Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <linux/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <linux/skbuff_ref.h>
 128#include <net/net_namespace.h>
 129#include <net/request_sock.h>
 130#include <net/sock.h>
 131#include <net/proto_memory.h>
 132#include <linux/net_tstamp.h>
 133#include <net/xfrm.h>
 134#include <linux/ipsec.h>
 135#include <net/cls_cgroup.h>
 136#include <net/netprio_cgroup.h>
 137#include <linux/sock_diag.h>
 138
 139#include <linux/filter.h>
 140#include <net/sock_reuseport.h>
 141#include <net/bpf_sk_storage.h>
 142
 143#include <trace/events/sock.h>
 144
 145#include <net/tcp.h>
 146#include <net/busy_poll.h>
 147#include <net/phonet/phonet.h>
 148
 149#include <linux/ethtool.h>
 150
 151#include "dev.h"
 152
 153static DEFINE_MUTEX(proto_list_mutex);
 154static LIST_HEAD(proto_list);
 155
 156static void sock_def_write_space_wfree(struct sock *sk);
 157static void sock_def_write_space(struct sock *sk);
 158
 159/**
 160 * sk_ns_capable - General socket capability test
 161 * @sk: Socket to use a capability on or through
 162 * @user_ns: The user namespace of the capability to use
 163 * @cap: The capability to use
 164 *
 165 * Test to see if the opener of the socket had when the socket was
 166 * created and the current process has the capability @cap in the user
 167 * namespace @user_ns.
 168 */
 169bool sk_ns_capable(const struct sock *sk,
 170		   struct user_namespace *user_ns, int cap)
 171{
 172	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 173		ns_capable(user_ns, cap);
 174}
 175EXPORT_SYMBOL(sk_ns_capable);
 176
 177/**
 178 * sk_capable - Socket global capability test
 179 * @sk: Socket to use a capability on or through
 180 * @cap: The global capability to use
 181 *
 182 * Test to see if the opener of the socket had when the socket was
 183 * created and the current process has the capability @cap in all user
 184 * namespaces.
 185 */
 186bool sk_capable(const struct sock *sk, int cap)
 187{
 188	return sk_ns_capable(sk, &init_user_ns, cap);
 189}
 190EXPORT_SYMBOL(sk_capable);
 191
 192/**
 193 * sk_net_capable - Network namespace socket capability test
 194 * @sk: Socket to use a capability on or through
 195 * @cap: The capability to use
 196 *
 197 * Test to see if the opener of the socket had when the socket was created
 198 * and the current process has the capability @cap over the network namespace
 199 * the socket is a member of.
 200 */
 201bool sk_net_capable(const struct sock *sk, int cap)
 202{
 203	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 204}
 205EXPORT_SYMBOL(sk_net_capable);
 206
 207/*
 208 * Each address family might have different locking rules, so we have
 209 * one slock key per address family and separate keys for internal and
 210 * userspace sockets.
 211 */
 212static struct lock_class_key af_family_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_keys[AF_MAX];
 214static struct lock_class_key af_family_slock_keys[AF_MAX];
 215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 216
 217/*
 218 * Make lock validator output more readable. (we pre-construct these
 219 * strings build-time, so that runtime initialization of socket
 220 * locks is fast):
 221 */
 222
 223#define _sock_locks(x)						  \
 224  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 225  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 226  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 227  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 228  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 229  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 230  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 231  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 232  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 233  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 234  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 235  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 236  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 237  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 238  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 239  x "AF_MCTP"  , \
 240  x "AF_MAX"
 241
 242static const char *const af_family_key_strings[AF_MAX+1] = {
 243	_sock_locks("sk_lock-")
 244};
 245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 246	_sock_locks("slock-")
 247};
 248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 249	_sock_locks("clock-")
 250};
 251
 252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 253	_sock_locks("k-sk_lock-")
 254};
 255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 256	_sock_locks("k-slock-")
 257};
 258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 259	_sock_locks("k-clock-")
 260};
 261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 262	_sock_locks("rlock-")
 263};
 264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 265	_sock_locks("wlock-")
 266};
 267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 268	_sock_locks("elock-")
 269};
 270
 271/*
 272 * sk_callback_lock and sk queues locking rules are per-address-family,
 273 * so split the lock classes by using a per-AF key:
 274 */
 275static struct lock_class_key af_callback_keys[AF_MAX];
 276static struct lock_class_key af_rlock_keys[AF_MAX];
 277static struct lock_class_key af_wlock_keys[AF_MAX];
 278static struct lock_class_key af_elock_keys[AF_MAX];
 279static struct lock_class_key af_kern_callback_keys[AF_MAX];
 280
 281/* Run time adjustable parameters. */
 282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 283EXPORT_SYMBOL(sysctl_wmem_max);
 284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 285EXPORT_SYMBOL(sysctl_rmem_max);
 286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 288
 
 
 
 
 
 
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 320	 */
 321	sk_mem_reclaim(sk);
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 
 
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 
 
 
 
 
 
 
 
 
 
 
 
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 465	}
 466}
 467
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 
 
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 823	sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
 824	sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
 825	if (val)  {
 826		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 
 
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 
 
 
 
 828	}
 829}
 830
 831void sock_enable_timestamps(struct sock *sk)
 832{
 833	lock_sock(sk);
 834	__sock_set_timestamps(sk, true, false, true);
 835	release_sock(sk);
 836}
 837EXPORT_SYMBOL(sock_enable_timestamps);
 838
 839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 840{
 841	switch (optname) {
 842	case SO_TIMESTAMP_OLD:
 843		__sock_set_timestamps(sk, valbool, false, false);
 844		break;
 845	case SO_TIMESTAMP_NEW:
 846		__sock_set_timestamps(sk, valbool, true, false);
 847		break;
 848	case SO_TIMESTAMPNS_OLD:
 849		__sock_set_timestamps(sk, valbool, false, true);
 850		break;
 851	case SO_TIMESTAMPNS_NEW:
 852		__sock_set_timestamps(sk, valbool, true, true);
 853		break;
 854	}
 855}
 856
 857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 858{
 859	struct net *net = sock_net(sk);
 860	struct net_device *dev = NULL;
 861	bool match = false;
 862	int *vclock_index;
 863	int i, num;
 864
 865	if (sk->sk_bound_dev_if)
 866		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 867
 868	if (!dev) {
 869		pr_err("%s: sock not bind to device\n", __func__);
 870		return -EOPNOTSUPP;
 871	}
 872
 873	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 874	dev_put(dev);
 875
 876	for (i = 0; i < num; i++) {
 877		if (*(vclock_index + i) == phc_index) {
 878			match = true;
 879			break;
 880		}
 881	}
 882
 883	if (num > 0)
 884		kfree(vclock_index);
 885
 886	if (!match)
 887		return -EINVAL;
 888
 889	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 890
 891	return 0;
 892}
 893
 894int sock_set_timestamping(struct sock *sk, int optname,
 895			  struct so_timestamping timestamping)
 896{
 897	int val = timestamping.flags;
 898	int ret;
 899
 900	if (val & ~SOF_TIMESTAMPING_MASK)
 901		return -EINVAL;
 902
 903	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 904	    !(val & SOF_TIMESTAMPING_OPT_ID))
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID &&
 908	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 909		if (sk_is_tcp(sk)) {
 910			if ((1 << sk->sk_state) &
 911			    (TCPF_CLOSE | TCPF_LISTEN))
 912				return -EINVAL;
 913			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 914				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 915			else
 916				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 917		} else {
 918			atomic_set(&sk->sk_tskey, 0);
 919		}
 920	}
 921
 922	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 923	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 924		return -EINVAL;
 925
 926	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 927		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 928		if (ret)
 929			return ret;
 930	}
 931
 932	WRITE_ONCE(sk->sk_tsflags, val);
 933	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 934
 935	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 936		sock_enable_timestamp(sk,
 937				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 938	else
 939		sock_disable_timestamp(sk,
 940				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 941	return 0;
 942}
 943
 944void sock_set_keepalive(struct sock *sk)
 945{
 946	lock_sock(sk);
 947	if (sk->sk_prot->keepalive)
 948		sk->sk_prot->keepalive(sk, true);
 949	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 950	release_sock(sk);
 951}
 952EXPORT_SYMBOL(sock_set_keepalive);
 953
 954static void __sock_set_rcvbuf(struct sock *sk, int val)
 955{
 956	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 957	 * as a negative value.
 958	 */
 959	val = min_t(int, val, INT_MAX / 2);
 960	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 961
 962	/* We double it on the way in to account for "struct sk_buff" etc.
 963	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 964	 * will allow that much actual data to be received on that socket.
 965	 *
 966	 * Applications are unaware that "struct sk_buff" and other overheads
 967	 * allocate from the receive buffer during socket buffer allocation.
 968	 *
 969	 * And after considering the possible alternatives, returning the value
 970	 * we actually used in getsockopt is the most desirable behavior.
 971	 */
 972	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 973}
 974
 975void sock_set_rcvbuf(struct sock *sk, int val)
 976{
 977	lock_sock(sk);
 978	__sock_set_rcvbuf(sk, val);
 979	release_sock(sk);
 980}
 981EXPORT_SYMBOL(sock_set_rcvbuf);
 982
 983static void __sock_set_mark(struct sock *sk, u32 val)
 984{
 985	if (val != sk->sk_mark) {
 986		WRITE_ONCE(sk->sk_mark, val);
 987		sk_dst_reset(sk);
 988	}
 989}
 990
 991void sock_set_mark(struct sock *sk, u32 val)
 992{
 993	lock_sock(sk);
 994	__sock_set_mark(sk, val);
 995	release_sock(sk);
 996}
 997EXPORT_SYMBOL(sock_set_mark);
 998
 999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001	/* Round down bytes to multiple of pages */
1002	bytes = round_down(bytes, PAGE_SIZE);
1003
1004	WARN_ON(bytes > sk->sk_reserved_mem);
1005	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006	sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011	long allocated;
1012	bool charged;
1013	int pages;
1014
1015	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016		return -EOPNOTSUPP;
1017
1018	if (!bytes)
1019		return 0;
1020
1021	pages = sk_mem_pages(bytes);
1022
1023	/* pre-charge to memcg */
1024	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026	if (!charged)
1027		return -ENOMEM;
1028
1029	/* pre-charge to forward_alloc */
1030	sk_memory_allocated_add(sk, pages);
1031	allocated = sk_memory_allocated(sk);
1032	/* If the system goes into memory pressure with this
1033	 * precharge, give up and return error.
1034	 */
1035	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036		sk_memory_allocated_sub(sk, pages);
1037		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038		return -ENOMEM;
1039	}
1040	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042	WRITE_ONCE(sk->sk_reserved_mem,
1043		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045	return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061	unsigned int num_tokens, i, j, k, netmem_num = 0;
1062	struct dmabuf_token *tokens;
1063	int ret = 0, num_frags = 0;
1064	netmem_ref netmems[16];
1065
1066	if (!sk_is_tcp(sk))
1067		return -EBADF;
1068
1069	if (optlen % sizeof(*tokens) ||
1070	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071		return -EINVAL;
1072
1073	num_tokens = optlen / sizeof(*tokens);
1074	tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075	if (!tokens)
1076		return -ENOMEM;
1077
1078	if (copy_from_sockptr(tokens, optval, optlen)) {
1079		kvfree(tokens);
1080		return -EFAULT;
1081	}
1082
1083	xa_lock_bh(&sk->sk_user_frags);
1084	for (i = 0; i < num_tokens; i++) {
1085		for (j = 0; j < tokens[i].token_count; j++) {
1086			if (++num_frags > MAX_DONTNEED_FRAGS)
1087				goto frag_limit_reached;
1088
1089			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090				&sk->sk_user_frags, tokens[i].token_start + j);
1091
1092			if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093				continue;
1094
1095			netmems[netmem_num++] = netmem;
1096			if (netmem_num == ARRAY_SIZE(netmems)) {
1097				xa_unlock_bh(&sk->sk_user_frags);
1098				for (k = 0; k < netmem_num; k++)
1099					WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100				netmem_num = 0;
1101				xa_lock_bh(&sk->sk_user_frags);
1102			}
1103			ret++;
1104		}
1105	}
1106
1107frag_limit_reached:
1108	xa_unlock_bh(&sk->sk_user_frags);
1109	for (k = 0; k < netmem_num; k++)
1110		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112	kvfree(tokens);
1113	return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119	/* When current->bpf_ctx is set, the setsockopt is called from
1120	 * a bpf prog.  bpf has ensured the sk lock has been
1121	 * acquired before calling setsockopt().
1122	 */
1123	if (has_current_bpf_ctx())
1124		return;
1125
1126	lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132	if (has_current_bpf_ctx())
1133		return;
1134
1135	release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141	return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147	return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153	switch (value) {
1154	case CLOCK_REALTIME:
1155	case CLOCK_MONOTONIC:
1156	case CLOCK_TAI:
1157		return 0;
1158	}
1159	return -EINVAL;
1160}
1161
1162/*
1163 *	This is meant for all protocols to use and covers goings on
1164 *	at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168		  sockptr_t optval, unsigned int optlen)
1169{
1170	struct so_timestamping timestamping;
1171	struct socket *sock = sk->sk_socket;
1172	struct sock_txtime sk_txtime;
 
1173	int val;
1174	int valbool;
1175	struct linger ling;
1176	int ret = 0;
1177
1178	/*
1179	 *	Options without arguments
1180	 */
1181
1182	if (optname == SO_BINDTODEVICE)
1183		return sock_setbindtodevice(sk, optval, optlen);
1184
1185	if (optlen < sizeof(int))
1186		return -EINVAL;
1187
1188	if (copy_from_sockptr(&val, optval, sizeof(val)))
1189		return -EFAULT;
1190
1191	valbool = val ? 1 : 0;
1192
1193	/* handle options which do not require locking the socket. */
1194	switch (optname) {
1195	case SO_PRIORITY:
1196		if ((val >= 0 && val <= 6) ||
1197		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199			sock_set_priority(sk, val);
1200			return 0;
1201		}
1202		return -EPERM;
1203	case SO_PASSSEC:
1204		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205		return 0;
1206	case SO_PASSCRED:
1207		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208		return 0;
1209	case SO_PASSPIDFD:
1210		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211		return 0;
1212	case SO_TYPE:
1213	case SO_PROTOCOL:
1214	case SO_DOMAIN:
1215	case SO_ERROR:
1216		return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218	case SO_BUSY_POLL:
1219		if (val < 0)
1220			return -EINVAL;
1221		WRITE_ONCE(sk->sk_ll_usec, val);
1222		return 0;
1223	case SO_PREFER_BUSY_POLL:
1224		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225			return -EPERM;
1226		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227		return 0;
1228	case SO_BUSY_POLL_BUDGET:
1229		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230		    !sockopt_capable(CAP_NET_ADMIN))
1231			return -EPERM;
1232		if (val < 0 || val > U16_MAX)
1233			return -EINVAL;
1234		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235		return 0;
1236#endif
1237	case SO_MAX_PACING_RATE:
1238		{
1239		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240		unsigned long pacing_rate;
1241
1242		if (sizeof(ulval) != sizeof(val) &&
1243		    optlen >= sizeof(ulval) &&
1244		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245			return -EFAULT;
1246		}
1247		if (ulval != ~0UL)
1248			cmpxchg(&sk->sk_pacing_status,
1249				SK_PACING_NONE,
1250				SK_PACING_NEEDED);
1251		/* Pairs with READ_ONCE() from sk_getsockopt() */
1252		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254		if (ulval < pacing_rate)
1255			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256		return 0;
1257		}
1258	case SO_TXREHASH:
1259		if (val < -1 || val > 1)
1260			return -EINVAL;
1261		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263		/* Paired with READ_ONCE() in tcp_rtx_synack()
1264		 * and sk_getsockopt().
1265		 */
1266		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267		return 0;
1268	case SO_PEEK_OFF:
1269		{
1270		int (*set_peek_off)(struct sock *sk, int val);
1271
1272		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273		if (set_peek_off)
1274			ret = set_peek_off(sk, val);
1275		else
1276			ret = -EOPNOTSUPP;
1277		return ret;
1278		}
1279#ifdef CONFIG_PAGE_POOL
1280	case SO_DEVMEM_DONTNEED:
1281		return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283	}
1284
1285	sockopt_lock_sock(sk);
1286
1287	switch (optname) {
1288	case SO_DEBUG:
1289		if (val && !sockopt_capable(CAP_NET_ADMIN))
1290			ret = -EACCES;
1291		else
1292			sock_valbool_flag(sk, SOCK_DBG, valbool);
1293		break;
1294	case SO_REUSEADDR:
1295		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296		break;
1297	case SO_REUSEPORT:
1298		if (valbool && !sk_is_inet(sk))
1299			ret = -EOPNOTSUPP;
1300		else
1301			sk->sk_reuseport = valbool;
 
 
 
1302		break;
1303	case SO_DONTROUTE:
1304		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305		sk_dst_reset(sk);
1306		break;
1307	case SO_BROADCAST:
1308		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309		break;
1310	case SO_SNDBUF:
1311		/* Don't error on this BSD doesn't and if you think
1312		 * about it this is right. Otherwise apps have to
1313		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314		 * are treated in BSD as hints
1315		 */
1316		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318		/* Ensure val * 2 fits into an int, to prevent max_t()
1319		 * from treating it as a negative value.
1320		 */
1321		val = min_t(int, val, INT_MAX / 2);
1322		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323		WRITE_ONCE(sk->sk_sndbuf,
1324			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325		/* Wake up sending tasks if we upped the value. */
1326		sk->sk_write_space(sk);
1327		break;
1328
1329	case SO_SNDBUFFORCE:
1330		if (!sockopt_capable(CAP_NET_ADMIN)) {
1331			ret = -EPERM;
1332			break;
1333		}
1334
1335		/* No negative values (to prevent underflow, as val will be
1336		 * multiplied by 2).
1337		 */
1338		if (val < 0)
1339			val = 0;
1340		goto set_sndbuf;
1341
1342	case SO_RCVBUF:
1343		/* Don't error on this BSD doesn't and if you think
1344		 * about it this is right. Otherwise apps have to
1345		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346		 * are treated in BSD as hints
1347		 */
1348		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1349		break;
1350
1351	case SO_RCVBUFFORCE:
1352		if (!sockopt_capable(CAP_NET_ADMIN)) {
1353			ret = -EPERM;
1354			break;
1355		}
1356
1357		/* No negative values (to prevent underflow, as val will be
1358		 * multiplied by 2).
1359		 */
1360		__sock_set_rcvbuf(sk, max(val, 0));
1361		break;
1362
1363	case SO_KEEPALIVE:
1364		if (sk->sk_prot->keepalive)
1365			sk->sk_prot->keepalive(sk, valbool);
1366		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367		break;
1368
1369	case SO_OOBINLINE:
1370		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371		break;
1372
1373	case SO_NO_CHECK:
1374		sk->sk_no_check_tx = valbool;
1375		break;
1376
 
 
 
 
 
 
 
 
1377	case SO_LINGER:
1378		if (optlen < sizeof(ling)) {
1379			ret = -EINVAL;	/* 1003.1g */
1380			break;
1381		}
1382		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383			ret = -EFAULT;
1384			break;
1385		}
1386		if (!ling.l_onoff) {
1387			sock_reset_flag(sk, SOCK_LINGER);
1388		} else {
1389			unsigned long t_sec = ling.l_linger;
1390
1391			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393			else
1394				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
 
1395			sock_set_flag(sk, SOCK_LINGER);
1396		}
1397		break;
1398
1399	case SO_BSDCOMPAT:
 
 
 
 
 
 
 
 
1400		break;
1401
1402	case SO_TIMESTAMP_OLD:
 
 
1403	case SO_TIMESTAMP_NEW:
 
 
1404	case SO_TIMESTAMPNS_OLD:
 
 
1405	case SO_TIMESTAMPNS_NEW:
1406		sock_set_timestamp(sk, optname, valbool);
1407		break;
1408
1409	case SO_TIMESTAMPING_NEW:
 
 
1410	case SO_TIMESTAMPING_OLD:
1411		if (optlen == sizeof(timestamping)) {
1412			if (copy_from_sockptr(&timestamping, optval,
1413					      sizeof(timestamping))) {
1414				ret = -EFAULT;
1415				break;
 
 
 
 
 
 
 
 
 
 
 
