Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <linux/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <linux/skbuff_ref.h>
 128#include <net/net_namespace.h>
 129#include <net/request_sock.h>
 130#include <net/sock.h>
 131#include <net/proto_memory.h>
 132#include <linux/net_tstamp.h>
 133#include <net/xfrm.h>
 134#include <linux/ipsec.h>
 135#include <net/cls_cgroup.h>
 136#include <net/netprio_cgroup.h>
 137#include <linux/sock_diag.h>
 138
 139#include <linux/filter.h>
 140#include <net/sock_reuseport.h>
 141#include <net/bpf_sk_storage.h>
 142
 143#include <trace/events/sock.h>
 144
 145#include <net/tcp.h>
 146#include <net/busy_poll.h>
 147#include <net/phonet/phonet.h>
 148
 149#include <linux/ethtool.h>
 150
 151#include "dev.h"
 152
 153static DEFINE_MUTEX(proto_list_mutex);
 154static LIST_HEAD(proto_list);
 155
 156static void sock_def_write_space_wfree(struct sock *sk);
 157static void sock_def_write_space(struct sock *sk);
 158
 159/**
 160 * sk_ns_capable - General socket capability test
 161 * @sk: Socket to use a capability on or through
 162 * @user_ns: The user namespace of the capability to use
 163 * @cap: The capability to use
 164 *
 165 * Test to see if the opener of the socket had when the socket was
 166 * created and the current process has the capability @cap in the user
 167 * namespace @user_ns.
 168 */
 169bool sk_ns_capable(const struct sock *sk,
 170		   struct user_namespace *user_ns, int cap)
 171{
 172	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 173		ns_capable(user_ns, cap);
 174}
 175EXPORT_SYMBOL(sk_ns_capable);
 176
 177/**
 178 * sk_capable - Socket global capability test
 179 * @sk: Socket to use a capability on or through
 180 * @cap: The global capability to use
 181 *
 182 * Test to see if the opener of the socket had when the socket was
 183 * created and the current process has the capability @cap in all user
 184 * namespaces.
 185 */
 186bool sk_capable(const struct sock *sk, int cap)
 187{
 188	return sk_ns_capable(sk, &init_user_ns, cap);
 189}
 190EXPORT_SYMBOL(sk_capable);
 191
 192/**
 193 * sk_net_capable - Network namespace socket capability test
 194 * @sk: Socket to use a capability on or through
 195 * @cap: The capability to use
 196 *
 197 * Test to see if the opener of the socket had when the socket was created
 198 * and the current process has the capability @cap over the network namespace
 199 * the socket is a member of.
 200 */
 201bool sk_net_capable(const struct sock *sk, int cap)
 202{
 203	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 204}
 205EXPORT_SYMBOL(sk_net_capable);
 206
 207/*
 208 * Each address family might have different locking rules, so we have
 209 * one slock key per address family and separate keys for internal and
 210 * userspace sockets.
 211 */
 212static struct lock_class_key af_family_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_keys[AF_MAX];
 214static struct lock_class_key af_family_slock_keys[AF_MAX];
 215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 216
 217/*
 218 * Make lock validator output more readable. (we pre-construct these
 219 * strings build-time, so that runtime initialization of socket
 220 * locks is fast):
 221 */
 222
 223#define _sock_locks(x)						  \
 224  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 225  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 226  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 227  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 228  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 229  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 230  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 231  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 232  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 233  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 234  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 235  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 236  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 237  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 238  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 239  x "AF_MCTP"  , \
 240  x "AF_MAX"
 241
 242static const char *const af_family_key_strings[AF_MAX+1] = {
 243	_sock_locks("sk_lock-")
 244};
 245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 246	_sock_locks("slock-")
 247};
 248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 249	_sock_locks("clock-")
 250};
 251
 252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 253	_sock_locks("k-sk_lock-")
 254};
 255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 256	_sock_locks("k-slock-")
 257};
 258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 259	_sock_locks("k-clock-")
 260};
 261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 262	_sock_locks("rlock-")
 263};
 264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 265	_sock_locks("wlock-")
 266};
 267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 268	_sock_locks("elock-")
 269};
 270
 271/*
 272 * sk_callback_lock and sk queues locking rules are per-address-family,
 273 * so split the lock classes by using a per-AF key:
 274 */
 275static struct lock_class_key af_callback_keys[AF_MAX];
 276static struct lock_class_key af_rlock_keys[AF_MAX];
 277static struct lock_class_key af_wlock_keys[AF_MAX];
 278static struct lock_class_key af_elock_keys[AF_MAX];
 279static struct lock_class_key af_kern_callback_keys[AF_MAX];
 280
 281/* Run time adjustable parameters. */
 282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 283EXPORT_SYMBOL(sysctl_wmem_max);
 284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 285EXPORT_SYMBOL(sysctl_rmem_max);
 286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 288
 
 
 
 
 
 
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 320	 */
 321	sk_mem_reclaim(sk);
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 465	}
 466}
 467
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 
 
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 823	sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
 824	sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
 825	if (val)  {
 826		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 
 
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 
 
 
 828	}
 829}
 830
 831void sock_enable_timestamps(struct sock *sk)
 832{
 833	lock_sock(sk);
 834	__sock_set_timestamps(sk, true, false, true);
 835	release_sock(sk);
 836}
 837EXPORT_SYMBOL(sock_enable_timestamps);
 838
 839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 840{
 841	switch (optname) {
 842	case SO_TIMESTAMP_OLD:
 843		__sock_set_timestamps(sk, valbool, false, false);
 844		break;
 845	case SO_TIMESTAMP_NEW:
 846		__sock_set_timestamps(sk, valbool, true, false);
 847		break;
 848	case SO_TIMESTAMPNS_OLD:
 849		__sock_set_timestamps(sk, valbool, false, true);
 850		break;
 851	case SO_TIMESTAMPNS_NEW:
 852		__sock_set_timestamps(sk, valbool, true, true);
 853		break;
 854	}
 855}
 856
 857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 858{
 859	struct net *net = sock_net(sk);
 860	struct net_device *dev = NULL;
 861	bool match = false;
 862	int *vclock_index;
 863	int i, num;
 864
 865	if (sk->sk_bound_dev_if)
 866		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 867
 868	if (!dev) {
 869		pr_err("%s: sock not bind to device\n", __func__);
 870		return -EOPNOTSUPP;
 871	}
 872
 873	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 874	dev_put(dev);
 875
 876	for (i = 0; i < num; i++) {
 877		if (*(vclock_index + i) == phc_index) {
 878			match = true;
 879			break;
 880		}
 881	}
 882
 883	if (num > 0)
 884		kfree(vclock_index);
 885
 886	if (!match)
 887		return -EINVAL;
 888
 889	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 890
 891	return 0;
 892}
 893
 894int sock_set_timestamping(struct sock *sk, int optname,
 895			  struct so_timestamping timestamping)
 896{
 897	int val = timestamping.flags;
 898	int ret;
 899
 900	if (val & ~SOF_TIMESTAMPING_MASK)
 901		return -EINVAL;
 902
 903	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 904	    !(val & SOF_TIMESTAMPING_OPT_ID))
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID &&
 908	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 909		if (sk_is_tcp(sk)) {
 910			if ((1 << sk->sk_state) &
 911			    (TCPF_CLOSE | TCPF_LISTEN))
 912				return -EINVAL;
 913			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 914				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 915			else
 916				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 917		} else {
 918			atomic_set(&sk->sk_tskey, 0);
 919		}
 920	}
 921
 922	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 923	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 924		return -EINVAL;
 925
 926	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 927		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 928		if (ret)
 929			return ret;
 930	}
 931
 932	WRITE_ONCE(sk->sk_tsflags, val);
 933	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 934
 935	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 936		sock_enable_timestamp(sk,
 937				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 938	else
 939		sock_disable_timestamp(sk,
 940				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 941	return 0;
 942}
 943
 944void sock_set_keepalive(struct sock *sk)
 945{
 946	lock_sock(sk);
 947	if (sk->sk_prot->keepalive)
 948		sk->sk_prot->keepalive(sk, true);
 949	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 950	release_sock(sk);
 951}
 952EXPORT_SYMBOL(sock_set_keepalive);
 953
 954static void __sock_set_rcvbuf(struct sock *sk, int val)
 955{
 956	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 957	 * as a negative value.
 958	 */
 959	val = min_t(int, val, INT_MAX / 2);
 960	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 961
 962	/* We double it on the way in to account for "struct sk_buff" etc.
 963	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 964	 * will allow that much actual data to be received on that socket.
 965	 *
 966	 * Applications are unaware that "struct sk_buff" and other overheads
 967	 * allocate from the receive buffer during socket buffer allocation.
 968	 *
 969	 * And after considering the possible alternatives, returning the value
 970	 * we actually used in getsockopt is the most desirable behavior.
 971	 */
 972	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 973}
 974
 975void sock_set_rcvbuf(struct sock *sk, int val)
 976{
 977	lock_sock(sk);
 978	__sock_set_rcvbuf(sk, val);
 979	release_sock(sk);
 980}
 981EXPORT_SYMBOL(sock_set_rcvbuf);
 982
 983static void __sock_set_mark(struct sock *sk, u32 val)
 984{
 985	if (val != sk->sk_mark) {
 986		WRITE_ONCE(sk->sk_mark, val);
 987		sk_dst_reset(sk);
 988	}
 989}
 990
 991void sock_set_mark(struct sock *sk, u32 val)
 992{
 993	lock_sock(sk);
 994	__sock_set_mark(sk, val);
 995	release_sock(sk);
 996}
 997EXPORT_SYMBOL(sock_set_mark);
 998
 999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001	/* Round down bytes to multiple of pages */
1002	bytes = round_down(bytes, PAGE_SIZE);
1003
1004	WARN_ON(bytes > sk->sk_reserved_mem);
1005	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006	sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011	long allocated;
1012	bool charged;
1013	int pages;
1014
1015	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016		return -EOPNOTSUPP;
1017
1018	if (!bytes)
1019		return 0;
1020
1021	pages = sk_mem_pages(bytes);
1022
1023	/* pre-charge to memcg */
1024	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026	if (!charged)
1027		return -ENOMEM;
1028
1029	/* pre-charge to forward_alloc */
1030	sk_memory_allocated_add(sk, pages);
1031	allocated = sk_memory_allocated(sk);
1032	/* If the system goes into memory pressure with this
1033	 * precharge, give up and return error.
1034	 */
1035	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036		sk_memory_allocated_sub(sk, pages);
1037		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038		return -ENOMEM;
1039	}
1040	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042	WRITE_ONCE(sk->sk_reserved_mem,
1043		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045	return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061	unsigned int num_tokens, i, j, k, netmem_num = 0;
1062	struct dmabuf_token *tokens;
1063	int ret = 0, num_frags = 0;
1064	netmem_ref netmems[16];
1065
1066	if (!sk_is_tcp(sk))
1067		return -EBADF;
1068
1069	if (optlen % sizeof(*tokens) ||
1070	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071		return -EINVAL;
1072
1073	num_tokens = optlen / sizeof(*tokens);
1074	tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075	if (!tokens)
1076		return -ENOMEM;
1077
1078	if (copy_from_sockptr(tokens, optval, optlen)) {
1079		kvfree(tokens);
1080		return -EFAULT;
1081	}
1082
1083	xa_lock_bh(&sk->sk_user_frags);
1084	for (i = 0; i < num_tokens; i++) {
1085		for (j = 0; j < tokens[i].token_count; j++) {
1086			if (++num_frags > MAX_DONTNEED_FRAGS)
1087				goto frag_limit_reached;
1088
1089			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090				&sk->sk_user_frags, tokens[i].token_start + j);
1091
1092			if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093				continue;
1094
1095			netmems[netmem_num++] = netmem;
1096			if (netmem_num == ARRAY_SIZE(netmems)) {
1097				xa_unlock_bh(&sk->sk_user_frags);
1098				for (k = 0; k < netmem_num; k++)
1099					WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100				netmem_num = 0;
1101				xa_lock_bh(&sk->sk_user_frags);
1102			}
1103			ret++;
1104		}
1105	}
1106
1107frag_limit_reached:
1108	xa_unlock_bh(&sk->sk_user_frags);
1109	for (k = 0; k < netmem_num; k++)
1110		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112	kvfree(tokens);
1113	return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119	/* When current->bpf_ctx is set, the setsockopt is called from
1120	 * a bpf prog.  bpf has ensured the sk lock has been
1121	 * acquired before calling setsockopt().
1122	 */
1123	if (has_current_bpf_ctx())
1124		return;
1125
1126	lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132	if (has_current_bpf_ctx())
1133		return;
1134
1135	release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141	return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147	return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153	switch (value) {
1154	case CLOCK_REALTIME:
1155	case CLOCK_MONOTONIC:
1156	case CLOCK_TAI:
1157		return 0;
1158	}
1159	return -EINVAL;
1160}
1161
1162/*
1163 *	This is meant for all protocols to use and covers goings on
1164 *	at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168		  sockptr_t optval, unsigned int optlen)
1169{
1170	struct so_timestamping timestamping;
1171	struct socket *sock = sk->sk_socket;
1172	struct sock_txtime sk_txtime;
1173	int val;
1174	int valbool;
1175	struct linger ling;
1176	int ret = 0;
1177
1178	/*
1179	 *	Options without arguments
1180	 */
1181
1182	if (optname == SO_BINDTODEVICE)
1183		return sock_setbindtodevice(sk, optval, optlen);
1184
1185	if (optlen < sizeof(int))
1186		return -EINVAL;
1187
1188	if (copy_from_sockptr(&val, optval, sizeof(val)))
1189		return -EFAULT;
1190
1191	valbool = val ? 1 : 0;
1192
1193	/* handle options which do not require locking the socket. */
1194	switch (optname) {
1195	case SO_PRIORITY:
1196		if ((val >= 0 && val <= 6) ||
1197		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199			sock_set_priority(sk, val);
1200			return 0;
1201		}
1202		return -EPERM;
1203	case SO_PASSSEC:
1204		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205		return 0;
1206	case SO_PASSCRED:
1207		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208		return 0;
1209	case SO_PASSPIDFD:
1210		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211		return 0;
1212	case SO_TYPE:
1213	case SO_PROTOCOL:
1214	case SO_DOMAIN:
1215	case SO_ERROR:
1216		return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218	case SO_BUSY_POLL:
1219		if (val < 0)
1220			return -EINVAL;
1221		WRITE_ONCE(sk->sk_ll_usec, val);
1222		return 0;
1223	case SO_PREFER_BUSY_POLL:
1224		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225			return -EPERM;
1226		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227		return 0;
1228	case SO_BUSY_POLL_BUDGET:
1229		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230		    !sockopt_capable(CAP_NET_ADMIN))
1231			return -EPERM;
1232		if (val < 0 || val > U16_MAX)
1233			return -EINVAL;
1234		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235		return 0;
1236#endif
1237	case SO_MAX_PACING_RATE:
1238		{
1239		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240		unsigned long pacing_rate;
1241
1242		if (sizeof(ulval) != sizeof(val) &&
1243		    optlen >= sizeof(ulval) &&
1244		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245			return -EFAULT;
1246		}
1247		if (ulval != ~0UL)
1248			cmpxchg(&sk->sk_pacing_status,
1249				SK_PACING_NONE,
1250				SK_PACING_NEEDED);
1251		/* Pairs with READ_ONCE() from sk_getsockopt() */
1252		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254		if (ulval < pacing_rate)
1255			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256		return 0;
1257		}
1258	case SO_TXREHASH:
1259		if (val < -1 || val > 1)
1260			return -EINVAL;
1261		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263		/* Paired with READ_ONCE() in tcp_rtx_synack()
1264		 * and sk_getsockopt().
1265		 */
1266		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267		return 0;
1268	case SO_PEEK_OFF:
1269		{
1270		int (*set_peek_off)(struct sock *sk, int val);
1271
1272		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273		if (set_peek_off)
1274			ret = set_peek_off(sk, val);
1275		else
1276			ret = -EOPNOTSUPP;
1277		return ret;
1278		}
1279#ifdef CONFIG_PAGE_POOL
1280	case SO_DEVMEM_DONTNEED:
1281		return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283	}
1284
1285	sockopt_lock_sock(sk);
1286
1287	switch (optname) {
1288	case SO_DEBUG:
1289		if (val && !sockopt_capable(CAP_NET_ADMIN))
1290			ret = -EACCES;
1291		else
1292			sock_valbool_flag(sk, SOCK_DBG, valbool);
1293		break;
1294	case SO_REUSEADDR:
1295		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296		break;
1297	case SO_REUSEPORT:
1298		if (valbool && !sk_is_inet(sk))
1299			ret = -EOPNOTSUPP;
1300		else
1301			sk->sk_reuseport = valbool;
 
