Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <linux/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <linux/skbuff_ref.h>
 128#include <net/net_namespace.h>
 129#include <net/request_sock.h>
 130#include <net/sock.h>
 131#include <net/proto_memory.h>
 132#include <linux/net_tstamp.h>
 133#include <net/xfrm.h>
 134#include <linux/ipsec.h>
 135#include <net/cls_cgroup.h>
 136#include <net/netprio_cgroup.h>
 137#include <linux/sock_diag.h>
 138
 139#include <linux/filter.h>
 140#include <net/sock_reuseport.h>
 141#include <net/bpf_sk_storage.h>
 142
 143#include <trace/events/sock.h>
 144
 
 145#include <net/tcp.h>
 146#include <net/busy_poll.h>
 147#include <net/phonet/phonet.h>
 148
 149#include <linux/ethtool.h>
 150
 151#include "dev.h"
 152
 153static DEFINE_MUTEX(proto_list_mutex);
 154static LIST_HEAD(proto_list);
 155
 156static void sock_def_write_space_wfree(struct sock *sk);
 157static void sock_def_write_space(struct sock *sk);
 158
 159/**
 160 * sk_ns_capable - General socket capability test
 161 * @sk: Socket to use a capability on or through
 162 * @user_ns: The user namespace of the capability to use
 163 * @cap: The capability to use
 164 *
 165 * Test to see if the opener of the socket had when the socket was
 166 * created and the current process has the capability @cap in the user
 167 * namespace @user_ns.
 168 */
 169bool sk_ns_capable(const struct sock *sk,
 170		   struct user_namespace *user_ns, int cap)
 171{
 172	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 173		ns_capable(user_ns, cap);
 174}
 175EXPORT_SYMBOL(sk_ns_capable);
 176
 177/**
 178 * sk_capable - Socket global capability test
 179 * @sk: Socket to use a capability on or through
 180 * @cap: The global capability to use
 181 *
 182 * Test to see if the opener of the socket had when the socket was
 183 * created and the current process has the capability @cap in all user
 184 * namespaces.
 185 */
 186bool sk_capable(const struct sock *sk, int cap)
 187{
 188	return sk_ns_capable(sk, &init_user_ns, cap);
 189}
 190EXPORT_SYMBOL(sk_capable);
 191
 192/**
 193 * sk_net_capable - Network namespace socket capability test
 194 * @sk: Socket to use a capability on or through
 195 * @cap: The capability to use
 196 *
 197 * Test to see if the opener of the socket had when the socket was created
 198 * and the current process has the capability @cap over the network namespace
 199 * the socket is a member of.
 200 */
 201bool sk_net_capable(const struct sock *sk, int cap)
 202{
 203	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 204}
 205EXPORT_SYMBOL(sk_net_capable);
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207/*
 208 * Each address family might have different locking rules, so we have
 209 * one slock key per address family and separate keys for internal and
 210 * userspace sockets.
 211 */
 212static struct lock_class_key af_family_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_keys[AF_MAX];
 214static struct lock_class_key af_family_slock_keys[AF_MAX];
 215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 
 
 
 
 216
 217/*
 218 * Make lock validator output more readable. (we pre-construct these
 219 * strings build-time, so that runtime initialization of socket
 220 * locks is fast):
 221 */
 222
 223#define _sock_locks(x)						  \
 224  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 225  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 226  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 227  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 228  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 229  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 230  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 231  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 232  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 233  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 234  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 235  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 236  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 237  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 238  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 239  x "AF_MCTP"  , \
 240  x "AF_MAX"
 241
 242static const char *const af_family_key_strings[AF_MAX+1] = {
 243	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 244};
 245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 246	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 247};
 248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 249	_sock_locks("clock-")
 250};
 251
 252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 253	_sock_locks("k-sk_lock-")
 254};
 255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 256	_sock_locks("k-slock-")
 257};
 258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 259	_sock_locks("k-clock-")
 260};
 261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 262	_sock_locks("rlock-")
 263};
 264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 265	_sock_locks("wlock-")
 266};
 267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 268	_sock_locks("elock-")
 269};
 270
 271/*
 272 * sk_callback_lock and sk queues locking rules are per-address-family,
 273 * so split the lock classes by using a per-AF key:
 274 */
 275static struct lock_class_key af_callback_keys[AF_MAX];
 276static struct lock_class_key af_rlock_keys[AF_MAX];
 277static struct lock_class_key af_wlock_keys[AF_MAX];
 278static struct lock_class_key af_elock_keys[AF_MAX];
 279static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 280
 281/* Run time adjustable parameters. */
 282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 283EXPORT_SYMBOL(sysctl_wmem_max);
 284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 285EXPORT_SYMBOL(sysctl_rmem_max);
 286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 288
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 
 
 
 
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 
 
 320	 */
 321	sk_mem_reclaim(sk);
 
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 
 
 
 
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 
 465	}
 466}
 467
 
 
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 
 
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 
 
 
 
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 
 
 
 
 
 
 
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 
 
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 
 
 
 
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 823	sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
 824	sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
 825	if (val)  {
 826		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 828	}
 829}
 830
 831void sock_enable_timestamps(struct sock *sk)
 832{
 833	lock_sock(sk);
 834	__sock_set_timestamps(sk, true, false, true);
 835	release_sock(sk);
 836}
 837EXPORT_SYMBOL(sock_enable_timestamps);
 838
 839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 840{
 841	switch (optname) {
 842	case SO_TIMESTAMP_OLD:
 843		__sock_set_timestamps(sk, valbool, false, false);
 844		break;
 845	case SO_TIMESTAMP_NEW:
 846		__sock_set_timestamps(sk, valbool, true, false);
 847		break;
 848	case SO_TIMESTAMPNS_OLD:
 849		__sock_set_timestamps(sk, valbool, false, true);
 850		break;
 851	case SO_TIMESTAMPNS_NEW:
 852		__sock_set_timestamps(sk, valbool, true, true);
 853		break;
 854	}
 855}
 856
 857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 858{
 859	struct net *net = sock_net(sk);
 860	struct net_device *dev = NULL;
 861	bool match = false;
 862	int *vclock_index;
 863	int i, num;
 864
 865	if (sk->sk_bound_dev_if)
 866		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 867
 868	if (!dev) {
 869		pr_err("%s: sock not bind to device\n", __func__);
 870		return -EOPNOTSUPP;
 871	}
 872
 873	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 874	dev_put(dev);
 875
 876	for (i = 0; i < num; i++) {
 877		if (*(vclock_index + i) == phc_index) {
 878			match = true;
 879			break;
 880		}
 881	}
 882
 883	if (num > 0)
 884		kfree(vclock_index);
 885
 886	if (!match)
 887		return -EINVAL;
 888
 889	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 890
 891	return 0;
 892}
 893
 894int sock_set_timestamping(struct sock *sk, int optname,
 895			  struct so_timestamping timestamping)
 896{
 897	int val = timestamping.flags;
 898	int ret;
 899
 900	if (val & ~SOF_TIMESTAMPING_MASK)
 901		return -EINVAL;
 902
 903	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 904	    !(val & SOF_TIMESTAMPING_OPT_ID))
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID &&
 908	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 909		if (sk_is_tcp(sk)) {
 910			if ((1 << sk->sk_state) &
 911			    (TCPF_CLOSE | TCPF_LISTEN))
 912				return -EINVAL;
 913			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 914				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 915			else
 916				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 917		} else {
 918			atomic_set(&sk->sk_tskey, 0);
 919		}
 920	}
 921
 922	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 923	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 924		return -EINVAL;
 925
 926	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 927		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 928		if (ret)
 929			return ret;
 930	}
 931
 932	WRITE_ONCE(sk->sk_tsflags, val);
 933	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 934
 935	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 936		sock_enable_timestamp(sk,
 937				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 938	else
 939		sock_disable_timestamp(sk,
 940				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 941	return 0;
 942}
 943
 944void sock_set_keepalive(struct sock *sk)
 945{
 946	lock_sock(sk);
 947	if (sk->sk_prot->keepalive)
 948		sk->sk_prot->keepalive(sk, true);
 949	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 950	release_sock(sk);
 951}
 952EXPORT_SYMBOL(sock_set_keepalive);
 953
 954static void __sock_set_rcvbuf(struct sock *sk, int val)
 955{
 956	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 957	 * as a negative value.
 958	 */
 959	val = min_t(int, val, INT_MAX / 2);
 960	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 961
 962	/* We double it on the way in to account for "struct sk_buff" etc.
 963	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 964	 * will allow that much actual data to be received on that socket.
 965	 *
 966	 * Applications are unaware that "struct sk_buff" and other overheads
 967	 * allocate from the receive buffer during socket buffer allocation.
 968	 *
 969	 * And after considering the possible alternatives, returning the value
 970	 * we actually used in getsockopt is the most desirable behavior.
 971	 */
 972	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 973}
 974
 975void sock_set_rcvbuf(struct sock *sk, int val)
 976{
 977	lock_sock(sk);
 978	__sock_set_rcvbuf(sk, val);
 979	release_sock(sk);
 980}
 981EXPORT_SYMBOL(sock_set_rcvbuf);
 982
 983static void __sock_set_mark(struct sock *sk, u32 val)
 984{
 985	if (val != sk->sk_mark) {
 986		WRITE_ONCE(sk->sk_mark, val);
 987		sk_dst_reset(sk);
 988	}
 989}
 990
 991void sock_set_mark(struct sock *sk, u32 val)
 992{
 993	lock_sock(sk);
 994	__sock_set_mark(sk, val);
 995	release_sock(sk);
 996}
 997EXPORT_SYMBOL(sock_set_mark);
 998
 999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001	/* Round down bytes to multiple of pages */
1002	bytes = round_down(bytes, PAGE_SIZE);
1003
1004	WARN_ON(bytes > sk->sk_reserved_mem);
1005	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006	sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011	long allocated;
1012	bool charged;
1013	int pages;
1014
1015	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016		return -EOPNOTSUPP;
1017
1018	if (!bytes)
1019		return 0;
1020
1021	pages = sk_mem_pages(bytes);
1022
1023	/* pre-charge to memcg */
1024	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026	if (!charged)
1027		return -ENOMEM;
1028
1029	/* pre-charge to forward_alloc */
1030	sk_memory_allocated_add(sk, pages);
1031	allocated = sk_memory_allocated(sk);
1032	/* If the system goes into memory pressure with this
1033	 * precharge, give up and return error.
1034	 */
1035	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036		sk_memory_allocated_sub(sk, pages);
1037		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038		return -ENOMEM;
1039	}
1040	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042	WRITE_ONCE(sk->sk_reserved_mem,
1043		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045	return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061	unsigned int num_tokens, i, j, k, netmem_num = 0;
1062	struct dmabuf_token *tokens;
1063	int ret = 0, num_frags = 0;
1064	netmem_ref netmems[16];
1065
1066	if (!sk_is_tcp(sk))
1067		return -EBADF;
1068
1069	if (optlen % sizeof(*tokens) ||
1070	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071		return -EINVAL;
1072
1073	num_tokens = optlen / sizeof(*tokens);
1074	tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075	if (!tokens)
1076		return -ENOMEM;
1077
1078	if (copy_from_sockptr(tokens, optval, optlen)) {
1079		kvfree(tokens);
1080		return -EFAULT;
1081	}
1082
1083	xa_lock_bh(&sk->sk_user_frags);
1084	for (i = 0; i < num_tokens; i++) {
1085		for (j = 0; j < tokens[i].token_count; j++) {
1086			if (++num_frags > MAX_DONTNEED_FRAGS)
1087				goto frag_limit_reached;
1088
1089			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090				&sk->sk_user_frags, tokens[i].token_start + j);
1091
1092			if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093				continue;
1094
1095			netmems[netmem_num++] = netmem;
1096			if (netmem_num == ARRAY_SIZE(netmems)) {
1097				xa_unlock_bh(&sk->sk_user_frags);
1098				for (k = 0; k < netmem_num; k++)
1099					WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100				netmem_num = 0;
1101				xa_lock_bh(&sk->sk_user_frags);
1102			}
1103			ret++;
1104		}
1105	}
1106
1107frag_limit_reached:
1108	xa_unlock_bh(&sk->sk_user_frags);
1109	for (k = 0; k < netmem_num; k++)
1110		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112	kvfree(tokens);
1113	return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119	/* When current->bpf_ctx is set, the setsockopt is called from
1120	 * a bpf prog.  bpf has ensured the sk lock has been
1121	 * acquired before calling setsockopt().
1122	 */
1123	if (has_current_bpf_ctx())
1124		return;
1125
1126	lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132	if (has_current_bpf_ctx())
1133		return;
1134
1135	release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141	return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147	return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153	switch (value) {
1154	case CLOCK_REALTIME:
1155	case CLOCK_MONOTONIC:
1156	case CLOCK_TAI:
1157		return 0;
1158	}
1159	return -EINVAL;
1160}
1161
1162/*
1163 *	This is meant for all protocols to use and covers goings on
1164 *	at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168		  sockptr_t optval, unsigned int optlen)
1169{
1170	struct so_timestamping timestamping;
1171	struct socket *sock = sk->sk_socket;
1172	struct sock_txtime sk_txtime;
1173	int val;
1174	int valbool;
1175	struct linger ling;
1176	int ret = 0;
1177
1178	/*
1179	 *	Options without arguments
1180	 */
1181
1182	if (optname == SO_BINDTODEVICE)
1183		return sock_setbindtodevice(sk, optval, optlen);
1184
1185	if (optlen < sizeof(int))
1186		return -EINVAL;
1187
1188	if (copy_from_sockptr(&val, optval, sizeof(val)))
1189		return -EFAULT;
1190
1191	valbool = val ? 1 : 0;
1192
1193	/* handle options which do not require locking the socket. */
1194	switch (optname) {
1195	case SO_PRIORITY:
1196		if ((val >= 0 && val <= 6) ||
1197		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199			sock_set_priority(sk, val);
1200			return 0;
1201		}
1202		return -EPERM;
1203	case SO_PASSSEC:
1204		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205		return 0;
1206	case SO_PASSCRED:
1207		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208		return 0;
1209	case SO_PASSPIDFD:
1210		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211		return 0;
1212	case SO_TYPE:
1213	case SO_PROTOCOL:
1214	case SO_DOMAIN:
1215	case SO_ERROR:
1216		return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218	case SO_BUSY_POLL:
1219		if (val < 0)
1220			return -EINVAL;
1221		WRITE_ONCE(sk->sk_ll_usec, val);
1222		return 0;
1223	case SO_PREFER_BUSY_POLL:
1224		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225			return -EPERM;
1226		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227		return 0;
1228	case SO_BUSY_POLL_BUDGET:
1229		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230		    !sockopt_capable(CAP_NET_ADMIN))
1231			return -EPERM;
1232		if (val < 0 || val > U16_MAX)
1233			return -EINVAL;
1234		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235		return 0;
1236#endif
1237	case SO_MAX_PACING_RATE:
1238		{
1239		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240		unsigned long pacing_rate;
1241
1242		if (sizeof(ulval) != sizeof(val) &&
1243		    optlen >= sizeof(ulval) &&
1244		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245			return -EFAULT;
1246		}
1247		if (ulval != ~0UL)
1248			cmpxchg(&sk->sk_pacing_status,
1249				SK_PACING_NONE,
1250				SK_PACING_NEEDED);
1251		/* Pairs with READ_ONCE() from sk_getsockopt() */
1252		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254		if (ulval < pacing_rate)
1255			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256		return 0;
1257		}
1258	case SO_TXREHASH:
1259		if (val < -1 || val > 1)
1260			return -EINVAL;
1261		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263		/* Paired with READ_ONCE() in tcp_rtx_synack()
1264		 * and sk_getsockopt().
1265		 */
1266		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267		return 0;
1268	case SO_PEEK_OFF:
1269		{
1270		int (*set_peek_off)(struct sock *sk, int val);
1271
1272		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273		if (set_peek_off)
1274			ret = set_peek_off(sk, val);
1275		else
1276			ret = -EOPNOTSUPP;
1277		return ret;
1278		}
1279#ifdef CONFIG_PAGE_POOL
1280	case SO_DEVMEM_DONTNEED:
1281		return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283	}
1284
1285	sockopt_lock_sock(sk);
1286
1287	switch (optname) {
1288	case SO_DEBUG:
1289		if (val && !sockopt_capable(CAP_NET_ADMIN))
1290			ret = -EACCES;
1291		else
1292			sock_valbool_flag(sk, SOCK_DBG, valbool);
1293		break;
1294	case SO_REUSEADDR:
1295		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296		break;
1297	case SO_REUSEPORT:
1298		if (valbool && !sk_is_inet(sk))
1299			ret = -EOPNOTSUPP;
1300		else
1301			sk->sk_reuseport = valbool;
 
 
 
1302		break;
1303	case SO_DONTROUTE:
1304		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305		sk_dst_reset(sk);
1306		break;
1307	case SO_BROADCAST:
1308		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309		break;
1310	case SO_SNDBUF:
1311		/* Don't error on this BSD doesn't and if you think
1312		 * about it this is right. Otherwise apps have to
1313		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314		 * are treated in BSD as hints
1315		 */
1316		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318		/* Ensure val * 2 fits into an int, to prevent max_t()
1319		 * from treating it as a negative value.
1320		 */
1321		val = min_t(int, val, INT_MAX / 2);
1322		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323		WRITE_ONCE(sk->sk_sndbuf,
1324			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325		/* Wake up sending tasks if we upped the value. */
1326		sk->sk_write_space(sk);
1327		break;
1328
1329	case SO_SNDBUFFORCE:
1330		if (!sockopt_capable(CAP_NET_ADMIN)) {
1331			ret = -EPERM;
1332			break;
1333		}
1334
1335		/* No negative values (to prevent underflow, as val will be
1336		 * multiplied by 2).
1337		 */
1338		if (val < 0)
1339			val = 0;
1340		goto set_sndbuf;
1341
1342	case SO_RCVBUF:
1343		/* Don't error on this BSD doesn't and if you think
1344		 * about it this is right. Otherwise apps have to
1345		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346		 * are treated in BSD as hints
1347		 */
1348		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349		break;
1350
1351	case SO_RCVBUFFORCE:
1352		if (!sockopt_capable(CAP_NET_ADMIN)) {
1353			ret = -EPERM;
1354			break;
1355		}
1356
1357		/* No negative values (to prevent underflow, as val will be
1358		 * multiplied by 2).
1359		 */
1360		__sock_set_rcvbuf(sk, max(val, 0));
1361		break;
1362
1363	case SO_KEEPALIVE:
1364		if (sk->sk_prot->keepalive)
1365			sk->sk_prot->keepalive(sk, valbool);
 
 
 
1366		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367		break;
1368
1369	case SO_OOBINLINE:
1370		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371		break;
1372
1373	case SO_NO_CHECK:
1374		sk->sk_no_check_tx = valbool;
 
 
 
 
 
 
 
 
1375		break;
1376
1377	case SO_LINGER:
1378		if (optlen < sizeof(ling)) {
1379			ret = -EINVAL;	/* 1003.1g */
1380			break;
1381		}
1382		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383			ret = -EFAULT;
1384			break;
1385		}
1386		if (!ling.l_onoff) {
1387			sock_reset_flag(sk, SOCK_LINGER);
1388		} else {
1389			unsigned long t_sec = ling.l_linger;
1390
1391			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393			else
1394				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
 
1395			sock_set_flag(sk, SOCK_LINGER);
1396		}
1397		break;
1398
1399	case SO_BSDCOMPAT:
 
1400		break;
1401
1402	case SO_TIMESTAMP_OLD:
1403	case SO_TIMESTAMP_NEW:
1404	case SO_TIMESTAMPNS_OLD:
1405	case SO_TIMESTAMPNS_NEW:
1406		sock_set_timestamp(sk, optname, valbool);
1407		break;
1408
1409	case SO_TIMESTAMPING_NEW:
1410	case SO_TIMESTAMPING_OLD:
1411		if (optlen == sizeof(timestamping)) {
1412			if (copy_from_sockptr(&timestamping, optval,
1413					      sizeof(timestamping))) {
1414				ret = -EFAULT;
1415				break;
1416			}
 