 
1416			}
1417		} else {
1418			memset(&timestamping, 0, sizeof(timestamping));
1419			timestamping.flags = val;
1420		}
1421		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422		break;
1423
1424	case SO_RCVLOWAT:
1425		{
1426		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1427
1428		if (val < 0)
1429			val = INT_MAX;
1430		if (sock)
1431			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432		if (set_rcvlowat)
1433			ret = set_rcvlowat(sk, val);
1434		else
1435			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436		break;
1437		}
1438	case SO_RCVTIMEO_OLD:
1439	case SO_RCVTIMEO_NEW:
1440		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441				       optlen, optname == SO_RCVTIMEO_OLD);
1442		break;
1443
1444	case SO_SNDTIMEO_OLD:
1445	case SO_SNDTIMEO_NEW:
1446		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447				       optlen, optname == SO_SNDTIMEO_OLD);
1448		break;
1449
1450	case SO_ATTACH_FILTER: {
1451		struct sock_fprog fprog;
1452
1453		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454		if (!ret)
1455			ret = sk_attach_filter(&fprog, sk);
1456		break;
1457	}
1458	case SO_ATTACH_BPF:
1459		ret = -EINVAL;
1460		if (optlen == sizeof(u32)) {
1461			u32 ufd;
1462
1463			ret = -EFAULT;
1464			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465				break;
1466
1467			ret = sk_attach_bpf(ufd, sk);
1468		}
1469		break;
1470
1471	case SO_ATTACH_REUSEPORT_CBPF: {
1472		struct sock_fprog fprog;
1473
1474		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475		if (!ret)
1476			ret = sk_reuseport_attach_filter(&fprog, sk);
1477		break;
1478	}
1479	case SO_ATTACH_REUSEPORT_EBPF:
1480		ret = -EINVAL;
1481		if (optlen == sizeof(u32)) {
1482			u32 ufd;
1483
1484			ret = -EFAULT;
1485			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486				break;
1487
1488			ret = sk_reuseport_attach_bpf(ufd, sk);
1489		}
1490		break;
1491
1492	case SO_DETACH_REUSEPORT_BPF:
1493		ret = reuseport_detach_prog(sk);
1494		break;
1495
1496	case SO_DETACH_FILTER:
1497		ret = sk_detach_filter(sk);
1498		break;
1499
1500	case SO_LOCK_FILTER:
1501		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502			ret = -EPERM;
1503		else
1504			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505		break;
1506
 
 
 
 
 
 
1507	case SO_MARK:
1508		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510			ret = -EPERM;
1511			break;
 
 
1512		}
1513
1514		__sock_set_mark(sk, val);
1515		break;
1516	case SO_RCVMARK:
1517		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518		break;
1519
1520	case SO_RXQ_OVFL:
1521		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522		break;
1523
1524	case SO_WIFI_STATUS:
1525		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526		break;
1527
 
 
 
 
 
 
 
1528	case SO_NOFCS:
1529		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530		break;
1531
1532	case SO_SELECT_ERR_QUEUE:
1533		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534		break;
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537	case SO_INCOMING_CPU:
1538		reuseport_update_incoming_cpu(sk, val);
1539		break;
1540
1541	case SO_CNX_ADVICE:
1542		if (val == 1)
1543			dst_negative_advice(sk);
1544		break;
1545
1546	case SO_ZEROCOPY:
1547		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548			if (!(sk_is_tcp(sk) ||
 
1549			      (sk->sk_type == SOCK_DGRAM &&
1550			       sk->sk_protocol == IPPROTO_UDP)))
1551				ret = -EOPNOTSUPP;
1552		} else if (sk->sk_family != PF_RDS) {
1553			ret = -EOPNOTSUPP;
1554		}
1555		if (!ret) {
1556			if (val < 0 || val > 1)
1557				ret = -EINVAL;
1558			else
1559				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560		}
1561		break;
1562
1563	case SO_TXTIME:
1564		if (optlen != sizeof(struct sock_txtime)) {
1565			ret = -EINVAL;
1566			break;
1567		} else if (copy_from_sockptr(&sk_txtime, optval,
1568			   sizeof(struct sock_txtime))) {
1569			ret = -EFAULT;
1570			break;
1571		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572			ret = -EINVAL;
1573			break;
1574		}
1575		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576		 * scheduler has enough safe guards.
1577		 */
1578		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580			ret = -EPERM;
1581			break;
1582		}
1583
1584		ret = sockopt_validate_clockid(sk_txtime.clockid);
1585		if (ret)
1586			break;
1587
1588		sock_valbool_flag(sk, SOCK_TXTIME, true);
1589		sk->sk_clockid = sk_txtime.clockid;
1590		sk->sk_txtime_deadline_mode =
1591			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592		sk->sk_txtime_report_errors =
1593			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594		break;
1595
1596	case SO_BINDTOIFINDEX:
1597		ret = sock_bindtoindex_locked(sk, val);
1598		break;
1599
1600	case SO_BUF_LOCK:
1601		if (val & ~SOCK_BUF_LOCK_MASK) {
1602			ret = -EINVAL;
1603			break;
1604		}
1605		sk->sk_userlocks = val | (sk->sk_userlocks &
1606					  ~SOCK_BUF_LOCK_MASK);
1607		break;
1608
1609	case SO_RESERVE_MEM:
1610	{
1611		int delta;
1612
1613		if (val < 0) {
1614			ret = -EINVAL;
1615			break;
1616		}
1617
1618		delta = val - sk->sk_reserved_mem;
1619		if (delta < 0)
1620			sock_release_reserved_memory(sk, -delta);
1621		else
1622			ret = sock_reserve_memory(sk, delta);
1623		break;
1624	}
1625
1626	default:
1627		ret = -ENOPROTOOPT;
1628		break;
1629	}
1630	sockopt_release_sock(sk);
1631	return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635		    sockptr_t optval, unsigned int optlen)
1636{
1637	return sk_setsockopt(sock->sk, level, optname,
1638			     optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644	const struct cred *cred;
1645
1646	spin_lock(&sk->sk_peer_lock);
1647	cred = get_cred(sk->sk_peer_cred);
1648	spin_unlock(&sk->sk_peer_lock);
1649
1650	return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654			  struct ucred *ucred)
1655{
1656	ucred->pid = pid_vnr(pid);
1657	ucred->uid = ucred->gid = -1;
1658	if (cred) {
1659		struct user_namespace *current_ns = current_user_ns();
1660
1661		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663	}
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668	struct user_namespace *user_ns = current_user_ns();
1669	int i;
1670
1671	for (i = 0; i < src->ngroups; i++) {
1672		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675			return -EFAULT;
1676	}
1677
1678	return 0;
1679}
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682		  sockptr_t optval, sockptr_t optlen)
1683{
1684	struct socket *sock = sk->sk_socket;
1685
1686	union {
1687		int val;
1688		u64 val64;
1689		unsigned long ulval;
1690		struct linger ling;
1691		struct old_timeval32 tm32;
1692		struct __kernel_old_timeval tm;
1693		struct  __kernel_sock_timeval stm;
1694		struct sock_txtime txtime;
1695		struct so_timestamping timestamping;
1696	} v;
1697
1698	int lv = sizeof(int);
1699	int len;
1700
1701	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702		return -EFAULT;
1703	if (len < 0)
1704		return -EINVAL;
1705
1706	memset(&v, 0, sizeof(v));
1707
1708	switch (optname) {
1709	case SO_DEBUG:
1710		v.val = sock_flag(sk, SOCK_DBG);
1711		break;
1712
1713	case SO_DONTROUTE:
1714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715		break;
1716
1717	case SO_BROADCAST:
1718		v.val = sock_flag(sk, SOCK_BROADCAST);
1719		break;
1720
1721	case SO_SNDBUF:
1722		v.val = READ_ONCE(sk->sk_sndbuf);
1723		break;
1724
1725	case SO_RCVBUF:
1726		v.val = READ_ONCE(sk->sk_rcvbuf);
1727		break;
1728
1729	case SO_REUSEADDR:
1730		v.val = sk->sk_reuse;
1731		break;
1732
1733	case SO_REUSEPORT:
1734		v.val = sk->sk_reuseport;
1735		break;
1736
1737	case SO_KEEPALIVE:
1738		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739		break;
1740
1741	case SO_TYPE:
1742		v.val = sk->sk_type;
1743		break;
1744
1745	case SO_PROTOCOL:
1746		v.val = sk->sk_protocol;
1747		break;
1748
1749	case SO_DOMAIN:
1750		v.val = sk->sk_family;
1751		break;
1752
1753	case SO_ERROR:
1754		v.val = -sock_error(sk);
1755		if (v.val == 0)
1756			v.val = xchg(&sk->sk_err_soft, 0);
1757		break;
1758
1759	case SO_OOBINLINE:
1760		v.val = sock_flag(sk, SOCK_URGINLINE);
1761		break;
1762
1763	case SO_NO_CHECK:
1764		v.val = sk->sk_no_check_tx;
1765		break;
1766
1767	case SO_PRIORITY:
1768		v.val = READ_ONCE(sk->sk_priority);
1769		break;
1770
1771	case SO_LINGER:
1772		lv		= sizeof(v.ling);
1773		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1774		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1775		break;
1776
1777	case SO_BSDCOMPAT:
 
1778		break;
1779
1780	case SO_TIMESTAMP_OLD:
1781		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1784		break;
1785
1786	case SO_TIMESTAMPNS_OLD:
1787		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788		break;
1789
1790	case SO_TIMESTAMP_NEW:
1791		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792		break;
1793
1794	case SO_TIMESTAMPNS_NEW:
1795		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796		break;
1797
1798	case SO_TIMESTAMPING_OLD:
1799	case SO_TIMESTAMPING_NEW:
1800		lv = sizeof(v.timestamping);
1801		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802		 * returning the flags when they were set through the same option.
1803		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804		 */
1805		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1808		}
1809		break;
1810
1811	case SO_RCVTIMEO_OLD:
1812	case SO_RCVTIMEO_NEW:
1813		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814				      SO_RCVTIMEO_OLD == optname);
1815		break;
1816
1817	case SO_SNDTIMEO_OLD:
1818	case SO_SNDTIMEO_NEW:
1819		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820				      SO_SNDTIMEO_OLD == optname);
1821		break;
1822
1823	case SO_RCVLOWAT:
1824		v.val = READ_ONCE(sk->sk_rcvlowat);
1825		break;
1826
1827	case SO_SNDLOWAT:
1828		v.val = 1;
1829		break;
1830
1831	case SO_PASSCRED:
1832		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833		break;
1834
1835	case SO_PASSPIDFD:
1836		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837		break;
1838
1839	case SO_PEERCRED:
1840	{
1841		struct ucred peercred;
1842		if (len > sizeof(peercred))
1843			len = sizeof(peercred);
1844
1845		spin_lock(&sk->sk_peer_lock);
1846		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847		spin_unlock(&sk->sk_peer_lock);
1848
1849		if (copy_to_sockptr(optval, &peercred, len))
1850			return -EFAULT;
1851		goto lenout;
1852	}
1853
1854	case SO_PEERPIDFD:
1855	{
1856		struct pid *peer_pid;
1857		struct file *pidfd_file = NULL;
1858		int pidfd;
1859
1860		if (len > sizeof(pidfd))
1861			len = sizeof(pidfd);
1862
1863		spin_lock(&sk->sk_peer_lock);
1864		peer_pid = get_pid(sk->sk_peer_pid);
1865		spin_unlock(&sk->sk_peer_lock);
1866
1867		if (!peer_pid)
1868			return -ENODATA;
1869
1870		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871		put_pid(peer_pid);
1872		if (pidfd < 0)
1873			return pidfd;
1874
1875		if (copy_to_sockptr(optval, &pidfd, len) ||
1876		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1877			put_unused_fd(pidfd);
1878			fput(pidfd_file);
1879
1880			return -EFAULT;
1881		}
1882
1883		fd_install(pidfd, pidfd_file);
1884		return 0;
1885	}
1886
1887	case SO_PEERGROUPS:
1888	{
1889		const struct cred *cred;
1890		int ret, n;
1891
1892		cred = sk_get_peer_cred(sk);
1893		if (!cred)
1894			return -ENODATA;
1895
1896		n = cred->group_info->ngroups;
1897		if (len < n * sizeof(gid_t)) {
1898			len = n * sizeof(gid_t);
1899			put_cred(cred);
1900			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901		}
1902		len = n * sizeof(gid_t);
1903
1904		ret = groups_to_user(optval, cred->group_info);
1905		put_cred(cred);
1906		if (ret)
1907			return ret;
1908		goto lenout;
1909	}
1910
1911	case SO_PEERNAME:
1912	{
1913		struct sockaddr_storage address;
1914
1915		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916		if (lv < 0)
1917			return -ENOTCONN;
1918		if (lv < len)
1919			return -EINVAL;
1920		if (copy_to_sockptr(optval, &address, len))
1921			return -EFAULT;
1922		goto lenout;
1923	}
1924
1925	/* Dubious BSD thing... Probably nobody even uses it, but
1926	 * the UNIX standard wants it for whatever reason... -DaveM
1927	 */
1928	case SO_ACCEPTCONN:
1929		v.val = sk->sk_state == TCP_LISTEN;
1930		break;
1931
1932	case SO_PASSSEC:
1933		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934		break;
1935
1936	case SO_PEERSEC:
1937		return security_socket_getpeersec_stream(sock,
1938							 optval, optlen, len);
1939
1940	case SO_MARK:
1941		v.val = READ_ONCE(sk->sk_mark);
1942		break;
1943
1944	case SO_RCVMARK:
1945		v.val = sock_flag(sk, SOCK_RCVMARK);
1946		break;
1947
1948	case SO_RXQ_OVFL:
1949		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950		break;
1951
1952	case SO_WIFI_STATUS:
1953		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954		break;
1955
1956	case SO_PEEK_OFF:
1957		if (!READ_ONCE(sock->ops)->set_peek_off)
1958			return -EOPNOTSUPP;
1959
1960		v.val = READ_ONCE(sk->sk_peek_off);
1961		break;
1962	case SO_NOFCS:
1963		v.val = sock_flag(sk, SOCK_NOFCS);
1964		break;
1965
1966	case SO_BINDTODEVICE:
1967		return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969	case SO_GET_FILTER:
1970		len = sk_get_filter(sk, optval, len);
1971		if (len < 0)
1972			return len;
1973
1974		goto lenout;
1975
1976	case SO_LOCK_FILTER:
1977		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978		break;
1979
1980	case SO_BPF_EXTENSIONS:
1981		v.val = bpf_tell_extensions();
1982		break;
1983
1984	case SO_SELECT_ERR_QUEUE:
1985		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986		break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989	case SO_BUSY_POLL:
1990		v.val = READ_ONCE(sk->sk_ll_usec);
1991		break;
1992	case SO_PREFER_BUSY_POLL:
1993		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994		break;
1995#endif
1996
1997	case SO_MAX_PACING_RATE:
1998		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000			lv = sizeof(v.ulval);
2001			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002		} else {
2003			/* 32bit version */
2004			v.val = min_t(unsigned long, ~0U,
2005				      READ_ONCE(sk->sk_max_pacing_rate));
2006		}
2007		break;
2008
2009	case SO_INCOMING_CPU:
2010		v.val = READ_ONCE(sk->sk_incoming_cpu);
2011		break;
2012
2013	case SO_MEMINFO:
2014	{
2015		u32 meminfo[SK_MEMINFO_VARS];
2016
2017		sk_get_meminfo(sk, meminfo);
2018
2019		len = min_t(unsigned int, len, sizeof(meminfo));
2020		if (copy_to_sockptr(optval, &meminfo, len))
2021			return -EFAULT;
2022
2023		goto lenout;
2024	}
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027	case SO_INCOMING_NAPI_ID:
2028		v.val = READ_ONCE(sk->sk_napi_id);
2029
2030		/* aggregate non-NAPI IDs down to 0 */
2031		if (v.val < MIN_NAPI_ID)
2032			v.val = 0;
2033
2034		break;
2035#endif
2036
2037	case SO_COOKIE:
2038		lv = sizeof(u64);
2039		if (len < lv)
2040			return -EINVAL;
2041		v.val64 = sock_gen_cookie(sk);
2042		break;
2043
2044	case SO_ZEROCOPY:
2045		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046		break;
2047
2048	case SO_TXTIME:
2049		lv = sizeof(v.txtime);
2050		v.txtime.clockid = sk->sk_clockid;
2051		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052				  SOF_TXTIME_DEADLINE_MODE : 0;
2053		v.txtime.flags |= sk->sk_txtime_report_errors ?
2054				  SOF_TXTIME_REPORT_ERRORS : 0;
2055		break;
2056
2057	case SO_BINDTOIFINDEX:
2058		v.val = READ_ONCE(sk->sk_bound_dev_if);
2059		break;
2060
2061	case SO_NETNS_COOKIE:
2062		lv = sizeof(u64);
2063		if (len != lv)
2064			return -EINVAL;
2065		v.val64 = sock_net(sk)->net_cookie;
2066		break;
2067
2068	case SO_BUF_LOCK:
2069		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070		break;
2071
2072	case SO_RESERVE_MEM:
2073		v.val = READ_ONCE(sk->sk_reserved_mem);
2074		break;
2075
2076	case SO_TXREHASH:
2077		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2078		v.val = READ_ONCE(sk->sk_txrehash);
2079		break;
2080
2081	default:
2082		/* We implement the SO_SNDLOWAT etc to not be settable
2083		 * (1003.1g 7).
2084		 */
2085		return -ENOPROTOOPT;
2086	}
2087
2088	if (len > lv)
2089		len = lv;
2090	if (copy_to_sockptr(optval, &v, len))
2091		return -EFAULT;
2092lenout:
2093	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105	if (sk->sk_kern_sock)
2106		sock_lock_init_class_and_name(
2107			sk,
2108			af_family_kern_slock_key_strings[sk->sk_family],
2109			af_family_kern_slock_keys + sk->sk_family,
2110			af_family_kern_key_strings[sk->sk_family],
2111			af_family_kern_keys + sk->sk_family);
2112	else
2113		sock_lock_init_class_and_name(
2114			sk,
2115			af_family_slock_key_strings[sk->sk_family],
2116			af_family_slock_keys + sk->sk_family,
2117			af_family_key_strings[sk->sk_family],
2118			af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128	const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130	void *sptr = nsk->sk_security;
2131#endif
2132
2133	/* If we move sk_tx_queue_mapping out of the private section,
2134	 * we must check if sk_tx_queue_clear() is called after
2135	 * sock_copy() in sk_clone_lock().
2136	 */
2137	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138		     offsetof(struct sock, sk_dontcopy_begin) ||
2139		     offsetof(struct sock, sk_tx_queue_mapping) >=
2140		     offsetof(struct sock, sk_dontcopy_end));
2141
2142	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146		      /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149	nsk->sk_security = sptr;
2150	security_sk_clone(osk, nsk);
2151#endif
2152}
2153
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155		int family)
2156{
2157	struct sock *sk;
2158	struct kmem_cache *slab;
2159
2160	slab = prot->slab;
2161	if (slab != NULL) {
2162		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163		if (!sk)
2164			return sk;
2165		if (want_init_on_alloc(priority))
2166			sk_prot_clear_nulls(sk, prot->obj_size);
2167	} else
2168		sk = kmalloc(prot->obj_size, priority);
2169
2170	if (sk != NULL) {
2171		if (security_sk_alloc(sk, family, priority))
2172			goto out_free;
2173
2174		if (!try_module_get(prot->owner))
2175			goto out_free_sec;
 