 
 
1302		break;
1303	case SO_DONTROUTE:
1304		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305		sk_dst_reset(sk);
1306		break;
1307	case SO_BROADCAST:
1308		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309		break;
1310	case SO_SNDBUF:
1311		/* Don't error on this BSD doesn't and if you think
1312		 * about it this is right. Otherwise apps have to
1313		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314		 * are treated in BSD as hints
1315		 */
1316		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318		/* Ensure val * 2 fits into an int, to prevent max_t()
1319		 * from treating it as a negative value.
1320		 */
1321		val = min_t(int, val, INT_MAX / 2);
1322		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323		WRITE_ONCE(sk->sk_sndbuf,
1324			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325		/* Wake up sending tasks if we upped the value. */
1326		sk->sk_write_space(sk);
1327		break;
1328
1329	case SO_SNDBUFFORCE:
1330		if (!sockopt_capable(CAP_NET_ADMIN)) {
1331			ret = -EPERM;
1332			break;
1333		}
1334
1335		/* No negative values (to prevent underflow, as val will be
1336		 * multiplied by 2).
1337		 */
1338		if (val < 0)
1339			val = 0;
1340		goto set_sndbuf;
1341
1342	case SO_RCVBUF:
1343		/* Don't error on this BSD doesn't and if you think
1344		 * about it this is right. Otherwise apps have to
1345		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346		 * are treated in BSD as hints
1347		 */
1348		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1349		break;
1350
1351	case SO_RCVBUFFORCE:
1352		if (!sockopt_capable(CAP_NET_ADMIN)) {
1353			ret = -EPERM;
1354			break;
1355		}
1356
1357		/* No negative values (to prevent underflow, as val will be
1358		 * multiplied by 2).
1359		 */
1360		__sock_set_rcvbuf(sk, max(val, 0));
1361		break;
1362
1363	case SO_KEEPALIVE:
1364		if (sk->sk_prot->keepalive)
1365			sk->sk_prot->keepalive(sk, valbool);
1366		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367		break;
1368
1369	case SO_OOBINLINE:
1370		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371		break;
1372
1373	case SO_NO_CHECK:
1374		sk->sk_no_check_tx = valbool;
1375		break;
1376
 
 
 
 
 
 
 
 
 
1377	case SO_LINGER:
1378		if (optlen < sizeof(ling)) {
1379			ret = -EINVAL;	/* 1003.1g */
1380			break;
1381		}
1382		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383			ret = -EFAULT;
1384			break;
1385		}
1386		if (!ling.l_onoff) {
1387			sock_reset_flag(sk, SOCK_LINGER);
1388		} else {
1389			unsigned long t_sec = ling.l_linger;
1390
1391			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393			else
1394				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
 
1395			sock_set_flag(sk, SOCK_LINGER);
1396		}
1397		break;
1398
1399	case SO_BSDCOMPAT:
1400		break;
1401
 
 
 
 
 
 
 
1402	case SO_TIMESTAMP_OLD:
1403	case SO_TIMESTAMP_NEW:
1404	case SO_TIMESTAMPNS_OLD:
1405	case SO_TIMESTAMPNS_NEW:
1406		sock_set_timestamp(sk, optname, valbool);
1407		break;
1408
1409	case SO_TIMESTAMPING_NEW:
1410	case SO_TIMESTAMPING_OLD:
1411		if (optlen == sizeof(timestamping)) {
1412			if (copy_from_sockptr(&timestamping, optval,
1413					      sizeof(timestamping))) {
1414				ret = -EFAULT;
1415				break;
1416			}
1417		} else {
1418			memset(&timestamping, 0, sizeof(timestamping));
1419			timestamping.flags = val;
1420		}
1421		ret = sock_set_timestamping(sk, optname, timestamping);
1422		break;
1423
1424	case SO_RCVLOWAT:
1425		{
1426		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1427
1428		if (val < 0)
1429			val = INT_MAX;
1430		if (sock)
1431			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432		if (set_rcvlowat)
1433			ret = set_rcvlowat(sk, val);
1434		else
1435			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436		break;
1437		}
1438	case SO_RCVTIMEO_OLD:
1439	case SO_RCVTIMEO_NEW:
1440		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441				       optlen, optname == SO_RCVTIMEO_OLD);
1442		break;
1443
1444	case SO_SNDTIMEO_OLD:
1445	case SO_SNDTIMEO_NEW:
1446		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447				       optlen, optname == SO_SNDTIMEO_OLD);
1448		break;
1449
1450	case SO_ATTACH_FILTER: {
1451		struct sock_fprog fprog;
1452
1453		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454		if (!ret)
1455			ret = sk_attach_filter(&fprog, sk);
1456		break;
1457	}
1458	case SO_ATTACH_BPF:
1459		ret = -EINVAL;
1460		if (optlen == sizeof(u32)) {
1461			u32 ufd;
1462
1463			ret = -EFAULT;
1464			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465				break;
1466
1467			ret = sk_attach_bpf(ufd, sk);
1468		}
1469		break;
1470
1471	case SO_ATTACH_REUSEPORT_CBPF: {
1472		struct sock_fprog fprog;
1473
1474		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475		if (!ret)
1476			ret = sk_reuseport_attach_filter(&fprog, sk);
1477		break;
1478	}
1479	case SO_ATTACH_REUSEPORT_EBPF:
1480		ret = -EINVAL;
1481		if (optlen == sizeof(u32)) {
1482			u32 ufd;
1483
1484			ret = -EFAULT;
1485			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486				break;
1487
1488			ret = sk_reuseport_attach_bpf(ufd, sk);
1489		}
1490		break;
1491
1492	case SO_DETACH_REUSEPORT_BPF:
1493		ret = reuseport_detach_prog(sk);
1494		break;
1495
1496	case SO_DETACH_FILTER:
1497		ret = sk_detach_filter(sk);
1498		break;
1499
1500	case SO_LOCK_FILTER:
1501		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502			ret = -EPERM;
1503		else
1504			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505		break;
1506
 
 
 
 
 
 
1507	case SO_MARK:
1508		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510			ret = -EPERM;
1511			break;
1512		}
1513
1514		__sock_set_mark(sk, val);
1515		break;
1516	case SO_RCVMARK:
 
 
 
 
 
 
1517		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518		break;
1519
1520	case SO_RXQ_OVFL:
1521		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522		break;
1523
1524	case SO_WIFI_STATUS:
1525		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526		break;
1527
 
 
 
 
 
 
 
1528	case SO_NOFCS:
1529		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530		break;
1531
1532	case SO_SELECT_ERR_QUEUE:
1533		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534		break;
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537	case SO_INCOMING_CPU:
1538		reuseport_update_incoming_cpu(sk, val);
1539		break;
1540
1541	case SO_CNX_ADVICE:
1542		if (val == 1)
1543			dst_negative_advice(sk);
1544		break;
1545
1546	case SO_ZEROCOPY:
1547		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548			if (!(sk_is_tcp(sk) ||
1549			      (sk->sk_type == SOCK_DGRAM &&
1550			       sk->sk_protocol == IPPROTO_UDP)))
1551				ret = -EOPNOTSUPP;
1552		} else if (sk->sk_family != PF_RDS) {
1553			ret = -EOPNOTSUPP;
1554		}
1555		if (!ret) {
1556			if (val < 0 || val > 1)
1557				ret = -EINVAL;
1558			else
1559				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560		}
1561		break;
1562
1563	case SO_TXTIME:
1564		if (optlen != sizeof(struct sock_txtime)) {
1565			ret = -EINVAL;
1566			break;
1567		} else if (copy_from_sockptr(&sk_txtime, optval,
1568			   sizeof(struct sock_txtime))) {
1569			ret = -EFAULT;
1570			break;
1571		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572			ret = -EINVAL;
1573			break;
1574		}
1575		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576		 * scheduler has enough safe guards.
1577		 */
1578		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580			ret = -EPERM;
1581			break;
1582		}
1583
1584		ret = sockopt_validate_clockid(sk_txtime.clockid);
1585		if (ret)
1586			break;
1587
1588		sock_valbool_flag(sk, SOCK_TXTIME, true);
1589		sk->sk_clockid = sk_txtime.clockid;
1590		sk->sk_txtime_deadline_mode =
1591			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592		sk->sk_txtime_report_errors =
1593			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594		break;
1595
1596	case SO_BINDTOIFINDEX:
1597		ret = sock_bindtoindex_locked(sk, val);
1598		break;
1599
1600	case SO_BUF_LOCK:
1601		if (val & ~SOCK_BUF_LOCK_MASK) {
1602			ret = -EINVAL;
1603			break;
1604		}
1605		sk->sk_userlocks = val | (sk->sk_userlocks &
1606					  ~SOCK_BUF_LOCK_MASK);
1607		break;
1608
1609	case SO_RESERVE_MEM:
1610	{
1611		int delta;
1612
1613		if (val < 0) {
1614			ret = -EINVAL;
1615			break;
1616		}
1617
1618		delta = val - sk->sk_reserved_mem;
1619		if (delta < 0)
1620			sock_release_reserved_memory(sk, -delta);
1621		else
1622			ret = sock_reserve_memory(sk, delta);
1623		break;
1624	}
1625
 
 
 
 
 
 
 
 
 
 
 
1626	default:
1627		ret = -ENOPROTOOPT;
1628		break;
1629	}
1630	sockopt_release_sock(sk);
1631	return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635		    sockptr_t optval, unsigned int optlen)
1636{
1637	return sk_setsockopt(sock->sk, level, optname,
1638			     optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644	const struct cred *cred;
1645
1646	spin_lock(&sk->sk_peer_lock);
1647	cred = get_cred(sk->sk_peer_cred);
1648	spin_unlock(&sk->sk_peer_lock);
1649
1650	return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654			  struct ucred *ucred)
1655{
1656	ucred->pid = pid_vnr(pid);
1657	ucred->uid = ucred->gid = -1;
1658	if (cred) {
1659		struct user_namespace *current_ns = current_user_ns();
1660
1661		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663	}
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668	struct user_namespace *user_ns = current_user_ns();
1669	int i;
1670
1671	for (i = 0; i < src->ngroups; i++) {
1672		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675			return -EFAULT;
1676	}
1677
1678	return 0;
1679}
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682		  sockptr_t optval, sockptr_t optlen)
1683{
1684	struct socket *sock = sk->sk_socket;
1685
1686	union {
1687		int val;
1688		u64 val64;
1689		unsigned long ulval;
1690		struct linger ling;
1691		struct old_timeval32 tm32;
1692		struct __kernel_old_timeval tm;
1693		struct  __kernel_sock_timeval stm;
1694		struct sock_txtime txtime;
1695		struct so_timestamping timestamping;
1696	} v;
1697
1698	int lv = sizeof(int);
1699	int len;
1700
1701	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702		return -EFAULT;
1703	if (len < 0)
1704		return -EINVAL;
1705
1706	memset(&v, 0, sizeof(v));
1707
1708	switch (optname) {
1709	case SO_DEBUG:
1710		v.val = sock_flag(sk, SOCK_DBG);
1711		break;
1712
1713	case SO_DONTROUTE:
1714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715		break;
1716
1717	case SO_BROADCAST:
1718		v.val = sock_flag(sk, SOCK_BROADCAST);
1719		break;
1720
1721	case SO_SNDBUF:
1722		v.val = READ_ONCE(sk->sk_sndbuf);
1723		break;
1724
1725	case SO_RCVBUF:
1726		v.val = READ_ONCE(sk->sk_rcvbuf);
1727		break;
1728
1729	case SO_REUSEADDR:
1730		v.val = sk->sk_reuse;
1731		break;
1732
1733	case SO_REUSEPORT:
1734		v.val = sk->sk_reuseport;
1735		break;
1736
1737	case SO_KEEPALIVE:
1738		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739		break;
1740
1741	case SO_TYPE:
1742		v.val = sk->sk_type;
1743		break;
1744
1745	case SO_PROTOCOL:
1746		v.val = sk->sk_protocol;
1747		break;
1748
1749	case SO_DOMAIN:
1750		v.val = sk->sk_family;
1751		break;
1752
1753	case SO_ERROR:
1754		v.val = -sock_error(sk);
1755		if (v.val == 0)
1756			v.val = xchg(&sk->sk_err_soft, 0);
1757		break;
1758
1759	case SO_OOBINLINE:
1760		v.val = sock_flag(sk, SOCK_URGINLINE);
1761		break;
1762
1763	case SO_NO_CHECK:
1764		v.val = sk->sk_no_check_tx;
1765		break;
1766
1767	case SO_PRIORITY:
1768		v.val = READ_ONCE(sk->sk_priority);
1769		break;
1770
1771	case SO_LINGER:
1772		lv		= sizeof(v.ling);
1773		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1774		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1775		break;
1776
1777	case SO_BSDCOMPAT:
1778		break;
1779
1780	case SO_TIMESTAMP_OLD:
1781		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1784		break;
1785
1786	case SO_TIMESTAMPNS_OLD:
1787		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788		break;
1789
1790	case SO_TIMESTAMP_NEW:
1791		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792		break;
1793
1794	case SO_TIMESTAMPNS_NEW:
1795		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796		break;
1797
1798	case SO_TIMESTAMPING_OLD:
1799	case SO_TIMESTAMPING_NEW:
1800		lv = sizeof(v.timestamping);
1801		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802		 * returning the flags when they were set through the same option.
1803		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804		 */
1805		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1808		}
1809		break;
1810
1811	case SO_RCVTIMEO_OLD:
1812	case SO_RCVTIMEO_NEW:
1813		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814				      SO_RCVTIMEO_OLD == optname);
1815		break;
1816
1817	case SO_SNDTIMEO_OLD:
1818	case SO_SNDTIMEO_NEW:
1819		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820				      SO_SNDTIMEO_OLD == optname);
1821		break;
1822
1823	case SO_RCVLOWAT:
1824		v.val = READ_ONCE(sk->sk_rcvlowat);
1825		break;
1826
1827	case SO_SNDLOWAT:
1828		v.val = 1;
1829		break;
1830
1831	case SO_PASSCRED:
1832		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833		break;
1834
1835	case SO_PASSPIDFD:
1836		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837		break;
1838
1839	case SO_PEERCRED:
1840	{
1841		struct ucred peercred;
1842		if (len > sizeof(peercred))
1843			len = sizeof(peercred);
1844
1845		spin_lock(&sk->sk_peer_lock);
1846		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847		spin_unlock(&sk->sk_peer_lock);
1848
1849		if (copy_to_sockptr(optval, &peercred, len))
1850			return -EFAULT;
1851		goto lenout;
1852	}
1853
1854	case SO_PEERPIDFD:
1855	{
1856		struct pid *peer_pid;
1857		struct file *pidfd_file = NULL;
1858		int pidfd;
1859
1860		if (len > sizeof(pidfd))
1861			len = sizeof(pidfd);
1862
1863		spin_lock(&sk->sk_peer_lock);
1864		peer_pid = get_pid(sk->sk_peer_pid);
1865		spin_unlock(&sk->sk_peer_lock);
1866
1867		if (!peer_pid)
1868			return -ENODATA;
1869
1870		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871		put_pid(peer_pid);
1872		if (pidfd < 0)
1873			return pidfd;
1874
1875		if (copy_to_sockptr(optval, &pidfd, len) ||
1876		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1877			put_unused_fd(pidfd);
1878			fput(pidfd_file);
1879
1880			return -EFAULT;
1881		}
1882
1883		fd_install(pidfd, pidfd_file);
1884		return 0;
1885	}
1886
1887	case SO_PEERGROUPS:
1888	{
1889		const struct cred *cred;
1890		int ret, n;
1891
1892		cred = sk_get_peer_cred(sk);
1893		if (!cred)
1894			return -ENODATA;
1895
1896		n = cred->group_info->ngroups;
1897		if (len < n * sizeof(gid_t)) {
1898			len = n * sizeof(gid_t);
1899			put_cred(cred);
1900			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901		}
1902		len = n * sizeof(gid_t);
1903
1904		ret = groups_to_user(optval, cred->group_info);
1905		put_cred(cred);
1906		if (ret)
1907			return ret;
1908		goto lenout;
1909	}
1910
1911	case SO_PEERNAME:
1912	{
1913		struct sockaddr_storage address;
1914
1915		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916		if (lv < 0)
1917			return -ENOTCONN;
1918		if (lv < len)
1919			return -EINVAL;
1920		if (copy_to_sockptr(optval, &address, len))
1921			return -EFAULT;
1922		goto lenout;
1923	}
1924
1925	/* Dubious BSD thing... Probably nobody even uses it, but
1926	 * the UNIX standard wants it for whatever reason... -DaveM
1927	 */
1928	case SO_ACCEPTCONN:
1929		v.val = sk->sk_state == TCP_LISTEN;
1930		break;
1931
1932	case SO_PASSSEC:
1933		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934		break;
1935
1936	case SO_PEERSEC:
1937		return security_socket_getpeersec_stream(sock,
1938							 optval, optlen, len);
1939
1940	case SO_MARK:
1941		v.val = READ_ONCE(sk->sk_mark);
1942		break;
1943
1944	case SO_RCVMARK:
1945		v.val = sock_flag(sk, SOCK_RCVMARK);
1946		break;
1947
1948	case SO_RXQ_OVFL:
1949		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950		break;
1951
1952	case SO_WIFI_STATUS:
1953		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954		break;
1955
1956	case SO_PEEK_OFF:
1957		if (!READ_ONCE(sock->ops)->set_peek_off)
1958			return -EOPNOTSUPP;
1959
1960		v.val = READ_ONCE(sk->sk_peek_off);
1961		break;
1962	case SO_NOFCS:
1963		v.val = sock_flag(sk, SOCK_NOFCS);
1964		break;
1965
1966	case SO_BINDTODEVICE:
1967		return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969	case SO_GET_FILTER:
1970		len = sk_get_filter(sk, optval, len);
1971		if (len < 0)
1972			return len;
1973
1974		goto lenout;
1975
1976	case SO_LOCK_FILTER:
1977		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978		break;
1979
1980	case SO_BPF_EXTENSIONS:
1981		v.val = bpf_tell_extensions();
1982		break;
1983
1984	case SO_SELECT_ERR_QUEUE:
1985		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986		break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989	case SO_BUSY_POLL:
1990		v.val = READ_ONCE(sk->sk_ll_usec);
1991		break;
1992	case SO_PREFER_BUSY_POLL:
1993		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994		break;
1995#endif
1996
1997	case SO_MAX_PACING_RATE:
1998		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000			lv = sizeof(v.ulval);
2001			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002		} else {
2003			/* 32bit version */
2004			v.val = min_t(unsigned long, ~0U,
2005				      READ_ONCE(sk->sk_max_pacing_rate));
2006		}
2007		break;
2008
2009	case SO_INCOMING_CPU:
2010		v.val = READ_ONCE(sk->sk_incoming_cpu);
2011		break;
2012
2013	case SO_MEMINFO:
2014	{
2015		u32 meminfo[SK_MEMINFO_VARS];
2016
2017		sk_get_meminfo(sk, meminfo);
2018
2019		len = min_t(unsigned int, len, sizeof(meminfo));
2020		if (copy_to_sockptr(optval, &meminfo, len))
2021			return -EFAULT;
2022
2023		goto lenout;
2024	}
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027	case SO_INCOMING_NAPI_ID:
2028		v.val = READ_ONCE(sk->sk_napi_id);
2029
2030		/* aggregate non-NAPI IDs down to 0 */
2031		if (v.val < MIN_NAPI_ID)
2032			v.val = 0;
2033
2034		break;
2035#endif
2036
2037	case SO_COOKIE:
2038		lv = sizeof(u64);
2039		if (len < lv)
2040			return -EINVAL;
2041		v.val64 = sock_gen_cookie(sk);
2042		break;
2043
2044	case SO_ZEROCOPY:
2045		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046		break;
2047
2048	case SO_TXTIME:
2049		lv = sizeof(v.txtime);
2050		v.txtime.clockid = sk->sk_clockid;
2051		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052				  SOF_TXTIME_DEADLINE_MODE : 0;
2053		v.txtime.flags |= sk->sk_txtime_report_errors ?
2054				  SOF_TXTIME_REPORT_ERRORS : 0;
2055		break;
2056
2057	case SO_BINDTOIFINDEX:
2058		v.val = READ_ONCE(sk->sk_bound_dev_if);
2059		break;
2060
2061	case SO_NETNS_COOKIE:
2062		lv = sizeof(u64);
2063		if (len != lv)
2064			return -EINVAL;
2065		v.val64 = sock_net(sk)->net_cookie;
2066		break;
2067
2068	case SO_BUF_LOCK:
2069		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070		break;
2071
2072	case SO_RESERVE_MEM:
2073		v.val = READ_ONCE(sk->sk_reserved_mem);
2074		break;
2075
2076	case SO_TXREHASH:
2077		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2078		v.val = READ_ONCE(sk->sk_txrehash);
2079		break;
2080
2081	default:
2082		/* We implement the SO_SNDLOWAT etc to not be settable
2083		 * (1003.1g 7).
2084		 */
2085		return -ENOPROTOOPT;
2086	}
2087
2088	if (len > lv)
2089		len = lv;
2090	if (copy_to_sockptr(optval, &v, len))
2091		return -EFAULT;
2092lenout:
2093	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094		return -EFAULT;
2095	return 0;
2096}
2097
 
