Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <linux/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <linux/skbuff_ref.h>
 128#include <net/net_namespace.h>
 129#include <net/request_sock.h>
 130#include <net/sock.h>
 131#include <net/proto_memory.h>
 132#include <linux/net_tstamp.h>
 133#include <net/xfrm.h>
 134#include <linux/ipsec.h>
 135#include <net/cls_cgroup.h>
 136#include <net/netprio_cgroup.h>
 137#include <linux/sock_diag.h>
 138
 139#include <linux/filter.h>
 140#include <net/sock_reuseport.h>
 141#include <net/bpf_sk_storage.h>
 142
 143#include <trace/events/sock.h>
 144
 
 145#include <net/tcp.h>
 146#include <net/busy_poll.h>
 147#include <net/phonet/phonet.h>
 148
 149#include <linux/ethtool.h>
 150
 151#include "dev.h"
 152
 153static DEFINE_MUTEX(proto_list_mutex);
 154static LIST_HEAD(proto_list);
 155
 156static void sock_def_write_space_wfree(struct sock *sk);
 157static void sock_def_write_space(struct sock *sk);
 158
 159/**
 160 * sk_ns_capable - General socket capability test
 161 * @sk: Socket to use a capability on or through
 162 * @user_ns: The user namespace of the capability to use
 163 * @cap: The capability to use
 164 *
 165 * Test to see if the opener of the socket had when the socket was
 166 * created and the current process has the capability @cap in the user
 167 * namespace @user_ns.
 168 */
 169bool sk_ns_capable(const struct sock *sk,
 170		   struct user_namespace *user_ns, int cap)
 171{
 172	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 173		ns_capable(user_ns, cap);
 174}
 175EXPORT_SYMBOL(sk_ns_capable);
 176
 177/**
 178 * sk_capable - Socket global capability test
 179 * @sk: Socket to use a capability on or through
 180 * @cap: The global capability to use
 181 *
 182 * Test to see if the opener of the socket had when the socket was
 183 * created and the current process has the capability @cap in all user
 184 * namespaces.
 185 */
 186bool sk_capable(const struct sock *sk, int cap)
 187{
 188	return sk_ns_capable(sk, &init_user_ns, cap);
 
 
 
 
 
 189}
 190EXPORT_SYMBOL(sk_capable);
 191
 192/**
 193 * sk_net_capable - Network namespace socket capability test
 194 * @sk: Socket to use a capability on or through
 195 * @cap: The capability to use
 196 *
 197 * Test to see if the opener of the socket had when the socket was created
 198 * and the current process has the capability @cap over the network namespace
 199 * the socket is a member of.
 200 */
 201bool sk_net_capable(const struct sock *sk, int cap)
 202{
 203	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 
 
 
 
 
 
 204}
 205EXPORT_SYMBOL(sk_net_capable);
 206
 207/*
 208 * Each address family might have different locking rules, so we have
 209 * one slock key per address family and separate keys for internal and
 210 * userspace sockets.
 211 */
 212static struct lock_class_key af_family_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_keys[AF_MAX];
 214static struct lock_class_key af_family_slock_keys[AF_MAX];
 215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 
 
 216
 217/*
 218 * Make lock validator output more readable. (we pre-construct these
 219 * strings build-time, so that runtime initialization of socket
 220 * locks is fast):
 221 */
 222
 223#define _sock_locks(x)						  \
 224  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 225  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 226  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 227  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 228  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 229  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 230  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 231  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 232  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 233  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 234  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 235  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 236  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 237  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 238  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 239  x "AF_MCTP"  , \
 240  x "AF_MAX"
 241
 242static const char *const af_family_key_strings[AF_MAX+1] = {
 243	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 244};
 245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 246	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 247};
 248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 249	_sock_locks("clock-")
 250};
 251
 252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 253	_sock_locks("k-sk_lock-")
 254};
 255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 256	_sock_locks("k-slock-")
 257};
 258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 259	_sock_locks("k-clock-")
 260};
 261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 262	_sock_locks("rlock-")
 263};
 264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 265	_sock_locks("wlock-")
 266};
 267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 268	_sock_locks("elock-")
 269};
 270
 271/*
 272 * sk_callback_lock and sk queues locking rules are per-address-family,
 273 * so split the lock classes by using a per-AF key:
 274 */
 275static struct lock_class_key af_callback_keys[AF_MAX];
 276static struct lock_class_key af_rlock_keys[AF_MAX];
 277static struct lock_class_key af_wlock_keys[AF_MAX];
 278static struct lock_class_key af_elock_keys[AF_MAX];
 279static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 280
 281/* Run time adjustable parameters. */
 282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 283EXPORT_SYMBOL(sysctl_wmem_max);
 284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 285EXPORT_SYMBOL(sysctl_rmem_max);
 286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 288
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 320	 */
 321	sk_mem_reclaim(sk);
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 
 
 
 
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 
 465	}
 466}
 467
 
 
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 
 
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 
 
 
 
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 
 
 
 
 
 
 
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 
 
 
 
 
 
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 
 
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 823	sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
 824	sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
 825	if (val)  {
 826		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 828	}
 829}
 830
 831void sock_enable_timestamps(struct sock *sk)
 832{
 833	lock_sock(sk);
 834	__sock_set_timestamps(sk, true, false, true);
 835	release_sock(sk);
 836}
 837EXPORT_SYMBOL(sock_enable_timestamps);
 838
 839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 840{
 841	switch (optname) {
 842	case SO_TIMESTAMP_OLD:
 843		__sock_set_timestamps(sk, valbool, false, false);
 844		break;
 845	case SO_TIMESTAMP_NEW:
 846		__sock_set_timestamps(sk, valbool, true, false);
 847		break;
 848	case SO_TIMESTAMPNS_OLD:
 849		__sock_set_timestamps(sk, valbool, false, true);
 850		break;
 851	case SO_TIMESTAMPNS_NEW:
 852		__sock_set_timestamps(sk, valbool, true, true);
 853		break;
 854	}
 855}
 856
 857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 858{
 859	struct net *net = sock_net(sk);
 860	struct net_device *dev = NULL;
 861	bool match = false;
 862	int *vclock_index;
 863	int i, num;
 864
 865	if (sk->sk_bound_dev_if)
 866		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 867
 868	if (!dev) {
 869		pr_err("%s: sock not bind to device\n", __func__);
 870		return -EOPNOTSUPP;
 871	}
 872
 873	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 874	dev_put(dev);
 875
 876	for (i = 0; i < num; i++) {
 877		if (*(vclock_index + i) == phc_index) {
 878			match = true;
 879			break;
 880		}
 881	}
 882
 883	if (num > 0)
 884		kfree(vclock_index);
 885
 886	if (!match)
 887		return -EINVAL;
 888
 889	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 890
 891	return 0;
 892}
 893
 894int sock_set_timestamping(struct sock *sk, int optname,
 895			  struct so_timestamping timestamping)
 896{
 897	int val = timestamping.flags;
 898	int ret;
 899
 900	if (val & ~SOF_TIMESTAMPING_MASK)
 901		return -EINVAL;
 902
 903	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 904	    !(val & SOF_TIMESTAMPING_OPT_ID))
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID &&
 908	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 909		if (sk_is_tcp(sk)) {
 910			if ((1 << sk->sk_state) &
 911			    (TCPF_CLOSE | TCPF_LISTEN))
 912				return -EINVAL;
 913			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 914				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 915			else
 916				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 917		} else {
 918			atomic_set(&sk->sk_tskey, 0);
 919		}
 920	}
 921
 922	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 923	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 924		return -EINVAL;
 925
 926	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 927		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 928		if (ret)
 929			return ret;
 930	}
 931
 932	WRITE_ONCE(sk->sk_tsflags, val);
 933	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 934
 935	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 936		sock_enable_timestamp(sk,
 937				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 938	else
 939		sock_disable_timestamp(sk,
 940				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 941	return 0;
 942}
 943
 944void sock_set_keepalive(struct sock *sk)
 945{
 946	lock_sock(sk);
 947	if (sk->sk_prot->keepalive)
 948		sk->sk_prot->keepalive(sk, true);
 949	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 950	release_sock(sk);
 951}
 952EXPORT_SYMBOL(sock_set_keepalive);
 953
 954static void __sock_set_rcvbuf(struct sock *sk, int val)
 955{
 956	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 957	 * as a negative value.
 958	 */
 959	val = min_t(int, val, INT_MAX / 2);
 960	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 961
 962	/* We double it on the way in to account for "struct sk_buff" etc.
 963	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 964	 * will allow that much actual data to be received on that socket.
 965	 *
 966	 * Applications are unaware that "struct sk_buff" and other overheads
 967	 * allocate from the receive buffer during socket buffer allocation.
 968	 *
 969	 * And after considering the possible alternatives, returning the value
 970	 * we actually used in getsockopt is the most desirable behavior.
 971	 */
 972	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 973}
 974
 975void sock_set_rcvbuf(struct sock *sk, int val)
 976{
 977	lock_sock(sk);
 978	__sock_set_rcvbuf(sk, val);
 979	release_sock(sk);
 980}
 981EXPORT_SYMBOL(sock_set_rcvbuf);
 982
 983static void __sock_set_mark(struct sock *sk, u32 val)
 984{
 985	if (val != sk->sk_mark) {
 986		WRITE_ONCE(sk->sk_mark, val);
 987		sk_dst_reset(sk);
 988	}
 989}
 990
 991void sock_set_mark(struct sock *sk, u32 val)
 992{
 993	lock_sock(sk);
 994	__sock_set_mark(sk, val);
 995	release_sock(sk);
 996}
 997EXPORT_SYMBOL(sock_set_mark);
 998
 999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001	/* Round down bytes to multiple of pages */
1002	bytes = round_down(bytes, PAGE_SIZE);
1003
1004	WARN_ON(bytes > sk->sk_reserved_mem);
1005	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006	sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011	long allocated;
1012	bool charged;
1013	int pages;
1014
1015	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016		return -EOPNOTSUPP;
1017
1018	if (!bytes)
1019		return 0;
1020
1021	pages = sk_mem_pages(bytes);
1022
1023	/* pre-charge to memcg */
1024	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026	if (!charged)
1027		return -ENOMEM;
1028
1029	/* pre-charge to forward_alloc */
1030	sk_memory_allocated_add(sk, pages);
1031	allocated = sk_memory_allocated(sk);
1032	/* If the system goes into memory pressure with this
1033	 * precharge, give up and return error.
1034	 */
1035	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036		sk_memory_allocated_sub(sk, pages);
1037		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038		return -ENOMEM;
1039	}
1040	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042	WRITE_ONCE(sk->sk_reserved_mem,
1043		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045	return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061	unsigned int num_tokens, i, j, k, netmem_num = 0;
1062	struct dmabuf_token *tokens;
1063	int ret = 0, num_frags = 0;
1064	netmem_ref netmems[16];
1065
1066	if (!sk_is_tcp(sk))
1067		return -EBADF;
1068
1069	if (optlen % sizeof(*tokens) ||
1070	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071		return -EINVAL;
1072
1073	num_tokens = optlen / sizeof(*tokens);
1074	tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075	if (!tokens)
1076		return -ENOMEM;
1077
1078	if (copy_from_sockptr(tokens, optval, optlen)) {
1079		kvfree(tokens);
1080		return -EFAULT;
1081	}
1082
1083	xa_lock_bh(&sk->sk_user_frags);
1084	for (i = 0; i < num_tokens; i++) {
1085		for (j = 0; j < tokens[i].token_count; j++) {
1086			if (++num_frags > MAX_DONTNEED_FRAGS)
1087				goto frag_limit_reached;
1088
1089			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090				&sk->sk_user_frags, tokens[i].token_start + j);
1091
1092			if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093				continue;
1094
1095			netmems[netmem_num++] = netmem;
1096			if (netmem_num == ARRAY_SIZE(netmems)) {
1097				xa_unlock_bh(&sk->sk_user_frags);
1098				for (k = 0; k < netmem_num; k++)
1099					WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100				netmem_num = 0;
1101				xa_lock_bh(&sk->sk_user_frags);
1102			}
1103			ret++;
1104		}
1105	}
1106
1107frag_limit_reached:
1108	xa_unlock_bh(&sk->sk_user_frags);
1109	for (k = 0; k < netmem_num; k++)
1110		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112	kvfree(tokens);
1113	return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119	/* When current->bpf_ctx is set, the setsockopt is called from
1120	 * a bpf prog.  bpf has ensured the sk lock has been
1121	 * acquired before calling setsockopt().
1122	 */
1123	if (has_current_bpf_ctx())
1124		return;
1125
1126	lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132	if (has_current_bpf_ctx())
1133		return;
1134
1135	release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141	return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147	return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153	switch (value) {
1154	case CLOCK_REALTIME:
1155	case CLOCK_MONOTONIC:
1156	case CLOCK_TAI:
1157		return 0;
1158	}
1159	return -EINVAL;
1160}
1161
1162/*
1163 *	This is meant for all protocols to use and covers goings on
1164 *	at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168		  sockptr_t optval, unsigned int optlen)
1169{
1170	struct so_timestamping timestamping;
1171	struct socket *sock = sk->sk_socket;
1172	struct sock_txtime sk_txtime;
1173	int val;
1174	int valbool;
1175	struct linger ling;
1176	int ret = 0;
1177
1178	/*
1179	 *	Options without arguments
1180	 */
1181
1182	if (optname == SO_BINDTODEVICE)
1183		return sock_setbindtodevice(sk, optval, optlen);
1184
1185	if (optlen < sizeof(int))
1186		return -EINVAL;
1187
1188	if (copy_from_sockptr(&val, optval, sizeof(val)))
1189		return -EFAULT;
1190
1191	valbool = val ? 1 : 0;
1192
1193	/* handle options which do not require locking the socket. */
1194	switch (optname) {
1195	case SO_PRIORITY:
1196		if ((val >= 0 && val <= 6) ||
1197		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199			sock_set_priority(sk, val);
1200			return 0;
1201		}
1202		return -EPERM;
1203	case SO_PASSSEC:
1204		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205		return 0;
1206	case SO_PASSCRED:
1207		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208		return 0;
1209	case SO_PASSPIDFD:
1210		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211		return 0;
1212	case SO_TYPE:
1213	case SO_PROTOCOL:
1214	case SO_DOMAIN:
1215	case SO_ERROR:
1216		return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218	case SO_BUSY_POLL:
1219		if (val < 0)
1220			return -EINVAL;
1221		WRITE_ONCE(sk->sk_ll_usec, val);
1222		return 0;
1223	case SO_PREFER_BUSY_POLL:
1224		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225			return -EPERM;
1226		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227		return 0;
1228	case SO_BUSY_POLL_BUDGET:
1229		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230		    !sockopt_capable(CAP_NET_ADMIN))
1231			return -EPERM;
1232		if (val < 0 || val > U16_MAX)
1233			return -EINVAL;
1234		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235		return 0;
1236#endif
1237	case SO_MAX_PACING_RATE:
1238		{
1239		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240		unsigned long pacing_rate;
1241
1242		if (sizeof(ulval) != sizeof(val) &&
1243		    optlen >= sizeof(ulval) &&
1244		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245			return -EFAULT;
1246		}
1247		if (ulval != ~0UL)
1248			cmpxchg(&sk->sk_pacing_status,
1249				SK_PACING_NONE,
1250				SK_PACING_NEEDED);
1251		/* Pairs with READ_ONCE() from sk_getsockopt() */
1252		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254		if (ulval < pacing_rate)
1255			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256		return 0;
1257		}
1258	case SO_TXREHASH:
1259		if (val < -1 || val > 1)
1260			return -EINVAL;
1261		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263		/* Paired with READ_ONCE() in tcp_rtx_synack()
1264		 * and sk_getsockopt().
1265		 */
1266		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267		return 0;
1268	case SO_PEEK_OFF:
1269		{
1270		int (*set_peek_off)(struct sock *sk, int val);
1271
1272		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273		if (set_peek_off)
1274			ret = set_peek_off(sk, val);
1275		else
1276			ret = -EOPNOTSUPP;
1277		return ret;
1278		}
1279#ifdef CONFIG_PAGE_POOL
1280	case SO_DEVMEM_DONTNEED:
1281		return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283	}
1284
1285	sockopt_lock_sock(sk);
1286
1287	switch (optname) {
1288	case SO_DEBUG:
1289		if (val && !sockopt_capable(CAP_NET_ADMIN))
1290			ret = -EACCES;
1291		else
1292			sock_valbool_flag(sk, SOCK_DBG, valbool);
1293		break;
1294	case SO_REUSEADDR:
1295		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296		break;
1297	case SO_REUSEPORT:
1298		if (valbool && !sk_is_inet(sk))
1299			ret = -EOPNOTSUPP;
1300		else
1301			sk->sk_reuseport = valbool;
1302		break;
1303	case SO_DONTROUTE:
1304		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305		sk_dst_reset(sk);
1306		break;
1307	case SO_BROADCAST:
1308		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309		break;
1310	case SO_SNDBUF:
1311		/* Don't error on this BSD doesn't and if you think
1312		 * about it this is right. Otherwise apps have to
1313		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314		 * are treated in BSD as hints
1315		 */
1316		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318		/* Ensure val * 2 fits into an int, to prevent max_t()
1319		 * from treating it as a negative value.
1320		 */
1321		val = min_t(int, val, INT_MAX / 2);
1322		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323		WRITE_ONCE(sk->sk_sndbuf,
1324			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325		/* Wake up sending tasks if we upped the value. */
1326		sk->sk_write_space(sk);
1327		break;
1328
1329	case SO_SNDBUFFORCE:
1330		if (!sockopt_capable(CAP_NET_ADMIN)) {
1331			ret = -EPERM;
1332			break;
1333		}
1334
1335		/* No negative values (to prevent underflow, as val will be
1336		 * multiplied by 2).
1337		 */
1338		if (val < 0)
1339			val = 0;
1340		goto set_sndbuf;
1341
1342	case SO_RCVBUF:
1343		/* Don't error on this BSD doesn't and if you think
1344		 * about it this is right. Otherwise apps have to
1345		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346		 * are treated in BSD as hints
1347		 */
1348		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349		break;
1350
1351	case SO_RCVBUFFORCE:
1352		if (!sockopt_capable(CAP_NET_ADMIN)) {
1353			ret = -EPERM;
1354			break;
1355		}
1356
1357		/* No negative values (to prevent underflow, as val will be
1358		 * multiplied by 2).
1359		 */
1360		__sock_set_rcvbuf(sk, max(val, 0));
1361		break;
1362
1363	case SO_KEEPALIVE:
1364		if (sk->sk_prot->keepalive)
1365			sk->sk_prot->keepalive(sk, valbool);
 
 
1366		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367		break;
1368
1369	case SO_OOBINLINE:
1370		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371		break;
1372
1373	case SO_NO_CHECK:
1374		sk->sk_no_check_tx = valbool;
 
 
 
 
 
 
 
1375		break;
1376
1377	case SO_LINGER:
1378		if (optlen < sizeof(ling)) {
1379			ret = -EINVAL;	/* 1003.1g */
1380			break;
1381		}
1382		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383			ret = -EFAULT;
1384			break;
1385		}
1386		if (!ling.l_onoff) {
1387			sock_reset_flag(sk, SOCK_LINGER);
1388		} else {
1389			unsigned long t_sec = ling.l_linger;
1390
1391			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393			else
1394				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
 
1395			sock_set_flag(sk, SOCK_LINGER);
1396		}
1397		break;
1398
1399	case SO_BSDCOMPAT:
 
1400		break;
1401
1402	case SO_TIMESTAMP_OLD:
1403	case SO_TIMESTAMP_NEW:
1404	case SO_TIMESTAMPNS_OLD:
1405	case SO_TIMESTAMPNS_NEW:
1406		sock_set_timestamp(sk, optname, valbool);
1407		break;
1408
1409	case SO_TIMESTAMPING_NEW:
1410	case SO_TIMESTAMPING_OLD:
1411		if (optlen == sizeof(timestamping)) {
1412			if (copy_from_sockptr(&timestamping, optval,
1413					      sizeof(timestamping))) {
1414				ret = -EFAULT;
1415				break;
1416			}
 
