jprobe_return trap. The jprobe
313			 * break_handler "returns" to the original
314			 * function that still has the kprobe breakpoint
315			 * installed. We continue with single stepping.
316			 */
317			kcb->kprobe_status = KPROBE_HIT_SS;
318			enable_singlestep(kcb, regs,
319					  (unsigned long) p->ainsn.insn);
320			return 1;
321		} /* else:
322		   * No kprobe at this address and the current kprobe
323		   * has no break handler (no jprobe!). The kernel just
324		   * exploded, let the standard trap handler pick up the
325		   * pieces.
326		   */
327	} /* else:
328	   * No kprobe at this address and no active kprobe. The trap has
329	   * not been caused by a kprobe breakpoint. The race of breakpoint
330	   * vs. kprobe remove does not exist because on s390 as we use
331	   * stop_machine to arm/disarm the breakpoints.
332	   */
333	preempt_enable_no_resched();
334	return 0;
335}
336
337/*
338 * Function return probe trampoline:
339 *	- init_kprobes() establishes a probepoint here
340 *	- When the probed function returns, this probe
341 *		causes the handlers to fire
342 */
343static void __used kretprobe_trampoline_holder(void)
344{
345	asm volatile(".global kretprobe_trampoline\n"
346		     "kretprobe_trampoline: bcr 0,0\n");
347}
348
349/*
350 * Called when the probe at kretprobe trampoline is hit
351 */
352static int __kprobes trampoline_probe_handler(struct kprobe *p,
353					      struct pt_regs *regs)
354{
355	struct kretprobe_instance *ri;
356	struct hlist_head *head, empty_rp;
357	struct hlist_node *node, *tmp;
358	unsigned long flags, orig_ret_address;
359	unsigned long trampoline_address;
360	kprobe_opcode_t *correct_ret_addr;
361
362	INIT_HLIST_HEAD(&empty_rp);
363	kretprobe_hash_lock(current, &head, &flags);
364
365	/*
366	 * It is possible to have multiple instances associated with a given
367	 * task either because an multiple functions in the call path
368	 * have a return probe installed on them, and/or more than one return
369	 * return probe was registered for a target function.
370	 *
371	 * We can handle this because:
372	 *     - instances are always inserted at the head of the list
373	 *     - when multiple return probes are registered for the same
374	 *	 function, the first instance's ret_addr will point to the
375	 *	 real return address, and all the rest will point to
376	 *	 kretprobe_trampoline
377	 */
378	ri = NULL;
379	orig_ret_address = 0;
380	correct_ret_addr = NULL;
381	trampoline_address = (unsigned long) &kretprobe_trampoline;
382	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
383		if (ri->task != current)
384			/* another task is sharing our hash bucket */
385			continue;
386
387		orig_ret_address = (unsigned long) ri->ret_addr;
388
389		if (orig_ret_address != trampoline_address)
390			/*
391			 * This is the real return address. Any other
392			 * instances associated with this task are for
393			 * other calls deeper on the call stack
394			 */
395			break;
396	}
397
398	kretprobe_assert(ri, orig_ret_address, trampoline_address);
399
400	correct_ret_addr = ri->ret_addr;
401	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
402		if (ri->task != current)
403			/* another task is sharing our hash bucket */
404			continue;
405
406		orig_ret_address = (unsigned long) ri->ret_addr;
407
408		if (ri->rp && ri->rp->handler) {
409			ri->ret_addr = correct_ret_addr;
410			ri->rp->handler(ri, regs);
411		}
412
413		recycle_rp_inst(ri, &empty_rp);
414
415		if (orig_ret_address != trampoline_address)
416			/*
417			 * This is the real return address. Any other
418			 * instances associated with this task are for
419			 * other calls deeper on the call stack
420			 */
421			break;
422	}
423
424	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
425
426	pop_kprobe(get_kprobe_ctlblk());
427	kretprobe_hash_unlock(current, &flags);
428	preempt_enable_no_resched();
429
430	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
431		hlist_del(&ri->hlist);
432		kfree(ri);
433	}
434	/*
435	 * By returning a non-zero value, we are telling
436	 * kprobe_handler() that we don't want the post_handler
437	 * to run (and have re-enabled preemption)
438	 */
439	return 1;
440}
441
442/*
443 * Called after single-stepping.  p->addr is the address of the
444 * instruction whose first byte has been replaced by the "breakpoint"
445 * instruction.  To avoid the SMP problems that can occur when we
446 * temporarily put back the original opcode to single-step, we
447 * single-stepped a copy of the instruction.  The address of this
448 * copy is p->ainsn.insn.
449 */
450static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
451{
452	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
453	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
454	int fixup = get_fixup_type(p->ainsn.insn);
455
456	if (fixup & FIXUP_PSW_NORMAL)
457		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
458
459	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
460		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
461		if (ip - (unsigned long) p->ainsn.insn == ilen)
462			ip = (unsigned long) p->addr + ilen;
463	}
464
465	if (fixup & FIXUP_RETURN_REGISTER) {
466		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
467		regs->gprs[reg] += (unsigned long) p->addr -
468				   (unsigned long) p->ainsn.insn;
469	}
470
471	disable_singlestep(kcb, regs, ip);
472}
 