2176	}
2177
2178	return sk;
2179
2180out_free_sec:
2181	security_sk_free(sk);
2182out_free:
2183	if (slab != NULL)
2184		kmem_cache_free(slab, sk);
2185	else
2186		kfree(sk);
2187	return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192	struct kmem_cache *slab;
2193	struct module *owner;
2194
2195	owner = prot->owner;
2196	slab = prot->slab;
2197
2198	cgroup_sk_free(&sk->sk_cgrp_data);
2199	mem_cgroup_sk_free(sk);
2200	security_sk_free(sk);
2201	if (slab != NULL)
2202		kmem_cache_free(slab, sk);
2203	else
2204		kfree(sk);
2205	module_put(owner);
2206}
2207
2208/**
2209 *	sk_alloc - All socket objects are allocated here
2210 *	@net: the applicable net namespace
2211 *	@family: protocol family
2212 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 *	@prot: struct proto associated with this new sock instance
2214 *	@kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217		      struct proto *prot, int kern)
2218{
2219	struct sock *sk;
2220
2221	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222	if (sk) {
2223		sk->sk_family = family;
2224		/*
2225		 * See comment in struct sock definition to understand
2226		 * why we need sk_prot_creator -acme
2227		 */
2228		sk->sk_prot = sk->sk_prot_creator = prot;
2229		sk->sk_kern_sock = kern;
2230		sock_lock_init(sk);
2231		sk->sk_net_refcnt = kern ? 0 : 1;
2232		if (likely(sk->sk_net_refcnt)) {
2233			get_net_track(net, &sk->ns_tracker, priority);
2234			sock_inuse_add(net, 1);
2235		} else {
2236			net_passive_inc(net);
2237			__netns_tracker_alloc(net, &sk->ns_tracker,
2238					      false, priority);
2239		}
2240
2241		sock_net_set(sk, net);
2242		refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244		mem_cgroup_sk_alloc(sk);
2245		cgroup_sk_alloc(&sk->sk_cgrp_data);
2246		sock_update_classid(&sk->sk_cgrp_data);
2247		sock_update_netprioidx(&sk->sk_cgrp_data);
2248		sk_tx_queue_clear(sk);
2249	}
2250
2251	return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260	struct sock *sk = container_of(head, struct sock, sk_rcu);
2261	struct net *net = sock_net(sk);
2262	struct sk_filter *filter;
2263
2264	if (sk->sk_destruct)
2265		sk->sk_destruct(sk);
2266
2267	filter = rcu_dereference_check(sk->sk_filter,
2268				       refcount_read(&sk->sk_wmem_alloc) == 0);
2269	if (filter) {
2270		sk_filter_uncharge(sk, filter);
2271		RCU_INIT_POINTER(sk->sk_filter, NULL);
2272	}
2273
2274	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277	bpf_sk_storage_free(sk);
2278#endif
2279
2280	if (atomic_read(&sk->sk_omem_alloc))
2281		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282			 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284	if (sk->sk_frag.page) {
2285		put_page(sk->sk_frag.page);
2286		sk->sk_frag.page = NULL;
2287	}
2288
2289	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290	put_cred(sk->sk_peer_cred);
2291	put_pid(sk->sk_peer_pid);
2292
2293	if (likely(sk->sk_net_refcnt)) {
2294		put_net_track(net, &sk->ns_tracker);
2295	} else {
2296		__netns_tracker_free(net, &sk->ns_tracker, false);
2297		net_passive_dec(net);
2298	}
2299	sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304	struct net *net = sock_net(sk);
2305
2306	WARN_ON_ONCE(sk->sk_net_refcnt);
2307	__netns_tracker_free(net, &sk->ns_tracker, false);
2308	net_passive_dec(net);
2309	sk->sk_net_refcnt = 1;
2310	get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311	sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320		reuseport_detach_sock(sk);
2321		use_call_rcu = true;
2322	}
2323
2324	if (use_call_rcu)
2325		call_rcu(&sk->sk_rcu, __sk_destruct);
2326	else
2327		__sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332	if (likely(sk->sk_net_refcnt))
2333		sock_inuse_add(sock_net(sk), -1);
2334
2335	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336		sock_diag_broadcast_destroy(sk);
2337	else
2338		sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343	/*
2344	 * We subtract one from sk_wmem_alloc and can know if
2345	 * some packets are still in some tx queue.
2346	 * If not null, sock_wfree() will call __sk_free(sk) later
2347	 */
2348	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349		__sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
2354{
2355	skb_queue_head_init(&sk->sk_receive_queue);
2356	skb_queue_head_init(&sk->sk_write_queue);
2357	skb_queue_head_init(&sk->sk_error_queue);
2358
2359	rwlock_init(&sk->sk_callback_lock);
2360	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361			af_rlock_keys + sk->sk_family,
2362			af_family_rlock_key_strings[sk->sk_family]);
2363	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364			af_wlock_keys + sk->sk_family,
2365			af_family_wlock_key_strings[sk->sk_family]);
2366	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367			af_elock_keys + sk->sk_family,
2368			af_family_elock_key_strings[sk->sk_family]);
2369	if (sk->sk_kern_sock)
2370		lockdep_set_class_and_name(&sk->sk_callback_lock,
2371			af_kern_callback_keys + sk->sk_family,
2372			af_family_kern_clock_key_strings[sk->sk_family]);
2373	else
2374		lockdep_set_class_and_name(&sk->sk_callback_lock,
2375			af_callback_keys + sk->sk_family,
2376			af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 *	sk_clone_lock - clone a socket, and lock its clone
2381 *	@sk: the socket to clone
2382 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388	struct proto *prot = READ_ONCE(sk->sk_prot);
2389	struct sk_filter *filter;
2390	bool is_charged = true;
2391	struct sock *newsk;
 
2392
2393	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394	if (!newsk)
2395		goto out;
2396
2397	sock_copy(newsk, sk);
2398
2399	newsk->sk_prot_creator = prot;
2400
2401	/* SANITY */
2402	if (likely(newsk->sk_net_refcnt)) {
2403		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404		sock_inuse_add(sock_net(newsk), 1);
2405	} else {
2406		/* Kernel sockets are not elevating the struct net refcount.
2407		 * Instead, use a tracker to more easily detect if a layer
2408		 * is not properly dismantling its kernel sockets at netns
2409		 * destroy time.
 
 
 
2410		 */
2411		net_passive_inc(sock_net(newsk));
2412		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413				      false, priority);
2414	}
2415	sk_node_init(&newsk->sk_node);
2416	sock_lock_init(newsk);
2417	bh_lock_sock(newsk);
2418	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2419	newsk->sk_backlog.len = 0;
2420
2421	atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424	refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426	atomic_set(&newsk->sk_omem_alloc, 0);
2427	sk_init_common(newsk);
2428
2429	newsk->sk_dst_cache	= NULL;
2430	newsk->sk_dst_pending_confirm = 0;
2431	newsk->sk_wmem_queued	= 0;
2432	newsk->sk_forward_alloc = 0;
2433	newsk->sk_reserved_mem  = 0;
2434	atomic_set(&newsk->sk_drops, 0);
2435	newsk->sk_send_head	= NULL;
2436	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437	atomic_set(&newsk->sk_zckey, 0);
2438
2439	sock_reset_flag(newsk, SOCK_DONE);
2440
2441	/* sk->sk_memcg will be populated at accept() time */
2442	newsk->sk_memcg = NULL;
2443
2444	cgroup_sk_clone(&newsk->sk_cgrp_data);
2445
2446	rcu_read_lock();
2447	filter = rcu_dereference(sk->sk_filter);
2448	if (filter != NULL)
2449		/* though it's an empty new sock, the charging may fail
2450		 * if sysctl_optmem_max was changed between creation of
2451		 * original socket and cloning
2452		 */
2453		is_charged = sk_filter_charge(newsk, filter);
2454	RCU_INIT_POINTER(newsk->sk_filter, filter);
2455	rcu_read_unlock();
2456
2457	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458		/* We need to make sure that we don't uncharge the new
2459		 * socket if we couldn't charge it in the first place
2460		 * as otherwise we uncharge the parent's filter.
2461		 */
2462		if (!is_charged)
2463			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464		sk_free_unlock_clone(newsk);
2465		newsk = NULL;
2466		goto out;
2467	}
2468	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470	if (bpf_sk_storage_clone(sk, newsk)) {
2471		sk_free_unlock_clone(newsk);
2472		newsk = NULL;
2473		goto out;
2474	}
2475
2476	/* Clear sk_user_data if parent had the pointer tagged
2477	 * as not suitable for copying when cloning.
2478	 */
2479	if (sk_user_data_is_nocopy(newsk))
2480		newsk->sk_user_data = NULL;
2481
2482	newsk->sk_err	   = 0;
2483	newsk->sk_err_soft = 0;
2484	newsk->sk_priority = 0;
2485	newsk->sk_incoming_cpu = raw_smp_processor_id();
 
 
2486
2487	/* Before updating sk_refcnt, we must commit prior changes to memory
2488	 * (Documentation/RCU/rculist_nulls.rst for details)
2489	 */
2490	smp_wmb();
2491	refcount_set(&newsk->sk_refcnt, 2);
 
2492
2493	sk_set_socket(newsk, NULL);
2494	sk_tx_queue_clear(newsk);
2495	RCU_INIT_POINTER(newsk->sk_wq, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2496
2497	if (newsk->sk_prot->sockets_allocated)
2498		sk_sockets_allocated_inc(newsk);
2499
2500	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501		net_enable_timestamp();
 
 
2502out:
2503	return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509	/* It is still raw copy of parent, so invalidate
2510	 * destructor and make plain sk_free() */
2511	sk->sk_destruct = NULL;
2512	bh_unlock_sock(sk);
2513	sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519	bool is_ipv6 = false;
2520	u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523	is_ipv6 = (sk->sk_family == AF_INET6 &&
2524		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2525#endif
2526	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528			READ_ONCE(dst->dev->gso_ipv4_max_size);
2529	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530		max_size = GSO_LEGACY_MAX_SIZE;
2531
2532	return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537	u32 max_segs = 1;
2538
2539	sk->sk_route_caps = dst->dev->features;
2540	if (sk_is_tcp(sk))
2541		sk->sk_route_caps |= NETIF_F_GSO;
2542	if (sk->sk_route_caps & NETIF_F_GSO)
2543		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544	if (unlikely(sk->sk_gso_disabled))
2545		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546	if (sk_can_gso(sk)) {
2547		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549		} else {
2550			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2552			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554		}
2555	}
2556	sk->sk_gso_max_segs = max_segs;
2557	sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
2561/*
2562 *	Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571	struct sock *sk = skb->sk;
2572	unsigned int len = skb->truesize;
2573	bool free;
2574
2575	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576		if (sock_flag(sk, SOCK_RCU_FREE) &&
2577		    sk->sk_write_space == sock_def_write_space) {
2578			rcu_read_lock();
2579			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580			sock_def_write_space_wfree(sk);
2581			rcu_read_unlock();
2582			if (unlikely(free))
2583				__sk_free(sk);
2584			return;
2585		}
2586
2587		/*
2588		 * Keep a reference on sk_wmem_alloc, this will be released
2589		 * after sk_write_space() call
2590		 */
2591		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592		sk->sk_write_space(sk);
2593		len = 1;
2594	}
2595	/*
2596	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597	 * could not do because of in-flight packets
2598	 */
2599	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600		__sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609	struct sock *sk = skb->sk;
2610
2611	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612		__sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617	skb_orphan(skb);
 
2618#ifdef CONFIG_INET
2619	if (unlikely(!sk_fullsock(sk)))
2620		return skb_set_owner_edemux(skb, sk);
 
 
 
2621#endif
2622	skb->sk = sk;
2623	skb->destructor = sock_wfree;
2624	skb_set_hash_from_sk(skb, sk);
2625	/*
2626	 * We used to take a refcount on sk, but following operation
2627	 * is enough to guarantee sk_free() won't free this sock until
2628	 * all in-flight packets are completed
2629	 */
2630	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
 
2636	/* Drivers depend on in-order delivery for crypto offload,
2637	 * partial orphan breaks out-of-order-OK logic.
2638	 */
2639	if (skb_is_decrypted(skb))
2640		return false;
2641
2642	return (skb->destructor == sock_wfree ||
2643		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654	if (skb_is_tcp_pure_ack(skb))
2655		return;
2656
2657	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658		return;
2659
2660	skb_orphan(skb);
 
 
 
 
 
 
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669	struct sock *sk = skb->sk;
2670	unsigned int len = skb->truesize;
2671
2672	atomic_sub(len, &sk->sk_rmem_alloc);
2673	sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683	sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693	struct sock *sk = skb->sk;
2694
2695	if (!sk_is_refcounted(sk))
2696		return;
2697
2698	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699		inet_reqsk(sk)->rsk_listener = NULL;
2700		reqsk_free(inet_reqsk(sk));
2701		return;
2702	}
2703
2704	sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711	kuid_t uid;
2712
2713	read_lock_bh(&sk->sk_callback_lock);
2714	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715	read_unlock_bh(&sk->sk_callback_lock);
2716	return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722	unsigned long ino;
2723
2724	read_lock(&sk->sk_callback_lock);
2725	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726	read_unlock(&sk->sk_callback_lock);
2727	return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733	unsigned long ino;
2734
2735	local_bh_disable();
2736	ino = __sock_i_ino(sk);
2737	local_bh_enable();
2738	return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746			     gfp_t priority)
2747{
2748	if (force ||
2749	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750		struct sk_buff *skb = alloc_skb(size, priority);
2751
2752		if (skb) {
2753			skb_set_owner_w(skb, sk);
2754			return skb;
2755		}
2756	}
2757	return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763	struct sock *sk = skb->sk;
2764
2765	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769			     gfp_t priority)
2770{
2771	struct sk_buff *skb;
2772
2773	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776		return NULL;
2777
2778	skb = alloc_skb(size, priority);
2779	if (!skb)
2780		return NULL;
2781
2782	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783	skb->sk = sk;
2784	skb->destructor = sock_ofree;
2785	return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795	if ((unsigned int)size <= optmem_max &&
2796	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797		void *mem;
2798		/* First do the add, to avoid the race if kmalloc
2799		 * might sleep.
2800		 */
2801		atomic_add(size, &sk->sk_omem_alloc);
2802		mem = kmalloc(size, priority);
2803		if (mem)
2804			return mem;
2805		atomic_sub(size, &sk->sk_omem_alloc);
2806	}
2807	return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816				  const bool nullify)
2817{
2818	if (WARN_ON_ONCE(!mem))
2819		return;
2820	if (nullify)
2821		kfree_sensitive(mem);
2822	else
2823		kfree(mem);
2824	atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829	__sock_kfree_s(sk, mem, size, false);
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835	__sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840   I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844	DEFINE_WAIT(wait);
2845
2846	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847	for (;;) {
2848		if (!timeo)
2849			break;
2850		if (signal_pending(current))
2851			break;
2852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855			break;
2856		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857			break;
2858		if (READ_ONCE(sk->sk_err))
2859			break;
2860		timeo = schedule_timeout(timeo);
2861	}
2862	finish_wait(sk_sleep(sk), &wait);
2863	return timeo;
2864}
2865
2866
2867/*
2868 *	Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872				     unsigned long data_len, int noblock,
2873				     int *errcode, int max_page_order)
2874{
2875	struct sk_buff *skb;
2876	long timeo;
2877	int err;
2878
2879	timeo = sock_sndtimeo(sk, noblock);
2880	for (;;) {
2881		err = sock_error(sk);
2882		if (err != 0)
2883			goto failure;
2884
2885		err = -EPIPE;
2886		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887			goto failure;
2888
2889		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890			break;
2891
2892		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2893		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894		err = -EAGAIN;
2895		if (!timeo)
2896			goto failure;
2897		if (signal_pending(current))
2898			goto interrupted;
2899		timeo = sock_wait_for_wmem(sk, timeo);
2900	}
2901	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902				   errcode, sk->sk_allocation);
2903	if (skb)
2904		skb_set_owner_w(skb, sk);
2905	return skb;
2906
2907interrupted:
2908	err = sock_intr_errno(timeo);
2909failure:
2910	*errcode = err;
2911	return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
 
 
 
 
 
 
 
2916		     struct sockcm_cookie *sockc)
2917{
2918	u32 tsflags;
2919
2920	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922	switch (cmsg->cmsg_type) {
2923	case SO_MARK:
2924		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926			return -EPERM;
2927		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928			return -EINVAL;
2929		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930		break;
2931	case SO_TIMESTAMPING_OLD:
2932	case SO_TIMESTAMPING_NEW:
2933		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934			return -EINVAL;
2935
2936		tsflags = *(u32 *)CMSG_DATA(cmsg);
2937		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938			return -EINVAL;
2939
2940		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941		sockc->tsflags |= tsflags;
2942		break;
2943	case SCM_TXTIME:
2944		if (!sock_flag(sk, SOCK_TXTIME))
2945			return -EINVAL;
2946		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947			return -EINVAL;
2948		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949		break;
2950	case SCM_TS_OPT_ID:
2951		if (sk_is_tcp(sk))
2952			return -EINVAL;
2953		tsflags = READ_ONCE(sk->sk_tsflags);
2954		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955			return -EINVAL;
2956		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957			return -EINVAL;
2958		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960		break;
2961	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962	case SCM_RIGHTS:
2963	case SCM_CREDENTIALS:
2964		break;
2965	default:
2966		return -EINVAL;
2967	}
2968	return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973		   struct sockcm_cookie *sockc)
2974{
2975	struct cmsghdr *cmsg;
2976	int ret;
2977
2978	for_each_cmsghdr(cmsg, msg) {
2979		if (!CMSG_OK(msg, cmsg))
2980			return -EINVAL;
2981		if (cmsg->cmsg_level != SOL_SOCKET)
2982			continue;
2983		ret = __sock_cmsg_send(sk, cmsg, sockc);
2984		if (ret)
2985			return ret;
2986	}
2987	return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993	if (!sk->sk_prot->enter_memory_pressure)
2994		return;
2995
2996	sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001	if (sk->sk_prot->leave_memory_pressure) {
3002		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003				     tcp_leave_memory_pressure, sk);
3004	} else {
3005		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007		if (memory_pressure && READ_ONCE(*memory_pressure))
3008			WRITE_ONCE(*memory_pressure, 0);
3009	}
3010}
3011
 
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
3026	if (pfrag->page) {
3027		if (page_ref_count(pfrag->page) == 1) {
3028			pfrag->offset = 0;
3029			return true;
3030		}
3031		if (pfrag->offset + sz <= pfrag->size)
3032			return true;
3033		put_page(pfrag->page);
3034	}
3035
3036	pfrag->offset = 0;
3037	if (SKB_FRAG_PAGE_ORDER &&
3038	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039		/* Avoid direct reclaim but allow kswapd to wake */
3040		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041					  __GFP_COMP | __GFP_NOWARN |
3042					  __GFP_NORETRY,
3043					  SKB_FRAG_PAGE_ORDER);
3044		if (likely(pfrag->page)) {
3045			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3046			return true;
3047		}
3048	}
3049	pfrag->page = alloc_page(gfp);
3050	if (likely(pfrag->page)) {
3051		pfrag->size = PAGE_SIZE;
3052		return true;
3053	}
3054	return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061		return true;
3062
3063	sk_enter_memory_pressure(sk);
3064	sk_stream_moderate_sndbuf(sk);
3065	return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070	__releases(&sk->sk_lock.slock)
3071	__acquires(&sk->sk_lock.slock)
3072{
3073	DEFINE_WAIT(wait);
3074
3075	for (;;) {
3076		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077					TASK_UNINTERRUPTIBLE);
3078		spin_unlock_bh(&sk->sk_lock.slock);
3079		schedule();
3080		spin_lock_bh(&sk->sk_lock.slock);
3081		if (!sock_owned_by_user(sk))
3082			break;
3083	}
3084	finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088	__releases(&sk->sk_lock.slock)
3089	__acquires(&sk->sk_lock.slock)
3090{
3091	struct sk_buff *skb, *next;
3092
3093	while ((skb = sk->sk_backlog.head) != NULL) {
3094		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096		spin_unlock_bh(&sk->sk_lock.slock);
3097
3098		do {
3099			next = skb->next;
3100			prefetch(next);
3101			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102			skb_mark_not_on_list(skb);
3103			sk_backlog_rcv(sk, skb);
3104
3105			cond_resched();
3106
3107			skb = next;
3108		} while (skb != NULL);
3109
3110		spin_lock_bh(&sk->sk_lock.slock);
3111	}
3112
3113	/*
3114	 * Doing the zeroing here guarantee we can not loop forever
3115	 * while a wild producer attempts to flood us.
3116	 */
3117	sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122	spin_lock_bh(&sk->sk_lock.slock);
3123	__release_sock(sk);
3124
3125	if (sk->sk_prot->release_cb)
3126		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127				     tcp_release_cb, sk);
3128
3129	spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk:    sock to wait on
3136 * @timeo: for how long
3137 * @skb:   last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147	int rc;
3148
3149	add_wait_queue(sk_sleep(sk), &wait);
3150	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153	remove_wait_queue(sk_sleep(sk), &wait);
3154	return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 *	__sk_mem_raise_allocated - increase memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@amt: pages to allocate
3163 *	@kind: allocation type
3164 *
3165 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 *	Unlike the globally shared limits among the sockets under same protocol,
3168 *	consuming the budget of a memcg won't have direct effect on other ones.
3169 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3170 *	whether or not to raise allocated through sk_under_memory_pressure() or
3171 *	its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176	struct proto *prot = sk->sk_prot;
3177	bool charged = false;
3178	long allocated;
3179
3180	sk_memory_allocated_add(sk, amt);
3181	allocated = sk_memory_allocated(sk);
3182
3183	if (memcg) {
3184		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185			goto suppress_allocation;
3186		charged = true;
3187	}
3188
3189	/* Under limit. */
3190	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3191		sk_leave_memory_pressure(sk);
3192		return 1;
3193	}
3194
3195	/* Under pressure. */
3196	if (allocated > sk_prot_mem_limits(sk, 1))
3197		sk_enter_memory_pressure(sk);
3198
3199	/* Over hard limit. */
3200	if (allocated > sk_prot_mem_limits(sk, 2))
3201		goto suppress_allocation;
3202
3203	/* Guarantee minimum buffer size under pressure (either global
3204	 * or memcg) to make sure features described in RFC 7323 (TCP
3205	 * Extensions for High Performance) work properly.
3206	 *
3207	 * This rule does NOT stand when exceeds global or memcg's hard
3208	 * limit, or else a DoS attack can be taken place by spawning
3209	 * lots of sockets whose usage are under minimum buffer size.
3210	 */
3211	if (kind == SK_MEM_RECV) {
3212		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213			return 1;
3214
3215	} else { /* SK_MEM_SEND */
3216		int wmem0 = sk_get_wmem0(sk, prot);
3217
3218		if (sk->sk_type == SOCK_STREAM) {
3219			if (sk->sk_wmem_queued < wmem0)
3220				return 1;
3221		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3222				return 1;
3223		}
3224	}
3225
3226	if (sk_has_memory_pressure(sk)) {
3227		u64 alloc;
3228
3229		/* The following 'average' heuristic is within the
3230		 * scope of global accounting, so it only makes
3231		 * sense for global memory pressure.
3232		 */
3233		if (!sk_under_global_memory_pressure(sk))
3234			return 1;
3235
3236		/* Try to be fair among all the sockets under global
3237		 * pressure by allowing the ones that below average
3238		 * usage to raise.
3239		 */
3240		alloc = sk_sockets_allocated_read_positive(sk);
3241		if (sk_prot_mem_limits(sk, 2) > alloc *
3242		    sk_mem_pages(sk->sk_wmem_queued +
3243				 atomic_read(&sk->sk_rmem_alloc) +
3244				 sk->sk_forward_alloc))
3245			return 1;
3246	}
3247
3248suppress_allocation:
3249
3250	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251		sk_stream_moderate_sndbuf(sk);
3252
3253		/* Fail only if socket is _under_ its sndbuf.
3254		 * In this case we cannot block, so that we have to fail.
3255		 */
3256		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257			/* Force charge with __GFP_NOFAIL */
3258			if (memcg && !charged) {
3259				mem_cgroup_charge_skmem(memcg, amt,
3260					gfp_memcg_charge() | __GFP_NOFAIL);
3261			}
3262			return 1;
3263		}
3264	}
3265
3266	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269	sk_memory_allocated_sub(sk, amt);
3270
3271	if (charged)
3272		mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274	return 0;
3275}
 