1417		} else {
1418			memset(&timestamping, 0, sizeof(timestamping));
1419			timestamping.flags = val;
1420		}
1421		ret = sock_set_timestamping(sk, optname, timestamping);
1422		break;
1423
1424	case SO_RCVLOWAT:
1425		{
1426		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427
 
1428		if (val < 0)
1429			val = INT_MAX;
1430		if (sock)
1431			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432		if (set_rcvlowat)
1433			ret = set_rcvlowat(sk, val);
1434		else
1435			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436		break;
1437		}
1438	case SO_RCVTIMEO_OLD:
1439	case SO_RCVTIMEO_NEW:
1440		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441				       optlen, optname == SO_RCVTIMEO_OLD);
1442		break;
1443
1444	case SO_SNDTIMEO_OLD:
1445	case SO_SNDTIMEO_NEW:
1446		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447				       optlen, optname == SO_SNDTIMEO_OLD);
1448		break;
1449
1450	case SO_ATTACH_FILTER: {
1451		struct sock_fprog fprog;
1452
1453		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454		if (!ret)
1455			ret = sk_attach_filter(&fprog, sk);
1456		break;
1457	}
1458	case SO_ATTACH_BPF:
1459		ret = -EINVAL;
1460		if (optlen == sizeof(u32)) {
1461			u32 ufd;
1462
1463			ret = -EFAULT;
1464			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465				break;
1466
1467			ret = sk_attach_bpf(ufd, sk);
1468		}
1469		break;
1470
1471	case SO_ATTACH_REUSEPORT_CBPF: {
1472		struct sock_fprog fprog;
1473
1474		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475		if (!ret)
1476			ret = sk_reuseport_attach_filter(&fprog, sk);
1477		break;
1478	}
1479	case SO_ATTACH_REUSEPORT_EBPF:
1480		ret = -EINVAL;
1481		if (optlen == sizeof(u32)) {
1482			u32 ufd;
1483
1484			ret = -EFAULT;
1485			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486				break;
1487
1488			ret = sk_reuseport_attach_bpf(ufd, sk);
1489		}
1490		break;
1491
1492	case SO_DETACH_REUSEPORT_BPF:
1493		ret = reuseport_detach_prog(sk);
1494		break;
1495
1496	case SO_DETACH_FILTER:
1497		ret = sk_detach_filter(sk);
1498		break;
1499
1500	case SO_LOCK_FILTER:
1501		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502			ret = -EPERM;
1503		else
1504			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505		break;
1506
1507	case SO_MARK:
1508		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510			ret = -EPERM;
1511			break;
1512		}
1513
1514		__sock_set_mark(sk, val);
1515		break;
1516	case SO_RCVMARK:
1517		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518		break;
1519
 
 
1520	case SO_RXQ_OVFL:
1521		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522		break;
1523
1524	case SO_WIFI_STATUS:
1525		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526		break;
1527
1528	case SO_NOFCS:
1529		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530		break;
1531
1532	case SO_SELECT_ERR_QUEUE:
1533		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534		break;
1535
1536
1537	case SO_INCOMING_CPU:
1538		reuseport_update_incoming_cpu(sk, val);
1539		break;
1540
1541	case SO_CNX_ADVICE:
1542		if (val == 1)
1543			dst_negative_advice(sk);
1544		break;
1545
1546	case SO_ZEROCOPY:
1547		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548			if (!(sk_is_tcp(sk) ||
1549			      (sk->sk_type == SOCK_DGRAM &&
1550			       sk->sk_protocol == IPPROTO_UDP)))
1551				ret = -EOPNOTSUPP;
1552		} else if (sk->sk_family != PF_RDS) {
1553			ret = -EOPNOTSUPP;
1554		}
1555		if (!ret) {
1556			if (val < 0 || val > 1)
1557				ret = -EINVAL;
1558			else
1559				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560		}
1561		break;
1562
1563	case SO_TXTIME:
1564		if (optlen != sizeof(struct sock_txtime)) {
1565			ret = -EINVAL;
1566			break;
1567		} else if (copy_from_sockptr(&sk_txtime, optval,
1568			   sizeof(struct sock_txtime))) {
1569			ret = -EFAULT;
1570			break;
1571		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572			ret = -EINVAL;
1573			break;
1574		}
1575		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576		 * scheduler has enough safe guards.
1577		 */
1578		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580			ret = -EPERM;
1581			break;
1582		}
1583
1584		ret = sockopt_validate_clockid(sk_txtime.clockid);
1585		if (ret)
1586			break;
1587
1588		sock_valbool_flag(sk, SOCK_TXTIME, true);
1589		sk->sk_clockid = sk_txtime.clockid;
1590		sk->sk_txtime_deadline_mode =
1591			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592		sk->sk_txtime_report_errors =
1593			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594		break;
1595
1596	case SO_BINDTOIFINDEX:
1597		ret = sock_bindtoindex_locked(sk, val);
1598		break;
1599
1600	case SO_BUF_LOCK:
1601		if (val & ~SOCK_BUF_LOCK_MASK) {
1602			ret = -EINVAL;
1603			break;
1604		}
1605		sk->sk_userlocks = val | (sk->sk_userlocks &
1606					  ~SOCK_BUF_LOCK_MASK);
1607		break;
1608
1609	case SO_RESERVE_MEM:
1610	{
1611		int delta;
1612
1613		if (val < 0) {
1614			ret = -EINVAL;
1615			break;
1616		}
1617
1618		delta = val - sk->sk_reserved_mem;
1619		if (delta < 0)
1620			sock_release_reserved_memory(sk, -delta);
1621		else
1622			ret = sock_reserve_memory(sk, delta);
1623		break;
1624	}
1625
1626	default:
1627		ret = -ENOPROTOOPT;
1628		break;
1629	}
1630	sockopt_release_sock(sk);
1631	return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635		    sockptr_t optval, unsigned int optlen)
1636{
1637	return sk_setsockopt(sock->sk, level, optname,
1638			     optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644	const struct cred *cred;
1645
1646	spin_lock(&sk->sk_peer_lock);
1647	cred = get_cred(sk->sk_peer_cred);
1648	spin_unlock(&sk->sk_peer_lock);
1649
1650	return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654			  struct ucred *ucred)
1655{
1656	ucred->pid = pid_vnr(pid);
1657	ucred->uid = ucred->gid = -1;
1658	if (cred) {
1659		struct user_namespace *current_ns = current_user_ns();
1660
1661		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663	}
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668	struct user_namespace *user_ns = current_user_ns();
1669	int i;
1670
1671	for (i = 0; i < src->ngroups; i++) {
1672		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675			return -EFAULT;
1676	}
1677
1678	return 0;
1679}
 
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682		  sockptr_t optval, sockptr_t optlen)
1683{
1684	struct socket *sock = sk->sk_socket;
1685
1686	union {
1687		int val;
1688		u64 val64;
1689		unsigned long ulval;
1690		struct linger ling;
1691		struct old_timeval32 tm32;
1692		struct __kernel_old_timeval tm;
1693		struct  __kernel_sock_timeval stm;
1694		struct sock_txtime txtime;
1695		struct so_timestamping timestamping;
1696	} v;
1697
1698	int lv = sizeof(int);
1699	int len;
1700
1701	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702		return -EFAULT;
1703	if (len < 0)
1704		return -EINVAL;
1705
1706	memset(&v, 0, sizeof(v));
1707
1708	switch (optname) {
1709	case SO_DEBUG:
1710		v.val = sock_flag(sk, SOCK_DBG);
1711		break;
1712
1713	case SO_DONTROUTE:
1714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715		break;
1716
1717	case SO_BROADCAST:
1718		v.val = sock_flag(sk, SOCK_BROADCAST);
1719		break;
1720
1721	case SO_SNDBUF:
1722		v.val = READ_ONCE(sk->sk_sndbuf);
1723		break;
1724
1725	case SO_RCVBUF:
1726		v.val = READ_ONCE(sk->sk_rcvbuf);
1727		break;
1728
1729	case SO_REUSEADDR:
1730		v.val = sk->sk_reuse;
1731		break;
1732
1733	case SO_REUSEPORT:
1734		v.val = sk->sk_reuseport;
1735		break;
1736
1737	case SO_KEEPALIVE:
1738		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739		break;
1740
1741	case SO_TYPE:
1742		v.val = sk->sk_type;
1743		break;
1744
1745	case SO_PROTOCOL:
1746		v.val = sk->sk_protocol;
1747		break;
1748
1749	case SO_DOMAIN:
1750		v.val = sk->sk_family;
1751		break;
1752
1753	case SO_ERROR:
1754		v.val = -sock_error(sk);
1755		if (v.val == 0)
1756			v.val = xchg(&sk->sk_err_soft, 0);
1757		break;
1758
1759	case SO_OOBINLINE:
1760		v.val = sock_flag(sk, SOCK_URGINLINE);
1761		break;
1762
1763	case SO_NO_CHECK:
1764		v.val = sk->sk_no_check_tx;
1765		break;
1766
1767	case SO_PRIORITY:
1768		v.val = READ_ONCE(sk->sk_priority);
1769		break;
1770
1771	case SO_LINGER:
1772		lv		= sizeof(v.ling);
1773		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1774		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1775		break;
1776
1777	case SO_BSDCOMPAT:
 
1778		break;
1779
1780	case SO_TIMESTAMP_OLD:
1781		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1784		break;
1785
1786	case SO_TIMESTAMPNS_OLD:
1787		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788		break;
1789
1790	case SO_TIMESTAMP_NEW:
1791		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792		break;
1793
1794	case SO_TIMESTAMPNS_NEW:
1795		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796		break;
1797
1798	case SO_TIMESTAMPING_OLD:
1799	case SO_TIMESTAMPING_NEW:
1800		lv = sizeof(v.timestamping);
1801		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802		 * returning the flags when they were set through the same option.
1803		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804		 */
1805		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
 
 
 
 
 
 
 
 
1808		}
1809		break;
1810
1811	case SO_RCVTIMEO_OLD:
1812	case SO_RCVTIMEO_NEW:
1813		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814				      SO_RCVTIMEO_OLD == optname);
1815		break;
1816
1817	case SO_SNDTIMEO_OLD:
1818	case SO_SNDTIMEO_NEW:
1819		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820				      SO_SNDTIMEO_OLD == optname);
1821		break;
1822
1823	case SO_RCVLOWAT:
1824		v.val = READ_ONCE(sk->sk_rcvlowat);
1825		break;
1826
1827	case SO_SNDLOWAT:
1828		v.val = 1;
1829		break;
1830
1831	case SO_PASSCRED:
1832		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833		break;
1834
1835	case SO_PASSPIDFD:
1836		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837		break;
1838
1839	case SO_PEERCRED:
1840	{
1841		struct ucred peercred;
1842		if (len > sizeof(peercred))
1843			len = sizeof(peercred);
1844
1845		spin_lock(&sk->sk_peer_lock);
1846		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847		spin_unlock(&sk->sk_peer_lock);
1848
1849		if (copy_to_sockptr(optval, &peercred, len))
1850			return -EFAULT;
1851		goto lenout;
1852	}
1853
1854	case SO_PEERPIDFD:
1855	{
1856		struct pid *peer_pid;
1857		struct file *pidfd_file = NULL;
1858		int pidfd;
1859
1860		if (len > sizeof(pidfd))
1861			len = sizeof(pidfd);
1862
1863		spin_lock(&sk->sk_peer_lock);
1864		peer_pid = get_pid(sk->sk_peer_pid);
1865		spin_unlock(&sk->sk_peer_lock);
1866
1867		if (!peer_pid)
1868			return -ENODATA;
1869
1870		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871		put_pid(peer_pid);
1872		if (pidfd < 0)
1873			return pidfd;
1874
1875		if (copy_to_sockptr(optval, &pidfd, len) ||
1876		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1877			put_unused_fd(pidfd);
1878			fput(pidfd_file);
1879
1880			return -EFAULT;
1881		}
1882
1883		fd_install(pidfd, pidfd_file);
1884		return 0;
1885	}
1886
1887	case SO_PEERGROUPS:
1888	{
1889		const struct cred *cred;
1890		int ret, n;
1891
1892		cred = sk_get_peer_cred(sk);
1893		if (!cred)
1894			return -ENODATA;
1895
1896		n = cred->group_info->ngroups;
1897		if (len < n * sizeof(gid_t)) {
1898			len = n * sizeof(gid_t);
1899			put_cred(cred);
1900			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901		}
1902		len = n * sizeof(gid_t);
1903
1904		ret = groups_to_user(optval, cred->group_info);
1905		put_cred(cred);
1906		if (ret)
1907			return ret;
1908		goto lenout;
1909	}
1910
1911	case SO_PEERNAME:
1912	{
1913		struct sockaddr_storage address;
1914
1915		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916		if (lv < 0)
1917			return -ENOTCONN;
1918		if (lv < len)
1919			return -EINVAL;
1920		if (copy_to_sockptr(optval, &address, len))
1921			return -EFAULT;
1922		goto lenout;
1923	}
1924
1925	/* Dubious BSD thing... Probably nobody even uses it, but
1926	 * the UNIX standard wants it for whatever reason... -DaveM
1927	 */
1928	case SO_ACCEPTCONN:
1929		v.val = sk->sk_state == TCP_LISTEN;
1930		break;
1931
1932	case SO_PASSSEC:
1933		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934		break;
1935
1936	case SO_PEERSEC:
1937		return security_socket_getpeersec_stream(sock,
1938							 optval, optlen, len);
1939
1940	case SO_MARK:
1941		v.val = READ_ONCE(sk->sk_mark);
1942		break;
1943
1944	case SO_RCVMARK:
1945		v.val = sock_flag(sk, SOCK_RCVMARK);
1946		break;
1947
1948	case SO_RXQ_OVFL:
1949		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950		break;
1951
1952	case SO_WIFI_STATUS:
1953		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954		break;
1955
1956	case SO_PEEK_OFF:
1957		if (!READ_ONCE(sock->ops)->set_peek_off)
1958			return -EOPNOTSUPP;
1959
1960		v.val = READ_ONCE(sk->sk_peek_off);
1961		break;
1962	case SO_NOFCS:
1963		v.val = sock_flag(sk, SOCK_NOFCS);
1964		break;
1965
1966	case SO_BINDTODEVICE:
1967		return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969	case SO_GET_FILTER:
1970		len = sk_get_filter(sk, optval, len);
1971		if (len < 0)
1972			return len;
1973
1974		goto lenout;
1975
1976	case SO_LOCK_FILTER:
1977		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978		break;
1979
1980	case SO_BPF_EXTENSIONS:
1981		v.val = bpf_tell_extensions();
1982		break;
1983
1984	case SO_SELECT_ERR_QUEUE:
1985		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986		break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989	case SO_BUSY_POLL:
1990		v.val = READ_ONCE(sk->sk_ll_usec);
1991		break;
1992	case SO_PREFER_BUSY_POLL:
1993		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994		break;
1995#endif
1996
1997	case SO_MAX_PACING_RATE:
1998		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000			lv = sizeof(v.ulval);
2001			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002		} else {
2003			/* 32bit version */
2004			v.val = min_t(unsigned long, ~0U,
2005				      READ_ONCE(sk->sk_max_pacing_rate));
2006		}
2007		break;
2008
2009	case SO_INCOMING_CPU:
2010		v.val = READ_ONCE(sk->sk_incoming_cpu);
2011		break;
2012
2013	case SO_MEMINFO:
2014	{
2015		u32 meminfo[SK_MEMINFO_VARS];
2016
2017		sk_get_meminfo(sk, meminfo);
2018
2019		len = min_t(unsigned int, len, sizeof(meminfo));
2020		if (copy_to_sockptr(optval, &meminfo, len))
2021			return -EFAULT;
2022
2023		goto lenout;
2024	}
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027	case SO_INCOMING_NAPI_ID:
2028		v.val = READ_ONCE(sk->sk_napi_id);
2029
2030		/* aggregate non-NAPI IDs down to 0 */
2031		if (v.val < MIN_NAPI_ID)
2032			v.val = 0;
2033
2034		break;
2035#endif
2036
2037	case SO_COOKIE:
2038		lv = sizeof(u64);
2039		if (len < lv)
2040			return -EINVAL;
2041		v.val64 = sock_gen_cookie(sk);
2042		break;
2043
2044	case SO_ZEROCOPY:
2045		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046		break;
2047
2048	case SO_TXTIME:
2049		lv = sizeof(v.txtime);
2050		v.txtime.clockid = sk->sk_clockid;
2051		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052				  SOF_TXTIME_DEADLINE_MODE : 0;
2053		v.txtime.flags |= sk->sk_txtime_report_errors ?
2054				  SOF_TXTIME_REPORT_ERRORS : 0;
2055		break;
2056
2057	case SO_BINDTOIFINDEX:
2058		v.val = READ_ONCE(sk->sk_bound_dev_if);
2059		break;
2060
2061	case SO_NETNS_COOKIE:
2062		lv = sizeof(u64);
2063		if (len != lv)
2064			return -EINVAL;
2065		v.val64 = sock_net(sk)->net_cookie;
2066		break;
2067
2068	case SO_BUF_LOCK:
2069		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070		break;
2071
2072	case SO_RESERVE_MEM:
2073		v.val = READ_ONCE(sk->sk_reserved_mem);
2074		break;
2075
2076	case SO_TXREHASH:
2077		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2078		v.val = READ_ONCE(sk->sk_txrehash);
2079		break;
2080
2081	default:
2082		/* We implement the SO_SNDLOWAT etc to not be settable
2083		 * (1003.1g 7).
2084		 */
2085		return -ENOPROTOOPT;
2086	}
2087
2088	if (len > lv)
2089		len = lv;
2090	if (copy_to_sockptr(optval, &v, len))
2091		return -EFAULT;
2092lenout:
2093	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105	if (sk->sk_kern_sock)
2106		sock_lock_init_class_and_name(
2107			sk,
2108			af_family_kern_slock_key_strings[sk->sk_family],
2109			af_family_kern_slock_keys + sk->sk_family,
2110			af_family_kern_key_strings[sk->sk_family],
2111			af_family_kern_keys + sk->sk_family);
2112	else
2113		sock_lock_init_class_and_name(
2114			sk,
2115			af_family_slock_key_strings[sk->sk_family],
2116			af_family_slock_keys + sk->sk_family,
2117			af_family_key_strings[sk->sk_family],
2118			af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128	const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130	void *sptr = nsk->sk_security;
2131#endif
2132
2133	/* If we move sk_tx_queue_mapping out of the private section,
2134	 * we must check if sk_tx_queue_clear() is called after
2135	 * sock_copy() in sk_clone_lock().
2136	 */
2137	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138		     offsetof(struct sock, sk_dontcopy_begin) ||
2139		     offsetof(struct sock, sk_tx_queue_mapping) >=
2140		     offsetof(struct sock, sk_dontcopy_end));
2141
2142	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146		      /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149	nsk->sk_security = sptr;
2150	security_sk_clone(osk, nsk);
2151#endif
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155		int family)
2156{
2157	struct sock *sk;
2158	struct kmem_cache *slab;
2159
2160	slab = prot->slab;
2161	if (slab != NULL) {
2162		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163		if (!sk)
2164			return sk;
2165		if (want_init_on_alloc(priority))
2166			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
2167	} else
2168		sk = kmalloc(prot->obj_size, priority);
2169
2170	if (sk != NULL) {
 
 
2171		if (security_sk_alloc(sk, family, priority))
2172			goto out_free;
2173
2174		if (!try_module_get(prot->owner))
2175			goto out_free_sec;
 