1417		} else {
1418			memset(&timestamping, 0, sizeof(timestamping));
1419			timestamping.flags = val;
1420		}
1421		ret = sock_set_timestamping(sk, optname, timestamping);
1422		break;
1423
1424	case SO_RCVLOWAT:
1425		{
1426		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1427
1428		if (val < 0)
1429			val = INT_MAX;
1430		if (sock)
1431			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432		if (set_rcvlowat)
1433			ret = set_rcvlowat(sk, val);
1434		else
1435			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436		break;
1437		}
1438	case SO_RCVTIMEO_OLD:
1439	case SO_RCVTIMEO_NEW:
1440		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441				       optlen, optname == SO_RCVTIMEO_OLD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442		break;
1443
1444	case SO_SNDTIMEO_OLD:
1445	case SO_SNDTIMEO_NEW:
1446		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447				       optlen, optname == SO_SNDTIMEO_OLD);
1448		break;
1449
1450	case SO_ATTACH_FILTER: {
1451		struct sock_fprog fprog;
1452
1453		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454		if (!ret)
1455			ret = sk_attach_filter(&fprog, sk);
1456		break;
1457	}
1458	case SO_ATTACH_BPF:
1459		ret = -EINVAL;
1460		if (optlen == sizeof(u32)) {
1461			u32 ufd;
1462
1463			ret = -EFAULT;
1464			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465				break;
1466
1467			ret = sk_attach_bpf(ufd, sk);
1468		}
1469		break;
1470
1471	case SO_ATTACH_REUSEPORT_CBPF: {
1472		struct sock_fprog fprog;
1473
1474		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475		if (!ret)
1476			ret = sk_reuseport_attach_filter(&fprog, sk);
1477		break;
1478	}
1479	case SO_ATTACH_REUSEPORT_EBPF:
1480		ret = -EINVAL;
1481		if (optlen == sizeof(u32)) {
1482			u32 ufd;
1483
1484			ret = -EFAULT;
1485			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486				break;
1487
1488			ret = sk_reuseport_attach_bpf(ufd, sk);
1489		}
1490		break;
1491
1492	case SO_DETACH_REUSEPORT_BPF:
1493		ret = reuseport_detach_prog(sk);
1494		break;
1495
1496	case SO_DETACH_FILTER:
1497		ret = sk_detach_filter(sk);
1498		break;
1499
1500	case SO_LOCK_FILTER:
1501		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502			ret = -EPERM;
1503		else
1504			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505		break;
1506
 
 
 
 
 
 
1507	case SO_MARK:
1508		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510			ret = -EPERM;
1511			break;
1512		}
1513
1514		__sock_set_mark(sk, val);
1515		break;
1516	case SO_RCVMARK:
1517		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518		break;
1519
 
 
1520	case SO_RXQ_OVFL:
1521		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522		break;
1523
1524	case SO_WIFI_STATUS:
1525		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526		break;
1527
 
 
 
 
 
 
 
1528	case SO_NOFCS:
1529		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530		break;
1531
1532	case SO_SELECT_ERR_QUEUE:
1533		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534		break;
1535
1536
1537	case SO_INCOMING_CPU:
1538		reuseport_update_incoming_cpu(sk, val);
1539		break;
1540
1541	case SO_CNX_ADVICE:
1542		if (val == 1)
1543			dst_negative_advice(sk);
1544		break;
1545
1546	case SO_ZEROCOPY:
1547		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548			if (!(sk_is_tcp(sk) ||
1549			      (sk->sk_type == SOCK_DGRAM &&
1550			       sk->sk_protocol == IPPROTO_UDP)))
1551				ret = -EOPNOTSUPP;
1552		} else if (sk->sk_family != PF_RDS) {
1553			ret = -EOPNOTSUPP;
1554		}
1555		if (!ret) {
1556			if (val < 0 || val > 1)
1557				ret = -EINVAL;
1558			else
1559				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560		}
1561		break;
1562
1563	case SO_TXTIME:
1564		if (optlen != sizeof(struct sock_txtime)) {
1565			ret = -EINVAL;
1566			break;
1567		} else if (copy_from_sockptr(&sk_txtime, optval,
1568			   sizeof(struct sock_txtime))) {
1569			ret = -EFAULT;
1570			break;
1571		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572			ret = -EINVAL;
1573			break;
1574		}
1575		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576		 * scheduler has enough safe guards.
1577		 */
1578		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580			ret = -EPERM;
1581			break;
1582		}
1583
1584		ret = sockopt_validate_clockid(sk_txtime.clockid);
1585		if (ret)
1586			break;
1587
1588		sock_valbool_flag(sk, SOCK_TXTIME, true);
1589		sk->sk_clockid = sk_txtime.clockid;
1590		sk->sk_txtime_deadline_mode =
1591			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592		sk->sk_txtime_report_errors =
1593			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594		break;
1595
1596	case SO_BINDTOIFINDEX:
1597		ret = sock_bindtoindex_locked(sk, val);
1598		break;
1599
1600	case SO_BUF_LOCK:
1601		if (val & ~SOCK_BUF_LOCK_MASK) {
1602			ret = -EINVAL;
1603			break;
1604		}
1605		sk->sk_userlocks = val | (sk->sk_userlocks &
1606					  ~SOCK_BUF_LOCK_MASK);
1607		break;
 
1608
1609	case SO_RESERVE_MEM:
1610	{
1611		int delta;
1612
1613		if (val < 0) {
1614			ret = -EINVAL;
1615			break;
1616		}
1617
1618		delta = val - sk->sk_reserved_mem;
1619		if (delta < 0)
1620			sock_release_reserved_memory(sk, -delta);
1621		else
1622			ret = sock_reserve_memory(sk, delta);
1623		break;
1624	}
1625
1626	default:
1627		ret = -ENOPROTOOPT;
1628		break;
1629	}
1630	sockopt_release_sock(sk);
1631	return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635		    sockptr_t optval, unsigned int optlen)
1636{
1637	return sk_setsockopt(sock->sk, level, optname,
1638			     optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644	const struct cred *cred;
1645
1646	spin_lock(&sk->sk_peer_lock);
1647	cred = get_cred(sk->sk_peer_cred);
1648	spin_unlock(&sk->sk_peer_lock);
1649
1650	return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654			  struct ucred *ucred)
1655{
1656	ucred->pid = pid_vnr(pid);
1657	ucred->uid = ucred->gid = -1;
1658	if (cred) {
1659		struct user_namespace *current_ns = current_user_ns();
1660
1661		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663	}
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668	struct user_namespace *user_ns = current_user_ns();
1669	int i;
1670
1671	for (i = 0; i < src->ngroups; i++) {
1672		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675			return -EFAULT;
1676	}
1677
1678	return 0;
1679}
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682		  sockptr_t optval, sockptr_t optlen)
1683{
1684	struct socket *sock = sk->sk_socket;
1685
1686	union {
1687		int val;
1688		u64 val64;
1689		unsigned long ulval;
1690		struct linger ling;
1691		struct old_timeval32 tm32;
1692		struct __kernel_old_timeval tm;
1693		struct  __kernel_sock_timeval stm;
1694		struct sock_txtime txtime;
1695		struct so_timestamping timestamping;
1696	} v;
1697
1698	int lv = sizeof(int);
1699	int len;
1700
1701	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702		return -EFAULT;
1703	if (len < 0)
1704		return -EINVAL;
1705
1706	memset(&v, 0, sizeof(v));
1707
1708	switch (optname) {
1709	case SO_DEBUG:
1710		v.val = sock_flag(sk, SOCK_DBG);
1711		break;
1712
1713	case SO_DONTROUTE:
1714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715		break;
1716
1717	case SO_BROADCAST:
1718		v.val = sock_flag(sk, SOCK_BROADCAST);
1719		break;
1720
1721	case SO_SNDBUF:
1722		v.val = READ_ONCE(sk->sk_sndbuf);
1723		break;
1724
1725	case SO_RCVBUF:
1726		v.val = READ_ONCE(sk->sk_rcvbuf);
1727		break;
1728
1729	case SO_REUSEADDR:
1730		v.val = sk->sk_reuse;
1731		break;
1732
1733	case SO_REUSEPORT:
1734		v.val = sk->sk_reuseport;
1735		break;
1736
1737	case SO_KEEPALIVE:
1738		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739		break;
1740
1741	case SO_TYPE:
1742		v.val = sk->sk_type;
1743		break;
1744
1745	case SO_PROTOCOL:
1746		v.val = sk->sk_protocol;
1747		break;
1748
1749	case SO_DOMAIN:
1750		v.val = sk->sk_family;
1751		break;
1752
1753	case SO_ERROR:
1754		v.val = -sock_error(sk);
1755		if (v.val == 0)
1756			v.val = xchg(&sk->sk_err_soft, 0);
1757		break;
1758
1759	case SO_OOBINLINE:
1760		v.val = sock_flag(sk, SOCK_URGINLINE);
1761		break;
1762
1763	case SO_NO_CHECK:
1764		v.val = sk->sk_no_check_tx;
1765		break;
1766
1767	case SO_PRIORITY:
1768		v.val = READ_ONCE(sk->sk_priority);
1769		break;
1770
1771	case SO_LINGER:
1772		lv		= sizeof(v.ling);
1773		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1774		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1775		break;
1776
1777	case SO_BSDCOMPAT:
 
1778		break;
1779
1780	case SO_TIMESTAMP_OLD:
1781		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1784		break;
1785
1786	case SO_TIMESTAMPNS_OLD:
1787		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788		break;
1789
1790	case SO_TIMESTAMP_NEW:
1791		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792		break;
1793
1794	case SO_TIMESTAMPNS_NEW:
1795		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796		break;
1797
1798	case SO_TIMESTAMPING_OLD:
1799	case SO_TIMESTAMPING_NEW:
1800		lv = sizeof(v.timestamping);
1801		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802		 * returning the flags when they were set through the same option.
1803		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804		 */
1805		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
 
 
 
 
 
 
 
 
1808		}
1809		break;
1810
1811	case SO_RCVTIMEO_OLD:
1812	case SO_RCVTIMEO_NEW:
1813		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814				      SO_RCVTIMEO_OLD == optname);
1815		break;
1816
1817	case SO_SNDTIMEO_OLD:
1818	case SO_SNDTIMEO_NEW:
1819		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820				      SO_SNDTIMEO_OLD == optname);
1821		break;
1822
1823	case SO_RCVLOWAT:
1824		v.val = READ_ONCE(sk->sk_rcvlowat);
1825		break;
1826
1827	case SO_SNDLOWAT:
1828		v.val = 1;
1829		break;
1830
1831	case SO_PASSCRED:
1832		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833		break;
1834
1835	case SO_PASSPIDFD:
1836		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837		break;
1838
1839	case SO_PEERCRED:
1840	{
1841		struct ucred peercred;
1842		if (len > sizeof(peercred))
1843			len = sizeof(peercred);
1844
1845		spin_lock(&sk->sk_peer_lock);
1846		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847		spin_unlock(&sk->sk_peer_lock);
1848
1849		if (copy_to_sockptr(optval, &peercred, len))
1850			return -EFAULT;
1851		goto lenout;
1852	}
1853
1854	case SO_PEERPIDFD:
1855	{
1856		struct pid *peer_pid;
1857		struct file *pidfd_file = NULL;
1858		int pidfd;
1859
1860		if (len > sizeof(pidfd))
1861			len = sizeof(pidfd);
1862
1863		spin_lock(&sk->sk_peer_lock);
1864		peer_pid = get_pid(sk->sk_peer_pid);
1865		spin_unlock(&sk->sk_peer_lock);
1866
1867		if (!peer_pid)
1868			return -ENODATA;
1869
1870		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871		put_pid(peer_pid);
1872		if (pidfd < 0)
1873			return pidfd;
1874
1875		if (copy_to_sockptr(optval, &pidfd, len) ||
1876		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1877			put_unused_fd(pidfd);
1878			fput(pidfd_file);
1879
1880			return -EFAULT;
1881		}
1882
1883		fd_install(pidfd, pidfd_file);
1884		return 0;
1885	}
1886
1887	case SO_PEERGROUPS:
1888	{
1889		const struct cred *cred;
1890		int ret, n;
1891
1892		cred = sk_get_peer_cred(sk);
1893		if (!cred)
1894			return -ENODATA;
1895
1896		n = cred->group_info->ngroups;
1897		if (len < n * sizeof(gid_t)) {
1898			len = n * sizeof(gid_t);
1899			put_cred(cred);
1900			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901		}
1902		len = n * sizeof(gid_t);
1903
1904		ret = groups_to_user(optval, cred->group_info);
1905		put_cred(cred);
1906		if (ret)
1907			return ret;
1908		goto lenout;
1909	}
1910
1911	case SO_PEERNAME:
1912	{
1913		struct sockaddr_storage address;
1914
1915		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916		if (lv < 0)
1917			return -ENOTCONN;
1918		if (lv < len)
1919			return -EINVAL;
1920		if (copy_to_sockptr(optval, &address, len))
1921			return -EFAULT;
1922		goto lenout;
1923	}
1924
1925	/* Dubious BSD thing... Probably nobody even uses it, but
1926	 * the UNIX standard wants it for whatever reason... -DaveM
1927	 */
1928	case SO_ACCEPTCONN:
1929		v.val = sk->sk_state == TCP_LISTEN;
1930		break;
1931
1932	case SO_PASSSEC:
1933		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934		break;
1935
1936	case SO_PEERSEC:
1937		return security_socket_getpeersec_stream(sock,
1938							 optval, optlen, len);
1939
1940	case SO_MARK:
1941		v.val = READ_ONCE(sk->sk_mark);
1942		break;
1943
1944	case SO_RCVMARK:
1945		v.val = sock_flag(sk, SOCK_RCVMARK);
1946		break;
1947
1948	case SO_RXQ_OVFL:
1949		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950		break;
1951
1952	case SO_WIFI_STATUS:
1953		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954		break;
1955
1956	case SO_PEEK_OFF:
1957		if (!READ_ONCE(sock->ops)->set_peek_off)
1958			return -EOPNOTSUPP;
1959
1960		v.val = READ_ONCE(sk->sk_peek_off);
1961		break;
1962	case SO_NOFCS:
1963		v.val = sock_flag(sk, SOCK_NOFCS);
1964		break;
1965
1966	case SO_BINDTODEVICE:
1967		return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969	case SO_GET_FILTER:
1970		len = sk_get_filter(sk, optval, len);
1971		if (len < 0)
1972			return len;
1973
1974		goto lenout;
1975
1976	case SO_LOCK_FILTER:
1977		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978		break;
1979
1980	case SO_BPF_EXTENSIONS:
1981		v.val = bpf_tell_extensions();
1982		break;
1983
1984	case SO_SELECT_ERR_QUEUE:
1985		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986		break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989	case SO_BUSY_POLL:
1990		v.val = READ_ONCE(sk->sk_ll_usec);
1991		break;
1992	case SO_PREFER_BUSY_POLL:
1993		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994		break;
1995#endif
1996
1997	case SO_MAX_PACING_RATE:
1998		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000			lv = sizeof(v.ulval);
2001			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002		} else {
2003			/* 32bit version */
2004			v.val = min_t(unsigned long, ~0U,
2005				      READ_ONCE(sk->sk_max_pacing_rate));
2006		}
2007		break;
2008
2009	case SO_INCOMING_CPU:
2010		v.val = READ_ONCE(sk->sk_incoming_cpu);
2011		break;
2012
2013	case SO_MEMINFO:
2014	{
2015		u32 meminfo[SK_MEMINFO_VARS];
2016
2017		sk_get_meminfo(sk, meminfo);
2018
2019		len = min_t(unsigned int, len, sizeof(meminfo));
2020		if (copy_to_sockptr(optval, &meminfo, len))
2021			return -EFAULT;
2022
2023		goto lenout;
2024	}
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027	case SO_INCOMING_NAPI_ID:
2028		v.val = READ_ONCE(sk->sk_napi_id);
2029
2030		/* aggregate non-NAPI IDs down to 0 */
2031		if (v.val < MIN_NAPI_ID)
2032			v.val = 0;
2033
2034		break;
2035#endif
2036
2037	case SO_COOKIE:
2038		lv = sizeof(u64);
2039		if (len < lv)
2040			return -EINVAL;
2041		v.val64 = sock_gen_cookie(sk);
2042		break;
2043
2044	case SO_ZEROCOPY:
2045		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046		break;
2047
2048	case SO_TXTIME:
2049		lv = sizeof(v.txtime);
2050		v.txtime.clockid = sk->sk_clockid;
2051		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052				  SOF_TXTIME_DEADLINE_MODE : 0;
2053		v.txtime.flags |= sk->sk_txtime_report_errors ?
2054				  SOF_TXTIME_REPORT_ERRORS : 0;
2055		break;
2056
2057	case SO_BINDTOIFINDEX:
2058		v.val = READ_ONCE(sk->sk_bound_dev_if);
2059		break;
2060
2061	case SO_NETNS_COOKIE:
2062		lv = sizeof(u64);
2063		if (len != lv)
2064			return -EINVAL;
2065		v.val64 = sock_net(sk)->net_cookie;
2066		break;
2067
2068	case SO_BUF_LOCK:
2069		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070		break;
2071
2072	case SO_RESERVE_MEM:
2073		v.val = READ_ONCE(sk->sk_reserved_mem);
2074		break;
2075
2076	case SO_TXREHASH:
2077		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2078		v.val = READ_ONCE(sk->sk_txrehash);
2079		break;
2080
2081	default:
2082		/* We implement the SO_SNDLOWAT etc to not be settable
2083		 * (1003.1g 7).
2084		 */
2085		return -ENOPROTOOPT;
2086	}
2087
2088	if (len > lv)
2089		len = lv;
2090	if (copy_to_sockptr(optval, &v, len))
2091		return -EFAULT;
2092lenout:
2093	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105	if (sk->sk_kern_sock)
2106		sock_lock_init_class_and_name(
2107			sk,
2108			af_family_kern_slock_key_strings[sk->sk_family],
2109			af_family_kern_slock_keys + sk->sk_family,
2110			af_family_kern_key_strings[sk->sk_family],
2111			af_family_kern_keys + sk->sk_family);
2112	else
2113		sock_lock_init_class_and_name(
2114			sk,
2115			af_family_slock_key_strings[sk->sk_family],
2116			af_family_slock_keys + sk->sk_family,
2117			af_family_key_strings[sk->sk_family],
2118			af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128	const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130	void *sptr = nsk->sk_security;
2131#endif
2132
2133	/* If we move sk_tx_queue_mapping out of the private section,
2134	 * we must check if sk_tx_queue_clear() is called after
2135	 * sock_copy() in sk_clone_lock().
2136	 */
2137	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138		     offsetof(struct sock, sk_dontcopy_begin) ||
2139		     offsetof(struct sock, sk_tx_queue_mapping) >=
2140		     offsetof(struct sock, sk_dontcopy_end));
2141
2142	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146		      /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149	nsk->sk_security = sptr;
2150	security_sk_clone(osk, nsk);
2151#endif
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155		int family)
2156{
2157	struct sock *sk;
2158	struct kmem_cache *slab;
2159
2160	slab = prot->slab;
2161	if (slab != NULL) {
2162		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163		if (!sk)
2164			return sk;
2165		if (want_init_on_alloc(priority))
2166			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
2167	} else
2168		sk = kmalloc(prot->obj_size, priority);
2169
2170	if (sk != NULL) {
 
 
2171		if (security_sk_alloc(sk, family, priority))
2172			goto out_free;
2173
2174		if (!try_module_get(prot->owner))
2175			goto out_free_sec;
 
2176	}
2177
2178	return sk;
2179
2180out_free_sec:
2181	security_sk_free(sk);
2182out_free:
2183	if (slab != NULL)
2184		kmem_cache_free(slab, sk);
2185	else
2186		kfree(sk);
2187	return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192	struct kmem_cache *slab;
2193	struct module *owner;
2194
2195	owner = prot->owner;
2196	slab = prot->slab;
2197
2198	cgroup_sk_free(&sk->sk_cgrp_data);
2199	mem_cgroup_sk_free(sk);
2200	security_sk_free(sk);
2201	if (slab != NULL)
2202		kmem_cache_free(slab, sk);
2203	else
2204		kfree(sk);
2205	module_put(owner);
2206}
2207
 
 
 
 
 
 
 
 
 
 
 