3276
3277/**
3278 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 *	@sk: socket
3280 *	@size: memory size to allocate
3281 *	@kind: allocation type
3282 *
3283 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 *	rmem allocation. This function assumes that protocols which have
3285 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289	int ret, amt = sk_mem_pages(size);
3290
3291	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293	if (!ret)
3294		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295	return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3301 *	@sk: socket
3302 *	@amount: number of quanta
3303 *
3304 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308	sk_memory_allocated_sub(sk, amount);
3309
3310	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313	if (sk_under_global_memory_pressure(sk) &&
3314	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315		sk_leave_memory_pressure(sk);
3316}
 
3317
3318/**
3319 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 *	@sk: socket
3321 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325	amount >>= PAGE_SHIFT;
3326	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327	__sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333	WRITE_ONCE(sk->sk_peek_off, val);
3334	return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347	return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352		    int len, int flags)
3353{
3354	return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360	return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365		   struct proto_accept_arg *arg)
3366{
3367	return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372		    int peer)
3373{
3374	return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380	return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386	return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392	return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3397{
3398	return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3403{
3404	return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409		    int flags)
3410{
3411	return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417	/* Mirror missing mmap method error code */
3418	return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428	struct socket *sock;
 
3429
3430	sock = sock_from_file(file);
 
 
 
 
 
3431	if (sock) {
3432		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433		sock_update_classid(&sock->sk->sk_cgrp_data);
3434	}
3435}
3436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437/*
3438 *	Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443	struct socket_wq *wq;
3444
3445	rcu_read_lock();
3446	wq = rcu_dereference(sk->sk_wq);
3447	if (skwq_has_sleeper(wq))
3448		wake_up_interruptible_all(&wq->wait);
3449	rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454	struct socket_wq *wq;
3455
3456	rcu_read_lock();
3457	wq = rcu_dereference(sk->sk_wq);
3458	if (skwq_has_sleeper(wq))
3459		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461	rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466	struct socket_wq *wq;
3467
3468	trace_sk_data_ready(sk);
3469
3470	rcu_read_lock();
3471	wq = rcu_dereference(sk->sk_wq);
3472	if (skwq_has_sleeper(wq))
3473		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474						EPOLLRDNORM | EPOLLRDBAND);
3475	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476	rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481	struct socket_wq *wq;
3482
3483	rcu_read_lock();
3484
3485	/* Do not wake up a writer until he can make "significant"
3486	 * progress.  --DaveM
3487	 */
3488	if (sock_writeable(sk)) {
3489		wq = rcu_dereference(sk->sk_wq);
3490		if (skwq_has_sleeper(wq))
3491			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492						EPOLLWRNORM | EPOLLWRBAND);
3493
3494		/* Should agree with poll, otherwise some programs break */
3495		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3496	}
3497
3498	rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507	/* Do not wake up a writer until he can make "significant"
3508	 * progress.  --DaveM
3509	 */
3510	if (sock_writeable(sk)) {
3511		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513		/* rely on refcount_sub from sock_wfree() */
3514		smp_mb__after_atomic();
3515		if (wq && waitqueue_active(&wq->wait))
3516			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517						EPOLLWRNORM | EPOLLWRBAND);
3518
3519		/* Should agree with poll, otherwise some programs break */
3520		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521	}
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530	if (sk->sk_socket && sk->sk_socket->file)
3531		if (send_sigurg(sk->sk_socket->file))
3532			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537		    unsigned long expires)
3538{
3539	if (!mod_timer(timer, expires))
3540		sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546	if (del_timer(timer))
3547		__sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553	if (del_timer_sync(timer))
3554		__sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560	sk_init_common(sk);
3561	sk->sk_send_head	=	NULL;
3562
3563	timer_setup(&sk->sk_timer, NULL, 0);
3564
3565	sk->sk_allocation	=	GFP_KERNEL;
3566	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3567	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3568	sk->sk_state		=	TCP_CLOSE;
3569	sk->sk_use_task_frag	=	true;
3570	sk_set_socket(sk, sock);
3571
3572	sock_set_flag(sk, SOCK_ZAPPED);
3573
3574	if (sock) {
3575		sk->sk_type	=	sock->type;
3576		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577		sock->sk	=	sk;
 
3578	} else {
3579		RCU_INIT_POINTER(sk->sk_wq, NULL);
 
3580	}
3581	sk->sk_uid	=	uid;
 
 
 
 
 
 
 
 
 
 
 
3582
3583	sk->sk_state_change	=	sock_def_wakeup;
3584	sk->sk_data_ready	=	sock_def_readable;
3585	sk->sk_write_space	=	sock_def_write_space;
3586	sk->sk_error_report	=	sock_def_error_report;
3587	sk->sk_destruct		=	sock_def_destruct;
3588
3589	sk->sk_frag.page	=	NULL;
3590	sk->sk_frag.offset	=	0;
3591	sk->sk_peek_off		=	-1;
3592
3593	sk->sk_peer_pid 	=	NULL;
3594	sk->sk_peer_cred	=	NULL;
3595	spin_lock_init(&sk->sk_peer_lock);
3596
3597	sk->sk_write_pending	=	0;
3598	sk->sk_rcvlowat		=	1;
3599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3601
3602	sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604	seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606	atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609	sk->sk_napi_id		=	0;
3610	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613	sk->sk_max_pacing_rate = ~0UL;
3614	sk->sk_pacing_rate = ~0UL;
3615	WRITE_ONCE(sk->sk_pacing_shift, 10);
3616	sk->sk_incoming_cpu = -1;
3617
3618	sk_rx_queue_clear(sk);
3619	/*
3620	 * Before updating sk_refcnt, we must commit prior changes to memory
3621	 * (Documentation/RCU/rculist_nulls.rst for details)
3622	 */
3623	smp_wmb();
3624	refcount_set(&sk->sk_refcnt, 1);
3625	atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631	kuid_t uid = sock ?
3632		SOCK_INODE(sock)->i_uid :
3633		make_kuid(sock_net(sk)->user_ns, 0);
3634
3635	sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641	/* The sk_lock has mutex_lock() semantics here. */
3642	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644	might_sleep();
3645	spin_lock_bh(&sk->sk_lock.slock);
3646	if (sock_owned_by_user_nocheck(sk))
3647		__lock_sock(sk);
3648	sk->sk_lock.owned = 1;
3649	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
3655	spin_lock_bh(&sk->sk_lock.slock);
3656	if (sk->sk_backlog.tail)
3657		__release_sock(sk);
3658
 
 
 
3659	if (sk->sk_prot->release_cb)
3660		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661				     tcp_release_cb, sk);
3662
3663	sock_release_ownership(sk);
3664	if (waitqueue_active(&sk->sk_lock.wq))
3665		wake_up(&sk->sk_lock.wq);
3666	spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
 
 
 
3671{
3672	might_sleep();
3673	spin_lock_bh(&sk->sk_lock.slock);
3674
3675	if (!sock_owned_by_user_nocheck(sk)) {
3676		/*
3677		 * Fast path return with bottom halves disabled and
3678		 * sock::sk_lock.slock held.
3679		 *
3680		 * The 'mutex' is not contended and holding
3681		 * sock::sk_lock.slock prevents all other lockers to
3682		 * proceed so the corresponding unlock_sock_fast() can
3683		 * avoid the slow path of release_sock() completely and
3684		 * just release slock.
3685		 *
3686		 * From a semantical POV this is equivalent to 'acquiring'
3687		 * the 'mutex', hence the corresponding lockdep
3688		 * mutex_release() has to happen in the fast path of
3689		 * unlock_sock_fast().
3690		 */
3691		return false;
3692	}
3693
3694	__lock_sock(sk);
3695	sk->sk_lock.owned = 1;
3696	__acquire(&sk->sk_lock.slock);
3697	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3698	return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703		   bool timeval, bool time32)
3704{
3705	struct sock *sk = sock->sk;
3706	struct timespec64 ts;
3707
3708	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3710	if (ts.tv_sec == -1)
3711		return -ENOENT;
3712	if (ts.tv_sec == 0) {
3713		ktime_t kt = ktime_get_real();
3714		sock_write_timestamp(sk, kt);
3715		ts = ktime_to_timespec64(kt);
3716	}
3717
3718	if (timeval)
3719		ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722	if (time32)
3723		return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726	/* beware of padding in sparc64 timeval */
3727	if (timeval && !in_compat_syscall()) {
3728		struct __kernel_old_timeval __user tv = {
3729			.tv_sec = ts.tv_sec,
3730			.tv_usec = ts.tv_nsec,
3731		};
3732		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733			return -EFAULT;
3734		return 0;
3735	}
3736#endif
3737	return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743	if (!sock_flag(sk, flag)) {
3744		unsigned long previous_flags = sk->sk_flags;
3745
3746		sock_set_flag(sk, flag);
3747		/*
3748		 * we just set one of the two flags which require net
3749		 * time stamping, but time stamping might have been on
3750		 * already because of the other one
3751		 */
3752		if (sock_needs_netstamp(sk) &&
3753		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3754			net_enable_timestamp();
3755	}
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759		       int level, int type)
3760{
3761	struct sock_exterr_skb *serr;
3762	struct sk_buff *skb;
3763	int copied, err;
3764
3765	err = -EAGAIN;
3766	skb = sock_dequeue_err_skb(sk);
3767	if (skb == NULL)
3768		goto out;
3769
3770	copied = skb->len;
3771	if (copied > len) {
3772		msg->msg_flags |= MSG_TRUNC;
3773		copied = len;
3774	}
3775	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776	if (err)
3777		goto out_free_skb;
3778
3779	sock_recv_timestamp(msg, sk, skb);
3780
3781	serr = SKB_EXT_ERR(skb);
3782	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784	msg->msg_flags |= MSG_ERRQUEUE;
3785	err = copied;
3786
3787out_free_skb:
3788	kfree_skb(skb);
3789out:
3790	return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 *	Get a socket option on an socket.
3796 *
3797 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 *	asynchronous errors should be reported by getsockopt. We assume
3799 *	this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802			   char __user *optval, int __user *optlen)
3803{
3804	struct sock *sk = sock->sk;
3805
3806	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812			int flags)
3813{
3814	struct sock *sk = sock->sk;
3815	int addr_len = 0;
3816	int err;
3817
3818	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3819	if (err >= 0)
3820		msg->msg_namelen = addr_len;
3821	return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 *	Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829			   sockptr_t optval, unsigned int optlen)
3830{
3831	struct sock *sk = sock->sk;
3832
3833	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
3838void sk_common_release(struct sock *sk)
3839{
3840	if (sk->sk_prot->destroy)
3841		sk->sk_prot->destroy(sk);
3842
3843	/*
3844	 * Observation: when sk_common_release is called, processes have
3845	 * no access to socket. But net still has.
3846	 * Step one, detach it from networking:
3847	 *
3848	 * A. Remove from hash tables.
3849	 */
3850
3851	sk->sk_prot->unhash(sk);
3852
3853	/*
3854	 * In this point socket cannot receive new packets, but it is possible
3855	 * that some packets are in flight because some CPU runs receiver and
3856	 * did hash table lookup before we unhashed socket. They will achieve
3857	 * receive queue and will be purged by socket destructor.
3858	 *
3859	 * Also we still have packets pending on receive queue and probably,
3860	 * our own packets waiting in device queues. sock_destroy will drain
3861	 * receive queue, but transmitted packets will delay socket destruction
3862	 * until the last reference will be released.
3863	 */
3864
3865	sock_orphan(sk);
3866
3867	xfrm_sk_free_policy(sk);
3868
 
 
3869	sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3876
3877	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
3887
3888#ifdef CONFIG_PROC_FS
 
 
 
 
 
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
 
 
 
 
 
 
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893	int cpu, idx = prot->inuse_idx;
3894	int res = 0;
3895
3896	for_each_possible_cpu(cpu)
3897		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899	return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
 
 
 
 
 
3903int sock_inuse_get(struct net *net)
3904{
3905	int cpu, res = 0;
3906
3907	for_each_possible_cpu(cpu)
3908		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910	return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918	if (net->core.prot_inuse == NULL)
3919		return -ENOMEM;
 
 
 
 
 
3920	return 0;
 
 
 
 
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925	free_percpu(net->core.prot_inuse);
 
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929	.init = sock_inuse_init_net,
3930	.exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935	if (register_pernet_subsys(&net_inuse_ops))
3936		panic("Cannot initialize net inuse counters");
3937
3938	return 0;
3939}
3940
3941core_initcall(net_inuse_init);
3942
3943static int assign_proto_idx(struct proto *prot)
3944{
3945	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948		pr_err("PROTO_INUSE_NR exhausted\n");
3949		return -ENOSPC;
3950	}
3951
3952	set_bit(prot->inuse_idx, proto_inuse_idx);
3953	return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959		clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964	return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
 
 
 
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975	if (!twsk_prot)
3976		return;
3977	kfree(twsk_prot->twsk_slab_name);
3978	twsk_prot->twsk_slab_name = NULL;
3979	kmem_cache_destroy(twsk_prot->twsk_slab);
3980	twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987	if (!twsk_prot)
3988		return 0;
3989
3990	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991					      prot->name);
3992	if (!twsk_prot->twsk_slab_name)
3993		return -ENOMEM;
3994
3995	twsk_prot->twsk_slab =
3996		kmem_cache_create(twsk_prot->twsk_slab_name,
3997				  twsk_prot->twsk_obj_size, 0,
3998				  SLAB_ACCOUNT | prot->slab_flags,
3999				  NULL);
4000	if (!twsk_prot->twsk_slab) {
4001		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002			prot->name);
4003		return -ENOMEM;
4004	}
4005
4006	return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011	if (!rsk_prot)
4012		return;
4013	kfree(rsk_prot->slab_name);
4014	rsk_prot->slab_name = NULL;
4015	kmem_cache_destroy(rsk_prot->slab);
4016	rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023	if (!rsk_prot)
4024		return 0;
4025
4026	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027					prot->name);
4028	if (!rsk_prot->slab_name)
4029		return -ENOMEM;
4030
4031	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032					   rsk_prot->obj_size, 0,
4033					   SLAB_ACCOUNT | prot->slab_flags,
4034					   NULL);
4035
4036	if (!rsk_prot->slab) {
4037		pr_crit("%s: Can't create request sock SLAB cache!\n",
4038			prot->name);
4039		return -ENOMEM;
4040	}
4041	return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046	int ret = -ENOBUFS;
4047
4048	if (prot->memory_allocated && !prot->sysctl_mem) {
4049		pr_err("%s: missing sysctl_mem\n", prot->name);
4050		return -EINVAL;
4051	}
4052	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054		return -EINVAL;
4055	}
4056	if (alloc_slab) {
4057		prot->slab = kmem_cache_create_usercopy(prot->name,
4058					prot->obj_size, 0,
4059					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060					prot->slab_flags,
4061					prot->useroffset, prot->usersize,
4062					NULL);
4063
4064		if (prot->slab == NULL) {
4065			pr_crit("%s: Can't create sock SLAB cache!\n",
4066				prot->name);
4067			goto out;
4068		}
4069
4070		if (req_prot_init(prot))
4071			goto out_free_request_sock_slab;
4072
4073		if (tw_prot_init(prot))
4074			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4075	}
4076
4077	mutex_lock(&proto_list_mutex);
4078	ret = assign_proto_idx(prot);
4079	if (ret) {
4080		mutex_unlock(&proto_list_mutex);
4081		goto out_free_timewait_sock_slab;
4082	}
4083	list_add(&prot->node, &proto_list);
4084	mutex_unlock(&proto_list_mutex);
4085	return ret;
4086
4087out_free_timewait_sock_slab:
4088	if (alloc_slab)
4089		tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091	if (alloc_slab) {
4092		req_prot_cleanup(prot->rsk_prot);
4093
4094		kmem_cache_destroy(prot->slab);
4095		prot->slab = NULL;
4096	}
4097out:
4098	return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104	mutex_lock(&proto_list_mutex);
4105	release_proto_idx(prot);
4106	list_del(&prot->node);
4107	mutex_unlock(&proto_list_mutex);
4108
4109	kmem_cache_destroy(prot->slab);
4110	prot->slab = NULL;
4111
4112	req_prot_cleanup(prot->rsk_prot);
4113	tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119	if (!protocol) {
4120		if (!sock_is_registered(family))
4121			return -ENOENT;
4122
4123		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124				      NETLINK_SOCK_DIAG, family);
4125	}
4126
4127#ifdef CONFIG_INET
4128	if (family == AF_INET &&
4129	    protocol != IPPROTO_RAW &&
4130	    protocol < MAX_INET_PROTOS &&
4131	    !rcu_access_pointer(inet_protos[protocol]))
4132		return -ENOENT;
4133#endif
4134
4135	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136			      NETLINK_SOCK_DIAG, family, protocol);
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142	__acquires(proto_list_mutex)
4143{
4144	mutex_lock(&proto_list_mutex);
4145	return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150	return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154	__releases(proto_list_mutex)
4155{
4156	mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161	return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170	return proto->memory_pressure != NULL ?
4171	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4178			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179		   proto->name,
4180		   proto->obj_size,
4181		   sock_prot_inuse_get(seq_file_net(seq), proto),
4182		   sock_prot_memory_allocated(proto),
4183		   sock_prot_memory_pressure(proto),
4184		   proto->max_header,
4185		   proto->slab == NULL ? "no" : "yes",
4186		   module_name(proto->owner),
4187		   proto_method_implemented(proto->close),
4188		   proto_method_implemented(proto->connect),
4189		   proto_method_implemented(proto->disconnect),
4190		   proto_method_implemented(proto->accept),
4191		   proto_method_implemented(proto->ioctl),
4192		   proto_method_implemented(proto->init),
4193		   proto_method_implemented(proto->destroy),
4194		   proto_method_implemented(proto->shutdown),
4195		   proto_method_implemented(proto->setsockopt),
4196		   proto_method_implemented(proto->getsockopt),
4197		   proto_method_implemented(proto->sendmsg),
4198		   proto_method_implemented(proto->recvmsg),
 
4199		   proto_method_implemented(proto->bind),
4200		   proto_method_implemented(proto->backlog_rcv),
4201		   proto_method_implemented(proto->hash),
4202		   proto_method_implemented(proto->unhash),
4203		   proto_method_implemented(proto->get_port),
4204		   proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209	if (v == &proto_list)
4210		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211			   "protocol",
4212			   "size",
4213			   "sockets",
4214			   "memory",
4215			   "press",
4216			   "maxhdr",
4217			   "slab",
4218			   "module",
4219			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220	else
4221		proto_seq_printf(seq, list_entry(v, struct proto, node));
4222	return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226	.start  = proto_seq_start,
4227	.next   = proto_seq_next,
4228	.stop   = proto_seq_stop,
4229	.show   = proto_seq_show,
4230};
4231
4232static __net_init int proto_init_net(struct net *net)
4233{
4234	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235			sizeof(struct seq_net_private)))
4236		return -ENOMEM;
4237
4238	return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243	remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248	.init = proto_init_net,
4249	.exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254	return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264	struct sock *sk = p;
4265
4266	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267		return true;
4268
4269	if (sk_is_udp(sk) &&
4270	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271		return true;
4272
4273	return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280	if (!sk->sk_prot->bind_add)
4281		return -EOPNOTSUPP;
4282	return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288		     void __user *arg, void *karg, size_t size)
4289{
4290	int ret;
4291
4292	if (copy_from_user(karg, arg, size))
4293		return -EFAULT;
4294
4295	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296	if (ret)
4297		return ret;
4298
4299	if (copy_to_user(arg, karg, size))
4300		return -EFAULT;
4301
4302	return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312	int ret, karg = 0;
4313
4314	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315	if (ret)
4316		return ret;
4317
4318	return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328	int rc = 1;
4329
4330	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331		rc = ipmr_sk_ioctl(sk, cmd, arg);
4332	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334	else if (sk_is_phonet(sk))
4335		rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337	/* If ioctl was processed, returns its value */
4338	if (rc <= 0)
4339		return rc;
4340
4341	/* Otherwise call the default handler */
4342	return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403	return 0;
4404}
4405
4406core_initcall(sock_struct_check);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 
 