2176	}
2177
2178	return sk;
2179
2180out_free_sec:
2181	security_sk_free(sk);
2182out_free:
2183	if (slab != NULL)
2184		kmem_cache_free(slab, sk);
2185	else
2186		kfree(sk);
2187	return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192	struct kmem_cache *slab;
2193	struct module *owner;
2194
2195	owner = prot->owner;
2196	slab = prot->slab;
2197
2198	cgroup_sk_free(&sk->sk_cgrp_data);
2199	mem_cgroup_sk_free(sk);
2200	security_sk_free(sk);
2201	if (slab != NULL)
2202		kmem_cache_free(slab, sk);
2203	else
2204		kfree(sk);
2205	module_put(owner);
2206}
2207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208/**
2209 *	sk_alloc - All socket objects are allocated here
2210 *	@net: the applicable net namespace
2211 *	@family: protocol family
2212 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 *	@prot: struct proto associated with this new sock instance
2214 *	@kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217		      struct proto *prot, int kern)
2218{
2219	struct sock *sk;
2220
2221	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222	if (sk) {
2223		sk->sk_family = family;
2224		/*
2225		 * See comment in struct sock definition to understand
2226		 * why we need sk_prot_creator -acme
2227		 */
2228		sk->sk_prot = sk->sk_prot_creator = prot;
2229		sk->sk_kern_sock = kern;
2230		sock_lock_init(sk);
2231		sk->sk_net_refcnt = kern ? 0 : 1;
2232		if (likely(sk->sk_net_refcnt)) {
2233			get_net_track(net, &sk->ns_tracker, priority);
2234			sock_inuse_add(net, 1);
2235		} else {
2236			net_passive_inc(net);
2237			__netns_tracker_alloc(net, &sk->ns_tracker,
2238					      false, priority);
2239		}
2240
2241		sock_net_set(sk, net);
2242		refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244		mem_cgroup_sk_alloc(sk);
2245		cgroup_sk_alloc(&sk->sk_cgrp_data);
2246		sock_update_classid(&sk->sk_cgrp_data);
2247		sock_update_netprioidx(&sk->sk_cgrp_data);
2248		sk_tx_queue_clear(sk);
2249	}
2250
2251	return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260	struct sock *sk = container_of(head, struct sock, sk_rcu);
2261	struct net *net = sock_net(sk);
2262	struct sk_filter *filter;
2263
2264	if (sk->sk_destruct)
2265		sk->sk_destruct(sk);
2266
2267	filter = rcu_dereference_check(sk->sk_filter,
2268				       refcount_read(&sk->sk_wmem_alloc) == 0);
2269	if (filter) {
2270		sk_filter_uncharge(sk, filter);
2271		RCU_INIT_POINTER(sk->sk_filter, NULL);
2272	}
2273
2274	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277	bpf_sk_storage_free(sk);
2278#endif
2279
2280	if (atomic_read(&sk->sk_omem_alloc))
2281		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282			 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284	if (sk->sk_frag.page) {
2285		put_page(sk->sk_frag.page);
2286		sk->sk_frag.page = NULL;
2287	}
2288
2289	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290	put_cred(sk->sk_peer_cred);
2291	put_pid(sk->sk_peer_pid);
2292
2293	if (likely(sk->sk_net_refcnt)) {
2294		put_net_track(net, &sk->ns_tracker);
2295	} else {
2296		__netns_tracker_free(net, &sk->ns_tracker, false);
2297		net_passive_dec(net);
2298	}
2299	sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304	struct net *net = sock_net(sk);
2305
2306	WARN_ON_ONCE(sk->sk_net_refcnt);
2307	__netns_tracker_free(net, &sk->ns_tracker, false);
2308	net_passive_dec(net);
2309	sk->sk_net_refcnt = 1;
2310	get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311	sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320		reuseport_detach_sock(sk);
2321		use_call_rcu = true;
2322	}
2323
2324	if (use_call_rcu)
2325		call_rcu(&sk->sk_rcu, __sk_destruct);
2326	else
2327		__sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332	if (likely(sk->sk_net_refcnt))
2333		sock_inuse_add(sock_net(sk), -1);
2334
2335	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336		sock_diag_broadcast_destroy(sk);
2337	else
2338		sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343	/*
2344	 * We subtract one from sk_wmem_alloc and can know if
2345	 * some packets are still in some tx queue.
2346	 * If not null, sock_wfree() will call __sk_free(sk) later
2347	 */
2348	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349		__sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
2354{
2355	skb_queue_head_init(&sk->sk_receive_queue);
2356	skb_queue_head_init(&sk->sk_write_queue);
2357	skb_queue_head_init(&sk->sk_error_queue);
2358
2359	rwlock_init(&sk->sk_callback_lock);
2360	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361			af_rlock_keys + sk->sk_family,
2362			af_family_rlock_key_strings[sk->sk_family]);
2363	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364			af_wlock_keys + sk->sk_family,
2365			af_family_wlock_key_strings[sk->sk_family]);
2366	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367			af_elock_keys + sk->sk_family,
2368			af_family_elock_key_strings[sk->sk_family]);
2369	if (sk->sk_kern_sock)
2370		lockdep_set_class_and_name(&sk->sk_callback_lock,
2371			af_kern_callback_keys + sk->sk_family,
2372			af_family_kern_clock_key_strings[sk->sk_family]);
2373	else
2374		lockdep_set_class_and_name(&sk->sk_callback_lock,
2375			af_callback_keys + sk->sk_family,
2376			af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 *	sk_clone_lock - clone a socket, and lock its clone
2381 *	@sk: the socket to clone
2382 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388	struct proto *prot = READ_ONCE(sk->sk_prot);
2389	struct sk_filter *filter;
2390	bool is_charged = true;
2391	struct sock *newsk;
2392
2393	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394	if (!newsk)
2395		goto out;
2396
2397	sock_copy(newsk, sk);
 
 
 
 
 
 
 
 
2398
2399	newsk->sk_prot_creator = prot;
2400
2401	/* SANITY */
2402	if (likely(newsk->sk_net_refcnt)) {
2403		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404		sock_inuse_add(sock_net(newsk), 1);
2405	} else {
2406		/* Kernel sockets are not elevating the struct net refcount.
2407		 * Instead, use a tracker to more easily detect if a layer
2408		 * is not properly dismantling its kernel sockets at netns
2409		 * destroy time.
2410		 */
2411		net_passive_inc(sock_net(newsk));
2412		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413				      false, priority);
2414	}
2415	sk_node_init(&newsk->sk_node);
2416	sock_lock_init(newsk);
2417	bh_lock_sock(newsk);
2418	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2419	newsk->sk_backlog.len = 0;
2420
2421	atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424	refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426	atomic_set(&newsk->sk_omem_alloc, 0);
2427	sk_init_common(newsk);
2428
2429	newsk->sk_dst_cache	= NULL;
2430	newsk->sk_dst_pending_confirm = 0;
2431	newsk->sk_wmem_queued	= 0;
2432	newsk->sk_forward_alloc = 0;
2433	newsk->sk_reserved_mem  = 0;
2434	atomic_set(&newsk->sk_drops, 0);
2435	newsk->sk_send_head	= NULL;
2436	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437	atomic_set(&newsk->sk_zckey, 0);
2438
2439	sock_reset_flag(newsk, SOCK_DONE);
2440
2441	/* sk->sk_memcg will be populated at accept() time */
2442	newsk->sk_memcg = NULL;
2443
2444	cgroup_sk_clone(&newsk->sk_cgrp_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445
2446	rcu_read_lock();
2447	filter = rcu_dereference(sk->sk_filter);
2448	if (filter != NULL)
2449		/* though it's an empty new sock, the charging may fail
2450		 * if sysctl_optmem_max was changed between creation of
2451		 * original socket and cloning
2452		 */
2453		is_charged = sk_filter_charge(newsk, filter);
2454	RCU_INIT_POINTER(newsk->sk_filter, filter);
2455	rcu_read_unlock();
2456
2457	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458		/* We need to make sure that we don't uncharge the new
2459		 * socket if we couldn't charge it in the first place
2460		 * as otherwise we uncharge the parent's filter.
 
 
 
 
 
 
2461		 */
2462		if (!is_charged)
2463			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464		sk_free_unlock_clone(newsk);
2465		newsk = NULL;
2466		goto out;
2467	}
2468	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470	if (bpf_sk_storage_clone(sk, newsk)) {
2471		sk_free_unlock_clone(newsk);
2472		newsk = NULL;
2473		goto out;
2474	}
2475
2476	/* Clear sk_user_data if parent had the pointer tagged
2477	 * as not suitable for copying when cloning.
2478	 */
2479	if (sk_user_data_is_nocopy(newsk))
2480		newsk->sk_user_data = NULL;
2481
2482	newsk->sk_err	   = 0;
2483	newsk->sk_err_soft = 0;
2484	newsk->sk_priority = 0;
2485	newsk->sk_incoming_cpu = raw_smp_processor_id();
2486
2487	/* Before updating sk_refcnt, we must commit prior changes to memory
2488	 * (Documentation/RCU/rculist_nulls.rst for details)
2489	 */
2490	smp_wmb();
2491	refcount_set(&newsk->sk_refcnt, 2);
2492
2493	sk_set_socket(newsk, NULL);
2494	sk_tx_queue_clear(newsk);
2495	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2496
2497	if (newsk->sk_prot->sockets_allocated)
2498		sk_sockets_allocated_inc(newsk);
2499
2500	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501		net_enable_timestamp();
 
2502out:
2503	return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509	/* It is still raw copy of parent, so invalidate
2510	 * destructor and make plain sk_free() */
2511	sk->sk_destruct = NULL;
2512	bh_unlock_sock(sk);
2513	sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519	bool is_ipv6 = false;
2520	u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523	is_ipv6 = (sk->sk_family == AF_INET6 &&
2524		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2525#endif
2526	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528			READ_ONCE(dst->dev->gso_ipv4_max_size);
2529	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530		max_size = GSO_LEGACY_MAX_SIZE;
2531
2532	return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537	u32 max_segs = 1;
2538
2539	sk->sk_route_caps = dst->dev->features;
2540	if (sk_is_tcp(sk))
2541		sk->sk_route_caps |= NETIF_F_GSO;
2542	if (sk->sk_route_caps & NETIF_F_GSO)
2543		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544	if (unlikely(sk->sk_gso_disabled))
2545		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546	if (sk_can_gso(sk)) {
2547		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549		} else {
2550			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2552			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554		}
2555	}
2556	sk->sk_gso_max_segs = max_segs;
2557	sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
 
 
 
 
 
 
 
 
 
 
 
 
 
2561/*
2562 *	Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571	struct sock *sk = skb->sk;
2572	unsigned int len = skb->truesize;
2573	bool free;
2574
2575	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576		if (sock_flag(sk, SOCK_RCU_FREE) &&
2577		    sk->sk_write_space == sock_def_write_space) {
2578			rcu_read_lock();
2579			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580			sock_def_write_space_wfree(sk);
2581			rcu_read_unlock();
2582			if (unlikely(free))
2583				__sk_free(sk);
2584			return;
2585		}
2586
2587		/*
2588		 * Keep a reference on sk_wmem_alloc, this will be released
2589		 * after sk_write_space() call
2590		 */
2591		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592		sk->sk_write_space(sk);
2593		len = 1;
2594	}
2595	/*
2596	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597	 * could not do because of in-flight packets
2598	 */
2599	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600		__sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609	struct sock *sk = skb->sk;
2610
2611	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612		__sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617	skb_orphan(skb);
2618#ifdef CONFIG_INET
2619	if (unlikely(!sk_fullsock(sk)))
2620		return skb_set_owner_edemux(skb, sk);
2621#endif
2622	skb->sk = sk;
2623	skb->destructor = sock_wfree;
2624	skb_set_hash_from_sk(skb, sk);
2625	/*
2626	 * We used to take a refcount on sk, but following operation
2627	 * is enough to guarantee sk_free() won't free this sock until
2628	 * all in-flight packets are completed
2629	 */
2630	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
2636	/* Drivers depend on in-order delivery for crypto offload,
2637	 * partial orphan breaks out-of-order-OK logic.
2638	 */
2639	if (skb_is_decrypted(skb))
2640		return false;
2641
2642	return (skb->destructor == sock_wfree ||
2643		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654	if (skb_is_tcp_pure_ack(skb))
2655		return;
2656
2657	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658		return;
2659
2660	skb_orphan(skb);
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669	struct sock *sk = skb->sk;
2670	unsigned int len = skb->truesize;
2671
2672	atomic_sub(len, &sk->sk_rmem_alloc);
2673	sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683	sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693	struct sock *sk = skb->sk;
2694
2695	if (!sk_is_refcounted(sk))
2696		return;
2697
2698	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699		inet_reqsk(sk)->rsk_listener = NULL;
2700		reqsk_free(inet_reqsk(sk));
2701		return;
2702	}
2703
2704	sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711	kuid_t uid;
2712
2713	read_lock_bh(&sk->sk_callback_lock);
2714	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715	read_unlock_bh(&sk->sk_callback_lock);
2716	return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722	unsigned long ino;
2723
2724	read_lock(&sk->sk_callback_lock);
2725	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726	read_unlock(&sk->sk_callback_lock);
2727	return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733	unsigned long ino;
2734
2735	local_bh_disable();
2736	ino = __sock_i_ino(sk);
2737	local_bh_enable();
2738	return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746			     gfp_t priority)
2747{
2748	if (force ||
2749	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750		struct sk_buff *skb = alloc_skb(size, priority);
2751
2752		if (skb) {
2753			skb_set_owner_w(skb, sk);
2754			return skb;
2755		}
2756	}
2757	return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763	struct sock *sk = skb->sk;
2764
2765	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769			     gfp_t priority)
2770{
2771	struct sk_buff *skb;
2772
2773	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776		return NULL;
2777
2778	skb = alloc_skb(size, priority);
2779	if (!skb)
2780		return NULL;
2781
2782	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783	skb->sk = sk;
2784	skb->destructor = sock_ofree;
2785	return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795	if ((unsigned int)size <= optmem_max &&
2796	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797		void *mem;
2798		/* First do the add, to avoid the race if kmalloc
2799		 * might sleep.
2800		 */
2801		atomic_add(size, &sk->sk_omem_alloc);
2802		mem = kmalloc(size, priority);
2803		if (mem)
2804			return mem;
2805		atomic_sub(size, &sk->sk_omem_alloc);
2806	}
2807	return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816				  const bool nullify)
2817{
2818	if (WARN_ON_ONCE(!mem))
2819		return;
2820	if (nullify)
2821		kfree_sensitive(mem);
2822	else
2823		kfree(mem);
2824	atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829	__sock_kfree_s(sk, mem, size, false);
 
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835	__sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840   I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844	DEFINE_WAIT(wait);
2845
2846	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847	for (;;) {
2848		if (!timeo)
2849			break;
2850		if (signal_pending(current))
2851			break;
2852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855			break;
2856		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857			break;
2858		if (READ_ONCE(sk->sk_err))
2859			break;
2860		timeo = schedule_timeout(timeo);
2861	}
2862	finish_wait(sk_sleep(sk), &wait);
2863	return timeo;
2864}
2865
2866
2867/*
2868 *	Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872				     unsigned long data_len, int noblock,
2873				     int *errcode, int max_page_order)
2874{
2875	struct sk_buff *skb;
 
2876	long timeo;
2877	int err;
 
 
 
 
 
 
 
 
 
2878
2879	timeo = sock_sndtimeo(sk, noblock);
2880	for (;;) {
2881		err = sock_error(sk);
2882		if (err != 0)
2883			goto failure;
2884
2885		err = -EPIPE;
2886		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887			goto failure;
2888
2889		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2891
2892		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 
 
 
 
 
2893		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894		err = -EAGAIN;
2895		if (!timeo)
2896			goto failure;
2897		if (signal_pending(current))
2898			goto interrupted;
2899		timeo = sock_wait_for_wmem(sk, timeo);
2900	}
2901	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902				   errcode, sk->sk_allocation);
2903	if (skb)
2904		skb_set_owner_w(skb, sk);
2905	return skb;
2906
2907interrupted:
2908	err = sock_intr_errno(timeo);
2909failure:
2910	*errcode = err;
2911	return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2916		     struct sockcm_cookie *sockc)
2917{
2918	u32 tsflags;
2919
2920	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922	switch (cmsg->cmsg_type) {
2923	case SO_MARK:
2924		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926			return -EPERM;
2927		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928			return -EINVAL;
2929		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930		break;
2931	case SO_TIMESTAMPING_OLD:
2932	case SO_TIMESTAMPING_NEW:
2933		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934			return -EINVAL;
2935
2936		tsflags = *(u32 *)CMSG_DATA(cmsg);
2937		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938			return -EINVAL;
2939
2940		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941		sockc->tsflags |= tsflags;
2942		break;
2943	case SCM_TXTIME:
2944		if (!sock_flag(sk, SOCK_TXTIME))
2945			return -EINVAL;
2946		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947			return -EINVAL;
2948		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949		break;
2950	case SCM_TS_OPT_ID:
2951		if (sk_is_tcp(sk))
2952			return -EINVAL;
2953		tsflags = READ_ONCE(sk->sk_tsflags);
2954		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955			return -EINVAL;
2956		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957			return -EINVAL;
2958		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960		break;
2961	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962	case SCM_RIGHTS:
2963	case SCM_CREDENTIALS:
2964		break;
2965	default:
2966		return -EINVAL;
2967	}
2968	return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973		   struct sockcm_cookie *sockc)
2974{
2975	struct cmsghdr *cmsg;
2976	int ret;
2977
2978	for_each_cmsghdr(cmsg, msg) {
2979		if (!CMSG_OK(msg, cmsg))
2980			return -EINVAL;
2981		if (cmsg->cmsg_level != SOL_SOCKET)
2982			continue;
2983		ret = __sock_cmsg_send(sk, cmsg, sockc);
2984		if (ret)
2985			return ret;
2986	}
2987	return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993	if (!sk->sk_prot->enter_memory_pressure)
2994		return;
2995
2996	sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001	if (sk->sk_prot->leave_memory_pressure) {
3002		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003				     tcp_leave_memory_pressure, sk);
3004	} else {
3005		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007		if (memory_pressure && READ_ONCE(*memory_pressure))
3008			WRITE_ONCE(*memory_pressure, 0);
3009	}
3010}
3011
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
3026	if (pfrag->page) {
3027		if (page_ref_count(pfrag->page) == 1) {
3028			pfrag->offset = 0;
3029			return true;
3030		}
3031		if (pfrag->offset + sz <= pfrag->size)
3032			return true;
3033		put_page(pfrag->page);
3034	}
3035
3036	pfrag->offset = 0;
3037	if (SKB_FRAG_PAGE_ORDER &&
3038	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039		/* Avoid direct reclaim but allow kswapd to wake */
3040		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041					  __GFP_COMP | __GFP_NOWARN |
3042					  __GFP_NORETRY,
3043					  SKB_FRAG_PAGE_ORDER);
3044		if (likely(pfrag->page)) {
3045			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3046			return true;
3047		}
3048	}
3049	pfrag->page = alloc_page(gfp);
3050	if (likely(pfrag->page)) {
3051		pfrag->size = PAGE_SIZE;
3052		return true;
3053	}
3054	return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061		return true;
3062
3063	sk_enter_memory_pressure(sk);
3064	sk_stream_moderate_sndbuf(sk);
3065	return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070	__releases(&sk->sk_lock.slock)
3071	__acquires(&sk->sk_lock.slock)
3072{
3073	DEFINE_WAIT(wait);
3074
3075	for (;;) {
3076		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077					TASK_UNINTERRUPTIBLE);
3078		spin_unlock_bh(&sk->sk_lock.slock);
3079		schedule();
3080		spin_lock_bh(&sk->sk_lock.slock);
3081		if (!sock_owned_by_user(sk))
3082			break;
3083	}
3084	finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088	__releases(&sk->sk_lock.slock)
3089	__acquires(&sk->sk_lock.slock)
3090{
3091	struct sk_buff *skb, *next;
3092
3093	while ((skb = sk->sk_backlog.head) != NULL) {
3094		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096		spin_unlock_bh(&sk->sk_lock.slock);
3097
3098		do {
3099			next = skb->next;
 
3100			prefetch(next);
3101			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102			skb_mark_not_on_list(skb);
3103			sk_backlog_rcv(sk, skb);
3104
3105			cond_resched();
 
