Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <linux/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/udp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/static_key.h>
115#include <linux/memcontrol.h>
116#include <linux/prefetch.h>
117#include <linux/compat.h>
118#include <linux/mroute.h>
119#include <linux/mroute6.h>
120#include <linux/icmpv6.h>
121
122#include <linux/uaccess.h>
123
124#include <linux/netdevice.h>
125#include <net/protocol.h>
126#include <linux/skbuff.h>
127#include <linux/skbuff_ref.h>
128#include <net/net_namespace.h>
129#include <net/request_sock.h>
130#include <net/sock.h>
131#include <net/proto_memory.h>
132#include <linux/net_tstamp.h>
133#include <net/xfrm.h>
134#include <linux/ipsec.h>
135#include <net/cls_cgroup.h>
136#include <net/netprio_cgroup.h>
137#include <linux/sock_diag.h>
138
139#include <linux/filter.h>
140#include <net/sock_reuseport.h>
141#include <net/bpf_sk_storage.h>
142
143#include <trace/events/sock.h>
144
145#include <net/tcp.h>
146#include <net/busy_poll.h>
147#include <net/phonet/phonet.h>
148
149#include <linux/ethtool.h>
150
151#include "dev.h"
152
153static DEFINE_MUTEX(proto_list_mutex);
154static LIST_HEAD(proto_list);
155
156static void sock_def_write_space_wfree(struct sock *sk);
157static void sock_def_write_space(struct sock *sk);
158
159/**
160 * sk_ns_capable - General socket capability test
161 * @sk: Socket to use a capability on or through
162 * @user_ns: The user namespace of the capability to use
163 * @cap: The capability to use
164 *
165 * Test to see if the opener of the socket had when the socket was
166 * created and the current process has the capability @cap in the user
167 * namespace @user_ns.
168 */
169bool sk_ns_capable(const struct sock *sk,
170 struct user_namespace *user_ns, int cap)
171{
172 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
173 ns_capable(user_ns, cap);
174}
175EXPORT_SYMBOL(sk_ns_capable);
176
177/**
178 * sk_capable - Socket global capability test
179 * @sk: Socket to use a capability on or through
180 * @cap: The global capability to use
181 *
182 * Test to see if the opener of the socket had when the socket was
183 * created and the current process has the capability @cap in all user
184 * namespaces.
185 */
186bool sk_capable(const struct sock *sk, int cap)
187{
188 return sk_ns_capable(sk, &init_user_ns, cap);
189}
190EXPORT_SYMBOL(sk_capable);
191
192/**
193 * sk_net_capable - Network namespace socket capability test
194 * @sk: Socket to use a capability on or through
195 * @cap: The capability to use
196 *
197 * Test to see if the opener of the socket had when the socket was created
198 * and the current process has the capability @cap over the network namespace
199 * the socket is a member of.
200 */
201bool sk_net_capable(const struct sock *sk, int cap)
202{
203 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
204}
205EXPORT_SYMBOL(sk_net_capable);
206
207/*
208 * Each address family might have different locking rules, so we have
209 * one slock key per address family and separate keys for internal and
210 * userspace sockets.
211 */
212static struct lock_class_key af_family_keys[AF_MAX];
213static struct lock_class_key af_family_kern_keys[AF_MAX];
214static struct lock_class_key af_family_slock_keys[AF_MAX];
215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
216
217/*
218 * Make lock validator output more readable. (we pre-construct these
219 * strings build-time, so that runtime initialization of socket
220 * locks is fast):
221 */
222
223#define _sock_locks(x) \
224 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
225 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
226 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
227 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
228 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
229 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
230 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
231 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
232 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
233 x "27" , x "28" , x "AF_CAN" , \
234 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
235 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
236 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
237 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
238 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
239 x "AF_MCTP" , \
240 x "AF_MAX"
241
242static const char *const af_family_key_strings[AF_MAX+1] = {
243 _sock_locks("sk_lock-")
244};
245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
246 _sock_locks("slock-")
247};
248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
249 _sock_locks("clock-")
250};
251
252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
253 _sock_locks("k-sk_lock-")
254};
255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
256 _sock_locks("k-slock-")
257};
258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
259 _sock_locks("k-clock-")
260};
261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
262 _sock_locks("rlock-")
263};
264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
265 _sock_locks("wlock-")
266};
267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
268 _sock_locks("elock-")
269};
270
271/*
272 * sk_callback_lock and sk queues locking rules are per-address-family,
273 * so split the lock classes by using a per-AF key:
274 */
275static struct lock_class_key af_callback_keys[AF_MAX];
276static struct lock_class_key af_rlock_keys[AF_MAX];
277static struct lock_class_key af_wlock_keys[AF_MAX];
278static struct lock_class_key af_elock_keys[AF_MAX];
279static struct lock_class_key af_kern_callback_keys[AF_MAX];
280
281/* Run time adjustable parameters. */
282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
283EXPORT_SYMBOL(sysctl_wmem_max);
284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
285EXPORT_SYMBOL(sysctl_rmem_max);
286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
288
289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
290EXPORT_SYMBOL_GPL(memalloc_socks_key);
291
292/**
293 * sk_set_memalloc - sets %SOCK_MEMALLOC
294 * @sk: socket to set it on
295 *
296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
297 * It's the responsibility of the admin to adjust min_free_kbytes
298 * to meet the requirements
299 */
300void sk_set_memalloc(struct sock *sk)
301{
302 sock_set_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation |= __GFP_MEMALLOC;
304 static_branch_inc(&memalloc_socks_key);
305}
306EXPORT_SYMBOL_GPL(sk_set_memalloc);
307
308void sk_clear_memalloc(struct sock *sk)
309{
310 sock_reset_flag(sk, SOCK_MEMALLOC);
311 sk->sk_allocation &= ~__GFP_MEMALLOC;
312 static_branch_dec(&memalloc_socks_key);
313
314 /*
315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
316 * progress of swapping. SOCK_MEMALLOC may be cleared while
317 * it has rmem allocations due to the last swapfile being deactivated
318 * but there is a risk that the socket is unusable due to exceeding
319 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 */
321 sk_mem_reclaim(sk);
322}
323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
324
325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
326{
327 int ret;
328 unsigned int noreclaim_flag;
329
330 /* these should have been dropped before queueing */
331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
332
333 noreclaim_flag = memalloc_noreclaim_save();
334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
335 tcp_v6_do_rcv,
336 tcp_v4_do_rcv,
337 sk, skb);
338 memalloc_noreclaim_restore(noreclaim_flag);
339
340 return ret;
341}
342EXPORT_SYMBOL(__sk_backlog_rcv);
343
344void sk_error_report(struct sock *sk)
345{
346 sk->sk_error_report(sk);
347
348 switch (sk->sk_family) {
349 case AF_INET:
350 fallthrough;
351 case AF_INET6:
352 trace_inet_sk_error_report(sk);
353 break;
354 default:
355 break;
356 }
357}
358EXPORT_SYMBOL(sk_error_report);
359
360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
361{
362 struct __kernel_sock_timeval tv;
363
364 if (timeo == MAX_SCHEDULE_TIMEOUT) {
365 tv.tv_sec = 0;
366 tv.tv_usec = 0;
367 } else {
368 tv.tv_sec = timeo / HZ;
369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
370 }
371
372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
374 *(struct old_timeval32 *)optval = tv32;
375 return sizeof(tv32);
376 }
377
378 if (old_timeval) {
379 struct __kernel_old_timeval old_tv;
380 old_tv.tv_sec = tv.tv_sec;
381 old_tv.tv_usec = tv.tv_usec;
382 *(struct __kernel_old_timeval *)optval = old_tv;
383 return sizeof(old_tv);
384 }
385
386 *(struct __kernel_sock_timeval *)optval = tv;
387 return sizeof(tv);
388}
389EXPORT_SYMBOL(sock_get_timeout);
390
391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
392 sockptr_t optval, int optlen, bool old_timeval)
393{
394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
395 struct old_timeval32 tv32;
396
397 if (optlen < sizeof(tv32))
398 return -EINVAL;
399
400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
401 return -EFAULT;
402 tv->tv_sec = tv32.tv_sec;
403 tv->tv_usec = tv32.tv_usec;
404 } else if (old_timeval) {
405 struct __kernel_old_timeval old_tv;
406
407 if (optlen < sizeof(old_tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
410 return -EFAULT;
411 tv->tv_sec = old_tv.tv_sec;
412 tv->tv_usec = old_tv.tv_usec;
413 } else {
414 if (optlen < sizeof(*tv))
415 return -EINVAL;
416 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
417 return -EFAULT;
418 }
419
420 return 0;
421}
422EXPORT_SYMBOL(sock_copy_user_timeval);
423
424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
425 bool old_timeval)
426{
427 struct __kernel_sock_timeval tv;
428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
429 long val;
430
431 if (err)
432 return err;
433
434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
435 return -EDOM;
436
437 if (tv.tv_sec < 0) {
438 static int warned __read_mostly;
439
440 WRITE_ONCE(*timeo_p, 0);
441 if (warned < 10 && net_ratelimit()) {
442 warned++;
443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
444 __func__, current->comm, task_pid_nr(current));
445 }
446 return 0;
447 }
448 val = MAX_SCHEDULE_TIMEOUT;
449 if ((tv.tv_sec || tv.tv_usec) &&
450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
452 USEC_PER_SEC / HZ);
453 WRITE_ONCE(*timeo_p, val);
454 return 0;
455}
456
457static bool sock_needs_netstamp(const struct sock *sk)
458{
459 switch (sk->sk_family) {
460 case AF_UNSPEC:
461 case AF_UNIX:
462 return false;
463 default:
464 return true;
465 }
466}
467
468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
469{
470 if (sk->sk_flags & flags) {
471 sk->sk_flags &= ~flags;
472 if (sock_needs_netstamp(sk) &&
473 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
474 net_disable_timestamp();
475 }
476}
477
478
479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
480{
481 unsigned long flags;
482 struct sk_buff_head *list = &sk->sk_receive_queue;
483
484 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
485 atomic_inc(&sk->sk_drops);
486 trace_sock_rcvqueue_full(sk, skb);
487 return -ENOMEM;
488 }
489
490 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
491 atomic_inc(&sk->sk_drops);
492 return -ENOBUFS;
493 }
494
495 skb->dev = NULL;
496 skb_set_owner_r(skb, sk);
497
498 /* we escape from rcu protected region, make sure we dont leak
499 * a norefcounted dst
500 */
501 skb_dst_force(skb);
502
503 spin_lock_irqsave(&list->lock, flags);
504 sock_skb_set_dropcount(sk, skb);
505 __skb_queue_tail(list, skb);
506 spin_unlock_irqrestore(&list->lock, flags);
507
508 if (!sock_flag(sk, SOCK_DEAD))
509 sk->sk_data_ready(sk);
510 return 0;
511}
512EXPORT_SYMBOL(__sock_queue_rcv_skb);
513
514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
515 enum skb_drop_reason *reason)
516{
517 enum skb_drop_reason drop_reason;
518 int err;
519
520 err = sk_filter(sk, skb);
521 if (err) {
522 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
523 goto out;
524 }
525 err = __sock_queue_rcv_skb(sk, skb);
526 switch (err) {
527 case -ENOMEM:
528 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
529 break;
530 case -ENOBUFS:
531 drop_reason = SKB_DROP_REASON_PROTO_MEM;
532 break;
533 default:
534 drop_reason = SKB_NOT_DROPPED_YET;
535 break;
536 }
537out:
538 if (reason)
539 *reason = drop_reason;
540 return err;
541}
542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
543
544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
545 const int nested, unsigned int trim_cap, bool refcounted)
546{
547 int rc = NET_RX_SUCCESS;
548
549 if (sk_filter_trim_cap(sk, skb, trim_cap))
550 goto discard_and_relse;
551
552 skb->dev = NULL;
553
554 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
555 atomic_inc(&sk->sk_drops);
556 goto discard_and_relse;
557 }
558 if (nested)
559 bh_lock_sock_nested(sk);
560 else
561 bh_lock_sock(sk);
562 if (!sock_owned_by_user(sk)) {
563 /*
564 * trylock + unlock semantics:
565 */
566 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
567
568 rc = sk_backlog_rcv(sk, skb);
569
570 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
571 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
572 bh_unlock_sock(sk);
573 atomic_inc(&sk->sk_drops);
574 goto discard_and_relse;
575 }
576
577 bh_unlock_sock(sk);
578out:
579 if (refcounted)
580 sock_put(sk);
581 return rc;
582discard_and_relse:
583 kfree_skb(skb);
584 goto out;
585}
586EXPORT_SYMBOL(__sk_receive_skb);
587
588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
589 u32));
590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
591 u32));
592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
593{
594 struct dst_entry *dst = __sk_dst_get(sk);
595
596 if (dst && dst->obsolete &&
597 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
598 dst, cookie) == NULL) {
599 sk_tx_queue_clear(sk);
600 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
601 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
602 dst_release(dst);
603 return NULL;
604 }
605
606 return dst;
607}
608EXPORT_SYMBOL(__sk_dst_check);
609
610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
611{
612 struct dst_entry *dst = sk_dst_get(sk);
613
614 if (dst && dst->obsolete &&
615 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
616 dst, cookie) == NULL) {
617 sk_dst_reset(sk);
618 dst_release(dst);
619 return NULL;
620 }
621
622 return dst;
623}
624EXPORT_SYMBOL(sk_dst_check);
625
626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
627{
628 int ret = -ENOPROTOOPT;
629#ifdef CONFIG_NETDEVICES
630 struct net *net = sock_net(sk);
631
632 /* Sorry... */
633 ret = -EPERM;
634 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
635 goto out;
636
637 ret = -EINVAL;
638 if (ifindex < 0)
639 goto out;
640
641 /* Paired with all READ_ONCE() done locklessly. */
642 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
643
644 if (sk->sk_prot->rehash)
645 sk->sk_prot->rehash(sk);
646 sk_dst_reset(sk);
647
648 ret = 0;
649
650out:
651#endif
652
653 return ret;
654}
655
656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
657{
658 int ret;
659
660 if (lock_sk)
661 lock_sock(sk);
662 ret = sock_bindtoindex_locked(sk, ifindex);
663 if (lock_sk)
664 release_sock(sk);
665
666 return ret;
667}
668EXPORT_SYMBOL(sock_bindtoindex);
669
670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
671{
672 int ret = -ENOPROTOOPT;
673#ifdef CONFIG_NETDEVICES
674 struct net *net = sock_net(sk);
675 char devname[IFNAMSIZ];
676 int index;
677
678 ret = -EINVAL;
679 if (optlen < 0)
680 goto out;
681
682 /* Bind this socket to a particular device like "eth0",
683 * as specified in the passed interface name. If the
684 * name is "" or the option length is zero the socket
685 * is not bound.
686 */
687 if (optlen > IFNAMSIZ - 1)
688 optlen = IFNAMSIZ - 1;
689 memset(devname, 0, sizeof(devname));
690
691 ret = -EFAULT;
692 if (copy_from_sockptr(devname, optval, optlen))
693 goto out;
694
695 index = 0;
696 if (devname[0] != '\0') {
697 struct net_device *dev;
698
699 rcu_read_lock();
700 dev = dev_get_by_name_rcu(net, devname);
701 if (dev)
702 index = dev->ifindex;
703 rcu_read_unlock();
704 ret = -ENODEV;
705 if (!dev)
706 goto out;
707 }
708
709 sockopt_lock_sock(sk);
710 ret = sock_bindtoindex_locked(sk, index);
711 sockopt_release_sock(sk);
712out:
713#endif
714
715 return ret;
716}
717
718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
719 sockptr_t optlen, int len)
720{
721 int ret = -ENOPROTOOPT;
722#ifdef CONFIG_NETDEVICES
723 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
724 struct net *net = sock_net(sk);
725 char devname[IFNAMSIZ];
726
727 if (bound_dev_if == 0) {
728 len = 0;
729 goto zero;
730 }
731
732 ret = -EINVAL;
733 if (len < IFNAMSIZ)
734 goto out;
735
736 ret = netdev_get_name(net, devname, bound_dev_if);
737 if (ret)
738 goto out;
739
740 len = strlen(devname) + 1;
741
742 ret = -EFAULT;
743 if (copy_to_sockptr(optval, devname, len))
744 goto out;
745
746zero:
747 ret = -EFAULT;
748 if (copy_to_sockptr(optlen, &len, sizeof(int)))
749 goto out;
750
751 ret = 0;
752
753out:
754#endif
755
756 return ret;
757}
758
759bool sk_mc_loop(const struct sock *sk)
760{
761 if (dev_recursion_level())
762 return false;
763 if (!sk)
764 return true;
765 /* IPV6_ADDRFORM can change sk->sk_family under us. */
766 switch (READ_ONCE(sk->sk_family)) {
767 case AF_INET:
768 return inet_test_bit(MC_LOOP, sk);
769#if IS_ENABLED(CONFIG_IPV6)
770 case AF_INET6:
771 return inet6_test_bit(MC6_LOOP, sk);
772#endif
773 }
774 WARN_ON_ONCE(1);
775 return true;
776}
777EXPORT_SYMBOL(sk_mc_loop);
778
779void sock_set_reuseaddr(struct sock *sk)
780{
781 lock_sock(sk);
782 sk->sk_reuse = SK_CAN_REUSE;
783 release_sock(sk);
784}
785EXPORT_SYMBOL(sock_set_reuseaddr);
786
787void sock_set_reuseport(struct sock *sk)
788{
789 lock_sock(sk);
790 sk->sk_reuseport = true;
791 release_sock(sk);
792}
793EXPORT_SYMBOL(sock_set_reuseport);
794
795void sock_no_linger(struct sock *sk)
796{
797 lock_sock(sk);
798 WRITE_ONCE(sk->sk_lingertime, 0);
799 sock_set_flag(sk, SOCK_LINGER);
800 release_sock(sk);
801}
802EXPORT_SYMBOL(sock_no_linger);
803
804void sock_set_priority(struct sock *sk, u32 priority)
805{
806 WRITE_ONCE(sk->sk_priority, priority);
807}
808EXPORT_SYMBOL(sock_set_priority);
809
810void sock_set_sndtimeo(struct sock *sk, s64 secs)
811{
812 lock_sock(sk);
813 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
814 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
815 else
816 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
817 release_sock(sk);
818}
819EXPORT_SYMBOL(sock_set_sndtimeo);
820
821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
822{
823 sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
824 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
825 if (val) {
826 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
827 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
828 }
829}
830
831void sock_enable_timestamps(struct sock *sk)
832{
833 lock_sock(sk);
834 __sock_set_timestamps(sk, true, false, true);
835 release_sock(sk);
836}
837EXPORT_SYMBOL(sock_enable_timestamps);
838
839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
840{
841 switch (optname) {
842 case SO_TIMESTAMP_OLD:
843 __sock_set_timestamps(sk, valbool, false, false);
844 break;
845 case SO_TIMESTAMP_NEW:
846 __sock_set_timestamps(sk, valbool, true, false);
847 break;
848 case SO_TIMESTAMPNS_OLD:
849 __sock_set_timestamps(sk, valbool, false, true);
850 break;
851 case SO_TIMESTAMPNS_NEW:
852 __sock_set_timestamps(sk, valbool, true, true);
853 break;
854 }
855}
856
857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
858{
859 struct net *net = sock_net(sk);
860 struct net_device *dev = NULL;
861 bool match = false;
862 int *vclock_index;
863 int i, num;
864
865 if (sk->sk_bound_dev_if)
866 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
867
868 if (!dev) {
869 pr_err("%s: sock not bind to device\n", __func__);
870 return -EOPNOTSUPP;
871 }
872
873 num = ethtool_get_phc_vclocks(dev, &vclock_index);
874 dev_put(dev);
875
876 for (i = 0; i < num; i++) {
877 if (*(vclock_index + i) == phc_index) {
878 match = true;
879 break;
880 }
881 }
882
883 if (num > 0)
884 kfree(vclock_index);
885
886 if (!match)
887 return -EINVAL;
888
889 WRITE_ONCE(sk->sk_bind_phc, phc_index);
890
891 return 0;
892}
893
894int sock_set_timestamping(struct sock *sk, int optname,
895 struct so_timestamping timestamping)
896{
897 int val = timestamping.flags;
898 int ret;
899
900 if (val & ~SOF_TIMESTAMPING_MASK)
901 return -EINVAL;
902
903 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
904 !(val & SOF_TIMESTAMPING_OPT_ID))
905 return -EINVAL;
906
907 if (val & SOF_TIMESTAMPING_OPT_ID &&
908 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
909 if (sk_is_tcp(sk)) {
910 if ((1 << sk->sk_state) &
911 (TCPF_CLOSE | TCPF_LISTEN))
912 return -EINVAL;
913 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
914 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
915 else
916 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
917 } else {
918 atomic_set(&sk->sk_tskey, 0);
919 }
920 }
921
922 if (val & SOF_TIMESTAMPING_OPT_STATS &&
923 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
924 return -EINVAL;
925
926 if (val & SOF_TIMESTAMPING_BIND_PHC) {
927 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
928 if (ret)
929 return ret;
930 }
931
932 WRITE_ONCE(sk->sk_tsflags, val);
933 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
934
935 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
936 sock_enable_timestamp(sk,
937 SOCK_TIMESTAMPING_RX_SOFTWARE);
938 else
939 sock_disable_timestamp(sk,
940 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
941 return 0;
942}
943
944void sock_set_keepalive(struct sock *sk)
945{
946 lock_sock(sk);
947 if (sk->sk_prot->keepalive)
948 sk->sk_prot->keepalive(sk, true);
949 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
950 release_sock(sk);
951}
952EXPORT_SYMBOL(sock_set_keepalive);
953
954static void __sock_set_rcvbuf(struct sock *sk, int val)
955{
956 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
957 * as a negative value.