 
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 
 
 
 
 
 141
 142static DEFINE_MUTEX(proto_list_mutex);
 143static LIST_HEAD(proto_list);
 144
 145static void sock_inuse_add(struct net *net, int val);
 
 146
 147/**
 148 * sk_ns_capable - General socket capability test
 149 * @sk: Socket to use a capability on or through
 150 * @user_ns: The user namespace of the capability to use
 151 * @cap: The capability to use
 152 *
 153 * Test to see if the opener of the socket had when the socket was
 154 * created and the current process has the capability @cap in the user
 155 * namespace @user_ns.
 156 */
 157bool sk_ns_capable(const struct sock *sk,
 158		   struct user_namespace *user_ns, int cap)
 159{
 160	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 161		ns_capable(user_ns, cap);
 162}
 163EXPORT_SYMBOL(sk_ns_capable);
 164
 165/**
 166 * sk_capable - Socket global capability test
 167 * @sk: Socket to use a capability on or through
 168 * @cap: The global capability to use
 169 *
 170 * Test to see if the opener of the socket had when the socket was
 171 * created and the current process has the capability @cap in all user
 172 * namespaces.
 173 */
 174bool sk_capable(const struct sock *sk, int cap)
 175{
 176	return sk_ns_capable(sk, &init_user_ns, cap);
 177}
 178EXPORT_SYMBOL(sk_capable);
 179
 180/**
 181 * sk_net_capable - Network namespace socket capability test
 182 * @sk: Socket to use a capability on or through
 183 * @cap: The capability to use
 184 *
 185 * Test to see if the opener of the socket had when the socket was created
 186 * and the current process has the capability @cap over the network namespace
 187 * the socket is a member of.
 188 */
 189bool sk_net_capable(const struct sock *sk, int cap)
 190{
 191	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 192}
 193EXPORT_SYMBOL(sk_net_capable);
 194
 195/*
 196 * Each address family might have different locking rules, so we have
 197 * one slock key per address family and separate keys for internal and
 198 * userspace sockets.
 199 */
 200static struct lock_class_key af_family_keys[AF_MAX];
 201static struct lock_class_key af_family_kern_keys[AF_MAX];
 202static struct lock_class_key af_family_slock_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 204
 205/*
 206 * Make lock validator output more readable. (we pre-construct these
 207 * strings build-time, so that runtime initialization of socket
 208 * locks is fast):
 209 */
 210
 211#define _sock_locks(x)						  \
 212  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 213  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 214  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 215  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 216  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 217  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 218  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 219  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 220  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 221  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 222  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 223  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 224  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 225  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 226  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 
 227  x "AF_MAX"
 228
 229static const char *const af_family_key_strings[AF_MAX+1] = {
 230	_sock_locks("sk_lock-")
 231};
 232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 233	_sock_locks("slock-")
 234};
 235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 236	_sock_locks("clock-")
 237};
 238
 239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 240	_sock_locks("k-sk_lock-")
 241};
 242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 243	_sock_locks("k-slock-")
 244};
 245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-clock-")
 247};
 248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 249	_sock_locks("rlock-")
 250};
 251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 252	_sock_locks("wlock-")
 253};
 254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 255	_sock_locks("elock-")
 256};
 257
 258/*
 259 * sk_callback_lock and sk queues locking rules are per-address-family,
 260 * so split the lock classes by using a per-AF key:
 261 */
 262static struct lock_class_key af_callback_keys[AF_MAX];
 263static struct lock_class_key af_rlock_keys[AF_MAX];
 264static struct lock_class_key af_wlock_keys[AF_MAX];
 265static struct lock_class_key af_elock_keys[AF_MAX];
 266static struct lock_class_key af_kern_callback_keys[AF_MAX];
 267
 268/* Run time adjustable parameters. */
 269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 270EXPORT_SYMBOL(sysctl_wmem_max);
 271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 272EXPORT_SYMBOL(sysctl_rmem_max);
 273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 275
 276/* Maximal space eaten by iovec or ancillary data plus some space */
 277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 278EXPORT_SYMBOL(sysctl_optmem_max);
 279
 280int sysctl_tstamp_allow_data __read_mostly = 1;
 281
 282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 283EXPORT_SYMBOL_GPL(memalloc_socks_key);
 284
 285/**
 286 * sk_set_memalloc - sets %SOCK_MEMALLOC
 287 * @sk: socket to set it on
 288 *
 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 290 * It's the responsibility of the admin to adjust min_free_kbytes
 291 * to meet the requirements
 292 */
 293void sk_set_memalloc(struct sock *sk)
 294{
 295	sock_set_flag(sk, SOCK_MEMALLOC);
 296	sk->sk_allocation |= __GFP_MEMALLOC;
 297	static_branch_inc(&memalloc_socks_key);
 298}
 299EXPORT_SYMBOL_GPL(sk_set_memalloc);
 300
 301void sk_clear_memalloc(struct sock *sk)
 302{
 303	sock_reset_flag(sk, SOCK_MEMALLOC);
 304	sk->sk_allocation &= ~__GFP_MEMALLOC;
 305	static_branch_dec(&memalloc_socks_key);
 306
 307	/*
 308	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 309	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 310	 * it has rmem allocations due to the last swapfile being deactivated
 311	 * but there is a risk that the socket is unusable due to exceeding
 312	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 313	 */
 314	sk_mem_reclaim(sk);
 315}
 316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 317
 318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 319{
 320	int ret;
 321	unsigned int noreclaim_flag;
 322
 323	/* these should have been dropped before queueing */
 324	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 325
 326	noreclaim_flag = memalloc_noreclaim_save();
 327	ret = sk->sk_backlog_rcv(sk, skb);
 
 
 
 328	memalloc_noreclaim_restore(noreclaim_flag);
 329
 330	return ret;
 331}
 332EXPORT_SYMBOL(__sk_backlog_rcv);
 333
 334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335{
 336	struct __kernel_sock_timeval tv;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		return sizeof(old_tv);
 358	}
 359
 360	*(struct __kernel_sock_timeval *)optval = tv;
 361	return sizeof(tv);
 362}
 
 363
 364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 365			    bool old_timeval)
 366{
 367	struct __kernel_sock_timeval tv;
 368
 369	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 370		struct old_timeval32 tv32;
 371
 372		if (optlen < sizeof(tv32))
 373			return -EINVAL;
 374
 375		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 376			return -EFAULT;
 377		tv.tv_sec = tv32.tv_sec;
 378		tv.tv_usec = tv32.tv_usec;
 379	} else if (old_timeval) {
 380		struct __kernel_old_timeval old_tv;
 381
 382		if (optlen < sizeof(old_tv))
 383			return -EINVAL;
 384		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 385			return -EFAULT;
 386		tv.tv_sec = old_tv.tv_sec;
 387		tv.tv_usec = old_tv.tv_usec;
 388	} else {
 389		if (optlen < sizeof(tv))
 390			return -EINVAL;
 391		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 392			return -EFAULT;
 393	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 395		return -EDOM;
 396
 397	if (tv.tv_sec < 0) {
 398		static int warned __read_mostly;
 399
 400		*timeo_p = 0;
 401		if (warned < 10 && net_ratelimit()) {
 402			warned++;
 403			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 404				__func__, current->comm, task_pid_nr(current));
 405		}
 406		return 0;
 407	}
 408	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 409	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 410		return 0;
 411	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 412		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 
 413	return 0;
 414}
 415
 416static void sock_warn_obsolete_bsdism(const char *name)
 417{
 418	static int warned;
 419	static char warncomm[TASK_COMM_LEN];
 420	if (strcmp(warncomm, current->comm) && warned < 5) {
 421		strcpy(warncomm,  current->comm);
 422		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 423			warncomm, name);
 424		warned++;
 425	}
 426}
 427
 428static bool sock_needs_netstamp(const struct sock *sk)
 429{
 430	switch (sk->sk_family) {
 431	case AF_UNSPEC:
 432	case AF_UNIX:
 433		return false;
 434	default:
 435		return true;
 436	}
 437}
 438
 439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 440{
 441	if (sk->sk_flags & flags) {
 442		sk->sk_flags &= ~flags;
 443		if (sock_needs_netstamp(sk) &&
 444		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 445			net_disable_timestamp();
 446	}
 447}
 448
 449
 450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 451{
 452	unsigned long flags;
 453	struct sk_buff_head *list = &sk->sk_receive_queue;
 454
 455	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 456		atomic_inc(&sk->sk_drops);
 457		trace_sock_rcvqueue_full(sk, skb);
 458		return -ENOMEM;
 459	}
 460
 461	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 462		atomic_inc(&sk->sk_drops);
 463		return -ENOBUFS;
 464	}
 465
 466	skb->dev = NULL;
 467	skb_set_owner_r(skb, sk);
 468
 469	/* we escape from rcu protected region, make sure we dont leak
 470	 * a norefcounted dst
 471	 */
 472	skb_dst_force(skb);
 473
 474	spin_lock_irqsave(&list->lock, flags);
 475	sock_skb_set_dropcount(sk, skb);
 476	__skb_queue_tail(list, skb);
 477	spin_unlock_irqrestore(&list->lock, flags);
 478
 479	if (!sock_flag(sk, SOCK_DEAD))
 480		sk->sk_data_ready(sk);
 481	return 0;
 482}
 483EXPORT_SYMBOL(__sock_queue_rcv_skb);
 484
 485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 
 486{
 
 487	int err;
 488
 489	err = sk_filter(sk, skb);
 490	if (err)
 491		return err;
 492
 493	return __sock_queue_rcv_skb(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494}
 495EXPORT_SYMBOL(sock_queue_rcv_skb);
 496
 497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 498		     const int nested, unsigned int trim_cap, bool refcounted)
 499{
 500	int rc = NET_RX_SUCCESS;
 501
 502	if (sk_filter_trim_cap(sk, skb, trim_cap))
 503		goto discard_and_relse;
 504
 505	skb->dev = NULL;
 506
 507	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 508		atomic_inc(&sk->sk_drops);
 509		goto discard_and_relse;
 510	}
 511	if (nested)
 512		bh_lock_sock_nested(sk);
 513	else
 514		bh_lock_sock(sk);
 515	if (!sock_owned_by_user(sk)) {
 516		/*
 517		 * trylock + unlock semantics:
 518		 */
 519		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 520
 521		rc = sk_backlog_rcv(sk, skb);
 522
 523		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 524	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 525		bh_unlock_sock(sk);
 526		atomic_inc(&sk->sk_drops);
 527		goto discard_and_relse;
 528	}
 529
 530	bh_unlock_sock(sk);
 531out:
 532	if (refcounted)
 533		sock_put(sk);
 534	return rc;
 535discard_and_relse:
 536	kfree_skb(skb);
 537	goto out;
 538}
 539EXPORT_SYMBOL(__sk_receive_skb);
 540
 
 
 
 
 541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 542{
 543	struct dst_entry *dst = __sk_dst_get(sk);
 544
 545	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 546		sk_tx_queue_clear(sk);
 547		sk->sk_dst_pending_confirm = 0;
 548		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 549		dst_release(dst);
 550		return NULL;
 551	}
 552
 553	return dst;
 554}
 555EXPORT_SYMBOL(__sk_dst_check);
 556
 557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 558{
 559	struct dst_entry *dst = sk_dst_get(sk);
 560
 561	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 562		sk_dst_reset(sk);
 563		dst_release(dst);
 564		return NULL;
 565	}
 566
 567	return dst;
 568}
 569EXPORT_SYMBOL(sk_dst_check);
 570
 571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 572{
 573	int ret = -ENOPROTOOPT;
 574#ifdef CONFIG_NETDEVICES
 575	struct net *net = sock_net(sk);
 576
 577	/* Sorry... */
 578	ret = -EPERM;
 579	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 580		goto out;
 581
 582	ret = -EINVAL;
 583	if (ifindex < 0)
 584		goto out;
 585
 586	sk->sk_bound_dev_if = ifindex;
 
 
 587	if (sk->sk_prot->rehash)
 588		sk->sk_prot->rehash(sk);
 589	sk_dst_reset(sk);
 590
 591	ret = 0;
 592
 593out:
 594#endif
 595
 596	return ret;
 597}
 598
 599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 600{
 601	int ret;
 602
 603	if (lock_sk)
 604		lock_sock(sk);
 605	ret = sock_bindtoindex_locked(sk, ifindex);
 606	if (lock_sk)
 607		release_sock(sk);
 608
 609	return ret;
 610}
 611EXPORT_SYMBOL(sock_bindtoindex);
 612
 613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 614{
 615	int ret = -ENOPROTOOPT;
 616#ifdef CONFIG_NETDEVICES
 617	struct net *net = sock_net(sk);
 618	char devname[IFNAMSIZ];
 619	int index;
 620
 621	ret = -EINVAL;
 622	if (optlen < 0)
 623		goto out;
 624
 625	/* Bind this socket to a particular device like "eth0",
 626	 * as specified in the passed interface name. If the
 627	 * name is "" or the option length is zero the socket
 628	 * is not bound.
 629	 */
 630	if (optlen > IFNAMSIZ - 1)
 631		optlen = IFNAMSIZ - 1;
 632	memset(devname, 0, sizeof(devname));
 633
 634	ret = -EFAULT;
 635	if (copy_from_sockptr(devname, optval, optlen))
 636		goto out;
 637
 638	index = 0;
 639	if (devname[0] != '\0') {
 640		struct net_device *dev;
 641
 642		rcu_read_lock();
 643		dev = dev_get_by_name_rcu(net, devname);
 644		if (dev)
 645			index = dev->ifindex;
 646		rcu_read_unlock();
 647		ret = -ENODEV;
 648		if (!dev)
 649			goto out;
 650	}
 651
 652	return sock_bindtoindex(sk, index, true);
 
 
 653out:
 654#endif
 655
 656	return ret;
 657}
 658
 659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 660				int __user *optlen, int len)
 661{
 662	int ret = -ENOPROTOOPT;
 663#ifdef CONFIG_NETDEVICES
 
 664	struct net *net = sock_net(sk);
 665	char devname[IFNAMSIZ];
 666
 667	if (sk->sk_bound_dev_if == 0) {
 668		len = 0;
 669		goto zero;
 670	}
 671
 672	ret = -EINVAL;
 673	if (len < IFNAMSIZ)
 674		goto out;
 675
 676	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 677	if (ret)
 678		goto out;
 679
 680	len = strlen(devname) + 1;
 681
 682	ret = -EFAULT;
 683	if (copy_to_user(optval, devname, len))
 684		goto out;
 685
 686zero:
 687	ret = -EFAULT;
 688	if (put_user(len, optlen))
 689		goto out;
 690
 691	ret = 0;
 692
 693out:
 694#endif
 695
 696	return ret;
 697}
 698
 699bool sk_mc_loop(struct sock *sk)
 700{
 701	if (dev_recursion_level())
 702		return false;
 703	if (!sk)
 704		return true;
 705	switch (sk->sk_family) {
 
 706	case AF_INET:
 707		return inet_sk(sk)->mc_loop;
 708#if IS_ENABLED(CONFIG_IPV6)
 709	case AF_INET6:
 710		return inet6_sk(sk)->mc_loop;
 711#endif
 712	}
 713	WARN_ON_ONCE(1);
 714	return true;
 715}
 716EXPORT_SYMBOL(sk_mc_loop);
 717
 718void sock_set_reuseaddr(struct sock *sk)
 719{
 720	lock_sock(sk);
 721	sk->sk_reuse = SK_CAN_REUSE;
 722	release_sock(sk);
 723}
 724EXPORT_SYMBOL(sock_set_reuseaddr);
 725
 726void sock_set_reuseport(struct sock *sk)
 727{
 728	lock_sock(sk);
 729	sk->sk_reuseport = true;
 730	release_sock(sk);
 731}
 732EXPORT_SYMBOL(sock_set_reuseport);
 733
 734void sock_no_linger(struct sock *sk)
 735{
 736	lock_sock(sk);
 737	sk->sk_lingertime = 0;
 738	sock_set_flag(sk, SOCK_LINGER);
 739	release_sock(sk);
 740}
 741EXPORT_SYMBOL(sock_no_linger);
 742
 743void sock_set_priority(struct sock *sk, u32 priority)
 744{
 745	lock_sock(sk);
 746	sk->sk_priority = priority;
 747	release_sock(sk);
 748}
 749EXPORT_SYMBOL(sock_set_priority);
 750
 751void sock_set_sndtimeo(struct sock *sk, s64 secs)
 752{
 753	lock_sock(sk);
 754	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 755		sk->sk_sndtimeo = secs * HZ;
 756	else
 757		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 758	release_sock(sk);
 759}
 760EXPORT_SYMBOL(sock_set_sndtimeo);
 761
 762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 763{
 
 
 764	if (val)  {
 765		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 766		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 767		sock_set_flag(sk, SOCK_RCVTSTAMP);
 768		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 769	} else {
 770		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 771		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 772		sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 773	}
 774}
 775
 776void sock_enable_timestamps(struct sock *sk)
 777{
 778	lock_sock(sk);
 779	__sock_set_timestamps(sk, true, false, true);
 780	release_sock(sk);
 781}
 782EXPORT_SYMBOL(sock_enable_timestamps);
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784void sock_set_keepalive(struct sock *sk)
 785{
 786	lock_sock(sk);
 787	if (sk->sk_prot->keepalive)
 788		sk->sk_prot->keepalive(sk, true);
 789	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 790	release_sock(sk);
 791}
 792EXPORT_SYMBOL(sock_set_keepalive);
 793
 794static void __sock_set_rcvbuf(struct sock *sk, int val)
 795{
 796	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 797	 * as a negative value.
 798	 */
 799	val = min_t(int, val, INT_MAX / 2);
 800	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 801
 802	/* We double it on the way in to account for "struct sk_buff" etc.
 803	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 804	 * will allow that much actual data to be received on that socket.
 805	 *
 806	 * Applications are unaware that "struct sk_buff" and other overheads
 807	 * allocate from the receive buffer during socket buffer allocation.
 808	 *
 809	 * And after considering the possible alternatives, returning the value
 810	 * we actually used in getsockopt is the most desirable behavior.
 811	 */
 812	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 813}
 814
 815void sock_set_rcvbuf(struct sock *sk, int val)
 816{
 817	lock_sock(sk);
 818	__sock_set_rcvbuf(sk, val);
 819	release_sock(sk);
 820}
 821EXPORT_SYMBOL(sock_set_rcvbuf);
 822
 
 
 
 
 
 
 
 
 823void sock_set_mark(struct sock *sk, u32 val)
 824{
 825	lock_sock(sk);
 826	sk->sk_mark = val;
 827	release_sock(sk);
 828}
 829EXPORT_SYMBOL(sock_set_mark);
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831/*
 832 *	This is meant for all protocols to use and covers goings on
 833 *	at the socket level. Everything here is generic.
 834 */
 835
 836int sock_setsockopt(struct socket *sock, int level, int optname,
 837		    sockptr_t optval, unsigned int optlen)
 838{
 