 
 
 
 
 
3106
3107			skb = next;
3108		} while (skb != NULL);
3109
3110		spin_lock_bh(&sk->sk_lock.slock);
3111	}
3112
3113	/*
3114	 * Doing the zeroing here guarantee we can not loop forever
3115	 * while a wild producer attempts to flood us.
3116	 */
3117	sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122	spin_lock_bh(&sk->sk_lock.slock);
3123	__release_sock(sk);
3124
3125	if (sk->sk_prot->release_cb)
3126		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127				     tcp_release_cb, sk);
3128
3129	spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk:    sock to wait on
3136 * @timeo: for how long
3137 * @skb:   last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147	int rc;
 
3148
3149	add_wait_queue(sk_sleep(sk), &wait);
3150	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153	remove_wait_queue(sk_sleep(sk), &wait);
3154	return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 *	__sk_mem_raise_allocated - increase memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@amt: pages to allocate
3163 *	@kind: allocation type
3164 *
3165 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 *	Unlike the globally shared limits among the sockets under same protocol,
3168 *	consuming the budget of a memcg won't have direct effect on other ones.
3169 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3170 *	whether or not to raise allocated through sk_under_memory_pressure() or
3171 *	its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176	struct proto *prot = sk->sk_prot;
3177	bool charged = false;
3178	long allocated;
 
3179
3180	sk_memory_allocated_add(sk, amt);
3181	allocated = sk_memory_allocated(sk);
3182
3183	if (memcg) {
3184		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185			goto suppress_allocation;
3186		charged = true;
3187	}
3188
3189	/* Under limit. */
3190	if (allocated <= sk_prot_mem_limits(sk, 0)) {
 
3191		sk_leave_memory_pressure(sk);
3192		return 1;
3193	}
3194
3195	/* Under pressure. */
3196	if (allocated > sk_prot_mem_limits(sk, 1))
 
3197		sk_enter_memory_pressure(sk);
3198
3199	/* Over hard limit. */
3200	if (allocated > sk_prot_mem_limits(sk, 2))
 
3201		goto suppress_allocation;
3202
3203	/* Guarantee minimum buffer size under pressure (either global
3204	 * or memcg) to make sure features described in RFC 7323 (TCP
3205	 * Extensions for High Performance) work properly.
3206	 *
3207	 * This rule does NOT stand when exceeds global or memcg's hard
3208	 * limit, or else a DoS attack can be taken place by spawning
3209	 * lots of sockets whose usage are under minimum buffer size.
3210	 */
3211	if (kind == SK_MEM_RECV) {
3212		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213			return 1;
3214
3215	} else { /* SK_MEM_SEND */
3216		int wmem0 = sk_get_wmem0(sk, prot);
3217
3218		if (sk->sk_type == SOCK_STREAM) {
3219			if (sk->sk_wmem_queued < wmem0)
3220				return 1;
3221		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
3222				return 1;
3223		}
3224	}
3225
3226	if (sk_has_memory_pressure(sk)) {
3227		u64 alloc;
3228
3229		/* The following 'average' heuristic is within the
3230		 * scope of global accounting, so it only makes
3231		 * sense for global memory pressure.
3232		 */
3233		if (!sk_under_global_memory_pressure(sk))
3234			return 1;
3235
3236		/* Try to be fair among all the sockets under global
3237		 * pressure by allowing the ones that below average
3238		 * usage to raise.
3239		 */
3240		alloc = sk_sockets_allocated_read_positive(sk);
3241		if (sk_prot_mem_limits(sk, 2) > alloc *
3242		    sk_mem_pages(sk->sk_wmem_queued +
3243				 atomic_read(&sk->sk_rmem_alloc) +
3244				 sk->sk_forward_alloc))
3245			return 1;
3246	}
3247
3248suppress_allocation:
3249
3250	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251		sk_stream_moderate_sndbuf(sk);
3252
3253		/* Fail only if socket is _under_ its sndbuf.
3254		 * In this case we cannot block, so that we have to fail.
3255		 */
3256		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257			/* Force charge with __GFP_NOFAIL */
3258			if (memcg && !charged) {
3259				mem_cgroup_charge_skmem(memcg, amt,
3260					gfp_memcg_charge() | __GFP_NOFAIL);
3261			}
3262			return 1;
3263		}
3264	}
3265
3266	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269	sk_memory_allocated_sub(sk, amt);
 
3270
3271	if (charged)
3272		mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274	return 0;
3275}
3276
3277/**
3278 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 *	@sk: socket
3280 *	@size: memory size to allocate
3281 *	@kind: allocation type
3282 *
3283 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 *	rmem allocation. This function assumes that protocols which have
3285 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289	int ret, amt = sk_mem_pages(size);
3290
3291	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293	if (!ret)
3294		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295	return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3301 *	@sk: socket
3302 *	@amount: number of quanta
3303 *
3304 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308	sk_memory_allocated_sub(sk, amount);
3309
3310	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313	if (sk_under_global_memory_pressure(sk) &&
3314	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315		sk_leave_memory_pressure(sk);
3316}
3317
3318/**
3319 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 *	@sk: socket
3321 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325	amount >>= PAGE_SHIFT;
3326	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327	__sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333	WRITE_ONCE(sk->sk_peek_off, val);
3334	return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347	return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352		    int len, int flags)
3353{
3354	return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360	return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365		   struct proto_accept_arg *arg)
3366{
3367	return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372		    int peer)
3373{
3374	return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
 
 
 
 
 
 
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380	return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386	return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392	return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
3397{
3398	return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
 
3403{
3404	return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409		    int flags)
 
 
 
 
 
 
 
3410{
3411	return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417	/* Mirror missing mmap method error code */
3418	return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428	struct socket *sock;
3429
3430	sock = sock_from_file(file);
3431	if (sock) {
3432		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433		sock_update_classid(&sock->sk->sk_cgrp_data);
3434	}
 
 
3435}
 
3436
3437/*
3438 *	Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443	struct socket_wq *wq;
3444
3445	rcu_read_lock();
3446	wq = rcu_dereference(sk->sk_wq);
3447	if (skwq_has_sleeper(wq))
3448		wake_up_interruptible_all(&wq->wait);
3449	rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454	struct socket_wq *wq;
3455
3456	rcu_read_lock();
3457	wq = rcu_dereference(sk->sk_wq);
3458	if (skwq_has_sleeper(wq))
3459		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461	rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466	struct socket_wq *wq;
3467
3468	trace_sk_data_ready(sk);
3469
3470	rcu_read_lock();
3471	wq = rcu_dereference(sk->sk_wq);
3472	if (skwq_has_sleeper(wq))
3473		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474						EPOLLRDNORM | EPOLLRDBAND);
3475	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476	rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481	struct socket_wq *wq;
3482
3483	rcu_read_lock();
3484
3485	/* Do not wake up a writer until he can make "significant"
3486	 * progress.  --DaveM
3487	 */
3488	if (sock_writeable(sk)) {
3489		wq = rcu_dereference(sk->sk_wq);
3490		if (skwq_has_sleeper(wq))
3491			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492						EPOLLWRNORM | EPOLLWRBAND);
3493
3494		/* Should agree with poll, otherwise some programs break */
3495		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3496	}
3497
3498	rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507	/* Do not wake up a writer until he can make "significant"
3508	 * progress.  --DaveM
3509	 */
3510	if (sock_writeable(sk)) {
3511		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513		/* rely on refcount_sub from sock_wfree() */
3514		smp_mb__after_atomic();
3515		if (wq && waitqueue_active(&wq->wait))
3516			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517						EPOLLWRNORM | EPOLLWRBAND);
3518
3519		/* Should agree with poll, otherwise some programs break */
3520		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521	}
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
 
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530	if (sk->sk_socket && sk->sk_socket->file)
3531		if (send_sigurg(sk->sk_socket->file))
3532			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537		    unsigned long expires)
3538{
3539	if (!mod_timer(timer, expires))
3540		sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546	if (del_timer(timer))
3547		__sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553	if (del_timer_sync(timer))
3554		__sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
 
 
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560	sk_init_common(sk);
3561	sk->sk_send_head	=	NULL;
3562
3563	timer_setup(&sk->sk_timer, NULL, 0);
3564
3565	sk->sk_allocation	=	GFP_KERNEL;
3566	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3567	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3568	sk->sk_state		=	TCP_CLOSE;
3569	sk->sk_use_task_frag	=	true;
3570	sk_set_socket(sk, sock);
3571
3572	sock_set_flag(sk, SOCK_ZAPPED);
3573
3574	if (sock) {
3575		sk->sk_type	=	sock->type;
3576		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577		sock->sk	=	sk;
3578	} else {
3579		RCU_INIT_POINTER(sk->sk_wq, NULL);
3580	}
3581	sk->sk_uid	=	uid;
 
 
 
 
3582
3583	sk->sk_state_change	=	sock_def_wakeup;
3584	sk->sk_data_ready	=	sock_def_readable;
3585	sk->sk_write_space	=	sock_def_write_space;
3586	sk->sk_error_report	=	sock_def_error_report;
3587	sk->sk_destruct		=	sock_def_destruct;
3588
3589	sk->sk_frag.page	=	NULL;
3590	sk->sk_frag.offset	=	0;
3591	sk->sk_peek_off		=	-1;
3592
3593	sk->sk_peer_pid 	=	NULL;
3594	sk->sk_peer_cred	=	NULL;
3595	spin_lock_init(&sk->sk_peer_lock);
3596
3597	sk->sk_write_pending	=	0;
3598	sk->sk_rcvlowat		=	1;
3599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3601
3602	sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604	seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606	atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609	sk->sk_napi_id		=	0;
3610	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613	sk->sk_max_pacing_rate = ~0UL;
3614	sk->sk_pacing_rate = ~0UL;
3615	WRITE_ONCE(sk->sk_pacing_shift, 10);
3616	sk->sk_incoming_cpu = -1;
3617
3618	sk_rx_queue_clear(sk);
3619	/*
3620	 * Before updating sk_refcnt, we must commit prior changes to memory
3621	 * (Documentation/RCU/rculist_nulls.rst for details)
3622	 */
3623	smp_wmb();
3624	refcount_set(&sk->sk_refcnt, 1);
3625	atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631	kuid_t uid = sock ?
3632		SOCK_INODE(sock)->i_uid :
3633		make_kuid(sock_net(sk)->user_ns, 0);
3634
3635	sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641	/* The sk_lock has mutex_lock() semantics here. */
3642	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644	might_sleep();
3645	spin_lock_bh(&sk->sk_lock.slock);
3646	if (sock_owned_by_user_nocheck(sk))
3647		__lock_sock(sk);
3648	sk->sk_lock.owned = 1;
3649	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
 
 
 
 
 
3655	spin_lock_bh(&sk->sk_lock.slock);
3656	if (sk->sk_backlog.tail)
3657		__release_sock(sk);
3658
3659	if (sk->sk_prot->release_cb)
3660		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661				     tcp_release_cb, sk);
3662
3663	sock_release_ownership(sk);
3664	if (waitqueue_active(&sk->sk_lock.wq))
3665		wake_up(&sk->sk_lock.wq);
3666	spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
3671{
3672	might_sleep();
3673	spin_lock_bh(&sk->sk_lock.slock);
3674
3675	if (!sock_owned_by_user_nocheck(sk)) {
3676		/*
3677		 * Fast path return with bottom halves disabled and
3678		 * sock::sk_lock.slock held.
3679		 *
3680		 * The 'mutex' is not contended and holding
3681		 * sock::sk_lock.slock prevents all other lockers to
3682		 * proceed so the corresponding unlock_sock_fast() can
3683		 * avoid the slow path of release_sock() completely and
3684		 * just release slock.
3685		 *
3686		 * From a semantical POV this is equivalent to 'acquiring'
3687		 * the 'mutex', hence the corresponding lockdep
3688		 * mutex_release() has to happen in the fast path of
3689		 * unlock_sock_fast().
3690		 */
3691		return false;
3692	}
3693
3694	__lock_sock(sk);
3695	sk->sk_lock.owned = 1;
3696	__acquire(&sk->sk_lock.slock);
3697	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3698	return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703		   bool timeval, bool time32)
3704{
3705	struct sock *sk = sock->sk;
3706	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3707
3708	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3710	if (ts.tv_sec == -1)
3711		return -ENOENT;
3712	if (ts.tv_sec == 0) {
3713		ktime_t kt = ktime_get_real();
3714		sock_write_timestamp(sk, kt);
3715		ts = ktime_to_timespec64(kt);
3716	}
3717
3718	if (timeval)
3719		ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722	if (time32)
3723		return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726	/* beware of padding in sparc64 timeval */
3727	if (timeval && !in_compat_syscall()) {
3728		struct __kernel_old_timeval __user tv = {
3729			.tv_sec = ts.tv_sec,
3730			.tv_usec = ts.tv_nsec,
3731		};
3732		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733			return -EFAULT;
3734		return 0;
3735	}
3736#endif
3737	return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743	if (!sock_flag(sk, flag)) {
3744		unsigned long previous_flags = sk->sk_flags;
3745
3746		sock_set_flag(sk, flag);
3747		/*
3748		 * we just set one of the two flags which require net
3749		 * time stamping, but time stamping might have been on
3750		 * already because of the other one
3751		 */
3752		if (sock_needs_netstamp(sk) &&
3753		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3754			net_enable_timestamp();
3755	}
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759		       int level, int type)
3760{
3761	struct sock_exterr_skb *serr;
3762	struct sk_buff *skb;
3763	int copied, err;
3764
3765	err = -EAGAIN;
3766	skb = sock_dequeue_err_skb(sk);
3767	if (skb == NULL)
3768		goto out;
3769
3770	copied = skb->len;
3771	if (copied > len) {
3772		msg->msg_flags |= MSG_TRUNC;
3773		copied = len;
3774	}
3775	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776	if (err)
3777		goto out_free_skb;
3778
3779	sock_recv_timestamp(msg, sk, skb);
3780
3781	serr = SKB_EXT_ERR(skb);
3782	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784	msg->msg_flags |= MSG_ERRQUEUE;
3785	err = copied;
3786
3787out_free_skb:
3788	kfree_skb(skb);
3789out:
3790	return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 *	Get a socket option on an socket.
3796 *
3797 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 *	asynchronous errors should be reported by getsockopt. We assume
3799 *	this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802			   char __user *optval, int __user *optlen)
3803{
3804	struct sock *sk = sock->sk;
3805
3806	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812			int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813{
3814	struct sock *sk = sock->sk;
3815	int addr_len = 0;
3816	int err;
3817
3818	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3819	if (err >= 0)
3820		msg->msg_namelen = addr_len;
3821	return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 *	Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829			   sockptr_t optval, unsigned int optlen)
3830{
3831	struct sock *sk = sock->sk;
3832
3833	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3838void sk_common_release(struct sock *sk)
3839{
3840	if (sk->sk_prot->destroy)
3841		sk->sk_prot->destroy(sk);
3842
3843	/*
3844	 * Observation: when sk_common_release is called, processes have
3845	 * no access to socket. But net still has.
3846	 * Step one, detach it from networking:
3847	 *
3848	 * A. Remove from hash tables.
3849	 */
3850
3851	sk->sk_prot->unhash(sk);
3852
3853	/*
3854	 * In this point socket cannot receive new packets, but it is possible
3855	 * that some packets are in flight because some CPU runs receiver and
3856	 * did hash table lookup before we unhashed socket. They will achieve
3857	 * receive queue and will be purged by socket destructor.
3858	 *
3859	 * Also we still have packets pending on receive queue and probably,
3860	 * our own packets waiting in device queues. sock_destroy will drain
3861	 * receive queue, but transmitted packets will delay socket destruction
3862	 * until the last reference will be released.
3863	 */
3864
3865	sock_orphan(sk);
3866
3867	xfrm_sk_free_policy(sk);
3868
 
3869	sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3876
3877	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
3887
3888#ifdef CONFIG_PROC_FS
 
 
 
 
 
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
 
 
 
 
 
 
 
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893	int cpu, idx = prot->inuse_idx;
3894	int res = 0;
3895
3896	for_each_possible_cpu(cpu)
3897		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899	return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
3903int sock_inuse_get(struct net *net)
3904{
3905	int cpu, res = 0;
3906
3907	for_each_possible_cpu(cpu)
3908		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910	return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918	if (net->core.prot_inuse == NULL)
3919		return -ENOMEM;
3920	return 0;
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925	free_percpu(net->core.prot_inuse);
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929	.init = sock_inuse_init_net,
3930	.exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935	if (register_pernet_subsys(&net_inuse_ops))
3936		panic("Cannot initialize net inuse counters");
3937
3938	return 0;
3939}
3940
3941core_initcall(net_inuse_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3942
3943static int assign_proto_idx(struct proto *prot)
3944{
3945	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948		pr_err("PROTO_INUSE_NR exhausted\n");
3949		return -ENOSPC;
3950	}
3951
3952	set_bit(prot->inuse_idx, proto_inuse_idx);
3953	return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959		clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964	return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975	if (!twsk_prot)
3976		return;
3977	kfree(twsk_prot->twsk_slab_name);
3978	twsk_prot->twsk_slab_name = NULL;
3979	kmem_cache_destroy(twsk_prot->twsk_slab);
3980	twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987	if (!twsk_prot)
3988		return 0;
3989
3990	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991					      prot->name);
3992	if (!twsk_prot->twsk_slab_name)
3993		return -ENOMEM;
3994
3995	twsk_prot->twsk_slab =
3996		kmem_cache_create(twsk_prot->twsk_slab_name,
3997				  twsk_prot->twsk_obj_size, 0,
3998				  SLAB_ACCOUNT | prot->slab_flags,
3999				  NULL);
4000	if (!twsk_prot->twsk_slab) {
4001		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002			prot->name);
4003		return -ENOMEM;
4004	}
4005
4006	return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011	if (!rsk_prot)
4012		return;
4013	kfree(rsk_prot->slab_name);
4014	rsk_prot->slab_name = NULL;
4015	kmem_cache_destroy(rsk_prot->slab);
4016	rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023	if (!rsk_prot)
4024		return 0;
4025
4026	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027					prot->name);
4028	if (!rsk_prot->slab_name)
4029		return -ENOMEM;
4030
4031	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032					   rsk_prot->obj_size, 0,
4033					   SLAB_ACCOUNT | prot->slab_flags,
4034					   NULL);
4035
4036	if (!rsk_prot->slab) {
4037		pr_crit("%s: Can't create request sock SLAB cache!\n",
4038			prot->name);
4039		return -ENOMEM;
4040	}
4041	return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046	int ret = -ENOBUFS;
4047
4048	if (prot->memory_allocated && !prot->sysctl_mem) {
4049		pr_err("%s: missing sysctl_mem\n", prot->name);
4050		return -EINVAL;
4051	}
4052	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054		return -EINVAL;
4055	}
4056	if (alloc_slab) {
4057		prot->slab = kmem_cache_create_usercopy(prot->name,
4058					prot->obj_size, 0,
4059					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060					prot->slab_flags,
4061					prot->useroffset, prot->usersize,
4062					NULL);
4063
4064		if (prot->slab == NULL) {
4065			pr_crit("%s: Can't create sock SLAB cache!\n",
4066				prot->name);
4067			goto out;
4068		}
4069
4070		if (req_prot_init(prot))
4071			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4072
4073		if (tw_prot_init(prot))
4074			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
4075	}
4076
4077	mutex_lock(&proto_list_mutex);
4078	ret = assign_proto_idx(prot);
4079	if (ret) {
4080		mutex_unlock(&proto_list_mutex);
4081		goto out_free_timewait_sock_slab;
4082	}
4083	list_add(&prot->node, &proto_list);
 
4084	mutex_unlock(&proto_list_mutex);
4085	return ret;
4086
4087out_free_timewait_sock_slab:
4088	if (alloc_slab)
4089		tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091	if (alloc_slab) {
4092		req_prot_cleanup(prot->rsk_prot);
4093
4094		kmem_cache_destroy(prot->slab);
4095		prot->slab = NULL;
4096	}
 