 
 
 
 
 
 
 
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105	if (sk->sk_kern_sock)
2106		sock_lock_init_class_and_name(
2107			sk,
2108			af_family_kern_slock_key_strings[sk->sk_family],
2109			af_family_kern_slock_keys + sk->sk_family,
2110			af_family_kern_key_strings[sk->sk_family],
2111			af_family_kern_keys + sk->sk_family);
2112	else
2113		sock_lock_init_class_and_name(
2114			sk,
2115			af_family_slock_key_strings[sk->sk_family],
2116			af_family_slock_keys + sk->sk_family,
2117			af_family_key_strings[sk->sk_family],
2118			af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128	const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130	void *sptr = nsk->sk_security;
2131#endif
2132
2133	/* If we move sk_tx_queue_mapping out of the private section,
2134	 * we must check if sk_tx_queue_clear() is called after
2135	 * sock_copy() in sk_clone_lock().
2136	 */
2137	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138		     offsetof(struct sock, sk_dontcopy_begin) ||
2139		     offsetof(struct sock, sk_tx_queue_mapping) >=
2140		     offsetof(struct sock, sk_dontcopy_end));
2141
2142	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146		      /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149	nsk->sk_security = sptr;
2150	security_sk_clone(osk, nsk);
2151#endif
2152}
2153
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155		int family)
2156{
2157	struct sock *sk;
2158	struct kmem_cache *slab;
2159
2160	slab = prot->slab;
2161	if (slab != NULL) {
2162		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163		if (!sk)
2164			return sk;
2165		if (want_init_on_alloc(priority))
2166			sk_prot_clear_nulls(sk, prot->obj_size);
2167	} else
2168		sk = kmalloc(prot->obj_size, priority);
2169
2170	if (sk != NULL) {
2171		if (security_sk_alloc(sk, family, priority))
2172			goto out_free;
2173
2174		if (!try_module_get(prot->owner))
2175			goto out_free_sec;
2176	}
2177
2178	return sk;
2179
2180out_free_sec:
2181	security_sk_free(sk);
2182out_free:
2183	if (slab != NULL)
2184		kmem_cache_free(slab, sk);
2185	else
2186		kfree(sk);
2187	return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192	struct kmem_cache *slab;
2193	struct module *owner;
2194
2195	owner = prot->owner;
2196	slab = prot->slab;
2197
2198	cgroup_sk_free(&sk->sk_cgrp_data);
2199	mem_cgroup_sk_free(sk);
2200	security_sk_free(sk);
2201	if (slab != NULL)
2202		kmem_cache_free(slab, sk);
2203	else
2204		kfree(sk);
2205	module_put(owner);
2206}
2207
2208/**
2209 *	sk_alloc - All socket objects are allocated here
2210 *	@net: the applicable net namespace
2211 *	@family: protocol family
2212 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 *	@prot: struct proto associated with this new sock instance
2214 *	@kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217		      struct proto *prot, int kern)
2218{
2219	struct sock *sk;
2220
2221	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222	if (sk) {
2223		sk->sk_family = family;
2224		/*
2225		 * See comment in struct sock definition to understand
2226		 * why we need sk_prot_creator -acme
2227		 */
2228		sk->sk_prot = sk->sk_prot_creator = prot;
2229		sk->sk_kern_sock = kern;
2230		sock_lock_init(sk);
2231		sk->sk_net_refcnt = kern ? 0 : 1;
2232		if (likely(sk->sk_net_refcnt)) {
2233			get_net_track(net, &sk->ns_tracker, priority);
2234			sock_inuse_add(net, 1);
2235		} else {
2236			net_passive_inc(net);
2237			__netns_tracker_alloc(net, &sk->ns_tracker,
2238					      false, priority);
2239		}
2240
2241		sock_net_set(sk, net);
2242		refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244		mem_cgroup_sk_alloc(sk);
2245		cgroup_sk_alloc(&sk->sk_cgrp_data);
2246		sock_update_classid(&sk->sk_cgrp_data);
2247		sock_update_netprioidx(&sk->sk_cgrp_data);
2248		sk_tx_queue_clear(sk);
2249	}
2250
2251	return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260	struct sock *sk = container_of(head, struct sock, sk_rcu);
2261	struct net *net = sock_net(sk);
2262	struct sk_filter *filter;
2263
2264	if (sk->sk_destruct)
2265		sk->sk_destruct(sk);
2266
2267	filter = rcu_dereference_check(sk->sk_filter,
2268				       refcount_read(&sk->sk_wmem_alloc) == 0);
2269	if (filter) {
2270		sk_filter_uncharge(sk, filter);
2271		RCU_INIT_POINTER(sk->sk_filter, NULL);
2272	}
2273
2274	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277	bpf_sk_storage_free(sk);
2278#endif
2279
2280	if (atomic_read(&sk->sk_omem_alloc))
2281		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282			 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284	if (sk->sk_frag.page) {
2285		put_page(sk->sk_frag.page);
2286		sk->sk_frag.page = NULL;
2287	}
2288
2289	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290	put_cred(sk->sk_peer_cred);
2291	put_pid(sk->sk_peer_pid);
2292
2293	if (likely(sk->sk_net_refcnt)) {
2294		put_net_track(net, &sk->ns_tracker);
2295	} else {
2296		__netns_tracker_free(net, &sk->ns_tracker, false);
2297		net_passive_dec(net);
2298	}
2299	sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304	struct net *net = sock_net(sk);
2305
2306	WARN_ON_ONCE(sk->sk_net_refcnt);
2307	__netns_tracker_free(net, &sk->ns_tracker, false);
2308	net_passive_dec(net);
2309	sk->sk_net_refcnt = 1;
2310	get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311	sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320		reuseport_detach_sock(sk);
2321		use_call_rcu = true;
2322	}
2323
2324	if (use_call_rcu)
2325		call_rcu(&sk->sk_rcu, __sk_destruct);
2326	else
2327		__sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332	if (likely(sk->sk_net_refcnt))
2333		sock_inuse_add(sock_net(sk), -1);
2334
2335	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336		sock_diag_broadcast_destroy(sk);
2337	else
2338		sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343	/*
2344	 * We subtract one from sk_wmem_alloc and can know if
2345	 * some packets are still in some tx queue.
2346	 * If not null, sock_wfree() will call __sk_free(sk) later
2347	 */
2348	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349		__sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
2354{
2355	skb_queue_head_init(&sk->sk_receive_queue);
2356	skb_queue_head_init(&sk->sk_write_queue);
2357	skb_queue_head_init(&sk->sk_error_queue);
2358
2359	rwlock_init(&sk->sk_callback_lock);
2360	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361			af_rlock_keys + sk->sk_family,
2362			af_family_rlock_key_strings[sk->sk_family]);
2363	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364			af_wlock_keys + sk->sk_family,
2365			af_family_wlock_key_strings[sk->sk_family]);
2366	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367			af_elock_keys + sk->sk_family,
2368			af_family_elock_key_strings[sk->sk_family]);
2369	if (sk->sk_kern_sock)
2370		lockdep_set_class_and_name(&sk->sk_callback_lock,
2371			af_kern_callback_keys + sk->sk_family,
2372			af_family_kern_clock_key_strings[sk->sk_family]);
2373	else
2374		lockdep_set_class_and_name(&sk->sk_callback_lock,
2375			af_callback_keys + sk->sk_family,
2376			af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 *	sk_clone_lock - clone a socket, and lock its clone
2381 *	@sk: the socket to clone
2382 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388	struct proto *prot = READ_ONCE(sk->sk_prot);
2389	struct sk_filter *filter;
2390	bool is_charged = true;
2391	struct sock *newsk;
2392
2393	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394	if (!newsk)
2395		goto out;
2396
2397	sock_copy(newsk, sk);
2398
2399	newsk->sk_prot_creator = prot;
2400
2401	/* SANITY */
2402	if (likely(newsk->sk_net_refcnt)) {
2403		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404		sock_inuse_add(sock_net(newsk), 1);
2405	} else {
2406		/* Kernel sockets are not elevating the struct net refcount.
2407		 * Instead, use a tracker to more easily detect if a layer
2408		 * is not properly dismantling its kernel sockets at netns
2409		 * destroy time.
2410		 */
2411		net_passive_inc(sock_net(newsk));
2412		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413				      false, priority);
2414	}
2415	sk_node_init(&newsk->sk_node);
2416	sock_lock_init(newsk);
2417	bh_lock_sock(newsk);
2418	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2419	newsk->sk_backlog.len = 0;
2420
2421	atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424	refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426	atomic_set(&newsk->sk_omem_alloc, 0);
2427	sk_init_common(newsk);
2428
2429	newsk->sk_dst_cache	= NULL;
2430	newsk->sk_dst_pending_confirm = 0;
2431	newsk->sk_wmem_queued	= 0;
2432	newsk->sk_forward_alloc = 0;
2433	newsk->sk_reserved_mem  = 0;
2434	atomic_set(&newsk->sk_drops, 0);
2435	newsk->sk_send_head	= NULL;
2436	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437	atomic_set(&newsk->sk_zckey, 0);
2438
2439	sock_reset_flag(newsk, SOCK_DONE);
2440
2441	/* sk->sk_memcg will be populated at accept() time */
2442	newsk->sk_memcg = NULL;
2443
2444	cgroup_sk_clone(&newsk->sk_cgrp_data);
2445
2446	rcu_read_lock();
2447	filter = rcu_dereference(sk->sk_filter);
2448	if (filter != NULL)
2449		/* though it's an empty new sock, the charging may fail
2450		 * if sysctl_optmem_max was changed between creation of
2451		 * original socket and cloning
2452		 */
2453		is_charged = sk_filter_charge(newsk, filter);
2454	RCU_INIT_POINTER(newsk->sk_filter, filter);
2455	rcu_read_unlock();
2456
2457	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458		/* We need to make sure that we don't uncharge the new
2459		 * socket if we couldn't charge it in the first place
2460		 * as otherwise we uncharge the parent's filter.
2461		 */
2462		if (!is_charged)
2463			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464		sk_free_unlock_clone(newsk);
2465		newsk = NULL;
2466		goto out;
2467	}
2468	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470	if (bpf_sk_storage_clone(sk, newsk)) {
2471		sk_free_unlock_clone(newsk);
2472		newsk = NULL;
2473		goto out;
2474	}
2475
2476	/* Clear sk_user_data if parent had the pointer tagged
2477	 * as not suitable for copying when cloning.
2478	 */
2479	if (sk_user_data_is_nocopy(newsk))
2480		newsk->sk_user_data = NULL;
2481
2482	newsk->sk_err	   = 0;
2483	newsk->sk_err_soft = 0;
2484	newsk->sk_priority = 0;
2485	newsk->sk_incoming_cpu = raw_smp_processor_id();
2486
2487	/* Before updating sk_refcnt, we must commit prior changes to memory
2488	 * (Documentation/RCU/rculist_nulls.rst for details)
2489	 */
2490	smp_wmb();
2491	refcount_set(&newsk->sk_refcnt, 2);
2492
 