2208/**
2209 *	sk_alloc - All socket objects are allocated here
2210 *	@net: the applicable net namespace
2211 *	@family: protocol family
2212 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 *	@prot: struct proto associated with this new sock instance
2214 *	@kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217		      struct proto *prot, int kern)
2218{
2219	struct sock *sk;
2220
2221	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222	if (sk) {
2223		sk->sk_family = family;
2224		/*
2225		 * See comment in struct sock definition to understand
2226		 * why we need sk_prot_creator -acme
2227		 */
2228		sk->sk_prot = sk->sk_prot_creator = prot;
2229		sk->sk_kern_sock = kern;
2230		sock_lock_init(sk);
2231		sk->sk_net_refcnt = kern ? 0 : 1;
2232		if (likely(sk->sk_net_refcnt)) {
2233			get_net_track(net, &sk->ns_tracker, priority);
2234			sock_inuse_add(net, 1);
2235		} else {
2236			net_passive_inc(net);
2237			__netns_tracker_alloc(net, &sk->ns_tracker,
2238					      false, priority);
2239		}
2240
2241		sock_net_set(sk, net);
2242		refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244		mem_cgroup_sk_alloc(sk);
2245		cgroup_sk_alloc(&sk->sk_cgrp_data);
2246		sock_update_classid(&sk->sk_cgrp_data);
2247		sock_update_netprioidx(&sk->sk_cgrp_data);
2248		sk_tx_queue_clear(sk);
2249	}
2250
2251	return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260	struct sock *sk = container_of(head, struct sock, sk_rcu);
2261	struct net *net = sock_net(sk);
2262	struct sk_filter *filter;
2263
2264	if (sk->sk_destruct)
2265		sk->sk_destruct(sk);
2266
2267	filter = rcu_dereference_check(sk->sk_filter,
2268				       refcount_read(&sk->sk_wmem_alloc) == 0);
2269	if (filter) {
2270		sk_filter_uncharge(sk, filter);
2271		RCU_INIT_POINTER(sk->sk_filter, NULL);
2272	}
2273
2274	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277	bpf_sk_storage_free(sk);
2278#endif
2279
2280	if (atomic_read(&sk->sk_omem_alloc))
2281		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282			 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284	if (sk->sk_frag.page) {
2285		put_page(sk->sk_frag.page);
2286		sk->sk_frag.page = NULL;
2287	}
2288
2289	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290	put_cred(sk->sk_peer_cred);
2291	put_pid(sk->sk_peer_pid);
2292
2293	if (likely(sk->sk_net_refcnt)) {
2294		put_net_track(net, &sk->ns_tracker);
2295	} else {
2296		__netns_tracker_free(net, &sk->ns_tracker, false);
2297		net_passive_dec(net);
2298	}
2299	sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304	struct net *net = sock_net(sk);
2305
2306	WARN_ON_ONCE(sk->sk_net_refcnt);
2307	__netns_tracker_free(net, &sk->ns_tracker, false);
2308	net_passive_dec(net);
2309	sk->sk_net_refcnt = 1;
2310	get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311	sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320		reuseport_detach_sock(sk);
2321		use_call_rcu = true;
2322	}
2323
2324	if (use_call_rcu)
2325		call_rcu(&sk->sk_rcu, __sk_destruct);
2326	else
2327		__sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332	if (likely(sk->sk_net_refcnt))
2333		sock_inuse_add(sock_net(sk), -1);
2334
2335	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336		sock_diag_broadcast_destroy(sk);
2337	else
2338		sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343	/*
2344	 * We subtract one from sk_wmem_alloc and can know if
2345	 * some packets are still in some tx queue.
2346	 * If not null, sock_wfree() will call __sk_free(sk) later
2347	 */
2348	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349		__sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
2354{
2355	skb_queue_head_init(&sk->sk_receive_queue);
2356	skb_queue_head_init(&sk->sk_write_queue);
2357	skb_queue_head_init(&sk->sk_error_queue);
2358
2359	rwlock_init(&sk->sk_callback_lock);
2360	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361			af_rlock_keys + sk->sk_family,
2362			af_family_rlock_key_strings[sk->sk_family]);
2363	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364			af_wlock_keys + sk->sk_family,
2365			af_family_wlock_key_strings[sk->sk_family]);
2366	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367			af_elock_keys + sk->sk_family,
2368			af_family_elock_key_strings[sk->sk_family]);
2369	if (sk->sk_kern_sock)
2370		lockdep_set_class_and_name(&sk->sk_callback_lock,
2371			af_kern_callback_keys + sk->sk_family,
2372			af_family_kern_clock_key_strings[sk->sk_family]);
2373	else
2374		lockdep_set_class_and_name(&sk->sk_callback_lock,
2375			af_callback_keys + sk->sk_family,
2376			af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 *	sk_clone_lock - clone a socket, and lock its clone
2381 *	@sk: the socket to clone
2382 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388	struct proto *prot = READ_ONCE(sk->sk_prot);
2389	struct sk_filter *filter;
2390	bool is_charged = true;
2391	struct sock *newsk;
2392
2393	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394	if (!newsk)
2395		goto out;
2396
2397	sock_copy(newsk, sk);
 
 
 
 
 
 
 
 
2398
2399	newsk->sk_prot_creator = prot;
2400
2401	/* SANITY */
2402	if (likely(newsk->sk_net_refcnt)) {
2403		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404		sock_inuse_add(sock_net(newsk), 1);
2405	} else {
2406		/* Kernel sockets are not elevating the struct net refcount.
2407		 * Instead, use a tracker to more easily detect if a layer
2408		 * is not properly dismantling its kernel sockets at netns
2409		 * destroy time.
2410		 */
2411		net_passive_inc(sock_net(newsk));
2412		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413				      false, priority);
2414	}
2415	sk_node_init(&newsk->sk_node);
2416	sock_lock_init(newsk);
2417	bh_lock_sock(newsk);
2418	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2419	newsk->sk_backlog.len = 0;
2420
2421	atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424	refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426	atomic_set(&newsk->sk_omem_alloc, 0);
2427	sk_init_common(newsk);
2428
2429	newsk->sk_dst_cache	= NULL;
2430	newsk->sk_dst_pending_confirm = 0;
2431	newsk->sk_wmem_queued	= 0;
2432	newsk->sk_forward_alloc = 0;
2433	newsk->sk_reserved_mem  = 0;
2434	atomic_set(&newsk->sk_drops, 0);
2435	newsk->sk_send_head	= NULL;
2436	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437	atomic_set(&newsk->sk_zckey, 0);
2438
2439	sock_reset_flag(newsk, SOCK_DONE);
2440
2441	/* sk->sk_memcg will be populated at accept() time */
2442	newsk->sk_memcg = NULL;
2443
2444	cgroup_sk_clone(&newsk->sk_cgrp_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445
2446	rcu_read_lock();
2447	filter = rcu_dereference(sk->sk_filter);
2448	if (filter != NULL)
2449		/* though it's an empty new sock, the charging may fail
2450		 * if sysctl_optmem_max was changed between creation of
2451		 * original socket and cloning
2452		 */
2453		is_charged = sk_filter_charge(newsk, filter);
2454	RCU_INIT_POINTER(newsk->sk_filter, filter);
2455	rcu_read_unlock();
2456
2457	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458		/* We need to make sure that we don't uncharge the new
2459		 * socket if we couldn't charge it in the first place
2460		 * as otherwise we uncharge the parent's filter.
 
 
 
 
 
 
2461		 */
2462		if (!is_charged)
2463			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464		sk_free_unlock_clone(newsk);
2465		newsk = NULL;
2466		goto out;
2467	}
2468	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470	if (bpf_sk_storage_clone(sk, newsk)) {
2471		sk_free_unlock_clone(newsk);
2472		newsk = NULL;
2473		goto out;
2474	}
2475
2476	/* Clear sk_user_data if parent had the pointer tagged
2477	 * as not suitable for copying when cloning.
2478	 */
2479	if (sk_user_data_is_nocopy(newsk))
2480		newsk->sk_user_data = NULL;
2481
2482	newsk->sk_err	   = 0;
2483	newsk->sk_err_soft = 0;
2484	newsk->sk_priority = 0;
2485	newsk->sk_incoming_cpu = raw_smp_processor_id();
2486
2487	/* Before updating sk_refcnt, we must commit prior changes to memory
2488	 * (Documentation/RCU/rculist_nulls.rst for details)
2489	 */
2490	smp_wmb();
2491	refcount_set(&newsk->sk_refcnt, 2);
2492
2493	sk_set_socket(newsk, NULL);
2494	sk_tx_queue_clear(newsk);
2495	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2496
2497	if (newsk->sk_prot->sockets_allocated)
2498		sk_sockets_allocated_inc(newsk);
2499
2500	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501		net_enable_timestamp();
 
2502out:
2503	return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509	/* It is still raw copy of parent, so invalidate
2510	 * destructor and make plain sk_free() */
2511	sk->sk_destruct = NULL;
2512	bh_unlock_sock(sk);
2513	sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519	bool is_ipv6 = false;
2520	u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523	is_ipv6 = (sk->sk_family == AF_INET6 &&
2524		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2525#endif
2526	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528			READ_ONCE(dst->dev->gso_ipv4_max_size);
2529	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530		max_size = GSO_LEGACY_MAX_SIZE;
2531
2532	return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537	u32 max_segs = 1;
2538
2539	sk->sk_route_caps = dst->dev->features;
2540	if (sk_is_tcp(sk))
2541		sk->sk_route_caps |= NETIF_F_GSO;
2542	if (sk->sk_route_caps & NETIF_F_GSO)
2543		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544	if (unlikely(sk->sk_gso_disabled))
2545		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546	if (sk_can_gso(sk)) {
2547		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549		} else {
2550			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2552			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554		}
2555	}
2556	sk->sk_gso_max_segs = max_segs;
2557	sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
2561/*
2562 *	Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571	struct sock *sk = skb->sk;
2572	unsigned int len = skb->truesize;
2573	bool free;
2574
2575	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576		if (sock_flag(sk, SOCK_RCU_FREE) &&
2577		    sk->sk_write_space == sock_def_write_space) {
2578			rcu_read_lock();
2579			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580			sock_def_write_space_wfree(sk);
2581			rcu_read_unlock();
2582			if (unlikely(free))
2583				__sk_free(sk);
2584			return;
2585		}
2586
2587		/*
2588		 * Keep a reference on sk_wmem_alloc, this will be released
2589		 * after sk_write_space() call
2590		 */
2591		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592		sk->sk_write_space(sk);
2593		len = 1;
2594	}
2595	/*
2596	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597	 * could not do because of in-flight packets
2598	 */
2599	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600		__sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609	struct sock *sk = skb->sk;
2610
2611	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612		__sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617	skb_orphan(skb);
 
 
 
 
2618#ifdef CONFIG_INET
2619	if (unlikely(!sk_fullsock(sk)))
2620		return skb_set_owner_edemux(skb, sk);
2621#endif
2622	skb->sk = sk;
2623	skb->destructor = sock_wfree;
2624	skb_set_hash_from_sk(skb, sk);
2625	/*
2626	 * We used to take a refcount on sk, but following operation
2627	 * is enough to guarantee sk_free() won't free this sock until
2628	 * all in-flight packets are completed
2629	 */
2630	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
2636	/* Drivers depend on in-order delivery for crypto offload,
2637	 * partial orphan breaks out-of-order-OK logic.
2638	 */
2639	if (skb_is_decrypted(skb))
2640		return false;
2641
2642	return (skb->destructor == sock_wfree ||
2643		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654	if (skb_is_tcp_pure_ack(skb))
2655		return;
2656
2657	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658		return;
2659
2660	skb_orphan(skb);
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669	struct sock *sk = skb->sk;
2670	unsigned int len = skb->truesize;
2671
2672	atomic_sub(len, &sk->sk_rmem_alloc);
2673	sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683	sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693	struct sock *sk = skb->sk;
2694
2695	if (!sk_is_refcounted(sk))
2696		return;
2697
2698	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699		inet_reqsk(sk)->rsk_listener = NULL;
2700		reqsk_free(inet_reqsk(sk));
2701		return;
2702	}
2703
2704	sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711	kuid_t uid;
2712
2713	read_lock_bh(&sk->sk_callback_lock);
2714	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715	read_unlock_bh(&sk->sk_callback_lock);
2716	return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722	unsigned long ino;
2723
2724	read_lock(&sk->sk_callback_lock);
2725	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726	read_unlock(&sk->sk_callback_lock);
2727	return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733	unsigned long ino;
2734
2735	local_bh_disable();
2736	ino = __sock_i_ino(sk);
2737	local_bh_enable();
2738	return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746			     gfp_t priority)
2747{
2748	if (force ||
2749	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750		struct sk_buff *skb = alloc_skb(size, priority);
2751
2752		if (skb) {
2753			skb_set_owner_w(skb, sk);
2754			return skb;
2755		}
2756	}
2757	return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763	struct sock *sk = skb->sk;
2764
2765	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769			     gfp_t priority)
2770{
2771	struct sk_buff *skb;
2772
2773	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776		return NULL;
2777
2778	skb = alloc_skb(size, priority);
2779	if (!skb)
2780		return NULL;
2781
2782	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783	skb->sk = sk;
2784	skb->destructor = sock_ofree;
2785	return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795	if ((unsigned int)size <= optmem_max &&
2796	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797		void *mem;
2798		/* First do the add, to avoid the race if kmalloc
2799		 * might sleep.
2800		 */
2801		atomic_add(size, &sk->sk_omem_alloc);
2802		mem = kmalloc(size, priority);
2803		if (mem)
2804			return mem;
2805		atomic_sub(size, &sk->sk_omem_alloc);
2806	}
2807	return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816				  const bool nullify)
2817{
2818	if (WARN_ON_ONCE(!mem))
2819		return;
2820	if (nullify)
2821		kfree_sensitive(mem);
2822	else
2823		kfree(mem);
2824	atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829	__sock_kfree_s(sk, mem, size, false);
 
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835	__sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840   I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844	DEFINE_WAIT(wait);
2845
2846	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847	for (;;) {
2848		if (!timeo)
2849			break;
2850		if (signal_pending(current))
2851			break;
2852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855			break;
2856		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857			break;
2858		if (READ_ONCE(sk->sk_err))
2859			break;
2860		timeo = schedule_timeout(timeo);
2861	}
2862	finish_wait(sk_sleep(sk), &wait);
2863	return timeo;
2864}
2865
2866
2867/*
2868 *	Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872				     unsigned long data_len, int noblock,
2873				     int *errcode, int max_page_order)
2874{
2875	struct sk_buff *skb;
 
 
2876	long timeo;
2877	int err;
 
 
 
 
 
 
 
2878
2879	timeo = sock_sndtimeo(sk, noblock);
2880	for (;;) {
2881		err = sock_error(sk);
2882		if (err != 0)
2883			goto failure;
2884
2885		err = -EPIPE;
2886		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887			goto failure;
2888
2889		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890			break;
 
 
 
 
 
 
 
 
 
2891
2892		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2893		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894		err = -EAGAIN;
2895		if (!timeo)
 
 
 
2896			goto failure;
2897		if (signal_pending(current))
2898			goto interrupted;
2899		timeo = sock_wait_for_wmem(sk, timeo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900	}
2901	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902				   errcode, sk->sk_allocation);
2903	if (skb)
2904		skb_set_owner_w(skb, sk);
2905	return skb;
2906
2907interrupted:
2908	err = sock_intr_errno(timeo);
2909failure:
 
2910	*errcode = err;
2911	return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2916		     struct sockcm_cookie *sockc)
2917{
2918	u32 tsflags;
2919
2920	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922	switch (cmsg->cmsg_type) {
2923	case SO_MARK:
2924		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926			return -EPERM;
2927		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928			return -EINVAL;
2929		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930		break;
2931	case SO_TIMESTAMPING_OLD:
2932	case SO_TIMESTAMPING_NEW:
2933		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934			return -EINVAL;
2935
2936		tsflags = *(u32 *)CMSG_DATA(cmsg);
2937		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938			return -EINVAL;
2939
2940		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941		sockc->tsflags |= tsflags;
2942		break;
2943	case SCM_TXTIME:
2944		if (!sock_flag(sk, SOCK_TXTIME))
2945			return -EINVAL;
2946		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947			return -EINVAL;
2948		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949		break;
2950	case SCM_TS_OPT_ID:
2951		if (sk_is_tcp(sk))
2952			return -EINVAL;
2953		tsflags = READ_ONCE(sk->sk_tsflags);
2954		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955			return -EINVAL;
2956		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957			return -EINVAL;
2958		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960		break;
2961	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962	case SCM_RIGHTS:
2963	case SCM_CREDENTIALS:
2964		break;
2965	default:
2966		return -EINVAL;
2967	}
2968	return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973		   struct sockcm_cookie *sockc)
2974{
2975	struct cmsghdr *cmsg;
2976	int ret;
2977
2978	for_each_cmsghdr(cmsg, msg) {
2979		if (!CMSG_OK(msg, cmsg))
2980			return -EINVAL;
2981		if (cmsg->cmsg_level != SOL_SOCKET)
2982			continue;
2983		ret = __sock_cmsg_send(sk, cmsg, sockc);
2984		if (ret)
2985			return ret;
2986	}
2987	return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993	if (!sk->sk_prot->enter_memory_pressure)
2994		return;
2995
2996	sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001	if (sk->sk_prot->leave_memory_pressure) {
3002		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003				     tcp_leave_memory_pressure, sk);
3004	} else {
3005		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007		if (memory_pressure && READ_ONCE(*memory_pressure))
3008			WRITE_ONCE(*memory_pressure, 0);
3009	}
3010}
 
3011
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
 
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
 
 
3026	if (pfrag->page) {
3027		if (page_ref_count(pfrag->page) == 1) {
3028			pfrag->offset = 0;
3029			return true;
3030		}
3031		if (pfrag->offset + sz <= pfrag->size)
3032			return true;
3033		put_page(pfrag->page);
3034	}
3035
3036	pfrag->offset = 0;
3037	if (SKB_FRAG_PAGE_ORDER &&
3038	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039		/* Avoid direct reclaim but allow kswapd to wake */
3040		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041					  __GFP_COMP | __GFP_NOWARN |
3042					  __GFP_NORETRY,
3043					  SKB_FRAG_PAGE_ORDER);
3044		if (likely(pfrag->page)) {
3045			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
 
3046			return true;
3047		}
3048	}
3049	pfrag->page = alloc_page(gfp);
3050	if (likely(pfrag->page)) {
3051		pfrag->size = PAGE_SIZE;
3052		return true;
3053	}
3054	return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061		return true;
3062
3063	sk_enter_memory_pressure(sk);
3064	sk_stream_moderate_sndbuf(sk);
3065	return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070	__releases(&sk->sk_lock.slock)
3071	__acquires(&sk->sk_lock.slock)
3072{
3073	DEFINE_WAIT(wait);
3074
3075	for (;;) {
3076		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077					TASK_UNINTERRUPTIBLE);
3078		spin_unlock_bh(&sk->sk_lock.slock);
3079		schedule();
3080		spin_lock_bh(&sk->sk_lock.slock);
3081		if (!sock_owned_by_user(sk))
3082			break;
3083	}
3084	finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088	__releases(&sk->sk_lock.slock)
3089	__acquires(&sk->sk_lock.slock)
3090{
3091	struct sk_buff *skb, *next;
3092
3093	while ((skb = sk->sk_backlog.head) != NULL) {
3094		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096		spin_unlock_bh(&sk->sk_lock.slock);
3097
3098		do {
3099			next = skb->next;
 
3100			prefetch(next);
3101			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102			skb_mark_not_on_list(skb);
3103			sk_backlog_rcv(sk, skb);
3104
3105			cond_resched();
 
 
 
 
 
 
3106
3107			skb = next;
3108		} while (skb != NULL);
3109
3110		spin_lock_bh(&sk->sk_lock.slock);
3111	}
3112
3113	/*
3114	 * Doing the zeroing here guarantee we can not loop forever
3115	 * while a wild producer attempts to flood us.
3116	 */
3117	sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122	spin_lock_bh(&sk->sk_lock.slock);
3123	__release_sock(sk);
3124
3125	if (sk->sk_prot->release_cb)
3126		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127				     tcp_release_cb, sk);
3128
3129	spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk:    sock to wait on
3136 * @timeo: for how long
3137 * @skb:   last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147	int rc;
 
3148
3149	add_wait_queue(sk_sleep(sk), &wait);
3150	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153	remove_wait_queue(sk_sleep(sk), &wait);
3154	return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 *	__sk_mem_raise_allocated - increase memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@amt: pages to allocate
3163 *	@kind: allocation type
3164 *
3165 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 *	Unlike the globally shared limits among the sockets under same protocol,
3168 *	consuming the budget of a memcg won't have direct effect on other ones.
3169 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3170 *	whether or not to raise allocated through sk_under_memory_pressure() or
3171 *	its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176	struct proto *prot = sk->sk_prot;
3177	bool charged = false;
3178	long allocated;
 
3179
3180	sk_memory_allocated_add(sk, amt);
3181	allocated = sk_memory_allocated(sk);
3182
3183	if (memcg) {
3184		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185			goto suppress_allocation;
3186		charged = true;
3187	}
3188
3189	/* Under limit. */
3190	if (allocated <= sk_prot_mem_limits(sk, 0)) {
 
3191		sk_leave_memory_pressure(sk);
3192		return 1;
3193	}
3194
3195	/* Under pressure. */
3196	if (allocated > sk_prot_mem_limits(sk, 1))
 
3197		sk_enter_memory_pressure(sk);
3198
3199	/* Over hard limit. */
3200	if (allocated > sk_prot_mem_limits(sk, 2))
 
3201		goto suppress_allocation;
3202
3203	/* Guarantee minimum buffer size under pressure (either global
3204	 * or memcg) to make sure features described in RFC 7323 (TCP
3205	 * Extensions for High Performance) work properly.
3206	 *
3207	 * This rule does NOT stand when exceeds global or memcg's hard
3208	 * limit, or else a DoS attack can be taken place by spawning
3209	 * lots of sockets whose usage are under minimum buffer size.
3210	 */
3211	if (kind == SK_MEM_RECV) {
3212		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213			return 1;
3214
3215	} else { /* SK_MEM_SEND */
3216		int wmem0 = sk_get_wmem0(sk, prot);
3217
3218		if (sk->sk_type == SOCK_STREAM) {
3219			if (sk->sk_wmem_queued < wmem0)
3220				return 1;
3221		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
3222				return 1;
3223		}
3224	}
3225
3226	if (sk_has_memory_pressure(sk)) {
3227		u64 alloc;
3228
3229		/* The following 'average' heuristic is within the
3230		 * scope of global accounting, so it only makes
3231		 * sense for global memory pressure.
3232		 */
3233		if (!sk_under_global_memory_pressure(sk))
3234			return 1;
3235
3236		/* Try to be fair among all the sockets under global
3237		 * pressure by allowing the ones that below average
3238		 * usage to raise.
3239		 */
3240		alloc = sk_sockets_allocated_read_positive(sk);
3241		if (sk_prot_mem_limits(sk, 2) > alloc *
3242		    sk_mem_pages(sk->sk_wmem_queued +
3243				 atomic_read(&sk->sk_rmem_alloc) +
3244				 sk->sk_forward_alloc))
3245			return 1;
3246	}
3247
3248suppress_allocation:
3249
3250	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251		sk_stream_moderate_sndbuf(sk);
3252
3253		/* Fail only if socket is _under_ its sndbuf.
3254		 * In this case we cannot block, so that we have to fail.
3255		 */
3256		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257			/* Force charge with __GFP_NOFAIL */
3258			if (memcg && !charged) {
3259				mem_cgroup_charge_skmem(memcg, amt,
3260					gfp_memcg_charge() | __GFP_NOFAIL);
3261			}
3262			return 1;
3263		}
3264	}
3265
3266	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269	sk_memory_allocated_sub(sk, amt);
 