 
 
 
4097out:
4098	return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104	mutex_lock(&proto_list_mutex);
4105	release_proto_idx(prot);
4106	list_del(&prot->node);
4107	mutex_unlock(&proto_list_mutex);
4108
4109	kmem_cache_destroy(prot->slab);
4110	prot->slab = NULL;
4111
4112	req_prot_cleanup(prot->rsk_prot);
4113	tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119	if (!protocol) {
4120		if (!sock_is_registered(family))
4121			return -ENOENT;
4122
4123		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124				      NETLINK_SOCK_DIAG, family);
4125	}
4126
4127#ifdef CONFIG_INET
4128	if (family == AF_INET &&
4129	    protocol != IPPROTO_RAW &&
4130	    protocol < MAX_INET_PROTOS &&
4131	    !rcu_access_pointer(inet_protos[protocol]))
4132		return -ENOENT;
4133#endif
4134
4135	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136			      NETLINK_SOCK_DIAG, family, protocol);
 
 
 
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142	__acquires(proto_list_mutex)
4143{
4144	mutex_lock(&proto_list_mutex);
4145	return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150	return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154	__releases(proto_list_mutex)
4155{
4156	mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161	return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170	return proto->memory_pressure != NULL ?
4171	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4178			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179		   proto->name,
4180		   proto->obj_size,
4181		   sock_prot_inuse_get(seq_file_net(seq), proto),
4182		   sock_prot_memory_allocated(proto),
4183		   sock_prot_memory_pressure(proto),
4184		   proto->max_header,
4185		   proto->slab == NULL ? "no" : "yes",
4186		   module_name(proto->owner),
4187		   proto_method_implemented(proto->close),
4188		   proto_method_implemented(proto->connect),
4189		   proto_method_implemented(proto->disconnect),
4190		   proto_method_implemented(proto->accept),
4191		   proto_method_implemented(proto->ioctl),
4192		   proto_method_implemented(proto->init),
4193		   proto_method_implemented(proto->destroy),
4194		   proto_method_implemented(proto->shutdown),
4195		   proto_method_implemented(proto->setsockopt),
4196		   proto_method_implemented(proto->getsockopt),
4197		   proto_method_implemented(proto->sendmsg),
4198		   proto_method_implemented(proto->recvmsg),
 
4199		   proto_method_implemented(proto->bind),
4200		   proto_method_implemented(proto->backlog_rcv),
4201		   proto_method_implemented(proto->hash),
4202		   proto_method_implemented(proto->unhash),
4203		   proto_method_implemented(proto->get_port),
4204		   proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209	if (v == &proto_list)
4210		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211			   "protocol",
4212			   "size",
4213			   "sockets",
4214			   "memory",
4215			   "press",
4216			   "maxhdr",
4217			   "slab",
4218			   "module",
4219			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220	else
4221		proto_seq_printf(seq, list_entry(v, struct proto, node));
4222	return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226	.start  = proto_seq_start,
4227	.next   = proto_seq_next,
4228	.stop   = proto_seq_stop,
4229	.show   = proto_seq_show,
4230};
4231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4232static __net_init int proto_init_net(struct net *net)
4233{
4234	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235			sizeof(struct seq_net_private)))
4236		return -ENOMEM;
4237
4238	return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243	remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248	.init = proto_init_net,
4249	.exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254	return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264	struct sock *sk = p;
4265
4266	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267		return true;
4268
4269	if (sk_is_udp(sk) &&
4270	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271		return true;
4272
4273	return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280	if (!sk->sk_prot->bind_add)
4281		return -EOPNOTSUPP;
4282	return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288		     void __user *arg, void *karg, size_t size)
4289{
4290	int ret;
4291
4292	if (copy_from_user(karg, arg, size))
4293		return -EFAULT;
4294
4295	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296	if (ret)
4297		return ret;
4298
4299	if (copy_to_user(arg, karg, size))
4300		return -EFAULT;
4301
4302	return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312	int ret, karg = 0;
4313
4314	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315	if (ret)
4316		return ret;
4317
4318	return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328	int rc = 1;
4329
4330	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331		rc = ipmr_sk_ioctl(sk, cmd, arg);
4332	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334	else if (sk_is_phonet(sk))
4335		rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337	/* If ioctl was processed, returns its value */
4338	if (rc <= 0)
4339		return rc;
4340
4341	/* Otherwise call the default handler */
4342	return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403	return 0;
4404}
4405
4406core_initcall(sock_struct_check);
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
 
  96#include <linux/types.h>
  97#include <linux/socket.h>
  98#include <linux/in.h>
  99#include <linux/kernel.h>
 100#include <linux/module.h>
 101#include <linux/proc_fs.h>
 102#include <linux/seq_file.h>
 103#include <linux/sched.h>
 
 104#include <linux/timer.h>
 105#include <linux/string.h>
 106#include <linux/sockios.h>
 107#include <linux/net.h>
 108#include <linux/mm.h>
 109#include <linux/slab.h>
 110#include <linux/interrupt.h>
 111#include <linux/poll.h>
 112#include <linux/tcp.h>
 
 113#include <linux/init.h>
 114#include <linux/highmem.h>
 115#include <linux/user_namespace.h>
 116#include <linux/static_key.h>
 117#include <linux/memcontrol.h>
 118#include <linux/prefetch.h>
 
 
 
 
 119
 120#include <asm/uaccess.h>
 121
 122#include <linux/netdevice.h>
 123#include <net/protocol.h>
 124#include <linux/skbuff.h>
 
 125#include <net/net_namespace.h>
 126#include <net/request_sock.h>
 127#include <net/sock.h>
 
 128#include <linux/net_tstamp.h>
 129#include <net/xfrm.h>
 130#include <linux/ipsec.h>
 131#include <net/cls_cgroup.h>
 132#include <net/netprio_cgroup.h>
 
 133
 134#include <linux/filter.h>
 
 
 135
 136#include <trace/events/sock.h>
 137
 138#ifdef CONFIG_INET
 139#include <net/tcp.h>
 140#endif
 
 
 
 
 
 141
 142static DEFINE_MUTEX(proto_list_mutex);
 143static LIST_HEAD(proto_list);
 144
 145#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 147{
 148	struct proto *proto;
 149	int ret = 0;
 
 
 150
 151	mutex_lock(&proto_list_mutex);
 152	list_for_each_entry(proto, &proto_list, node) {
 153		if (proto->init_cgroup) {
 154			ret = proto->init_cgroup(memcg, ss);
 155			if (ret)
 156				goto out;
 157		}
 158	}
 159
 160	mutex_unlock(&proto_list_mutex);
 161	return ret;
 162out:
 163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
 164		if (proto->destroy_cgroup)
 165			proto->destroy_cgroup(memcg);
 166	mutex_unlock(&proto_list_mutex);
 167	return ret;
 168}
 
 169
 170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 171{
 172	struct proto *proto;
 173
 174	mutex_lock(&proto_list_mutex);
 175	list_for_each_entry_reverse(proto, &proto_list, node)
 176		if (proto->destroy_cgroup)
 177			proto->destroy_cgroup(memcg);
 178	mutex_unlock(&proto_list_mutex);
 179}
 180#endif
 181
 182/*
 183 * Each address family might have different locking rules, so we have
 184 * one slock key per address family:
 
 185 */
 186static struct lock_class_key af_family_keys[AF_MAX];
 
 187static struct lock_class_key af_family_slock_keys[AF_MAX];
 188
 189struct static_key memcg_socket_limit_enabled;
 190EXPORT_SYMBOL(memcg_socket_limit_enabled);
 191
 192/*
 193 * Make lock validator output more readable. (we pre-construct these
 194 * strings build-time, so that runtime initialization of socket
 195 * locks is fast):
 196 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197static const char *const af_family_key_strings[AF_MAX+1] = {
 198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
 212};
 213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 227  "slock-AF_NFC"   , "slock-AF_MAX"
 228};
 229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 243  "clock-AF_NFC"   , "clock-AF_MAX"
 
 
 
 
 
 
 244};
 245
 246/*
 247 * sk_callback_lock locking rules are per-address-family,
 248 * so split the lock classes by using a per-AF key:
 249 */
 250static struct lock_class_key af_callback_keys[AF_MAX];
 251
 252/* Take into consideration the size of the struct sk_buff overhead in the
 253 * determination of these values, since that is non-constant across
 254 * platforms.  This makes socket queueing behavior and performance
 255 * not depend upon such differences.
 256 */
 257#define _SK_MEM_PACKETS		256
 258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
 259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 261
 262/* Run time adjustable parameters. */
 263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 264EXPORT_SYMBOL(sysctl_wmem_max);
 265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 266EXPORT_SYMBOL(sysctl_rmem_max);
 267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 269
 270/* Maximal space eaten by iovec or ancillary data plus some space */
 271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 272EXPORT_SYMBOL(sysctl_optmem_max);
 273
 274#if defined(CONFIG_CGROUPS)
 275#if !defined(CONFIG_NET_CLS_CGROUP)
 276int net_cls_subsys_id = -1;
 277EXPORT_SYMBOL_GPL(net_cls_subsys_id);
 278#endif
 279#if !defined(CONFIG_NETPRIO_CGROUP)
 280int net_prio_subsys_id = -1;
 281EXPORT_SYMBOL_GPL(net_prio_subsys_id);
 282#endif
 283#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 
 286{
 287	struct timeval tv;
 
 
 
 
 
 288
 289	if (optlen < sizeof(tv))
 290		return -EINVAL;
 291	if (copy_from_user(&tv, optval, sizeof(tv)))
 292		return -EFAULT;
 293	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 294		return -EDOM;
 295
 296	if (tv.tv_sec < 0) {
 297		static int warned __read_mostly;
 298
 299		*timeo_p = 0;
 300		if (warned < 10 && net_ratelimit()) {
 301			warned++;
 302			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 303				__func__, current->comm, task_pid_nr(current));
 304		}
 305		return 0;
 306	}
 307	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 308	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 309		return 0;
 310	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 311		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 
 312	return 0;
 313}
 314
 315static void sock_warn_obsolete_bsdism(const char *name)
 316{
 317	static int warned;
 318	static char warncomm[TASK_COMM_LEN];
 319	if (strcmp(warncomm, current->comm) && warned < 5) {
 320		strcpy(warncomm,  current->comm);
 321		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 322			warncomm, name);
 323		warned++;
 324	}
 325}
 326
 327#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 328
 329static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 330{
 331	if (sk->sk_flags & flags) {
 332		sk->sk_flags &= ~flags;
 333		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 
 334			net_disable_timestamp();
 335	}
 336}
 337
 338
 339int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 340{
 341	int err;
 342	int skb_len;
 343	unsigned long flags;
 344	struct sk_buff_head *list = &sk->sk_receive_queue;
 345
 346	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 347		atomic_inc(&sk->sk_drops);
 348		trace_sock_rcvqueue_full(sk, skb);
 349		return -ENOMEM;
 350	}
 351
 352	err = sk_filter(sk, skb);
 353	if (err)
 354		return err;
 355
 356	if (!sk_rmem_schedule(sk, skb->truesize)) {
 357		atomic_inc(&sk->sk_drops);
 358		return -ENOBUFS;
 359	}
 360
 361	skb->dev = NULL;
 362	skb_set_owner_r(skb, sk);
 363
 364	/* Cache the SKB length before we tack it onto the receive
 365	 * queue.  Once it is added it no longer belongs to us and
 366	 * may be freed by other threads of control pulling packets
 367	 * from the queue.
 368	 */
 369	skb_len = skb->len;
 370
 371	/* we escape from rcu protected region, make sure we dont leak
 372	 * a norefcounted dst
 373	 */
 374	skb_dst_force(skb);
 375
 376	spin_lock_irqsave(&list->lock, flags);
 377	skb->dropcount = atomic_read(&sk->sk_drops);
 378	__skb_queue_tail(list, skb);
 379	spin_unlock_irqrestore(&list->lock, flags);
 380
 381	if (!sock_flag(sk, SOCK_DEAD))
 382		sk->sk_data_ready(sk, skb_len);
 383	return 0;
 384}
 385EXPORT_SYMBOL(sock_queue_rcv_skb);
 386
 387int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388{
 389	int rc = NET_RX_SUCCESS;
 390
 391	if (sk_filter(sk, skb))
 392		goto discard_and_relse;
 393
 394	skb->dev = NULL;
 395
 396	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
 397		atomic_inc(&sk->sk_drops);
 398		goto discard_and_relse;
 399	}
 400	if (nested)
 401		bh_lock_sock_nested(sk);
 402	else
 403		bh_lock_sock(sk);
 404	if (!sock_owned_by_user(sk)) {
 405		/*
 406		 * trylock + unlock semantics:
 407		 */
 408		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 409
 410		rc = sk_backlog_rcv(sk, skb);
 411
 412		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 413	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 414		bh_unlock_sock(sk);
 415		atomic_inc(&sk->sk_drops);
 416		goto discard_and_relse;
 417	}
 418
 419	bh_unlock_sock(sk);
 420out:
 421	sock_put(sk);
 
 422	return rc;
 423discard_and_relse:
 424	kfree_skb(skb);
 425	goto out;
 426}
 427EXPORT_SYMBOL(sk_receive_skb);
 428
 429void sk_reset_txq(struct sock *sk)
 430{
 431	sk_tx_queue_clear(sk);
 432}
 433EXPORT_SYMBOL(sk_reset_txq);
 434
 
 
 
 
 435struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 436{
 437	struct dst_entry *dst = __sk_dst_get(sk);
 438
 439	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 440		sk_tx_queue_clear(sk);
 
 441		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 442		dst_release(dst);
 443		return NULL;
 444	}
 445
 446	return dst;
 447}
 448EXPORT_SYMBOL(__sk_dst_check);
 449
 450struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 451{
 452	struct dst_entry *dst = sk_dst_get(sk);
 453
 454	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 455		sk_dst_reset(sk);
 456		dst_release(dst);
 457		return NULL;
 458	}
 459
 460	return dst;
 461}
 462EXPORT_SYMBOL(sk_dst_check);
 463
 464static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
 465{
 466	int ret = -ENOPROTOOPT;
 467#ifdef CONFIG_NETDEVICES
 468	struct net *net = sock_net(sk);
 469	char devname[IFNAMSIZ];
 470	int index;
 471
 472	/* Sorry... */
 473	ret = -EPERM;
 474	if (!capable(CAP_NET_RAW))
 
 
 
 
 475		goto out;
 476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	ret = -EINVAL;
 478	if (optlen < 0)
 479		goto out;
 480
 481	/* Bind this socket to a particular device like "eth0",
 482	 * as specified in the passed interface name. If the
 483	 * name is "" or the option length is zero the socket
 484	 * is not bound.
 485	 */
 486	if (optlen > IFNAMSIZ - 1)
 487		optlen = IFNAMSIZ - 1;
 488	memset(devname, 0, sizeof(devname));
 489
 490	ret = -EFAULT;
 491	if (copy_from_user(devname, optval, optlen))
 492		goto out;
 493
 494	index = 0;
 495	if (devname[0] != '\0') {
 496		struct net_device *dev;
 497
 498		rcu_read_lock();
 499		dev = dev_get_by_name_rcu(net, devname);
 500		if (dev)
 501			index = dev->ifindex;
 502		rcu_read_unlock();
 503		ret = -ENODEV;
 504		if (!dev)
 505			goto out;
 506	}
 507
 508	lock_sock(sk);
 509	sk->sk_bound_dev_if = index;
 510	sk_dst_reset(sk);
 511	release_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	ret = 0;
 514
 515out:
 516#endif
 517
 518	return ret;
 519}
 520
 521static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 522{
 523	if (valbool)
 524		sock_set_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525	else
 526		sock_reset_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527}
 528
 529/*
 530 *	This is meant for all protocols to use and covers goings on
 531 *	at the socket level. Everything here is generic.
 532 */
 533
 534int sock_setsockopt(struct socket *sock, int level, int optname,
 535		    char __user *optval, unsigned int optlen)
 536{
 537	struct sock *sk = sock->sk;
 
 
 538	int val;
 539	int valbool;
 540	struct linger ling;
 541	int ret = 0;
 542
 543	/*
 544	 *	Options without arguments
 545	 */
 546
 547	if (optname == SO_BINDTODEVICE)
 548		return sock_bindtodevice(sk, optval, optlen);
 549
 550	if (optlen < sizeof(int))
 551		return -EINVAL;
 552
 553	if (get_user(val, (int __user *)optval))
 554		return -EFAULT;
 555
 556	valbool = val ? 1 : 0;
 557
 558	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559
 560	switch (optname) {
 561	case SO_DEBUG:
 562		if (val && !capable(CAP_NET_ADMIN))
 563			ret = -EACCES;
 564		else
 565			sock_valbool_flag(sk, SOCK_DBG, valbool);
 566		break;
 567	case SO_REUSEADDR:
 568		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 569		break;
 570	case SO_TYPE:
 571	case SO_PROTOCOL:
 572	case SO_DOMAIN:
 573	case SO_ERROR:
 574		ret = -ENOPROTOOPT;
 575		break;
 576	case SO_DONTROUTE:
 577		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 578		break;
 579	case SO_BROADCAST:
 580		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 581		break;
 582	case SO_SNDBUF:
 583		/* Don't error on this BSD doesn't and if you think
 584		 * about it this is right. Otherwise apps have to
 585		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 586		 * are treated in BSD as hints
 587		 */
 588		val = min_t(u32, val, sysctl_wmem_max);
 589set_sndbuf:
 
 
 
 
 590		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 591		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
 
 592		/* Wake up sending tasks if we upped the value. */
 593		sk->sk_write_space(sk);
 594		break;
 595
 596	case SO_SNDBUFFORCE:
 597		if (!capable(CAP_NET_ADMIN)) {
 598			ret = -EPERM;
 599			break;
 600		}
 
 
 
 
 
 
 601		goto set_sndbuf;
 602
 603	case SO_RCVBUF:
 604		/* Don't error on this BSD doesn't and if you think
 605		 * about it this is right. Otherwise apps have to
 606		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 607		 * are treated in BSD as hints
 608		 */
 609		val = min_t(u32, val, sysctl_rmem_max);
 610set_rcvbuf:
 611		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 612		/*
 613		 * We double it on the way in to account for
 614		 * "struct sk_buff" etc. overhead.   Applications
 615		 * assume that the SO_RCVBUF setting they make will
 616		 * allow that much actual data to be received on that
 617		 * socket.
 618		 *
 619		 * Applications are unaware that "struct sk_buff" and
 620		 * other overheads allocate from the receive buffer
 621		 * during socket buffer allocation.
 622		 *
 623		 * And after considering the possible alternatives,
 624		 * returning the value we actually used in getsockopt
 625		 * is the most desirable behavior.
 626		 */
 627		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
 628		break;
 629
 630	case SO_RCVBUFFORCE:
 631		if (!capable(CAP_NET_ADMIN)) {
 632			ret = -EPERM;
 633			break;
 634		}
 635		goto set_rcvbuf;
 
 
 
 
 
 636
 637	case SO_KEEPALIVE:
 638#ifdef CONFIG_INET
 639		if (sk->sk_protocol == IPPROTO_TCP)
 640			tcp_set_keepalive(sk, valbool);
 641#endif
 642		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 643		break;
 644
 645	case SO_OOBINLINE:
 646		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 647		break;
 648
 649	case SO_NO_CHECK:
 650		sk->sk_no_check = valbool;
 651		break;
 652
 653	case SO_PRIORITY:
 654		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
 655			sk->sk_priority = val;
 656		else
 657			ret = -EPERM;
 658		break;
 659
 660	case SO_LINGER:
 661		if (optlen < sizeof(ling)) {
 662			ret = -EINVAL;	/* 1003.1g */
 663			break;
 664		}
 665		if (copy_from_user(&ling, optval, sizeof(ling))) {
 666			ret = -EFAULT;
 667			break;
 668		}
 669		if (!ling.l_onoff)
 670			sock_reset_flag(sk, SOCK_LINGER);
 671		else {
 672#if (BITS_PER_LONG == 32)
 673			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 674				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 
 675			else
 676#endif
 677				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 678			sock_set_flag(sk, SOCK_LINGER);
 679		}
 680		break;
 681
 682	case SO_BSDCOMPAT:
 683		sock_warn_obsolete_bsdism("setsockopt");
 684		break;
 685
 686	case SO_PASSCRED:
 687		if (valbool)
 688			set_bit(SOCK_PASSCRED, &sock->flags);
 689		else
 690			clear_bit(SOCK_PASSCRED, &sock->flags);
 691		break;
 692
 693	case SO_TIMESTAMP:
 694	case SO_TIMESTAMPNS:
 695		if (valbool)  {
 696			if (optname == SO_TIMESTAMP)
 697				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 698			else
 699				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 700			sock_set_flag(sk, SOCK_RCVTSTAMP);
 701			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 702		} else {
 703			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 704			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 705		}
 