473
474static int __kprobes post_kprobe_handler(struct pt_regs *regs)
475{
476	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
477	struct kprobe *p = kprobe_running();
478
479	if (!p)
480		return 0;
481
 
482	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
483		kcb->kprobe_status = KPROBE_HIT_SSDONE;
484		p->post_handler(p, regs, 0);
485	}
486
487	resume_execution(p, regs);
488	pop_kprobe(kcb);
489	preempt_enable_no_resched();
490
491	/*
492	 * if somebody else is singlestepping across a probe point, psw mask
493	 * will have PER set, in which case, continue the remaining processing
494	 * of do_single_step, as if this is not a probe hit.
495	 */
496	if (regs->psw.mask & PSW_MASK_PER)
497		return 0;
498
499	return 1;
500}
 
501
502static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
503{
504	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
505	struct kprobe *p = kprobe_running();
506	const struct exception_table_entry *entry;
507
508	switch(kcb->kprobe_status) {
509	case KPROBE_SWAP_INST:
510		/* We are here because the instruction replacement failed */
511		return 0;
512	case KPROBE_HIT_SS:
513	case KPROBE_REENTER:
514		/*
515		 * We are here because the instruction being single
516		 * stepped caused a page fault. We reset the current
517		 * kprobe and the nip points back to the probe address
518		 * and allow the page fault handler to continue as a
519		 * normal page fault.
520		 */
521		disable_singlestep(kcb, regs, (unsigned long) p->addr);
522		pop_kprobe(kcb);
523		preempt_enable_no_resched();
524		break;
525	case KPROBE_HIT_ACTIVE:
526	case KPROBE_HIT_SSDONE:
527		/*
528		 * We increment the nmissed count for accounting,
529		 * we can also use npre/npostfault count for accouting
530		 * these specific fault cases.
531		 */
532		kprobes_inc_nmissed_count(p);
533
534		/*
535		 * We come here because instructions in the pre/post
536		 * handler caused the page_fault, this could happen
537		 * if handler tries to access user space by
538		 * copy_from_user(), get_user() etc. Let the
539		 * user-specified handler try to fix it first.
540		 */
541		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
542			return 1;
543
544		/*
545		 * In case the user-specified fault handler returned
546		 * zero, try to fix up.
547		 */
548		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
549		if (entry) {
550			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
551			return 1;
552		}
553
554		/*
555		 * fixup_exception() could not handle it,
556		 * Let do_page_fault() fix it.
557		 */
558		break;
559	default:
560		break;
561	}
562	return 0;
563}
 
564
565int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
566{
567	int ret;
568
569	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
570		local_irq_disable();
571	ret = kprobe_trap_handler(regs, trapnr);
572	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
573		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
574	return ret;
575}
 
576
577/*
578 * Wrapper routine to for handling exceptions.
579 */
580int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
581				       unsigned long val, void *data)
582{
583	struct die_args *args = (struct die_args *) data;
584	struct pt_regs *regs = args->regs;
585	int ret = NOTIFY_DONE;
586
587	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
588		local_irq_disable();
589
590	switch (val) {
591	case DIE_BPT:
592		if (kprobe_handler(regs))
593			ret = NOTIFY_STOP;
594		break;
595	case DIE_SSTEP:
596		if (post_kprobe_handler(regs))
597			ret = NOTIFY_STOP;
598		break;
599	case DIE_TRAP:
600		if (!preemptible() && kprobe_running() &&
601		    kprobe_trap_handler(regs, args->trapnr))
602			ret = NOTIFY_STOP;
603		break;
604	default:
605		break;
606	}
607
608	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
609		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
610
611	return ret;
612}
 
613
614int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615{
616	struct jprobe *jp = container_of(p, struct jprobe, kp);
617	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618	unsigned long stack;
619
620	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
621
622	/* setup return addr to the jprobe handler routine */
623	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
624	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
625
626	/* r15 is the stack pointer */
627	stack = (unsigned long) regs->gprs[15];
628
629	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
630	return 1;
631}
632
633void __kprobes jprobe_return(void)
634{
635	asm volatile(".word 0x0002");
 
636}
637
638static void __used __kprobes jprobe_return_end(void)
639{
640	asm volatile("bcr 0,0");
641}
642
643int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
644{
645	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
646	unsigned long stack;
647
648	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
649
650	/* Put the regs back */
651	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
652	/* put the stack back */
653	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
654	preempt_enable_no_resched();
655	return 1;
656}
657
658static struct kprobe trampoline = {
659	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
660	.pre_handler = trampoline_probe_handler
661};
662
663int __init arch_init_kprobes(void)
664{
665	return register_kprobe(&trampoline);
666}
667
668int __kprobes arch_trampoline_kprobe(struct kprobe *p)
669{
670	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
671}