3270
3271	if (charged)
3272		mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274	return 0;
3275}
3276
3277/**
3278 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 *	@sk: socket
3280 *	@size: memory size to allocate
3281 *	@kind: allocation type
3282 *
3283 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 *	rmem allocation. This function assumes that protocols which have
3285 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289	int ret, amt = sk_mem_pages(size);
3290
3291	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293	if (!ret)
3294		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295	return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3301 *	@sk: socket
3302 *	@amount: number of quanta
3303 *
3304 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308	sk_memory_allocated_sub(sk, amount);
3309
3310	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313	if (sk_under_global_memory_pressure(sk) &&
3314	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315		sk_leave_memory_pressure(sk);
3316}
3317
3318/**
3319 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 *	@sk: socket
3321 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325	amount >>= PAGE_SHIFT;
3326	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327	__sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333	WRITE_ONCE(sk->sk_peek_off, val);
3334	return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347	return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352		    int len, int flags)
3353{
3354	return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360	return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365		   struct proto_accept_arg *arg)
3366{
3367	return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372		    int peer)
3373{
3374	return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
 
 
 
 
 
 
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380	return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386	return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392	return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
3397{
3398	return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
 
 
 
 
 
 
 
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
 
3403{
3404	return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409		    int flags)
3410{
3411	return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417	/* Mirror missing mmap method error code */
3418	return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428	struct socket *sock;
3429
3430	sock = sock_from_file(file);
3431	if (sock) {
3432		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433		sock_update_classid(&sock->sk->sk_cgrp_data);
3434	}
 
 
3435}
 
3436
3437/*
3438 *	Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443	struct socket_wq *wq;
3444
3445	rcu_read_lock();
3446	wq = rcu_dereference(sk->sk_wq);
3447	if (skwq_has_sleeper(wq))
3448		wake_up_interruptible_all(&wq->wait);
3449	rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454	struct socket_wq *wq;
3455
3456	rcu_read_lock();
3457	wq = rcu_dereference(sk->sk_wq);
3458	if (skwq_has_sleeper(wq))
3459		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461	rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466	struct socket_wq *wq;
3467
3468	trace_sk_data_ready(sk);
3469
3470	rcu_read_lock();
3471	wq = rcu_dereference(sk->sk_wq);
3472	if (skwq_has_sleeper(wq))
3473		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474						EPOLLRDNORM | EPOLLRDBAND);
3475	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476	rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481	struct socket_wq *wq;
3482
3483	rcu_read_lock();
3484
3485	/* Do not wake up a writer until he can make "significant"
3486	 * progress.  --DaveM
3487	 */
3488	if (sock_writeable(sk)) {
3489		wq = rcu_dereference(sk->sk_wq);
3490		if (skwq_has_sleeper(wq))
3491			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492						EPOLLWRNORM | EPOLLWRBAND);
3493
3494		/* Should agree with poll, otherwise some programs break */
3495		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3496	}
3497
3498	rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507	/* Do not wake up a writer until he can make "significant"
3508	 * progress.  --DaveM
3509	 */
3510	if (sock_writeable(sk)) {
3511		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513		/* rely on refcount_sub from sock_wfree() */
3514		smp_mb__after_atomic();
3515		if (wq && waitqueue_active(&wq->wait))
3516			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517						EPOLLWRNORM | EPOLLWRBAND);
3518
3519		/* Should agree with poll, otherwise some programs break */
3520		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521	}
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
 
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530	if (sk->sk_socket && sk->sk_socket->file)
3531		if (send_sigurg(sk->sk_socket->file))
3532			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537		    unsigned long expires)
3538{
3539	if (!mod_timer(timer, expires))
3540		sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546	if (del_timer(timer))
3547		__sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553	if (del_timer_sync(timer))
3554		__sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
 
 
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560	sk_init_common(sk);
3561	sk->sk_send_head	=	NULL;
3562
3563	timer_setup(&sk->sk_timer, NULL, 0);
3564
3565	sk->sk_allocation	=	GFP_KERNEL;
3566	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3567	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3568	sk->sk_state		=	TCP_CLOSE;
3569	sk->sk_use_task_frag	=	true;
3570	sk_set_socket(sk, sock);
3571
3572	sock_set_flag(sk, SOCK_ZAPPED);
3573
3574	if (sock) {
3575		sk->sk_type	=	sock->type;
3576		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577		sock->sk	=	sk;
3578	} else {
3579		RCU_INIT_POINTER(sk->sk_wq, NULL);
3580	}
3581	sk->sk_uid	=	uid;
 
 
 
 
3582
3583	sk->sk_state_change	=	sock_def_wakeup;
3584	sk->sk_data_ready	=	sock_def_readable;
3585	sk->sk_write_space	=	sock_def_write_space;
3586	sk->sk_error_report	=	sock_def_error_report;
3587	sk->sk_destruct		=	sock_def_destruct;
3588
3589	sk->sk_frag.page	=	NULL;
3590	sk->sk_frag.offset	=	0;
3591	sk->sk_peek_off		=	-1;
3592
3593	sk->sk_peer_pid 	=	NULL;
3594	sk->sk_peer_cred	=	NULL;
3595	spin_lock_init(&sk->sk_peer_lock);
3596
3597	sk->sk_write_pending	=	0;
3598	sk->sk_rcvlowat		=	1;
3599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3601
3602	sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604	seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606	atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609	sk->sk_napi_id		=	0;
3610	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613	sk->sk_max_pacing_rate = ~0UL;
3614	sk->sk_pacing_rate = ~0UL;
3615	WRITE_ONCE(sk->sk_pacing_shift, 10);
3616	sk->sk_incoming_cpu = -1;
3617
3618	sk_rx_queue_clear(sk);
3619	/*
3620	 * Before updating sk_refcnt, we must commit prior changes to memory
3621	 * (Documentation/RCU/rculist_nulls.rst for details)
3622	 */
3623	smp_wmb();
3624	refcount_set(&sk->sk_refcnt, 1);
3625	atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631	kuid_t uid = sock ?
3632		SOCK_INODE(sock)->i_uid :
3633		make_kuid(sock_net(sk)->user_ns, 0);
3634
3635	sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641	/* The sk_lock has mutex_lock() semantics here. */
3642	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644	might_sleep();
3645	spin_lock_bh(&sk->sk_lock.slock);
3646	if (sock_owned_by_user_nocheck(sk))
3647		__lock_sock(sk);
3648	sk->sk_lock.owned = 1;
3649	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
 
 
 
 
 
3655	spin_lock_bh(&sk->sk_lock.slock);
3656	if (sk->sk_backlog.tail)
3657		__release_sock(sk);
3658
 
 
 
3659	if (sk->sk_prot->release_cb)
3660		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661				     tcp_release_cb, sk);
3662
3663	sock_release_ownership(sk);
3664	if (waitqueue_active(&sk->sk_lock.wq))
3665		wake_up(&sk->sk_lock.wq);
3666	spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
3671{
3672	might_sleep();
3673	spin_lock_bh(&sk->sk_lock.slock);
3674
3675	if (!sock_owned_by_user_nocheck(sk)) {
3676		/*
3677		 * Fast path return with bottom halves disabled and
3678		 * sock::sk_lock.slock held.
3679		 *
3680		 * The 'mutex' is not contended and holding
3681		 * sock::sk_lock.slock prevents all other lockers to
3682		 * proceed so the corresponding unlock_sock_fast() can
3683		 * avoid the slow path of release_sock() completely and
3684		 * just release slock.
3685		 *
3686		 * From a semantical POV this is equivalent to 'acquiring'
3687		 * the 'mutex', hence the corresponding lockdep
3688		 * mutex_release() has to happen in the fast path of
3689		 * unlock_sock_fast().
3690		 */
3691		return false;
3692	}
3693
3694	__lock_sock(sk);
3695	sk->sk_lock.owned = 1;
3696	__acquire(&sk->sk_lock.slock);
3697	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3698	return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703		   bool timeval, bool time32)
3704{
3705	struct sock *sk = sock->sk;
3706	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3707
3708	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3710	if (ts.tv_sec == -1)
3711		return -ENOENT;
3712	if (ts.tv_sec == 0) {
3713		ktime_t kt = ktime_get_real();
3714		sock_write_timestamp(sk, kt);
3715		ts = ktime_to_timespec64(kt);
3716	}
3717
3718	if (timeval)
3719		ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722	if (time32)
3723		return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726	/* beware of padding in sparc64 timeval */
3727	if (timeval && !in_compat_syscall()) {
3728		struct __kernel_old_timeval __user tv = {
3729			.tv_sec = ts.tv_sec,
3730			.tv_usec = ts.tv_nsec,
3731		};
3732		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733			return -EFAULT;
3734		return 0;
3735	}
3736#endif
3737	return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743	if (!sock_flag(sk, flag)) {
3744		unsigned long previous_flags = sk->sk_flags;
3745
3746		sock_set_flag(sk, flag);
3747		/*
3748		 * we just set one of the two flags which require net
3749		 * time stamping, but time stamping might have been on
3750		 * already because of the other one
3751		 */
3752		if (sock_needs_netstamp(sk) &&
3753		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3754			net_enable_timestamp();
3755	}
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759		       int level, int type)
3760{
3761	struct sock_exterr_skb *serr;
3762	struct sk_buff *skb;
3763	int copied, err;
3764
3765	err = -EAGAIN;
3766	skb = sock_dequeue_err_skb(sk);
3767	if (skb == NULL)
3768		goto out;
3769
3770	copied = skb->len;
3771	if (copied > len) {
3772		msg->msg_flags |= MSG_TRUNC;
3773		copied = len;
3774	}
3775	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776	if (err)
3777		goto out_free_skb;
3778
3779	sock_recv_timestamp(msg, sk, skb);
3780
3781	serr = SKB_EXT_ERR(skb);
3782	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784	msg->msg_flags |= MSG_ERRQUEUE;
3785	err = copied;
3786
 
 
 
 
 
 
 
 
 
 
3787out_free_skb:
3788	kfree_skb(skb);
3789out:
3790	return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 *	Get a socket option on an socket.
3796 *
3797 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 *	asynchronous errors should be reported by getsockopt. We assume
3799 *	this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802			   char __user *optval, int __user *optlen)
3803{
3804	struct sock *sk = sock->sk;
3805
3806	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812			int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813{
3814	struct sock *sk = sock->sk;
3815	int addr_len = 0;
3816	int err;
3817
3818	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3819	if (err >= 0)
3820		msg->msg_namelen = addr_len;
3821	return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 *	Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829			   sockptr_t optval, unsigned int optlen)
3830{
3831	struct sock *sk = sock->sk;
3832
3833	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3838void sk_common_release(struct sock *sk)
3839{
3840	if (sk->sk_prot->destroy)
3841		sk->sk_prot->destroy(sk);
3842
3843	/*
3844	 * Observation: when sk_common_release is called, processes have
3845	 * no access to socket. But net still has.
3846	 * Step one, detach it from networking:
3847	 *
3848	 * A. Remove from hash tables.
3849	 */
3850
3851	sk->sk_prot->unhash(sk);
3852
3853	/*
3854	 * In this point socket cannot receive new packets, but it is possible
3855	 * that some packets are in flight because some CPU runs receiver and
3856	 * did hash table lookup before we unhashed socket. They will achieve
3857	 * receive queue and will be purged by socket destructor.
3858	 *
3859	 * Also we still have packets pending on receive queue and probably,
3860	 * our own packets waiting in device queues. sock_destroy will drain
3861	 * receive queue, but transmitted packets will delay socket destruction
3862	 * until the last reference will be released.
3863	 */
3864
3865	sock_orphan(sk);
3866
3867	xfrm_sk_free_policy(sk);
3868
3869	sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
 
3876
3877	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
 
3887
3888#ifdef CONFIG_PROC_FS
 
 
 
 
 
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
 
 
 
 
 
 
 
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893	int cpu, idx = prot->inuse_idx;
3894	int res = 0;
3895
3896	for_each_possible_cpu(cpu)
3897		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899	return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
3903int sock_inuse_get(struct net *net)
3904{
3905	int cpu, res = 0;
3906
3907	for_each_possible_cpu(cpu)
3908		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910	return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918	if (net->core.prot_inuse == NULL)
3919		return -ENOMEM;
3920	return 0;
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925	free_percpu(net->core.prot_inuse);
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929	.init = sock_inuse_init_net,
3930	.exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935	if (register_pernet_subsys(&net_inuse_ops))
3936		panic("Cannot initialize net inuse counters");
3937
3938	return 0;
3939}
3940
3941core_initcall(net_inuse_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3942
3943static int assign_proto_idx(struct proto *prot)
 
 
 
 
 
3944{
3945	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948		pr_err("PROTO_INUSE_NR exhausted\n");
3949		return -ENOSPC;
3950	}
3951
3952	set_bit(prot->inuse_idx, proto_inuse_idx);
3953	return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959		clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964	return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975	if (!twsk_prot)
3976		return;
3977	kfree(twsk_prot->twsk_slab_name);
3978	twsk_prot->twsk_slab_name = NULL;
3979	kmem_cache_destroy(twsk_prot->twsk_slab);
3980	twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987	if (!twsk_prot)
3988		return 0;
3989
3990	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991					      prot->name);
3992	if (!twsk_prot->twsk_slab_name)
3993		return -ENOMEM;
3994
3995	twsk_prot->twsk_slab =
3996		kmem_cache_create(twsk_prot->twsk_slab_name,
3997				  twsk_prot->twsk_obj_size, 0,
3998				  SLAB_ACCOUNT | prot->slab_flags,
3999				  NULL);
4000	if (!twsk_prot->twsk_slab) {
4001		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002			prot->name);
4003		return -ENOMEM;
4004	}
4005
4006	return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011	if (!rsk_prot)
4012		return;
4013	kfree(rsk_prot->slab_name);
4014	rsk_prot->slab_name = NULL;
4015	kmem_cache_destroy(rsk_prot->slab);
4016	rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023	if (!rsk_prot)
4024		return 0;
4025
4026	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027					prot->name);
4028	if (!rsk_prot->slab_name)
4029		return -ENOMEM;
4030
4031	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032					   rsk_prot->obj_size, 0,
4033					   SLAB_ACCOUNT | prot->slab_flags,
4034					   NULL);
4035
4036	if (!rsk_prot->slab) {
4037		pr_crit("%s: Can't create request sock SLAB cache!\n",
4038			prot->name);
4039		return -ENOMEM;
4040	}
4041	return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046	int ret = -ENOBUFS;
4047
4048	if (prot->memory_allocated && !prot->sysctl_mem) {
4049		pr_err("%s: missing sysctl_mem\n", prot->name);
4050		return -EINVAL;
4051	}
4052	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054		return -EINVAL;
4055	}
4056	if (alloc_slab) {
4057		prot->slab = kmem_cache_create_usercopy(prot->name,
4058					prot->obj_size, 0,
4059					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060					prot->slab_flags,
4061					prot->useroffset, prot->usersize,
4062					NULL);
4063
4064		if (prot->slab == NULL) {
4065			pr_crit("%s: Can't create sock SLAB cache!\n",
4066				prot->name);
4067			goto out;
4068		}
4069
4070		if (req_prot_init(prot))
4071			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4072
4073		if (tw_prot_init(prot))
4074			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
4075	}
4076
4077	mutex_lock(&proto_list_mutex);
4078	ret = assign_proto_idx(prot);
4079	if (ret) {
4080		mutex_unlock(&proto_list_mutex);
4081		goto out_free_timewait_sock_slab;
4082	}
4083	list_add(&prot->node, &proto_list);
 
4084	mutex_unlock(&proto_list_mutex);
4085	return ret;
4086
4087out_free_timewait_sock_slab:
4088	if (alloc_slab)
4089		tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091	if (alloc_slab) {
4092		req_prot_cleanup(prot->rsk_prot);
4093
4094		kmem_cache_destroy(prot->slab);
4095		prot->slab = NULL;
4096	}
 
 
 
 
4097out:
4098	return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104	mutex_lock(&proto_list_mutex);
4105	release_proto_idx(prot);
4106	list_del(&prot->node);
4107	mutex_unlock(&proto_list_mutex);
4108
4109	kmem_cache_destroy(prot->slab);
4110	prot->slab = NULL;
4111
4112	req_prot_cleanup(prot->rsk_prot);
4113	tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119	if (!protocol) {
4120		if (!sock_is_registered(family))
4121			return -ENOENT;
4122
4123		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124				      NETLINK_SOCK_DIAG, family);
4125	}
4126
4127#ifdef CONFIG_INET
4128	if (family == AF_INET &&
4129	    protocol != IPPROTO_RAW &&
4130	    protocol < MAX_INET_PROTOS &&
4131	    !rcu_access_pointer(inet_protos[protocol]))
4132		return -ENOENT;
4133#endif
4134
4135	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136			      NETLINK_SOCK_DIAG, family, protocol);
 
 
 
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142	__acquires(proto_list_mutex)
4143{
4144	mutex_lock(&proto_list_mutex);
4145	return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150	return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154	__releases(proto_list_mutex)
4155{
4156	mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161	return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170	return proto->memory_pressure != NULL ?
4171	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4178			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179		   proto->name,
4180		   proto->obj_size,
4181		   sock_prot_inuse_get(seq_file_net(seq), proto),
4182		   sock_prot_memory_allocated(proto),
4183		   sock_prot_memory_pressure(proto),
4184		   proto->max_header,
4185		   proto->slab == NULL ? "no" : "yes",
4186		   module_name(proto->owner),
4187		   proto_method_implemented(proto->close),
4188		   proto_method_implemented(proto->connect),
4189		   proto_method_implemented(proto->disconnect),
4190		   proto_method_implemented(proto->accept),
4191		   proto_method_implemented(proto->ioctl),
4192		   proto_method_implemented(proto->init),
4193		   proto_method_implemented(proto->destroy),
4194		   proto_method_implemented(proto->shutdown),
4195		   proto_method_implemented(proto->setsockopt),
4196		   proto_method_implemented(proto->getsockopt),
4197		   proto_method_implemented(proto->sendmsg),
4198		   proto_method_implemented(proto->recvmsg),
 
4199		   proto_method_implemented(proto->bind),
4200		   proto_method_implemented(proto->backlog_rcv),
4201		   proto_method_implemented(proto->hash),
4202		   proto_method_implemented(proto->unhash),
4203		   proto_method_implemented(proto->get_port),
4204		   proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209	if (v == &proto_list)
4210		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211			   "protocol",
4212			   "size",
4213			   "sockets",
4214			   "memory",
4215			   "press",
4216			   "maxhdr",
4217			   "slab",
4218			   "module",
4219			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220	else
4221		proto_seq_printf(seq, list_entry(v, struct proto, node));
4222	return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226	.start  = proto_seq_start,
4227	.next   = proto_seq_next,
4228	.stop   = proto_seq_stop,
4229	.show   = proto_seq_show,
4230};
4231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4232static __net_init int proto_init_net(struct net *net)
4233{
4234	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235			sizeof(struct seq_net_private)))
4236		return -ENOMEM;
4237
4238	return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243	remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248	.init = proto_init_net,
4249	.exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254	return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264	struct sock *sk = p;
4265
4266	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267		return true;
4268
4269	if (sk_is_udp(sk) &&
4270	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271		return true;
4272
4273	return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280	if (!sk->sk_prot->bind_add)
4281		return -EOPNOTSUPP;
4282	return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288		     void __user *arg, void *karg, size_t size)
4289{
4290	int ret;
4291
4292	if (copy_from_user(karg, arg, size))
4293		return -EFAULT;
4294
4295	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296	if (ret)
4297		return ret;
4298
4299	if (copy_to_user(arg, karg, size))
4300		return -EFAULT;
4301
4302	return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312	int ret, karg = 0;
4313
4314	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315	if (ret)
4316		return ret;
4317
4318	return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328	int rc = 1;
4329
4330	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331		rc = ipmr_sk_ioctl(sk, cmd, arg);
4332	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334	else if (sk_is_phonet(sk))
4335		rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337	/* If ioctl was processed, returns its value */
4338	if (rc <= 0)
4339		return rc;
4340
4341	/* Otherwise call the default handler */
4342	return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403	return 0;
4404}
4405
4406core_initcall(sock_struct_check);
v3.15
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 
 105#include <linux/timer.h>
 106#include <linux/string.h>
 107#include <linux/sockios.h>
 108#include <linux/net.h>
 109#include <linux/mm.h>
 110#include <linux/slab.h>
 111#include <linux/interrupt.h>
 112#include <linux/poll.h>
 113#include <linux/tcp.h>
 