 
 839	struct sock_txtime sk_txtime;
 840	struct sock *sk = sock->sk;
 841	int val;
 842	int valbool;
 843	struct linger ling;
 844	int ret = 0;
 845
 846	/*
 847	 *	Options without arguments
 848	 */
 849
 850	if (optname == SO_BINDTODEVICE)
 851		return sock_setbindtodevice(sk, optval, optlen);
 852
 853	if (optlen < sizeof(int))
 854		return -EINVAL;
 855
 856	if (copy_from_sockptr(&val, optval, sizeof(val)))
 857		return -EFAULT;
 858
 859	valbool = val ? 1 : 0;
 860
 861	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863	switch (optname) {
 864	case SO_DEBUG:
 865		if (val && !capable(CAP_NET_ADMIN))
 866			ret = -EACCES;
 867		else
 868			sock_valbool_flag(sk, SOCK_DBG, valbool);
 869		break;
 870	case SO_REUSEADDR:
 871		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 872		break;
 873	case SO_REUSEPORT:
 874		sk->sk_reuseport = valbool;
 875		break;
 876	case SO_TYPE:
 877	case SO_PROTOCOL:
 878	case SO_DOMAIN:
 879	case SO_ERROR:
 880		ret = -ENOPROTOOPT;
 881		break;
 882	case SO_DONTROUTE:
 883		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 884		sk_dst_reset(sk);
 885		break;
 886	case SO_BROADCAST:
 887		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 888		break;
 889	case SO_SNDBUF:
 890		/* Don't error on this BSD doesn't and if you think
 891		 * about it this is right. Otherwise apps have to
 892		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 893		 * are treated in BSD as hints
 894		 */
 895		val = min_t(u32, val, sysctl_wmem_max);
 896set_sndbuf:
 897		/* Ensure val * 2 fits into an int, to prevent max_t()
 898		 * from treating it as a negative value.
 899		 */
 900		val = min_t(int, val, INT_MAX / 2);
 901		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 902		WRITE_ONCE(sk->sk_sndbuf,
 903			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 904		/* Wake up sending tasks if we upped the value. */
 905		sk->sk_write_space(sk);
 906		break;
 907
 908	case SO_SNDBUFFORCE:
 909		if (!capable(CAP_NET_ADMIN)) {
 910			ret = -EPERM;
 911			break;
 912		}
 913
 914		/* No negative values (to prevent underflow, as val will be
 915		 * multiplied by 2).
 916		 */
 917		if (val < 0)
 918			val = 0;
 919		goto set_sndbuf;
 920
 921	case SO_RCVBUF:
 922		/* Don't error on this BSD doesn't and if you think
 923		 * about it this is right. Otherwise apps have to
 924		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 925		 * are treated in BSD as hints
 926		 */
 927		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
 928		break;
 929
 930	case SO_RCVBUFFORCE:
 931		if (!capable(CAP_NET_ADMIN)) {
 932			ret = -EPERM;
 933			break;
 934		}
 935
 936		/* No negative values (to prevent underflow, as val will be
 937		 * multiplied by 2).
 938		 */
 939		__sock_set_rcvbuf(sk, max(val, 0));
 940		break;
 941
 942	case SO_KEEPALIVE:
 943		if (sk->sk_prot->keepalive)
 944			sk->sk_prot->keepalive(sk, valbool);
 945		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 946		break;
 947
 948	case SO_OOBINLINE:
 949		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 950		break;
 951
 952	case SO_NO_CHECK:
 953		sk->sk_no_check_tx = valbool;
 954		break;
 955
 956	case SO_PRIORITY:
 957		if ((val >= 0 && val <= 6) ||
 958		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 959			sk->sk_priority = val;
 960		else
 961			ret = -EPERM;
 962		break;
 963
 964	case SO_LINGER:
 965		if (optlen < sizeof(ling)) {
 966			ret = -EINVAL;	/* 1003.1g */
 967			break;
 968		}
 969		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
 970			ret = -EFAULT;
 971			break;
 972		}
 973		if (!ling.l_onoff)
 974			sock_reset_flag(sk, SOCK_LINGER);
 975		else {
 976#if (BITS_PER_LONG == 32)
 977			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 978				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 
 979			else
 980#endif
 981				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 982			sock_set_flag(sk, SOCK_LINGER);
 983		}
 984		break;
 985
 986	case SO_BSDCOMPAT:
 987		sock_warn_obsolete_bsdism("setsockopt");
 988		break;
 989
 990	case SO_PASSCRED:
 991		if (valbool)
 992			set_bit(SOCK_PASSCRED, &sock->flags);
 993		else
 994			clear_bit(SOCK_PASSCRED, &sock->flags);
 995		break;
 996
 997	case SO_TIMESTAMP_OLD:
 998		__sock_set_timestamps(sk, valbool, false, false);
 999		break;
1000	case SO_TIMESTAMP_NEW:
1001		__sock_set_timestamps(sk, valbool, true, false);
1002		break;
1003	case SO_TIMESTAMPNS_OLD:
1004		__sock_set_timestamps(sk, valbool, false, true);
1005		break;
1006	case SO_TIMESTAMPNS_NEW:
1007		__sock_set_timestamps(sk, valbool, true, true);
1008		break;
 
1009	case SO_TIMESTAMPING_NEW:
1010		sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011		fallthrough;
1012	case SO_TIMESTAMPING_OLD:
1013		if (val & ~SOF_TIMESTAMPING_MASK) {
1014			ret = -EINVAL;
1015			break;
1016		}
1017
1018		if (val & SOF_TIMESTAMPING_OPT_ID &&
1019		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020			if (sk->sk_protocol == IPPROTO_TCP &&
1021			    sk->sk_type == SOCK_STREAM) {
1022				if ((1 << sk->sk_state) &
1023				    (TCPF_CLOSE | TCPF_LISTEN)) {
1024					ret = -EINVAL;
1025					break;
1026				}
1027				sk->sk_tskey = tcp_sk(sk)->snd_una;
1028			} else {
1029				sk->sk_tskey = 0;
1030			}
 
 
 
1031		}
1032
1033		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035			ret = -EINVAL;
1036			break;
1037		}
1038
1039		sk->sk_tsflags = val;
1040		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041			sock_enable_timestamp(sk,
1042					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1043		else {
1044			if (optname == SO_TIMESTAMPING_NEW)
1045				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047			sock_disable_timestamp(sk,
1048					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049		}
1050		break;
1051
1052	case SO_RCVLOWAT:
 
 
 
1053		if (val < 0)
1054			val = INT_MAX;
1055		if (sock->ops->set_rcvlowat)
1056			ret = sock->ops->set_rcvlowat(sk, val);
 
 
1057		else
1058			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059		break;
1060
1061	case SO_RCVTIMEO_OLD:
1062	case SO_RCVTIMEO_NEW:
1063		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064				       optlen, optname == SO_RCVTIMEO_OLD);
1065		break;
1066
1067	case SO_SNDTIMEO_OLD:
1068	case SO_SNDTIMEO_NEW:
1069		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070				       optlen, optname == SO_SNDTIMEO_OLD);
1071		break;
1072
1073	case SO_ATTACH_FILTER: {
1074		struct sock_fprog fprog;
1075
1076		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077		if (!ret)
1078			ret = sk_attach_filter(&fprog, sk);
1079		break;
1080	}
1081	case SO_ATTACH_BPF:
1082		ret = -EINVAL;
1083		if (optlen == sizeof(u32)) {
1084			u32 ufd;
1085
1086			ret = -EFAULT;
1087			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088				break;
1089
1090			ret = sk_attach_bpf(ufd, sk);
1091		}
1092		break;
1093
1094	case SO_ATTACH_REUSEPORT_CBPF: {
1095		struct sock_fprog fprog;
1096
1097		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098		if (!ret)
1099			ret = sk_reuseport_attach_filter(&fprog, sk);
1100		break;
1101	}
1102	case SO_ATTACH_REUSEPORT_EBPF:
1103		ret = -EINVAL;
1104		if (optlen == sizeof(u32)) {
1105			u32 ufd;
1106
1107			ret = -EFAULT;
1108			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109				break;
1110
1111			ret = sk_reuseport_attach_bpf(ufd, sk);
1112		}
1113		break;
1114
1115	case SO_DETACH_REUSEPORT_BPF:
1116		ret = reuseport_detach_prog(sk);
1117		break;
1118
1119	case SO_DETACH_FILTER:
1120		ret = sk_detach_filter(sk);
1121		break;
1122
1123	case SO_LOCK_FILTER:
1124		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125			ret = -EPERM;
1126		else
1127			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128		break;
1129
1130	case SO_PASSSEC:
1131		if (valbool)
1132			set_bit(SOCK_PASSSEC, &sock->flags);
1133		else
1134			clear_bit(SOCK_PASSSEC, &sock->flags);
1135		break;
1136	case SO_MARK:
1137		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
 
1138			ret = -EPERM;
1139		} else if (val != sk->sk_mark) {
1140			sk->sk_mark = val;
1141			sk_dst_reset(sk);
1142		}
 
 
 
 
 
1143		break;
1144
1145	case SO_RXQ_OVFL:
1146		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147		break;
1148
1149	case SO_WIFI_STATUS:
1150		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151		break;
1152
1153	case SO_PEEK_OFF:
1154		if (sock->ops->set_peek_off)
1155			ret = sock->ops->set_peek_off(sk, val);
1156		else
1157			ret = -EOPNOTSUPP;
1158		break;
1159
1160	case SO_NOFCS:
1161		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162		break;
1163
1164	case SO_SELECT_ERR_QUEUE:
1165		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166		break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169	case SO_BUSY_POLL:
1170		/* allow unprivileged users to decrease the value */
1171		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172			ret = -EPERM;
1173		else {
1174			if (val < 0)
1175				ret = -EINVAL;
1176			else
1177				sk->sk_ll_usec = val;
1178		}
1179		break;
1180#endif
1181
1182	case SO_MAX_PACING_RATE:
1183		{
1184		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186		if (sizeof(ulval) != sizeof(val) &&
1187		    optlen >= sizeof(ulval) &&
1188		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189			ret = -EFAULT;
1190			break;
1191		}
1192		if (ulval != ~0UL)
1193			cmpxchg(&sk->sk_pacing_status,
1194				SK_PACING_NONE,
1195				SK_PACING_NEEDED);
1196		sk->sk_max_pacing_rate = ulval;
1197		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198		break;
1199		}
1200	case SO_INCOMING_CPU:
1201		WRITE_ONCE(sk->sk_incoming_cpu, val);
1202		break;
1203
1204	case SO_CNX_ADVICE:
1205		if (val == 1)
1206			dst_negative_advice(sk);
1207		break;
1208
1209	case SO_ZEROCOPY:
1210		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211			if (!((sk->sk_type == SOCK_STREAM &&
1212			       sk->sk_protocol == IPPROTO_TCP) ||
1213			      (sk->sk_type == SOCK_DGRAM &&
1214			       sk->sk_protocol == IPPROTO_UDP)))
1215				ret = -ENOTSUPP;
1216		} else if (sk->sk_family != PF_RDS) {
1217			ret = -ENOTSUPP;
1218		}
1219		if (!ret) {
1220			if (val < 0 || val > 1)
1221				ret = -EINVAL;
1222			else
1223				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224		}
1225		break;
1226
1227	case SO_TXTIME:
1228		if (optlen != sizeof(struct sock_txtime)) {
1229			ret = -EINVAL;
1230			break;
1231		} else if (copy_from_sockptr(&sk_txtime, optval,
1232			   sizeof(struct sock_txtime))) {
1233			ret = -EFAULT;
1234			break;
1235		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236			ret = -EINVAL;
1237			break;
1238		}
1239		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240		 * scheduler has enough safe guards.
1241		 */
1242		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244			ret = -EPERM;
1245			break;
1246		}
 
 
 
 
 
1247		sock_valbool_flag(sk, SOCK_TXTIME, true);
1248		sk->sk_clockid = sk_txtime.clockid;
1249		sk->sk_txtime_deadline_mode =
1250			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251		sk->sk_txtime_report_errors =
1252			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253		break;
1254
1255	case SO_BINDTOIFINDEX:
1256		ret = sock_bindtoindex_locked(sk, val);
1257		break;
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259	default:
1260		ret = -ENOPROTOOPT;
1261		break;
1262	}
1263	release_sock(sk);
1264	return ret;
1265}
 
 
 
 
 
 
 
1266EXPORT_SYMBOL(sock_setsockopt);
1267
 
 
 
 
 
 
 
 
 
 
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270			  struct ucred *ucred)
1271{
1272	ucred->pid = pid_vnr(pid);
1273	ucred->uid = ucred->gid = -1;
1274	if (cred) {
1275		struct user_namespace *current_ns = current_user_ns();
1276
1277		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279	}
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284	struct user_namespace *user_ns = current_user_ns();
1285	int i;
1286
1287	for (i = 0; i < src->ngroups; i++)
1288		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
 
 
1289			return -EFAULT;
 
1290
1291	return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295		    char __user *optval, int __user *optlen)
1296{
1297	struct sock *sk = sock->sk;
1298
1299	union {
1300		int val;
1301		u64 val64;
1302		unsigned long ulval;
1303		struct linger ling;
1304		struct old_timeval32 tm32;
1305		struct __kernel_old_timeval tm;
1306		struct  __kernel_sock_timeval stm;
1307		struct sock_txtime txtime;
 
1308	} v;
1309
1310	int lv = sizeof(int);
1311	int len;
1312
1313	if (get_user(len, optlen))
1314		return -EFAULT;
1315	if (len < 0)
1316		return -EINVAL;
1317
1318	memset(&v, 0, sizeof(v));
1319
1320	switch (optname) {
1321	case SO_DEBUG:
1322		v.val = sock_flag(sk, SOCK_DBG);
1323		break;
1324
1325	case SO_DONTROUTE:
1326		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327		break;
1328
1329	case SO_BROADCAST:
1330		v.val = sock_flag(sk, SOCK_BROADCAST);
1331		break;
1332
1333	case SO_SNDBUF:
1334		v.val = sk->sk_sndbuf;
1335		break;
1336
1337	case SO_RCVBUF:
1338		v.val = sk->sk_rcvbuf;
1339		break;
1340
1341	case SO_REUSEADDR:
1342		v.val = sk->sk_reuse;
1343		break;
1344
1345	case SO_REUSEPORT:
1346		v.val = sk->sk_reuseport;
1347		break;
1348
1349	case SO_KEEPALIVE:
1350		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351		break;
1352
1353	case SO_TYPE:
1354		v.val = sk->sk_type;
1355		break;
1356
1357	case SO_PROTOCOL:
1358		v.val = sk->sk_protocol;
1359		break;
1360
1361	case SO_DOMAIN:
1362		v.val = sk->sk_family;
1363		break;
1364
1365	case SO_ERROR:
1366		v.val = -sock_error(sk);
1367		if (v.val == 0)
1368			v.val = xchg(&sk->sk_err_soft, 0);
1369		break;
1370
1371	case SO_OOBINLINE:
1372		v.val = sock_flag(sk, SOCK_URGINLINE);
1373		break;
1374
1375	case SO_NO_CHECK:
1376		v.val = sk->sk_no_check_tx;
1377		break;
1378
1379	case SO_PRIORITY:
1380		v.val = sk->sk_priority;
1381		break;
1382
1383	case SO_LINGER:
1384		lv		= sizeof(v.ling);
1385		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1386		v.ling.l_linger	= sk->sk_lingertime / HZ;
1387		break;
1388
1389	case SO_BSDCOMPAT:
1390		sock_warn_obsolete_bsdism("getsockopt");
1391		break;
1392
1393	case SO_TIMESTAMP_OLD:
1394		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1397		break;
1398
1399	case SO_TIMESTAMPNS_OLD:
1400		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401		break;
1402
1403	case SO_TIMESTAMP_NEW:
1404		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405		break;
1406
1407	case SO_TIMESTAMPNS_NEW:
1408		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409		break;
1410
1411	case SO_TIMESTAMPING_OLD:
1412		v.val = sk->sk_tsflags;
 
 
 
 
 
 
 
 
 
1413		break;
1414
1415	case SO_RCVTIMEO_OLD:
1416	case SO_RCVTIMEO_NEW:
1417		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
 
1418		break;
1419
1420	case SO_SNDTIMEO_OLD:
1421	case SO_SNDTIMEO_NEW:
1422		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
 
1423		break;
1424
1425	case SO_RCVLOWAT:
1426		v.val = sk->sk_rcvlowat;
1427		break;
1428
1429	case SO_SNDLOWAT:
1430		v.val = 1;
1431		break;
1432
1433	case SO_PASSCRED:
1434		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435		break;
1436
 
 
 
 
1437	case SO_PEERCRED:
1438	{
1439		struct ucred peercred;
1440		if (len > sizeof(peercred))
1441			len = sizeof(peercred);
 
 
1442		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443		if (copy_to_user(optval, &peercred, len))
 
 
1444			return -EFAULT;
1445		goto lenout;
1446	}
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448	case SO_PEERGROUPS:
1449	{
 
1450		int ret, n;
1451
1452		if (!sk->sk_peer_cred)
 
1453			return -ENODATA;
1454
1455		n = sk->sk_peer_cred->group_info->ngroups;
1456		if (len < n * sizeof(gid_t)) {
1457			len = n * sizeof(gid_t);
1458			return put_user(len, optlen) ? -EFAULT : -ERANGE;
 
1459		}
1460		len = n * sizeof(gid_t);
1461
1462		ret = groups_to_user((gid_t __user *)optval,
1463				     sk->sk_peer_cred->group_info);
1464		if (ret)
1465			return ret;
1466		goto lenout;
1467	}
1468
1469	case SO_PEERNAME:
1470	{
1471		char address[128];
1472
1473		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474		if (lv < 0)
1475			return -ENOTCONN;
1476		if (lv < len)
1477			return -EINVAL;
1478		if (copy_to_user(optval, address, len))
1479			return -EFAULT;
1480		goto lenout;
1481	}
1482
1483	/* Dubious BSD thing... Probably nobody even uses it, but
1484	 * the UNIX standard wants it for whatever reason... -DaveM
1485	 */
1486	case SO_ACCEPTCONN:
1487		v.val = sk->sk_state == TCP_LISTEN;
1488		break;
1489
1490	case SO_PASSSEC:
1491		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492		break;
1493
1494	case SO_PEERSEC:
1495		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1496
1497	case SO_MARK:
1498		v.val = sk->sk_mark;
 
 
 
 
1499		break;
1500
1501	case SO_RXQ_OVFL:
1502		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503		break;
1504
1505	case SO_WIFI_STATUS:
1506		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507		break;
1508
1509	case SO_PEEK_OFF:
1510		if (!sock->ops->set_peek_off)
1511			return -EOPNOTSUPP;
1512
1513		v.val = sk->sk_peek_off;
1514		break;
1515	case SO_NOFCS:
1516		v.val = sock_flag(sk, SOCK_NOFCS);
1517		break;
1518
1519	case SO_BINDTODEVICE:
1520		return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522	case SO_GET_FILTER:
1523		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524		if (len < 0)
1525			return len;
1526
1527		goto lenout;
1528
1529	case SO_LOCK_FILTER:
1530		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531		break;
1532
1533	case SO_BPF_EXTENSIONS:
1534		v.val = bpf_tell_extensions();
1535		break;
1536
1537	case SO_SELECT_ERR_QUEUE:
1538		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539		break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542	case SO_BUSY_POLL:
1543		v.val = sk->sk_ll_usec;
 
 
 
1544		break;
1545#endif
1546
1547	case SO_MAX_PACING_RATE:
 
1548		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549			lv = sizeof(v.ulval);
1550			v.ulval = sk->sk_max_pacing_rate;
1551		} else {
1552			/* 32bit version */
1553			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
 
1554		}
1555		break;
1556
1557	case SO_INCOMING_CPU:
1558		v.val = READ_ONCE(sk->sk_incoming_cpu);
1559		break;
1560
1561	case SO_MEMINFO:
1562	{
1563		u32 meminfo[SK_MEMINFO_VARS];
1564
1565		sk_get_meminfo(sk, meminfo);
1566
1567		len = min_t(unsigned int, len, sizeof(meminfo));
1568		if (copy_to_user(optval, &meminfo, len))
1569			return -EFAULT;
1570
1571		goto lenout;
1572	}
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575	case SO_INCOMING_NAPI_ID:
1576		v.val = READ_ONCE(sk->sk_napi_id);
1577
1578		/* aggregate non-NAPI IDs down to 0 */
1579		if (v.val < MIN_NAPI_ID)
1580			v.val = 0;
1581
1582		break;
1583#endif
1584
1585	case SO_COOKIE:
1586		lv = sizeof(u64);
1587		if (len < lv)
1588			return -EINVAL;
1589		v.val64 = sock_gen_cookie(sk);
1590		break;
1591
1592	case SO_ZEROCOPY:
1593		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594		break;
1595
1596	case SO_TXTIME:
1597		lv = sizeof(v.txtime);
1598		v.txtime.clockid = sk->sk_clockid;
1599		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600				  SOF_TXTIME_DEADLINE_MODE : 0;
1601		v.txtime.flags |= sk->sk_txtime_report_errors ?
1602				  SOF_TXTIME_REPORT_ERRORS : 0;
1603		break;
1604
1605	case SO_BINDTOIFINDEX:
1606		v.val = sk->sk_bound_dev_if;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607		break;
1608
1609	default:
1610		/* We implement the SO_SNDLOWAT etc to not be settable
1611		 * (1003.1g 7).
1612		 */
1613		return -ENOPROTOOPT;
1614	}
1615
1616	if (len > lv)
1617		len = lv;
1618	if (copy_to_user(optval, &v, len))
1619		return -EFAULT;
1620lenout:
1621	if (put_user(len, optlen))
1622		return -EFAULT;
1623	return 0;
1624}
1625
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633	if (sk->sk_kern_sock)
1634		sock_lock_init_class_and_name(
1635			sk,
1636			af_family_kern_slock_key_strings[sk->sk_family],
1637			af_family_kern_slock_keys + sk->sk_family,
1638			af_family_kern_key_strings[sk->sk_family],
1639			af_family_kern_keys + sk->sk_family);
1640	else
1641		sock_lock_init_class_and_name(
1642			sk,
1643			af_family_slock_key_strings[sk->sk_family],
1644			af_family_slock_keys + sk->sk_family,
1645			af_family_key_strings[sk->sk_family],
1646			af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656	const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658	void *sptr = nsk->sk_security;
1659#endif
 