 
 
 
 
 
 
 
 
 
 
2493	sk_set_socket(newsk, NULL);
2494	sk_tx_queue_clear(newsk);
2495	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2496
2497	if (newsk->sk_prot->sockets_allocated)
2498		sk_sockets_allocated_inc(newsk);
2499
2500	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501		net_enable_timestamp();
2502out:
2503	return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509	/* It is still raw copy of parent, so invalidate
2510	 * destructor and make plain sk_free() */
2511	sk->sk_destruct = NULL;
2512	bh_unlock_sock(sk);
2513	sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519	bool is_ipv6 = false;
2520	u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523	is_ipv6 = (sk->sk_family == AF_INET6 &&
2524		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
 
 
2525#endif
2526	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528			READ_ONCE(dst->dev->gso_ipv4_max_size);
2529	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530		max_size = GSO_LEGACY_MAX_SIZE;
2531
2532	return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537	u32 max_segs = 1;
2538
 
2539	sk->sk_route_caps = dst->dev->features;
2540	if (sk_is_tcp(sk))
2541		sk->sk_route_caps |= NETIF_F_GSO;
2542	if (sk->sk_route_caps & NETIF_F_GSO)
2543		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544	if (unlikely(sk->sk_gso_disabled))
2545		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546	if (sk_can_gso(sk)) {
2547		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549		} else {
2550			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
 
 
 
2552			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554		}
2555	}
2556	sk->sk_gso_max_segs = max_segs;
2557	sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
2561/*
2562 *	Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571	struct sock *sk = skb->sk;
2572	unsigned int len = skb->truesize;
2573	bool free;
2574
2575	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576		if (sock_flag(sk, SOCK_RCU_FREE) &&
2577		    sk->sk_write_space == sock_def_write_space) {
2578			rcu_read_lock();
2579			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580			sock_def_write_space_wfree(sk);
2581			rcu_read_unlock();
2582			if (unlikely(free))
2583				__sk_free(sk);
2584			return;
2585		}
2586
2587		/*
2588		 * Keep a reference on sk_wmem_alloc, this will be released
2589		 * after sk_write_space() call
2590		 */
2591		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592		sk->sk_write_space(sk);
2593		len = 1;
2594	}
2595	/*
2596	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597	 * could not do because of in-flight packets
2598	 */
2599	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600		__sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609	struct sock *sk = skb->sk;
2610
2611	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612		__sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617	skb_orphan(skb);
 
2618#ifdef CONFIG_INET
2619	if (unlikely(!sk_fullsock(sk)))
2620		return skb_set_owner_edemux(skb, sk);
 
 
 
2621#endif
2622	skb->sk = sk;
2623	skb->destructor = sock_wfree;
2624	skb_set_hash_from_sk(skb, sk);
2625	/*
2626	 * We used to take a refcount on sk, but following operation
2627	 * is enough to guarantee sk_free() won't free this sock until
2628	 * all in-flight packets are completed
2629	 */
2630	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
 
2636	/* Drivers depend on in-order delivery for crypto offload,
2637	 * partial orphan breaks out-of-order-OK logic.
2638	 */
2639	if (skb_is_decrypted(skb))
2640		return false;
2641
2642	return (skb->destructor == sock_wfree ||
2643		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654	if (skb_is_tcp_pure_ack(skb))
2655		return;
2656
2657	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658		return;
2659
2660	skb_orphan(skb);
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669	struct sock *sk = skb->sk;
2670	unsigned int len = skb->truesize;
2671
2672	atomic_sub(len, &sk->sk_rmem_alloc);
2673	sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683	sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693	struct sock *sk = skb->sk;
2694
2695	if (!sk_is_refcounted(sk))
2696		return;
2697
2698	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699		inet_reqsk(sk)->rsk_listener = NULL;
2700		reqsk_free(inet_reqsk(sk));
2701		return;
2702	}
2703
2704	sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711	kuid_t uid;
2712
2713	read_lock_bh(&sk->sk_callback_lock);
2714	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715	read_unlock_bh(&sk->sk_callback_lock);
2716	return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722	unsigned long ino;
2723
2724	read_lock(&sk->sk_callback_lock);
2725	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726	read_unlock(&sk->sk_callback_lock);
2727	return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733	unsigned long ino;
2734
2735	local_bh_disable();
2736	ino = __sock_i_ino(sk);
2737	local_bh_enable();
2738	return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746			     gfp_t priority)
2747{
2748	if (force ||
2749	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750		struct sk_buff *skb = alloc_skb(size, priority);
2751
2752		if (skb) {
2753			skb_set_owner_w(skb, sk);
2754			return skb;
2755		}
2756	}
2757	return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763	struct sock *sk = skb->sk;
2764
2765	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769			     gfp_t priority)
2770{
2771	struct sk_buff *skb;
2772
2773	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776		return NULL;
2777
2778	skb = alloc_skb(size, priority);
2779	if (!skb)
2780		return NULL;
2781
2782	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783	skb->sk = sk;
2784	skb->destructor = sock_ofree;
2785	return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795	if ((unsigned int)size <= optmem_max &&
2796	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797		void *mem;
2798		/* First do the add, to avoid the race if kmalloc
2799		 * might sleep.
2800		 */
2801		atomic_add(size, &sk->sk_omem_alloc);
2802		mem = kmalloc(size, priority);
2803		if (mem)
2804			return mem;
2805		atomic_sub(size, &sk->sk_omem_alloc);
2806	}
2807	return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816				  const bool nullify)
2817{
2818	if (WARN_ON_ONCE(!mem))
2819		return;
2820	if (nullify)
2821		kfree_sensitive(mem);
2822	else
2823		kfree(mem);
2824	atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829	__sock_kfree_s(sk, mem, size, false);
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835	__sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840   I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844	DEFINE_WAIT(wait);
2845
2846	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847	for (;;) {
2848		if (!timeo)
2849			break;
2850		if (signal_pending(current))
2851			break;
2852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855			break;
2856		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857			break;
2858		if (READ_ONCE(sk->sk_err))
2859			break;
2860		timeo = schedule_timeout(timeo);
2861	}
2862	finish_wait(sk_sleep(sk), &wait);
2863	return timeo;
2864}
2865
2866
2867/*
2868 *	Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872				     unsigned long data_len, int noblock,
2873				     int *errcode, int max_page_order)
2874{
2875	struct sk_buff *skb;
2876	long timeo;
2877	int err;
2878
2879	timeo = sock_sndtimeo(sk, noblock);
2880	for (;;) {
2881		err = sock_error(sk);
2882		if (err != 0)
2883			goto failure;
2884
2885		err = -EPIPE;
2886		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887			goto failure;
2888
2889		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890			break;
2891
2892		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2893		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894		err = -EAGAIN;
2895		if (!timeo)
2896			goto failure;
2897		if (signal_pending(current))
2898			goto interrupted;
2899		timeo = sock_wait_for_wmem(sk, timeo);
2900	}
2901	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902				   errcode, sk->sk_allocation);
2903	if (skb)
2904		skb_set_owner_w(skb, sk);
2905	return skb;
2906
2907interrupted:
2908	err = sock_intr_errno(timeo);
2909failure:
2910	*errcode = err;
2911	return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2916		     struct sockcm_cookie *sockc)
2917{
2918	u32 tsflags;
2919
2920	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922	switch (cmsg->cmsg_type) {
2923	case SO_MARK:
2924		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926			return -EPERM;
2927		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928			return -EINVAL;
2929		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930		break;
2931	case SO_TIMESTAMPING_OLD:
2932	case SO_TIMESTAMPING_NEW:
2933		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934			return -EINVAL;
2935
2936		tsflags = *(u32 *)CMSG_DATA(cmsg);
2937		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938			return -EINVAL;
2939
2940		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941		sockc->tsflags |= tsflags;
2942		break;
2943	case SCM_TXTIME:
2944		if (!sock_flag(sk, SOCK_TXTIME))
2945			return -EINVAL;
2946		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947			return -EINVAL;
2948		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949		break;
2950	case SCM_TS_OPT_ID:
2951		if (sk_is_tcp(sk))
2952			return -EINVAL;
2953		tsflags = READ_ONCE(sk->sk_tsflags);
2954		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955			return -EINVAL;
2956		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957			return -EINVAL;
2958		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960		break;
2961	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962	case SCM_RIGHTS:
2963	case SCM_CREDENTIALS:
2964		break;
2965	default:
2966		return -EINVAL;
2967	}
2968	return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973		   struct sockcm_cookie *sockc)
2974{
2975	struct cmsghdr *cmsg;
2976	int ret;
2977
2978	for_each_cmsghdr(cmsg, msg) {
2979		if (!CMSG_OK(msg, cmsg))
2980			return -EINVAL;
2981		if (cmsg->cmsg_level != SOL_SOCKET)
2982			continue;
2983		ret = __sock_cmsg_send(sk, cmsg, sockc);
2984		if (ret)
2985			return ret;
2986	}
2987	return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993	if (!sk->sk_prot->enter_memory_pressure)
2994		return;
2995
2996	sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001	if (sk->sk_prot->leave_memory_pressure) {
3002		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003				     tcp_leave_memory_pressure, sk);
3004	} else {
3005		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007		if (memory_pressure && READ_ONCE(*memory_pressure))
3008			WRITE_ONCE(*memory_pressure, 0);
3009	}
3010}
3011
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
3026	if (pfrag->page) {
3027		if (page_ref_count(pfrag->page) == 1) {
3028			pfrag->offset = 0;
3029			return true;
3030		}
3031		if (pfrag->offset + sz <= pfrag->size)
3032			return true;
3033		put_page(pfrag->page);
3034	}
3035
3036	pfrag->offset = 0;
3037	if (SKB_FRAG_PAGE_ORDER &&
3038	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039		/* Avoid direct reclaim but allow kswapd to wake */
3040		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041					  __GFP_COMP | __GFP_NOWARN |
3042					  __GFP_NORETRY,
3043					  SKB_FRAG_PAGE_ORDER);
3044		if (likely(pfrag->page)) {
3045			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3046			return true;
3047		}
3048	}
3049	pfrag->page = alloc_page(gfp);
3050	if (likely(pfrag->page)) {
3051		pfrag->size = PAGE_SIZE;
3052		return true;
3053	}
3054	return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061		return true;
3062
3063	sk_enter_memory_pressure(sk);
3064	sk_stream_moderate_sndbuf(sk);
3065	return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070	__releases(&sk->sk_lock.slock)
3071	__acquires(&sk->sk_lock.slock)
3072{
3073	DEFINE_WAIT(wait);
3074
3075	for (;;) {
3076		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077					TASK_UNINTERRUPTIBLE);
3078		spin_unlock_bh(&sk->sk_lock.slock);
3079		schedule();
3080		spin_lock_bh(&sk->sk_lock.slock);
3081		if (!sock_owned_by_user(sk))
3082			break;
3083	}
3084	finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088	__releases(&sk->sk_lock.slock)
3089	__acquires(&sk->sk_lock.slock)
3090{
3091	struct sk_buff *skb, *next;
3092
3093	while ((skb = sk->sk_backlog.head) != NULL) {
3094		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096		spin_unlock_bh(&sk->sk_lock.slock);
3097
3098		do {
3099			next = skb->next;
3100			prefetch(next);
3101			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102			skb_mark_not_on_list(skb);
3103			sk_backlog_rcv(sk, skb);
3104
3105			cond_resched();
3106
3107			skb = next;
3108		} while (skb != NULL);
3109
3110		spin_lock_bh(&sk->sk_lock.slock);
3111	}
3112
3113	/*
3114	 * Doing the zeroing here guarantee we can not loop forever
3115	 * while a wild producer attempts to flood us.
3116	 */
3117	sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122	spin_lock_bh(&sk->sk_lock.slock);
3123	__release_sock(sk);
3124
3125	if (sk->sk_prot->release_cb)
3126		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127				     tcp_release_cb, sk);
3128
3129	spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk:    sock to wait on
3136 * @timeo: for how long
3137 * @skb:   last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147	int rc;
3148
3149	add_wait_queue(sk_sleep(sk), &wait);
3150	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153	remove_wait_queue(sk_sleep(sk), &wait);
3154	return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 *	__sk_mem_raise_allocated - increase memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@amt: pages to allocate
3163 *	@kind: allocation type
3164 *
3165 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 *	Unlike the globally shared limits among the sockets under same protocol,
3168 *	consuming the budget of a memcg won't have direct effect on other ones.
3169 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3170 *	whether or not to raise allocated through sk_under_memory_pressure() or
3171 *	its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176	struct proto *prot = sk->sk_prot;
3177	bool charged = false;
3178	long allocated;
3179
3180	sk_memory_allocated_add(sk, amt);
3181	allocated = sk_memory_allocated(sk);
3182
3183	if (memcg) {
3184		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185			goto suppress_allocation;
3186		charged = true;
3187	}
3188
3189	/* Under limit. */
3190	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3191		sk_leave_memory_pressure(sk);
3192		return 1;
3193	}
3194
3195	/* Under pressure. */
3196	if (allocated > sk_prot_mem_limits(sk, 1))
3197		sk_enter_memory_pressure(sk);
3198
3199	/* Over hard limit. */
3200	if (allocated > sk_prot_mem_limits(sk, 2))
3201		goto suppress_allocation;
3202
3203	/* Guarantee minimum buffer size under pressure (either global
3204	 * or memcg) to make sure features described in RFC 7323 (TCP
3205	 * Extensions for High Performance) work properly.
3206	 *
3207	 * This rule does NOT stand when exceeds global or memcg's hard
3208	 * limit, or else a DoS attack can be taken place by spawning
3209	 * lots of sockets whose usage are under minimum buffer size.
3210	 */
3211	if (kind == SK_MEM_RECV) {
3212		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213			return 1;
3214
3215	} else { /* SK_MEM_SEND */
3216		int wmem0 = sk_get_wmem0(sk, prot);
3217
3218		if (sk->sk_type == SOCK_STREAM) {
3219			if (sk->sk_wmem_queued < wmem0)
3220				return 1;
3221		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3222				return 1;
3223		}
3224	}
3225
3226	if (sk_has_memory_pressure(sk)) {
3227		u64 alloc;
3228
3229		/* The following 'average' heuristic is within the
3230		 * scope of global accounting, so it only makes
3231		 * sense for global memory pressure.
3232		 */
3233		if (!sk_under_global_memory_pressure(sk))
3234			return 1;
3235
3236		/* Try to be fair among all the sockets under global
3237		 * pressure by allowing the ones that below average
3238		 * usage to raise.
3239		 */
3240		alloc = sk_sockets_allocated_read_positive(sk);
3241		if (sk_prot_mem_limits(sk, 2) > alloc *
3242		    sk_mem_pages(sk->sk_wmem_queued +
3243				 atomic_read(&sk->sk_rmem_alloc) +
3244				 sk->sk_forward_alloc))
3245			return 1;
3246	}
3247
3248suppress_allocation:
3249
3250	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251		sk_stream_moderate_sndbuf(sk);
3252
3253		/* Fail only if socket is _under_ its sndbuf.
3254		 * In this case we cannot block, so that we have to fail.
3255		 */
3256		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257			/* Force charge with __GFP_NOFAIL */
3258			if (memcg && !charged) {
3259				mem_cgroup_charge_skmem(memcg, amt,
3260					gfp_memcg_charge() | __GFP_NOFAIL);
3261			}
3262			return 1;
3263		}
3264	}
3265
3266	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269	sk_memory_allocated_sub(sk, amt);
3270
3271	if (charged)
3272		mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274	return 0;
3275}
3276
3277/**
3278 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 *	@sk: socket
3280 *	@size: memory size to allocate
3281 *	@kind: allocation type
3282 *
3283 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 *	rmem allocation. This function assumes that protocols which have
3285 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289	int ret, amt = sk_mem_pages(size);
3290
3291	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293	if (!ret)
3294		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295	return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3301 *	@sk: socket
3302 *	@amount: number of quanta
3303 *
3304 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308	sk_memory_allocated_sub(sk, amount);
3309
3310	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313	if (sk_under_global_memory_pressure(sk) &&
3314	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315		sk_leave_memory_pressure(sk);
3316}
3317
3318/**
3319 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 *	@sk: socket
3321 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325	amount >>= PAGE_SHIFT;
3326	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327	__sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333	WRITE_ONCE(sk->sk_peek_off, val);
3334	return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347	return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352		    int len, int flags)
3353{
3354	return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360	return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365		   struct proto_accept_arg *arg)
3366{
3367	return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372		    int peer)
3373{
3374	return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380	return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386	return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392	return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3397{
3398	return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3403{
3404	return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409		    int flags)
3410{
3411	return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417	/* Mirror missing mmap method error code */
3418	return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428	struct socket *sock;
3429
3430	sock = sock_from_file(file);
3431	if (sock) {
3432		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433		sock_update_classid(&sock->sk->sk_cgrp_data);
3434	}
3435}
3436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437/*
3438 *	Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443	struct socket_wq *wq;
3444
3445	rcu_read_lock();
3446	wq = rcu_dereference(sk->sk_wq);
3447	if (skwq_has_sleeper(wq))
3448		wake_up_interruptible_all(&wq->wait);
3449	rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454	struct socket_wq *wq;
3455
3456	rcu_read_lock();
3457	wq = rcu_dereference(sk->sk_wq);
3458	if (skwq_has_sleeper(wq))
3459		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461	rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466	struct socket_wq *wq;
3467
3468	trace_sk_data_ready(sk);
3469
3470	rcu_read_lock();
3471	wq = rcu_dereference(sk->sk_wq);
3472	if (skwq_has_sleeper(wq))
3473		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474						EPOLLRDNORM | EPOLLRDBAND);
3475	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476	rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481	struct socket_wq *wq;
3482
3483	rcu_read_lock();
3484
3485	/* Do not wake up a writer until he can make "significant"
3486	 * progress.  --DaveM
3487	 */
3488	if (sock_writeable(sk)) {
3489		wq = rcu_dereference(sk->sk_wq);
3490		if (skwq_has_sleeper(wq))
3491			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492						EPOLLWRNORM | EPOLLWRBAND);
3493
3494		/* Should agree with poll, otherwise some programs break */
3495		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3496	}
3497
3498	rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507	/* Do not wake up a writer until he can make "significant"
3508	 * progress.  --DaveM
3509	 */
3510	if (sock_writeable(sk)) {
3511		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513		/* rely on refcount_sub from sock_wfree() */
3514		smp_mb__after_atomic();
3515		if (wq && waitqueue_active(&wq->wait))
3516			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517						EPOLLWRNORM | EPOLLWRBAND);
3518
3519		/* Should agree with poll, otherwise some programs break */
3520		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521	}
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530	if (sk->sk_socket && sk->sk_socket->file)
3531		if (send_sigurg(sk->sk_socket->file))
3532			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537		    unsigned long expires)
3538{
3539	if (!mod_timer(timer, expires))
3540		sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546	if (del_timer(timer))
3547		__sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553	if (del_timer_sync(timer))
3554		__sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560	sk_init_common(sk);
3561	sk->sk_send_head	=	NULL;
3562
3563	timer_setup(&sk->sk_timer, NULL, 0);
3564
3565	sk->sk_allocation	=	GFP_KERNEL;
3566	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3567	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3568	sk->sk_state		=	TCP_CLOSE;
3569	sk->sk_use_task_frag	=	true;
3570	sk_set_socket(sk, sock);
3571
3572	sock_set_flag(sk, SOCK_ZAPPED);
3573
3574	if (sock) {
3575		sk->sk_type	=	sock->type;
3576		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577		sock->sk	=	sk;
 