 114#include <linux/init.h>
 115#include <linux/highmem.h>
 116#include <linux/user_namespace.h>
 117#include <linux/static_key.h>
 118#include <linux/memcontrol.h>
 119#include <linux/prefetch.h>
 
 
 
 
 120
 121#include <asm/uaccess.h>
 122
 123#include <linux/netdevice.h>
 124#include <net/protocol.h>
 125#include <linux/skbuff.h>
 
 126#include <net/net_namespace.h>
 127#include <net/request_sock.h>
 128#include <net/sock.h>
 
 129#include <linux/net_tstamp.h>
 130#include <net/xfrm.h>
 131#include <linux/ipsec.h>
 132#include <net/cls_cgroup.h>
 133#include <net/netprio_cgroup.h>
 
 134
 135#include <linux/filter.h>
 
 
 136
 137#include <trace/events/sock.h>
 138
 139#ifdef CONFIG_INET
 140#include <net/tcp.h>
 141#endif
 
 
 
 142
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 
 
 
 148/**
 149 * sk_ns_capable - General socket capability test
 150 * @sk: Socket to use a capability on or through
 151 * @user_ns: The user namespace of the capability to use
 152 * @cap: The capability to use
 153 *
 154 * Test to see if the opener of the socket had when the socket was
 155 * created and the current process has the capability @cap in the user
 156 * namespace @user_ns.
 157 */
 158bool sk_ns_capable(const struct sock *sk,
 159		   struct user_namespace *user_ns, int cap)
 160{
 161	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 162		ns_capable(user_ns, cap);
 163}
 164EXPORT_SYMBOL(sk_ns_capable);
 165
 166/**
 167 * sk_capable - Socket global capability test
 168 * @sk: Socket to use a capability on or through
 169 * @cap: The global capbility to use
 170 *
 171 * Test to see if the opener of the socket had when the socket was
 172 * created and the current process has the capability @cap in all user
 173 * namespaces.
 174 */
 175bool sk_capable(const struct sock *sk, int cap)
 176{
 177	return sk_ns_capable(sk, &init_user_ns, cap);
 178}
 179EXPORT_SYMBOL(sk_capable);
 180
 181/**
 182 * sk_net_capable - Network namespace socket capability test
 183 * @sk: Socket to use a capability on or through
 184 * @cap: The capability to use
 185 *
 186 * Test to see if the opener of the socket had when the socke was created
 187 * and the current process has the capability @cap over the network namespace
 188 * the socket is a member of.
 189 */
 190bool sk_net_capable(const struct sock *sk, int cap)
 191{
 192	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 193}
 194EXPORT_SYMBOL(sk_net_capable);
 195
 196
 197#ifdef CONFIG_MEMCG_KMEM
 198int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 199{
 200	struct proto *proto;
 201	int ret = 0;
 202
 203	mutex_lock(&proto_list_mutex);
 204	list_for_each_entry(proto, &proto_list, node) {
 205		if (proto->init_cgroup) {
 206			ret = proto->init_cgroup(memcg, ss);
 207			if (ret)
 208				goto out;
 209		}
 210	}
 211
 212	mutex_unlock(&proto_list_mutex);
 213	return ret;
 214out:
 215	list_for_each_entry_continue_reverse(proto, &proto_list, node)
 216		if (proto->destroy_cgroup)
 217			proto->destroy_cgroup(memcg);
 218	mutex_unlock(&proto_list_mutex);
 219	return ret;
 220}
 221
 222void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
 223{
 224	struct proto *proto;
 225
 226	mutex_lock(&proto_list_mutex);
 227	list_for_each_entry_reverse(proto, &proto_list, node)
 228		if (proto->destroy_cgroup)
 229			proto->destroy_cgroup(memcg);
 230	mutex_unlock(&proto_list_mutex);
 231}
 232#endif
 233
 234/*
 235 * Each address family might have different locking rules, so we have
 236 * one slock key per address family:
 
 237 */
 238static struct lock_class_key af_family_keys[AF_MAX];
 
 239static struct lock_class_key af_family_slock_keys[AF_MAX];
 240
 241#if defined(CONFIG_MEMCG_KMEM)
 242struct static_key memcg_socket_limit_enabled;
 243EXPORT_SYMBOL(memcg_socket_limit_enabled);
 244#endif
 245
 246/*
 247 * Make lock validator output more readable. (we pre-construct these
 248 * strings build-time, so that runtime initialization of socket
 249 * locks is fast):
 250 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251static const char *const af_family_key_strings[AF_MAX+1] = {
 252  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 253  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 254  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 255  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 256  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 257  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 258  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 259  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 260  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 261  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 262  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 263  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 264  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 265  "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
 266};
 267static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 268  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 269  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 270  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 271  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 272  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 273  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 274  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 275  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 276  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 277  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 278  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 279  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 280  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 281  "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
 282};
 283static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 284  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 285  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 286  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 287  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 288  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 289  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 290  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 291  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 292  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 293  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 294  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 295  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 296  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 297  "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
 
 
 
 
 
 
 298};
 299
 300/*
 301 * sk_callback_lock locking rules are per-address-family,
 302 * so split the lock classes by using a per-AF key:
 303 */
 304static struct lock_class_key af_callback_keys[AF_MAX];
 305
 306/* Take into consideration the size of the struct sk_buff overhead in the
 307 * determination of these values, since that is non-constant across
 308 * platforms.  This makes socket queueing behavior and performance
 309 * not depend upon such differences.
 310 */
 311#define _SK_MEM_PACKETS		256
 312#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
 313#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 314#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 315
 316/* Run time adjustable parameters. */
 317__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 318EXPORT_SYMBOL(sysctl_wmem_max);
 319__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 320EXPORT_SYMBOL(sysctl_rmem_max);
 321__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 322__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 323
 324/* Maximal space eaten by iovec or ancillary data plus some space */
 325int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 326EXPORT_SYMBOL(sysctl_optmem_max);
 327
 328struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 329EXPORT_SYMBOL_GPL(memalloc_socks);
 330
 331/**
 332 * sk_set_memalloc - sets %SOCK_MEMALLOC
 333 * @sk: socket to set it on
 334 *
 335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 336 * It's the responsibility of the admin to adjust min_free_kbytes
 337 * to meet the requirements
 338 */
 339void sk_set_memalloc(struct sock *sk)
 340{
 341	sock_set_flag(sk, SOCK_MEMALLOC);
 342	sk->sk_allocation |= __GFP_MEMALLOC;
 343	static_key_slow_inc(&memalloc_socks);
 344}
 345EXPORT_SYMBOL_GPL(sk_set_memalloc);
 346
 347void sk_clear_memalloc(struct sock *sk)
 348{
 349	sock_reset_flag(sk, SOCK_MEMALLOC);
 350	sk->sk_allocation &= ~__GFP_MEMALLOC;
 351	static_key_slow_dec(&memalloc_socks);
 352
 353	/*
 354	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 355	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
 356	 * it has rmem allocations there is a risk that the user of the
 357	 * socket cannot make forward progress due to exceeding the rmem
 358	 * limits. By rights, sk_clear_memalloc() should only be called
 359	 * on sockets being torn down but warn and reset the accounting if
 360	 * that assumption breaks.
 361	 */
 362	if (WARN_ON(sk->sk_forward_alloc))
 363		sk_mem_reclaim(sk);
 364}
 365EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 366
 367int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 368{
 369	int ret;
 370	unsigned long pflags = current->flags;
 371
 372	/* these should have been dropped before queueing */
 373	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 374
 375	current->flags |= PF_MEMALLOC;
 376	ret = sk->sk_backlog_rcv(sk, skb);
 377	tsk_restore_flags(current, pflags, PF_MEMALLOC);
 
 
 
 378
 379	return ret;
 380}
 381EXPORT_SYMBOL(__sk_backlog_rcv);
 382
 383static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384{
 385	struct timeval tv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386
 387	if (optlen < sizeof(tv))
 388		return -EINVAL;
 389	if (copy_from_user(&tv, optval, sizeof(tv)))
 390		return -EFAULT;
 391	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 392		return -EDOM;
 393
 394	if (tv.tv_sec < 0) {
 395		static int warned __read_mostly;
 396
 397		*timeo_p = 0;
 398		if (warned < 10 && net_ratelimit()) {
 399			warned++;
 400			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 401				__func__, current->comm, task_pid_nr(current));
 402		}
 403		return 0;
 404	}
 405	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 406	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 407		return 0;
 408	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 409		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 
 410	return 0;
 411}
 412
 413static void sock_warn_obsolete_bsdism(const char *name)
 414{
 415	static int warned;
 416	static char warncomm[TASK_COMM_LEN];
 417	if (strcmp(warncomm, current->comm) && warned < 5) {
 418		strcpy(warncomm,  current->comm);
 419		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 420			warncomm, name);
 421		warned++;
 422	}
 423}
 424
 425#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 426
 427static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 428{
 429	if (sk->sk_flags & flags) {
 430		sk->sk_flags &= ~flags;
 431		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 
 432			net_disable_timestamp();
 433	}
 434}
 435
 436
 437int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 438{
 439	int err;
 440	int skb_len;
 441	unsigned long flags;
 442	struct sk_buff_head *list = &sk->sk_receive_queue;
 443
 444	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 445		atomic_inc(&sk->sk_drops);
 446		trace_sock_rcvqueue_full(sk, skb);
 447		return -ENOMEM;
 448	}
 449
 450	err = sk_filter(sk, skb);
 451	if (err)
 452		return err;
 453
 454	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 455		atomic_inc(&sk->sk_drops);
 456		return -ENOBUFS;
 457	}
 458
 459	skb->dev = NULL;
 460	skb_set_owner_r(skb, sk);
 461
 462	/* Cache the SKB length before we tack it onto the receive
 463	 * queue.  Once it is added it no longer belongs to us and
 464	 * may be freed by other threads of control pulling packets
 465	 * from the queue.
 466	 */
 467	skb_len = skb->len;
 468
 469	/* we escape from rcu protected region, make sure we dont leak
 470	 * a norefcounted dst
 471	 */
 472	skb_dst_force(skb);
 473
 474	spin_lock_irqsave(&list->lock, flags);
 475	skb->dropcount = atomic_read(&sk->sk_drops);
 476	__skb_queue_tail(list, skb);
 477	spin_unlock_irqrestore(&list->lock, flags);
 478
 479	if (!sock_flag(sk, SOCK_DEAD))
 480		sk->sk_data_ready(sk);
 481	return 0;
 482}
 483EXPORT_SYMBOL(sock_queue_rcv_skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 485int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 486{
 487	int rc = NET_RX_SUCCESS;
 488
 489	if (sk_filter(sk, skb))
 490		goto discard_and_relse;
 491
 492	skb->dev = NULL;
 493
 494	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
 495		atomic_inc(&sk->sk_drops);
 496		goto discard_and_relse;
 497	}
 498	if (nested)
 499		bh_lock_sock_nested(sk);
 500	else
 501		bh_lock_sock(sk);
 502	if (!sock_owned_by_user(sk)) {
 503		/*
 504		 * trylock + unlock semantics:
 505		 */
 506		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 507
 508		rc = sk_backlog_rcv(sk, skb);
 509
 510		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 511	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 512		bh_unlock_sock(sk);
 513		atomic_inc(&sk->sk_drops);
 514		goto discard_and_relse;
 515	}
 516
 517	bh_unlock_sock(sk);
 518out:
 519	sock_put(sk);
 
 520	return rc;
 521discard_and_relse:
 522	kfree_skb(skb);
 523	goto out;
 524}
 525EXPORT_SYMBOL(sk_receive_skb);
 526
 
 
 
 
 527struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 528{
 529	struct dst_entry *dst = __sk_dst_get(sk);
 530
 531	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 532		sk_tx_queue_clear(sk);
 
 533		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 534		dst_release(dst);
 535		return NULL;
 536	}
 537
 538	return dst;
 539}
 540EXPORT_SYMBOL(__sk_dst_check);
 541
 542struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 547		sk_dst_reset(sk);
 548		dst_release(dst);
 549		return NULL;
 550	}
 551
 552	return dst;
 553}
 554EXPORT_SYMBOL(sk_dst_check);
 555
 556static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 557				int optlen)
 558{
 559	int ret = -ENOPROTOOPT;
 560#ifdef CONFIG_NETDEVICES
 561	struct net *net = sock_net(sk);
 562	char devname[IFNAMSIZ];
 563	int index;
 564
 565	/* Sorry... */
 566	ret = -EPERM;
 567	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 
 
 
 
 568		goto out;
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	ret = -EINVAL;
 571	if (optlen < 0)
 572		goto out;
 573
 574	/* Bind this socket to a particular device like "eth0",
 575	 * as specified in the passed interface name. If the
 576	 * name is "" or the option length is zero the socket
 577	 * is not bound.
 578	 */
 579	if (optlen > IFNAMSIZ - 1)
 580		optlen = IFNAMSIZ - 1;
 581	memset(devname, 0, sizeof(devname));
 582
 583	ret = -EFAULT;
 584	if (copy_from_user(devname, optval, optlen))
 585		goto out;
 586
 587	index = 0;
 588	if (devname[0] != '\0') {
 589		struct net_device *dev;
 590
 591		rcu_read_lock();
 592		dev = dev_get_by_name_rcu(net, devname);
 593		if (dev)
 594			index = dev->ifindex;
 595		rcu_read_unlock();
 596		ret = -ENODEV;
 597		if (!dev)
 598			goto out;
 599	}
 600
 601	lock_sock(sk);
 602	sk->sk_bound_dev_if = index;
 603	sk_dst_reset(sk);
 604	release_sock(sk);
 605
 606	ret = 0;
 607
 608out:
 609#endif
 610
 611	return ret;
 612}
 613
 614static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 615				int __user *optlen, int len)
 616{
 617	int ret = -ENOPROTOOPT;
 618#ifdef CONFIG_NETDEVICES
 
 619	struct net *net = sock_net(sk);
 620	char devname[IFNAMSIZ];
 621
 622	if (sk->sk_bound_dev_if == 0) {
 623		len = 0;
 624		goto zero;
 625	}
 626
 627	ret = -EINVAL;
 628	if (len < IFNAMSIZ)
 629		goto out;
 630
 631	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 632	if (ret)
 633		goto out;
 634
 635	len = strlen(devname) + 1;
 636
 637	ret = -EFAULT;
 638	if (copy_to_user(optval, devname, len))
 639		goto out;
 640
 641zero:
 642	ret = -EFAULT;
 643	if (put_user(len, optlen))
 644		goto out;
 645
 646	ret = 0;
 647
 648out:
 649#endif
 650
 651	return ret;
 652}
 653
 654static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655{
 656	if (valbool)
 657		sock_set_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	else
 659		sock_reset_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660}
 661
 662/*
 663 *	This is meant for all protocols to use and covers goings on
 664 *	at the socket level. Everything here is generic.
 665 */
 666
 667int sock_setsockopt(struct socket *sock, int level, int optname,
 668		    char __user *optval, unsigned int optlen)
 669{
 670	struct sock *sk = sock->sk;
 
 
 671	int val;
 672	int valbool;
 673	struct linger ling;
 674	int ret = 0;
 675
 676	/*
 677	 *	Options without arguments
 678	 */
 679
 680	if (optname == SO_BINDTODEVICE)
 681		return sock_setbindtodevice(sk, optval, optlen);
 682
 683	if (optlen < sizeof(int))
 684		return -EINVAL;
 685
 686	if (get_user(val, (int __user *)optval))
 687		return -EFAULT;
 688
 689	valbool = val ? 1 : 0;
 690
 691	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692
 693	switch (optname) {
 694	case SO_DEBUG:
 695		if (val && !capable(CAP_NET_ADMIN))
 696			ret = -EACCES;
 697		else
 698			sock_valbool_flag(sk, SOCK_DBG, valbool);
 699		break;
 700	case SO_REUSEADDR:
 701		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 702		break;
 703	case SO_REUSEPORT:
 704		sk->sk_reuseport = valbool;
 705		break;
 706	case SO_TYPE:
 707	case SO_PROTOCOL:
 708	case SO_DOMAIN:
 709	case SO_ERROR:
 710		ret = -ENOPROTOOPT;
 711		break;
 712	case SO_DONTROUTE:
 713		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 714		break;
 715	case SO_BROADCAST:
 716		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 717		break;
 718	case SO_SNDBUF:
 719		/* Don't error on this BSD doesn't and if you think
 720		 * about it this is right. Otherwise apps have to
 721		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 722		 * are treated in BSD as hints
 723		 */
 724		val = min_t(u32, val, sysctl_wmem_max);
 725set_sndbuf:
 
 
 
 
 726		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 727		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
 
 728		/* Wake up sending tasks if we upped the value. */
 729		sk->sk_write_space(sk);
 730		break;
 731
 732	case SO_SNDBUFFORCE:
 733		if (!capable(CAP_NET_ADMIN)) {
 734			ret = -EPERM;
 735			break;
 736		}
 
 
 
 
 
 
 737		goto set_sndbuf;
 738
 739	case SO_RCVBUF:
 740		/* Don't error on this BSD doesn't and if you think
 741		 * about it this is right. Otherwise apps have to
 742		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 743		 * are treated in BSD as hints
 744		 */
 745		val = min_t(u32, val, sysctl_rmem_max);
 746set_rcvbuf:
 747		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 748		/*
 749		 * We double it on the way in to account for
 750		 * "struct sk_buff" etc. overhead.   Applications
 751		 * assume that the SO_RCVBUF setting they make will
 752		 * allow that much actual data to be received on that
 753		 * socket.
 754		 *
 755		 * Applications are unaware that "struct sk_buff" and
 756		 * other overheads allocate from the receive buffer
 757		 * during socket buffer allocation.
 758		 *
 759		 * And after considering the possible alternatives,
 760		 * returning the value we actually used in getsockopt
 761		 * is the most desirable behavior.
 762		 */
 763		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
 764		break;
 765
 766	case SO_RCVBUFFORCE:
 767		if (!capable(CAP_NET_ADMIN)) {
 768			ret = -EPERM;
 769			break;
 770		}
 771		goto set_rcvbuf;
 
 
 
 
 
 772
 773	case SO_KEEPALIVE:
 774#ifdef CONFIG_INET
 775		if (sk->sk_protocol == IPPROTO_TCP &&
 776		    sk->sk_type == SOCK_STREAM)
 777			tcp_set_keepalive(sk, valbool);
 778#endif
 779		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 780		break;
 781
 782	case SO_OOBINLINE:
 783		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 784		break;
 785
 786	case SO_NO_CHECK:
 787		sk->sk_no_check = valbool;
 788		break;
 789
 790	case SO_PRIORITY:
 791		if ((val >= 0 && val <= 6) ||
 792		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 793			sk->sk_priority = val;
 794		else
 795			ret = -EPERM;
 796		break;
 797
 798	case SO_LINGER:
 799		if (optlen < sizeof(ling)) {
 800			ret = -EINVAL;	/* 1003.1g */
 801			break;
 802		}
 803		if (copy_from_user(&ling, optval, sizeof(ling))) {
 804			ret = -EFAULT;
 805			break;
 806		}
 807		if (!ling.l_onoff)
 808			sock_reset_flag(sk, SOCK_LINGER);
 809		else {
 810#if (BITS_PER_LONG == 32)
 811			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 812				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 
 813			else
 814#endif
 815				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 816			sock_set_flag(sk, SOCK_LINGER);
 817		}
 818		break;
 819
 820	case SO_BSDCOMPAT:
 821		sock_warn_obsolete_bsdism("setsockopt");
 822		break;
 823
 824	case SO_PASSCRED:
 825		if (valbool)
 826			set_bit(SOCK_PASSCRED, &sock->flags);
 827		else
 828			clear_bit(SOCK_PASSCRED, &sock->flags);
 829		break;
 830
 831	case SO_TIMESTAMP:
 832	case SO_TIMESTAMPNS:
 833		if (valbool)  {
 834			if (optname == SO_TIMESTAMP)
 835				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 836			else
 837				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 838			sock_set_flag(sk, SOCK_RCVTSTAMP);
 839			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 840		} else {
 841			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 842			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 843		}
 
 844		break;
 845
 846	case SO_TIMESTAMPING:
 847		if (val & ~SOF_TIMESTAMPING_MASK) {
 848			ret = -EINVAL;
 849			break;
 
 
 
 
 
 
 
 
 
 850		}
 851		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 852				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 853		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 854				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 855		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 856				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 857		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 858			sock_enable_timestamp(sk,
 859					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 860		else
 861			sock_disable_timestamp(sk,
 862					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 863		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 864				  val & SOF_TIMESTAMPING_SOFTWARE);
 865		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 866				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 867		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 868				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 869		break;
 870
 871	case SO_RCVLOWAT:
 872		if (val < 0)
 873			val = INT_MAX;
 874		sk->sk_rcvlowat = val ? : 1;
 875		break;
 876
 877	case SO_RCVTIMEO:
 878		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 
 