958 */
959 val = min_t(int, val, INT_MAX / 2);
960 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
961
962 /* We double it on the way in to account for "struct sk_buff" etc.
963 * overhead. Applications assume that the SO_RCVBUF setting they make
964 * will allow that much actual data to be received on that socket.
965 *
966 * Applications are unaware that "struct sk_buff" and other overheads
967 * allocate from the receive buffer during socket buffer allocation.
968 *
969 * And after considering the possible alternatives, returning the value
970 * we actually used in getsockopt is the most desirable behavior.
971 */
972 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
973}
974
975void sock_set_rcvbuf(struct sock *sk, int val)
976{
977 lock_sock(sk);
978 __sock_set_rcvbuf(sk, val);
979 release_sock(sk);
980}
981EXPORT_SYMBOL(sock_set_rcvbuf);
982
983static void __sock_set_mark(struct sock *sk, u32 val)
984{
985 if (val != sk->sk_mark) {
986 WRITE_ONCE(sk->sk_mark, val);
987 sk_dst_reset(sk);
988 }
989}
990
991void sock_set_mark(struct sock *sk, u32 val)
992{
993 lock_sock(sk);
994 __sock_set_mark(sk, val);
995 release_sock(sk);
996}
997EXPORT_SYMBOL(sock_set_mark);
998
999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001 /* Round down bytes to multiple of pages */
1002 bytes = round_down(bytes, PAGE_SIZE);
1003
1004 WARN_ON(bytes > sk->sk_reserved_mem);
1005 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006 sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011 long allocated;
1012 bool charged;
1013 int pages;
1014
1015 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016 return -EOPNOTSUPP;
1017
1018 if (!bytes)
1019 return 0;
1020
1021 pages = sk_mem_pages(bytes);
1022
1023 /* pre-charge to memcg */
1024 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026 if (!charged)
1027 return -ENOMEM;
1028
1029 /* pre-charge to forward_alloc */
1030 sk_memory_allocated_add(sk, pages);
1031 allocated = sk_memory_allocated(sk);
1032 /* If the system goes into memory pressure with this
1033 * precharge, give up and return error.
1034 */
1035 if (allocated > sk_prot_mem_limits(sk, 1)) {
1036 sk_memory_allocated_sub(sk, pages);
1037 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038 return -ENOMEM;
1039 }
1040 sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042 WRITE_ONCE(sk->sk_reserved_mem,
1043 sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045 return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061 unsigned int num_tokens, i, j, k, netmem_num = 0;
1062 struct dmabuf_token *tokens;
1063 int ret = 0, num_frags = 0;
1064 netmem_ref netmems[16];
1065
1066 if (!sk_is_tcp(sk))
1067 return -EBADF;
1068
1069 if (optlen % sizeof(*tokens) ||
1070 optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071 return -EINVAL;
1072
1073 num_tokens = optlen / sizeof(*tokens);
1074 tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075 if (!tokens)
1076 return -ENOMEM;
1077
1078 if (copy_from_sockptr(tokens, optval, optlen)) {
1079 kvfree(tokens);
1080 return -EFAULT;
1081 }
1082
1083 xa_lock_bh(&sk->sk_user_frags);
1084 for (i = 0; i < num_tokens; i++) {
1085 for (j = 0; j < tokens[i].token_count; j++) {
1086 if (++num_frags > MAX_DONTNEED_FRAGS)
1087 goto frag_limit_reached;
1088
1089 netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090 &sk->sk_user_frags, tokens[i].token_start + j);
1091
1092 if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093 continue;
1094
1095 netmems[netmem_num++] = netmem;
1096 if (netmem_num == ARRAY_SIZE(netmems)) {
1097 xa_unlock_bh(&sk->sk_user_frags);
1098 for (k = 0; k < netmem_num; k++)
1099 WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100 netmem_num = 0;
1101 xa_lock_bh(&sk->sk_user_frags);
1102 }
1103 ret++;
1104 }
1105 }
1106
1107frag_limit_reached:
1108 xa_unlock_bh(&sk->sk_user_frags);
1109 for (k = 0; k < netmem_num; k++)
1110 WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112 kvfree(tokens);
1113 return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119 /* When current->bpf_ctx is set, the setsockopt is called from
1120 * a bpf prog. bpf has ensured the sk lock has been
1121 * acquired before calling setsockopt().
1122 */
1123 if (has_current_bpf_ctx())
1124 return;
1125
1126 lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132 if (has_current_bpf_ctx())
1133 return;
1134
1135 release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141 return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147 return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153 switch (value) {
1154 case CLOCK_REALTIME:
1155 case CLOCK_MONOTONIC:
1156 case CLOCK_TAI:
1157 return 0;
1158 }
1159 return -EINVAL;
1160}
1161
1162/*
1163 * This is meant for all protocols to use and covers goings on
1164 * at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168 sockptr_t optval, unsigned int optlen)
1169{
1170 struct so_timestamping timestamping;
1171 struct socket *sock = sk->sk_socket;
1172 struct sock_txtime sk_txtime;
1173 int val;
1174 int valbool;
1175 struct linger ling;
1176 int ret = 0;
1177
1178 /*
1179 * Options without arguments
1180 */
1181
1182 if (optname == SO_BINDTODEVICE)
1183 return sock_setbindtodevice(sk, optval, optlen);
1184
1185 if (optlen < sizeof(int))
1186 return -EINVAL;
1187
1188 if (copy_from_sockptr(&val, optval, sizeof(val)))
1189 return -EFAULT;
1190
1191 valbool = val ? 1 : 0;
1192
1193 /* handle options which do not require locking the socket. */
1194 switch (optname) {
1195 case SO_PRIORITY:
1196 if ((val >= 0 && val <= 6) ||
1197 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199 sock_set_priority(sk, val);
1200 return 0;
1201 }
1202 return -EPERM;
1203 case SO_PASSSEC:
1204 assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205 return 0;
1206 case SO_PASSCRED:
1207 assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208 return 0;
1209 case SO_PASSPIDFD:
1210 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211 return 0;
1212 case SO_TYPE:
1213 case SO_PROTOCOL:
1214 case SO_DOMAIN:
1215 case SO_ERROR:
1216 return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218 case SO_BUSY_POLL:
1219 if (val < 0)
1220 return -EINVAL;
1221 WRITE_ONCE(sk->sk_ll_usec, val);
1222 return 0;
1223 case SO_PREFER_BUSY_POLL:
1224 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225 return -EPERM;
1226 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227 return 0;
1228 case SO_BUSY_POLL_BUDGET:
1229 if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230 !sockopt_capable(CAP_NET_ADMIN))
1231 return -EPERM;
1232 if (val < 0 || val > U16_MAX)
1233 return -EINVAL;
1234 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235 return 0;
1236#endif
1237 case SO_MAX_PACING_RATE:
1238 {
1239 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240 unsigned long pacing_rate;
1241
1242 if (sizeof(ulval) != sizeof(val) &&
1243 optlen >= sizeof(ulval) &&
1244 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245 return -EFAULT;
1246 }
1247 if (ulval != ~0UL)
1248 cmpxchg(&sk->sk_pacing_status,
1249 SK_PACING_NONE,
1250 SK_PACING_NEEDED);
1251 /* Pairs with READ_ONCE() from sk_getsockopt() */
1252 WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253 pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254 if (ulval < pacing_rate)
1255 WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256 return 0;
1257 }
1258 case SO_TXREHASH:
1259 if (val < -1 || val > 1)
1260 return -EINVAL;
1261 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263 /* Paired with READ_ONCE() in tcp_rtx_synack()
1264 * and sk_getsockopt().
1265 */
1266 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267 return 0;
1268 case SO_PEEK_OFF:
1269 {
1270 int (*set_peek_off)(struct sock *sk, int val);
1271
1272 set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273 if (set_peek_off)
1274 ret = set_peek_off(sk, val);
1275 else
1276 ret = -EOPNOTSUPP;
1277 return ret;
1278 }
1279#ifdef CONFIG_PAGE_POOL
1280 case SO_DEVMEM_DONTNEED:
1281 return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283 }
1284
1285 sockopt_lock_sock(sk);
1286
1287 switch (optname) {
1288 case SO_DEBUG:
1289 if (val && !sockopt_capable(CAP_NET_ADMIN))
1290 ret = -EACCES;
1291 else
1292 sock_valbool_flag(sk, SOCK_DBG, valbool);
1293 break;
1294 case SO_REUSEADDR:
1295 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296 break;
1297 case SO_REUSEPORT:
1298 if (valbool && !sk_is_inet(sk))
1299 ret = -EOPNOTSUPP;
1300 else
1301 sk->sk_reuseport = valbool;
1302 break;
1303 case SO_DONTROUTE:
1304 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305 sk_dst_reset(sk);
1306 break;
1307 case SO_BROADCAST:
1308 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309 break;
1310 case SO_SNDBUF:
1311 /* Don't error on this BSD doesn't and if you think
1312 * about it this is right. Otherwise apps have to
1313 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314 * are treated in BSD as hints
1315 */
1316 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318 /* Ensure val * 2 fits into an int, to prevent max_t()
1319 * from treating it as a negative value.
1320 */
1321 val = min_t(int, val, INT_MAX / 2);
1322 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323 WRITE_ONCE(sk->sk_sndbuf,
1324 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325 /* Wake up sending tasks if we upped the value. */
1326 sk->sk_write_space(sk);
1327 break;
1328
1329 case SO_SNDBUFFORCE:
1330 if (!sockopt_capable(CAP_NET_ADMIN)) {
1331 ret = -EPERM;
1332 break;
1333 }
1334
1335 /* No negative values (to prevent underflow, as val will be
1336 * multiplied by 2).
1337 */
1338 if (val < 0)
1339 val = 0;
1340 goto set_sndbuf;
1341
1342 case SO_RCVBUF:
1343 /* Don't error on this BSD doesn't and if you think
1344 * about it this is right. Otherwise apps have to
1345 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346 * are treated in BSD as hints
1347 */
1348 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1349 break;
1350
1351 case SO_RCVBUFFORCE:
1352 if (!sockopt_capable(CAP_NET_ADMIN)) {
1353 ret = -EPERM;
1354 break;
1355 }
1356
1357 /* No negative values (to prevent underflow, as val will be
1358 * multiplied by 2).
1359 */
1360 __sock_set_rcvbuf(sk, max(val, 0));
1361 break;
1362
1363 case SO_KEEPALIVE:
1364 if (sk->sk_prot->keepalive)
1365 sk->sk_prot->keepalive(sk, valbool);
1366 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367 break;
1368
1369 case SO_OOBINLINE:
1370 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371 break;
1372
1373 case SO_NO_CHECK:
1374 sk->sk_no_check_tx = valbool;
1375 break;
1376
1377 case SO_LINGER:
1378 if (optlen < sizeof(ling)) {
1379 ret = -EINVAL; /* 1003.1g */
1380 break;
1381 }
1382 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383 ret = -EFAULT;
1384 break;
1385 }
1386 if (!ling.l_onoff) {
1387 sock_reset_flag(sk, SOCK_LINGER);
1388 } else {
1389 unsigned long t_sec = ling.l_linger;
1390
1391 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393 else
1394 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1395 sock_set_flag(sk, SOCK_LINGER);
1396 }
1397 break;
1398
1399 case SO_BSDCOMPAT:
1400 break;
1401
1402 case SO_TIMESTAMP_OLD:
1403 case SO_TIMESTAMP_NEW:
1404 case SO_TIMESTAMPNS_OLD:
1405 case SO_TIMESTAMPNS_NEW:
1406 sock_set_timestamp(sk, optname, valbool);
1407 break;
1408
1409 case SO_TIMESTAMPING_NEW:
1410 case SO_TIMESTAMPING_OLD:
1411 if (optlen == sizeof(timestamping)) {
1412 if (copy_from_sockptr(×tamping, optval,
1413 sizeof(timestamping))) {
1414 ret = -EFAULT;
1415 break;
1416 }
1417 } else {
1418 memset(×tamping, 0, sizeof(timestamping));
1419 timestamping.flags = val;
1420 }
1421 ret = sock_set_timestamping(sk, optname, timestamping);
1422 break;
1423
1424 case SO_RCVLOWAT:
1425 {
1426 int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1427
1428 if (val < 0)
1429 val = INT_MAX;
1430 if (sock)
1431 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432 if (set_rcvlowat)
1433 ret = set_rcvlowat(sk, val);
1434 else
1435 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436 break;
1437 }
1438 case SO_RCVTIMEO_OLD:
1439 case SO_RCVTIMEO_NEW:
1440 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441 optlen, optname == SO_RCVTIMEO_OLD);
1442 break;
1443
1444 case SO_SNDTIMEO_OLD:
1445 case SO_SNDTIMEO_NEW:
1446 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447 optlen, optname == SO_SNDTIMEO_OLD);
1448 break;
1449
1450 case SO_ATTACH_FILTER: {
1451 struct sock_fprog fprog;
1452
1453 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454 if (!ret)
1455 ret = sk_attach_filter(&fprog, sk);
1456 break;
1457 }
1458 case SO_ATTACH_BPF:
1459 ret = -EINVAL;
1460 if (optlen == sizeof(u32)) {
1461 u32 ufd;
1462
1463 ret = -EFAULT;
1464 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465 break;
1466
1467 ret = sk_attach_bpf(ufd, sk);
1468 }
1469 break;
1470
1471 case SO_ATTACH_REUSEPORT_CBPF: {
1472 struct sock_fprog fprog;
1473
1474 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475 if (!ret)
1476 ret = sk_reuseport_attach_filter(&fprog, sk);
1477 break;
1478 }
1479 case SO_ATTACH_REUSEPORT_EBPF:
1480 ret = -EINVAL;
1481 if (optlen == sizeof(u32)) {
1482 u32 ufd;
1483
1484 ret = -EFAULT;
1485 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486 break;
1487
1488 ret = sk_reuseport_attach_bpf(ufd, sk);
1489 }
1490 break;
1491
1492 case SO_DETACH_REUSEPORT_BPF:
1493 ret = reuseport_detach_prog(sk);
1494 break;
1495
1496 case SO_DETACH_FILTER:
1497 ret = sk_detach_filter(sk);
1498 break;
1499
1500 case SO_LOCK_FILTER:
1501 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502 ret = -EPERM;
1503 else
1504 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505 break;
1506
1507 case SO_MARK:
1508 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510 ret = -EPERM;
1511 break;
1512 }
1513
1514 __sock_set_mark(sk, val);
1515 break;
1516 case SO_RCVMARK:
1517 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518 break;
1519
1520 case SO_RXQ_OVFL:
1521 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522 break;
1523
1524 case SO_WIFI_STATUS:
1525 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526 break;
1527
1528 case SO_NOFCS:
1529 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530 break;
1531
1532 case SO_SELECT_ERR_QUEUE:
1533 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534 break;
1535
1536
1537 case SO_INCOMING_CPU:
1538 reuseport_update_incoming_cpu(sk, val);
1539 break;
1540
1541 case SO_CNX_ADVICE:
1542 if (val == 1)
1543 dst_negative_advice(sk);
1544 break;
1545
1546 case SO_ZEROCOPY:
1547 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548 if (!(sk_is_tcp(sk) ||
1549 (sk->sk_type == SOCK_DGRAM &&
1550 sk->sk_protocol == IPPROTO_UDP)))
1551 ret = -EOPNOTSUPP;
1552 } else if (sk->sk_family != PF_RDS) {
1553 ret = -EOPNOTSUPP;
1554 }
1555 if (!ret) {
1556 if (val < 0 || val > 1)
1557 ret = -EINVAL;
1558 else
1559 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560 }
1561 break;
1562
1563 case SO_TXTIME:
1564 if (optlen != sizeof(struct sock_txtime)) {
1565 ret = -EINVAL;
1566 break;
1567 } else if (copy_from_sockptr(&sk_txtime, optval,
1568 sizeof(struct sock_txtime))) {
1569 ret = -EFAULT;
1570 break;
1571 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572 ret = -EINVAL;
1573 break;
1574 }
1575 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576 * scheduler has enough safe guards.
1577 */
1578 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580 ret = -EPERM;
1581 break;
1582 }
1583
1584 ret = sockopt_validate_clockid(sk_txtime.clockid);
1585 if (ret)
1586 break;
1587
1588 sock_valbool_flag(sk, SOCK_TXTIME, true);
1589 sk->sk_clockid = sk_txtime.clockid;
1590 sk->sk_txtime_deadline_mode =
1591 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592 sk->sk_txtime_report_errors =
1593 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594 break;
1595
1596 case SO_BINDTOIFINDEX:
1597 ret = sock_bindtoindex_locked(sk, val);
1598 break;
1599
1600 case SO_BUF_LOCK:
1601 if (val & ~SOCK_BUF_LOCK_MASK) {
1602 ret = -EINVAL;
1603 break;
1604 }
1605 sk->sk_userlocks = val | (sk->sk_userlocks &
1606 ~SOCK_BUF_LOCK_MASK);
1607 break;
1608
1609 case SO_RESERVE_MEM:
1610 {
1611 int delta;
1612
1613 if (val < 0) {
1614 ret = -EINVAL;
1615 break;
1616 }
1617
1618 delta = val - sk->sk_reserved_mem;
1619 if (delta < 0)
1620 sock_release_reserved_memory(sk, -delta);
1621 else
1622 ret = sock_reserve_memory(sk, delta);
1623 break;
1624 }
1625
1626 default:
1627 ret = -ENOPROTOOPT;
1628 break;
1629 }
1630 sockopt_release_sock(sk);
1631 return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635 sockptr_t optval, unsigned int optlen)
1636{
1637 return sk_setsockopt(sock->sk, level, optname,
1638 optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644 const struct cred *cred;
1645
1646 spin_lock(&sk->sk_peer_lock);
1647 cred = get_cred(sk->sk_peer_cred);
1648 spin_unlock(&sk->sk_peer_lock);
1649
1650 return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654 struct ucred *ucred)
1655{
1656 ucred->pid = pid_vnr(pid);
1657 ucred->uid = ucred->gid = -1;
1658 if (cred) {
1659 struct user_namespace *current_ns = current_user_ns();
1660
1661 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663 }
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668 struct user_namespace *user_ns = current_user_ns();
1669 int i;
1670
1671 for (i = 0; i < src->ngroups; i++) {
1672 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675 return -EFAULT;
1676 }
1677
1678 return 0;
1679}
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682 sockptr_t optval, sockptr_t optlen)
1683{
1684 struct socket *sock = sk->sk_socket;
1685
1686 union {
1687 int val;
1688 u64 val64;
1689 unsigned long ulval;
1690 struct linger ling;
1691 struct old_timeval32 tm32;
1692 struct __kernel_old_timeval tm;
1693 struct __kernel_sock_timeval stm;
1694 struct sock_txtime txtime;
1695 struct so_timestamping timestamping;
1696 } v;
1697
1698 int lv = sizeof(int);
1699 int len;
1700
1701 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702 return -EFAULT;
1703 if (len < 0)
1704 return -EINVAL;
1705
1706 memset(&v, 0, sizeof(v));
1707
1708 switch (optname) {
1709 case SO_DEBUG:
1710 v.val = sock_flag(sk, SOCK_DBG);
1711 break;
1712
1713 case SO_DONTROUTE:
1714 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715 break;
1716
1717 case SO_BROADCAST:
1718 v.val = sock_flag(sk, SOCK_BROADCAST);
1719 break;
1720
1721 case SO_SNDBUF:
1722 v.val = READ_ONCE(sk->sk_sndbuf);
1723 break;
1724
1725 case SO_RCVBUF:
1726 v.val = READ_ONCE(sk->sk_rcvbuf);
1727 break;
1728
1729 case SO_REUSEADDR:
1730 v.val = sk->sk_reuse;
1731 break;
1732
1733 case SO_REUSEPORT:
1734 v.val = sk->sk_reuseport;
1735 break;
1736
1737 case SO_KEEPALIVE:
1738 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739 break;
1740
1741 case SO_TYPE:
1742 v.val = sk->sk_type;
1743 break;
1744
1745 case SO_PROTOCOL:
1746 v.val = sk->sk_protocol;
1747 break;
1748
1749 case SO_DOMAIN:
1750 v.val = sk->sk_family;
1751 break;
1752
1753 case SO_ERROR:
1754 v.val = -sock_error(sk);
1755 if (v.val == 0)
1756 v.val = xchg(&sk->sk_err_soft, 0);
1757 break;
1758
1759 case SO_OOBINLINE:
1760 v.val = sock_flag(sk, SOCK_URGINLINE);
1761 break;
1762
1763 case SO_NO_CHECK:
1764 v.val = sk->sk_no_check_tx;
1765 break;
1766
1767 case SO_PRIORITY:
1768 v.val = READ_ONCE(sk->sk_priority);
1769 break;
1770
1771 case SO_LINGER:
1772 lv = sizeof(v.ling);
1773 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1774 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
1775 break;
1776
1777 case SO_BSDCOMPAT:
1778 break;
1779
1780 case SO_TIMESTAMP_OLD:
1781 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1784 break;
1785
1786 case SO_TIMESTAMPNS_OLD:
1787 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788 break;
1789
1790 case SO_TIMESTAMP_NEW:
1791 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792 break;
1793
1794 case SO_TIMESTAMPNS_NEW:
1795 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796 break;
1797
1798 case SO_TIMESTAMPING_OLD:
1799 case SO_TIMESTAMPING_NEW:
1800 lv = sizeof(v.timestamping);
1801 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802 * returning the flags when they were set through the same option.