3578	} else {
3579		RCU_INIT_POINTER(sk->sk_wq, NULL);
 
3580	}
3581	sk->sk_uid	=	uid;
 
 
 
 
 
 
 
 
 
 
 
3582
3583	sk->sk_state_change	=	sock_def_wakeup;
3584	sk->sk_data_ready	=	sock_def_readable;
3585	sk->sk_write_space	=	sock_def_write_space;
3586	sk->sk_error_report	=	sock_def_error_report;
3587	sk->sk_destruct		=	sock_def_destruct;
3588
3589	sk->sk_frag.page	=	NULL;
3590	sk->sk_frag.offset	=	0;
3591	sk->sk_peek_off		=	-1;
3592
3593	sk->sk_peer_pid 	=	NULL;
3594	sk->sk_peer_cred	=	NULL;
3595	spin_lock_init(&sk->sk_peer_lock);
3596
3597	sk->sk_write_pending	=	0;
3598	sk->sk_rcvlowat		=	1;
3599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3601
3602	sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604	seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606	atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609	sk->sk_napi_id		=	0;
3610	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613	sk->sk_max_pacing_rate = ~0UL;
3614	sk->sk_pacing_rate = ~0UL;
3615	WRITE_ONCE(sk->sk_pacing_shift, 10);
3616	sk->sk_incoming_cpu = -1;
3617
3618	sk_rx_queue_clear(sk);
3619	/*
3620	 * Before updating sk_refcnt, we must commit prior changes to memory
3621	 * (Documentation/RCU/rculist_nulls.rst for details)
3622	 */
3623	smp_wmb();
3624	refcount_set(&sk->sk_refcnt, 1);
3625	atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631	kuid_t uid = sock ?
3632		SOCK_INODE(sock)->i_uid :
3633		make_kuid(sock_net(sk)->user_ns, 0);
3634
3635	sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641	/* The sk_lock has mutex_lock() semantics here. */
3642	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644	might_sleep();
3645	spin_lock_bh(&sk->sk_lock.slock);
3646	if (sock_owned_by_user_nocheck(sk))
3647		__lock_sock(sk);
3648	sk->sk_lock.owned = 1;
3649	spin_unlock_bh(&sk->sk_lock.slock);
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
3655	spin_lock_bh(&sk->sk_lock.slock);
3656	if (sk->sk_backlog.tail)
3657		__release_sock(sk);
3658
 
 
 
3659	if (sk->sk_prot->release_cb)
3660		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661				     tcp_release_cb, sk);
3662
3663	sock_release_ownership(sk);
3664	if (waitqueue_active(&sk->sk_lock.wq))
3665		wake_up(&sk->sk_lock.wq);
3666	spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3671{
3672	might_sleep();
3673	spin_lock_bh(&sk->sk_lock.slock);
3674
3675	if (!sock_owned_by_user_nocheck(sk)) {
3676		/*
3677		 * Fast path return with bottom halves disabled and
3678		 * sock::sk_lock.slock held.
3679		 *
3680		 * The 'mutex' is not contended and holding
3681		 * sock::sk_lock.slock prevents all other lockers to
3682		 * proceed so the corresponding unlock_sock_fast() can
3683		 * avoid the slow path of release_sock() completely and
3684		 * just release slock.
3685		 *
3686		 * From a semantical POV this is equivalent to 'acquiring'
3687		 * the 'mutex', hence the corresponding lockdep
3688		 * mutex_release() has to happen in the fast path of
3689		 * unlock_sock_fast().
3690		 */
3691		return false;
3692	}
3693
3694	__lock_sock(sk);
3695	sk->sk_lock.owned = 1;
3696	__acquire(&sk->sk_lock.slock);
3697	spin_unlock_bh(&sk->sk_lock.slock);
3698	return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703		   bool timeval, bool time32)
3704{
3705	struct sock *sk = sock->sk;
3706	struct timespec64 ts;
3707
3708	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3710	if (ts.tv_sec == -1)
3711		return -ENOENT;
3712	if (ts.tv_sec == 0) {
3713		ktime_t kt = ktime_get_real();
3714		sock_write_timestamp(sk, kt);
3715		ts = ktime_to_timespec64(kt);
3716	}
3717
3718	if (timeval)
3719		ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722	if (time32)
3723		return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726	/* beware of padding in sparc64 timeval */
3727	if (timeval && !in_compat_syscall()) {
3728		struct __kernel_old_timeval __user tv = {
3729			.tv_sec = ts.tv_sec,
3730			.tv_usec = ts.tv_nsec,
3731		};
3732		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733			return -EFAULT;
3734		return 0;
3735	}
3736#endif
3737	return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743	if (!sock_flag(sk, flag)) {
3744		unsigned long previous_flags = sk->sk_flags;
3745
3746		sock_set_flag(sk, flag);
3747		/*
3748		 * we just set one of the two flags which require net
3749		 * time stamping, but time stamping might have been on
3750		 * already because of the other one
3751		 */
3752		if (sock_needs_netstamp(sk) &&
3753		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3754			net_enable_timestamp();
3755	}
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759		       int level, int type)
3760{
3761	struct sock_exterr_skb *serr;
3762	struct sk_buff *skb;
3763	int copied, err;
3764
3765	err = -EAGAIN;
3766	skb = sock_dequeue_err_skb(sk);
3767	if (skb == NULL)
3768		goto out;
3769
3770	copied = skb->len;
3771	if (copied > len) {
3772		msg->msg_flags |= MSG_TRUNC;
3773		copied = len;
3774	}
3775	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776	if (err)
3777		goto out_free_skb;
3778
3779	sock_recv_timestamp(msg, sk, skb);
3780
3781	serr = SKB_EXT_ERR(skb);
3782	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784	msg->msg_flags |= MSG_ERRQUEUE;
3785	err = copied;
3786
3787out_free_skb:
3788	kfree_skb(skb);
3789out:
3790	return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 *	Get a socket option on an socket.
3796 *
3797 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 *	asynchronous errors should be reported by getsockopt. We assume
3799 *	this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802			   char __user *optval, int __user *optlen)
3803{
3804	struct sock *sk = sock->sk;
3805
3806	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812			int flags)
3813{
3814	struct sock *sk = sock->sk;
3815	int addr_len = 0;
3816	int err;
3817
3818	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3819	if (err >= 0)
3820		msg->msg_namelen = addr_len;
3821	return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 *	Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829			   sockptr_t optval, unsigned int optlen)
3830{
3831	struct sock *sk = sock->sk;
3832
3833	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
3838void sk_common_release(struct sock *sk)
3839{
3840	if (sk->sk_prot->destroy)
3841		sk->sk_prot->destroy(sk);
3842
3843	/*
3844	 * Observation: when sk_common_release is called, processes have
3845	 * no access to socket. But net still has.
3846	 * Step one, detach it from networking:
3847	 *
3848	 * A. Remove from hash tables.
3849	 */
3850
3851	sk->sk_prot->unhash(sk);
3852
3853	/*
3854	 * In this point socket cannot receive new packets, but it is possible
3855	 * that some packets are in flight because some CPU runs receiver and
3856	 * did hash table lookup before we unhashed socket. They will achieve
3857	 * receive queue and will be purged by socket destructor.
3858	 *
3859	 * Also we still have packets pending on receive queue and probably,
3860	 * our own packets waiting in device queues. sock_destroy will drain
3861	 * receive queue, but transmitted packets will delay socket destruction
3862	 * until the last reference will be released.
3863	 */
3864
3865	sock_orphan(sk);
3866
3867	xfrm_sk_free_policy(sk);
3868
 
 
3869	sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3876
3877	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
3887
3888#ifdef CONFIG_PROC_FS
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893	int cpu, idx = prot->inuse_idx;
3894	int res = 0;
3895
3896	for_each_possible_cpu(cpu)
3897		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899	return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
3903int sock_inuse_get(struct net *net)
3904{
3905	int cpu, res = 0;
3906
3907	for_each_possible_cpu(cpu)
3908		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910	return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918	if (net->core.prot_inuse == NULL)
3919		return -ENOMEM;
3920	return 0;
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925	free_percpu(net->core.prot_inuse);
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929	.init = sock_inuse_init_net,
3930	.exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935	if (register_pernet_subsys(&net_inuse_ops))
3936		panic("Cannot initialize net inuse counters");
3937
3938	return 0;
3939}
3940
3941core_initcall(net_inuse_init);
3942
3943static int assign_proto_idx(struct proto *prot)
3944{
3945	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948		pr_err("PROTO_INUSE_NR exhausted\n");
3949		return -ENOSPC;
3950	}
3951
3952	set_bit(prot->inuse_idx, proto_inuse_idx);
3953	return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959		clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964	return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975	if (!twsk_prot)
3976		return;
3977	kfree(twsk_prot->twsk_slab_name);
3978	twsk_prot->twsk_slab_name = NULL;
3979	kmem_cache_destroy(twsk_prot->twsk_slab);
3980	twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987	if (!twsk_prot)
3988		return 0;
3989
3990	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991					      prot->name);
3992	if (!twsk_prot->twsk_slab_name)
3993		return -ENOMEM;
3994
3995	twsk_prot->twsk_slab =
3996		kmem_cache_create(twsk_prot->twsk_slab_name,
3997				  twsk_prot->twsk_obj_size, 0,
3998				  SLAB_ACCOUNT | prot->slab_flags,
3999				  NULL);
4000	if (!twsk_prot->twsk_slab) {
4001		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002			prot->name);
4003		return -ENOMEM;
4004	}
4005
4006	return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011	if (!rsk_prot)
4012		return;
4013	kfree(rsk_prot->slab_name);
4014	rsk_prot->slab_name = NULL;
4015	kmem_cache_destroy(rsk_prot->slab);
4016	rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023	if (!rsk_prot)
4024		return 0;
4025
4026	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027					prot->name);
4028	if (!rsk_prot->slab_name)
4029		return -ENOMEM;
4030
4031	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032					   rsk_prot->obj_size, 0,
4033					   SLAB_ACCOUNT | prot->slab_flags,
4034					   NULL);
4035
4036	if (!rsk_prot->slab) {
4037		pr_crit("%s: Can't create request sock SLAB cache!\n",
4038			prot->name);
4039		return -ENOMEM;
4040	}
4041	return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046	int ret = -ENOBUFS;
4047
4048	if (prot->memory_allocated && !prot->sysctl_mem) {
4049		pr_err("%s: missing sysctl_mem\n", prot->name);
4050		return -EINVAL;
4051	}
4052	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054		return -EINVAL;
4055	}
4056	if (alloc_slab) {
4057		prot->slab = kmem_cache_create_usercopy(prot->name,
4058					prot->obj_size, 0,
4059					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060					prot->slab_flags,
4061					prot->useroffset, prot->usersize,
4062					NULL);
4063
4064		if (prot->slab == NULL) {
4065			pr_crit("%s: Can't create sock SLAB cache!\n",
4066				prot->name);
4067			goto out;
4068		}
4069
4070		if (req_prot_init(prot))
4071			goto out_free_request_sock_slab;
4072
4073		if (tw_prot_init(prot))
4074			goto out_free_timewait_sock_slab;
4075	}
4076
4077	mutex_lock(&proto_list_mutex);
4078	ret = assign_proto_idx(prot);
4079	if (ret) {
4080		mutex_unlock(&proto_list_mutex);
4081		goto out_free_timewait_sock_slab;
4082	}
4083	list_add(&prot->node, &proto_list);
4084	mutex_unlock(&proto_list_mutex);
4085	return ret;
4086
4087out_free_timewait_sock_slab:
4088	if (alloc_slab)
4089		tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091	if (alloc_slab) {
4092		req_prot_cleanup(prot->rsk_prot);
4093
4094		kmem_cache_destroy(prot->slab);
4095		prot->slab = NULL;
4096	}
4097out:
4098	return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104	mutex_lock(&proto_list_mutex);
4105	release_proto_idx(prot);
4106	list_del(&prot->node);
4107	mutex_unlock(&proto_list_mutex);
4108
4109	kmem_cache_destroy(prot->slab);
4110	prot->slab = NULL;
4111
4112	req_prot_cleanup(prot->rsk_prot);
4113	tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119	if (!protocol) {
4120		if (!sock_is_registered(family))
4121			return -ENOENT;
4122
4123		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124				      NETLINK_SOCK_DIAG, family);
4125	}
4126
4127#ifdef CONFIG_INET
4128	if (family == AF_INET &&
4129	    protocol != IPPROTO_RAW &&
4130	    protocol < MAX_INET_PROTOS &&
4131	    !rcu_access_pointer(inet_protos[protocol]))
4132		return -ENOENT;
4133#endif
4134
4135	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136			      NETLINK_SOCK_DIAG, family, protocol);
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142	__acquires(proto_list_mutex)
4143{
4144	mutex_lock(&proto_list_mutex);
4145	return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150	return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154	__releases(proto_list_mutex)
4155{
4156	mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161	return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170	return proto->memory_pressure != NULL ?
4171	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4178			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179		   proto->name,
4180		   proto->obj_size,
4181		   sock_prot_inuse_get(seq_file_net(seq), proto),
4182		   sock_prot_memory_allocated(proto),
4183		   sock_prot_memory_pressure(proto),
4184		   proto->max_header,
4185		   proto->slab == NULL ? "no" : "yes",
4186		   module_name(proto->owner),
4187		   proto_method_implemented(proto->close),
4188		   proto_method_implemented(proto->connect),
4189		   proto_method_implemented(proto->disconnect),
4190		   proto_method_implemented(proto->accept),
4191		   proto_method_implemented(proto->ioctl),
4192		   proto_method_implemented(proto->init),
4193		   proto_method_implemented(proto->destroy),
4194		   proto_method_implemented(proto->shutdown),
4195		   proto_method_implemented(proto->setsockopt),
4196		   proto_method_implemented(proto->getsockopt),
4197		   proto_method_implemented(proto->sendmsg),
4198		   proto_method_implemented(proto->recvmsg),
 