 706		break;
 707
 708	case SO_TIMESTAMPING:
 709		if (val & ~SOF_TIMESTAMPING_MASK) {
 710			ret = -EINVAL;
 711			break;
 712		}
 713		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 714				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 715		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 716				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 717		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 718				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 719		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 720			sock_enable_timestamp(sk,
 721					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 722		else
 723			sock_disable_timestamp(sk,
 724					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 725		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 726				  val & SOF_TIMESTAMPING_SOFTWARE);
 727		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 728				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 729		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 730				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 731		break;
 732
 733	case SO_RCVLOWAT:
 734		if (val < 0)
 735			val = INT_MAX;
 736		sk->sk_rcvlowat = val ? : 1;
 
 
 
 
 
 
 
 
 
 
 
 737		break;
 738
 739	case SO_RCVTIMEO:
 740		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 
 741		break;
 742
 743	case SO_SNDTIMEO:
 744		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 
 
 
 745		break;
 
 
 
 
 
 746
 747	case SO_ATTACH_FILTER:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748		ret = -EINVAL;
 749		if (optlen == sizeof(struct sock_fprog)) {
 750			struct sock_fprog fprog;
 751
 752			ret = -EFAULT;
 753			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 754				break;
 755
 756			ret = sk_attach_filter(&fprog, sk);
 757		}
 758		break;
 759
 
 
 
 
 760	case SO_DETACH_FILTER:
 761		ret = sk_detach_filter(sk);
 762		break;
 763
 764	case SO_PASSSEC:
 765		if (valbool)
 766			set_bit(SOCK_PASSSEC, &sock->flags);
 767		else
 768			clear_bit(SOCK_PASSSEC, &sock->flags);
 769		break;
 
 770	case SO_MARK:
 771		if (!capable(CAP_NET_ADMIN))
 
 772			ret = -EPERM;
 773		else
 774			sk->sk_mark = val;
 
 
 
 
 
 775		break;
 776
 777		/* We implement the SO_SNDLOWAT etc to
 778		   not be settable (1003.1g 5.3) */
 779	case SO_RXQ_OVFL:
 780		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 781		break;
 782
 783	case SO_WIFI_STATUS:
 784		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 785		break;
 786
 787	case SO_PEEK_OFF:
 788		if (sock->ops->set_peek_off)
 789			sock->ops->set_peek_off(sk, val);
 790		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791			ret = -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792		break;
 793
 794	case SO_NOFCS:
 795		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796		break;
 
 797
 798	default:
 799		ret = -ENOPROTOOPT;
 800		break;
 801	}
 802	release_sock(sk);
 803	return ret;
 804}
 
 
 
 
 
 
 
 805EXPORT_SYMBOL(sock_setsockopt);
 806
 
 
 
 
 
 
 
 807
 808void cred_to_ucred(struct pid *pid, const struct cred *cred,
 809		   struct ucred *ucred)
 
 
 
 810{
 811	ucred->pid = pid_vnr(pid);
 812	ucred->uid = ucred->gid = -1;
 813	if (cred) {
 814		struct user_namespace *current_ns = current_user_ns();
 815
 816		ucred->uid = from_kuid(current_ns, cred->euid);
 817		ucred->gid = from_kgid(current_ns, cred->egid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 818	}
 
 
 819}
 820EXPORT_SYMBOL_GPL(cred_to_ucred);
 821
 822int sock_getsockopt(struct socket *sock, int level, int optname,
 823		    char __user *optval, int __user *optlen)
 824{
 825	struct sock *sk = sock->sk;
 826
 827	union {
 828		int val;
 
 
 829		struct linger ling;
 830		struct timeval tm;
 
 
 
 
 831	} v;
 832
 833	int lv = sizeof(int);
 834	int len;
 835
 836	if (get_user(len, optlen))
 837		return -EFAULT;
 838	if (len < 0)
 839		return -EINVAL;
 840
 841	memset(&v, 0, sizeof(v));
 842
 843	switch (optname) {
 844	case SO_DEBUG:
 845		v.val = sock_flag(sk, SOCK_DBG);
 846		break;
 847
 848	case SO_DONTROUTE:
 849		v.val = sock_flag(sk, SOCK_LOCALROUTE);
 850		break;
 851
 852	case SO_BROADCAST:
 853		v.val = sock_flag(sk, SOCK_BROADCAST);
 854		break;
 855
 856	case SO_SNDBUF:
 857		v.val = sk->sk_sndbuf;
 858		break;
 859
 860	case SO_RCVBUF:
 861		v.val = sk->sk_rcvbuf;
 862		break;
 863
 864	case SO_REUSEADDR:
 865		v.val = sk->sk_reuse;
 866		break;
 867
 
 
 
 
 868	case SO_KEEPALIVE:
 869		v.val = sock_flag(sk, SOCK_KEEPOPEN);
 870		break;
 871
 872	case SO_TYPE:
 873		v.val = sk->sk_type;
 874		break;
 875
 876	case SO_PROTOCOL:
 877		v.val = sk->sk_protocol;
 878		break;
 879
 880	case SO_DOMAIN:
 881		v.val = sk->sk_family;
 882		break;
 883
 884	case SO_ERROR:
 885		v.val = -sock_error(sk);
 886		if (v.val == 0)
 887			v.val = xchg(&sk->sk_err_soft, 0);
 888		break;
 889
 890	case SO_OOBINLINE:
 891		v.val = sock_flag(sk, SOCK_URGINLINE);
 892		break;
 893
 894	case SO_NO_CHECK:
 895		v.val = sk->sk_no_check;
 896		break;
 897
 898	case SO_PRIORITY:
 899		v.val = sk->sk_priority;
 900		break;
 901
 902	case SO_LINGER:
 903		lv		= sizeof(v.ling);
 904		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
 905		v.ling.l_linger	= sk->sk_lingertime / HZ;
 906		break;
 907
 908	case SO_BSDCOMPAT:
 909		sock_warn_obsolete_bsdism("getsockopt");
 910		break;
 911
 912	case SO_TIMESTAMP:
 913		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
 914				!sock_flag(sk, SOCK_RCVTSTAMPNS);
 915		break;
 916
 917	case SO_TIMESTAMPNS:
 918		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 919		break;
 920
 921	case SO_TIMESTAMPING:
 922		v.val = 0;
 923		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 924			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
 925		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 926			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
 927		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
 928			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
 929		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
 930			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
 931		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
 932			v.val |= SOF_TIMESTAMPING_SOFTWARE;
 933		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
 934			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
 935		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
 936			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
 937		break;
 938
 939	case SO_RCVTIMEO:
 940		lv = sizeof(struct timeval);
 941		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
 942			v.tm.tv_sec = 0;
 943			v.tm.tv_usec = 0;
 944		} else {
 945			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
 946			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
 947		}
 948		break;
 949
 950	case SO_SNDTIMEO:
 951		lv = sizeof(struct timeval);
 952		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
 953			v.tm.tv_sec = 0;
 954			v.tm.tv_usec = 0;
 955		} else {
 956			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
 957			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
 958		}
 
 959		break;
 960
 961	case SO_RCVLOWAT:
 962		v.val = sk->sk_rcvlowat;
 963		break;
 964
 965	case SO_SNDLOWAT:
 966		v.val = 1;
 967		break;
 968
 969	case SO_PASSCRED:
 970		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
 971		break;
 972
 
 
 
 
 973	case SO_PEERCRED:
 974	{
 975		struct ucred peercred;
 976		if (len > sizeof(peercred))
 977			len = sizeof(peercred);
 
 
 978		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 979		if (copy_to_user(optval, &peercred, len))
 
 
 980			return -EFAULT;
 981		goto lenout;
 982	}
 983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984	case SO_PEERNAME:
 985	{
 986		char address[128];
 987
 988		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
 989			return -ENOTCONN;
 990		if (lv < len)
 991			return -EINVAL;
 992		if (copy_to_user(optval, address, len))
 993			return -EFAULT;
 994		goto lenout;
 995	}
 996
 997	/* Dubious BSD thing... Probably nobody even uses it, but
 998	 * the UNIX standard wants it for whatever reason... -DaveM
 999	 */
1000	case SO_ACCEPTCONN:
1001		v.val = sk->sk_state == TCP_LISTEN;
1002		break;
1003
1004	case SO_PASSSEC:
1005		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006		break;
1007
1008	case SO_PEERSEC:
1009		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1010
1011	case SO_MARK:
1012		v.val = sk->sk_mark;
 
 
 
 
1013		break;
1014
1015	case SO_RXQ_OVFL:
1016		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017		break;
1018
1019	case SO_WIFI_STATUS:
1020		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021		break;
1022
1023	case SO_PEEK_OFF:
1024		if (!sock->ops->set_peek_off)
1025			return -EOPNOTSUPP;
1026
1027		v.val = sk->sk_peek_off;
1028		break;
1029	case SO_NOFCS:
1030		v.val = sock_flag(sk, SOCK_NOFCS);
1031		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	default:
 
 
 
1033		return -ENOPROTOOPT;
1034	}
1035
1036	if (len > lv)
1037		len = lv;
1038	if (copy_to_user(optval, &v, len))
1039		return -EFAULT;
1040lenout:
1041	if (put_user(len, optlen))
1042		return -EFAULT;
1043	return 0;
1044}
1045
1046/*
1047 * Initialize an sk_lock.
1048 *
1049 * (We also register the sk_lock with the lock validator.)
1050 */
1051static inline void sock_lock_init(struct sock *sk)
1052{
1053	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
1054			af_family_slock_key_strings[sk->sk_family],
1055			af_family_slock_keys + sk->sk_family,
1056			af_family_key_strings[sk->sk_family],
1057			af_family_keys + sk->sk_family);
1058}
1059
1060/*
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1064 */
1065static void sock_copy(struct sock *nsk, const struct sock *osk)
1066{
 
1067#ifdef CONFIG_SECURITY_NETWORK
1068	void *sptr = nsk->sk_security;
1069#endif
 
 
 
 
 
 
 
 
 
 
1070	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1071
1072	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
1074
1075#ifdef CONFIG_SECURITY_NETWORK
1076	nsk->sk_security = sptr;
1077	security_sk_clone(osk, nsk);
1078#endif
1079}
1080
1081/*
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1084 */
1085static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1086{
1087	if (offsetof(struct sock, sk_node.next) != 0)
1088		memset(sk, 0, offsetof(struct sock, sk_node.next));
1089	memset(&sk->sk_node.pprev, 0,
1090	       size - offsetof(struct sock, sk_node.pprev));
1091}
1092
1093void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1094{
1095	unsigned long nulls1, nulls2;
1096
1097	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099	if (nulls1 > nulls2)
1100		swap(nulls1, nulls2);
1101
1102	if (nulls1 != 0)
1103		memset((char *)sk, 0, nulls1);
1104	memset((char *)sk + nulls1 + sizeof(void *), 0,
1105	       nulls2 - nulls1 - sizeof(void *));
1106	memset((char *)sk + nulls2 + sizeof(void *), 0,
1107	       size - nulls2 - sizeof(void *));
1108}
1109EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1110
1111static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112		int family)
1113{
1114	struct sock *sk;
1115	struct kmem_cache *slab;
1116
1117	slab = prot->slab;
1118	if (slab != NULL) {
1119		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120		if (!sk)
1121			return sk;
1122		if (priority & __GFP_ZERO) {
1123			if (prot->clear_sk)
1124				prot->clear_sk(sk, prot->obj_size);
1125			else
1126				sk_prot_clear_nulls(sk, prot->obj_size);
1127		}
1128	} else
1129		sk = kmalloc(prot->obj_size, priority);
1130
1131	if (sk != NULL) {
1132		kmemcheck_annotate_bitfield(sk, flags);
1133
1134		if (security_sk_alloc(sk, family, priority))
1135			goto out_free;
1136
1137		if (!try_module_get(prot->owner))
1138			goto out_free_sec;
1139		sk_tx_queue_clear(sk);
1140	}
1141
1142	return sk;
1143
1144out_free_sec:
1145	security_sk_free(sk);
1146out_free:
1147	if (slab != NULL)
1148		kmem_cache_free(slab, sk);
1149	else
1150		kfree(sk);
1151	return NULL;
1152}
1153
1154static void sk_prot_free(struct proto *prot, struct sock *sk)
1155{
1156	struct kmem_cache *slab;
1157	struct module *owner;
1158
1159	owner = prot->owner;
1160	slab = prot->slab;
1161
 
 
1162	security_sk_free(sk);
1163	if (slab != NULL)
1164		kmem_cache_free(slab, sk);
1165	else
1166		kfree(sk);
1167	module_put(owner);
1168}
1169
1170#ifdef CONFIG_CGROUPS
1171void sock_update_classid(struct sock *sk)
1172{
1173	u32 classid;
1174
1175	rcu_read_lock();  /* doing current task, which cannot vanish. */
1176	classid = task_cls_classid(current);
1177	rcu_read_unlock();
1178	if (classid && classid != sk->sk_classid)
1179		sk->sk_classid = classid;
1180}
1181EXPORT_SYMBOL(sock_update_classid);
1182
1183void sock_update_netprioidx(struct sock *sk)
1184{
1185	if (in_interrupt())
1186		return;
1187
1188	sk->sk_cgrp_prioidx = task_netprioidx(current);
1189}
1190EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191#endif
1192
1193/**
1194 *	sk_alloc - All socket objects are allocated here
1195 *	@net: the applicable net namespace
1196 *	@family: protocol family
1197 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 *	@prot: struct proto associated with this new sock instance
 
1199 */
1200struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201		      struct proto *prot)
1202{
1203	struct sock *sk;
1204
1205	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206	if (sk) {
1207		sk->sk_family = family;
1208		/*
1209		 * See comment in struct sock definition to understand
1210		 * why we need sk_prot_creator -acme
1211		 */
1212		sk->sk_prot = sk->sk_prot_creator = prot;
 
1213		sock_lock_init(sk);
1214		sock_net_set(sk, get_net(net));
1215		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
 
 
 
 
 
 
 
1216
1217		sock_update_classid(sk);
1218		sock_update_netprioidx(sk);
 
 
 
1219	}
1220
1221	return sk;
1222}
1223EXPORT_SYMBOL(sk_alloc);
1224
1225static void __sk_free(struct sock *sk)
 
 
 
1226{
 
 
1227	struct sk_filter *filter;
1228
1229	if (sk->sk_destruct)
1230		sk->sk_destruct(sk);
1231
1232	filter = rcu_dereference_check(sk->sk_filter,
1233				       atomic_read(&sk->sk_wmem_alloc) == 0);
1234	if (filter) {
1235		sk_filter_uncharge(sk, filter);
1236		RCU_INIT_POINTER(sk->sk_filter, NULL);
1237	}
1238
1239	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1240
 
 
 
 
1241	if (atomic_read(&sk->sk_omem_alloc))
1242		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243			 __func__, atomic_read(&sk->sk_omem_alloc));
1244
1245	if (sk->sk_peer_cred)
1246		put_cred(sk->sk_peer_cred);
 
 
 
 
 
1247	put_pid(sk->sk_peer_pid);
1248	put_net(sock_net(sk));
 
 
 
 
 
 
1249	sk_prot_free(sk->sk_prot_creator, sk);
1250}
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252void sk_free(struct sock *sk)
1253{
1254	/*
1255	 * We subtract one from sk_wmem_alloc and can know if
1256	 * some packets are still in some tx queue.
1257	 * If not null, sock_wfree() will call __sk_free(sk) later
1258	 */
1259	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260		__sk_free(sk);
1261}
1262EXPORT_SYMBOL(sk_free);
1263
1264/*
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1270 */
1271void sk_release_kernel(struct sock *sk)
1272{
1273	if (sk == NULL || sk->sk_socket == NULL)
1274		return;
 
1275
1276	sock_hold(sk);
1277	sock_release(sk->sk_socket);
1278	release_net(sock_net(sk));
1279	sock_net_set(sk, get_net(&init_net));
1280	sock_put(sk);
1281}
1282EXPORT_SYMBOL(sk_release_kernel);
1283
1284static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1285{
1286	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287		sock_update_memcg(newsk);
 
 
 
 
 
 
1288}
1289
1290/**
1291 *	sk_clone_lock - clone a socket, and lock its clone
1292 *	@sk: the socket to clone
1293 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1294 *
1295 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1296 */
1297struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1298{
 
 
 
1299	struct sock *newsk;
1300
1301	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302	if (newsk != NULL) {
1303		struct sk_filter *filter;
1304
1305		sock_copy(newsk, sk);
1306
1307		/* SANITY */
1308		get_net(sock_net(newsk));
1309		sk_node_init(&newsk->sk_node);
1310		sock_lock_init(newsk);
1311		bh_lock_sock(newsk);
1312		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1313		newsk->sk_backlog.len = 0;
1314
1315		atomic_set(&newsk->sk_rmem_alloc, 0);
1316		/*
1317		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
 
 
 
 
 
 
 
 
1318		 */
1319		atomic_set(&newsk->sk_wmem_alloc, 1);
1320		atomic_set(&newsk->sk_omem_alloc, 0);
1321		skb_queue_head_init(&newsk->sk_receive_queue);
1322		skb_queue_head_init(&newsk->sk_write_queue);
1323#ifdef CONFIG_NET_DMA
1324		skb_queue_head_init(&newsk->sk_async_wait_queue);
1325#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326
1327		spin_lock_init(&newsk->sk_dst_lock);
1328		rwlock_init(&newsk->sk_callback_lock);
1329		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330				af_callback_keys + newsk->sk_family,
1331				af_family_clock_key_strings[newsk->sk_family]);
1332
1333		newsk->sk_dst_cache	= NULL;
1334		newsk->sk_wmem_queued	= 0;
1335		newsk->sk_forward_alloc = 0;
1336		newsk->sk_send_head	= NULL;
1337		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1338
1339		sock_reset_flag(newsk, SOCK_DONE);
1340		skb_queue_head_init(&newsk->sk_error_queue);
1341
1342		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1343		if (filter != NULL)
1344			sk_filter_charge(newsk, filter);
1345
1346		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347			/* It is still raw copy of parent, so invalidate
1348			 * destructor and make plain sk_free() */
1349			newsk->sk_destruct = NULL;
1350			bh_unlock_sock(newsk);
1351			sk_free(newsk);
1352			newsk = NULL;
1353			goto out;
1354		}
1355
1356		newsk->sk_err	   = 0;
1357		newsk->sk_priority = 0;
1358		/*
1359		 * Before updating sk_refcnt, we must commit prior changes to memory
1360		 * (Documentation/RCU/rculist_nulls.txt for details)
 
1361		 */
1362		smp_wmb();
1363		atomic_set(&newsk->sk_refcnt, 2);
 
1364
1365		/*
1366		 * Increment the counter in the same struct proto as the master
1367		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368		 * is the same as sk->sk_prot->socks, as this field was copied
1369		 * with memcpy).
1370		 *
1371		 * This _changes_ the previous behaviour, where
1372		 * tcp_create_openreq_child always was incrementing the
1373		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374		 * to be taken into account in all callers. -acme
1375		 */
1376		sk_refcnt_debug_inc(newsk);
1377		sk_set_socket(newsk, NULL);
1378		newsk->sk_wq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379
1380		sk_update_clone(sk, newsk);
 