1803 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804 */
1805 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806 v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1808 }
1809 break;
1810
1811 case SO_RCVTIMEO_OLD:
1812 case SO_RCVTIMEO_NEW:
1813 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814 SO_RCVTIMEO_OLD == optname);
1815 break;
1816
1817 case SO_SNDTIMEO_OLD:
1818 case SO_SNDTIMEO_NEW:
1819 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820 SO_SNDTIMEO_OLD == optname);
1821 break;
1822
1823 case SO_RCVLOWAT:
1824 v.val = READ_ONCE(sk->sk_rcvlowat);
1825 break;
1826
1827 case SO_SNDLOWAT:
1828 v.val = 1;
1829 break;
1830
1831 case SO_PASSCRED:
1832 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833 break;
1834
1835 case SO_PASSPIDFD:
1836 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837 break;
1838
1839 case SO_PEERCRED:
1840 {
1841 struct ucred peercred;
1842 if (len > sizeof(peercred))
1843 len = sizeof(peercred);
1844
1845 spin_lock(&sk->sk_peer_lock);
1846 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847 spin_unlock(&sk->sk_peer_lock);
1848
1849 if (copy_to_sockptr(optval, &peercred, len))
1850 return -EFAULT;
1851 goto lenout;
1852 }
1853
1854 case SO_PEERPIDFD:
1855 {
1856 struct pid *peer_pid;
1857 struct file *pidfd_file = NULL;
1858 int pidfd;
1859
1860 if (len > sizeof(pidfd))
1861 len = sizeof(pidfd);
1862
1863 spin_lock(&sk->sk_peer_lock);
1864 peer_pid = get_pid(sk->sk_peer_pid);
1865 spin_unlock(&sk->sk_peer_lock);
1866
1867 if (!peer_pid)
1868 return -ENODATA;
1869
1870 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871 put_pid(peer_pid);
1872 if (pidfd < 0)
1873 return pidfd;
1874
1875 if (copy_to_sockptr(optval, &pidfd, len) ||
1876 copy_to_sockptr(optlen, &len, sizeof(int))) {
1877 put_unused_fd(pidfd);
1878 fput(pidfd_file);
1879
1880 return -EFAULT;
1881 }
1882
1883 fd_install(pidfd, pidfd_file);
1884 return 0;
1885 }
1886
1887 case SO_PEERGROUPS:
1888 {
1889 const struct cred *cred;
1890 int ret, n;
1891
1892 cred = sk_get_peer_cred(sk);
1893 if (!cred)
1894 return -ENODATA;
1895
1896 n = cred->group_info->ngroups;
1897 if (len < n * sizeof(gid_t)) {
1898 len = n * sizeof(gid_t);
1899 put_cred(cred);
1900 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901 }
1902 len = n * sizeof(gid_t);
1903
1904 ret = groups_to_user(optval, cred->group_info);
1905 put_cred(cred);
1906 if (ret)
1907 return ret;
1908 goto lenout;
1909 }
1910
1911 case SO_PEERNAME:
1912 {
1913 struct sockaddr_storage address;
1914
1915 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916 if (lv < 0)
1917 return -ENOTCONN;
1918 if (lv < len)
1919 return -EINVAL;
1920 if (copy_to_sockptr(optval, &address, len))
1921 return -EFAULT;
1922 goto lenout;
1923 }
1924
1925 /* Dubious BSD thing... Probably nobody even uses it, but
1926 * the UNIX standard wants it for whatever reason... -DaveM
1927 */
1928 case SO_ACCEPTCONN:
1929 v.val = sk->sk_state == TCP_LISTEN;
1930 break;
1931
1932 case SO_PASSSEC:
1933 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934 break;
1935
1936 case SO_PEERSEC:
1937 return security_socket_getpeersec_stream(sock,
1938 optval, optlen, len);
1939
1940 case SO_MARK:
1941 v.val = READ_ONCE(sk->sk_mark);
1942 break;
1943
1944 case SO_RCVMARK:
1945 v.val = sock_flag(sk, SOCK_RCVMARK);
1946 break;
1947
1948 case SO_RXQ_OVFL:
1949 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950 break;
1951
1952 case SO_WIFI_STATUS:
1953 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954 break;
1955
1956 case SO_PEEK_OFF:
1957 if (!READ_ONCE(sock->ops)->set_peek_off)
1958 return -EOPNOTSUPP;
1959
1960 v.val = READ_ONCE(sk->sk_peek_off);
1961 break;
1962 case SO_NOFCS:
1963 v.val = sock_flag(sk, SOCK_NOFCS);
1964 break;
1965
1966 case SO_BINDTODEVICE:
1967 return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969 case SO_GET_FILTER:
1970 len = sk_get_filter(sk, optval, len);
1971 if (len < 0)
1972 return len;
1973
1974 goto lenout;
1975
1976 case SO_LOCK_FILTER:
1977 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978 break;
1979
1980 case SO_BPF_EXTENSIONS:
1981 v.val = bpf_tell_extensions();
1982 break;
1983
1984 case SO_SELECT_ERR_QUEUE:
1985 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986 break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989 case SO_BUSY_POLL:
1990 v.val = READ_ONCE(sk->sk_ll_usec);
1991 break;
1992 case SO_PREFER_BUSY_POLL:
1993 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994 break;
1995#endif
1996
1997 case SO_MAX_PACING_RATE:
1998 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000 lv = sizeof(v.ulval);
2001 v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002 } else {
2003 /* 32bit version */
2004 v.val = min_t(unsigned long, ~0U,
2005 READ_ONCE(sk->sk_max_pacing_rate));
2006 }
2007 break;
2008
2009 case SO_INCOMING_CPU:
2010 v.val = READ_ONCE(sk->sk_incoming_cpu);
2011 break;
2012
2013 case SO_MEMINFO:
2014 {
2015 u32 meminfo[SK_MEMINFO_VARS];
2016
2017 sk_get_meminfo(sk, meminfo);
2018
2019 len = min_t(unsigned int, len, sizeof(meminfo));
2020 if (copy_to_sockptr(optval, &meminfo, len))
2021 return -EFAULT;
2022
2023 goto lenout;
2024 }
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027 case SO_INCOMING_NAPI_ID:
2028 v.val = READ_ONCE(sk->sk_napi_id);
2029
2030 /* aggregate non-NAPI IDs down to 0 */
2031 if (v.val < MIN_NAPI_ID)
2032 v.val = 0;
2033
2034 break;
2035#endif
2036
2037 case SO_COOKIE:
2038 lv = sizeof(u64);
2039 if (len < lv)
2040 return -EINVAL;
2041 v.val64 = sock_gen_cookie(sk);
2042 break;
2043
2044 case SO_ZEROCOPY:
2045 v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046 break;
2047
2048 case SO_TXTIME:
2049 lv = sizeof(v.txtime);
2050 v.txtime.clockid = sk->sk_clockid;
2051 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052 SOF_TXTIME_DEADLINE_MODE : 0;
2053 v.txtime.flags |= sk->sk_txtime_report_errors ?
2054 SOF_TXTIME_REPORT_ERRORS : 0;
2055 break;
2056
2057 case SO_BINDTOIFINDEX:
2058 v.val = READ_ONCE(sk->sk_bound_dev_if);
2059 break;
2060
2061 case SO_NETNS_COOKIE:
2062 lv = sizeof(u64);
2063 if (len != lv)
2064 return -EINVAL;
2065 v.val64 = sock_net(sk)->net_cookie;
2066 break;
2067
2068 case SO_BUF_LOCK:
2069 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070 break;
2071
2072 case SO_RESERVE_MEM:
2073 v.val = READ_ONCE(sk->sk_reserved_mem);
2074 break;
2075
2076 case SO_TXREHASH:
2077 /* Paired with WRITE_ONCE() in sk_setsockopt() */
2078 v.val = READ_ONCE(sk->sk_txrehash);
2079 break;
2080
2081 default:
2082 /* We implement the SO_SNDLOWAT etc to not be settable
2083 * (1003.1g 7).
2084 */
2085 return -ENOPROTOOPT;
2086 }
2087
2088 if (len > lv)
2089 len = lv;
2090 if (copy_to_sockptr(optval, &v, len))
2091 return -EFAULT;
2092lenout:
2093 if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094 return -EFAULT;
2095 return 0;
2096}
2097
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105 if (sk->sk_kern_sock)
2106 sock_lock_init_class_and_name(
2107 sk,
2108 af_family_kern_slock_key_strings[sk->sk_family],
2109 af_family_kern_slock_keys + sk->sk_family,
2110 af_family_kern_key_strings[sk->sk_family],
2111 af_family_kern_keys + sk->sk_family);
2112 else
2113 sock_lock_init_class_and_name(
2114 sk,
2115 af_family_slock_key_strings[sk->sk_family],
2116 af_family_slock_keys + sk->sk_family,
2117 af_family_key_strings[sk->sk_family],
2118 af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128 const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130 void *sptr = nsk->sk_security;
2131#endif
2132
2133 /* If we move sk_tx_queue_mapping out of the private section,
2134 * we must check if sk_tx_queue_clear() is called after
2135 * sock_copy() in sk_clone_lock().
2136 */
2137 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138 offsetof(struct sock, sk_dontcopy_begin) ||
2139 offsetof(struct sock, sk_tx_queue_mapping) >=
2140 offsetof(struct sock, sk_dontcopy_end));
2141
2142 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145 prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146 /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149 nsk->sk_security = sptr;
2150 security_sk_clone(osk, nsk);
2151#endif
2152}
2153
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155 int family)
2156{
2157 struct sock *sk;
2158 struct kmem_cache *slab;
2159
2160 slab = prot->slab;
2161 if (slab != NULL) {
2162 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163 if (!sk)
2164 return sk;
2165 if (want_init_on_alloc(priority))
2166 sk_prot_clear_nulls(sk, prot->obj_size);
2167 } else
2168 sk = kmalloc(prot->obj_size, priority);
2169
2170 if (sk != NULL) {
2171 if (security_sk_alloc(sk, family, priority))
2172 goto out_free;
2173
2174 if (!try_module_get(prot->owner))
2175 goto out_free_sec;
2176 }
2177
2178 return sk;
2179
2180out_free_sec:
2181 security_sk_free(sk);
2182out_free:
2183 if (slab != NULL)
2184 kmem_cache_free(slab, sk);
2185 else
2186 kfree(sk);
2187 return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192 struct kmem_cache *slab;
2193 struct module *owner;
2194
2195 owner = prot->owner;
2196 slab = prot->slab;
2197
2198 cgroup_sk_free(&sk->sk_cgrp_data);
2199 mem_cgroup_sk_free(sk);
2200 security_sk_free(sk);
2201 if (slab != NULL)
2202 kmem_cache_free(slab, sk);
2203 else
2204 kfree(sk);
2205 module_put(owner);
2206}
2207
2208/**
2209 * sk_alloc - All socket objects are allocated here
2210 * @net: the applicable net namespace
2211 * @family: protocol family
2212 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 * @prot: struct proto associated with this new sock instance
2214 * @kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217 struct proto *prot, int kern)
2218{
2219 struct sock *sk;
2220
2221 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222 if (sk) {
2223 sk->sk_family = family;
2224 /*
2225 * See comment in struct sock definition to understand
2226 * why we need sk_prot_creator -acme
2227 */
2228 sk->sk_prot = sk->sk_prot_creator = prot;
2229 sk->sk_kern_sock = kern;
2230 sock_lock_init(sk);
2231 sk->sk_net_refcnt = kern ? 0 : 1;
2232 if (likely(sk->sk_net_refcnt)) {
2233 get_net_track(net, &sk->ns_tracker, priority);
2234 sock_inuse_add(net, 1);
2235 } else {
2236 net_passive_inc(net);
2237 __netns_tracker_alloc(net, &sk->ns_tracker,
2238 false, priority);
2239 }
2240
2241 sock_net_set(sk, net);
2242 refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244 mem_cgroup_sk_alloc(sk);
2245 cgroup_sk_alloc(&sk->sk_cgrp_data);
2246 sock_update_classid(&sk->sk_cgrp_data);
2247 sock_update_netprioidx(&sk->sk_cgrp_data);
2248 sk_tx_queue_clear(sk);
2249 }
2250
2251 return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260 struct sock *sk = container_of(head, struct sock, sk_rcu);
2261 struct net *net = sock_net(sk);
2262 struct sk_filter *filter;
2263
2264 if (sk->sk_destruct)
2265 sk->sk_destruct(sk);
2266
2267 filter = rcu_dereference_check(sk->sk_filter,
2268 refcount_read(&sk->sk_wmem_alloc) == 0);
2269 if (filter) {
2270 sk_filter_uncharge(sk, filter);
2271 RCU_INIT_POINTER(sk->sk_filter, NULL);
2272 }
2273
2274 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277 bpf_sk_storage_free(sk);
2278#endif
2279
2280 if (atomic_read(&sk->sk_omem_alloc))
2281 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284 if (sk->sk_frag.page) {
2285 put_page(sk->sk_frag.page);
2286 sk->sk_frag.page = NULL;
2287 }
2288
2289 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290 put_cred(sk->sk_peer_cred);
2291 put_pid(sk->sk_peer_pid);
2292
2293 if (likely(sk->sk_net_refcnt)) {
2294 put_net_track(net, &sk->ns_tracker);
2295 } else {
2296 __netns_tracker_free(net, &sk->ns_tracker, false);
2297 net_passive_dec(net);
2298 }
2299 sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304 struct net *net = sock_net(sk);
2305
2306 WARN_ON_ONCE(sk->sk_net_refcnt);
2307 __netns_tracker_free(net, &sk->ns_tracker, false);
2308 net_passive_dec(net);
2309 sk->sk_net_refcnt = 1;
2310 get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311 sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320 reuseport_detach_sock(sk);
2321 use_call_rcu = true;
2322 }
2323
2324 if (use_call_rcu)
2325 call_rcu(&sk->sk_rcu, __sk_destruct);
2326 else
2327 __sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332 if (likely(sk->sk_net_refcnt))
2333 sock_inuse_add(sock_net(sk), -1);
2334
2335 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336 sock_diag_broadcast_destroy(sk);
2337 else
2338 sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343 /*
2344 * We subtract one from sk_wmem_alloc and can know if
2345 * some packets are still in some tx queue.
2346 * If not null, sock_wfree() will call __sk_free(sk) later
2347 */
2348 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349 __sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
2354{
2355 skb_queue_head_init(&sk->sk_receive_queue);
2356 skb_queue_head_init(&sk->sk_write_queue);
2357 skb_queue_head_init(&sk->sk_error_queue);
2358
2359 rwlock_init(&sk->sk_callback_lock);
2360 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361 af_rlock_keys + sk->sk_family,
2362 af_family_rlock_key_strings[sk->sk_family]);
2363 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364 af_wlock_keys + sk->sk_family,
2365 af_family_wlock_key_strings[sk->sk_family]);
2366 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367 af_elock_keys + sk->sk_family,
2368 af_family_elock_key_strings[sk->sk_family]);
2369 if (sk->sk_kern_sock)
2370 lockdep_set_class_and_name(&sk->sk_callback_lock,
2371 af_kern_callback_keys + sk->sk_family,
2372 af_family_kern_clock_key_strings[sk->sk_family]);
2373 else
2374 lockdep_set_class_and_name(&sk->sk_callback_lock,
2375 af_callback_keys + sk->sk_family,
2376 af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 * sk_clone_lock - clone a socket, and lock its clone
2381 * @sk: the socket to clone
2382 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388 struct proto *prot = READ_ONCE(sk->sk_prot);
2389 struct sk_filter *filter;
2390 bool is_charged = true;
2391 struct sock *newsk;
2392
2393 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394 if (!newsk)
2395 goto out;
2396
2397 sock_copy(newsk, sk);
2398
2399 newsk->sk_prot_creator = prot;
2400
2401 /* SANITY */
2402 if (likely(newsk->sk_net_refcnt)) {
2403 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404 sock_inuse_add(sock_net(newsk), 1);
2405 } else {
2406 /* Kernel sockets are not elevating the struct net refcount.
2407 * Instead, use a tracker to more easily detect if a layer
2408 * is not properly dismantling its kernel sockets at netns
2409 * destroy time.
2410 */
2411 net_passive_inc(sock_net(newsk));
2412 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413 false, priority);
2414 }
2415 sk_node_init(&newsk->sk_node);
2416 sock_lock_init(newsk);
2417 bh_lock_sock(newsk);
2418 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2419 newsk->sk_backlog.len = 0;
2420
2421 atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424 refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426 atomic_set(&newsk->sk_omem_alloc, 0);
2427 sk_init_common(newsk);
2428
2429 newsk->sk_dst_cache = NULL;
2430 newsk->sk_dst_pending_confirm = 0;
2431 newsk->sk_wmem_queued = 0;
2432 newsk->sk_forward_alloc = 0;
2433 newsk->sk_reserved_mem = 0;
2434 atomic_set(&newsk->sk_drops, 0);
2435 newsk->sk_send_head = NULL;
2436 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437 atomic_set(&newsk->sk_zckey, 0);
2438
2439 sock_reset_flag(newsk, SOCK_DONE);
2440
2441 /* sk->sk_memcg will be populated at accept() time */
2442 newsk->sk_memcg = NULL;
2443
2444 cgroup_sk_clone(&newsk->sk_cgrp_data);
2445
2446 rcu_read_lock();
2447 filter = rcu_dereference(sk->sk_filter);
2448 if (filter != NULL)
2449 /* though it's an empty new sock, the charging may fail
2450 * if sysctl_optmem_max was changed between creation of
2451 * original socket and cloning
2452 */
2453 is_charged = sk_filter_charge(newsk, filter);
2454 RCU_INIT_POINTER(newsk->sk_filter, filter);
2455 rcu_read_unlock();
2456
2457 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458 /* We need to make sure that we don't uncharge the new
2459 * socket if we couldn't charge it in the first place
2460 * as otherwise we uncharge the parent's filter.
2461 */
2462 if (!is_charged)
2463 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464 sk_free_unlock_clone(newsk);
2465 newsk = NULL;
2466 goto out;
2467 }
2468 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470 if (bpf_sk_storage_clone(sk, newsk)) {
2471 sk_free_unlock_clone(newsk);
2472 newsk = NULL;
2473 goto out;
2474 }
2475
2476 /* Clear sk_user_data if parent had the pointer tagged
2477 * as not suitable for copying when cloning.
2478 */
2479 if (sk_user_data_is_nocopy(newsk))
2480 newsk->sk_user_data = NULL;
2481
2482 newsk->sk_err = 0;
2483 newsk->sk_err_soft = 0;
2484 newsk->sk_priority = 0;
2485 newsk->sk_incoming_cpu = raw_smp_processor_id();
2486
2487 /* Before updating sk_refcnt, we must commit prior changes to memory
2488 * (Documentation/RCU/rculist_nulls.rst for details)
2489 */
2490 smp_wmb();
2491 refcount_set(&newsk->sk_refcnt, 2);
2492
2493 sk_set_socket(newsk, NULL);
2494 sk_tx_queue_clear(newsk);
2495 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2496
2497 if (newsk->sk_prot->sockets_allocated)
2498 sk_sockets_allocated_inc(newsk);
2499
2500 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501 net_enable_timestamp();
2502out:
2503 return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509 /* It is still raw copy of parent, so invalidate
2510 * destructor and make plain sk_free() */
2511 sk->sk_destruct = NULL;
2512 bh_unlock_sock(sk);
2513 sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519 bool is_ipv6 = false;
2520 u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523 is_ipv6 = (sk->sk_family == AF_INET6 &&
2524 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2525#endif
2526 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528 READ_ONCE(dst->dev->gso_ipv4_max_size);
2529 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530 max_size = GSO_LEGACY_MAX_SIZE;
2531
2532 return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537 u32 max_segs = 1;
2538
2539 sk->sk_route_caps = dst->dev->features;
2540 if (sk_is_tcp(sk))
2541 sk->sk_route_caps |= NETIF_F_GSO;
2542 if (sk->sk_route_caps & NETIF_F_GSO)
2543 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544 if (unlikely(sk->sk_gso_disabled))
2545 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546 if (sk_can_gso(sk)) {
2547 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549 } else {
2550 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2552 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554 }
2555 }
2556 sk->sk_gso_max_segs = max_segs;
2557 sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
2561/*
2562 * Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571 struct sock *sk = skb->sk;
2572 unsigned int len = skb->truesize;
2573 bool free;
2574
2575 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576 if (sock_flag(sk, SOCK_RCU_FREE) &&
2577 sk->sk_write_space == sock_def_write_space) {
2578 rcu_read_lock();
2579 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580 sock_def_write_space_wfree(sk);
2581 rcu_read_unlock();
2582 if (unlikely(free))
2583 __sk_free(sk);
2584 return;
2585 }
2586
2587 /*
2588 * Keep a reference on sk_wmem_alloc, this will be released
2589 * after sk_write_space() call
2590 */
2591 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592 sk->sk_write_space(sk);
2593 len = 1;
2594 }
2595 /*
2596 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597 * could not do because of in-flight packets
2598 */
2599 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600 __sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609 struct sock *sk = skb->sk;
2610
2611 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612 __sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617 skb_orphan(skb);
2618#ifdef CONFIG_INET
2619 if (unlikely(!sk_fullsock(sk)))
2620 return skb_set_owner_edemux(skb, sk);
2621#endif
2622 skb->sk = sk;
2623 skb->destructor = sock_wfree;
2624 skb_set_hash_from_sk(skb, sk);
2625 /*
2626 * We used to take a refcount on sk, but following operation
2627 * is enough to guarantee sk_free() won't free this sock until
2628 * all in-flight packets are completed
2629 */
2630 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
2636 /* Drivers depend on in-order delivery for crypto offload,
2637 * partial orphan breaks out-of-order-OK logic.