4199		   proto_method_implemented(proto->bind),
4200		   proto_method_implemented(proto->backlog_rcv),
4201		   proto_method_implemented(proto->hash),
4202		   proto_method_implemented(proto->unhash),
4203		   proto_method_implemented(proto->get_port),
4204		   proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209	if (v == &proto_list)
4210		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211			   "protocol",
4212			   "size",
4213			   "sockets",
4214			   "memory",
4215			   "press",
4216			   "maxhdr",
4217			   "slab",
4218			   "module",
4219			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220	else
4221		proto_seq_printf(seq, list_entry(v, struct proto, node));
4222	return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226	.start  = proto_seq_start,
4227	.next   = proto_seq_next,
4228	.stop   = proto_seq_stop,
4229	.show   = proto_seq_show,
4230};
4231
4232static __net_init int proto_init_net(struct net *net)
4233{
4234	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235			sizeof(struct seq_net_private)))
4236		return -ENOMEM;
4237
4238	return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243	remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248	.init = proto_init_net,
4249	.exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254	return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264	struct sock *sk = p;
4265
4266	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267		return true;
4268
4269	if (sk_is_udp(sk) &&
4270	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271		return true;
4272
4273	return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280	if (!sk->sk_prot->bind_add)
4281		return -EOPNOTSUPP;
4282	return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288		     void __user *arg, void *karg, size_t size)
4289{
4290	int ret;
4291
4292	if (copy_from_user(karg, arg, size))
4293		return -EFAULT;
4294
4295	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296	if (ret)
4297		return ret;
4298
4299	if (copy_to_user(arg, karg, size))
4300		return -EFAULT;
4301
4302	return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312	int ret, karg = 0;
4313
4314	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315	if (ret)
4316		return ret;
4317
4318	return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328	int rc = 1;
4329
4330	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331		rc = ipmr_sk_ioctl(sk, cmd, arg);
4332	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334	else if (sk_is_phonet(sk))
4335		rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337	/* If ioctl was processed, returns its value */
4338	if (rc <= 0)
4339		return rc;
4340
4341	/* Otherwise call the default handler */
4342	return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403	return 0;
4404}
4405
4406core_initcall(sock_struct_check);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 
 
 
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 
 141
 142#include <linux/ethtool.h>
 143
 144#include "dev.h"
 145
 146static DEFINE_MUTEX(proto_list_mutex);
 147static LIST_HEAD(proto_list);
 148
 149static void sock_def_write_space_wfree(struct sock *sk);
 150static void sock_def_write_space(struct sock *sk);
 151
 152/**
 153 * sk_ns_capable - General socket capability test
 154 * @sk: Socket to use a capability on or through
 155 * @user_ns: The user namespace of the capability to use
 156 * @cap: The capability to use
 157 *
 158 * Test to see if the opener of the socket had when the socket was
 159 * created and the current process has the capability @cap in the user
 160 * namespace @user_ns.
 161 */
 162bool sk_ns_capable(const struct sock *sk,
 163		   struct user_namespace *user_ns, int cap)
 164{
 165	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 166		ns_capable(user_ns, cap);
 167}
 168EXPORT_SYMBOL(sk_ns_capable);
 169
 170/**
 171 * sk_capable - Socket global capability test
 172 * @sk: Socket to use a capability on or through
 173 * @cap: The global capability to use
 174 *
 175 * Test to see if the opener of the socket had when the socket was
 176 * created and the current process has the capability @cap in all user
 177 * namespaces.
 178 */
 179bool sk_capable(const struct sock *sk, int cap)
 180{
 181	return sk_ns_capable(sk, &init_user_ns, cap);
 182}
 183EXPORT_SYMBOL(sk_capable);
 184
 185/**
 186 * sk_net_capable - Network namespace socket capability test
 187 * @sk: Socket to use a capability on or through
 188 * @cap: The capability to use
 189 *
 190 * Test to see if the opener of the socket had when the socket was created
 191 * and the current process has the capability @cap over the network namespace
 192 * the socket is a member of.
 193 */
 194bool sk_net_capable(const struct sock *sk, int cap)
 195{
 196	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 197}
 198EXPORT_SYMBOL(sk_net_capable);
 199
 200/*
 201 * Each address family might have different locking rules, so we have
 202 * one slock key per address family and separate keys for internal and
 203 * userspace sockets.
 204 */
 205static struct lock_class_key af_family_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_keys[AF_MAX];
 207static struct lock_class_key af_family_slock_keys[AF_MAX];
 208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 209
 210/*
 211 * Make lock validator output more readable. (we pre-construct these
 212 * strings build-time, so that runtime initialization of socket
 213 * locks is fast):
 214 */
 215
 216#define _sock_locks(x)						  \
 217  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 218  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 219  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 220  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 221  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 222  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 223  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 224  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 225  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 226  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 227  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 228  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 229  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 230  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 231  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 232  x "AF_MCTP"  , \
 233  x "AF_MAX"
 234
 235static const char *const af_family_key_strings[AF_MAX+1] = {
 236	_sock_locks("sk_lock-")
 237};
 238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 239	_sock_locks("slock-")
 240};
 241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 242	_sock_locks("clock-")
 243};
 244
 245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-sk_lock-")
 247};
 248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 249	_sock_locks("k-slock-")
 250};
 251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 252	_sock_locks("k-clock-")
 253};
 254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 255	_sock_locks("rlock-")
 256};
 257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 258	_sock_locks("wlock-")
 259};
 260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 261	_sock_locks("elock-")
 262};
 263
 264/*
 265 * sk_callback_lock and sk queues locking rules are per-address-family,
 266 * so split the lock classes by using a per-AF key:
 267 */
 268static struct lock_class_key af_callback_keys[AF_MAX];
 269static struct lock_class_key af_rlock_keys[AF_MAX];
 270static struct lock_class_key af_wlock_keys[AF_MAX];
 271static struct lock_class_key af_elock_keys[AF_MAX];
 272static struct lock_class_key af_kern_callback_keys[AF_MAX];
 273
 274/* Run time adjustable parameters. */
 275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 276EXPORT_SYMBOL(sysctl_wmem_max);
 277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 278EXPORT_SYMBOL(sysctl_rmem_max);
 279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 281
 282/* Maximal space eaten by iovec or ancillary data plus some space */
 283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 284EXPORT_SYMBOL(sysctl_optmem_max);
 285
 286int sysctl_tstamp_allow_data __read_mostly = 1;
 287
 288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 289EXPORT_SYMBOL_GPL(memalloc_socks_key);
 290
 291/**
 292 * sk_set_memalloc - sets %SOCK_MEMALLOC
 293 * @sk: socket to set it on
 294 *
 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 296 * It's the responsibility of the admin to adjust min_free_kbytes
 297 * to meet the requirements
 298 */
 299void sk_set_memalloc(struct sock *sk)
 300{
 301	sock_set_flag(sk, SOCK_MEMALLOC);
 302	sk->sk_allocation |= __GFP_MEMALLOC;
 303	static_branch_inc(&memalloc_socks_key);
 304}
 305EXPORT_SYMBOL_GPL(sk_set_memalloc);
 306
 307void sk_clear_memalloc(struct sock *sk)
 308{
 309	sock_reset_flag(sk, SOCK_MEMALLOC);
 310	sk->sk_allocation &= ~__GFP_MEMALLOC;
 311	static_branch_dec(&memalloc_socks_key);
 312
 313	/*
 314	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 315	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 316	 * it has rmem allocations due to the last swapfile being deactivated
 317	 * but there is a risk that the socket is unusable due to exceeding
 318	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 319	 */
 320	sk_mem_reclaim(sk);
 321}
 322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 323
 324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 325{
 326	int ret;
 327	unsigned int noreclaim_flag;
 328
 329	/* these should have been dropped before queueing */
 330	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 331
 332	noreclaim_flag = memalloc_noreclaim_save();
 333	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 334				 tcp_v6_do_rcv,
 335				 tcp_v4_do_rcv,
 336				 sk, skb);
 337	memalloc_noreclaim_restore(noreclaim_flag);
 338
 339	return ret;
 340}
 341EXPORT_SYMBOL(__sk_backlog_rcv);
 342
 343void sk_error_report(struct sock *sk)
 344{
 345	sk->sk_error_report(sk);
 346
 347	switch (sk->sk_family) {
 348	case AF_INET:
 349		fallthrough;
 350	case AF_INET6:
 351		trace_inet_sk_error_report(sk);
 352		break;
 353	default:
 354		break;
 355	}
 356}
 357EXPORT_SYMBOL(sk_error_report);
 358
 359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 360{
 361	struct __kernel_sock_timeval tv;
 362
 363	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 364		tv.tv_sec = 0;
 365		tv.tv_usec = 0;
 366	} else {
 367		tv.tv_sec = timeo / HZ;
 368		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 369	}
 370
 371	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 372		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 373		*(struct old_timeval32 *)optval = tv32;
 374		return sizeof(tv32);
 375	}
 376
 377	if (old_timeval) {
 378		struct __kernel_old_timeval old_tv;
 379		old_tv.tv_sec = tv.tv_sec;
 380		old_tv.tv_usec = tv.tv_usec;
 381		*(struct __kernel_old_timeval *)optval = old_tv;
 382		return sizeof(old_tv);
 383	}
 384
 385	*(struct __kernel_sock_timeval *)optval = tv;
 386	return sizeof(tv);
 387}
 388EXPORT_SYMBOL(sock_get_timeout);
 389
 390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 391			   sockptr_t optval, int optlen, bool old_timeval)
 392{
 393	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 394		struct old_timeval32 tv32;
 395
 396		if (optlen < sizeof(tv32))
 397			return -EINVAL;
 398
 399		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 400			return -EFAULT;
 401		tv->tv_sec = tv32.tv_sec;
 402		tv->tv_usec = tv32.tv_usec;
 403	} else if (old_timeval) {
 404		struct __kernel_old_timeval old_tv;
 405
 406		if (optlen < sizeof(old_tv))
 407			return -EINVAL;
 408		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 409			return -EFAULT;
 410		tv->tv_sec = old_tv.tv_sec;
 411		tv->tv_usec = old_tv.tv_usec;
 412	} else {
 413		if (optlen < sizeof(*tv))
 414			return -EINVAL;
 415		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 416			return -EFAULT;
 417	}
 418
 419	return 0;
 420}
 421EXPORT_SYMBOL(sock_copy_user_timeval);
 422
 423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 424			    bool old_timeval)
 425{
 426	struct __kernel_sock_timeval tv;
 427	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 
 428
 429	if (err)
 430		return err;
 431
 432	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 433		return -EDOM;
 434
 435	if (tv.tv_sec < 0) {
 436		static int warned __read_mostly;
 437
 438		*timeo_p = 0;
 439		if (warned < 10 && net_ratelimit()) {
 440			warned++;
 441			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 442				__func__, current->comm, task_pid_nr(current));
 443		}
 444		return 0;
 445	}
 446	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 447	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 448		return 0;
 449	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 450		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 
 451	return 0;
 452}
 453
 454static bool sock_needs_netstamp(const struct sock *sk)
 455{
 456	switch (sk->sk_family) {
 457	case AF_UNSPEC:
 458	case AF_UNIX:
 459		return false;
 460	default:
 461		return true;
 462	}
 463}
 464
 465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 466{
 467	if (sk->sk_flags & flags) {
 468		sk->sk_flags &= ~flags;
 469		if (sock_needs_netstamp(sk) &&
 470		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 471			net_disable_timestamp();
 472	}
 473}
 474
 475
 476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 477{
 478	unsigned long flags;
 479	struct sk_buff_head *list = &sk->sk_receive_queue;
 480
 481	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 482		atomic_inc(&sk->sk_drops);
 483		trace_sock_rcvqueue_full(sk, skb);
 484		return -ENOMEM;
 485	}
 486
 487	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 488		atomic_inc(&sk->sk_drops);
 489		return -ENOBUFS;
 490	}
 491
 492	skb->dev = NULL;
 493	skb_set_owner_r(skb, sk);
 494
 495	/* we escape from rcu protected region, make sure we dont leak
 496	 * a norefcounted dst
 497	 */
 498	skb_dst_force(skb);
 499
 500	spin_lock_irqsave(&list->lock, flags);
 501	sock_skb_set_dropcount(sk, skb);
 502	__skb_queue_tail(list, skb);
 503	spin_unlock_irqrestore(&list->lock, flags);
 504
 505	if (!sock_flag(sk, SOCK_DEAD))
 506		sk->sk_data_ready(sk);
 507	return 0;
 508}
 509EXPORT_SYMBOL(__sock_queue_rcv_skb);
 510
 511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 512			      enum skb_drop_reason *reason)
 513{
 514	enum skb_drop_reason drop_reason;
 515	int err;
 516
 517	err = sk_filter(sk, skb);
 518	if (err) {
 519		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 520		goto out;
 521	}
 522	err = __sock_queue_rcv_skb(sk, skb);
 523	switch (err) {
 524	case -ENOMEM:
 525		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 526		break;
 527	case -ENOBUFS:
 528		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 529		break;
 530	default:
 531		drop_reason = SKB_NOT_DROPPED_YET;
 532		break;
 533	}
 534out:
 535	if (reason)
 536		*reason = drop_reason;
 537	return err;
 538}
 539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 540
 541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 542		     const int nested, unsigned int trim_cap, bool refcounted)
 543{
 544	int rc = NET_RX_SUCCESS;
 545
 546	if (sk_filter_trim_cap(sk, skb, trim_cap))
 547		goto discard_and_relse;
 548
 549	skb->dev = NULL;
 550
 551	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 552		atomic_inc(&sk->sk_drops);
 553		goto discard_and_relse;
 554	}
 555	if (nested)
 556		bh_lock_sock_nested(sk);
 557	else
 558		bh_lock_sock(sk);
 559	if (!sock_owned_by_user(sk)) {
 560		/*
 561		 * trylock + unlock semantics:
 562		 */
 563		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 564
 565		rc = sk_backlog_rcv(sk, skb);
 566
 567		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 568	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 569		bh_unlock_sock(sk);
 570		atomic_inc(&sk->sk_drops);
 571		goto discard_and_relse;
 572	}
 573
 574	bh_unlock_sock(sk);
 575out:
 576	if (refcounted)
 577		sock_put(sk);
 578	return rc;
 579discard_and_relse:
 580	kfree_skb(skb);
 581	goto out;
 582}
 583EXPORT_SYMBOL(__sk_receive_skb);
 584
 585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 586							  u32));
 587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 588							   u32));
 589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 590{
 591	struct dst_entry *dst = __sk_dst_get(sk);
 592
 593	if (dst && dst->obsolete &&
 594	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 595			       dst, cookie) == NULL) {
 596		sk_tx_queue_clear(sk);
 597		sk->sk_dst_pending_confirm = 0;
 598		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 599		dst_release(dst);
 600		return NULL;
 601	}
 602
 603	return dst;
 604}
 605EXPORT_SYMBOL(__sk_dst_check);
 606
 607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 608{
 609	struct dst_entry *dst = sk_dst_get(sk);
 610
 611	if (dst && dst->obsolete &&
 612	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 613			       dst, cookie) == NULL) {
 614		sk_dst_reset(sk);
 615		dst_release(dst);
 616		return NULL;
 617	}
 618
 619	return dst;
 620}
 621EXPORT_SYMBOL(sk_dst_check);
 622
 623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 624{
 625	int ret = -ENOPROTOOPT;
 626#ifdef CONFIG_NETDEVICES
 627	struct net *net = sock_net(sk);
 628
 629	/* Sorry... */
 630	ret = -EPERM;
 631	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 632		goto out;
 633
 634	ret = -EINVAL;
 635	if (ifindex < 0)
 636		goto out;
 637
 638	/* Paired with all READ_ONCE() done locklessly. */
 639	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 640
 641	if (sk->sk_prot->rehash)
 642		sk->sk_prot->rehash(sk);
 643	sk_dst_reset(sk);
 644
 645	ret = 0;
 646
 647out:
 648#endif
 649
 650	return ret;
 651}
 652
 653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 654{
 655	int ret;
 656
 657	if (lock_sk)
 658		lock_sock(sk);
 659	ret = sock_bindtoindex_locked(sk, ifindex);
 660	if (lock_sk)
 661		release_sock(sk);
 662
 663	return ret;
 664}
 665EXPORT_SYMBOL(sock_bindtoindex);
 666
 667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 668{
 669	int ret = -ENOPROTOOPT;
 670#ifdef CONFIG_NETDEVICES
 671	struct net *net = sock_net(sk);
 672	char devname[IFNAMSIZ];
 673	int index;
 674
 675	ret = -EINVAL;
 676	if (optlen < 0)
 677		goto out;
 678
 679	/* Bind this socket to a particular device like "eth0",
 680	 * as specified in the passed interface name. If the
 681	 * name is "" or the option length is zero the socket
 682	 * is not bound.
 683	 */
 684	if (optlen > IFNAMSIZ - 1)
 685		optlen = IFNAMSIZ - 1;
 686	memset(devname, 0, sizeof(devname));
 687
 688	ret = -EFAULT;
 689	if (copy_from_sockptr(devname, optval, optlen))
 690		goto out;
 691
 692	index = 0;
 693	if (devname[0] != '\0') {
 694		struct net_device *dev;
 695
 696		rcu_read_lock();
 697		dev = dev_get_by_name_rcu(net, devname);
 698		if (dev)
 699			index = dev->ifindex;
 700		rcu_read_unlock();
 701		ret = -ENODEV;
 702		if (!dev)
 703			goto out;
 704	}
 705
 706	sockopt_lock_sock(sk);
 707	ret = sock_bindtoindex_locked(sk, index);
 708	sockopt_release_sock(sk);
 709out:
 710#endif
 711
 712	return ret;
 713}
 714
 715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 716				sockptr_t optlen, int len)
 717{
 718	int ret = -ENOPROTOOPT;
 719#ifdef CONFIG_NETDEVICES
 720	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 721	struct net *net = sock_net(sk);
 722	char devname[IFNAMSIZ];
 723
 724	if (bound_dev_if == 0) {
 725		len = 0;
 726		goto zero;
 727	}
 728
 729	ret = -EINVAL;
 730	if (len < IFNAMSIZ)
 731		goto out;
 732
 733	ret = netdev_get_name(net, devname, bound_dev_if);
 734	if (ret)
 735		goto out;
 736
 737	len = strlen(devname) + 1;
 738
 739	ret = -EFAULT;
 740	if (copy_to_sockptr(optval, devname, len))
 741		goto out;
 742
 743zero:
 744	ret = -EFAULT;
 745	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 746		goto out;
 747
 748	ret = 0;
 749
 750out:
 751#endif
 752
 753	return ret;
 754}
 755
 756bool sk_mc_loop(struct sock *sk)
 757{
 758	if (dev_recursion_level())
 759		return false;
 760	if (!sk)
 761		return true;
 762	switch (sk->sk_family) {
 