 
1381
1382		if (newsk->sk_prot->sockets_allocated)
1383			sk_sockets_allocated_inc(newsk);
1384
1385		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1386			net_enable_timestamp();
1387	}
1388out:
1389	return newsk;
1390}
1391EXPORT_SYMBOL_GPL(sk_clone_lock);
1392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1394{
1395	__sk_dst_set(sk, dst);
 
1396	sk->sk_route_caps = dst->dev->features;
 
 
1397	if (sk->sk_route_caps & NETIF_F_GSO)
1398		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
1400	if (sk_can_gso(sk)) {
1401		if (dst->header_len) {
1402			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403		} else {
1404			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405			sk->sk_gso_max_size = dst->dev->gso_max_size;
1406			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
 
1407		}
1408	}
 
 
1409}
1410EXPORT_SYMBOL_GPL(sk_setup_caps);
1411
1412void __init sk_init(void)
1413{
1414	if (totalram_pages <= 4096) {
1415		sysctl_wmem_max = 32767;
1416		sysctl_rmem_max = 32767;
1417		sysctl_wmem_default = 32767;
1418		sysctl_rmem_default = 32767;
1419	} else if (totalram_pages >= 131072) {
1420		sysctl_wmem_max = 131071;
1421		sysctl_rmem_max = 131071;
1422	}
1423}
1424
1425/*
1426 *	Simple resource managers for sockets.
1427 */
1428
1429
1430/*
1431 * Write buffer destructor automatically called from kfree_skb.
1432 */
1433void sock_wfree(struct sk_buff *skb)
1434{
1435	struct sock *sk = skb->sk;
1436	unsigned int len = skb->truesize;
 
1437
1438	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
1439		/*
1440		 * Keep a reference on sk_wmem_alloc, this will be released
1441		 * after sk_write_space() call
1442		 */
1443		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1444		sk->sk_write_space(sk);
1445		len = 1;
1446	}
1447	/*
1448	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1449	 * could not do because of in-flight packets
1450	 */
1451	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1452		__sk_free(sk);
1453}
1454EXPORT_SYMBOL(sock_wfree);
1455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456/*
1457 * Read buffer destructor automatically called from kfree_skb.
1458 */
1459void sock_rfree(struct sk_buff *skb)
1460{
1461	struct sock *sk = skb->sk;
1462	unsigned int len = skb->truesize;
1463
1464	atomic_sub(len, &sk->sk_rmem_alloc);
1465	sk_mem_uncharge(sk, len);
1466}
1467EXPORT_SYMBOL(sock_rfree);
1468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470int sock_i_uid(struct sock *sk)
1471{
1472	int uid;
1473
1474	read_lock_bh(&sk->sk_callback_lock);
1475	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1476	read_unlock_bh(&sk->sk_callback_lock);
1477	return uid;
1478}
1479EXPORT_SYMBOL(sock_i_uid);
1480
 
 
 
 
 
 
 
 
 
 
 
1481unsigned long sock_i_ino(struct sock *sk)
1482{
1483	unsigned long ino;
1484
1485	read_lock_bh(&sk->sk_callback_lock);
1486	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1487	read_unlock_bh(&sk->sk_callback_lock);
1488	return ino;
1489}
1490EXPORT_SYMBOL(sock_i_ino);
1491
1492/*
1493 * Allocate a skb from the socket's send buffer.
1494 */
1495struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1496			     gfp_t priority)
1497{
1498	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1499		struct sk_buff *skb = alloc_skb(size, priority);
 
1500		if (skb) {
1501			skb_set_owner_w(skb, sk);
1502			return skb;
1503		}
1504	}
1505	return NULL;
1506}
1507EXPORT_SYMBOL(sock_wmalloc);
1508
1509/*
1510 * Allocate a skb from the socket's receive buffer.
1511 */
1512struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
 
 
 
 
1513			     gfp_t priority)
1514{
1515	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1516		struct sk_buff *skb = alloc_skb(size, priority);
1517		if (skb) {
1518			skb_set_owner_r(skb, sk);
1519			return skb;
1520		}
1521	}
1522	return NULL;
 
 
 
 
 
 
 
1523}
1524
1525/*
1526 * Allocate a memory block from the socket's option memory buffer.
1527 */
1528void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1529{
1530	if ((unsigned int)size <= sysctl_optmem_max &&
1531	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
1532		void *mem;
1533		/* First do the add, to avoid the race if kmalloc
1534		 * might sleep.
1535		 */
1536		atomic_add(size, &sk->sk_omem_alloc);
1537		mem = kmalloc(size, priority);
1538		if (mem)
1539			return mem;
1540		atomic_sub(size, &sk->sk_omem_alloc);
1541	}
1542	return NULL;
1543}
1544EXPORT_SYMBOL(sock_kmalloc);
1545
1546/*
1547 * Free an option memory block.
 
1548 */
 
 
 
 
 
 
 
 
 
 
 
 
1549void sock_kfree_s(struct sock *sk, void *mem, int size)
1550{
1551	kfree(mem);
1552	atomic_sub(size, &sk->sk_omem_alloc);
1553}
1554EXPORT_SYMBOL(sock_kfree_s);
1555
 
 
 
 
 
 
1556/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1557   I think, these locks should be removed for datagram sockets.
1558 */
1559static long sock_wait_for_wmem(struct sock *sk, long timeo)
1560{
1561	DEFINE_WAIT(wait);
1562
1563	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1564	for (;;) {
1565		if (!timeo)
1566			break;
1567		if (signal_pending(current))
1568			break;
1569		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1570		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1571		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1572			break;
1573		if (sk->sk_shutdown & SEND_SHUTDOWN)
1574			break;
1575		if (sk->sk_err)
1576			break;
1577		timeo = schedule_timeout(timeo);
1578	}
1579	finish_wait(sk_sleep(sk), &wait);
1580	return timeo;
1581}
1582
1583
1584/*
1585 *	Generic send/receive buffer handlers
1586 */
1587
1588struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1589				     unsigned long data_len, int noblock,
1590				     int *errcode)
1591{
1592	struct sk_buff *skb;
1593	gfp_t gfp_mask;
1594	long timeo;
1595	int err;
1596	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1597
1598	err = -EMSGSIZE;
1599	if (npages > MAX_SKB_FRAGS)
1600		goto failure;
1601
1602	gfp_mask = sk->sk_allocation;
1603	if (gfp_mask & __GFP_WAIT)
1604		gfp_mask |= __GFP_REPEAT;
1605
1606	timeo = sock_sndtimeo(sk, noblock);
1607	while (1) {
1608		err = sock_error(sk);
1609		if (err != 0)
1610			goto failure;
1611
1612		err = -EPIPE;
1613		if (sk->sk_shutdown & SEND_SHUTDOWN)
1614			goto failure;
1615
1616		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1617			skb = alloc_skb(header_len, gfp_mask);
1618			if (skb) {
1619				int i;
1620
1621				/* No pages, we're done... */
1622				if (!data_len)
1623					break;
1624
1625				skb->truesize += data_len;
1626				skb_shinfo(skb)->nr_frags = npages;
1627				for (i = 0; i < npages; i++) {
1628					struct page *page;
1629
1630					page = alloc_pages(sk->sk_allocation, 0);
1631					if (!page) {
1632						err = -ENOBUFS;
1633						skb_shinfo(skb)->nr_frags = i;
1634						kfree_skb(skb);
1635						goto failure;
1636					}
1637
1638					__skb_fill_page_desc(skb, i,
1639							page, 0,
1640							(data_len >= PAGE_SIZE ?
1641							 PAGE_SIZE :
1642							 data_len));
1643					data_len -= PAGE_SIZE;
1644				}
1645
1646				/* Full success... */
1647				break;
1648			}
1649			err = -ENOBUFS;
1650			goto failure;
1651		}
1652		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1653		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1654		err = -EAGAIN;
1655		if (!timeo)
1656			goto failure;
1657		if (signal_pending(current))
1658			goto interrupted;
1659		timeo = sock_wait_for_wmem(sk, timeo);
1660	}
1661
1662	skb_set_owner_w(skb, sk);
 
 
1663	return skb;
1664
1665interrupted:
1666	err = sock_intr_errno(timeo);
1667failure:
1668	*errcode = err;
1669	return NULL;
1670}
1671EXPORT_SYMBOL(sock_alloc_send_pskb);
1672
1673struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1674				    int noblock, int *errcode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675{
1676	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677}
1678EXPORT_SYMBOL(sock_alloc_send_skb);
1679
1680static void __lock_sock(struct sock *sk)
1681	__releases(&sk->sk_lock.slock)
1682	__acquires(&sk->sk_lock.slock)
1683{
1684	DEFINE_WAIT(wait);
1685
1686	for (;;) {
1687		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1688					TASK_UNINTERRUPTIBLE);
1689		spin_unlock_bh(&sk->sk_lock.slock);
1690		schedule();
1691		spin_lock_bh(&sk->sk_lock.slock);
1692		if (!sock_owned_by_user(sk))
1693			break;
1694	}
1695	finish_wait(&sk->sk_lock.wq, &wait);
1696}
1697
1698static void __release_sock(struct sock *sk)
1699	__releases(&sk->sk_lock.slock)
1700	__acquires(&sk->sk_lock.slock)
1701{
1702	struct sk_buff *skb = sk->sk_backlog.head;
1703
1704	do {
1705		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1706		bh_unlock_sock(sk);
 
1707
1708		do {
1709			struct sk_buff *next = skb->next;
1710
1711			prefetch(next);
1712			WARN_ON_ONCE(skb_dst_is_noref(skb));
1713			skb->next = NULL;
1714			sk_backlog_rcv(sk, skb);
1715
1716			/*
1717			 * We are in process context here with softirqs
1718			 * disabled, use cond_resched_softirq() to preempt.
1719			 * This is safe to do because we've taken the backlog
1720			 * queue private:
1721			 */
1722			cond_resched_softirq();
1723
1724			skb = next;
1725		} while (skb != NULL);
1726
1727		bh_lock_sock(sk);
1728	} while ((skb = sk->sk_backlog.head) != NULL);
1729
1730	/*
1731	 * Doing the zeroing here guarantee we can not loop forever
1732	 * while a wild producer attempts to flood us.
1733	 */
1734	sk->sk_backlog.len = 0;
1735}
1736
 
 
 
 
 
 
 
 
 
 
 
 
 
1737/**
1738 * sk_wait_data - wait for data to arrive at sk_receive_queue
1739 * @sk:    sock to wait on
1740 * @timeo: for how long
 
1741 *
1742 * Now socket state including sk->sk_err is changed only under lock,
1743 * hence we may omit checks after joining wait queue.
1744 * We check receive queue before schedule() only as optimization;
1745 * it is very likely that release_sock() added new data.
1746 */
1747int sk_wait_data(struct sock *sk, long *timeo)
1748{
 
1749	int rc;
1750	DEFINE_WAIT(wait);
1751
1752	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1753	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1754	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1755	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1756	finish_wait(sk_sleep(sk), &wait);
1757	return rc;
1758}
1759EXPORT_SYMBOL(sk_wait_data);
1760
1761/**
1762 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1763 *	@sk: socket
1764 *	@size: memory size to allocate
 
1765 *	@kind: allocation type
1766 *
1767 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1768 *	rmem allocation. This function assumes that protocols which have
1769 *	memory_pressure use sk_wmem_queued as write buffer accounting.
 
 
 
 
1770 */
1771int __sk_mem_schedule(struct sock *sk, int size, int kind)
1772{
 
1773	struct proto *prot = sk->sk_prot;
1774	int amt = sk_mem_pages(size);
1775	long allocated;
1776	int parent_status = UNDER_LIMIT;
1777
1778	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
 
1779
1780	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
 
 
 
 
1781
1782	/* Under limit. */
1783	if (parent_status == UNDER_LIMIT &&
1784			allocated <= sk_prot_mem_limits(sk, 0)) {
1785		sk_leave_memory_pressure(sk);
1786		return 1;
1787	}
1788
1789	/* Under pressure. (we or our parents) */
1790	if ((parent_status > SOFT_LIMIT) ||
1791			allocated > sk_prot_mem_limits(sk, 1))
1792		sk_enter_memory_pressure(sk);
1793
1794	/* Over hard limit (we or our parents) */
1795	if ((parent_status == OVER_LIMIT) ||
1796			(allocated > sk_prot_mem_limits(sk, 2)))
1797		goto suppress_allocation;
1798
1799	/* guarantee minimum buffer size under pressure */
 
 
 
 
 
 
 
1800	if (kind == SK_MEM_RECV) {
1801		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1802			return 1;
1803
1804	} else { /* SK_MEM_SEND */
 
 
1805		if (sk->sk_type == SOCK_STREAM) {
1806			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1807				return 1;
1808		} else if (atomic_read(&sk->sk_wmem_alloc) <
1809			   prot->sysctl_wmem[0])
1810				return 1;
 
1811	}
1812
1813	if (sk_has_memory_pressure(sk)) {
1814		int alloc;
1815
1816		if (!sk_under_memory_pressure(sk))
 
 
 
 
1817			return 1;
 
 
 
 
 
1818		alloc = sk_sockets_allocated_read_positive(sk);
1819		if (sk_prot_mem_limits(sk, 2) > alloc *
1820		    sk_mem_pages(sk->sk_wmem_queued +
1821				 atomic_read(&sk->sk_rmem_alloc) +
1822				 sk->sk_forward_alloc))
1823			return 1;
1824	}
1825
1826suppress_allocation:
1827
1828	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1829		sk_stream_moderate_sndbuf(sk);
1830
1831		/* Fail only if socket is _under_ its sndbuf.
1832		 * In this case we cannot block, so that we have to fail.
1833		 */
1834		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
1835			return 1;
 
1836	}
1837
1838	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
1839
1840	/* Alas. Undo changes. */
1841	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1842
1843	sk_memory_allocated_sub(sk, amt);
 
1844
1845	return 0;
1846}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847EXPORT_SYMBOL(__sk_mem_schedule);
1848
1849/**
1850 *	__sk_reclaim - reclaim memory_allocated
1851 *	@sk: socket
 
 
 
1852 */
1853void __sk_mem_reclaim(struct sock *sk)
1854{
1855	sk_memory_allocated_sub(sk,
1856				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1857	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
 
1858
1859	if (sk_under_memory_pressure(sk) &&
1860	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1861		sk_leave_memory_pressure(sk);
1862}
 
 
 
 
 
 
 
 
 
 
 
 
1863EXPORT_SYMBOL(__sk_mem_reclaim);
1864
 
 
 
 
 
 
1865
1866/*
1867 * Set of default routines for initialising struct proto_ops when
1868 * the protocol does not support a particular function. In certain
1869 * cases where it makes no sense for a protocol to have a "do nothing"
1870 * function, some default processing is provided.
1871 */
1872
1873int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1874{
1875	return -EOPNOTSUPP;
1876}
1877EXPORT_SYMBOL(sock_no_bind);
1878
1879int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1880		    int len, int flags)
1881{
1882	return -EOPNOTSUPP;
1883}
1884EXPORT_SYMBOL(sock_no_connect);
1885
1886int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1887{
1888	return -EOPNOTSUPP;
1889}
1890EXPORT_SYMBOL(sock_no_socketpair);
1891
1892int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
1893{
1894	return -EOPNOTSUPP;
1895}
1896EXPORT_SYMBOL(sock_no_accept);
1897
1898int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1899		    int *len, int peer)
1900{
1901	return -EOPNOTSUPP;
1902}
1903EXPORT_SYMBOL(sock_no_getname);
1904
1905unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1906{
1907	return 0;
1908}
1909EXPORT_SYMBOL(sock_no_poll);
1910
1911int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1912{
1913	return -EOPNOTSUPP;
1914}
1915EXPORT_SYMBOL(sock_no_ioctl);
1916
1917int sock_no_listen(struct socket *sock, int backlog)
1918{
1919	return -EOPNOTSUPP;
1920}
1921EXPORT_SYMBOL(sock_no_listen);
1922
1923int sock_no_shutdown(struct socket *sock, int how)
1924{
1925	return -EOPNOTSUPP;
1926}
1927EXPORT_SYMBOL(sock_no_shutdown);
1928
1929int sock_no_setsockopt(struct socket *sock, int level, int optname,
1930		    char __user *optval, unsigned int optlen)
1931{
1932	return -EOPNOTSUPP;
1933}
1934EXPORT_SYMBOL(sock_no_setsockopt);
1935
1936int sock_no_getsockopt(struct socket *sock, int level, int optname,
1937		    char __user *optval, int __user *optlen)
1938{
1939	return -EOPNOTSUPP;
1940}
1941EXPORT_SYMBOL(sock_no_getsockopt);
1942
1943int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1944		    size_t len)
1945{
1946	return -EOPNOTSUPP;
1947}
1948EXPORT_SYMBOL(sock_no_sendmsg);
1949
1950int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1951		    size_t len, int flags)
1952{
1953	return -EOPNOTSUPP;
1954}
1955EXPORT_SYMBOL(sock_no_recvmsg);
1956
1957int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1958{
1959	/* Mirror missing mmap method error code */
1960	return -ENODEV;
1961}
1962EXPORT_SYMBOL(sock_no_mmap);
1963
1964ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
 
 
 
 
1965{
1966	ssize_t res;
1967	struct msghdr msg = {.msg_flags = flags};
1968	struct kvec iov;
1969	char *kaddr = kmap(page);
1970	iov.iov_base = kaddr + offset;
1971	iov.iov_len = size;
1972	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1973	kunmap(page);
1974	return res;
1975}
1976EXPORT_SYMBOL(sock_no_sendpage);
1977
1978/*
1979 *	Default Socket Callbacks
1980 */
1981
1982static void sock_def_wakeup(struct sock *sk)
1983{
1984	struct socket_wq *wq;
1985
1986	rcu_read_lock();
1987	wq = rcu_dereference(sk->sk_wq);
1988	if (wq_has_sleeper(wq))
1989		wake_up_interruptible_all(&wq->wait);
1990	rcu_read_unlock();
1991}
1992
1993static void sock_def_error_report(struct sock *sk)
1994{
1995	struct socket_wq *wq;
1996
1997	rcu_read_lock();
1998	wq = rcu_dereference(sk->sk_wq);
1999	if (wq_has_sleeper(wq))
2000		wake_up_interruptible_poll(&wq->wait, POLLERR);
2001	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2002	rcu_read_unlock();
2003}
2004
2005static void sock_def_readable(struct sock *sk, int len)
2006{
2007	struct socket_wq *wq;
2008
 
 
2009	rcu_read_lock();
2010	wq = rcu_dereference(sk->sk_wq);
2011	if (wq_has_sleeper(wq))
2012		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2013						POLLRDNORM | POLLRDBAND);
2014	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2015	rcu_read_unlock();
2016}
2017
2018static void sock_def_write_space(struct sock *sk)
2019{
2020	struct socket_wq *wq;
2021
2022	rcu_read_lock();
2023
2024	/* Do not wake up a writer until he can make "significant"
2025	 * progress.  --DaveM
2026	 */
2027	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2028		wq = rcu_dereference(sk->sk_wq);
2029		if (wq_has_sleeper(wq))
2030			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2031						POLLWRNORM | POLLWRBAND);
2032
2033		/* Should agree with poll, otherwise some programs break */
2034		if (sock_writeable(sk))
2035			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2036	}
2037
2038	rcu_read_unlock();
2039}
2040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041static void sock_def_destruct(struct sock *sk)
2042{
2043	kfree(sk->sk_protinfo);
2044}
2045
2046void sk_send_sigurg(struct sock *sk)
2047{
2048	if (sk->sk_socket && sk->sk_socket->file)
2049		if (send_sigurg(&sk->sk_socket->file->f_owner))
2050			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2051}
2052EXPORT_SYMBOL(sk_send_sigurg);
2053
2054void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2055		    unsigned long expires)
2056{
2057	if (!mod_timer(timer, expires))
2058		sock_hold(sk);
2059}
2060EXPORT_SYMBOL(sk_reset_timer);
2061
2062void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2063{
2064	if (timer_pending(timer) && del_timer(timer))
2065		__sock_put(sk);
2066}
2067EXPORT_SYMBOL(sk_stop_timer);
2068
2069void sock_init_data(struct socket *sock, struct sock *sk)
2070{
2071	skb_queue_head_init(&sk->sk_receive_queue);
2072	skb_queue_head_init(&sk->sk_write_queue);
2073	skb_queue_head_init(&sk->sk_error_queue);
2074#ifdef CONFIG_NET_DMA
2075	skb_queue_head_init(&sk->sk_async_wait_queue);
2076#endif
2077
 