2638 */
2639 if (skb_is_decrypted(skb))
2640 return false;
2641
2642 return (skb->destructor == sock_wfree ||
2643 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654 if (skb_is_tcp_pure_ack(skb))
2655 return;
2656
2657 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658 return;
2659
2660 skb_orphan(skb);
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669 struct sock *sk = skb->sk;
2670 unsigned int len = skb->truesize;
2671
2672 atomic_sub(len, &sk->sk_rmem_alloc);
2673 sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683 sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693 struct sock *sk = skb->sk;
2694
2695 if (!sk_is_refcounted(sk))
2696 return;
2697
2698 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699 inet_reqsk(sk)->rsk_listener = NULL;
2700 reqsk_free(inet_reqsk(sk));
2701 return;
2702 }
2703
2704 sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711 kuid_t uid;
2712
2713 read_lock_bh(&sk->sk_callback_lock);
2714 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715 read_unlock_bh(&sk->sk_callback_lock);
2716 return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722 unsigned long ino;
2723
2724 read_lock(&sk->sk_callback_lock);
2725 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726 read_unlock(&sk->sk_callback_lock);
2727 return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733 unsigned long ino;
2734
2735 local_bh_disable();
2736 ino = __sock_i_ino(sk);
2737 local_bh_enable();
2738 return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746 gfp_t priority)
2747{
2748 if (force ||
2749 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750 struct sk_buff *skb = alloc_skb(size, priority);
2751
2752 if (skb) {
2753 skb_set_owner_w(skb, sk);
2754 return skb;
2755 }
2756 }
2757 return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763 struct sock *sk = skb->sk;
2764
2765 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769 gfp_t priority)
2770{
2771 struct sk_buff *skb;
2772
2773 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776 return NULL;
2777
2778 skb = alloc_skb(size, priority);
2779 if (!skb)
2780 return NULL;
2781
2782 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783 skb->sk = sk;
2784 skb->destructor = sock_ofree;
2785 return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795 if ((unsigned int)size <= optmem_max &&
2796 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797 void *mem;
2798 /* First do the add, to avoid the race if kmalloc
2799 * might sleep.
2800 */
2801 atomic_add(size, &sk->sk_omem_alloc);
2802 mem = kmalloc(size, priority);
2803 if (mem)
2804 return mem;
2805 atomic_sub(size, &sk->sk_omem_alloc);
2806 }
2807 return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816 const bool nullify)
2817{
2818 if (WARN_ON_ONCE(!mem))
2819 return;
2820 if (nullify)
2821 kfree_sensitive(mem);
2822 else
2823 kfree(mem);
2824 atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829 __sock_kfree_s(sk, mem, size, false);
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835 __sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840 I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844 DEFINE_WAIT(wait);
2845
2846 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847 for (;;) {
2848 if (!timeo)
2849 break;
2850 if (signal_pending(current))
2851 break;
2852 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855 break;
2856 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857 break;
2858 if (READ_ONCE(sk->sk_err))
2859 break;
2860 timeo = schedule_timeout(timeo);
2861 }
2862 finish_wait(sk_sleep(sk), &wait);
2863 return timeo;
2864}
2865
2866
2867/*
2868 * Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872 unsigned long data_len, int noblock,
2873 int *errcode, int max_page_order)
2874{
2875 struct sk_buff *skb;
2876 long timeo;
2877 int err;
2878
2879 timeo = sock_sndtimeo(sk, noblock);
2880 for (;;) {
2881 err = sock_error(sk);
2882 if (err != 0)
2883 goto failure;
2884
2885 err = -EPIPE;
2886 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887 goto failure;
2888
2889 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890 break;
2891
2892 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2893 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894 err = -EAGAIN;
2895 if (!timeo)
2896 goto failure;
2897 if (signal_pending(current))
2898 goto interrupted;
2899 timeo = sock_wait_for_wmem(sk, timeo);
2900 }
2901 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902 errcode, sk->sk_allocation);
2903 if (skb)
2904 skb_set_owner_w(skb, sk);
2905 return skb;
2906
2907interrupted:
2908 err = sock_intr_errno(timeo);
2909failure:
2910 *errcode = err;
2911 return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2916 struct sockcm_cookie *sockc)
2917{
2918 u32 tsflags;
2919
2920 BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922 switch (cmsg->cmsg_type) {
2923 case SO_MARK:
2924 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926 return -EPERM;
2927 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928 return -EINVAL;
2929 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930 break;
2931 case SO_TIMESTAMPING_OLD:
2932 case SO_TIMESTAMPING_NEW:
2933 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934 return -EINVAL;
2935
2936 tsflags = *(u32 *)CMSG_DATA(cmsg);
2937 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938 return -EINVAL;
2939
2940 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941 sockc->tsflags |= tsflags;
2942 break;
2943 case SCM_TXTIME:
2944 if (!sock_flag(sk, SOCK_TXTIME))
2945 return -EINVAL;
2946 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947 return -EINVAL;
2948 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949 break;
2950 case SCM_TS_OPT_ID:
2951 if (sk_is_tcp(sk))
2952 return -EINVAL;
2953 tsflags = READ_ONCE(sk->sk_tsflags);
2954 if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955 return -EINVAL;
2956 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957 return -EINVAL;
2958 sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959 sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960 break;
2961 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962 case SCM_RIGHTS:
2963 case SCM_CREDENTIALS:
2964 break;
2965 default:
2966 return -EINVAL;
2967 }
2968 return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973 struct sockcm_cookie *sockc)
2974{
2975 struct cmsghdr *cmsg;
2976 int ret;
2977
2978 for_each_cmsghdr(cmsg, msg) {
2979 if (!CMSG_OK(msg, cmsg))
2980 return -EINVAL;
2981 if (cmsg->cmsg_level != SOL_SOCKET)
2982 continue;
2983 ret = __sock_cmsg_send(sk, cmsg, sockc);
2984 if (ret)
2985 return ret;
2986 }
2987 return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993 if (!sk->sk_prot->enter_memory_pressure)
2994 return;
2995
2996 sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001 if (sk->sk_prot->leave_memory_pressure) {
3002 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003 tcp_leave_memory_pressure, sk);
3004 } else {
3005 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007 if (memory_pressure && READ_ONCE(*memory_pressure))
3008 WRITE_ONCE(*memory_pressure, 0);
3009 }
3010}
3011
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
3026 if (pfrag->page) {
3027 if (page_ref_count(pfrag->page) == 1) {
3028 pfrag->offset = 0;
3029 return true;
3030 }
3031 if (pfrag->offset + sz <= pfrag->size)
3032 return true;
3033 put_page(pfrag->page);
3034 }
3035
3036 pfrag->offset = 0;
3037 if (SKB_FRAG_PAGE_ORDER &&
3038 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039 /* Avoid direct reclaim but allow kswapd to wake */
3040 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041 __GFP_COMP | __GFP_NOWARN |
3042 __GFP_NORETRY,
3043 SKB_FRAG_PAGE_ORDER);
3044 if (likely(pfrag->page)) {
3045 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3046 return true;
3047 }
3048 }
3049 pfrag->page = alloc_page(gfp);
3050 if (likely(pfrag->page)) {
3051 pfrag->size = PAGE_SIZE;
3052 return true;
3053 }
3054 return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061 return true;
3062
3063 sk_enter_memory_pressure(sk);
3064 sk_stream_moderate_sndbuf(sk);
3065 return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070 __releases(&sk->sk_lock.slock)
3071 __acquires(&sk->sk_lock.slock)
3072{
3073 DEFINE_WAIT(wait);
3074
3075 for (;;) {
3076 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077 TASK_UNINTERRUPTIBLE);
3078 spin_unlock_bh(&sk->sk_lock.slock);
3079 schedule();
3080 spin_lock_bh(&sk->sk_lock.slock);
3081 if (!sock_owned_by_user(sk))
3082 break;
3083 }
3084 finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088 __releases(&sk->sk_lock.slock)
3089 __acquires(&sk->sk_lock.slock)
3090{
3091 struct sk_buff *skb, *next;
3092
3093 while ((skb = sk->sk_backlog.head) != NULL) {
3094 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096 spin_unlock_bh(&sk->sk_lock.slock);
3097
3098 do {
3099 next = skb->next;
3100 prefetch(next);
3101 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102 skb_mark_not_on_list(skb);
3103 sk_backlog_rcv(sk, skb);
3104
3105 cond_resched();
3106
3107 skb = next;
3108 } while (skb != NULL);
3109
3110 spin_lock_bh(&sk->sk_lock.slock);
3111 }
3112
3113 /*
3114 * Doing the zeroing here guarantee we can not loop forever
3115 * while a wild producer attempts to flood us.
3116 */
3117 sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122 spin_lock_bh(&sk->sk_lock.slock);
3123 __release_sock(sk);
3124
3125 if (sk->sk_prot->release_cb)
3126 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127 tcp_release_cb, sk);
3128
3129 spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk: sock to wait on
3136 * @timeo: for how long
3137 * @skb: last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146 DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147 int rc;
3148
3149 add_wait_queue(sk_sleep(sk), &wait);
3150 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153 remove_wait_queue(sk_sleep(sk), &wait);
3154 return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 * __sk_mem_raise_allocated - increase memory_allocated
3160 * @sk: socket
3161 * @size: memory size to allocate
3162 * @amt: pages to allocate
3163 * @kind: allocation type
3164 *
3165 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 * Unlike the globally shared limits among the sockets under same protocol,
3168 * consuming the budget of a memcg won't have direct effect on other ones.
3169 * So be optimistic about memcg's tolerance, and leave the callers to decide
3170 * whether or not to raise allocated through sk_under_memory_pressure() or
3171 * its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176 struct proto *prot = sk->sk_prot;
3177 bool charged = false;
3178 long allocated;
3179
3180 sk_memory_allocated_add(sk, amt);
3181 allocated = sk_memory_allocated(sk);
3182
3183 if (memcg) {
3184 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185 goto suppress_allocation;
3186 charged = true;
3187 }
3188
3189 /* Under limit. */
3190 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3191 sk_leave_memory_pressure(sk);
3192 return 1;
3193 }
3194
3195 /* Under pressure. */
3196 if (allocated > sk_prot_mem_limits(sk, 1))
3197 sk_enter_memory_pressure(sk);
3198
3199 /* Over hard limit. */
3200 if (allocated > sk_prot_mem_limits(sk, 2))
3201 goto suppress_allocation;
3202
3203 /* Guarantee minimum buffer size under pressure (either global
3204 * or memcg) to make sure features described in RFC 7323 (TCP
3205 * Extensions for High Performance) work properly.
3206 *
3207 * This rule does NOT stand when exceeds global or memcg's hard
3208 * limit, or else a DoS attack can be taken place by spawning
3209 * lots of sockets whose usage are under minimum buffer size.
3210 */
3211 if (kind == SK_MEM_RECV) {
3212 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213 return 1;
3214
3215 } else { /* SK_MEM_SEND */
3216 int wmem0 = sk_get_wmem0(sk, prot);
3217
3218 if (sk->sk_type == SOCK_STREAM) {
3219 if (sk->sk_wmem_queued < wmem0)
3220 return 1;
3221 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3222 return 1;
3223 }
3224 }
3225
3226 if (sk_has_memory_pressure(sk)) {
3227 u64 alloc;
3228
3229 /* The following 'average' heuristic is within the
3230 * scope of global accounting, so it only makes
3231 * sense for global memory pressure.
3232 */
3233 if (!sk_under_global_memory_pressure(sk))
3234 return 1;
3235
3236 /* Try to be fair among all the sockets under global
3237 * pressure by allowing the ones that below average
3238 * usage to raise.
3239 */
3240 alloc = sk_sockets_allocated_read_positive(sk);
3241 if (sk_prot_mem_limits(sk, 2) > alloc *
3242 sk_mem_pages(sk->sk_wmem_queued +
3243 atomic_read(&sk->sk_rmem_alloc) +
3244 sk->sk_forward_alloc))
3245 return 1;
3246 }
3247
3248suppress_allocation:
3249
3250 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251 sk_stream_moderate_sndbuf(sk);
3252
3253 /* Fail only if socket is _under_ its sndbuf.
3254 * In this case we cannot block, so that we have to fail.
3255 */
3256 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257 /* Force charge with __GFP_NOFAIL */
3258 if (memcg && !charged) {
3259 mem_cgroup_charge_skmem(memcg, amt,
3260 gfp_memcg_charge() | __GFP_NOFAIL);
3261 }
3262 return 1;
3263 }
3264 }
3265
3266 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269 sk_memory_allocated_sub(sk, amt);
3270
3271 if (charged)
3272 mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274 return 0;
3275}
3276
3277/**
3278 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 * @sk: socket
3280 * @size: memory size to allocate
3281 * @kind: allocation type
3282 *
3283 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 * rmem allocation. This function assumes that protocols which have
3285 * memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289 int ret, amt = sk_mem_pages(size);
3290
3291 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293 if (!ret)
3294 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295 return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 * __sk_mem_reduce_allocated - reclaim memory_allocated
3301 * @sk: socket
3302 * @amount: number of quanta
3303 *
3304 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308 sk_memory_allocated_sub(sk, amount);
3309
3310 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313 if (sk_under_global_memory_pressure(sk) &&
3314 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315 sk_leave_memory_pressure(sk);
3316}
3317
3318/**
3319 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 * @sk: socket
3321 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325 amount >>= PAGE_SHIFT;
3326 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327 __sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333 WRITE_ONCE(sk->sk_peek_off, val);
3334 return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347 return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352 int len, int flags)
3353{
3354 return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360 return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365 struct proto_accept_arg *arg)
3366{
3367 return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372 int peer)
3373{
3374 return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380 return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386 return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392 return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3397{
3398 return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3403{
3404 return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409 int flags)
3410{
3411 return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417 /* Mirror missing mmap method error code */
3418 return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428 struct socket *sock;
3429
3430 sock = sock_from_file(file);
3431 if (sock) {
3432 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433 sock_update_classid(&sock->sk->sk_cgrp_data);
3434 }
3435}
3436
3437/*
3438 * Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443 struct socket_wq *wq;
3444
3445 rcu_read_lock();
3446 wq = rcu_dereference(sk->sk_wq);
3447 if (skwq_has_sleeper(wq))
3448 wake_up_interruptible_all(&wq->wait);
3449 rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454 struct socket_wq *wq;
3455
3456 rcu_read_lock();
3457 wq = rcu_dereference(sk->sk_wq);
3458 if (skwq_has_sleeper(wq))
3459 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461 rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466 struct socket_wq *wq;
3467
3468 trace_sk_data_ready(sk);
3469
3470 rcu_read_lock();
3471 wq = rcu_dereference(sk->sk_wq);
3472 if (skwq_has_sleeper(wq))
3473 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474 EPOLLRDNORM | EPOLLRDBAND);
3475 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476 rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481 struct socket_wq *wq;
3482
3483 rcu_read_lock();
3484
3485 /* Do not wake up a writer until he can make "significant"
3486 * progress. --DaveM
3487 */
3488 if (sock_writeable(sk)) {
3489 wq = rcu_dereference(sk->sk_wq);
3490 if (skwq_has_sleeper(wq))
3491 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492 EPOLLWRNORM | EPOLLWRBAND);
3493
3494 /* Should agree with poll, otherwise some programs break */
3495 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3496 }
3497
3498 rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507 /* Do not wake up a writer until he can make "significant"
3508 * progress. --DaveM
3509 */
3510 if (sock_writeable(sk)) {
3511 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513 /* rely on refcount_sub from sock_wfree() */
3514 smp_mb__after_atomic();
3515 if (wq && waitqueue_active(&wq->wait))
3516 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517 EPOLLWRNORM | EPOLLWRBAND);
3518
3519 /* Should agree with poll, otherwise some programs break */
3520 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521 }
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530 if (sk->sk_socket && sk->sk_socket->file)
3531 if (send_sigurg(sk->sk_socket->file))
3532 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537 unsigned long expires)
3538{
3539 if (!mod_timer(timer, expires))
3540 sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546 if (del_timer(timer))
3547 __sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553 if (del_timer_sync(timer))
3554 __sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560 sk_init_common(sk);
3561 sk->sk_send_head = NULL;
3562
3563 timer_setup(&sk->sk_timer, NULL, 0);
3564
3565 sk->sk_allocation = GFP_KERNEL;
3566 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3567 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3568 sk->sk_state = TCP_CLOSE;
3569 sk->sk_use_task_frag = true;
3570 sk_set_socket(sk, sock);
3571
3572 sock_set_flag(sk, SOCK_ZAPPED);
3573
3574 if (sock) {
3575 sk->sk_type = sock->type;
3576 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577 sock->sk = sk;
3578 } else {
3579 RCU_INIT_POINTER(sk->sk_wq, NULL);
3580 }
3581 sk->sk_uid = uid;
3582
3583 sk->sk_state_change = sock_def_wakeup;
3584 sk->sk_data_ready = sock_def_readable;
3585 sk->sk_write_space = sock_def_write_space;
3586 sk->sk_error_report = sock_def_error_report;
3587 sk->sk_destruct = sock_def_destruct;
3588
3589 sk->sk_frag.page = NULL;
3590 sk->sk_frag.offset = 0;
3591 sk->sk_peek_off = -1;
3592
3593 sk->sk_peer_pid = NULL;
3594 sk->sk_peer_cred = NULL;
3595 spin_lock_init(&sk->sk_peer_lock);
3596
3597 sk->sk_write_pending = 0;
3598 sk->sk_rcvlowat = 1;
3599 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3600 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3601
3602 sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604 seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606 atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609 sk->sk_napi_id = 0;
3610 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613 sk->sk_max_pacing_rate = ~0UL;
3614 sk->sk_pacing_rate = ~0UL;
3615 WRITE_ONCE(sk->sk_pacing_shift, 10);
3616 sk->sk_incoming_cpu = -1;
3617
3618 sk_rx_queue_clear(sk);
3619 /*
3620 * Before updating sk_refcnt, we must commit prior changes to memory
3621 * (Documentation/RCU/rculist_nulls.rst for details)
3622 */
3623 smp_wmb();
3624 refcount_set(&sk->sk_refcnt, 1);
3625 atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631 kuid_t uid = sock ?
3632 SOCK_INODE(sock)->i_uid :
3633 make_kuid(sock_net(sk)->user_ns, 0);
3634
3635 sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641 /* The sk_lock has mutex_lock() semantics here. */
3642 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644 might_sleep();
3645 spin_lock_bh(&sk->sk_lock.slock);
3646 if (sock_owned_by_user_nocheck(sk))
3647 __lock_sock(sk);
3648 sk->sk_lock.owned = 1;
3649 spin_unlock_bh(&sk->sk_lock.slock);
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
3655 spin_lock_bh(&sk->sk_lock.slock);
3656 if (sk->sk_backlog.tail)
3657 __release_sock(sk);
3658
3659 if (sk->sk_prot->release_cb)
3660 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661 tcp_release_cb, sk);
3662
3663 sock_release_ownership(sk);
3664 if (waitqueue_active(&sk->sk_lock.wq))
3665 wake_up(&sk->sk_lock.wq);
3666 spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3671{
3672 might_sleep();
3673 spin_lock_bh(&sk->sk_lock.slock);
3674
3675 if (!sock_owned_by_user_nocheck(sk)) {
3676 /*
3677 * Fast path return with bottom halves disabled and
3678 * sock::sk_lock.slock held.
3679 *
3680 * The 'mutex' is not contended and holding
3681 * sock::sk_lock.slock prevents all other lockers to
3682 * proceed so the corresponding unlock_sock_fast() can
3683 * avoid the slow path of release_sock() completely and
3684 * just release slock.