 
 879		break;
 
 
 
 
 
 
 
 
 
 880
 881	case SO_SNDTIMEO:
 882		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 883		break;
 884
 885	case SO_ATTACH_FILTER:
 
 
 
 
 
 
 
 
 886		ret = -EINVAL;
 887		if (optlen == sizeof(struct sock_fprog)) {
 888			struct sock_fprog fprog;
 889
 890			ret = -EFAULT;
 891			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 892				break;
 893
 894			ret = sk_attach_filter(&fprog, sk);
 895		}
 896		break;
 897
 
 
 
 
 898	case SO_DETACH_FILTER:
 899		ret = sk_detach_filter(sk);
 900		break;
 901
 902	case SO_LOCK_FILTER:
 903		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 904			ret = -EPERM;
 905		else
 906			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 907		break;
 908
 909	case SO_PASSSEC:
 910		if (valbool)
 911			set_bit(SOCK_PASSSEC, &sock->flags);
 912		else
 913			clear_bit(SOCK_PASSSEC, &sock->flags);
 914		break;
 915	case SO_MARK:
 916		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
 917			ret = -EPERM;
 918		else
 919			sk->sk_mark = val;
 
 
 
 
 
 920		break;
 921
 922		/* We implement the SO_SNDLOWAT etc to
 923		   not be settable (1003.1g 5.3) */
 924	case SO_RXQ_OVFL:
 925		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 926		break;
 927
 928	case SO_WIFI_STATUS:
 929		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 930		break;
 931
 932	case SO_PEEK_OFF:
 933		if (sock->ops->set_peek_off)
 934			ret = sock->ops->set_peek_off(sk, val);
 935		else
 936			ret = -EOPNOTSUPP;
 937		break;
 938
 939	case SO_NOFCS:
 940		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
 941		break;
 942
 943	case SO_SELECT_ERR_QUEUE:
 944		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
 945		break;
 946
 947#ifdef CONFIG_NET_RX_BUSY_POLL
 948	case SO_BUSY_POLL:
 949		/* allow unprivileged users to decrease the value */
 950		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
 951			ret = -EPERM;
 952		else {
 953			if (val < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954				ret = -EINVAL;
 955			else
 956				sk->sk_ll_usec = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		}
 
 
 958		break;
 959#endif
 960
 961	case SO_MAX_PACING_RATE:
 962		sk->sk_max_pacing_rate = val;
 963		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
 964					 sk->sk_max_pacing_rate);
 
 
 
 
 
 
 
 
 
 
 965		break;
 
 966
 967	default:
 968		ret = -ENOPROTOOPT;
 969		break;
 970	}
 971	release_sock(sk);
 972	return ret;
 973}
 
 
 
 
 
 
 
 974EXPORT_SYMBOL(sock_setsockopt);
 975
 
 
 
 
 
 
 
 
 
 
 976
 977static void cred_to_ucred(struct pid *pid, const struct cred *cred,
 978			  struct ucred *ucred)
 979{
 980	ucred->pid = pid_vnr(pid);
 981	ucred->uid = ucred->gid = -1;
 982	if (cred) {
 983		struct user_namespace *current_ns = current_user_ns();
 984
 985		ucred->uid = from_kuid_munged(current_ns, cred->euid);
 986		ucred->gid = from_kgid_munged(current_ns, cred->egid);
 987	}
 988}
 989
 990int sock_getsockopt(struct socket *sock, int level, int optname,
 991		    char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992{
 993	struct sock *sk = sock->sk;
 994
 995	union {
 996		int val;
 
 
 997		struct linger ling;
 998		struct timeval tm;
 
 
 
 
 999	} v;
1000
1001	int lv = sizeof(int);
1002	int len;
1003
1004	if (get_user(len, optlen))
1005		return -EFAULT;
1006	if (len < 0)
1007		return -EINVAL;
1008
1009	memset(&v, 0, sizeof(v));
1010
1011	switch (optname) {
1012	case SO_DEBUG:
1013		v.val = sock_flag(sk, SOCK_DBG);
1014		break;
1015
1016	case SO_DONTROUTE:
1017		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1018		break;
1019
1020	case SO_BROADCAST:
1021		v.val = sock_flag(sk, SOCK_BROADCAST);
1022		break;
1023
1024	case SO_SNDBUF:
1025		v.val = sk->sk_sndbuf;
1026		break;
1027
1028	case SO_RCVBUF:
1029		v.val = sk->sk_rcvbuf;
1030		break;
1031
1032	case SO_REUSEADDR:
1033		v.val = sk->sk_reuse;
1034		break;
1035
1036	case SO_REUSEPORT:
1037		v.val = sk->sk_reuseport;
1038		break;
1039
1040	case SO_KEEPALIVE:
1041		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1042		break;
1043
1044	case SO_TYPE:
1045		v.val = sk->sk_type;
1046		break;
1047
1048	case SO_PROTOCOL:
1049		v.val = sk->sk_protocol;
1050		break;
1051
1052	case SO_DOMAIN:
1053		v.val = sk->sk_family;
1054		break;
1055
1056	case SO_ERROR:
1057		v.val = -sock_error(sk);
1058		if (v.val == 0)
1059			v.val = xchg(&sk->sk_err_soft, 0);
1060		break;
1061
1062	case SO_OOBINLINE:
1063		v.val = sock_flag(sk, SOCK_URGINLINE);
1064		break;
1065
1066	case SO_NO_CHECK:
1067		v.val = sk->sk_no_check;
1068		break;
1069
1070	case SO_PRIORITY:
1071		v.val = sk->sk_priority;
1072		break;
1073
1074	case SO_LINGER:
1075		lv		= sizeof(v.ling);
1076		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1077		v.ling.l_linger	= sk->sk_lingertime / HZ;
1078		break;
1079
1080	case SO_BSDCOMPAT:
1081		sock_warn_obsolete_bsdism("getsockopt");
1082		break;
1083
1084	case SO_TIMESTAMP:
1085		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
1086				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1087		break;
1088
1089	case SO_TIMESTAMPNS:
1090		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1091		break;
1092
1093	case SO_TIMESTAMPING:
1094		v.val = 0;
1095		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1096			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1097		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1098			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1099		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1100			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1101		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1102			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1103		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1104			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1105		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1106			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1107		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1108			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1109		break;
1110
1111	case SO_RCVTIMEO:
1112		lv = sizeof(struct timeval);
1113		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1114			v.tm.tv_sec = 0;
1115			v.tm.tv_usec = 0;
1116		} else {
1117			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1118			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1119		}
1120		break;
1121
1122	case SO_SNDTIMEO:
1123		lv = sizeof(struct timeval);
1124		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1125			v.tm.tv_sec = 0;
1126			v.tm.tv_usec = 0;
1127		} else {
1128			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1129			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1130		}
 
1131		break;
1132
1133	case SO_RCVLOWAT:
1134		v.val = sk->sk_rcvlowat;
1135		break;
1136
1137	case SO_SNDLOWAT:
1138		v.val = 1;
1139		break;
1140
1141	case SO_PASSCRED:
1142		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1143		break;
1144
 
 
 
 
1145	case SO_PEERCRED:
1146	{
1147		struct ucred peercred;
1148		if (len > sizeof(peercred))
1149			len = sizeof(peercred);
 
 
1150		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1151		if (copy_to_user(optval, &peercred, len))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152			return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153		goto lenout;
1154	}
1155
1156	case SO_PEERNAME:
1157	{
1158		char address[128];
1159
1160		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
1161			return -ENOTCONN;
1162		if (lv < len)
1163			return -EINVAL;
1164		if (copy_to_user(optval, address, len))
1165			return -EFAULT;
1166		goto lenout;
1167	}
1168
1169	/* Dubious BSD thing... Probably nobody even uses it, but
1170	 * the UNIX standard wants it for whatever reason... -DaveM
1171	 */
1172	case SO_ACCEPTCONN:
1173		v.val = sk->sk_state == TCP_LISTEN;
1174		break;
1175
1176	case SO_PASSSEC:
1177		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1178		break;
1179
1180	case SO_PEERSEC:
1181		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1182
1183	case SO_MARK:
1184		v.val = sk->sk_mark;
 
 
 
 
1185		break;
1186
1187	case SO_RXQ_OVFL:
1188		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1189		break;
1190
1191	case SO_WIFI_STATUS:
1192		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1193		break;
1194
1195	case SO_PEEK_OFF:
1196		if (!sock->ops->set_peek_off)
1197			return -EOPNOTSUPP;
1198
1199		v.val = sk->sk_peek_off;
1200		break;
1201	case SO_NOFCS:
1202		v.val = sock_flag(sk, SOCK_NOFCS);
1203		break;
1204
1205	case SO_BINDTODEVICE:
1206		return sock_getbindtodevice(sk, optval, optlen, len);
1207
1208	case SO_GET_FILTER:
1209		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1210		if (len < 0)
1211			return len;
1212
1213		goto lenout;
1214
1215	case SO_LOCK_FILTER:
1216		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1217		break;
1218
1219	case SO_BPF_EXTENSIONS:
1220		v.val = bpf_tell_extensions();
1221		break;
1222
1223	case SO_SELECT_ERR_QUEUE:
1224		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1225		break;
1226
1227#ifdef CONFIG_NET_RX_BUSY_POLL
1228	case SO_BUSY_POLL:
1229		v.val = sk->sk_ll_usec;
 
 
 
1230		break;
1231#endif
1232
1233	case SO_MAX_PACING_RATE:
1234		v.val = sk->sk_max_pacing_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235		break;
1236
1237	default:
 
 
 
1238		return -ENOPROTOOPT;
1239	}
1240
1241	if (len > lv)
1242		len = lv;
1243	if (copy_to_user(optval, &v, len))
1244		return -EFAULT;
1245lenout:
1246	if (put_user(len, optlen))
1247		return -EFAULT;
1248	return 0;
1249}
1250
1251/*
1252 * Initialize an sk_lock.
1253 *
1254 * (We also register the sk_lock with the lock validator.)
1255 */
1256static inline void sock_lock_init(struct sock *sk)
1257{
1258	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
1259			af_family_slock_key_strings[sk->sk_family],
1260			af_family_slock_keys + sk->sk_family,
1261			af_family_key_strings[sk->sk_family],
1262			af_family_keys + sk->sk_family);
1263}
1264
1265/*
1266 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1267 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1268 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1269 */
1270static void sock_copy(struct sock *nsk, const struct sock *osk)
1271{
 
1272#ifdef CONFIG_SECURITY_NETWORK
1273	void *sptr = nsk->sk_security;
1274#endif
 
 
 
 
 
 
 
 
 
 
1275	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1276
1277	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1278	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
1279
1280#ifdef CONFIG_SECURITY_NETWORK
1281	nsk->sk_security = sptr;
1282	security_sk_clone(osk, nsk);
1283#endif
1284}
1285
1286void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1287{
1288	unsigned long nulls1, nulls2;
1289
1290	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1291	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1292	if (nulls1 > nulls2)
1293		swap(nulls1, nulls2);
1294
1295	if (nulls1 != 0)
1296		memset((char *)sk, 0, nulls1);
1297	memset((char *)sk + nulls1 + sizeof(void *), 0,
1298	       nulls2 - nulls1 - sizeof(void *));
1299	memset((char *)sk + nulls2 + sizeof(void *), 0,
1300	       size - nulls2 - sizeof(void *));
1301}
1302EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1303
1304static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1305		int family)
1306{
1307	struct sock *sk;
1308	struct kmem_cache *slab;
1309
1310	slab = prot->slab;
1311	if (slab != NULL) {
1312		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1313		if (!sk)
1314			return sk;
1315		if (priority & __GFP_ZERO) {
1316			if (prot->clear_sk)
1317				prot->clear_sk(sk, prot->obj_size);
1318			else
1319				sk_prot_clear_nulls(sk, prot->obj_size);
1320		}
1321	} else
1322		sk = kmalloc(prot->obj_size, priority);
1323
1324	if (sk != NULL) {
1325		kmemcheck_annotate_bitfield(sk, flags);
1326
1327		if (security_sk_alloc(sk, family, priority))
1328			goto out_free;
1329
1330		if (!try_module_get(prot->owner))
1331			goto out_free_sec;
1332		sk_tx_queue_clear(sk);
1333	}
1334
1335	return sk;
1336
1337out_free_sec:
1338	security_sk_free(sk);
1339out_free:
1340	if (slab != NULL)
1341		kmem_cache_free(slab, sk);
1342	else
1343		kfree(sk);
1344	return NULL;
1345}
1346
1347static void sk_prot_free(struct proto *prot, struct sock *sk)
1348{
1349	struct kmem_cache *slab;
1350	struct module *owner;
1351
1352	owner = prot->owner;
1353	slab = prot->slab;
1354
 
 
1355	security_sk_free(sk);
1356	if (slab != NULL)
1357		kmem_cache_free(slab, sk);
1358	else
1359		kfree(sk);
1360	module_put(owner);
1361}
1362
1363#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1364void sock_update_netprioidx(struct sock *sk)
1365{
1366	if (in_interrupt())
1367		return;
1368
1369	sk->sk_cgrp_prioidx = task_netprioidx(current);
1370}
1371EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1372#endif
1373
1374/**
1375 *	sk_alloc - All socket objects are allocated here
1376 *	@net: the applicable net namespace
1377 *	@family: protocol family
1378 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1379 *	@prot: struct proto associated with this new sock instance
 
1380 */
1381struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1382		      struct proto *prot)
1383{
1384	struct sock *sk;
1385
1386	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1387	if (sk) {
1388		sk->sk_family = family;
1389		/*
1390		 * See comment in struct sock definition to understand
1391		 * why we need sk_prot_creator -acme
1392		 */
1393		sk->sk_prot = sk->sk_prot_creator = prot;
 
1394		sock_lock_init(sk);
1395		sock_net_set(sk, get_net(net));
1396		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
 
 
 
 
1397
1398		sock_update_classid(sk);
1399		sock_update_netprioidx(sk);
 
 
 
 
 
 
1400	}
1401
1402	return sk;
1403}
1404EXPORT_SYMBOL(sk_alloc);
1405
1406static void __sk_free(struct sock *sk)
 
 
 
1407{
 
 
1408	struct sk_filter *filter;
1409
1410	if (sk->sk_destruct)
1411		sk->sk_destruct(sk);
1412
1413	filter = rcu_dereference_check(sk->sk_filter,
1414				       atomic_read(&sk->sk_wmem_alloc) == 0);
1415	if (filter) {
1416		sk_filter_uncharge(sk, filter);
1417		RCU_INIT_POINTER(sk->sk_filter, NULL);
1418	}
1419
1420	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1421
 
 
 
 
1422	if (atomic_read(&sk->sk_omem_alloc))
1423		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1424			 __func__, atomic_read(&sk->sk_omem_alloc));
1425
1426	if (sk->sk_peer_cred)
1427		put_cred(sk->sk_peer_cred);
 
 
 
 
 
1428	put_pid(sk->sk_peer_pid);
1429	put_net(sock_net(sk));
 
 
 
 
 
 
1430	sk_prot_free(sk->sk_prot_creator, sk);
1431}
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433void sk_free(struct sock *sk)
1434{
1435	/*
1436	 * We subtract one from sk_wmem_alloc and can know if
1437	 * some packets are still in some tx queue.
1438	 * If not null, sock_wfree() will call __sk_free(sk) later
1439	 */
1440	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1441		__sk_free(sk);
1442}
1443EXPORT_SYMBOL(sk_free);
1444
1445/*
1446 * Last sock_put should drop reference to sk->sk_net. It has already
1447 * been dropped in sk_change_net. Taking reference to stopping namespace
1448 * is not an option.
1449 * Take reference to a socket to remove it from hash _alive_ and after that
1450 * destroy it in the context of init_net.
1451 */
1452void sk_release_kernel(struct sock *sk)
1453{
1454	if (sk == NULL || sk->sk_socket == NULL)
1455		return;
 
1456
1457	sock_hold(sk);
1458	sock_release(sk->sk_socket);
1459	release_net(sock_net(sk));
1460	sock_net_set(sk, get_net(&init_net));
1461	sock_put(sk);
1462}
1463EXPORT_SYMBOL(sk_release_kernel);
1464
1465static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1466{
1467	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1468		sock_update_memcg(newsk);
 
 
 
 
 
 
1469}
1470
1471/**
1472 *	sk_clone_lock - clone a socket, and lock its clone
1473 *	@sk: the socket to clone
1474 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1475 *
1476 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1477 */
1478struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1479{
 
 
 
1480	struct sock *newsk;
1481
1482	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1483	if (newsk != NULL) {
1484		struct sk_filter *filter;
1485
1486		sock_copy(newsk, sk);
1487
1488		/* SANITY */
1489		get_net(sock_net(newsk));
1490		sk_node_init(&newsk->sk_node);
1491		sock_lock_init(newsk);
1492		bh_lock_sock(newsk);
1493		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1494		newsk->sk_backlog.len = 0;
1495
1496		atomic_set(&newsk->sk_rmem_alloc, 0);
1497		/*
1498		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
 
 
 
 
 
 
 
 
1499		 */
1500		atomic_set(&newsk->sk_wmem_alloc, 1);
1501		atomic_set(&newsk->sk_omem_alloc, 0);
1502		skb_queue_head_init(&newsk->sk_receive_queue);
1503		skb_queue_head_init(&newsk->sk_write_queue);
1504#ifdef CONFIG_NET_DMA
1505		skb_queue_head_init(&newsk->sk_async_wait_queue);
1506#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507
1508		spin_lock_init(&newsk->sk_dst_lock);
1509		rwlock_init(&newsk->sk_callback_lock);
1510		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1511				af_callback_keys + newsk->sk_family,
1512				af_family_clock_key_strings[newsk->sk_family]);
1513
1514		newsk->sk_dst_cache	= NULL;
1515		newsk->sk_wmem_queued	= 0;
1516		newsk->sk_forward_alloc = 0;
1517		newsk->sk_send_head	= NULL;
1518		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1519
1520		sock_reset_flag(newsk, SOCK_DONE);
1521		skb_queue_head_init(&newsk->sk_error_queue);
1522
1523		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1524		if (filter != NULL)
1525			sk_filter_charge(newsk, filter);
1526
1527		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1528			/* It is still raw copy of parent, so invalidate
1529			 * destructor and make plain sk_free() */
1530			newsk->sk_destruct = NULL;
1531			bh_unlock_sock(newsk);
1532			sk_free(newsk);
1533			newsk = NULL;
1534			goto out;
1535		}
1536
1537		newsk->sk_err	   = 0;
1538		newsk->sk_priority = 0;
1539		/*
1540		 * Before updating sk_refcnt, we must commit prior changes to memory
1541		 * (Documentation/RCU/rculist_nulls.txt for details)
 
1542		 */
1543		smp_wmb();
1544		atomic_set(&newsk->sk_refcnt, 2);
 
1545
1546		/*
1547		 * Increment the counter in the same struct proto as the master
1548		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1549		 * is the same as sk->sk_prot->socks, as this field was copied
1550		 * with memcpy).
1551		 *
1552		 * This _changes_ the previous behaviour, where
1553		 * tcp_create_openreq_child always was incrementing the
1554		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1555		 * to be taken into account in all callers. -acme
1556		 */
1557		sk_refcnt_debug_inc(newsk);
1558		sk_set_socket(newsk, NULL);
1559		newsk->sk_wq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560
1561		sk_update_clone(sk, newsk);
 
 
1562
1563		if (newsk->sk_prot->sockets_allocated)
1564			sk_sockets_allocated_inc(newsk);
1565
1566		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1567			net_enable_timestamp();
1568	}
1569out:
1570	return newsk;
1571}
1572EXPORT_SYMBOL_GPL(sk_clone_lock);
1573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1575{
1576	__sk_dst_set(sk, dst);
 
1577	sk->sk_route_caps = dst->dev->features;
 
 
1578	if (sk->sk_route_caps & NETIF_F_GSO)
1579		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1580	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
1581	if (sk_can_gso(sk)) {
1582		if (dst->header_len) {
1583			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1584		} else {
1585			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1586			sk->sk_gso_max_size = dst->dev->gso_max_size;
1587			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
 
1588		}
1589	}
 
 
1590}
1591EXPORT_SYMBOL_GPL(sk_setup_caps);
1592
1593/*
1594 *	Simple resource managers for sockets.
1595 */
1596
1597
1598/*
1599 * Write buffer destructor automatically called from kfree_skb.
1600 */
1601void sock_wfree(struct sk_buff *skb)
1602{
1603	struct sock *sk = skb->sk;
1604	unsigned int len = skb->truesize;
 