 763	case AF_INET:
 764		return inet_sk(sk)->mc_loop;
 765#if IS_ENABLED(CONFIG_IPV6)
 766	case AF_INET6:
 767		return inet6_sk(sk)->mc_loop;
 768#endif
 769	}
 770	WARN_ON_ONCE(1);
 771	return true;
 772}
 773EXPORT_SYMBOL(sk_mc_loop);
 774
 775void sock_set_reuseaddr(struct sock *sk)
 776{
 777	lock_sock(sk);
 778	sk->sk_reuse = SK_CAN_REUSE;
 779	release_sock(sk);
 780}
 781EXPORT_SYMBOL(sock_set_reuseaddr);
 782
 783void sock_set_reuseport(struct sock *sk)
 784{
 785	lock_sock(sk);
 786	sk->sk_reuseport = true;
 787	release_sock(sk);
 788}
 789EXPORT_SYMBOL(sock_set_reuseport);
 790
 791void sock_no_linger(struct sock *sk)
 792{
 793	lock_sock(sk);
 794	sk->sk_lingertime = 0;
 795	sock_set_flag(sk, SOCK_LINGER);
 796	release_sock(sk);
 797}
 798EXPORT_SYMBOL(sock_no_linger);
 799
 800void sock_set_priority(struct sock *sk, u32 priority)
 801{
 802	lock_sock(sk);
 803	sk->sk_priority = priority;
 804	release_sock(sk);
 805}
 806EXPORT_SYMBOL(sock_set_priority);
 807
 808void sock_set_sndtimeo(struct sock *sk, s64 secs)
 809{
 810	lock_sock(sk);
 811	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 812		sk->sk_sndtimeo = secs * HZ;
 813	else
 814		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 815	release_sock(sk);
 816}
 817EXPORT_SYMBOL(sock_set_sndtimeo);
 818
 819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 820{
 
 
 821	if (val)  {
 822		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 823		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 824		sock_set_flag(sk, SOCK_RCVTSTAMP);
 825		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 826	} else {
 827		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 828		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 829	}
 830}
 831
 832void sock_enable_timestamps(struct sock *sk)
 833{
 834	lock_sock(sk);
 835	__sock_set_timestamps(sk, true, false, true);
 836	release_sock(sk);
 837}
 838EXPORT_SYMBOL(sock_enable_timestamps);
 839
 840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 841{
 842	switch (optname) {
 843	case SO_TIMESTAMP_OLD:
 844		__sock_set_timestamps(sk, valbool, false, false);
 845		break;
 846	case SO_TIMESTAMP_NEW:
 847		__sock_set_timestamps(sk, valbool, true, false);
 848		break;
 849	case SO_TIMESTAMPNS_OLD:
 850		__sock_set_timestamps(sk, valbool, false, true);
 851		break;
 852	case SO_TIMESTAMPNS_NEW:
 853		__sock_set_timestamps(sk, valbool, true, true);
 854		break;
 855	}
 856}
 857
 858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 859{
 860	struct net *net = sock_net(sk);
 861	struct net_device *dev = NULL;
 862	bool match = false;
 863	int *vclock_index;
 864	int i, num;
 865
 866	if (sk->sk_bound_dev_if)
 867		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 868
 869	if (!dev) {
 870		pr_err("%s: sock not bind to device\n", __func__);
 871		return -EOPNOTSUPP;
 872	}
 873
 874	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 875	dev_put(dev);
 876
 877	for (i = 0; i < num; i++) {
 878		if (*(vclock_index + i) == phc_index) {
 879			match = true;
 880			break;
 881		}
 882	}
 883
 884	if (num > 0)
 885		kfree(vclock_index);
 886
 887	if (!match)
 888		return -EINVAL;
 889
 890	sk->sk_bind_phc = phc_index;
 891
 892	return 0;
 893}
 894
 895int sock_set_timestamping(struct sock *sk, int optname,
 896			  struct so_timestamping timestamping)
 897{
 898	int val = timestamping.flags;
 899	int ret;
 900
 901	if (val & ~SOF_TIMESTAMPING_MASK)
 902		return -EINVAL;
 903
 904	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 905	    !(val & SOF_TIMESTAMPING_OPT_ID))
 906		return -EINVAL;
 907
 908	if (val & SOF_TIMESTAMPING_OPT_ID &&
 909	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 910		if (sk_is_tcp(sk)) {
 911			if ((1 << sk->sk_state) &
 912			    (TCPF_CLOSE | TCPF_LISTEN))
 913				return -EINVAL;
 914			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 915				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 916			else
 917				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 918		} else {
 919			atomic_set(&sk->sk_tskey, 0);
 920		}
 921	}
 922
 923	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 924	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 925		return -EINVAL;
 926
 927	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 928		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 929		if (ret)
 930			return ret;
 931	}
 932
 933	sk->sk_tsflags = val;
 934	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 935
 936	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 937		sock_enable_timestamp(sk,
 938				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 939	else
 940		sock_disable_timestamp(sk,
 941				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 942	return 0;
 943}
 944
 945void sock_set_keepalive(struct sock *sk)
 946{
 947	lock_sock(sk);
 948	if (sk->sk_prot->keepalive)
 949		sk->sk_prot->keepalive(sk, true);
 950	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 951	release_sock(sk);
 952}
 953EXPORT_SYMBOL(sock_set_keepalive);
 954
 955static void __sock_set_rcvbuf(struct sock *sk, int val)
 956{
 957	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 958	 * as a negative value.
 959	 */
 960	val = min_t(int, val, INT_MAX / 2);
 961	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 962
 963	/* We double it on the way in to account for "struct sk_buff" etc.
 964	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 965	 * will allow that much actual data to be received on that socket.
 966	 *
 967	 * Applications are unaware that "struct sk_buff" and other overheads
 968	 * allocate from the receive buffer during socket buffer allocation.
 969	 *
 970	 * And after considering the possible alternatives, returning the value
 971	 * we actually used in getsockopt is the most desirable behavior.
 972	 */
 973	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 974}
 975
 976void sock_set_rcvbuf(struct sock *sk, int val)
 977{
 978	lock_sock(sk);
 979	__sock_set_rcvbuf(sk, val);
 980	release_sock(sk);
 981}
 982EXPORT_SYMBOL(sock_set_rcvbuf);
 983
 984static void __sock_set_mark(struct sock *sk, u32 val)
 985{
 986	if (val != sk->sk_mark) {
 987		sk->sk_mark = val;
 988		sk_dst_reset(sk);
 989	}
 990}
 991
 992void sock_set_mark(struct sock *sk, u32 val)
 993{
 994	lock_sock(sk);
 995	__sock_set_mark(sk, val);
 996	release_sock(sk);
 997}
 998EXPORT_SYMBOL(sock_set_mark);
 999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002	/* Round down bytes to multiple of pages */
1003	bytes = round_down(bytes, PAGE_SIZE);
1004
1005	WARN_ON(bytes > sk->sk_reserved_mem);
1006	sk->sk_reserved_mem -= bytes;
1007	sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012	long allocated;
1013	bool charged;
1014	int pages;
1015
1016	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017		return -EOPNOTSUPP;
1018
1019	if (!bytes)
1020		return 0;
1021
1022	pages = sk_mem_pages(bytes);
1023
1024	/* pre-charge to memcg */
1025	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027	if (!charged)
1028		return -ENOMEM;
1029
1030	/* pre-charge to forward_alloc */
1031	sk_memory_allocated_add(sk, pages);
1032	allocated = sk_memory_allocated(sk);
1033	/* If the system goes into memory pressure with this
1034	 * precharge, give up and return error.
1035	 */
1036	if (allocated > sk_prot_mem_limits(sk, 1)) {
1037		sk_memory_allocated_sub(sk, pages);
1038		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039		return -ENOMEM;
1040	}
1041	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043	sk->sk_reserved_mem += pages << PAGE_SHIFT;
 
1044
1045	return 0;
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050	/* When current->bpf_ctx is set, the setsockopt is called from
1051	 * a bpf prog.  bpf has ensured the sk lock has been
1052	 * acquired before calling setsockopt().
1053	 */
1054	if (has_current_bpf_ctx())
1055		return;
1056
1057	lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063	if (has_current_bpf_ctx())
1064		return;
1065
1066	release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078	return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
 
 
 
 
 
 
 
 
 
 
 
1082/*
1083 *	This is meant for all protocols to use and covers goings on
1084 *	at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088		  sockptr_t optval, unsigned int optlen)
1089{
1090	struct so_timestamping timestamping;
1091	struct socket *sock = sk->sk_socket;
1092	struct sock_txtime sk_txtime;
1093	int val;
1094	int valbool;
1095	struct linger ling;
1096	int ret = 0;
1097
1098	/*
1099	 *	Options without arguments
1100	 */
1101
1102	if (optname == SO_BINDTODEVICE)
1103		return sock_setbindtodevice(sk, optval, optlen);
1104
1105	if (optlen < sizeof(int))
1106		return -EINVAL;
1107
1108	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109		return -EFAULT;
1110
1111	valbool = val ? 1 : 0;
1112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113	sockopt_lock_sock(sk);
1114
1115	switch (optname) {
1116	case SO_DEBUG:
1117		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118			ret = -EACCES;
1119		else
1120			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121		break;
1122	case SO_REUSEADDR:
1123		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124		break;
1125	case SO_REUSEPORT:
1126		sk->sk_reuseport = valbool;
1127		break;
1128	case SO_TYPE:
1129	case SO_PROTOCOL:
1130	case SO_DOMAIN:
1131	case SO_ERROR:
1132		ret = -ENOPROTOOPT;
1133		break;
1134	case SO_DONTROUTE:
1135		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136		sk_dst_reset(sk);
1137		break;
1138	case SO_BROADCAST:
1139		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140		break;
1141	case SO_SNDBUF:
1142		/* Don't error on this BSD doesn't and if you think
1143		 * about it this is right. Otherwise apps have to
1144		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145		 * are treated in BSD as hints
1146		 */
1147		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149		/* Ensure val * 2 fits into an int, to prevent max_t()
1150		 * from treating it as a negative value.
1151		 */
1152		val = min_t(int, val, INT_MAX / 2);
1153		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154		WRITE_ONCE(sk->sk_sndbuf,
1155			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156		/* Wake up sending tasks if we upped the value. */
1157		sk->sk_write_space(sk);
1158		break;
1159
1160	case SO_SNDBUFFORCE:
1161		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162			ret = -EPERM;
1163			break;
1164		}
1165
1166		/* No negative values (to prevent underflow, as val will be
1167		 * multiplied by 2).
1168		 */
1169		if (val < 0)
1170			val = 0;
1171		goto set_sndbuf;
1172
1173	case SO_RCVBUF:
1174		/* Don't error on this BSD doesn't and if you think
1175		 * about it this is right. Otherwise apps have to
1176		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177		 * are treated in BSD as hints
1178		 */
1179		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180		break;
1181
1182	case SO_RCVBUFFORCE:
1183		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184			ret = -EPERM;
1185			break;
1186		}
1187
1188		/* No negative values (to prevent underflow, as val will be
1189		 * multiplied by 2).
1190		 */
1191		__sock_set_rcvbuf(sk, max(val, 0));
1192		break;
1193
1194	case SO_KEEPALIVE:
1195		if (sk->sk_prot->keepalive)
1196			sk->sk_prot->keepalive(sk, valbool);
1197		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198		break;
1199
1200	case SO_OOBINLINE:
1201		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202		break;
1203
1204	case SO_NO_CHECK:
1205		sk->sk_no_check_tx = valbool;
1206		break;
1207
1208	case SO_PRIORITY:
1209		if ((val >= 0 && val <= 6) ||
1210		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212			sk->sk_priority = val;
1213		else
1214			ret = -EPERM;
1215		break;
1216
1217	case SO_LINGER:
1218		if (optlen < sizeof(ling)) {
1219			ret = -EINVAL;	/* 1003.1g */
1220			break;
1221		}
1222		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223			ret = -EFAULT;
1224			break;
1225		}
1226		if (!ling.l_onoff)
1227			sock_reset_flag(sk, SOCK_LINGER);
1228		else {
1229#if (BITS_PER_LONG == 32)
1230			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 
1232			else
1233#endif
1234				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235			sock_set_flag(sk, SOCK_LINGER);
1236		}
1237		break;
1238
1239	case SO_BSDCOMPAT:
1240		break;
1241
1242	case SO_PASSCRED:
1243		if (valbool)
1244			set_bit(SOCK_PASSCRED, &sock->flags);
1245		else
1246			clear_bit(SOCK_PASSCRED, &sock->flags);
1247		break;
1248
1249	case SO_TIMESTAMP_OLD:
1250	case SO_TIMESTAMP_NEW:
1251	case SO_TIMESTAMPNS_OLD:
1252	case SO_TIMESTAMPNS_NEW:
1253		sock_set_timestamp(sk, optname, valbool);
1254		break;
1255
1256	case SO_TIMESTAMPING_NEW:
1257	case SO_TIMESTAMPING_OLD:
1258		if (optlen == sizeof(timestamping)) {
1259			if (copy_from_sockptr(&timestamping, optval,
1260					      sizeof(timestamping))) {
1261				ret = -EFAULT;
1262				break;
1263			}
1264		} else {
1265			memset(&timestamping, 0, sizeof(timestamping));
1266			timestamping.flags = val;
1267		}
1268		ret = sock_set_timestamping(sk, optname, timestamping);
1269		break;
1270
1271	case SO_RCVLOWAT:
 