3685 *
3686 * From a semantical POV this is equivalent to 'acquiring'
3687 * the 'mutex', hence the corresponding lockdep
3688 * mutex_release() has to happen in the fast path of
3689 * unlock_sock_fast().
3690 */
3691 return false;
3692 }
3693
3694 __lock_sock(sk);
3695 sk->sk_lock.owned = 1;
3696 __acquire(&sk->sk_lock.slock);
3697 spin_unlock_bh(&sk->sk_lock.slock);
3698 return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703 bool timeval, bool time32)
3704{
3705 struct sock *sk = sock->sk;
3706 struct timespec64 ts;
3707
3708 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3710 if (ts.tv_sec == -1)
3711 return -ENOENT;
3712 if (ts.tv_sec == 0) {
3713 ktime_t kt = ktime_get_real();
3714 sock_write_timestamp(sk, kt);
3715 ts = ktime_to_timespec64(kt);
3716 }
3717
3718 if (timeval)
3719 ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722 if (time32)
3723 return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726 /* beware of padding in sparc64 timeval */
3727 if (timeval && !in_compat_syscall()) {
3728 struct __kernel_old_timeval __user tv = {
3729 .tv_sec = ts.tv_sec,
3730 .tv_usec = ts.tv_nsec,
3731 };
3732 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733 return -EFAULT;
3734 return 0;
3735 }
3736#endif
3737 return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743 if (!sock_flag(sk, flag)) {
3744 unsigned long previous_flags = sk->sk_flags;
3745
3746 sock_set_flag(sk, flag);
3747 /*
3748 * we just set one of the two flags which require net
3749 * time stamping, but time stamping might have been on
3750 * already because of the other one
3751 */
3752 if (sock_needs_netstamp(sk) &&
3753 !(previous_flags & SK_FLAGS_TIMESTAMP))
3754 net_enable_timestamp();
3755 }
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759 int level, int type)
3760{
3761 struct sock_exterr_skb *serr;
3762 struct sk_buff *skb;
3763 int copied, err;
3764
3765 err = -EAGAIN;
3766 skb = sock_dequeue_err_skb(sk);
3767 if (skb == NULL)
3768 goto out;
3769
3770 copied = skb->len;
3771 if (copied > len) {
3772 msg->msg_flags |= MSG_TRUNC;
3773 copied = len;
3774 }
3775 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776 if (err)
3777 goto out_free_skb;
3778
3779 sock_recv_timestamp(msg, sk, skb);
3780
3781 serr = SKB_EXT_ERR(skb);
3782 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784 msg->msg_flags |= MSG_ERRQUEUE;
3785 err = copied;
3786
3787out_free_skb:
3788 kfree_skb(skb);
3789out:
3790 return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 * Get a socket option on an socket.
3796 *
3797 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 * asynchronous errors should be reported by getsockopt. We assume
3799 * this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802 char __user *optval, int __user *optlen)
3803{
3804 struct sock *sk = sock->sk;
3805
3806 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812 int flags)
3813{
3814 struct sock *sk = sock->sk;
3815 int addr_len = 0;
3816 int err;
3817
3818 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3819 if (err >= 0)
3820 msg->msg_namelen = addr_len;
3821 return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 * Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829 sockptr_t optval, unsigned int optlen)
3830{
3831 struct sock *sk = sock->sk;
3832
3833 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
3838void sk_common_release(struct sock *sk)
3839{
3840 if (sk->sk_prot->destroy)
3841 sk->sk_prot->destroy(sk);
3842
3843 /*
3844 * Observation: when sk_common_release is called, processes have
3845 * no access to socket. But net still has.
3846 * Step one, detach it from networking:
3847 *
3848 * A. Remove from hash tables.
3849 */
3850
3851 sk->sk_prot->unhash(sk);
3852
3853 /*
3854 * In this point socket cannot receive new packets, but it is possible
3855 * that some packets are in flight because some CPU runs receiver and
3856 * did hash table lookup before we unhashed socket. They will achieve
3857 * receive queue and will be purged by socket destructor.
3858 *
3859 * Also we still have packets pending on receive queue and probably,
3860 * our own packets waiting in device queues. sock_destroy will drain
3861 * receive queue, but transmitted packets will delay socket destruction
3862 * until the last reference will be released.
3863 */
3864
3865 sock_orphan(sk);
3866
3867 xfrm_sk_free_policy(sk);
3868
3869 sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3876
3877 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
3887
3888#ifdef CONFIG_PROC_FS
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893 int cpu, idx = prot->inuse_idx;
3894 int res = 0;
3895
3896 for_each_possible_cpu(cpu)
3897 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899 return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
3903int sock_inuse_get(struct net *net)
3904{
3905 int cpu, res = 0;
3906
3907 for_each_possible_cpu(cpu)
3908 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910 return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918 if (net->core.prot_inuse == NULL)
3919 return -ENOMEM;
3920 return 0;
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925 free_percpu(net->core.prot_inuse);
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929 .init = sock_inuse_init_net,
3930 .exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935 if (register_pernet_subsys(&net_inuse_ops))
3936 panic("Cannot initialize net inuse counters");
3937
3938 return 0;
3939}
3940
3941core_initcall(net_inuse_init);
3942
3943static int assign_proto_idx(struct proto *prot)
3944{
3945 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948 pr_err("PROTO_INUSE_NR exhausted\n");
3949 return -ENOSPC;
3950 }
3951
3952 set_bit(prot->inuse_idx, proto_inuse_idx);
3953 return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959 clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964 return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975 if (!twsk_prot)
3976 return;
3977 kfree(twsk_prot->twsk_slab_name);
3978 twsk_prot->twsk_slab_name = NULL;
3979 kmem_cache_destroy(twsk_prot->twsk_slab);
3980 twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987 if (!twsk_prot)
3988 return 0;
3989
3990 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991 prot->name);
3992 if (!twsk_prot->twsk_slab_name)
3993 return -ENOMEM;
3994
3995 twsk_prot->twsk_slab =
3996 kmem_cache_create(twsk_prot->twsk_slab_name,
3997 twsk_prot->twsk_obj_size, 0,
3998 SLAB_ACCOUNT | prot->slab_flags,
3999 NULL);
4000 if (!twsk_prot->twsk_slab) {
4001 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002 prot->name);
4003 return -ENOMEM;
4004 }
4005
4006 return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011 if (!rsk_prot)
4012 return;
4013 kfree(rsk_prot->slab_name);
4014 rsk_prot->slab_name = NULL;
4015 kmem_cache_destroy(rsk_prot->slab);
4016 rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021 struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023 if (!rsk_prot)
4024 return 0;
4025
4026 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027 prot->name);
4028 if (!rsk_prot->slab_name)
4029 return -ENOMEM;
4030
4031 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032 rsk_prot->obj_size, 0,
4033 SLAB_ACCOUNT | prot->slab_flags,
4034 NULL);
4035
4036 if (!rsk_prot->slab) {
4037 pr_crit("%s: Can't create request sock SLAB cache!\n",
4038 prot->name);
4039 return -ENOMEM;
4040 }
4041 return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046 int ret = -ENOBUFS;
4047
4048 if (prot->memory_allocated && !prot->sysctl_mem) {
4049 pr_err("%s: missing sysctl_mem\n", prot->name);
4050 return -EINVAL;
4051 }
4052 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054 return -EINVAL;
4055 }
4056 if (alloc_slab) {
4057 prot->slab = kmem_cache_create_usercopy(prot->name,
4058 prot->obj_size, 0,
4059 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060 prot->slab_flags,
4061 prot->useroffset, prot->usersize,
4062 NULL);
4063
4064 if (prot->slab == NULL) {
4065 pr_crit("%s: Can't create sock SLAB cache!\n",
4066 prot->name);
4067 goto out;
4068 }
4069
4070 if (req_prot_init(prot))
4071 goto out_free_request_sock_slab;
4072
4073 if (tw_prot_init(prot))
4074 goto out_free_timewait_sock_slab;
4075 }
4076
4077 mutex_lock(&proto_list_mutex);
4078 ret = assign_proto_idx(prot);
4079 if (ret) {
4080 mutex_unlock(&proto_list_mutex);
4081 goto out_free_timewait_sock_slab;
4082 }
4083 list_add(&prot->node, &proto_list);
4084 mutex_unlock(&proto_list_mutex);
4085 return ret;
4086
4087out_free_timewait_sock_slab:
4088 if (alloc_slab)
4089 tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091 if (alloc_slab) {
4092 req_prot_cleanup(prot->rsk_prot);
4093
4094 kmem_cache_destroy(prot->slab);
4095 prot->slab = NULL;
4096 }
4097out:
4098 return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104 mutex_lock(&proto_list_mutex);
4105 release_proto_idx(prot);
4106 list_del(&prot->node);
4107 mutex_unlock(&proto_list_mutex);
4108
4109 kmem_cache_destroy(prot->slab);
4110 prot->slab = NULL;
4111
4112 req_prot_cleanup(prot->rsk_prot);
4113 tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119 if (!protocol) {
4120 if (!sock_is_registered(family))
4121 return -ENOENT;
4122
4123 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124 NETLINK_SOCK_DIAG, family);
4125 }
4126
4127#ifdef CONFIG_INET
4128 if (family == AF_INET &&
4129 protocol != IPPROTO_RAW &&
4130 protocol < MAX_INET_PROTOS &&
4131 !rcu_access_pointer(inet_protos[protocol]))
4132 return -ENOENT;
4133#endif
4134
4135 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136 NETLINK_SOCK_DIAG, family, protocol);
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142 __acquires(proto_list_mutex)
4143{
4144 mutex_lock(&proto_list_mutex);
4145 return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150 return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154 __releases(proto_list_mutex)
4155{
4156 mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161 return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170 return proto->memory_pressure != NULL ?
4171 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4178 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179 proto->name,
4180 proto->obj_size,
4181 sock_prot_inuse_get(seq_file_net(seq), proto),
4182 sock_prot_memory_allocated(proto),
4183 sock_prot_memory_pressure(proto),
4184 proto->max_header,
4185 proto->slab == NULL ? "no" : "yes",
4186 module_name(proto->owner),
4187 proto_method_implemented(proto->close),
4188 proto_method_implemented(proto->connect),
4189 proto_method_implemented(proto->disconnect),
4190 proto_method_implemented(proto->accept),
4191 proto_method_implemented(proto->ioctl),
4192 proto_method_implemented(proto->init),
4193 proto_method_implemented(proto->destroy),
4194 proto_method_implemented(proto->shutdown),
4195 proto_method_implemented(proto->setsockopt),
4196 proto_method_implemented(proto->getsockopt),
4197 proto_method_implemented(proto->sendmsg),
4198 proto_method_implemented(proto->recvmsg),
4199 proto_method_implemented(proto->bind),
4200 proto_method_implemented(proto->backlog_rcv),
4201 proto_method_implemented(proto->hash),
4202 proto_method_implemented(proto->unhash),
4203 proto_method_implemented(proto->get_port),
4204 proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209 if (v == &proto_list)
4210 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211 "protocol",
4212 "size",
4213 "sockets",
4214 "memory",
4215 "press",
4216 "maxhdr",
4217 "slab",
4218 "module",
4219 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220 else
4221 proto_seq_printf(seq, list_entry(v, struct proto, node));
4222 return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226 .start = proto_seq_start,
4227 .next = proto_seq_next,
4228 .stop = proto_seq_stop,
4229 .show = proto_seq_show,
4230};
4231
4232static __net_init int proto_init_net(struct net *net)
4233{
4234 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235 sizeof(struct seq_net_private)))
4236 return -ENOMEM;
4237
4238 return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243 remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248 .init = proto_init_net,
4249 .exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254 return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264 struct sock *sk = p;
4265
4266 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267 return true;
4268
4269 if (sk_is_udp(sk) &&
4270 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271 return true;
4272
4273 return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280 if (!sk->sk_prot->bind_add)
4281 return -EOPNOTSUPP;
4282 return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288 void __user *arg, void *karg, size_t size)
4289{
4290 int ret;
4291
4292 if (copy_from_user(karg, arg, size))
4293 return -EFAULT;
4294
4295 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296 if (ret)
4297 return ret;
4298
4299 if (copy_to_user(arg, karg, size))
4300 return -EFAULT;
4301
4302 return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312 int ret, karg = 0;
4313
4314 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315 if (ret)
4316 return ret;
4317
4318 return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328 int rc = 1;
4329
4330 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331 rc = ipmr_sk_ioctl(sk, cmd, arg);
4332 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333 rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334 else if (sk_is_phonet(sk))
4335 rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337 /* If ioctl was processed, returns its value */
4338 if (rc <= 0)
4339 return rc;
4340
4341 /* Otherwise call the default handler */
4342 return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403 return 0;
4404}
4405
4406core_initcall(sock_struct_check);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145static void sock_inuse_add(struct net *net, int val);
146
147/**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
157bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159{
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162}
163EXPORT_SYMBOL(sk_ns_capable);
164
165/**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
174bool sk_capable(const struct sock *sk, int cap)
175{
176 return sk_ns_capable(sk, &init_user_ns, cap);
177}
178EXPORT_SYMBOL(sk_capable);
179
180/**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
189bool sk_net_capable(const struct sock *sk, int cap)
190{
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192}
193EXPORT_SYMBOL(sk_net_capable);
194
195/*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200static struct lock_class_key af_family_keys[AF_MAX];
201static struct lock_class_key af_family_kern_keys[AF_MAX];
202static struct lock_class_key af_family_slock_keys[AF_MAX];
203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205/*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211#define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231};
232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234};
235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237};
238
239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241};
242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244};
245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247};
248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250};
251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253};
254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256};
257
258/*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262static struct lock_class_key af_callback_keys[AF_MAX];
263static struct lock_class_key af_rlock_keys[AF_MAX];
264static struct lock_class_key af_wlock_keys[AF_MAX];
265static struct lock_class_key af_elock_keys[AF_MAX];
266static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268/* Run time adjustable parameters. */
269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270EXPORT_SYMBOL(sysctl_wmem_max);
271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272EXPORT_SYMBOL(sysctl_rmem_max);
273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276/* Maximal space eaten by iovec or ancillary data plus some space */
277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278EXPORT_SYMBOL(sysctl_optmem_max);
279
280int sysctl_tstamp_allow_data __read_mostly = 1;
281
282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285/**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
293void sk_set_memalloc(struct sock *sk)
294{
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298}
299EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
301void sk_clear_memalloc(struct sock *sk)
302{
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315}
316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319{
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331}
332EXPORT_SYMBOL(__sk_backlog_rcv);
333
334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335{
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362}
363
364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366{
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414}
415
416static void sock_warn_obsolete_bsdism(const char *name)
417{
418 static int warned;
419 static char warncomm[TASK_COMM_LEN];
420 if (strcmp(warncomm, current->comm) && warned < 5) {
421 strcpy(warncomm, current->comm);
422 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
423 warncomm, name);
424 warned++;
425 }
426}
427
428static bool sock_needs_netstamp(const struct sock *sk)
429{
430 switch (sk->sk_family) {
431 case AF_UNSPEC:
432 case AF_UNIX:
433 return false;
434 default:
435 return true;
436 }
437}
438
439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
440{
441 if (sk->sk_flags & flags) {
442 sk->sk_flags &= ~flags;
443 if (sock_needs_netstamp(sk) &&
444 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
445 net_disable_timestamp();
446 }
447}
448
449
450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
451{
452 unsigned long flags;
453 struct sk_buff_head *list = &sk->sk_receive_queue;
454
455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 atomic_inc(&sk->sk_drops);
457 trace_sock_rcvqueue_full(sk, skb);
458 return -ENOMEM;
459 }
460
461 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
462 atomic_inc(&sk->sk_drops);
463 return -ENOBUFS;
464 }
465
466 skb->dev = NULL;
467 skb_set_owner_r(skb, sk);
468
469 /* we escape from rcu protected region, make sure we dont leak
470 * a norefcounted dst
471 */
472 skb_dst_force(skb);
473
474 spin_lock_irqsave(&list->lock, flags);
475 sock_skb_set_dropcount(sk, skb);
476 __skb_queue_tail(list, skb);
477 spin_unlock_irqrestore(&list->lock, flags);
478
479 if (!sock_flag(sk, SOCK_DEAD))
480 sk->sk_data_ready(sk);
481 return 0;
482}
483EXPORT_SYMBOL(__sock_queue_rcv_skb);
484
485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
486{
487 int err;
488
489 err = sk_filter(sk, skb);
490 if (err)
491 return err;
492
493 return __sock_queue_rcv_skb(sk, skb);
494}
495EXPORT_SYMBOL(sock_queue_rcv_skb);
496
497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
498 const int nested, unsigned int trim_cap, bool refcounted)
499{
500 int rc = NET_RX_SUCCESS;
501
502 if (sk_filter_trim_cap(sk, skb, trim_cap))
503 goto discard_and_relse;
504
505 skb->dev = NULL;
506
507 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
508 atomic_inc(&sk->sk_drops);
509 goto discard_and_relse;
510 }
511 if (nested)
512 bh_lock_sock_nested(sk);
513 else
514 bh_lock_sock(sk);
515 if (!sock_owned_by_user(sk)) {
516 /*
517 * trylock + unlock semantics:
518 */
519 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
520
521 rc = sk_backlog_rcv(sk, skb);
522
523 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
524 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
525 bh_unlock_sock(sk);
526 atomic_inc(&sk->sk_drops);
527 goto discard_and_relse;
528 }
529
530 bh_unlock_sock(sk);
531out:
532 if (refcounted)
533 sock_put(sk);
534 return rc;
535discard_and_relse:
536 kfree_skb(skb);
537 goto out;
538}
539EXPORT_SYMBOL(__sk_receive_skb);
540
541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
542{
543 struct dst_entry *dst = __sk_dst_get(sk);
544
545 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 sk_tx_queue_clear(sk);
547 sk->sk_dst_pending_confirm = 0;
548 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
549 dst_release(dst);
550 return NULL;
551 }
552
553 return dst;
554}
555EXPORT_SYMBOL(__sk_dst_check);
556
557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
558{
559 struct dst_entry *dst = sk_dst_get(sk);
560
561 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
562 sk_dst_reset(sk);
563 dst_release(dst);
564 return NULL;
565 }
566
567 return dst;
568}
569EXPORT_SYMBOL(sk_dst_check);
570
571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
572{
573 int ret = -ENOPROTOOPT;
574#ifdef CONFIG_NETDEVICES
575 struct net *net = sock_net(sk);
576
577 /* Sorry... */
578 ret = -EPERM;
579 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
580 goto out;
581
582 ret = -EINVAL;
583 if (ifindex < 0)
584 goto out;
585
586 sk->sk_bound_dev_if = ifindex;
587 if (sk->sk_prot->rehash)
588 sk->sk_prot->rehash(sk);
589 sk_dst_reset(sk);
590
591 ret = 0;
592
593out:
594#endif
595
596 return ret;
597}
598
599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
600{
601 int ret;
602
603 if (lock_sk)
604 lock_sock(sk);
605 ret = sock_bindtoindex_locked(sk, ifindex);
606 if (lock_sk)
607 release_sock(sk);
608
609 return ret;
610}
611EXPORT_SYMBOL(sock_bindtoindex);
612
613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
614{
615 int ret = -ENOPROTOOPT;
616#ifdef CONFIG_NETDEVICES
617 struct net *net = sock_net(sk);
618 char devname[IFNAMSIZ];
619 int index;
620
621 ret = -EINVAL;
622 if (optlen < 0)
623 goto out;
624
625 /* Bind this socket to a particular device like "eth0",
626 * as specified in the passed interface name. If the
627 * name is "" or the option length is zero the socket
628 * is not bound.