1605
1606	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
1607		/*
1608		 * Keep a reference on sk_wmem_alloc, this will be released
1609		 * after sk_write_space() call
1610		 */
1611		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1612		sk->sk_write_space(sk);
1613		len = 1;
1614	}
1615	/*
1616	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1617	 * could not do because of in-flight packets
1618	 */
1619	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1620		__sk_free(sk);
1621}
1622EXPORT_SYMBOL(sock_wfree);
1623
1624void skb_orphan_partial(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
1625{
1626	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1627	 * so we do not completely orphan skb, but transfert all
1628	 * accounted bytes but one, to avoid unexpected reorders.
1629	 */
1630	if (skb->destructor == sock_wfree
1631#ifdef CONFIG_INET
1632	    || skb->destructor == tcp_wfree
 
1633#endif
1634		) {
1635		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1636		skb->truesize = 1;
1637	} else {
1638		skb_orphan(skb);
1639	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640}
1641EXPORT_SYMBOL(skb_orphan_partial);
1642
1643/*
1644 * Read buffer destructor automatically called from kfree_skb.
1645 */
1646void sock_rfree(struct sk_buff *skb)
1647{
1648	struct sock *sk = skb->sk;
1649	unsigned int len = skb->truesize;
1650
1651	atomic_sub(len, &sk->sk_rmem_alloc);
1652	sk_mem_uncharge(sk, len);
1653}
1654EXPORT_SYMBOL(sock_rfree);
1655
1656void sock_edemux(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657{
1658	struct sock *sk = skb->sk;
1659
1660#ifdef CONFIG_INET
1661	if (sk->sk_state == TCP_TIME_WAIT)
1662		inet_twsk_put(inet_twsk(sk));
1663	else
1664#endif
1665		sock_put(sk);
 
 
 
 
1666}
1667EXPORT_SYMBOL(sock_edemux);
 
1668
1669kuid_t sock_i_uid(struct sock *sk)
1670{
1671	kuid_t uid;
1672
1673	read_lock_bh(&sk->sk_callback_lock);
1674	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1675	read_unlock_bh(&sk->sk_callback_lock);
1676	return uid;
1677}
1678EXPORT_SYMBOL(sock_i_uid);
1679
 
 
 
 
 
 
 
 
 
 
 
1680unsigned long sock_i_ino(struct sock *sk)
1681{
1682	unsigned long ino;
1683
1684	read_lock_bh(&sk->sk_callback_lock);
1685	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1686	read_unlock_bh(&sk->sk_callback_lock);
1687	return ino;
1688}
1689EXPORT_SYMBOL(sock_i_ino);
1690
1691/*
1692 * Allocate a skb from the socket's send buffer.
1693 */
1694struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1695			     gfp_t priority)
1696{
1697	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1698		struct sk_buff *skb = alloc_skb(size, priority);
 
1699		if (skb) {
1700			skb_set_owner_w(skb, sk);
1701			return skb;
1702		}
1703	}
1704	return NULL;
1705}
1706EXPORT_SYMBOL(sock_wmalloc);
1707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708/*
1709 * Allocate a memory block from the socket's option memory buffer.
1710 */
1711void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1712{
1713	if ((unsigned int)size <= sysctl_optmem_max &&
1714	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
1715		void *mem;
1716		/* First do the add, to avoid the race if kmalloc
1717		 * might sleep.
1718		 */
1719		atomic_add(size, &sk->sk_omem_alloc);
1720		mem = kmalloc(size, priority);
1721		if (mem)
1722			return mem;
1723		atomic_sub(size, &sk->sk_omem_alloc);
1724	}
1725	return NULL;
1726}
1727EXPORT_SYMBOL(sock_kmalloc);
1728
1729/*
1730 * Free an option memory block.
 
1731 */
 
 
 
 
 
 
 
 
 
 
 
 
1732void sock_kfree_s(struct sock *sk, void *mem, int size)
1733{
1734	kfree(mem);
1735	atomic_sub(size, &sk->sk_omem_alloc);
1736}
1737EXPORT_SYMBOL(sock_kfree_s);
1738
 
 
 
 
 
 
1739/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1740   I think, these locks should be removed for datagram sockets.
1741 */
1742static long sock_wait_for_wmem(struct sock *sk, long timeo)
1743{
1744	DEFINE_WAIT(wait);
1745
1746	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1747	for (;;) {
1748		if (!timeo)
1749			break;
1750		if (signal_pending(current))
1751			break;
1752		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1753		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1754		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1755			break;
1756		if (sk->sk_shutdown & SEND_SHUTDOWN)
1757			break;
1758		if (sk->sk_err)
1759			break;
1760		timeo = schedule_timeout(timeo);
1761	}
1762	finish_wait(sk_sleep(sk), &wait);
1763	return timeo;
1764}
1765
1766
1767/*
1768 *	Generic send/receive buffer handlers
1769 */
1770
1771struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1772				     unsigned long data_len, int noblock,
1773				     int *errcode, int max_page_order)
1774{
1775	struct sk_buff *skb = NULL;
1776	unsigned long chunk;
1777	gfp_t gfp_mask;
1778	long timeo;
1779	int err;
1780	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1781	struct page *page;
1782	int i;
1783
1784	err = -EMSGSIZE;
1785	if (npages > MAX_SKB_FRAGS)
1786		goto failure;
1787
1788	timeo = sock_sndtimeo(sk, noblock);
1789	while (!skb) {
1790		err = sock_error(sk);
1791		if (err != 0)
1792			goto failure;
1793
1794		err = -EPIPE;
1795		if (sk->sk_shutdown & SEND_SHUTDOWN)
1796			goto failure;
1797
1798		if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1799			set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1800			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1801			err = -EAGAIN;
1802			if (!timeo)
1803				goto failure;
1804			if (signal_pending(current))
1805				goto interrupted;
1806			timeo = sock_wait_for_wmem(sk, timeo);
1807			continue;
1808		}
1809
1810		err = -ENOBUFS;
1811		gfp_mask = sk->sk_allocation;
1812		if (gfp_mask & __GFP_WAIT)
1813			gfp_mask |= __GFP_REPEAT;
1814
1815		skb = alloc_skb(header_len, gfp_mask);
1816		if (!skb)
1817			goto failure;
1818
1819		skb->truesize += data_len;
1820
1821		for (i = 0; npages > 0; i++) {
1822			int order = max_page_order;
1823
1824			while (order) {
1825				if (npages >= 1 << order) {
1826					page = alloc_pages(sk->sk_allocation |
1827							   __GFP_COMP |
1828							   __GFP_NOWARN |
1829							   __GFP_NORETRY,
1830							   order);
1831					if (page)
1832						goto fill_page;
1833				}
1834				order--;
1835			}
1836			page = alloc_page(sk->sk_allocation);
1837			if (!page)
1838				goto failure;
1839fill_page:
1840			chunk = min_t(unsigned long, data_len,
1841				      PAGE_SIZE << order);
1842			skb_fill_page_desc(skb, i, page, 0, chunk);
1843			data_len -= chunk;
1844			npages -= 1 << order;
1845		}
1846	}
1847
1848	skb_set_owner_w(skb, sk);
 
 
1849	return skb;
1850
1851interrupted:
1852	err = sock_intr_errno(timeo);
1853failure:
1854	kfree_skb(skb);
1855	*errcode = err;
1856	return NULL;
1857}
1858EXPORT_SYMBOL(sock_alloc_send_pskb);
1859
1860struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1861				    int noblock, int *errcode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862{
1863	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
 
 
 
 
 
 
 
 
1864}
1865EXPORT_SYMBOL(sock_alloc_send_skb);
1866
1867/* On 32bit arches, an skb frag is limited to 2^15 */
1868#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1869
1870/**
1871 * skb_page_frag_refill - check that a page_frag contains enough room
1872 * @sz: minimum size of the fragment we want to get
1873 * @pfrag: pointer to page_frag
1874 * @prio: priority for memory allocation
1875 *
1876 * Note: While this allocator tries to use high order pages, there is
1877 * no guarantee that allocations succeed. Therefore, @sz MUST be
1878 * less or equal than PAGE_SIZE.
1879 */
1880bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1881{
1882	int order;
1883
1884	if (pfrag->page) {
1885		if (atomic_read(&pfrag->page->_count) == 1) {
1886			pfrag->offset = 0;
1887			return true;
1888		}
1889		if (pfrag->offset + sz <= pfrag->size)
1890			return true;
1891		put_page(pfrag->page);
1892	}
1893
1894	order = SKB_FRAG_PAGE_ORDER;
1895	do {
1896		gfp_t gfp = prio;
1897
1898		if (order)
1899			gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1900		pfrag->page = alloc_pages(gfp, order);
 
1901		if (likely(pfrag->page)) {
1902			pfrag->offset = 0;
1903			pfrag->size = PAGE_SIZE << order;
1904			return true;
1905		}
1906	} while (--order >= 0);
1907
 
 
 
 
1908	return false;
1909}
1910EXPORT_SYMBOL(skb_page_frag_refill);
1911
1912bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1913{
1914	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1915		return true;
1916
1917	sk_enter_memory_pressure(sk);
1918	sk_stream_moderate_sndbuf(sk);
1919	return false;
1920}
1921EXPORT_SYMBOL(sk_page_frag_refill);
1922
1923static void __lock_sock(struct sock *sk)
1924	__releases(&sk->sk_lock.slock)
1925	__acquires(&sk->sk_lock.slock)
1926{
1927	DEFINE_WAIT(wait);
1928
1929	for (;;) {
1930		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1931					TASK_UNINTERRUPTIBLE);
1932		spin_unlock_bh(&sk->sk_lock.slock);
1933		schedule();
1934		spin_lock_bh(&sk->sk_lock.slock);
1935		if (!sock_owned_by_user(sk))
1936			break;
1937	}
1938	finish_wait(&sk->sk_lock.wq, &wait);
1939}
1940
1941static void __release_sock(struct sock *sk)
1942	__releases(&sk->sk_lock.slock)
1943	__acquires(&sk->sk_lock.slock)
1944{
1945	struct sk_buff *skb = sk->sk_backlog.head;
1946
1947	do {
1948		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1949		bh_unlock_sock(sk);
 
1950
1951		do {
1952			struct sk_buff *next = skb->next;
1953
1954			prefetch(next);
1955			WARN_ON_ONCE(skb_dst_is_noref(skb));
1956			skb->next = NULL;
1957			sk_backlog_rcv(sk, skb);
1958
1959			/*
1960			 * We are in process context here with softirqs
1961			 * disabled, use cond_resched_softirq() to preempt.
1962			 * This is safe to do because we've taken the backlog
1963			 * queue private:
1964			 */
1965			cond_resched_softirq();
1966
1967			skb = next;
1968		} while (skb != NULL);
1969
1970		bh_lock_sock(sk);
1971	} while ((skb = sk->sk_backlog.head) != NULL);
1972
1973	/*
1974	 * Doing the zeroing here guarantee we can not loop forever
1975	 * while a wild producer attempts to flood us.
1976	 */
1977	sk->sk_backlog.len = 0;
1978}
1979
 
 
 
 
 
 
 
 
 
 
 
 
 
1980/**
1981 * sk_wait_data - wait for data to arrive at sk_receive_queue
1982 * @sk:    sock to wait on
1983 * @timeo: for how long
 
1984 *
1985 * Now socket state including sk->sk_err is changed only under lock,
1986 * hence we may omit checks after joining wait queue.
1987 * We check receive queue before schedule() only as optimization;
1988 * it is very likely that release_sock() added new data.
1989 */
1990int sk_wait_data(struct sock *sk, long *timeo)
1991{
 
1992	int rc;
1993	DEFINE_WAIT(wait);
1994
1995	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1996	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1997	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1998	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1999	finish_wait(sk_sleep(sk), &wait);
2000	return rc;
2001}
2002EXPORT_SYMBOL(sk_wait_data);
2003
2004/**
2005 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2006 *	@sk: socket
2007 *	@size: memory size to allocate
 
2008 *	@kind: allocation type
2009 *
2010 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2011 *	rmem allocation. This function assumes that protocols which have
2012 *	memory_pressure use sk_wmem_queued as write buffer accounting.
 
 
 
 
2013 */
2014int __sk_mem_schedule(struct sock *sk, int size, int kind)
2015{
 
2016	struct proto *prot = sk->sk_prot;
2017	int amt = sk_mem_pages(size);
2018	long allocated;
2019	int parent_status = UNDER_LIMIT;
2020
2021	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
 
2022
2023	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
 
 
 
 
2024
2025	/* Under limit. */
2026	if (parent_status == UNDER_LIMIT &&
2027			allocated <= sk_prot_mem_limits(sk, 0)) {
2028		sk_leave_memory_pressure(sk);
2029		return 1;
2030	}
2031
2032	/* Under pressure. (we or our parents) */
2033	if ((parent_status > SOFT_LIMIT) ||
2034			allocated > sk_prot_mem_limits(sk, 1))
2035		sk_enter_memory_pressure(sk);
2036
2037	/* Over hard limit (we or our parents) */
2038	if ((parent_status == OVER_LIMIT) ||
2039			(allocated > sk_prot_mem_limits(sk, 2)))
2040		goto suppress_allocation;
2041
2042	/* guarantee minimum buffer size under pressure */
 
 
 
 
 
 
 
2043	if (kind == SK_MEM_RECV) {
2044		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2045			return 1;
2046
2047	} else { /* SK_MEM_SEND */
 
 
2048		if (sk->sk_type == SOCK_STREAM) {
2049			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2050				return 1;
2051		} else if (atomic_read(&sk->sk_wmem_alloc) <
2052			   prot->sysctl_wmem[0])
2053				return 1;
 
2054	}
2055
2056	if (sk_has_memory_pressure(sk)) {
2057		int alloc;
2058
2059		if (!sk_under_memory_pressure(sk))
 
 
 
 
2060			return 1;
 
 
 
 
 
2061		alloc = sk_sockets_allocated_read_positive(sk);
2062		if (sk_prot_mem_limits(sk, 2) > alloc *
2063		    sk_mem_pages(sk->sk_wmem_queued +
2064				 atomic_read(&sk->sk_rmem_alloc) +
2065				 sk->sk_forward_alloc))
2066			return 1;
2067	}
2068
2069suppress_allocation:
2070
2071	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2072		sk_stream_moderate_sndbuf(sk);
2073
2074		/* Fail only if socket is _under_ its sndbuf.
2075		 * In this case we cannot block, so that we have to fail.
2076		 */
2077		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
2078			return 1;
 
2079	}
2080
2081	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
2082
2083	/* Alas. Undo changes. */
2084	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2085
2086	sk_memory_allocated_sub(sk, amt);
 
2087
2088	return 0;
2089}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090EXPORT_SYMBOL(__sk_mem_schedule);
2091
2092/**
2093 *	__sk_reclaim - reclaim memory_allocated
2094 *	@sk: socket
 
 
 
2095 */
2096void __sk_mem_reclaim(struct sock *sk)
2097{
2098	sk_memory_allocated_sub(sk,
2099				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2100	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
 
2101
2102	if (sk_under_memory_pressure(sk) &&
2103	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2104		sk_leave_memory_pressure(sk);
2105}
 
 
 
 
 
 
 
 
 
 
 
 
2106EXPORT_SYMBOL(__sk_mem_reclaim);
2107
 
 
 
 
 
 
2108
2109/*
2110 * Set of default routines for initialising struct proto_ops when
2111 * the protocol does not support a particular function. In certain
2112 * cases where it makes no sense for a protocol to have a "do nothing"
2113 * function, some default processing is provided.
2114 */
2115
2116int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2117{
2118	return -EOPNOTSUPP;
2119}
2120EXPORT_SYMBOL(sock_no_bind);
2121
2122int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2123		    int len, int flags)
2124{
2125	return -EOPNOTSUPP;
2126}
2127EXPORT_SYMBOL(sock_no_connect);
2128
2129int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2130{
2131	return -EOPNOTSUPP;
2132}
2133EXPORT_SYMBOL(sock_no_socketpair);
2134
2135int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
2136{
2137	return -EOPNOTSUPP;
2138}
2139EXPORT_SYMBOL(sock_no_accept);
2140
2141int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2142		    int *len, int peer)
2143{
2144	return -EOPNOTSUPP;
2145}
2146EXPORT_SYMBOL(sock_no_getname);
2147
2148unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2149{
2150	return 0;
2151}
2152EXPORT_SYMBOL(sock_no_poll);
2153
2154int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2155{
2156	return -EOPNOTSUPP;
2157}
2158EXPORT_SYMBOL(sock_no_ioctl);
2159
2160int sock_no_listen(struct socket *sock, int backlog)
2161{
2162	return -EOPNOTSUPP;
2163}
2164EXPORT_SYMBOL(sock_no_listen);
2165
2166int sock_no_shutdown(struct socket *sock, int how)
2167{
2168	return -EOPNOTSUPP;
2169}
2170EXPORT_SYMBOL(sock_no_shutdown);
2171
2172int sock_no_setsockopt(struct socket *sock, int level, int optname,
2173		    char __user *optval, unsigned int optlen)
2174{
2175	return -EOPNOTSUPP;
2176}
2177EXPORT_SYMBOL(sock_no_setsockopt);
2178
2179int sock_no_getsockopt(struct socket *sock, int level, int optname,
2180		    char __user *optval, int __user *optlen)
2181{
2182	return -EOPNOTSUPP;
2183}
2184EXPORT_SYMBOL(sock_no_getsockopt);
2185
2186int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2187		    size_t len)
2188{
2189	return -EOPNOTSUPP;
2190}
2191EXPORT_SYMBOL(sock_no_sendmsg);
2192
2193int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2194		    size_t len, int flags)
2195{
2196	return -EOPNOTSUPP;
2197}
2198EXPORT_SYMBOL(sock_no_recvmsg);
2199
2200int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2201{
2202	/* Mirror missing mmap method error code */
2203	return -ENODEV;
2204}
2205EXPORT_SYMBOL(sock_no_mmap);
2206
2207ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
 
 
 
 
2208{
2209	ssize_t res;
2210	struct msghdr msg = {.msg_flags = flags};
2211	struct kvec iov;
2212	char *kaddr = kmap(page);
2213	iov.iov_base = kaddr + offset;
2214	iov.iov_len = size;
2215	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2216	kunmap(page);
2217	return res;
2218}
2219EXPORT_SYMBOL(sock_no_sendpage);
2220
2221/*
2222 *	Default Socket Callbacks
2223 */
2224
2225static void sock_def_wakeup(struct sock *sk)
2226{
2227	struct socket_wq *wq;
2228
2229	rcu_read_lock();
2230	wq = rcu_dereference(sk->sk_wq);
2231	if (wq_has_sleeper(wq))
2232		wake_up_interruptible_all(&wq->wait);
2233	rcu_read_unlock();
2234}
2235
2236static void sock_def_error_report(struct sock *sk)
2237{
2238	struct socket_wq *wq;
2239
2240	rcu_read_lock();
2241	wq = rcu_dereference(sk->sk_wq);
2242	if (wq_has_sleeper(wq))
2243		wake_up_interruptible_poll(&wq->wait, POLLERR);
2244	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2245	rcu_read_unlock();
2246}
2247
2248static void sock_def_readable(struct sock *sk)
2249{
2250	struct socket_wq *wq;
2251
 
 
2252	rcu_read_lock();
2253	wq = rcu_dereference(sk->sk_wq);
2254	if (wq_has_sleeper(wq))
2255		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2256						POLLRDNORM | POLLRDBAND);
2257	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2258	rcu_read_unlock();
2259}
2260
2261static void sock_def_write_space(struct sock *sk)
2262{
2263	struct socket_wq *wq;
2264
2265	rcu_read_lock();
2266
2267	/* Do not wake up a writer until he can make "significant"
2268	 * progress.  --DaveM
2269	 */
2270	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2271		wq = rcu_dereference(sk->sk_wq);
2272		if (wq_has_sleeper(wq))
2273			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2274						POLLWRNORM | POLLWRBAND);
2275
2276		/* Should agree with poll, otherwise some programs break */
2277		if (sock_writeable(sk))
2278			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2279	}
2280
2281	rcu_read_unlock();
2282}
2283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284static void sock_def_destruct(struct sock *sk)
2285{
2286	kfree(sk->sk_protinfo);
2287}
2288
2289void sk_send_sigurg(struct sock *sk)
2290{
2291	if (sk->sk_socket && sk->sk_socket->file)
2292		if (send_sigurg(&sk->sk_socket->file->f_owner))
2293			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2294}
2295EXPORT_SYMBOL(sk_send_sigurg);
2296
2297void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2298		    unsigned long expires)
2299{
2300	if (!mod_timer(timer, expires))
2301		sock_hold(sk);
2302}
2303EXPORT_SYMBOL(sk_reset_timer);
2304
2305void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2306{
2307	if (del_timer(timer))
2308		__sock_put(sk);
2309}
2310EXPORT_SYMBOL(sk_stop_timer);
2311
2312void sock_init_data(struct socket *sock, struct sock *sk)
2313{
2314	skb_queue_head_init(&sk->sk_receive_queue);
2315	skb_queue_head_init(&sk->sk_write_queue);
2316	skb_queue_head_init(&sk->sk_error_queue);
2317#ifdef CONFIG_NET_DMA
2318	skb_queue_head_init(&sk->sk_async_wait_queue);
2319#endif
2320
 
 
 