 
 
 
 
 
 
 
 
 
1660	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666	nsk->sk_security = sptr;
1667	security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672		int family)
1673{
1674	struct sock *sk;
1675	struct kmem_cache *slab;
1676
1677	slab = prot->slab;
1678	if (slab != NULL) {
1679		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680		if (!sk)
1681			return sk;
1682		if (want_init_on_alloc(priority))
1683			sk_prot_clear_nulls(sk, prot->obj_size);
1684	} else
1685		sk = kmalloc(prot->obj_size, priority);
1686
1687	if (sk != NULL) {
1688		if (security_sk_alloc(sk, family, priority))
1689			goto out_free;
1690
1691		if (!try_module_get(prot->owner))
1692			goto out_free_sec;
1693		sk_tx_queue_clear(sk);
1694	}
1695
1696	return sk;
1697
1698out_free_sec:
1699	security_sk_free(sk);
1700out_free:
1701	if (slab != NULL)
1702		kmem_cache_free(slab, sk);
1703	else
1704		kfree(sk);
1705	return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710	struct kmem_cache *slab;
1711	struct module *owner;
1712
1713	owner = prot->owner;
1714	slab = prot->slab;
1715
1716	cgroup_sk_free(&sk->sk_cgrp_data);
1717	mem_cgroup_sk_free(sk);
1718	security_sk_free(sk);
1719	if (slab != NULL)
1720		kmem_cache_free(slab, sk);
1721	else
1722		kfree(sk);
1723	module_put(owner);
1724}
1725
1726/**
1727 *	sk_alloc - All socket objects are allocated here
1728 *	@net: the applicable net namespace
1729 *	@family: protocol family
1730 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 *	@prot: struct proto associated with this new sock instance
1732 *	@kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735		      struct proto *prot, int kern)
1736{
1737	struct sock *sk;
1738
1739	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740	if (sk) {
1741		sk->sk_family = family;
1742		/*
1743		 * See comment in struct sock definition to understand
1744		 * why we need sk_prot_creator -acme
1745		 */
1746		sk->sk_prot = sk->sk_prot_creator = prot;
1747		sk->sk_kern_sock = kern;
1748		sock_lock_init(sk);
1749		sk->sk_net_refcnt = kern ? 0 : 1;
1750		if (likely(sk->sk_net_refcnt)) {
1751			get_net(net);
1752			sock_inuse_add(net, 1);
 
 
 
 
1753		}
1754
1755		sock_net_set(sk, net);
1756		refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758		mem_cgroup_sk_alloc(sk);
1759		cgroup_sk_alloc(&sk->sk_cgrp_data);
1760		sock_update_classid(&sk->sk_cgrp_data);
1761		sock_update_netprioidx(&sk->sk_cgrp_data);
1762		sk_tx_queue_clear(sk);
1763	}
1764
1765	return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774	struct sock *sk = container_of(head, struct sock, sk_rcu);
 
1775	struct sk_filter *filter;
1776
1777	if (sk->sk_destruct)
1778		sk->sk_destruct(sk);
1779
1780	filter = rcu_dereference_check(sk->sk_filter,
1781				       refcount_read(&sk->sk_wmem_alloc) == 0);
1782	if (filter) {
1783		sk_filter_uncharge(sk, filter);
1784		RCU_INIT_POINTER(sk->sk_filter, NULL);
1785	}
1786
1787	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790	bpf_sk_storage_free(sk);
1791#endif
1792
1793	if (atomic_read(&sk->sk_omem_alloc))
1794		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795			 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797	if (sk->sk_frag.page) {
1798		put_page(sk->sk_frag.page);
1799		sk->sk_frag.page = NULL;
1800	}
1801
1802	if (sk->sk_peer_cred)
1803		put_cred(sk->sk_peer_cred);
1804	put_pid(sk->sk_peer_pid);
1805	if (likely(sk->sk_net_refcnt))
1806		put_net(sock_net(sk));
 
 
 
 
 
1807	sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
1810void sk_destruct(struct sock *sk)
1811{
1812	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815		reuseport_detach_sock(sk);
1816		use_call_rcu = true;
1817	}
1818
1819	if (use_call_rcu)
1820		call_rcu(&sk->sk_rcu, __sk_destruct);
1821	else
1822		__sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827	if (likely(sk->sk_net_refcnt))
1828		sock_inuse_add(sock_net(sk), -1);
1829
1830	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831		sock_diag_broadcast_destroy(sk);
1832	else
1833		sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838	/*
1839	 * We subtract one from sk_wmem_alloc and can know if
1840	 * some packets are still in some tx queue.
1841	 * If not null, sock_wfree() will call __sk_free(sk) later
1842	 */
1843	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844		__sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850	skb_queue_head_init(&sk->sk_receive_queue);
1851	skb_queue_head_init(&sk->sk_write_queue);
1852	skb_queue_head_init(&sk->sk_error_queue);
1853
1854	rwlock_init(&sk->sk_callback_lock);
1855	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856			af_rlock_keys + sk->sk_family,
1857			af_family_rlock_key_strings[sk->sk_family]);
1858	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859			af_wlock_keys + sk->sk_family,
1860			af_family_wlock_key_strings[sk->sk_family]);
1861	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862			af_elock_keys + sk->sk_family,
1863			af_family_elock_key_strings[sk->sk_family]);
1864	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
1865			af_callback_keys + sk->sk_family,
1866			af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 *	sk_clone_lock - clone a socket, and lock its clone
1871 *	@sk: the socket to clone
1872 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878	struct proto *prot = READ_ONCE(sk->sk_prot);
 
 
1879	struct sock *newsk;
1880	bool is_charged = true;
1881
1882	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883	if (newsk != NULL) {
1884		struct sk_filter *filter;
1885
1886		sock_copy(newsk, sk);
1887
1888		newsk->sk_prot_creator = prot;
1889
1890		/* SANITY */
1891		if (likely(newsk->sk_net_refcnt))
1892			get_net(sock_net(newsk));
1893		sk_node_init(&newsk->sk_node);
1894		sock_lock_init(newsk);
1895		bh_lock_sock(newsk);
1896		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1897		newsk->sk_backlog.len = 0;
1898
1899		atomic_set(&newsk->sk_rmem_alloc, 0);
1900		/*
1901		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1902		 */
1903		refcount_set(&newsk->sk_wmem_alloc, 1);
1904		atomic_set(&newsk->sk_omem_alloc, 0);
1905		sk_init_common(newsk);
1906
1907		newsk->sk_dst_cache	= NULL;
1908		newsk->sk_dst_pending_confirm = 0;
1909		newsk->sk_wmem_queued	= 0;
1910		newsk->sk_forward_alloc = 0;
1911		atomic_set(&newsk->sk_drops, 0);
1912		newsk->sk_send_head	= NULL;
1913		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914		atomic_set(&newsk->sk_zckey, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916		sock_reset_flag(newsk, SOCK_DONE);
1917
1918		/* sk->sk_memcg will be populated at accept() time */
1919		newsk->sk_memcg = NULL;
1920
1921		cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923		rcu_read_lock();
1924		filter = rcu_dereference(sk->sk_filter);
1925		if (filter != NULL)
1926			/* though it's an empty new sock, the charging may fail
1927			 * if sysctl_optmem_max was changed between creation of
1928			 * original socket and cloning
1929			 */
1930			is_charged = sk_filter_charge(newsk, filter);
1931		RCU_INIT_POINTER(newsk->sk_filter, filter);
1932		rcu_read_unlock();
1933
1934		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935			/* We need to make sure that we don't uncharge the new
1936			 * socket if we couldn't charge it in the first place
1937			 * as otherwise we uncharge the parent's filter.
1938			 */
1939			if (!is_charged)
1940				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941			sk_free_unlock_clone(newsk);
1942			newsk = NULL;
1943			goto out;
1944		}
1945		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947		if (bpf_sk_storage_clone(sk, newsk)) {
1948			sk_free_unlock_clone(newsk);
1949			newsk = NULL;
1950			goto out;
1951		}
1952
1953		/* Clear sk_user_data if parent had the pointer tagged
1954		 * as not suitable for copying when cloning.
1955		 */
1956		if (sk_user_data_is_nocopy(newsk))
1957			newsk->sk_user_data = NULL;
1958
1959		newsk->sk_err	   = 0;
1960		newsk->sk_err_soft = 0;
1961		newsk->sk_priority = 0;
1962		newsk->sk_incoming_cpu = raw_smp_processor_id();
1963		if (likely(newsk->sk_net_refcnt))
1964			sock_inuse_add(sock_net(newsk), 1);
1965
1966		/*
1967		 * Before updating sk_refcnt, we must commit prior changes to memory
1968		 * (Documentation/RCU/rculist_nulls.rst for details)
1969		 */
1970		smp_wmb();
1971		refcount_set(&newsk->sk_refcnt, 2);
1972
1973		/*
1974		 * Increment the counter in the same struct proto as the master
1975		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976		 * is the same as sk->sk_prot->socks, as this field was copied
1977		 * with memcpy).
1978		 *
1979		 * This _changes_ the previous behaviour, where
1980		 * tcp_create_openreq_child always was incrementing the
1981		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982		 * to be taken into account in all callers. -acme
1983		 */
1984		sk_refcnt_debug_inc(newsk);
1985		sk_set_socket(newsk, NULL);
1986		sk_tx_queue_clear(newsk);
1987		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989		if (newsk->sk_prot->sockets_allocated)
1990			sk_sockets_allocated_inc(newsk);
1991
1992		if (sock_needs_netstamp(sk) &&
1993		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994			net_enable_timestamp();
1995	}
1996out:
1997	return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003	/* It is still raw copy of parent, so invalidate
2004	 * destructor and make plain sk_free() */
2005	sk->sk_destruct = NULL;
2006	bh_unlock_sock(sk);
2007	sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013	u32 max_segs = 1;
2014
2015	sk_dst_set(sk, dst);
2016	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
 
2017	if (sk->sk_route_caps & NETIF_F_GSO)
2018		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
2020	if (sk_can_gso(sk)) {
2021		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023		} else {
2024			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025			sk->sk_gso_max_size = dst->dev->gso_max_size;
2026			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
 
2027		}
2028	}
2029	sk->sk_gso_max_segs = max_segs;
 
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 *	Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043	struct sock *sk = skb->sk;
2044	unsigned int len = skb->truesize;
 
2045
2046	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
2047		/*
2048		 * Keep a reference on sk_wmem_alloc, this will be released
2049		 * after sk_write_space() call
2050		 */
2051		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052		sk->sk_write_space(sk);
2053		len = 1;
2054	}
2055	/*
2056	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057	 * could not do because of in-flight packets
2058	 */
2059	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060		__sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069	struct sock *sk = skb->sk;
2070
2071	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072		__sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077	skb_orphan(skb);
2078	skb->sk = sk;
2079#ifdef CONFIG_INET
2080	if (unlikely(!sk_fullsock(sk))) {
2081		skb->destructor = sock_edemux;
2082		sock_hold(sk);
2083		return;
2084	}
2085#endif
 
2086	skb->destructor = sock_wfree;
2087	skb_set_hash_from_sk(skb, sk);
2088	/*
2089	 * We used to take a refcount on sk, but following operation
2090	 * is enough to guarantee sk_free() wont free this sock until
2091	 * all in-flight packets are completed
2092	 */
2093	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100	/* Drivers depend on in-order delivery for crypto offload,
2101	 * partial orphan breaks out-of-order-OK logic.
2102	 */
2103	if (skb->decrypted)
2104		return false;
2105#endif
2106	return (skb->destructor == sock_wfree ||
2107		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118	if (skb_is_tcp_pure_ack(skb))
2119		return;
2120
2121	if (can_skb_orphan_partial(skb)) {
2122		struct sock *sk = skb->sk;
2123
2124		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126			skb->destructor = sock_efree;
2127		}
2128	} else {
2129		skb_orphan(skb);
2130	}
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139	struct sock *sk = skb->sk;
2140	unsigned int len = skb->truesize;
2141
2142	atomic_sub(len, &sk->sk_rmem_alloc);
2143	sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153	sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163	if (sk_is_refcounted(skb->sk))
2164		sock_gen_put(skb->sk);
 
 
 
 
 
 
 
 
 
 
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171	kuid_t uid;
2172
2173	read_lock_bh(&sk->sk_callback_lock);
2174	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175	read_unlock_bh(&sk->sk_callback_lock);
2176	return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
 
 
 
 
 
 
 
 
 
 
 
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182	unsigned long ino;
2183
2184	read_lock_bh(&sk->sk_callback_lock);
2185	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186	read_unlock_bh(&sk->sk_callback_lock);
2187	return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195			     gfp_t priority)
2196{
2197	if (force ||
2198	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199		struct sk_buff *skb = alloc_skb(size, priority);
2200
2201		if (skb) {
2202			skb_set_owner_w(skb, sk);
2203			return skb;
2204		}
2205	}
2206	return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212	struct sock *sk = skb->sk;
2213
2214	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218			     gfp_t priority)
2219{
2220	struct sk_buff *skb;
2221
2222	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224	    sysctl_optmem_max)
2225		return NULL;
2226
2227	skb = alloc_skb(size, priority);
2228	if (!skb)
2229		return NULL;
2230
2231	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232	skb->sk = sk;
2233	skb->destructor = sock_ofree;
2234	return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242	if ((unsigned int)size <= sysctl_optmem_max &&
2243	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
2244		void *mem;
2245		/* First do the add, to avoid the race if kmalloc
2246		 * might sleep.
2247		 */
2248		atomic_add(size, &sk->sk_omem_alloc);
2249		mem = kmalloc(size, priority);
2250		if (mem)
2251			return mem;
2252		atomic_sub(size, &sk->sk_omem_alloc);
2253	}
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263				  const bool nullify)
2264{
2265	if (WARN_ON_ONCE(!mem))
2266		return;
2267	if (nullify)
2268		kfree_sensitive(mem);
2269	else
2270		kfree(mem);
2271	atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276	__sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282	__sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287   I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291	DEFINE_WAIT(wait);
2292
2293	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294	for (;;) {
2295		if (!timeo)
2296			break;
2297		if (signal_pending(current))
2298			break;
2299		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302			break;
2303		if (sk->sk_shutdown & SEND_SHUTDOWN)
2304			break;
2305		if (sk->sk_err)
2306			break;
2307		timeo = schedule_timeout(timeo);
2308	}
2309	finish_wait(sk_sleep(sk), &wait);
2310	return timeo;
2311}
2312
2313
2314/*
2315 *	Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319				     unsigned long data_len, int noblock,
2320				     int *errcode, int max_page_order)
2321{
2322	struct sk_buff *skb;
2323	long timeo;
2324	int err;
2325
2326	timeo = sock_sndtimeo(sk, noblock);
2327	for (;;) {
2328		err = sock_error(sk);
2329		if (err != 0)
2330			goto failure;
2331
2332		err = -EPIPE;
2333		if (sk->sk_shutdown & SEND_SHUTDOWN)
2334			goto failure;
2335
2336		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337			break;
2338
2339		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341		err = -EAGAIN;
2342		if (!timeo)
2343			goto failure;
2344		if (signal_pending(current))
2345			goto interrupted;
2346		timeo = sock_wait_for_wmem(sk, timeo);
2347	}
2348	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349				   errcode, sk->sk_allocation);
2350	if (skb)
2351		skb_set_owner_w(skb, sk);
2352	return skb;
2353
2354interrupted:
2355	err = sock_intr_errno(timeo);
2356failure:
2357	*errcode = err;
2358	return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363				    int noblock, int *errcode)
2364{
2365	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370		     struct sockcm_cookie *sockc)
2371{
2372	u32 tsflags;
2373
 
 
2374	switch (cmsg->cmsg_type) {
2375	case SO_MARK:
2376		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
2377			return -EPERM;
2378		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379			return -EINVAL;
2380		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381		break;
2382	case SO_TIMESTAMPING_OLD:
 
2383		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384			return -EINVAL;
2385
2386		tsflags = *(u32 *)CMSG_DATA(cmsg);
2387		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388			return -EINVAL;
2389
2390		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391		sockc->tsflags |= tsflags;
2392		break;
2393	case SCM_TXTIME:
2394		if (!sock_flag(sk, SOCK_TXTIME))
2395			return -EINVAL;
2396		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397			return -EINVAL;
2398		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399		break;
 
 
 
 
 
 
 
 
 
 
 
2400	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401	case SCM_RIGHTS:
2402	case SCM_CREDENTIALS:
2403		break;
2404	default:
2405		return -EINVAL;
2406	}
2407	return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412		   struct sockcm_cookie *sockc)
2413{
2414	struct cmsghdr *cmsg;
2415	int ret;
2416
2417	for_each_cmsghdr(cmsg, msg) {
2418		if (!CMSG_OK(msg, cmsg))
2419			return -EINVAL;
2420		if (cmsg->cmsg_level != SOL_SOCKET)
2421			continue;
2422		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423		if (ret)
2424			return ret;
2425	}
2426	return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432	if (!sk->sk_prot->enter_memory_pressure)
2433		return;
2434
2435	sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440	if (sk->sk_prot->leave_memory_pressure) {
2441		sk->sk_prot->leave_memory_pressure(sk);
 
2442	} else {
2443		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445		if (memory_pressure && READ_ONCE(*memory_pressure))
2446			WRITE_ONCE(*memory_pressure, 0);
2447	}
2448}
2449
2450#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465	if (pfrag->page) {
2466		if (page_ref_count(pfrag->page) == 1) {
2467			pfrag->offset = 0;
2468			return true;
2469		}
2470		if (pfrag->offset + sz <= pfrag->size)
2471			return true;
2472		put_page(pfrag->page);
2473	}
2474
2475	pfrag->offset = 0;
2476	if (SKB_FRAG_PAGE_ORDER &&
2477	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478		/* Avoid direct reclaim but allow kswapd to wake */
2479		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480					  __GFP_COMP | __GFP_NOWARN |
2481					  __GFP_NORETRY,
2482					  SKB_FRAG_PAGE_ORDER);
2483		if (likely(pfrag->page)) {
2484			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485			return true;
2486		}
2487	}
2488	pfrag->page = alloc_page(gfp);
2489	if (likely(pfrag->page)) {
2490		pfrag->size = PAGE_SIZE;
2491		return true;
2492	}
2493	return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500		return true;
2501
2502	sk_enter_memory_pressure(sk);
2503	sk_stream_moderate_sndbuf(sk);
2504	return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509	__releases(&sk->sk_lock.slock)
2510	__acquires(&sk->sk_lock.slock)
2511{
2512	DEFINE_WAIT(wait);
2513
2514	for (;;) {
2515		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516					TASK_UNINTERRUPTIBLE);
2517		spin_unlock_bh(&sk->sk_lock.slock);
2518		schedule();
2519		spin_lock_bh(&sk->sk_lock.slock);
2520		if (!sock_owned_by_user(sk))
2521			break;
2522	}
2523	finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527	__releases(&sk->sk_lock.slock)
2528	__acquires(&sk->sk_lock.slock)
2529{
2530	struct sk_buff *skb, *next;
2531
2532	while ((skb = sk->sk_backlog.head) != NULL) {
2533		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535		spin_unlock_bh(&sk->sk_lock.slock);
2536
2537		do {
2538			next = skb->next;
2539			prefetch(next);
2540			WARN_ON_ONCE(skb_dst_is_noref(skb));
2541			skb_mark_not_on_list(skb);
2542			sk_backlog_rcv(sk, skb);
2543
2544			cond_resched();
2545
2546			skb = next;
2547		} while (skb != NULL);
2548
2549		spin_lock_bh(&sk->sk_lock.slock);
2550	}
2551
2552	/*
2553	 * Doing the zeroing here guarantee we can not loop forever
2554	 * while a wild producer attempts to flood us.
2555	 */
2556	sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561	spin_lock_bh(&sk->sk_lock.slock);
2562	__release_sock(sk);
 
 
 
 
 
2563	spin_unlock_bh(&sk->sk_lock.slock);
2564}
 
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk:    sock to wait on
2569 * @timeo: for how long
2570 * @skb:   last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580	int rc;
2581
2582	add_wait_queue(sk_sleep(sk), &wait);
2583	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586	remove_wait_queue(sk_sleep(sk), &wait);
2587	return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 *	__sk_mem_raise_allocated - increase memory_allocated
2593 *	@sk: socket
2594 *	@size: memory size to allocate
2595 *	@amt: pages to allocate
2596 *	@kind: allocation type
2597 *
2598 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
 
 
 
 
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
 
2602	struct proto *prot = sk->sk_prot;
2603	long allocated = sk_memory_allocated_add(sk, amt);
2604	bool charged = true;
 
 
 
2605
2606	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608		goto suppress_allocation;
 