629 */
630 if (optlen > IFNAMSIZ - 1)
631 optlen = IFNAMSIZ - 1;
632 memset(devname, 0, sizeof(devname));
633
634 ret = -EFAULT;
635 if (copy_from_sockptr(devname, optval, optlen))
636 goto out;
637
638 index = 0;
639 if (devname[0] != '\0') {
640 struct net_device *dev;
641
642 rcu_read_lock();
643 dev = dev_get_by_name_rcu(net, devname);
644 if (dev)
645 index = dev->ifindex;
646 rcu_read_unlock();
647 ret = -ENODEV;
648 if (!dev)
649 goto out;
650 }
651
652 return sock_bindtoindex(sk, index, true);
653out:
654#endif
655
656 return ret;
657}
658
659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
660 int __user *optlen, int len)
661{
662 int ret = -ENOPROTOOPT;
663#ifdef CONFIG_NETDEVICES
664 struct net *net = sock_net(sk);
665 char devname[IFNAMSIZ];
666
667 if (sk->sk_bound_dev_if == 0) {
668 len = 0;
669 goto zero;
670 }
671
672 ret = -EINVAL;
673 if (len < IFNAMSIZ)
674 goto out;
675
676 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
677 if (ret)
678 goto out;
679
680 len = strlen(devname) + 1;
681
682 ret = -EFAULT;
683 if (copy_to_user(optval, devname, len))
684 goto out;
685
686zero:
687 ret = -EFAULT;
688 if (put_user(len, optlen))
689 goto out;
690
691 ret = 0;
692
693out:
694#endif
695
696 return ret;
697}
698
699bool sk_mc_loop(struct sock *sk)
700{
701 if (dev_recursion_level())
702 return false;
703 if (!sk)
704 return true;
705 switch (sk->sk_family) {
706 case AF_INET:
707 return inet_sk(sk)->mc_loop;
708#if IS_ENABLED(CONFIG_IPV6)
709 case AF_INET6:
710 return inet6_sk(sk)->mc_loop;
711#endif
712 }
713 WARN_ON_ONCE(1);
714 return true;
715}
716EXPORT_SYMBOL(sk_mc_loop);
717
718void sock_set_reuseaddr(struct sock *sk)
719{
720 lock_sock(sk);
721 sk->sk_reuse = SK_CAN_REUSE;
722 release_sock(sk);
723}
724EXPORT_SYMBOL(sock_set_reuseaddr);
725
726void sock_set_reuseport(struct sock *sk)
727{
728 lock_sock(sk);
729 sk->sk_reuseport = true;
730 release_sock(sk);
731}
732EXPORT_SYMBOL(sock_set_reuseport);
733
734void sock_no_linger(struct sock *sk)
735{
736 lock_sock(sk);
737 sk->sk_lingertime = 0;
738 sock_set_flag(sk, SOCK_LINGER);
739 release_sock(sk);
740}
741EXPORT_SYMBOL(sock_no_linger);
742
743void sock_set_priority(struct sock *sk, u32 priority)
744{
745 lock_sock(sk);
746 sk->sk_priority = priority;
747 release_sock(sk);
748}
749EXPORT_SYMBOL(sock_set_priority);
750
751void sock_set_sndtimeo(struct sock *sk, s64 secs)
752{
753 lock_sock(sk);
754 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
755 sk->sk_sndtimeo = secs * HZ;
756 else
757 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
758 release_sock(sk);
759}
760EXPORT_SYMBOL(sock_set_sndtimeo);
761
762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
763{
764 if (val) {
765 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
766 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
767 sock_set_flag(sk, SOCK_RCVTSTAMP);
768 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
769 } else {
770 sock_reset_flag(sk, SOCK_RCVTSTAMP);
771 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
772 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
773 }
774}
775
776void sock_enable_timestamps(struct sock *sk)
777{
778 lock_sock(sk);
779 __sock_set_timestamps(sk, true, false, true);
780 release_sock(sk);
781}
782EXPORT_SYMBOL(sock_enable_timestamps);
783
784void sock_set_keepalive(struct sock *sk)
785{
786 lock_sock(sk);
787 if (sk->sk_prot->keepalive)
788 sk->sk_prot->keepalive(sk, true);
789 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
790 release_sock(sk);
791}
792EXPORT_SYMBOL(sock_set_keepalive);
793
794static void __sock_set_rcvbuf(struct sock *sk, int val)
795{
796 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
797 * as a negative value.
798 */
799 val = min_t(int, val, INT_MAX / 2);
800 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
801
802 /* We double it on the way in to account for "struct sk_buff" etc.
803 * overhead. Applications assume that the SO_RCVBUF setting they make
804 * will allow that much actual data to be received on that socket.
805 *
806 * Applications are unaware that "struct sk_buff" and other overheads
807 * allocate from the receive buffer during socket buffer allocation.
808 *
809 * And after considering the possible alternatives, returning the value
810 * we actually used in getsockopt is the most desirable behavior.
811 */
812 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
813}
814
815void sock_set_rcvbuf(struct sock *sk, int val)
816{
817 lock_sock(sk);
818 __sock_set_rcvbuf(sk, val);
819 release_sock(sk);
820}
821EXPORT_SYMBOL(sock_set_rcvbuf);
822
823void sock_set_mark(struct sock *sk, u32 val)
824{
825 lock_sock(sk);
826 sk->sk_mark = val;
827 release_sock(sk);
828}
829EXPORT_SYMBOL(sock_set_mark);
830
831/*
832 * This is meant for all protocols to use and covers goings on
833 * at the socket level. Everything here is generic.
834 */
835
836int sock_setsockopt(struct socket *sock, int level, int optname,
837 sockptr_t optval, unsigned int optlen)
838{
839 struct sock_txtime sk_txtime;
840 struct sock *sk = sock->sk;
841 int val;
842 int valbool;
843 struct linger ling;
844 int ret = 0;
845
846 /*
847 * Options without arguments
848 */
849
850 if (optname == SO_BINDTODEVICE)
851 return sock_setbindtodevice(sk, optval, optlen);
852
853 if (optlen < sizeof(int))
854 return -EINVAL;
855
856 if (copy_from_sockptr(&val, optval, sizeof(val)))
857 return -EFAULT;
858
859 valbool = val ? 1 : 0;
860
861 lock_sock(sk);
862
863 switch (optname) {
864 case SO_DEBUG:
865 if (val && !capable(CAP_NET_ADMIN))
866 ret = -EACCES;
867 else
868 sock_valbool_flag(sk, SOCK_DBG, valbool);
869 break;
870 case SO_REUSEADDR:
871 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
872 break;
873 case SO_REUSEPORT:
874 sk->sk_reuseport = valbool;
875 break;
876 case SO_TYPE:
877 case SO_PROTOCOL:
878 case SO_DOMAIN:
879 case SO_ERROR:
880 ret = -ENOPROTOOPT;
881 break;
882 case SO_DONTROUTE:
883 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
884 sk_dst_reset(sk);
885 break;
886 case SO_BROADCAST:
887 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
888 break;
889 case SO_SNDBUF:
890 /* Don't error on this BSD doesn't and if you think
891 * about it this is right. Otherwise apps have to
892 * play 'guess the biggest size' games. RCVBUF/SNDBUF
893 * are treated in BSD as hints
894 */
895 val = min_t(u32, val, sysctl_wmem_max);
896set_sndbuf:
897 /* Ensure val * 2 fits into an int, to prevent max_t()
898 * from treating it as a negative value.
899 */
900 val = min_t(int, val, INT_MAX / 2);
901 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
902 WRITE_ONCE(sk->sk_sndbuf,
903 max_t(int, val * 2, SOCK_MIN_SNDBUF));
904 /* Wake up sending tasks if we upped the value. */
905 sk->sk_write_space(sk);
906 break;
907
908 case SO_SNDBUFFORCE:
909 if (!capable(CAP_NET_ADMIN)) {
910 ret = -EPERM;
911 break;
912 }
913
914 /* No negative values (to prevent underflow, as val will be
915 * multiplied by 2).
916 */
917 if (val < 0)
918 val = 0;
919 goto set_sndbuf;
920
921 case SO_RCVBUF:
922 /* Don't error on this BSD doesn't and if you think
923 * about it this is right. Otherwise apps have to
924 * play 'guess the biggest size' games. RCVBUF/SNDBUF
925 * are treated in BSD as hints
926 */
927 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
928 break;
929
930 case SO_RCVBUFFORCE:
931 if (!capable(CAP_NET_ADMIN)) {
932 ret = -EPERM;
933 break;
934 }
935
936 /* No negative values (to prevent underflow, as val will be
937 * multiplied by 2).
938 */
939 __sock_set_rcvbuf(sk, max(val, 0));
940 break;
941
942 case SO_KEEPALIVE:
943 if (sk->sk_prot->keepalive)
944 sk->sk_prot->keepalive(sk, valbool);
945 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
946 break;
947
948 case SO_OOBINLINE:
949 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
950 break;
951
952 case SO_NO_CHECK:
953 sk->sk_no_check_tx = valbool;
954 break;
955
956 case SO_PRIORITY:
957 if ((val >= 0 && val <= 6) ||
958 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
959 sk->sk_priority = val;
960 else
961 ret = -EPERM;
962 break;
963
964 case SO_LINGER:
965 if (optlen < sizeof(ling)) {
966 ret = -EINVAL; /* 1003.1g */
967 break;
968 }
969 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
970 ret = -EFAULT;
971 break;
972 }
973 if (!ling.l_onoff)
974 sock_reset_flag(sk, SOCK_LINGER);
975 else {
976#if (BITS_PER_LONG == 32)
977 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
978 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
979 else
980#endif
981 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
982 sock_set_flag(sk, SOCK_LINGER);
983 }
984 break;
985
986 case SO_BSDCOMPAT:
987 sock_warn_obsolete_bsdism("setsockopt");
988 break;
989
990 case SO_PASSCRED:
991 if (valbool)
992 set_bit(SOCK_PASSCRED, &sock->flags);
993 else
994 clear_bit(SOCK_PASSCRED, &sock->flags);
995 break;
996
997 case SO_TIMESTAMP_OLD:
998 __sock_set_timestamps(sk, valbool, false, false);
999 break;
1000 case SO_TIMESTAMP_NEW:
1001 __sock_set_timestamps(sk, valbool, true, false);
1002 break;
1003 case SO_TIMESTAMPNS_OLD:
1004 __sock_set_timestamps(sk, valbool, false, true);
1005 break;
1006 case SO_TIMESTAMPNS_NEW:
1007 __sock_set_timestamps(sk, valbool, true, true);
1008 break;
1009 case SO_TIMESTAMPING_NEW:
1010 sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011 fallthrough;
1012 case SO_TIMESTAMPING_OLD:
1013 if (val & ~SOF_TIMESTAMPING_MASK) {
1014 ret = -EINVAL;
1015 break;
1016 }
1017
1018 if (val & SOF_TIMESTAMPING_OPT_ID &&
1019 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020 if (sk->sk_protocol == IPPROTO_TCP &&
1021 sk->sk_type == SOCK_STREAM) {
1022 if ((1 << sk->sk_state) &
1023 (TCPF_CLOSE | TCPF_LISTEN)) {
1024 ret = -EINVAL;
1025 break;
1026 }
1027 sk->sk_tskey = tcp_sk(sk)->snd_una;
1028 } else {
1029 sk->sk_tskey = 0;
1030 }
1031 }
1032
1033 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035 ret = -EINVAL;
1036 break;
1037 }
1038
1039 sk->sk_tsflags = val;
1040 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041 sock_enable_timestamp(sk,
1042 SOCK_TIMESTAMPING_RX_SOFTWARE);
1043 else {
1044 if (optname == SO_TIMESTAMPING_NEW)
1045 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047 sock_disable_timestamp(sk,
1048 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049 }
1050 break;
1051
1052 case SO_RCVLOWAT:
1053 if (val < 0)
1054 val = INT_MAX;
1055 if (sock->ops->set_rcvlowat)
1056 ret = sock->ops->set_rcvlowat(sk, val);
1057 else
1058 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059 break;
1060
1061 case SO_RCVTIMEO_OLD:
1062 case SO_RCVTIMEO_NEW:
1063 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064 optlen, optname == SO_RCVTIMEO_OLD);
1065 break;
1066
1067 case SO_SNDTIMEO_OLD:
1068 case SO_SNDTIMEO_NEW:
1069 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070 optlen, optname == SO_SNDTIMEO_OLD);
1071 break;
1072
1073 case SO_ATTACH_FILTER: {
1074 struct sock_fprog fprog;
1075
1076 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077 if (!ret)
1078 ret = sk_attach_filter(&fprog, sk);
1079 break;
1080 }
1081 case SO_ATTACH_BPF:
1082 ret = -EINVAL;
1083 if (optlen == sizeof(u32)) {
1084 u32 ufd;
1085
1086 ret = -EFAULT;
1087 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088 break;
1089
1090 ret = sk_attach_bpf(ufd, sk);
1091 }
1092 break;
1093
1094 case SO_ATTACH_REUSEPORT_CBPF: {
1095 struct sock_fprog fprog;
1096
1097 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098 if (!ret)
1099 ret = sk_reuseport_attach_filter(&fprog, sk);
1100 break;
1101 }
1102 case SO_ATTACH_REUSEPORT_EBPF:
1103 ret = -EINVAL;
1104 if (optlen == sizeof(u32)) {
1105 u32 ufd;
1106
1107 ret = -EFAULT;
1108 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109 break;
1110
1111 ret = sk_reuseport_attach_bpf(ufd, sk);
1112 }
1113 break;
1114
1115 case SO_DETACH_REUSEPORT_BPF:
1116 ret = reuseport_detach_prog(sk);
1117 break;
1118
1119 case SO_DETACH_FILTER:
1120 ret = sk_detach_filter(sk);
1121 break;
1122
1123 case SO_LOCK_FILTER:
1124 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125 ret = -EPERM;
1126 else
1127 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128 break;
1129
1130 case SO_PASSSEC:
1131 if (valbool)
1132 set_bit(SOCK_PASSSEC, &sock->flags);
1133 else
1134 clear_bit(SOCK_PASSSEC, &sock->flags);
1135 break;
1136 case SO_MARK:
1137 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1138 ret = -EPERM;
1139 } else if (val != sk->sk_mark) {
1140 sk->sk_mark = val;
1141 sk_dst_reset(sk);
1142 }
1143 break;
1144
1145 case SO_RXQ_OVFL:
1146 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147 break;
1148
1149 case SO_WIFI_STATUS:
1150 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151 break;
1152
1153 case SO_PEEK_OFF:
1154 if (sock->ops->set_peek_off)
1155 ret = sock->ops->set_peek_off(sk, val);
1156 else
1157 ret = -EOPNOTSUPP;
1158 break;
1159
1160 case SO_NOFCS:
1161 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162 break;
1163
1164 case SO_SELECT_ERR_QUEUE:
1165 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166 break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169 case SO_BUSY_POLL:
1170 /* allow unprivileged users to decrease the value */
1171 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172 ret = -EPERM;
1173 else {
1174 if (val < 0)
1175 ret = -EINVAL;
1176 else
1177 sk->sk_ll_usec = val;
1178 }
1179 break;
1180#endif
1181
1182 case SO_MAX_PACING_RATE:
1183 {
1184 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186 if (sizeof(ulval) != sizeof(val) &&
1187 optlen >= sizeof(ulval) &&
1188 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189 ret = -EFAULT;
1190 break;
1191 }
1192 if (ulval != ~0UL)
1193 cmpxchg(&sk->sk_pacing_status,
1194 SK_PACING_NONE,
1195 SK_PACING_NEEDED);
1196 sk->sk_max_pacing_rate = ulval;
1197 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198 break;
1199 }
1200 case SO_INCOMING_CPU:
1201 WRITE_ONCE(sk->sk_incoming_cpu, val);
1202 break;
1203
1204 case SO_CNX_ADVICE:
1205 if (val == 1)
1206 dst_negative_advice(sk);
1207 break;
1208
1209 case SO_ZEROCOPY:
1210 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211 if (!((sk->sk_type == SOCK_STREAM &&
1212 sk->sk_protocol == IPPROTO_TCP) ||
1213 (sk->sk_type == SOCK_DGRAM &&
1214 sk->sk_protocol == IPPROTO_UDP)))
1215 ret = -ENOTSUPP;
1216 } else if (sk->sk_family != PF_RDS) {
1217 ret = -ENOTSUPP;
1218 }
1219 if (!ret) {
1220 if (val < 0 || val > 1)
1221 ret = -EINVAL;
1222 else
1223 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224 }
1225 break;
1226
1227 case SO_TXTIME:
1228 if (optlen != sizeof(struct sock_txtime)) {
1229 ret = -EINVAL;
1230 break;
1231 } else if (copy_from_sockptr(&sk_txtime, optval,
1232 sizeof(struct sock_txtime))) {
1233 ret = -EFAULT;
1234 break;
1235 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236 ret = -EINVAL;
1237 break;
1238 }
1239 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240 * scheduler has enough safe guards.
1241 */
1242 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244 ret = -EPERM;
1245 break;
1246 }
1247 sock_valbool_flag(sk, SOCK_TXTIME, true);
1248 sk->sk_clockid = sk_txtime.clockid;
1249 sk->sk_txtime_deadline_mode =
1250 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251 sk->sk_txtime_report_errors =
1252 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253 break;
1254
1255 case SO_BINDTOIFINDEX:
1256 ret = sock_bindtoindex_locked(sk, val);
1257 break;
1258
1259 default:
1260 ret = -ENOPROTOOPT;
1261 break;
1262 }
1263 release_sock(sk);
1264 return ret;
1265}
1266EXPORT_SYMBOL(sock_setsockopt);
1267
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271{
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296{
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 sock_warn_obsolete_bsdism("getsockopt");
1391 break;
1392
1393 case SO_TIMESTAMP_OLD:
1394 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 break;
1398
1399 case SO_TIMESTAMPNS_OLD:
1400 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 break;
1402
1403 case SO_TIMESTAMP_NEW:
1404 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 break;
1406
1407 case SO_TIMESTAMPNS_NEW:
1408 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 break;
1410
1411 case SO_TIMESTAMPING_OLD:
1412 v.val = sk->sk_tsflags;
1413 break;
1414
1415 case SO_RCVTIMEO_OLD:
1416 case SO_RCVTIMEO_NEW:
1417 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 break;
1419
1420 case SO_SNDTIMEO_OLD:
1421 case SO_SNDTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_RCVLOWAT:
1426 v.val = sk->sk_rcvlowat;
1427 break;
1428
1429 case SO_SNDLOWAT:
1430 v.val = 1;
1431 break;
1432
1433 case SO_PASSCRED:
1434 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 break;
1436
1437 case SO_PEERCRED:
1438 {
1439 struct ucred peercred;
1440 if (len > sizeof(peercred))
1441 len = sizeof(peercred);
1442 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443 if (copy_to_user(optval, &peercred, len))
1444 return -EFAULT;
1445 goto lenout;
1446 }
1447
1448 case SO_PEERGROUPS:
1449 {
1450 int ret, n;
1451
1452 if (!sk->sk_peer_cred)
1453 return -ENODATA;
1454
1455 n = sk->sk_peer_cred->group_info->ngroups;
1456 if (len < n * sizeof(gid_t)) {
1457 len = n * sizeof(gid_t);
1458 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1459 }
1460 len = n * sizeof(gid_t);
1461
1462 ret = groups_to_user((gid_t __user *)optval,
1463 sk->sk_peer_cred->group_info);
1464 if (ret)
1465 return ret;
1466 goto lenout;
1467 }
1468
1469 case SO_PEERNAME:
1470 {
1471 char address[128];
1472
1473 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474 if (lv < 0)
1475 return -ENOTCONN;
1476 if (lv < len)
1477 return -EINVAL;
1478 if (copy_to_user(optval, address, len))
1479 return -EFAULT;
1480 goto lenout;
1481 }
1482
1483 /* Dubious BSD thing... Probably nobody even uses it, but
1484 * the UNIX standard wants it for whatever reason... -DaveM
1485 */
1486 case SO_ACCEPTCONN:
1487 v.val = sk->sk_state == TCP_LISTEN;
1488 break;
1489
1490 case SO_PASSSEC:
1491 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492 break;
1493
1494 case SO_PEERSEC:
1495 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1496
1497 case SO_MARK:
1498 v.val = sk->sk_mark;
1499 break;
1500
1501 case SO_RXQ_OVFL:
1502 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503 break;
1504
1505 case SO_WIFI_STATUS:
1506 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507 break;
1508
1509 case SO_PEEK_OFF:
1510 if (!sock->ops->set_peek_off)
1511 return -EOPNOTSUPP;
1512
1513 v.val = sk->sk_peek_off;
1514 break;
1515 case SO_NOFCS:
1516 v.val = sock_flag(sk, SOCK_NOFCS);
1517 break;
1518
1519 case SO_BINDTODEVICE:
1520 return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522 case SO_GET_FILTER:
1523 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524 if (len < 0)
1525 return len;
1526
1527 goto lenout;
1528
1529 case SO_LOCK_FILTER:
1530 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531 break;
1532
1533 case SO_BPF_EXTENSIONS:
1534 v.val = bpf_tell_extensions();
1535 break;
1536
1537 case SO_SELECT_ERR_QUEUE:
1538 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539 break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542 case SO_BUSY_POLL:
1543 v.val = sk->sk_ll_usec;
1544 break;
1545#endif
1546
1547 case SO_MAX_PACING_RATE:
1548 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549 lv = sizeof(v.ulval);
1550 v.ulval = sk->sk_max_pacing_rate;
1551 } else {
1552 /* 32bit version */
1553 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1554 }
1555 break;
1556
1557 case SO_INCOMING_CPU:
1558 v.val = READ_ONCE(sk->sk_incoming_cpu);
1559 break;
1560
1561 case SO_MEMINFO:
1562 {
1563 u32 meminfo[SK_MEMINFO_VARS];
1564
1565 sk_get_meminfo(sk, meminfo);
1566
1567 len = min_t(unsigned int, len, sizeof(meminfo));
1568 if (copy_to_user(optval, &meminfo, len))
1569 return -EFAULT;
1570
1571 goto lenout;
1572 }
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575 case SO_INCOMING_NAPI_ID:
1576 v.val = READ_ONCE(sk->sk_napi_id);
1577
1578 /* aggregate non-NAPI IDs down to 0 */
1579 if (v.val < MIN_NAPI_ID)
1580 v.val = 0;
1581
1582 break;
1583#endif
1584
1585 case SO_COOKIE:
1586 lv = sizeof(u64);
1587 if (len < lv)
1588 return -EINVAL;
1589 v.val64 = sock_gen_cookie(sk);
1590 break;
1591
1592 case SO_ZEROCOPY:
1593 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594 break;
1595
1596 case SO_TXTIME:
1597 lv = sizeof(v.txtime);
1598 v.txtime.clockid = sk->sk_clockid;
1599 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600 SOF_TXTIME_DEADLINE_MODE : 0;
1601 v.txtime.flags |= sk->sk_txtime_report_errors ?