2321	sk->sk_send_head	=	NULL;
2322
2323	init_timer(&sk->sk_timer);
2324
2325	sk->sk_allocation	=	GFP_KERNEL;
2326	sk->sk_rcvbuf		=	sysctl_rmem_default;
2327	sk->sk_sndbuf		=	sysctl_wmem_default;
2328	sk->sk_state		=	TCP_CLOSE;
 
2329	sk_set_socket(sk, sock);
2330
2331	sock_set_flag(sk, SOCK_ZAPPED);
2332
2333	if (sock) {
2334		sk->sk_type	=	sock->type;
2335		sk->sk_wq	=	sock->wq;
2336		sock->sk	=	sk;
2337	} else
2338		sk->sk_wq	=	NULL;
2339
2340	spin_lock_init(&sk->sk_dst_lock);
2341	rwlock_init(&sk->sk_callback_lock);
2342	lockdep_set_class_and_name(&sk->sk_callback_lock,
2343			af_callback_keys + sk->sk_family,
2344			af_family_clock_key_strings[sk->sk_family]);
2345
2346	sk->sk_state_change	=	sock_def_wakeup;
2347	sk->sk_data_ready	=	sock_def_readable;
2348	sk->sk_write_space	=	sock_def_write_space;
2349	sk->sk_error_report	=	sock_def_error_report;
2350	sk->sk_destruct		=	sock_def_destruct;
2351
2352	sk->sk_frag.page	=	NULL;
2353	sk->sk_frag.offset	=	0;
2354	sk->sk_peek_off		=	-1;
2355
2356	sk->sk_peer_pid 	=	NULL;
2357	sk->sk_peer_cred	=	NULL;
 
 
2358	sk->sk_write_pending	=	0;
2359	sk->sk_rcvlowat		=	1;
2360	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2361	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2362
2363	sk->sk_stamp = ktime_set(-1L, 0);
 
 
 
 
2364
2365#ifdef CONFIG_NET_RX_BUSY_POLL
2366	sk->sk_napi_id		=	0;
2367	sk->sk_ll_usec		=	sysctl_net_busy_read;
2368#endif
2369
2370	sk->sk_max_pacing_rate = ~0U;
2371	sk->sk_pacing_rate = ~0U;
 
 
 
 
2372	/*
2373	 * Before updating sk_refcnt, we must commit prior changes to memory
2374	 * (Documentation/RCU/rculist_nulls.txt for details)
2375	 */
2376	smp_wmb();
2377	atomic_set(&sk->sk_refcnt, 1);
2378	atomic_set(&sk->sk_drops, 0);
2379}
 
 
 
 
 
 
 
 
 
 
2380EXPORT_SYMBOL(sock_init_data);
2381
2382void lock_sock_nested(struct sock *sk, int subclass)
2383{
 
 
 
2384	might_sleep();
2385	spin_lock_bh(&sk->sk_lock.slock);
2386	if (sk->sk_lock.owned)
2387		__lock_sock(sk);
2388	sk->sk_lock.owned = 1;
2389	spin_unlock(&sk->sk_lock.slock);
2390	/*
2391	 * The sk_lock has mutex_lock() semantics here:
2392	 */
2393	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2394	local_bh_enable();
2395}
2396EXPORT_SYMBOL(lock_sock_nested);
2397
2398void release_sock(struct sock *sk)
2399{
2400	/*
2401	 * The sk_lock has mutex_unlock() semantics:
2402	 */
2403	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2404
2405	spin_lock_bh(&sk->sk_lock.slock);
2406	if (sk->sk_backlog.tail)
2407		__release_sock(sk);
2408
2409	/* Warning : release_cb() might need to release sk ownership,
2410	 * ie call sock_release_ownership(sk) before us.
2411	 */
2412	if (sk->sk_prot->release_cb)
2413		sk->sk_prot->release_cb(sk);
 
2414
2415	sock_release_ownership(sk);
2416	if (waitqueue_active(&sk->sk_lock.wq))
2417		wake_up(&sk->sk_lock.wq);
2418	spin_unlock_bh(&sk->sk_lock.slock);
2419}
2420EXPORT_SYMBOL(release_sock);
2421
2422/**
2423 * lock_sock_fast - fast version of lock_sock
2424 * @sk: socket
2425 *
2426 * This version should be used for very small section, where process wont block
2427 * return false if fast path is taken
2428 *   sk_lock.slock locked, owned = 0, BH disabled
2429 * return true if slow path is taken
2430 *   sk_lock.slock unlocked, owned = 1, BH enabled
2431 */
2432bool lock_sock_fast(struct sock *sk)
2433{
2434	might_sleep();
2435	spin_lock_bh(&sk->sk_lock.slock);
2436
2437	if (!sk->sk_lock.owned)
2438		/*
2439		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
2440		 */
2441		return false;
 
2442
2443	__lock_sock(sk);
2444	sk->sk_lock.owned = 1;
2445	spin_unlock(&sk->sk_lock.slock);
2446	/*
2447	 * The sk_lock has mutex_lock() semantics here:
2448	 */
2449	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2450	local_bh_enable();
2451	return true;
2452}
2453EXPORT_SYMBOL(lock_sock_fast);
2454
2455int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2456{
2457	struct timeval tv;
2458	if (!sock_flag(sk, SOCK_TIMESTAMP))
2459		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460	tv = ktime_to_timeval(sk->sk_stamp);
2461	if (tv.tv_sec == -1)
2462		return -ENOENT;
2463	if (tv.tv_sec == 0) {
2464		sk->sk_stamp = ktime_get_real();
2465		tv = ktime_to_timeval(sk->sk_stamp);
2466	}
2467	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2468}
2469EXPORT_SYMBOL(sock_get_timestamp);
2470
2471int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2472{
2473	struct timespec ts;
2474	if (!sock_flag(sk, SOCK_TIMESTAMP))
2475		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2476	ts = ktime_to_timespec(sk->sk_stamp);
2477	if (ts.tv_sec == -1)
2478		return -ENOENT;
2479	if (ts.tv_sec == 0) {
2480		sk->sk_stamp = ktime_get_real();
2481		ts = ktime_to_timespec(sk->sk_stamp);
 
2482	}
2483	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484}
2485EXPORT_SYMBOL(sock_get_timestampns);
2486
2487void sock_enable_timestamp(struct sock *sk, int flag)
2488{
2489	if (!sock_flag(sk, flag)) {
2490		unsigned long previous_flags = sk->sk_flags;
2491
2492		sock_set_flag(sk, flag);
2493		/*
2494		 * we just set one of the two flags which require net
2495		 * time stamping, but time stamping might have been on
2496		 * already because of the other one
2497		 */
2498		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
 
2499			net_enable_timestamp();
2500	}
2501}
2502
2503int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2504		       int level, int type)
2505{
2506	struct sock_exterr_skb *serr;
2507	struct sk_buff *skb, *skb2;
2508	int copied, err;
2509
2510	err = -EAGAIN;
2511	skb = skb_dequeue(&sk->sk_error_queue);
2512	if (skb == NULL)
2513		goto out;
2514
2515	copied = skb->len;
2516	if (copied > len) {
2517		msg->msg_flags |= MSG_TRUNC;
2518		copied = len;
2519	}
2520	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2521	if (err)
2522		goto out_free_skb;
2523
2524	sock_recv_timestamp(msg, sk, skb);
2525
2526	serr = SKB_EXT_ERR(skb);
2527	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2528
2529	msg->msg_flags |= MSG_ERRQUEUE;
2530	err = copied;
2531
2532	/* Reset and regenerate socket error */
2533	spin_lock_bh(&sk->sk_error_queue.lock);
2534	sk->sk_err = 0;
2535	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2536		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2537		spin_unlock_bh(&sk->sk_error_queue.lock);
2538		sk->sk_error_report(sk);
2539	} else
2540		spin_unlock_bh(&sk->sk_error_queue.lock);
2541
2542out_free_skb:
2543	kfree_skb(skb);
2544out:
2545	return err;
2546}
2547EXPORT_SYMBOL(sock_recv_errqueue);
2548
2549/*
2550 *	Get a socket option on an socket.
2551 *
2552 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2553 *	asynchronous errors should be reported by getsockopt. We assume
2554 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2555 */
2556int sock_common_getsockopt(struct socket *sock, int level, int optname,
2557			   char __user *optval, int __user *optlen)
2558{
2559	struct sock *sk = sock->sk;
2560
2561	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
2562}
2563EXPORT_SYMBOL(sock_common_getsockopt);
2564
2565#ifdef CONFIG_COMPAT
2566int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2567				  char __user *optval, int __user *optlen)
2568{
2569	struct sock *sk = sock->sk;
2570
2571	if (sk->sk_prot->compat_getsockopt != NULL)
2572		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2573						      optval, optlen);
2574	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2575}
2576EXPORT_SYMBOL(compat_sock_common_getsockopt);
2577#endif
2578
2579int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2580			struct msghdr *msg, size_t size, int flags)
2581{
2582	struct sock *sk = sock->sk;
2583	int addr_len = 0;
2584	int err;
2585
2586	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2587				   flags & ~MSG_DONTWAIT, &addr_len);
2588	if (err >= 0)
2589		msg->msg_namelen = addr_len;
2590	return err;
2591}
2592EXPORT_SYMBOL(sock_common_recvmsg);
2593
2594/*
2595 *	Set socket options on an inet socket.
2596 */
2597int sock_common_setsockopt(struct socket *sock, int level, int optname,
2598			   char __user *optval, unsigned int optlen)
2599{
2600	struct sock *sk = sock->sk;
2601
2602	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
2603}
2604EXPORT_SYMBOL(sock_common_setsockopt);
2605
2606#ifdef CONFIG_COMPAT
2607int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2608				  char __user *optval, unsigned int optlen)
2609{
2610	struct sock *sk = sock->sk;
2611
2612	if (sk->sk_prot->compat_setsockopt != NULL)
2613		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2614						      optval, optlen);
2615	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2616}
2617EXPORT_SYMBOL(compat_sock_common_setsockopt);
2618#endif
2619
2620void sk_common_release(struct sock *sk)
2621{
2622	if (sk->sk_prot->destroy)
2623		sk->sk_prot->destroy(sk);
2624
2625	/*
2626	 * Observation: when sock_common_release is called, processes have
2627	 * no access to socket. But net still has.
2628	 * Step one, detach it from networking:
2629	 *
2630	 * A. Remove from hash tables.
2631	 */
2632
2633	sk->sk_prot->unhash(sk);
2634
2635	/*
2636	 * In this point socket cannot receive new packets, but it is possible
2637	 * that some packets are in flight because some CPU runs receiver and
2638	 * did hash table lookup before we unhashed socket. They will achieve
2639	 * receive queue and will be purged by socket destructor.
2640	 *
2641	 * Also we still have packets pending on receive queue and probably,
2642	 * our own packets waiting in device queues. sock_destroy will drain
2643	 * receive queue, but transmitted packets will delay socket destruction
2644	 * until the last reference will be released.
2645	 */
2646
2647	sock_orphan(sk);
2648
2649	xfrm_sk_free_policy(sk);
2650
2651	sk_refcnt_debug_release(sk);
 
 
2652
2653	if (sk->sk_frag.page) {
2654		put_page(sk->sk_frag.page);
2655		sk->sk_frag.page = NULL;
2656	}
2657
2658	sock_put(sk);
 
 
 
 
 
 
 
 
2659}
2660EXPORT_SYMBOL(sk_common_release);
2661
2662#ifdef CONFIG_PROC_FS
2663#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2664struct prot_inuse {
2665	int val[PROTO_INUSE_NR];
2666};
2667
2668static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2669
2670#ifdef CONFIG_NET_NS
2671void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2672{
2673	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2674}
2675EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2676
2677int sock_prot_inuse_get(struct net *net, struct proto *prot)
2678{
2679	int cpu, idx = prot->inuse_idx;
2680	int res = 0;
2681
2682	for_each_possible_cpu(cpu)
2683		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2684
2685	return res >= 0 ? res : 0;
2686}
2687EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2688
 
 
 
 
 
 
 
 
 
 
 
 
2689static int __net_init sock_inuse_init_net(struct net *net)
2690{
2691	net->core.inuse = alloc_percpu(struct prot_inuse);
2692	return net->core.inuse ? 0 : -ENOMEM;
 
 
2693}
2694
2695static void __net_exit sock_inuse_exit_net(struct net *net)
2696{
2697	free_percpu(net->core.inuse);
2698}
2699
2700static struct pernet_operations net_inuse_ops = {
2701	.init = sock_inuse_init_net,
2702	.exit = sock_inuse_exit_net,
2703};
2704
2705static __init int net_inuse_init(void)
2706{
2707	if (register_pernet_subsys(&net_inuse_ops))
2708		panic("Cannot initialize net inuse counters");
2709
2710	return 0;
2711}
2712
2713core_initcall(net_inuse_init);
2714#else
2715static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2716
2717void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2718{
2719	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2720}
2721EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2722
2723int sock_prot_inuse_get(struct net *net, struct proto *prot)
2724{
2725	int cpu, idx = prot->inuse_idx;
2726	int res = 0;
2727
2728	for_each_possible_cpu(cpu)
2729		res += per_cpu(prot_inuse, cpu).val[idx];
2730
2731	return res >= 0 ? res : 0;
2732}
2733EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2734#endif
2735
2736static void assign_proto_idx(struct proto *prot)
2737{
2738	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2739
2740	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2741		pr_err("PROTO_INUSE_NR exhausted\n");
2742		return;
2743	}
2744
2745	set_bit(prot->inuse_idx, proto_inuse_idx);
 
2746}
2747
2748static void release_proto_idx(struct proto *prot)
2749{
2750	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2751		clear_bit(prot->inuse_idx, proto_inuse_idx);
2752}
2753#else
2754static inline void assign_proto_idx(struct proto *prot)
2755{
 
2756}
2757
2758static inline void release_proto_idx(struct proto *prot)
2759{
2760}
 
2761#endif
2762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763int proto_register(struct proto *prot, int alloc_slab)
2764{
 
 
 
 
 
 
 
 
 
 
2765	if (alloc_slab) {
2766		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2767					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
 
 
2768					NULL);
2769
2770		if (prot->slab == NULL) {
2771			pr_crit("%s: Can't create sock SLAB cache!\n",
2772				prot->name);
2773			goto out;
2774		}
2775
2776		if (prot->rsk_prot != NULL) {
2777			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2778			if (prot->rsk_prot->slab_name == NULL)
2779				goto out_free_sock_slab;
2780
2781			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2782								 prot->rsk_prot->obj_size, 0,
2783								 SLAB_HWCACHE_ALIGN, NULL);
2784
2785			if (prot->rsk_prot->slab == NULL) {
2786				pr_crit("%s: Can't create request sock SLAB cache!\n",
2787					prot->name);
2788				goto out_free_request_sock_slab_name;
2789			}
2790		}
2791
2792		if (prot->twsk_prot != NULL) {
2793			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2794
2795			if (prot->twsk_prot->twsk_slab_name == NULL)
2796				goto out_free_request_sock_slab;
2797
2798			prot->twsk_prot->twsk_slab =
2799				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2800						  prot->twsk_prot->twsk_obj_size,
2801						  0,
2802						  SLAB_HWCACHE_ALIGN |
2803							prot->slab_flags,
2804						  NULL);
2805			if (prot->twsk_prot->twsk_slab == NULL)
2806				goto out_free_timewait_sock_slab_name;
2807		}
2808	}
2809
2810	mutex_lock(&proto_list_mutex);
 
 
 
 
 
2811	list_add(&prot->node, &proto_list);
2812	assign_proto_idx(prot);
2813	mutex_unlock(&proto_list_mutex);
2814	return 0;
2815
2816out_free_timewait_sock_slab_name:
2817	kfree(prot->twsk_prot->twsk_slab_name);
 
2818out_free_request_sock_slab:
2819	if (prot->rsk_prot && prot->rsk_prot->slab) {
2820		kmem_cache_destroy(prot->rsk_prot->slab);
2821		prot->rsk_prot->slab = NULL;
2822	}
2823out_free_request_sock_slab_name:
2824	if (prot->rsk_prot)
2825		kfree(prot->rsk_prot->slab_name);
2826out_free_sock_slab:
2827	kmem_cache_destroy(prot->slab);
2828	prot->slab = NULL;
2829out:
2830	return -ENOBUFS;
2831}
2832EXPORT_SYMBOL(proto_register);
2833
2834void proto_unregister(struct proto *prot)
2835{
2836	mutex_lock(&proto_list_mutex);
2837	release_proto_idx(prot);
2838	list_del(&prot->node);
2839	mutex_unlock(&proto_list_mutex);
2840
2841	if (prot->slab != NULL) {
2842		kmem_cache_destroy(prot->slab);
2843		prot->slab = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2844	}
2845
2846	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2847		kmem_cache_destroy(prot->rsk_prot->slab);
2848		kfree(prot->rsk_prot->slab_name);
2849		prot->rsk_prot->slab = NULL;
2850	}
 
 
2851
2852	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2853		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2854		kfree(prot->twsk_prot->twsk_slab_name);
2855		prot->twsk_prot->twsk_slab = NULL;
2856	}
2857}
2858EXPORT_SYMBOL(proto_unregister);
2859
2860#ifdef CONFIG_PROC_FS
2861static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2862	__acquires(proto_list_mutex)
2863{
2864	mutex_lock(&proto_list_mutex);
2865	return seq_list_start_head(&proto_list, *pos);
2866}
2867
2868static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2869{
2870	return seq_list_next(v, &proto_list, pos);
2871}
2872
2873static void proto_seq_stop(struct seq_file *seq, void *v)
2874	__releases(proto_list_mutex)
2875{
2876	mutex_unlock(&proto_list_mutex);
2877}
2878
2879static char proto_method_implemented(const void *method)
2880{
2881	return method == NULL ? 'n' : 'y';
2882}
2883static long sock_prot_memory_allocated(struct proto *proto)
2884{
2885	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2886}
2887
2888static char *sock_prot_memory_pressure(struct proto *proto)
2889{
2890	return proto->memory_pressure != NULL ?
2891	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2892}
2893
2894static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2895{
2896
2897	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2898			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2899		   proto->name,
2900		   proto->obj_size,
2901		   sock_prot_inuse_get(seq_file_net(seq), proto),
2902		   sock_prot_memory_allocated(proto),
2903		   sock_prot_memory_pressure(proto),
2904		   proto->max_header,
2905		   proto->slab == NULL ? "no" : "yes",
2906		   module_name(proto->owner),
2907		   proto_method_implemented(proto->close),
2908		   proto_method_implemented(proto->connect),
2909		   proto_method_implemented(proto->disconnect),
2910		   proto_method_implemented(proto->accept),
2911		   proto_method_implemented(proto->ioctl),
2912		   proto_method_implemented(proto->init),
2913		   proto_method_implemented(proto->destroy),
2914		   proto_method_implemented(proto->shutdown),
2915		   proto_method_implemented(proto->setsockopt),
2916		   proto_method_implemented(proto->getsockopt),
2917		   proto_method_implemented(proto->sendmsg),
2918		   proto_method_implemented(proto->recvmsg),
2919		   proto_method_implemented(proto->sendpage),
2920		   proto_method_implemented(proto->bind),
2921		   proto_method_implemented(proto->backlog_rcv),
2922		   proto_method_implemented(proto->hash),
2923		   proto_method_implemented(proto->unhash),
2924		   proto_method_implemented(proto->get_port),
2925		   proto_method_implemented(proto->enter_memory_pressure));
2926}
2927
2928static int proto_seq_show(struct seq_file *seq, void *v)
2929{
2930	if (v == &proto_list)
2931		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2932			   "protocol",
2933			   "size",
2934			   "sockets",
2935			   "memory",
2936			   "press",
2937			   "maxhdr",
2938			   "slab",
2939			   "module",
2940			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2941	else
2942		proto_seq_printf(seq, list_entry(v, struct proto, node));
2943	return 0;
2944}
2945
2946static const struct seq_operations proto_seq_ops = {
2947	.start  = proto_seq_start,
2948	.next   = proto_seq_next,
2949	.stop   = proto_seq_stop,
2950	.show   = proto_seq_show,
2951};
2952
2953static int proto_seq_open(struct inode *inode, struct file *file)
2954{
2955	return seq_open_net(inode, file, &proto_seq_ops,
2956			    sizeof(struct seq_net_private));
2957}
2958
2959static const struct file_operations proto_seq_fops = {
2960	.owner		= THIS_MODULE,
2961	.open		= proto_seq_open,
2962	.read		= seq_read,
2963	.llseek		= seq_lseek,
2964	.release	= seq_release_net,
2965};
2966
2967static __net_init int proto_init_net(struct net *net)
2968{
2969	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
 
2970		return -ENOMEM;
2971
2972	return 0;
2973}
2974
2975static __net_exit void proto_exit_net(struct net *net)
2976{
2977	remove_proc_entry("protocols", net->proc_net);
2978}
2979
2980
2981static __net_initdata struct pernet_operations proto_net_ops = {
2982	.init = proto_init_net,
2983	.exit = proto_exit_net,
2984};
2985
2986static int __init proto_init(void)
2987{
2988	return register_pernet_subsys(&proto_net_ops);
2989}
2990
2991subsys_initcall(proto_init);
2992
2993#endif /* PROC_FS */