 
 
2078	sk->sk_send_head	=	NULL;
2079
2080	init_timer(&sk->sk_timer);
2081
2082	sk->sk_allocation	=	GFP_KERNEL;
2083	sk->sk_rcvbuf		=	sysctl_rmem_default;
2084	sk->sk_sndbuf		=	sysctl_wmem_default;
2085	sk->sk_state		=	TCP_CLOSE;
 
2086	sk_set_socket(sk, sock);
2087
2088	sock_set_flag(sk, SOCK_ZAPPED);
2089
2090	if (sock) {
2091		sk->sk_type	=	sock->type;
2092		sk->sk_wq	=	sock->wq;
2093		sock->sk	=	sk;
2094	} else
2095		sk->sk_wq	=	NULL;
2096
2097	spin_lock_init(&sk->sk_dst_lock);
2098	rwlock_init(&sk->sk_callback_lock);
2099	lockdep_set_class_and_name(&sk->sk_callback_lock,
2100			af_callback_keys + sk->sk_family,
2101			af_family_clock_key_strings[sk->sk_family]);
2102
2103	sk->sk_state_change	=	sock_def_wakeup;
2104	sk->sk_data_ready	=	sock_def_readable;
2105	sk->sk_write_space	=	sock_def_write_space;
2106	sk->sk_error_report	=	sock_def_error_report;
2107	sk->sk_destruct		=	sock_def_destruct;
2108
2109	sk->sk_sndmsg_page	=	NULL;
2110	sk->sk_sndmsg_off	=	0;
2111	sk->sk_peek_off		=	-1;
2112
2113	sk->sk_peer_pid 	=	NULL;
2114	sk->sk_peer_cred	=	NULL;
 
 
2115	sk->sk_write_pending	=	0;
2116	sk->sk_rcvlowat		=	1;
2117	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2118	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2119
2120	sk->sk_stamp = ktime_set(-1L, 0);
 
 
 
 
2121
 
 
 
 
 
 
 
 
 
 
 
2122	/*
2123	 * Before updating sk_refcnt, we must commit prior changes to memory
2124	 * (Documentation/RCU/rculist_nulls.txt for details)
2125	 */
2126	smp_wmb();
2127	atomic_set(&sk->sk_refcnt, 1);
2128	atomic_set(&sk->sk_drops, 0);
2129}
 
 
 
 
 
 
 
 
 
 
2130EXPORT_SYMBOL(sock_init_data);
2131
2132void lock_sock_nested(struct sock *sk, int subclass)
2133{
 
 
 
2134	might_sleep();
2135	spin_lock_bh(&sk->sk_lock.slock);
2136	if (sk->sk_lock.owned)
2137		__lock_sock(sk);
2138	sk->sk_lock.owned = 1;
2139	spin_unlock(&sk->sk_lock.slock);
2140	/*
2141	 * The sk_lock has mutex_lock() semantics here:
2142	 */
2143	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2144	local_bh_enable();
2145}
2146EXPORT_SYMBOL(lock_sock_nested);
2147
2148void release_sock(struct sock *sk)
2149{
2150	/*
2151	 * The sk_lock has mutex_unlock() semantics:
2152	 */
2153	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2154
2155	spin_lock_bh(&sk->sk_lock.slock);
2156	if (sk->sk_backlog.tail)
2157		__release_sock(sk);
2158	sk->sk_lock.owned = 0;
 
 
 
 
 
2159	if (waitqueue_active(&sk->sk_lock.wq))
2160		wake_up(&sk->sk_lock.wq);
2161	spin_unlock_bh(&sk->sk_lock.slock);
2162}
2163EXPORT_SYMBOL(release_sock);
2164
2165/**
2166 * lock_sock_fast - fast version of lock_sock
2167 * @sk: socket
2168 *
2169 * This version should be used for very small section, where process wont block
2170 * return false if fast path is taken
2171 *   sk_lock.slock locked, owned = 0, BH disabled
2172 * return true if slow path is taken
2173 *   sk_lock.slock unlocked, owned = 1, BH enabled
2174 */
2175bool lock_sock_fast(struct sock *sk)
2176{
2177	might_sleep();
2178	spin_lock_bh(&sk->sk_lock.slock);
2179
2180	if (!sk->sk_lock.owned)
2181		/*
2182		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
2183		 */
2184		return false;
 
2185
2186	__lock_sock(sk);
2187	sk->sk_lock.owned = 1;
2188	spin_unlock(&sk->sk_lock.slock);
2189	/*
2190	 * The sk_lock has mutex_lock() semantics here:
2191	 */
2192	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2193	local_bh_enable();
2194	return true;
2195}
2196EXPORT_SYMBOL(lock_sock_fast);
2197
2198int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2199{
2200	struct timeval tv;
2201	if (!sock_flag(sk, SOCK_TIMESTAMP))
2202		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2203	tv = ktime_to_timeval(sk->sk_stamp);
2204	if (tv.tv_sec == -1)
2205		return -ENOENT;
2206	if (tv.tv_sec == 0) {
2207		sk->sk_stamp = ktime_get_real();
2208		tv = ktime_to_timeval(sk->sk_stamp);
2209	}
2210	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2211}
2212EXPORT_SYMBOL(sock_get_timestamp);
2213
2214int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2215{
2216	struct timespec ts;
2217	if (!sock_flag(sk, SOCK_TIMESTAMP))
2218		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2219	ts = ktime_to_timespec(sk->sk_stamp);
2220	if (ts.tv_sec == -1)
2221		return -ENOENT;
2222	if (ts.tv_sec == 0) {
2223		sk->sk_stamp = ktime_get_real();
2224		ts = ktime_to_timespec(sk->sk_stamp);
 
2225	}
2226	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227}
2228EXPORT_SYMBOL(sock_get_timestampns);
2229
2230void sock_enable_timestamp(struct sock *sk, int flag)
2231{
2232	if (!sock_flag(sk, flag)) {
2233		unsigned long previous_flags = sk->sk_flags;
2234
2235		sock_set_flag(sk, flag);
2236		/*
2237		 * we just set one of the two flags which require net
2238		 * time stamping, but time stamping might have been on
2239		 * already because of the other one
2240		 */
2241		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
 
2242			net_enable_timestamp();
2243	}
2244}
2245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246/*
2247 *	Get a socket option on an socket.
2248 *
2249 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2250 *	asynchronous errors should be reported by getsockopt. We assume
2251 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2252 */
2253int sock_common_getsockopt(struct socket *sock, int level, int optname,
2254			   char __user *optval, int __user *optlen)
2255{
2256	struct sock *sk = sock->sk;
2257
2258	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
2259}
2260EXPORT_SYMBOL(sock_common_getsockopt);
2261
2262#ifdef CONFIG_COMPAT
2263int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2264				  char __user *optval, int __user *optlen)
2265{
2266	struct sock *sk = sock->sk;
2267
2268	if (sk->sk_prot->compat_getsockopt != NULL)
2269		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2270						      optval, optlen);
2271	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2272}
2273EXPORT_SYMBOL(compat_sock_common_getsockopt);
2274#endif
2275
2276int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2277			struct msghdr *msg, size_t size, int flags)
2278{
2279	struct sock *sk = sock->sk;
2280	int addr_len = 0;
2281	int err;
2282
2283	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2284				   flags & ~MSG_DONTWAIT, &addr_len);
2285	if (err >= 0)
2286		msg->msg_namelen = addr_len;
2287	return err;
2288}
2289EXPORT_SYMBOL(sock_common_recvmsg);
2290
2291/*
2292 *	Set socket options on an inet socket.
2293 */
2294int sock_common_setsockopt(struct socket *sock, int level, int optname,
2295			   char __user *optval, unsigned int optlen)
2296{
2297	struct sock *sk = sock->sk;
2298
2299	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
2300}
2301EXPORT_SYMBOL(sock_common_setsockopt);
2302
2303#ifdef CONFIG_COMPAT
2304int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2305				  char __user *optval, unsigned int optlen)
2306{
2307	struct sock *sk = sock->sk;
2308
2309	if (sk->sk_prot->compat_setsockopt != NULL)
2310		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2311						      optval, optlen);
2312	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2313}
2314EXPORT_SYMBOL(compat_sock_common_setsockopt);
2315#endif
2316
2317void sk_common_release(struct sock *sk)
2318{
2319	if (sk->sk_prot->destroy)
2320		sk->sk_prot->destroy(sk);
2321
2322	/*
2323	 * Observation: when sock_common_release is called, processes have
2324	 * no access to socket. But net still has.
2325	 * Step one, detach it from networking:
2326	 *
2327	 * A. Remove from hash tables.
2328	 */
2329
2330	sk->sk_prot->unhash(sk);
2331
2332	/*
2333	 * In this point socket cannot receive new packets, but it is possible
2334	 * that some packets are in flight because some CPU runs receiver and
2335	 * did hash table lookup before we unhashed socket. They will achieve
2336	 * receive queue and will be purged by socket destructor.
2337	 *
2338	 * Also we still have packets pending on receive queue and probably,
2339	 * our own packets waiting in device queues. sock_destroy will drain
2340	 * receive queue, but transmitted packets will delay socket destruction
2341	 * until the last reference will be released.
2342	 */
2343
2344	sock_orphan(sk);
2345
2346	xfrm_sk_free_policy(sk);
2347
2348	sk_refcnt_debug_release(sk);
2349	sock_put(sk);
2350}
2351EXPORT_SYMBOL(sk_common_release);
2352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353#ifdef CONFIG_PROC_FS
2354#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2355struct prot_inuse {
2356	int val[PROTO_INUSE_NR];
2357};
2358
2359static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2360
2361#ifdef CONFIG_NET_NS
2362void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2363{
2364	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2365}
2366EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2367
2368int sock_prot_inuse_get(struct net *net, struct proto *prot)
2369{
2370	int cpu, idx = prot->inuse_idx;
2371	int res = 0;
2372
2373	for_each_possible_cpu(cpu)
2374		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2375
2376	return res >= 0 ? res : 0;
2377}
2378EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2379
 
 
 
 
 
 
 
 
 
 
 
 
2380static int __net_init sock_inuse_init_net(struct net *net)
2381{
2382	net->core.inuse = alloc_percpu(struct prot_inuse);
2383	return net->core.inuse ? 0 : -ENOMEM;
 
 
2384}
2385
2386static void __net_exit sock_inuse_exit_net(struct net *net)
2387{
2388	free_percpu(net->core.inuse);
2389}
2390
2391static struct pernet_operations net_inuse_ops = {
2392	.init = sock_inuse_init_net,
2393	.exit = sock_inuse_exit_net,
2394};
2395
2396static __init int net_inuse_init(void)
2397{
2398	if (register_pernet_subsys(&net_inuse_ops))
2399		panic("Cannot initialize net inuse counters");
2400
2401	return 0;
2402}
2403
2404core_initcall(net_inuse_init);
2405#else
2406static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2407
2408void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2409{
2410	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2411}
2412EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2413
2414int sock_prot_inuse_get(struct net *net, struct proto *prot)
2415{
2416	int cpu, idx = prot->inuse_idx;
2417	int res = 0;
2418
2419	for_each_possible_cpu(cpu)
2420		res += per_cpu(prot_inuse, cpu).val[idx];
2421
2422	return res >= 0 ? res : 0;
2423}
2424EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2425#endif
2426
2427static void assign_proto_idx(struct proto *prot)
2428{
2429	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2430
2431	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2432		pr_err("PROTO_INUSE_NR exhausted\n");
2433		return;
2434	}
2435
2436	set_bit(prot->inuse_idx, proto_inuse_idx);
 
2437}
2438
2439static void release_proto_idx(struct proto *prot)
2440{
2441	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2442		clear_bit(prot->inuse_idx, proto_inuse_idx);
2443}
2444#else
2445static inline void assign_proto_idx(struct proto *prot)
2446{
 
2447}
2448
2449static inline void release_proto_idx(struct proto *prot)
2450{
2451}
 
2452#endif
2453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454int proto_register(struct proto *prot, int alloc_slab)
2455{
 
 
 
 
 
 
 
 
 
 
2456	if (alloc_slab) {
2457		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2458					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
 
 
2459					NULL);
2460
2461		if (prot->slab == NULL) {
2462			pr_crit("%s: Can't create sock SLAB cache!\n",
2463				prot->name);
2464			goto out;
2465		}
2466
2467		if (prot->rsk_prot != NULL) {
2468			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2469			if (prot->rsk_prot->slab_name == NULL)
2470				goto out_free_sock_slab;
2471
2472			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2473								 prot->rsk_prot->obj_size, 0,
2474								 SLAB_HWCACHE_ALIGN, NULL);
2475
2476			if (prot->rsk_prot->slab == NULL) {
2477				pr_crit("%s: Can't create request sock SLAB cache!\n",
2478					prot->name);
2479				goto out_free_request_sock_slab_name;
2480			}
2481		}
2482
2483		if (prot->twsk_prot != NULL) {
2484			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2485
2486			if (prot->twsk_prot->twsk_slab_name == NULL)
2487				goto out_free_request_sock_slab;
2488
2489			prot->twsk_prot->twsk_slab =
2490				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2491						  prot->twsk_prot->twsk_obj_size,
2492						  0,
2493						  SLAB_HWCACHE_ALIGN |
2494							prot->slab_flags,
2495						  NULL);
2496			if (prot->twsk_prot->twsk_slab == NULL)
2497				goto out_free_timewait_sock_slab_name;
2498		}
2499	}
2500
2501	mutex_lock(&proto_list_mutex);
 
 
 
 
 
2502	list_add(&prot->node, &proto_list);
2503	assign_proto_idx(prot);
2504	mutex_unlock(&proto_list_mutex);
2505	return 0;
2506
2507out_free_timewait_sock_slab_name:
2508	kfree(prot->twsk_prot->twsk_slab_name);
 
2509out_free_request_sock_slab:
2510	if (prot->rsk_prot && prot->rsk_prot->slab) {
2511		kmem_cache_destroy(prot->rsk_prot->slab);
2512		prot->rsk_prot->slab = NULL;
2513	}
2514out_free_request_sock_slab_name:
2515	if (prot->rsk_prot)
2516		kfree(prot->rsk_prot->slab_name);
2517out_free_sock_slab:
2518	kmem_cache_destroy(prot->slab);
2519	prot->slab = NULL;
2520out:
2521	return -ENOBUFS;
2522}
2523EXPORT_SYMBOL(proto_register);
2524
2525void proto_unregister(struct proto *prot)
2526{
2527	mutex_lock(&proto_list_mutex);
2528	release_proto_idx(prot);
2529	list_del(&prot->node);
2530	mutex_unlock(&proto_list_mutex);
2531
2532	if (prot->slab != NULL) {
2533		kmem_cache_destroy(prot->slab);
2534		prot->slab = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2535	}
2536
2537	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2538		kmem_cache_destroy(prot->rsk_prot->slab);
2539		kfree(prot->rsk_prot->slab_name);
2540		prot->rsk_prot->slab = NULL;
2541	}
 
 
2542
2543	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2544		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2545		kfree(prot->twsk_prot->twsk_slab_name);
2546		prot->twsk_prot->twsk_slab = NULL;
2547	}
2548}
2549EXPORT_SYMBOL(proto_unregister);
2550
2551#ifdef CONFIG_PROC_FS
2552static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2553	__acquires(proto_list_mutex)
2554{
2555	mutex_lock(&proto_list_mutex);
2556	return seq_list_start_head(&proto_list, *pos);
2557}
2558
2559static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2560{
2561	return seq_list_next(v, &proto_list, pos);
2562}
2563
2564static void proto_seq_stop(struct seq_file *seq, void *v)
2565	__releases(proto_list_mutex)
2566{
2567	mutex_unlock(&proto_list_mutex);
2568}
2569
2570static char proto_method_implemented(const void *method)
2571{
2572	return method == NULL ? 'n' : 'y';
2573}
2574static long sock_prot_memory_allocated(struct proto *proto)
2575{
2576	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2577}
2578
2579static char *sock_prot_memory_pressure(struct proto *proto)
2580{
2581	return proto->memory_pressure != NULL ?
2582	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2583}
2584
2585static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2586{
2587
2588	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2589			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2590		   proto->name,
2591		   proto->obj_size,
2592		   sock_prot_inuse_get(seq_file_net(seq), proto),
2593		   sock_prot_memory_allocated(proto),
2594		   sock_prot_memory_pressure(proto),
2595		   proto->max_header,
2596		   proto->slab == NULL ? "no" : "yes",
2597		   module_name(proto->owner),
2598		   proto_method_implemented(proto->close),
2599		   proto_method_implemented(proto->connect),
2600		   proto_method_implemented(proto->disconnect),
2601		   proto_method_implemented(proto->accept),
2602		   proto_method_implemented(proto->ioctl),
2603		   proto_method_implemented(proto->init),
2604		   proto_method_implemented(proto->destroy),
2605		   proto_method_implemented(proto->shutdown),
2606		   proto_method_implemented(proto->setsockopt),
2607		   proto_method_implemented(proto->getsockopt),
2608		   proto_method_implemented(proto->sendmsg),
2609		   proto_method_implemented(proto->recvmsg),
2610		   proto_method_implemented(proto->sendpage),
2611		   proto_method_implemented(proto->bind),
2612		   proto_method_implemented(proto->backlog_rcv),
2613		   proto_method_implemented(proto->hash),
2614		   proto_method_implemented(proto->unhash),
2615		   proto_method_implemented(proto->get_port),
2616		   proto_method_implemented(proto->enter_memory_pressure));
2617}
2618
2619static int proto_seq_show(struct seq_file *seq, void *v)
2620{
2621	if (v == &proto_list)
2622		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2623			   "protocol",
2624			   "size",
2625			   "sockets",
2626			   "memory",
2627			   "press",
2628			   "maxhdr",
2629			   "slab",
2630			   "module",
2631			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2632	else
2633		proto_seq_printf(seq, list_entry(v, struct proto, node));
2634	return 0;
2635}
2636
2637static const struct seq_operations proto_seq_ops = {
2638	.start  = proto_seq_start,
2639	.next   = proto_seq_next,
2640	.stop   = proto_seq_stop,
2641	.show   = proto_seq_show,
2642};
2643
2644static int proto_seq_open(struct inode *inode, struct file *file)
2645{
2646	return seq_open_net(inode, file, &proto_seq_ops,
2647			    sizeof(struct seq_net_private));
2648}
2649
2650static const struct file_operations proto_seq_fops = {
2651	.owner		= THIS_MODULE,
2652	.open		= proto_seq_open,
2653	.read		= seq_read,
2654	.llseek		= seq_lseek,
2655	.release	= seq_release_net,
2656};
2657
2658static __net_init int proto_init_net(struct net *net)
2659{
2660	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
 
2661		return -ENOMEM;
2662
2663	return 0;
2664}
2665
2666static __net_exit void proto_exit_net(struct net *net)
2667{
2668	proc_net_remove(net, "protocols");
2669}
2670
2671
2672static __net_initdata struct pernet_operations proto_net_ops = {
2673	.init = proto_init_net,
2674	.exit = proto_exit_net,
2675};
2676
2677static int __init proto_init(void)
2678{
2679	return register_pernet_subsys(&proto_net_ops);
2680}
2681
2682subsys_initcall(proto_init);
2683
2684#endif /* PROC_FS */