1602 SOF_TXTIME_REPORT_ERRORS : 0;
1603 break;
1604
1605 case SO_BINDTOIFINDEX:
1606 v.val = sk->sk_bound_dev_if;
1607 break;
1608
1609 default:
1610 /* We implement the SO_SNDLOWAT etc to not be settable
1611 * (1003.1g 7).
1612 */
1613 return -ENOPROTOOPT;
1614 }
1615
1616 if (len > lv)
1617 len = lv;
1618 if (copy_to_user(optval, &v, len))
1619 return -EFAULT;
1620lenout:
1621 if (put_user(len, optlen))
1622 return -EFAULT;
1623 return 0;
1624}
1625
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633 if (sk->sk_kern_sock)
1634 sock_lock_init_class_and_name(
1635 sk,
1636 af_family_kern_slock_key_strings[sk->sk_family],
1637 af_family_kern_slock_keys + sk->sk_family,
1638 af_family_kern_key_strings[sk->sk_family],
1639 af_family_kern_keys + sk->sk_family);
1640 else
1641 sock_lock_init_class_and_name(
1642 sk,
1643 af_family_slock_key_strings[sk->sk_family],
1644 af_family_slock_keys + sk->sk_family,
1645 af_family_key_strings[sk->sk_family],
1646 af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656 const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658 void *sptr = nsk->sk_security;
1659#endif
1660 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666 nsk->sk_security = sptr;
1667 security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672 int family)
1673{
1674 struct sock *sk;
1675 struct kmem_cache *slab;
1676
1677 slab = prot->slab;
1678 if (slab != NULL) {
1679 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680 if (!sk)
1681 return sk;
1682 if (want_init_on_alloc(priority))
1683 sk_prot_clear_nulls(sk, prot->obj_size);
1684 } else
1685 sk = kmalloc(prot->obj_size, priority);
1686
1687 if (sk != NULL) {
1688 if (security_sk_alloc(sk, family, priority))
1689 goto out_free;
1690
1691 if (!try_module_get(prot->owner))
1692 goto out_free_sec;
1693 sk_tx_queue_clear(sk);
1694 }
1695
1696 return sk;
1697
1698out_free_sec:
1699 security_sk_free(sk);
1700out_free:
1701 if (slab != NULL)
1702 kmem_cache_free(slab, sk);
1703 else
1704 kfree(sk);
1705 return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710 struct kmem_cache *slab;
1711 struct module *owner;
1712
1713 owner = prot->owner;
1714 slab = prot->slab;
1715
1716 cgroup_sk_free(&sk->sk_cgrp_data);
1717 mem_cgroup_sk_free(sk);
1718 security_sk_free(sk);
1719 if (slab != NULL)
1720 kmem_cache_free(slab, sk);
1721 else
1722 kfree(sk);
1723 module_put(owner);
1724}
1725
1726/**
1727 * sk_alloc - All socket objects are allocated here
1728 * @net: the applicable net namespace
1729 * @family: protocol family
1730 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 * @prot: struct proto associated with this new sock instance
1732 * @kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735 struct proto *prot, int kern)
1736{
1737 struct sock *sk;
1738
1739 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740 if (sk) {
1741 sk->sk_family = family;
1742 /*
1743 * See comment in struct sock definition to understand
1744 * why we need sk_prot_creator -acme
1745 */
1746 sk->sk_prot = sk->sk_prot_creator = prot;
1747 sk->sk_kern_sock = kern;
1748 sock_lock_init(sk);
1749 sk->sk_net_refcnt = kern ? 0 : 1;
1750 if (likely(sk->sk_net_refcnt)) {
1751 get_net(net);
1752 sock_inuse_add(net, 1);
1753 }
1754
1755 sock_net_set(sk, net);
1756 refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758 mem_cgroup_sk_alloc(sk);
1759 cgroup_sk_alloc(&sk->sk_cgrp_data);
1760 sock_update_classid(&sk->sk_cgrp_data);
1761 sock_update_netprioidx(&sk->sk_cgrp_data);
1762 sk_tx_queue_clear(sk);
1763 }
1764
1765 return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774 struct sock *sk = container_of(head, struct sock, sk_rcu);
1775 struct sk_filter *filter;
1776
1777 if (sk->sk_destruct)
1778 sk->sk_destruct(sk);
1779
1780 filter = rcu_dereference_check(sk->sk_filter,
1781 refcount_read(&sk->sk_wmem_alloc) == 0);
1782 if (filter) {
1783 sk_filter_uncharge(sk, filter);
1784 RCU_INIT_POINTER(sk->sk_filter, NULL);
1785 }
1786
1787 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790 bpf_sk_storage_free(sk);
1791#endif
1792
1793 if (atomic_read(&sk->sk_omem_alloc))
1794 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797 if (sk->sk_frag.page) {
1798 put_page(sk->sk_frag.page);
1799 sk->sk_frag.page = NULL;
1800 }
1801
1802 if (sk->sk_peer_cred)
1803 put_cred(sk->sk_peer_cred);
1804 put_pid(sk->sk_peer_pid);
1805 if (likely(sk->sk_net_refcnt))
1806 put_net(sock_net(sk));
1807 sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
1810void sk_destruct(struct sock *sk)
1811{
1812 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815 reuseport_detach_sock(sk);
1816 use_call_rcu = true;
1817 }
1818
1819 if (use_call_rcu)
1820 call_rcu(&sk->sk_rcu, __sk_destruct);
1821 else
1822 __sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827 if (likely(sk->sk_net_refcnt))
1828 sock_inuse_add(sock_net(sk), -1);
1829
1830 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831 sock_diag_broadcast_destroy(sk);
1832 else
1833 sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838 /*
1839 * We subtract one from sk_wmem_alloc and can know if
1840 * some packets are still in some tx queue.
1841 * If not null, sock_wfree() will call __sk_free(sk) later
1842 */
1843 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844 __sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850 skb_queue_head_init(&sk->sk_receive_queue);
1851 skb_queue_head_init(&sk->sk_write_queue);
1852 skb_queue_head_init(&sk->sk_error_queue);
1853
1854 rwlock_init(&sk->sk_callback_lock);
1855 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856 af_rlock_keys + sk->sk_family,
1857 af_family_rlock_key_strings[sk->sk_family]);
1858 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859 af_wlock_keys + sk->sk_family,
1860 af_family_wlock_key_strings[sk->sk_family]);
1861 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862 af_elock_keys + sk->sk_family,
1863 af_family_elock_key_strings[sk->sk_family]);
1864 lockdep_set_class_and_name(&sk->sk_callback_lock,
1865 af_callback_keys + sk->sk_family,
1866 af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 * sk_clone_lock - clone a socket, and lock its clone
1871 * @sk: the socket to clone
1872 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878 struct proto *prot = READ_ONCE(sk->sk_prot);
1879 struct sock *newsk;
1880 bool is_charged = true;
1881
1882 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883 if (newsk != NULL) {
1884 struct sk_filter *filter;
1885
1886 sock_copy(newsk, sk);
1887
1888 newsk->sk_prot_creator = prot;
1889
1890 /* SANITY */
1891 if (likely(newsk->sk_net_refcnt))
1892 get_net(sock_net(newsk));
1893 sk_node_init(&newsk->sk_node);
1894 sock_lock_init(newsk);
1895 bh_lock_sock(newsk);
1896 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1897 newsk->sk_backlog.len = 0;
1898
1899 atomic_set(&newsk->sk_rmem_alloc, 0);
1900 /*
1901 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1902 */
1903 refcount_set(&newsk->sk_wmem_alloc, 1);
1904 atomic_set(&newsk->sk_omem_alloc, 0);
1905 sk_init_common(newsk);
1906
1907 newsk->sk_dst_cache = NULL;
1908 newsk->sk_dst_pending_confirm = 0;
1909 newsk->sk_wmem_queued = 0;
1910 newsk->sk_forward_alloc = 0;
1911 atomic_set(&newsk->sk_drops, 0);
1912 newsk->sk_send_head = NULL;
1913 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914 atomic_set(&newsk->sk_zckey, 0);
1915
1916 sock_reset_flag(newsk, SOCK_DONE);
1917
1918 /* sk->sk_memcg will be populated at accept() time */
1919 newsk->sk_memcg = NULL;
1920
1921 cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923 rcu_read_lock();
1924 filter = rcu_dereference(sk->sk_filter);
1925 if (filter != NULL)
1926 /* though it's an empty new sock, the charging may fail
1927 * if sysctl_optmem_max was changed between creation of
1928 * original socket and cloning
1929 */
1930 is_charged = sk_filter_charge(newsk, filter);
1931 RCU_INIT_POINTER(newsk->sk_filter, filter);
1932 rcu_read_unlock();
1933
1934 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935 /* We need to make sure that we don't uncharge the new
1936 * socket if we couldn't charge it in the first place
1937 * as otherwise we uncharge the parent's filter.
1938 */
1939 if (!is_charged)
1940 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941 sk_free_unlock_clone(newsk);
1942 newsk = NULL;
1943 goto out;
1944 }
1945 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947 if (bpf_sk_storage_clone(sk, newsk)) {
1948 sk_free_unlock_clone(newsk);
1949 newsk = NULL;
1950 goto out;
1951 }
1952
1953 /* Clear sk_user_data if parent had the pointer tagged
1954 * as not suitable for copying when cloning.
1955 */
1956 if (sk_user_data_is_nocopy(newsk))
1957 newsk->sk_user_data = NULL;
1958
1959 newsk->sk_err = 0;
1960 newsk->sk_err_soft = 0;
1961 newsk->sk_priority = 0;
1962 newsk->sk_incoming_cpu = raw_smp_processor_id();
1963 if (likely(newsk->sk_net_refcnt))
1964 sock_inuse_add(sock_net(newsk), 1);
1965
1966 /*
1967 * Before updating sk_refcnt, we must commit prior changes to memory
1968 * (Documentation/RCU/rculist_nulls.rst for details)
1969 */
1970 smp_wmb();
1971 refcount_set(&newsk->sk_refcnt, 2);
1972
1973 /*
1974 * Increment the counter in the same struct proto as the master
1975 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976 * is the same as sk->sk_prot->socks, as this field was copied
1977 * with memcpy).
1978 *
1979 * This _changes_ the previous behaviour, where
1980 * tcp_create_openreq_child always was incrementing the
1981 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982 * to be taken into account in all callers. -acme
1983 */
1984 sk_refcnt_debug_inc(newsk);
1985 sk_set_socket(newsk, NULL);
1986 sk_tx_queue_clear(newsk);
1987 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989 if (newsk->sk_prot->sockets_allocated)
1990 sk_sockets_allocated_inc(newsk);
1991
1992 if (sock_needs_netstamp(sk) &&
1993 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994 net_enable_timestamp();
1995 }
1996out:
1997 return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003 /* It is still raw copy of parent, so invalidate
2004 * destructor and make plain sk_free() */
2005 sk->sk_destruct = NULL;
2006 bh_unlock_sock(sk);
2007 sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013 u32 max_segs = 1;
2014
2015 sk_dst_set(sk, dst);
2016 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2017 if (sk->sk_route_caps & NETIF_F_GSO)
2018 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2020 if (sk_can_gso(sk)) {
2021 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023 } else {
2024 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025 sk->sk_gso_max_size = dst->dev->gso_max_size;
2026 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2027 }
2028 }
2029 sk->sk_gso_max_segs = max_segs;
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 * Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043 struct sock *sk = skb->sk;
2044 unsigned int len = skb->truesize;
2045
2046 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2047 /*
2048 * Keep a reference on sk_wmem_alloc, this will be released
2049 * after sk_write_space() call
2050 */
2051 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052 sk->sk_write_space(sk);
2053 len = 1;
2054 }
2055 /*
2056 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057 * could not do because of in-flight packets
2058 */
2059 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060 __sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069 struct sock *sk = skb->sk;
2070
2071 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072 __sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077 skb_orphan(skb);
2078 skb->sk = sk;
2079#ifdef CONFIG_INET
2080 if (unlikely(!sk_fullsock(sk))) {
2081 skb->destructor = sock_edemux;
2082 sock_hold(sk);
2083 return;
2084 }
2085#endif
2086 skb->destructor = sock_wfree;
2087 skb_set_hash_from_sk(skb, sk);
2088 /*
2089 * We used to take a refcount on sk, but following operation
2090 * is enough to guarantee sk_free() wont free this sock until
2091 * all in-flight packets are completed
2092 */
2093 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100 /* Drivers depend on in-order delivery for crypto offload,
2101 * partial orphan breaks out-of-order-OK logic.
2102 */
2103 if (skb->decrypted)
2104 return false;
2105#endif
2106 return (skb->destructor == sock_wfree ||
2107 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118 if (skb_is_tcp_pure_ack(skb))
2119 return;
2120
2121 if (can_skb_orphan_partial(skb)) {
2122 struct sock *sk = skb->sk;
2123
2124 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126 skb->destructor = sock_efree;
2127 }
2128 } else {
2129 skb_orphan(skb);
2130 }
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139 struct sock *sk = skb->sk;
2140 unsigned int len = skb->truesize;
2141
2142 atomic_sub(len, &sk->sk_rmem_alloc);
2143 sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153 sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163 if (sk_is_refcounted(skb->sk))
2164 sock_gen_put(skb->sk);
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171 kuid_t uid;
2172
2173 read_lock_bh(&sk->sk_callback_lock);
2174 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175 read_unlock_bh(&sk->sk_callback_lock);
2176 return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182 unsigned long ino;
2183
2184 read_lock_bh(&sk->sk_callback_lock);
2185 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186 read_unlock_bh(&sk->sk_callback_lock);
2187 return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195 gfp_t priority)
2196{
2197 if (force ||
2198 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199 struct sk_buff *skb = alloc_skb(size, priority);
2200
2201 if (skb) {
2202 skb_set_owner_w(skb, sk);
2203 return skb;
2204 }
2205 }
2206 return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212 struct sock *sk = skb->sk;
2213
2214 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218 gfp_t priority)
2219{
2220 struct sk_buff *skb;
2221
2222 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224 sysctl_optmem_max)
2225 return NULL;
2226
2227 skb = alloc_skb(size, priority);
2228 if (!skb)
2229 return NULL;
2230
2231 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232 skb->sk = sk;
2233 skb->destructor = sock_ofree;
2234 return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242 if ((unsigned int)size <= sysctl_optmem_max &&
2243 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2244 void *mem;
2245 /* First do the add, to avoid the race if kmalloc
2246 * might sleep.
2247 */
2248 atomic_add(size, &sk->sk_omem_alloc);
2249 mem = kmalloc(size, priority);
2250 if (mem)
2251 return mem;
2252 atomic_sub(size, &sk->sk_omem_alloc);
2253 }
2254 return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263 const bool nullify)
2264{
2265 if (WARN_ON_ONCE(!mem))
2266 return;
2267 if (nullify)
2268 kfree_sensitive(mem);
2269 else
2270 kfree(mem);
2271 atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276 __sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282 __sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287 I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291 DEFINE_WAIT(wait);
2292
2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294 for (;;) {
2295 if (!timeo)
2296 break;
2297 if (signal_pending(current))
2298 break;
2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302 break;
2303 if (sk->sk_shutdown & SEND_SHUTDOWN)
2304 break;
2305 if (sk->sk_err)
2306 break;
2307 timeo = schedule_timeout(timeo);
2308 }
2309 finish_wait(sk_sleep(sk), &wait);
2310 return timeo;
2311}
2312
2313
2314/*
2315 * Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319 unsigned long data_len, int noblock,
2320 int *errcode, int max_page_order)
2321{
2322 struct sk_buff *skb;
2323 long timeo;
2324 int err;
2325
2326 timeo = sock_sndtimeo(sk, noblock);
2327 for (;;) {
2328 err = sock_error(sk);
2329 if (err != 0)
2330 goto failure;
2331
2332 err = -EPIPE;
2333 if (sk->sk_shutdown & SEND_SHUTDOWN)
2334 goto failure;
2335
2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337 break;
2338
2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341 err = -EAGAIN;
2342 if (!timeo)
2343 goto failure;
2344 if (signal_pending(current))
2345 goto interrupted;
2346 timeo = sock_wait_for_wmem(sk, timeo);
2347 }
2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349 errcode, sk->sk_allocation);
2350 if (skb)
2351 skb_set_owner_w(skb, sk);
2352 return skb;
2353
2354interrupted:
2355 err = sock_intr_errno(timeo);
2356failure:
2357 *errcode = err;
2358 return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363 int noblock, int *errcode)
2364{
2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370 struct sockcm_cookie *sockc)
2371{
2372 u32 tsflags;
2373
2374 switch (cmsg->cmsg_type) {
2375 case SO_MARK:
2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2377 return -EPERM;
2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379 return -EINVAL;
2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381 break;
2382 case SO_TIMESTAMPING_OLD:
2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384 return -EINVAL;
2385
2386 tsflags = *(u32 *)CMSG_DATA(cmsg);
2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388 return -EINVAL;
2389
2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391 sockc->tsflags |= tsflags;
2392 break;
2393 case SCM_TXTIME:
2394 if (!sock_flag(sk, SOCK_TXTIME))
2395 return -EINVAL;
2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397 return -EINVAL;
2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399 break;
2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401 case SCM_RIGHTS:
2402 case SCM_CREDENTIALS:
2403 break;
2404 default:
2405 return -EINVAL;
2406 }
2407 return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412 struct sockcm_cookie *sockc)
2413{
2414 struct cmsghdr *cmsg;
2415 int ret;
2416
2417 for_each_cmsghdr(cmsg, msg) {
2418 if (!CMSG_OK(msg, cmsg))
2419 return -EINVAL;
2420 if (cmsg->cmsg_level != SOL_SOCKET)
2421 continue;
2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423 if (ret)
2424 return ret;
2425 }
2426 return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432 if (!sk->sk_prot->enter_memory_pressure)
2433 return;
2434
2435 sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440 if (sk->sk_prot->leave_memory_pressure) {
2441 sk->sk_prot->leave_memory_pressure(sk);
2442 } else {
2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445 if (memory_pressure && READ_ONCE(*memory_pressure))
2446 WRITE_ONCE(*memory_pressure, 0);
2447 }
2448}
2449
2450#define SKB_FRAG_PAGE_ORDER get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465 if (pfrag->page) {
2466 if (page_ref_count(pfrag->page) == 1) {
2467 pfrag->offset = 0;
2468 return true;
2469 }
2470 if (pfrag->offset + sz <= pfrag->size)
2471 return true;
2472 put_page(pfrag->page);
2473 }
2474
2475 pfrag->offset = 0;
2476 if (SKB_FRAG_PAGE_ORDER &&
2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478 /* Avoid direct reclaim but allow kswapd to wake */
2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480 __GFP_COMP | __GFP_NOWARN |
2481 __GFP_NORETRY,
2482 SKB_FRAG_PAGE_ORDER);
2483 if (likely(pfrag->page)) {
2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485 return true;
2486 }
2487 }
2488 pfrag->page = alloc_page(gfp);
2489 if (likely(pfrag->page)) {
2490 pfrag->size = PAGE_SIZE;
2491 return true;
2492 }
2493 return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500 return true;
2501
2502 sk_enter_memory_pressure(sk);
2503 sk_stream_moderate_sndbuf(sk);
2504 return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509 __releases(&sk->sk_lock.slock)
2510 __acquires(&sk->sk_lock.slock)
2511{
2512 DEFINE_WAIT(wait);
2513
2514 for (;;) {
2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516 TASK_UNINTERRUPTIBLE);
2517 spin_unlock_bh(&sk->sk_lock.slock);
2518 schedule();
2519 spin_lock_bh(&sk->sk_lock.slock);
2520 if (!sock_owned_by_user(sk))
2521 break;
2522 }
2523 finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527 __releases(&sk->sk_lock.slock)
2528 __acquires(&sk->sk_lock.slock)
2529{
2530 struct sk_buff *skb, *next;
2531
2532 while ((skb = sk->sk_backlog.head) != NULL) {
2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535 spin_unlock_bh(&sk->sk_lock.slock);
2536
2537 do {
2538 next = skb->next;
2539 prefetch(next);
2540 WARN_ON_ONCE(skb_dst_is_noref(skb));
2541 skb_mark_not_on_list(skb);
2542 sk_backlog_rcv(sk, skb);
2543
2544 cond_resched();
2545
2546 skb = next;
2547 } while (skb != NULL);
2548
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 }
2551
2552 /*
2553 * Doing the zeroing here guarantee we can not loop forever
2554 * while a wild producer attempts to flood us.