 
2609
2610	/* Under limit. */
2611	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612		sk_leave_memory_pressure(sk);
2613		return 1;
2614	}
2615
2616	/* Under pressure. */
2617	if (allocated > sk_prot_mem_limits(sk, 1))
2618		sk_enter_memory_pressure(sk);
2619
2620	/* Over hard limit. */
2621	if (allocated > sk_prot_mem_limits(sk, 2))
2622		goto suppress_allocation;
2623
2624	/* guarantee minimum buffer size under pressure */
 
 
 
 
 
 
 
2625	if (kind == SK_MEM_RECV) {
2626		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627			return 1;
2628
2629	} else { /* SK_MEM_SEND */
2630		int wmem0 = sk_get_wmem0(sk, prot);
2631
2632		if (sk->sk_type == SOCK_STREAM) {
2633			if (sk->sk_wmem_queued < wmem0)
2634				return 1;
2635		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636				return 1;
2637		}
2638	}
2639
2640	if (sk_has_memory_pressure(sk)) {
2641		u64 alloc;
2642
2643		if (!sk_under_memory_pressure(sk))
 
 
 
 
2644			return 1;
 
 
 
 
 
2645		alloc = sk_sockets_allocated_read_positive(sk);
2646		if (sk_prot_mem_limits(sk, 2) > alloc *
2647		    sk_mem_pages(sk->sk_wmem_queued +
2648				 atomic_read(&sk->sk_rmem_alloc) +
2649				 sk->sk_forward_alloc))
2650			return 1;
2651	}
2652
2653suppress_allocation:
2654
2655	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656		sk_stream_moderate_sndbuf(sk);
2657
2658		/* Fail only if socket is _under_ its sndbuf.
2659		 * In this case we cannot block, so that we have to fail.
2660		 */
2661		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
2662			return 1;
 
2663	}
2664
2665	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668	sk_memory_allocated_sub(sk, amt);
2669
2670	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 *	@sk: socket
2680 *	@size: memory size to allocate
2681 *	@kind: allocation type
2682 *
2683 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 *	rmem allocation. This function assumes that protocols which have
2685 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689	int ret, amt = sk_mem_pages(size);
2690
2691	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693	if (!ret)
2694		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695	return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2701 *	@sk: socket
2702 *	@amount: number of quanta
2703 *
2704 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708	sk_memory_allocated_sub(sk, amount);
2709
2710	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713	if (sk_under_memory_pressure(sk) &&
2714	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715		sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 *	@sk: socket
2722 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726	amount >>= SK_MEM_QUANTUM_SHIFT;
2727	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728	__sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734	sk->sk_peek_off = val;
2735	return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748	return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753		    int len, int flags)
2754{
2755	return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761	return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766		   bool kern)
2767{
2768	return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773		    int peer)
2774{
2775	return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781	return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787	return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793	return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799	return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805	return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810		    int flags)
2811{
2812	return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818	/* Mirror missing mmap method error code */
2819	return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829	struct socket *sock;
2830	int error;
2831
2832	/*
2833	 * The resulting value of "error" is ignored here since we only
2834	 * need to take action when the file is a socket and testing
2835	 * "sock" for NULL is sufficient.
2836	 */
2837	sock = sock_from_file(file, &error);
2838	if (sock) {
2839		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840		sock_update_classid(&sock->sk->sk_cgrp_data);
2841	}
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846	ssize_t res;
2847	struct msghdr msg = {.msg_flags = flags};
2848	struct kvec iov;
2849	char *kaddr = kmap(page);
2850	iov.iov_base = kaddr + offset;
2851	iov.iov_len = size;
2852	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853	kunmap(page);
2854	return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859				int offset, size_t size, int flags)
2860{
2861	ssize_t res;
2862	struct msghdr msg = {.msg_flags = flags};
2863	struct kvec iov;
2864	char *kaddr = kmap(page);
2865
2866	iov.iov_base = kaddr + offset;
2867	iov.iov_len = size;
2868	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869	kunmap(page);
2870	return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 *	Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880	struct socket_wq *wq;
2881
2882	rcu_read_lock();
2883	wq = rcu_dereference(sk->sk_wq);
2884	if (skwq_has_sleeper(wq))
2885		wake_up_interruptible_all(&wq->wait);
2886	rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891	struct socket_wq *wq;
2892
2893	rcu_read_lock();
2894	wq = rcu_dereference(sk->sk_wq);
2895	if (skwq_has_sleeper(wq))
2896		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898	rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903	struct socket_wq *wq;
2904
 
 
2905	rcu_read_lock();
2906	wq = rcu_dereference(sk->sk_wq);
2907	if (skwq_has_sleeper(wq))
2908		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909						EPOLLRDNORM | EPOLLRDBAND);
2910	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911	rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916	struct socket_wq *wq;
2917
2918	rcu_read_lock();
2919
2920	/* Do not wake up a writer until he can make "significant"
2921	 * progress.  --DaveM
2922	 */
2923	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924		wq = rcu_dereference(sk->sk_wq);
2925		if (skwq_has_sleeper(wq))
2926			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927						EPOLLWRNORM | EPOLLWRBAND);
2928
2929		/* Should agree with poll, otherwise some programs break */
2930		if (sock_writeable(sk))
2931			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932	}
2933
2934	rcu_read_unlock();
2935}
2936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943	if (sk->sk_socket && sk->sk_socket->file)
2944		if (send_sigurg(&sk->sk_socket->file->f_owner))
2945			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950		    unsigned long expires)
2951{
2952	if (!mod_timer(timer, expires))
2953		sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959	if (del_timer(timer))
2960		__sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
2964void sock_init_data(struct socket *sock, struct sock *sk)
 
 
 
 
 
 
 
2965{
2966	sk_init_common(sk);
2967	sk->sk_send_head	=	NULL;
2968
2969	timer_setup(&sk->sk_timer, NULL, 0);
2970
2971	sk->sk_allocation	=	GFP_KERNEL;
2972	sk->sk_rcvbuf		=	sysctl_rmem_default;
2973	sk->sk_sndbuf		=	sysctl_wmem_default;
2974	sk->sk_state		=	TCP_CLOSE;
 
2975	sk_set_socket(sk, sock);
2976
2977	sock_set_flag(sk, SOCK_ZAPPED);
2978
2979	if (sock) {
2980		sk->sk_type	=	sock->type;
2981		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982		sock->sk	=	sk;
2983		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2984	} else {
2985		RCU_INIT_POINTER(sk->sk_wq, NULL);
2986		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2987	}
2988
2989	rwlock_init(&sk->sk_callback_lock);
2990	if (sk->sk_kern_sock)
2991		lockdep_set_class_and_name(
2992			&sk->sk_callback_lock,
2993			af_kern_callback_keys + sk->sk_family,
2994			af_family_kern_clock_key_strings[sk->sk_family]);
2995	else
2996		lockdep_set_class_and_name(
2997			&sk->sk_callback_lock,
2998			af_callback_keys + sk->sk_family,
2999			af_family_clock_key_strings[sk->sk_family]);
3000
3001	sk->sk_state_change	=	sock_def_wakeup;
3002	sk->sk_data_ready	=	sock_def_readable;
3003	sk->sk_write_space	=	sock_def_write_space;
3004	sk->sk_error_report	=	sock_def_error_report;
3005	sk->sk_destruct		=	sock_def_destruct;
3006
3007	sk->sk_frag.page	=	NULL;
3008	sk->sk_frag.offset	=	0;
3009	sk->sk_peek_off		=	-1;
3010
3011	sk->sk_peer_pid 	=	NULL;
3012	sk->sk_peer_cred	=	NULL;
 
 
3013	sk->sk_write_pending	=	0;
3014	sk->sk_rcvlowat		=	1;
3015	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3016	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3017
3018	sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020	seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022	atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025	sk->sk_napi_id		=	0;
3026	sk->sk_ll_usec		=	sysctl_net_busy_read;
3027#endif
3028
3029	sk->sk_max_pacing_rate = ~0UL;
3030	sk->sk_pacing_rate = ~0UL;
3031	WRITE_ONCE(sk->sk_pacing_shift, 10);
3032	sk->sk_incoming_cpu = -1;
3033
3034	sk_rx_queue_clear(sk);
3035	/*
3036	 * Before updating sk_refcnt, we must commit prior changes to memory
3037	 * (Documentation/RCU/rculist_nulls.rst for details)
3038	 */
3039	smp_wmb();
3040	refcount_set(&sk->sk_refcnt, 1);
3041	atomic_set(&sk->sk_drops, 0);
3042}
 
 
 
 
 
 
 
 
 
 
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
 
 
 
3047	might_sleep();
3048	spin_lock_bh(&sk->sk_lock.slock);
3049	if (sk->sk_lock.owned)
3050		__lock_sock(sk);
3051	sk->sk_lock.owned = 1;
3052	spin_unlock(&sk->sk_lock.slock);
3053	/*
3054	 * The sk_lock has mutex_lock() semantics here:
3055	 */
3056	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057	local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063	spin_lock_bh(&sk->sk_lock.slock);
3064	if (sk->sk_backlog.tail)
3065		__release_sock(sk);
3066
3067	/* Warning : release_cb() might need to release sk ownership,
3068	 * ie call sock_release_ownership(sk) before us.
3069	 */
3070	if (sk->sk_prot->release_cb)
3071		sk->sk_prot->release_cb(sk);
 
3072
3073	sock_release_ownership(sk);
3074	if (waitqueue_active(&sk->sk_lock.wq))
3075		wake_up(&sk->sk_lock.wq);
3076	spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 *   sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 *   sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095	might_sleep();
3096	spin_lock_bh(&sk->sk_lock.slock);
3097
3098	if (!sk->sk_lock.owned)
3099		/*
3100		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
3101		 */
3102		return false;
 
3103
3104	__lock_sock(sk);
3105	sk->sk_lock.owned = 1;
3106	spin_unlock(&sk->sk_lock.slock);
3107	/*
3108	 * The sk_lock has mutex_lock() semantics here:
3109	 */
3110	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111	local_bh_enable();
3112	return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117		   bool timeval, bool time32)
3118{
3119	struct sock *sk = sock->sk;
3120	struct timespec64 ts;
3121
3122	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124	if (ts.tv_sec == -1)
3125		return -ENOENT;
3126	if (ts.tv_sec == 0) {
3127		ktime_t kt = ktime_get_real();
3128		sock_write_timestamp(sk, kt);
3129		ts = ktime_to_timespec64(kt);
3130	}
3131
3132	if (timeval)
3133		ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136	if (time32)
3137		return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140	/* beware of padding in sparc64 timeval */
3141	if (timeval && !in_compat_syscall()) {
3142		struct __kernel_old_timeval __user tv = {
3143			.tv_sec = ts.tv_sec,
3144			.tv_usec = ts.tv_nsec,
3145		};
3146		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147			return -EFAULT;
3148		return 0;
3149	}
3150#endif
3151	return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157	if (!sock_flag(sk, flag)) {
3158		unsigned long previous_flags = sk->sk_flags;
3159
3160		sock_set_flag(sk, flag);
3161		/*
3162		 * we just set one of the two flags which require net
3163		 * time stamping, but time stamping might have been on
3164		 * already because of the other one
3165		 */
3166		if (sock_needs_netstamp(sk) &&
3167		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3168			net_enable_timestamp();
3169	}
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173		       int level, int type)
3174{
3175	struct sock_exterr_skb *serr;
3176	struct sk_buff *skb;
3177	int copied, err;
3178
3179	err = -EAGAIN;
3180	skb = sock_dequeue_err_skb(sk);
3181	if (skb == NULL)
3182		goto out;
3183
3184	copied = skb->len;
3185	if (copied > len) {
3186		msg->msg_flags |= MSG_TRUNC;
3187		copied = len;
3188	}
3189	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190	if (err)
3191		goto out_free_skb;
3192
3193	sock_recv_timestamp(msg, sk, skb);
3194
3195	serr = SKB_EXT_ERR(skb);
3196	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198	msg->msg_flags |= MSG_ERRQUEUE;
3199	err = copied;
3200
3201out_free_skb:
3202	kfree_skb(skb);
3203out:
3204	return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 *	Get a socket option on an socket.
3210 *
3211 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 *	asynchronous errors should be reported by getsockopt. We assume
3213 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216			   char __user *optval, int __user *optlen)
3217{
3218	struct sock *sk = sock->sk;
3219
3220	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225			int flags)
3226{
3227	struct sock *sk = sock->sk;
3228	int addr_len = 0;
3229	int err;
3230
3231	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232				   flags & ~MSG_DONTWAIT, &addr_len);
3233	if (err >= 0)
3234		msg->msg_namelen = addr_len;
3235	return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 *	Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243			   sockptr_t optval, unsigned int optlen)
3244{
3245	struct sock *sk = sock->sk;
3246
3247	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
3251void sk_common_release(struct sock *sk)
3252{
3253	if (sk->sk_prot->destroy)
3254		sk->sk_prot->destroy(sk);
3255
3256	/*
3257	 * Observation: when sk_common_release is called, processes have
3258	 * no access to socket. But net still has.
3259	 * Step one, detach it from networking:
3260	 *
3261	 * A. Remove from hash tables.
3262	 */
3263
3264	sk->sk_prot->unhash(sk);
3265
3266	/*
3267	 * In this point socket cannot receive new packets, but it is possible
3268	 * that some packets are in flight because some CPU runs receiver and
3269	 * did hash table lookup before we unhashed socket. They will achieve
3270	 * receive queue and will be purged by socket destructor.
3271	 *
3272	 * Also we still have packets pending on receive queue and probably,
3273	 * our own packets waiting in device queues. sock_destroy will drain
3274	 * receive queue, but transmitted packets will delay socket destruction
3275	 * until the last reference will be released.
3276	 */
3277
3278	sock_orphan(sk);
3279
3280	xfrm_sk_free_policy(sk);
3281
3282	sk_refcnt_debug_release(sk);
3283
3284	sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3305struct prot_inuse {
3306	int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319	int cpu, idx = prot->inuse_idx;
3320	int res = 0;
3321
3322	for_each_possible_cpu(cpu)
3323		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325	return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331	this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336	int cpu, res = 0;
3337
3338	for_each_possible_cpu(cpu)
3339		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341	return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349	if (net->core.prot_inuse == NULL)
3350		return -ENOMEM;
3351
3352	net->core.sock_inuse = alloc_percpu(int);
3353	if (net->core.sock_inuse == NULL)
3354		goto out;
3355
3356	return 0;
3357
3358out:
3359	free_percpu(net->core.prot_inuse);
3360	return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365	free_percpu(net->core.prot_inuse);
3366	free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370	.init = sock_inuse_init_net,
3371	.exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376	if (register_pernet_subsys(&net_inuse_ops))
3377		panic("Cannot initialize net inuse counters");
3378
3379	return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389		pr_err("PROTO_INUSE_NR exhausted\n");
3390		return -ENOSPC;
3391	}
3392
3393	set_bit(prot->inuse_idx, proto_inuse_idx);
3394	return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400		clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405	return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419	if (!twsk_prot)
3420		return;
3421	kfree(twsk_prot->twsk_slab_name);
3422	twsk_prot->twsk_slab_name = NULL;
3423	kmem_cache_destroy(twsk_prot->twsk_slab);
3424	twsk_prot->twsk_slab = NULL;
3425}
3426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429	if (!rsk_prot)
3430		return;
3431	kfree(rsk_prot->slab_name);
3432	rsk_prot->slab_name = NULL;
3433	kmem_cache_destroy(rsk_prot->slab);
3434	rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441	if (!rsk_prot)
3442		return 0;
3443
3444	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445					prot->name);
3446	if (!rsk_prot->slab_name)
3447		return -ENOMEM;
3448
3449	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450					   rsk_prot->obj_size, 0,
3451					   SLAB_ACCOUNT | prot->slab_flags,
3452					   NULL);
3453
3454	if (!rsk_prot->slab) {
3455		pr_crit("%s: Can't create request sock SLAB cache!\n",
3456			prot->name);
3457		return -ENOMEM;
3458	}
3459	return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464	int ret = -ENOBUFS;
3465
 
 
 
 
 
 
 
 
3466	if (alloc_slab) {
3467		prot->slab = kmem_cache_create_usercopy(prot->name,
3468					prot->obj_size, 0,
3469					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470					prot->slab_flags,
3471					prot->useroffset, prot->usersize,
3472					NULL);
3473
3474		if (prot->slab == NULL) {
3475			pr_crit("%s: Can't create sock SLAB cache!\n",
3476				prot->name);
3477			goto out;
3478		}
3479
3480		if (req_prot_init(prot))
3481			goto out_free_request_sock_slab;
3482
3483		if (prot->twsk_prot != NULL) {
3484			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486			if (prot->twsk_prot->twsk_slab_name == NULL)
3487				goto out_free_request_sock_slab;
3488
3489			prot->twsk_prot->twsk_slab =
3490				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491						  prot->twsk_prot->twsk_obj_size,
3492						  0,
3493						  SLAB_ACCOUNT |
3494						  prot->slab_flags,
3495						  NULL);
3496			if (prot->twsk_prot->twsk_slab == NULL)
3497				goto out_free_timewait_sock_slab;
3498		}
3499	}
3500
3501	mutex_lock(&proto_list_mutex);
3502	ret = assign_proto_idx(prot);
3503	if (ret) {
3504		mutex_unlock(&proto_list_mutex);
3505		goto out_free_timewait_sock_slab;
3506	}
3507	list_add(&prot->node, &proto_list);
3508	mutex_unlock(&proto_list_mutex);
3509	return ret;
3510
3511out_free_timewait_sock_slab:
3512	if (alloc_slab && prot->twsk_prot)
3513		tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515	if (alloc_slab) {
3516		req_prot_cleanup(prot->rsk_prot);
3517
3518		kmem_cache_destroy(prot->slab);
3519		prot->slab = NULL;
3520	}
3521out:
3522	return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528	mutex_lock(&proto_list_mutex);
3529	release_proto_idx(prot);
3530	list_del(&prot->node);
3531	mutex_unlock(&proto_list_mutex);
3532
3533	kmem_cache_destroy(prot->slab);
3534	prot->slab = NULL;
3535
3536	req_prot_cleanup(prot->rsk_prot);
3537	tw_prot_cleanup(prot->twsk_prot);
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543	if (!protocol) {
3544		if (!sock_is_registered(family))
3545			return -ENOENT;
3546
3547		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548				      NETLINK_SOCK_DIAG, family);
3549	}
3550
3551#ifdef CONFIG_INET
3552	if (family == AF_INET &&
3553	    protocol != IPPROTO_RAW &&
3554	    protocol < MAX_INET_PROTOS &&
3555	    !rcu_access_pointer(inet_protos[protocol]))
3556		return -ENOENT;
3557#endif
3558
3559	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560			      NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566	__acquires(proto_list_mutex)
3567{
3568	mutex_lock(&proto_list_mutex);
3569	return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574	return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578	__releases(proto_list_mutex)
3579{
3580	mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585	return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594	return proto->memory_pressure != NULL ?
3595	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3602			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603		   proto->name,
3604		   proto->obj_size,
3605		   sock_prot_inuse_get(seq_file_net(seq), proto),
3606		   sock_prot_memory_allocated(proto),
3607		   sock_prot_memory_pressure(proto),
3608		   proto->max_header,
3609		   proto->slab == NULL ? "no" : "yes",
3610		   module_name(proto->owner),
3611		   proto_method_implemented(proto->close),
3612		   proto_method_implemented(proto->connect),
3613		   proto_method_implemented(proto->disconnect),
3614		   proto_method_implemented(proto->accept),
3615		   proto_method_implemented(proto->ioctl),
3616		   proto_method_implemented(proto->init),
3617		   proto_method_implemented(proto->destroy),
3618		   proto_method_implemented(proto->shutdown),
3619		   proto_method_implemented(proto->setsockopt),
3620		   proto_method_implemented(proto->getsockopt),
3621		   proto_method_implemented(proto->sendmsg),
3622		   proto_method_implemented(proto->recvmsg),
3623		   proto_method_implemented(proto->sendpage),
3624		   proto_method_implemented(proto->bind),
3625		   proto_method_implemented(proto->backlog_rcv),
3626		   proto_method_implemented(proto->hash),
3627		   proto_method_implemented(proto->unhash),
3628		   proto_method_implemented(proto->get_port),
3629		   proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634	if (v == &proto_list)
3635		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636			   "protocol",
3637			   "size",
3638			   "sockets",
3639			   "memory",
3640			   "press",
3641			   "maxhdr",
3642			   "slab",
3643			   "module",
3644			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645	else
3646		proto_seq_printf(seq, list_entry(v, struct proto, node));
3647	return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651	.start  = proto_seq_start,
3652	.next   = proto_seq_next,
3653	.stop   = proto_seq_stop,
3654	.show   = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660			sizeof(struct seq_net_private)))
3661		return -ENOMEM;
3662
3663	return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668	remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673	.init = proto_init_net,
3674	.exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679	return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689	struct sock *sk = p;
3690
3691	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692	       sk_busy_loop_timeout(sk, start_time);
 
 
 
 
 
 
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699	if (!sk->sk_prot->bind_add)
3700		return -EOPNOTSUPP;
3701	return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);