2555 */
2556 sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561 spin_lock_bh(&sk->sk_lock.slock);
2562 __release_sock(sk);
2563 spin_unlock_bh(&sk->sk_lock.slock);
2564}
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk: sock to wait on
2569 * @timeo: for how long
2570 * @skb: last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580 int rc;
2581
2582 add_wait_queue(sk_sleep(sk), &wait);
2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586 remove_wait_queue(sk_sleep(sk), &wait);
2587 return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 * __sk_mem_raise_allocated - increase memory_allocated
2593 * @sk: socket
2594 * @size: memory size to allocate
2595 * @amt: pages to allocate
2596 * @kind: allocation type
2597 *
2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
2602 struct proto *prot = sk->sk_prot;
2603 long allocated = sk_memory_allocated_add(sk, amt);
2604 bool charged = true;
2605
2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608 goto suppress_allocation;
2609
2610 /* Under limit. */
2611 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612 sk_leave_memory_pressure(sk);
2613 return 1;
2614 }
2615
2616 /* Under pressure. */
2617 if (allocated > sk_prot_mem_limits(sk, 1))
2618 sk_enter_memory_pressure(sk);
2619
2620 /* Over hard limit. */
2621 if (allocated > sk_prot_mem_limits(sk, 2))
2622 goto suppress_allocation;
2623
2624 /* guarantee minimum buffer size under pressure */
2625 if (kind == SK_MEM_RECV) {
2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627 return 1;
2628
2629 } else { /* SK_MEM_SEND */
2630 int wmem0 = sk_get_wmem0(sk, prot);
2631
2632 if (sk->sk_type == SOCK_STREAM) {
2633 if (sk->sk_wmem_queued < wmem0)
2634 return 1;
2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636 return 1;
2637 }
2638 }
2639
2640 if (sk_has_memory_pressure(sk)) {
2641 u64 alloc;
2642
2643 if (!sk_under_memory_pressure(sk))
2644 return 1;
2645 alloc = sk_sockets_allocated_read_positive(sk);
2646 if (sk_prot_mem_limits(sk, 2) > alloc *
2647 sk_mem_pages(sk->sk_wmem_queued +
2648 atomic_read(&sk->sk_rmem_alloc) +
2649 sk->sk_forward_alloc))
2650 return 1;
2651 }
2652
2653suppress_allocation:
2654
2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656 sk_stream_moderate_sndbuf(sk);
2657
2658 /* Fail only if socket is _under_ its sndbuf.
2659 * In this case we cannot block, so that we have to fail.
2660 */
2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2662 return 1;
2663 }
2664
2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668 sk_memory_allocated_sub(sk, amt);
2669
2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 * @sk: socket
2680 * @size: memory size to allocate
2681 * @kind: allocation type
2682 *
2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 * rmem allocation. This function assumes that protocols which have
2685 * memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689 int ret, amt = sk_mem_pages(size);
2690
2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693 if (!ret)
2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695 return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 * __sk_mem_reduce_allocated - reclaim memory_allocated
2701 * @sk: socket
2702 * @amount: number of quanta
2703 *
2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708 sk_memory_allocated_sub(sk, amount);
2709
2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713 if (sk_under_memory_pressure(sk) &&
2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715 sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 * @sk: socket
2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726 amount >>= SK_MEM_QUANTUM_SHIFT;
2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728 __sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734 sk->sk_peek_off = val;
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748 return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753 int len, int flags)
2754{
2755 return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761 return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766 bool kern)
2767{
2768 return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773 int peer)
2774{
2775 return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781 return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787 return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793 return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799 return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805 return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810 int flags)
2811{
2812 return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818 /* Mirror missing mmap method error code */
2819 return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829 struct socket *sock;
2830 int error;
2831
2832 /*
2833 * The resulting value of "error" is ignored here since we only
2834 * need to take action when the file is a socket and testing
2835 * "sock" for NULL is sufficient.
2836 */
2837 sock = sock_from_file(file, &error);
2838 if (sock) {
2839 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840 sock_update_classid(&sock->sk->sk_cgrp_data);
2841 }
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846 ssize_t res;
2847 struct msghdr msg = {.msg_flags = flags};
2848 struct kvec iov;
2849 char *kaddr = kmap(page);
2850 iov.iov_base = kaddr + offset;
2851 iov.iov_len = size;
2852 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853 kunmap(page);
2854 return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859 int offset, size_t size, int flags)
2860{
2861 ssize_t res;
2862 struct msghdr msg = {.msg_flags = flags};
2863 struct kvec iov;
2864 char *kaddr = kmap(page);
2865
2866 iov.iov_base = kaddr + offset;
2867 iov.iov_len = size;
2868 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869 kunmap(page);
2870 return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 * Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880 struct socket_wq *wq;
2881
2882 rcu_read_lock();
2883 wq = rcu_dereference(sk->sk_wq);
2884 if (skwq_has_sleeper(wq))
2885 wake_up_interruptible_all(&wq->wait);
2886 rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891 struct socket_wq *wq;
2892
2893 rcu_read_lock();
2894 wq = rcu_dereference(sk->sk_wq);
2895 if (skwq_has_sleeper(wq))
2896 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898 rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903 struct socket_wq *wq;
2904
2905 rcu_read_lock();
2906 wq = rcu_dereference(sk->sk_wq);
2907 if (skwq_has_sleeper(wq))
2908 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909 EPOLLRDNORM | EPOLLRDBAND);
2910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911 rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916 struct socket_wq *wq;
2917
2918 rcu_read_lock();
2919
2920 /* Do not wake up a writer until he can make "significant"
2921 * progress. --DaveM
2922 */
2923 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924 wq = rcu_dereference(sk->sk_wq);
2925 if (skwq_has_sleeper(wq))
2926 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927 EPOLLWRNORM | EPOLLWRBAND);
2928
2929 /* Should agree with poll, otherwise some programs break */
2930 if (sock_writeable(sk))
2931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932 }
2933
2934 rcu_read_unlock();
2935}
2936
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943 if (sk->sk_socket && sk->sk_socket->file)
2944 if (send_sigurg(&sk->sk_socket->file->f_owner))
2945 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950 unsigned long expires)
2951{
2952 if (!mod_timer(timer, expires))
2953 sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959 if (del_timer(timer))
2960 __sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
2964void sock_init_data(struct socket *sock, struct sock *sk)
2965{
2966 sk_init_common(sk);
2967 sk->sk_send_head = NULL;
2968
2969 timer_setup(&sk->sk_timer, NULL, 0);
2970
2971 sk->sk_allocation = GFP_KERNEL;
2972 sk->sk_rcvbuf = sysctl_rmem_default;
2973 sk->sk_sndbuf = sysctl_wmem_default;
2974 sk->sk_state = TCP_CLOSE;
2975 sk_set_socket(sk, sock);
2976
2977 sock_set_flag(sk, SOCK_ZAPPED);
2978
2979 if (sock) {
2980 sk->sk_type = sock->type;
2981 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982 sock->sk = sk;
2983 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2984 } else {
2985 RCU_INIT_POINTER(sk->sk_wq, NULL);
2986 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2987 }
2988
2989 rwlock_init(&sk->sk_callback_lock);
2990 if (sk->sk_kern_sock)
2991 lockdep_set_class_and_name(
2992 &sk->sk_callback_lock,
2993 af_kern_callback_keys + sk->sk_family,
2994 af_family_kern_clock_key_strings[sk->sk_family]);
2995 else
2996 lockdep_set_class_and_name(
2997 &sk->sk_callback_lock,
2998 af_callback_keys + sk->sk_family,
2999 af_family_clock_key_strings[sk->sk_family]);
3000
3001 sk->sk_state_change = sock_def_wakeup;
3002 sk->sk_data_ready = sock_def_readable;
3003 sk->sk_write_space = sock_def_write_space;
3004 sk->sk_error_report = sock_def_error_report;
3005 sk->sk_destruct = sock_def_destruct;
3006
3007 sk->sk_frag.page = NULL;
3008 sk->sk_frag.offset = 0;
3009 sk->sk_peek_off = -1;
3010
3011 sk->sk_peer_pid = NULL;
3012 sk->sk_peer_cred = NULL;
3013 sk->sk_write_pending = 0;
3014 sk->sk_rcvlowat = 1;
3015 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3016 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3017
3018 sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020 seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022 atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025 sk->sk_napi_id = 0;
3026 sk->sk_ll_usec = sysctl_net_busy_read;
3027#endif
3028
3029 sk->sk_max_pacing_rate = ~0UL;
3030 sk->sk_pacing_rate = ~0UL;
3031 WRITE_ONCE(sk->sk_pacing_shift, 10);
3032 sk->sk_incoming_cpu = -1;
3033
3034 sk_rx_queue_clear(sk);
3035 /*
3036 * Before updating sk_refcnt, we must commit prior changes to memory
3037 * (Documentation/RCU/rculist_nulls.rst for details)
3038 */
3039 smp_wmb();
3040 refcount_set(&sk->sk_refcnt, 1);
3041 atomic_set(&sk->sk_drops, 0);
3042}
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
3047 might_sleep();
3048 spin_lock_bh(&sk->sk_lock.slock);
3049 if (sk->sk_lock.owned)
3050 __lock_sock(sk);
3051 sk->sk_lock.owned = 1;
3052 spin_unlock(&sk->sk_lock.slock);
3053 /*
3054 * The sk_lock has mutex_lock() semantics here:
3055 */
3056 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057 local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063 spin_lock_bh(&sk->sk_lock.slock);
3064 if (sk->sk_backlog.tail)
3065 __release_sock(sk);
3066
3067 /* Warning : release_cb() might need to release sk ownership,
3068 * ie call sock_release_ownership(sk) before us.
3069 */
3070 if (sk->sk_prot->release_cb)
3071 sk->sk_prot->release_cb(sk);
3072
3073 sock_release_ownership(sk);
3074 if (waitqueue_active(&sk->sk_lock.wq))
3075 wake_up(&sk->sk_lock.wq);
3076 spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 * sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 * sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095 might_sleep();
3096 spin_lock_bh(&sk->sk_lock.slock);
3097
3098 if (!sk->sk_lock.owned)
3099 /*
3100 * Note : We must disable BH
3101 */
3102 return false;
3103
3104 __lock_sock(sk);
3105 sk->sk_lock.owned = 1;
3106 spin_unlock(&sk->sk_lock.slock);
3107 /*
3108 * The sk_lock has mutex_lock() semantics here:
3109 */
3110 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111 local_bh_enable();
3112 return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117 bool timeval, bool time32)
3118{
3119 struct sock *sk = sock->sk;
3120 struct timespec64 ts;
3121
3122 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124 if (ts.tv_sec == -1)
3125 return -ENOENT;
3126 if (ts.tv_sec == 0) {
3127 ktime_t kt = ktime_get_real();
3128 sock_write_timestamp(sk, kt);
3129 ts = ktime_to_timespec64(kt);
3130 }
3131
3132 if (timeval)
3133 ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136 if (time32)
3137 return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140 /* beware of padding in sparc64 timeval */
3141 if (timeval && !in_compat_syscall()) {
3142 struct __kernel_old_timeval __user tv = {
3143 .tv_sec = ts.tv_sec,
3144 .tv_usec = ts.tv_nsec,
3145 };
3146 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147 return -EFAULT;
3148 return 0;
3149 }
3150#endif
3151 return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157 if (!sock_flag(sk, flag)) {
3158 unsigned long previous_flags = sk->sk_flags;
3159
3160 sock_set_flag(sk, flag);
3161 /*
3162 * we just set one of the two flags which require net
3163 * time stamping, but time stamping might have been on
3164 * already because of the other one
3165 */
3166 if (sock_needs_netstamp(sk) &&
3167 !(previous_flags & SK_FLAGS_TIMESTAMP))
3168 net_enable_timestamp();
3169 }
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173 int level, int type)
3174{
3175 struct sock_exterr_skb *serr;
3176 struct sk_buff *skb;
3177 int copied, err;
3178
3179 err = -EAGAIN;
3180 skb = sock_dequeue_err_skb(sk);
3181 if (skb == NULL)
3182 goto out;
3183
3184 copied = skb->len;
3185 if (copied > len) {
3186 msg->msg_flags |= MSG_TRUNC;
3187 copied = len;
3188 }
3189 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190 if (err)
3191 goto out_free_skb;
3192
3193 sock_recv_timestamp(msg, sk, skb);
3194
3195 serr = SKB_EXT_ERR(skb);
3196 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198 msg->msg_flags |= MSG_ERRQUEUE;
3199 err = copied;
3200
3201out_free_skb:
3202 kfree_skb(skb);
3203out:
3204 return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 * Get a socket option on an socket.
3210 *
3211 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 * asynchronous errors should be reported by getsockopt. We assume
3213 * this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216 char __user *optval, int __user *optlen)
3217{
3218 struct sock *sk = sock->sk;
3219
3220 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225 int flags)
3226{
3227 struct sock *sk = sock->sk;
3228 int addr_len = 0;
3229 int err;
3230
3231 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232 flags & ~MSG_DONTWAIT, &addr_len);
3233 if (err >= 0)
3234 msg->msg_namelen = addr_len;
3235 return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 * Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243 sockptr_t optval, unsigned int optlen)
3244{
3245 struct sock *sk = sock->sk;
3246
3247 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
3251void sk_common_release(struct sock *sk)
3252{
3253 if (sk->sk_prot->destroy)
3254 sk->sk_prot->destroy(sk);
3255
3256 /*
3257 * Observation: when sk_common_release is called, processes have
3258 * no access to socket. But net still has.
3259 * Step one, detach it from networking:
3260 *
3261 * A. Remove from hash tables.
3262 */
3263
3264 sk->sk_prot->unhash(sk);
3265
3266 /*
3267 * In this point socket cannot receive new packets, but it is possible
3268 * that some packets are in flight because some CPU runs receiver and
3269 * did hash table lookup before we unhashed socket. They will achieve
3270 * receive queue and will be purged by socket destructor.
3271 *
3272 * Also we still have packets pending on receive queue and probably,
3273 * our own packets waiting in device queues. sock_destroy will drain
3274 * receive queue, but transmitted packets will delay socket destruction
3275 * until the last reference will be released.
3276 */
3277
3278 sock_orphan(sk);
3279
3280 xfrm_sk_free_policy(sk);
3281
3282 sk_refcnt_debug_release(sk);
3283
3284 sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3305struct prot_inuse {
3306 int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319 int cpu, idx = prot->inuse_idx;
3320 int res = 0;
3321
3322 for_each_possible_cpu(cpu)
3323 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325 return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331 this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336 int cpu, res = 0;
3337
3338 for_each_possible_cpu(cpu)
3339 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341 return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349 if (net->core.prot_inuse == NULL)
3350 return -ENOMEM;
3351
3352 net->core.sock_inuse = alloc_percpu(int);
3353 if (net->core.sock_inuse == NULL)
3354 goto out;
3355
3356 return 0;
3357
3358out:
3359 free_percpu(net->core.prot_inuse);
3360 return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365 free_percpu(net->core.prot_inuse);
3366 free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370 .init = sock_inuse_init_net,
3371 .exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376 if (register_pernet_subsys(&net_inuse_ops))
3377 panic("Cannot initialize net inuse counters");
3378
3379 return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389 pr_err("PROTO_INUSE_NR exhausted\n");
3390 return -ENOSPC;
3391 }
3392
3393 set_bit(prot->inuse_idx, proto_inuse_idx);
3394 return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400 clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405 return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419 if (!twsk_prot)
3420 return;
3421 kfree(twsk_prot->twsk_slab_name);
3422 twsk_prot->twsk_slab_name = NULL;
3423 kmem_cache_destroy(twsk_prot->twsk_slab);
3424 twsk_prot->twsk_slab = NULL;
3425}
3426
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429 if (!rsk_prot)
3430 return;
3431 kfree(rsk_prot->slab_name);
3432 rsk_prot->slab_name = NULL;
3433 kmem_cache_destroy(rsk_prot->slab);
3434 rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441 if (!rsk_prot)
3442 return 0;
3443
3444 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445 prot->name);
3446 if (!rsk_prot->slab_name)
3447 return -ENOMEM;
3448
3449 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450 rsk_prot->obj_size, 0,
3451 SLAB_ACCOUNT | prot->slab_flags,
3452 NULL);
3453
3454 if (!rsk_prot->slab) {
3455 pr_crit("%s: Can't create request sock SLAB cache!\n",
3456 prot->name);
3457 return -ENOMEM;
3458 }
3459 return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464 int ret = -ENOBUFS;
3465
3466 if (alloc_slab) {
3467 prot->slab = kmem_cache_create_usercopy(prot->name,
3468 prot->obj_size, 0,
3469 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470 prot->slab_flags,
3471 prot->useroffset, prot->usersize,
3472 NULL);
3473
3474 if (prot->slab == NULL) {
3475 pr_crit("%s: Can't create sock SLAB cache!\n",
3476 prot->name);
3477 goto out;
3478 }
3479
3480 if (req_prot_init(prot))
3481 goto out_free_request_sock_slab;
3482
3483 if (prot->twsk_prot != NULL) {
3484 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486 if (prot->twsk_prot->twsk_slab_name == NULL)
3487 goto out_free_request_sock_slab;
3488
3489 prot->twsk_prot->twsk_slab =
3490 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491 prot->twsk_prot->twsk_obj_size,
3492 0,
3493 SLAB_ACCOUNT |
3494 prot->slab_flags,
3495 NULL);
3496 if (prot->twsk_prot->twsk_slab == NULL)
3497 goto out_free_timewait_sock_slab;
3498 }
3499 }
3500
3501 mutex_lock(&proto_list_mutex);
3502 ret = assign_proto_idx(prot);
3503 if (ret) {
3504 mutex_unlock(&proto_list_mutex);
3505 goto out_free_timewait_sock_slab;
3506 }
3507 list_add(&prot->node, &proto_list);
3508 mutex_unlock(&proto_list_mutex);
3509 return ret;
3510
3511out_free_timewait_sock_slab:
3512 if (alloc_slab && prot->twsk_prot)
3513 tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515 if (alloc_slab) {
3516 req_prot_cleanup(prot->rsk_prot);
3517
3518 kmem_cache_destroy(prot->slab);
3519 prot->slab = NULL;
3520 }
3521out:
3522 return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528 mutex_lock(&proto_list_mutex);
3529 release_proto_idx(prot);
3530 list_del(&prot->node);
3531 mutex_unlock(&proto_list_mutex);
3532
3533 kmem_cache_destroy(prot->slab);
3534 prot->slab = NULL;
3535
3536 req_prot_cleanup(prot->rsk_prot);
3537 tw_prot_cleanup(prot->twsk_prot);
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543 if (!protocol) {
3544 if (!sock_is_registered(family))
3545 return -ENOENT;
3546
3547 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548 NETLINK_SOCK_DIAG, family);
3549 }
3550
3551#ifdef CONFIG_INET
3552 if (family == AF_INET &&
3553 protocol != IPPROTO_RAW &&
3554 protocol < MAX_INET_PROTOS &&
3555 !rcu_access_pointer(inet_protos[protocol]))
3556 return -ENOENT;
3557#endif
3558
3559 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560 NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566 __acquires(proto_list_mutex)
3567{
3568 mutex_lock(&proto_list_mutex);
3569 return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574 return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578 __releases(proto_list_mutex)
3579{
3580 mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585 return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594 return proto->memory_pressure != NULL ?
3595 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3602 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603 proto->name,
3604 proto->obj_size,
3605 sock_prot_inuse_get(seq_file_net(seq), proto),
3606 sock_prot_memory_allocated(proto),
3607 sock_prot_memory_pressure(proto),
3608 proto->max_header,
3609 proto->slab == NULL ? "no" : "yes",
3610 module_name(proto->owner),
3611 proto_method_implemented(proto->close),
3612 proto_method_implemented(proto->connect),
3613 proto_method_implemented(proto->disconnect),
3614 proto_method_implemented(proto->accept),
3615 proto_method_implemented(proto->ioctl),
3616 proto_method_implemented(proto->init),
3617 proto_method_implemented(proto->destroy),
3618 proto_method_implemented(proto->shutdown),
3619 proto_method_implemented(proto->setsockopt),
3620 proto_method_implemented(proto->getsockopt),
3621 proto_method_implemented(proto->sendmsg),
3622 proto_method_implemented(proto->recvmsg),
3623 proto_method_implemented(proto->sendpage),
3624 proto_method_implemented(proto->bind),
3625 proto_method_implemented(proto->backlog_rcv),
3626 proto_method_implemented(proto->hash),
3627 proto_method_implemented(proto->unhash),
3628 proto_method_implemented(proto->get_port),
3629 proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634 if (v == &proto_list)
3635 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636 "protocol",
3637 "size",
3638 "sockets",
3639 "memory",
3640 "press",
3641 "maxhdr",
3642 "slab",
3643 "module",
3644 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645 else
3646 proto_seq_printf(seq, list_entry(v, struct proto, node));
3647 return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651 .start = proto_seq_start,
3652 .next = proto_seq_next,
3653 .stop = proto_seq_stop,
3654 .show = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660 sizeof(struct seq_net_private)))
3661 return -ENOMEM;
3662
3663 return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668 remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673 .init = proto_init_net,
3674 .exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679 return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689 struct sock *sk = p;
3690
3691 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692 sk_busy_loop_timeout(sk, start_time);
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699 if (!sk->sk_prot->bind_add)
3700 return -EOPNOTSUPP;
3701 return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);