 
 
1272		if (val < 0)
1273			val = INT_MAX;
1274		if (sock && sock->ops->set_rcvlowat)
1275			ret = sock->ops->set_rcvlowat(sk, val);
 
 
1276		else
1277			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278		break;
1279
1280	case SO_RCVTIMEO_OLD:
1281	case SO_RCVTIMEO_NEW:
1282		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283				       optlen, optname == SO_RCVTIMEO_OLD);
1284		break;
1285
1286	case SO_SNDTIMEO_OLD:
1287	case SO_SNDTIMEO_NEW:
1288		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289				       optlen, optname == SO_SNDTIMEO_OLD);
1290		break;
1291
1292	case SO_ATTACH_FILTER: {
1293		struct sock_fprog fprog;
1294
1295		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296		if (!ret)
1297			ret = sk_attach_filter(&fprog, sk);
1298		break;
1299	}
1300	case SO_ATTACH_BPF:
1301		ret = -EINVAL;
1302		if (optlen == sizeof(u32)) {
1303			u32 ufd;
1304
1305			ret = -EFAULT;
1306			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307				break;
1308
1309			ret = sk_attach_bpf(ufd, sk);
1310		}
1311		break;
1312
1313	case SO_ATTACH_REUSEPORT_CBPF: {
1314		struct sock_fprog fprog;
1315
1316		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317		if (!ret)
1318			ret = sk_reuseport_attach_filter(&fprog, sk);
1319		break;
1320	}
1321	case SO_ATTACH_REUSEPORT_EBPF:
1322		ret = -EINVAL;
1323		if (optlen == sizeof(u32)) {
1324			u32 ufd;
1325
1326			ret = -EFAULT;
1327			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328				break;
1329
1330			ret = sk_reuseport_attach_bpf(ufd, sk);
1331		}
1332		break;
1333
1334	case SO_DETACH_REUSEPORT_BPF:
1335		ret = reuseport_detach_prog(sk);
1336		break;
1337
1338	case SO_DETACH_FILTER:
1339		ret = sk_detach_filter(sk);
1340		break;
1341
1342	case SO_LOCK_FILTER:
1343		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344			ret = -EPERM;
1345		else
1346			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347		break;
1348
1349	case SO_PASSSEC:
1350		if (valbool)
1351			set_bit(SOCK_PASSSEC, &sock->flags);
1352		else
1353			clear_bit(SOCK_PASSSEC, &sock->flags);
1354		break;
1355	case SO_MARK:
1356		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358			ret = -EPERM;
1359			break;
1360		}
1361
1362		__sock_set_mark(sk, val);
1363		break;
1364	case SO_RCVMARK:
1365		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367			ret = -EPERM;
1368			break;
1369		}
1370
1371		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372		break;
1373
1374	case SO_RXQ_OVFL:
1375		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376		break;
1377
1378	case SO_WIFI_STATUS:
1379		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380		break;
1381
1382	case SO_PEEK_OFF:
1383		if (sock->ops->set_peek_off)
1384			ret = sock->ops->set_peek_off(sk, val);
1385		else
1386			ret = -EOPNOTSUPP;
1387		break;
1388
1389	case SO_NOFCS:
1390		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391		break;
1392
1393	case SO_SELECT_ERR_QUEUE:
1394		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395		break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398	case SO_BUSY_POLL:
1399		/* allow unprivileged users to decrease the value */
1400		if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401			ret = -EPERM;
1402		else {
1403			if (val < 0)
1404				ret = -EINVAL;
1405			else
1406				WRITE_ONCE(sk->sk_ll_usec, val);
1407		}
1408		break;
1409	case SO_PREFER_BUSY_POLL:
1410		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411			ret = -EPERM;
1412		else
1413			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414		break;
1415	case SO_BUSY_POLL_BUDGET:
1416		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417			ret = -EPERM;
1418		} else {
1419			if (val < 0 || val > U16_MAX)
1420				ret = -EINVAL;
1421			else
1422				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423		}
1424		break;
1425#endif
1426
1427	case SO_MAX_PACING_RATE:
1428		{
1429		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431		if (sizeof(ulval) != sizeof(val) &&
1432		    optlen >= sizeof(ulval) &&
1433		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434			ret = -EFAULT;
1435			break;
1436		}
1437		if (ulval != ~0UL)
1438			cmpxchg(&sk->sk_pacing_status,
1439				SK_PACING_NONE,
1440				SK_PACING_NEEDED);
1441		sk->sk_max_pacing_rate = ulval;
1442		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443		break;
1444		}
1445	case SO_INCOMING_CPU:
1446		reuseport_update_incoming_cpu(sk, val);
1447		break;
1448
1449	case SO_CNX_ADVICE:
1450		if (val == 1)
1451			dst_negative_advice(sk);
1452		break;
1453
1454	case SO_ZEROCOPY:
1455		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456			if (!(sk_is_tcp(sk) ||
1457			      (sk->sk_type == SOCK_DGRAM &&
1458			       sk->sk_protocol == IPPROTO_UDP)))
1459				ret = -EOPNOTSUPP;
1460		} else if (sk->sk_family != PF_RDS) {
1461			ret = -EOPNOTSUPP;
1462		}
1463		if (!ret) {
1464			if (val < 0 || val > 1)
1465				ret = -EINVAL;
1466			else
1467				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468		}
1469		break;
1470
1471	case SO_TXTIME:
1472		if (optlen != sizeof(struct sock_txtime)) {
1473			ret = -EINVAL;
1474			break;
1475		} else if (copy_from_sockptr(&sk_txtime, optval,
1476			   sizeof(struct sock_txtime))) {
1477			ret = -EFAULT;
1478			break;
1479		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480			ret = -EINVAL;
1481			break;
1482		}
1483		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484		 * scheduler has enough safe guards.
1485		 */
1486		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488			ret = -EPERM;
1489			break;
1490		}
 
 
 
 
 
1491		sock_valbool_flag(sk, SOCK_TXTIME, true);
1492		sk->sk_clockid = sk_txtime.clockid;
1493		sk->sk_txtime_deadline_mode =
1494			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495		sk->sk_txtime_report_errors =
1496			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497		break;
1498
1499	case SO_BINDTOIFINDEX:
1500		ret = sock_bindtoindex_locked(sk, val);
1501		break;
1502
1503	case SO_BUF_LOCK:
1504		if (val & ~SOCK_BUF_LOCK_MASK) {
1505			ret = -EINVAL;
1506			break;
1507		}
1508		sk->sk_userlocks = val | (sk->sk_userlocks &
1509					  ~SOCK_BUF_LOCK_MASK);
1510		break;
1511
1512	case SO_RESERVE_MEM:
1513	{
1514		int delta;
1515
1516		if (val < 0) {
1517			ret = -EINVAL;
1518			break;
1519		}
1520
1521		delta = val - sk->sk_reserved_mem;
1522		if (delta < 0)
1523			sock_release_reserved_memory(sk, -delta);
1524		else
1525			ret = sock_reserve_memory(sk, delta);
1526		break;
1527	}
1528
1529	case SO_TXREHASH:
1530		if (val < -1 || val > 1) {
1531			ret = -EINVAL;
1532			break;
1533		}
1534		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1537		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538		break;
1539
1540	default:
1541		ret = -ENOPROTOOPT;
1542		break;
1543	}
1544	sockopt_release_sock(sk);
1545	return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549		    sockptr_t optval, unsigned int optlen)
1550{
1551	return sk_setsockopt(sock->sk, level, optname,
1552			     optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558	const struct cred *cred;
1559
1560	spin_lock(&sk->sk_peer_lock);
1561	cred = get_cred(sk->sk_peer_cred);
1562	spin_unlock(&sk->sk_peer_lock);
1563
1564	return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568			  struct ucred *ucred)
1569{
1570	ucred->pid = pid_vnr(pid);
1571	ucred->uid = ucred->gid = -1;
1572	if (cred) {
1573		struct user_namespace *current_ns = current_user_ns();
1574
1575		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577	}
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582	struct user_namespace *user_ns = current_user_ns();
1583	int i;
1584
1585	for (i = 0; i < src->ngroups; i++) {
1586		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589			return -EFAULT;
1590	}
1591
1592	return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596		  sockptr_t optval, sockptr_t optlen)
1597{
1598	struct socket *sock = sk->sk_socket;
1599
1600	union {
1601		int val;
1602		u64 val64;
1603		unsigned long ulval;
1604		struct linger ling;
1605		struct old_timeval32 tm32;
1606		struct __kernel_old_timeval tm;
1607		struct  __kernel_sock_timeval stm;
1608		struct sock_txtime txtime;
1609		struct so_timestamping timestamping;
1610	} v;
1611
1612	int lv = sizeof(int);
1613	int len;
1614
1615	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616		return -EFAULT;
1617	if (len < 0)
1618		return -EINVAL;
1619
1620	memset(&v, 0, sizeof(v));
1621
1622	switch (optname) {
1623	case SO_DEBUG:
1624		v.val = sock_flag(sk, SOCK_DBG);
1625		break;
1626
1627	case SO_DONTROUTE:
1628		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629		break;
1630
1631	case SO_BROADCAST:
1632		v.val = sock_flag(sk, SOCK_BROADCAST);
1633		break;
1634
1635	case SO_SNDBUF:
1636		v.val = sk->sk_sndbuf;
1637		break;
1638
1639	case SO_RCVBUF:
1640		v.val = sk->sk_rcvbuf;
1641		break;
1642
1643	case SO_REUSEADDR:
1644		v.val = sk->sk_reuse;
1645		break;
1646
1647	case SO_REUSEPORT:
1648		v.val = sk->sk_reuseport;
1649		break;
1650
1651	case SO_KEEPALIVE:
1652		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653		break;
1654
1655	case SO_TYPE:
1656		v.val = sk->sk_type;
1657		break;
1658
1659	case SO_PROTOCOL:
1660		v.val = sk->sk_protocol;
1661		break;
1662
1663	case SO_DOMAIN:
1664		v.val = sk->sk_family;
1665		break;
1666
1667	case SO_ERROR:
1668		v.val = -sock_error(sk);
1669		if (v.val == 0)
1670			v.val = xchg(&sk->sk_err_soft, 0);
1671		break;
1672
1673	case SO_OOBINLINE:
1674		v.val = sock_flag(sk, SOCK_URGINLINE);
1675		break;
1676
1677	case SO_NO_CHECK:
1678		v.val = sk->sk_no_check_tx;
1679		break;
1680
1681	case SO_PRIORITY:
1682		v.val = sk->sk_priority;
1683		break;
1684
1685	case SO_LINGER:
1686		lv		= sizeof(v.ling);
1687		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1688		v.ling.l_linger	= sk->sk_lingertime / HZ;
1689		break;
1690
1691	case SO_BSDCOMPAT:
1692		break;
1693
1694	case SO_TIMESTAMP_OLD:
1695		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1698		break;
1699
1700	case SO_TIMESTAMPNS_OLD:
1701		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702		break;
1703
1704	case SO_TIMESTAMP_NEW:
1705		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706		break;
1707
1708	case SO_TIMESTAMPNS_NEW:
1709		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710		break;
1711
1712	case SO_TIMESTAMPING_OLD:
 
1713		lv = sizeof(v.timestamping);
1714		v.timestamping.flags = sk->sk_tsflags;
1715		v.timestamping.bind_phc = sk->sk_bind_phc;
 
 
 
 
 
 
1716		break;
1717
1718	case SO_RCVTIMEO_OLD:
1719	case SO_RCVTIMEO_NEW:
1720		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
 
1721		break;
1722
1723	case SO_SNDTIMEO_OLD:
1724	case SO_SNDTIMEO_NEW:
1725		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
 
1726		break;
1727
1728	case SO_RCVLOWAT:
1729		v.val = sk->sk_rcvlowat;
1730		break;
1731
1732	case SO_SNDLOWAT:
1733		v.val = 1;
1734		break;
1735
1736	case SO_PASSCRED:
1737		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738		break;
1739
 
 
 
 
1740	case SO_PEERCRED:
1741	{
1742		struct ucred peercred;
1743		if (len > sizeof(peercred))
1744			len = sizeof(peercred);
1745
1746		spin_lock(&sk->sk_peer_lock);
1747		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748		spin_unlock(&sk->sk_peer_lock);
1749
1750		if (copy_to_sockptr(optval, &peercred, len))
1751			return -EFAULT;
1752		goto lenout;
1753	}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755	case SO_PEERGROUPS:
1756	{
1757		const struct cred *cred;
1758		int ret, n;
1759
1760		cred = sk_get_peer_cred(sk);
1761		if (!cred)
1762			return -ENODATA;
1763
1764		n = cred->group_info->ngroups;
1765		if (len < n * sizeof(gid_t)) {
1766			len = n * sizeof(gid_t);
1767			put_cred(cred);
1768			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769		}
1770		len = n * sizeof(gid_t);
1771
1772		ret = groups_to_user(optval, cred->group_info);
1773		put_cred(cred);
1774		if (ret)
1775			return ret;
1776		goto lenout;
1777	}
1778
1779	case SO_PEERNAME:
1780	{
1781		char address[128];
1782
1783		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784		if (lv < 0)
1785			return -ENOTCONN;
1786		if (lv < len)
1787			return -EINVAL;
1788		if (copy_to_sockptr(optval, address, len))
1789			return -EFAULT;
1790		goto lenout;
1791	}
1792
1793	/* Dubious BSD thing... Probably nobody even uses it, but
1794	 * the UNIX standard wants it for whatever reason... -DaveM
1795	 */
1796	case SO_ACCEPTCONN:
1797		v.val = sk->sk_state == TCP_LISTEN;
1798		break;
1799
1800	case SO_PASSSEC:
1801		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802		break;
1803
1804	case SO_PEERSEC:
1805		return security_socket_getpeersec_stream(sock,
1806							 optval, optlen, len);
1807
1808	case SO_MARK:
1809		v.val = sk->sk_mark;
1810		break;
1811
1812	case SO_RCVMARK:
1813		v.val = sock_flag(sk, SOCK_RCVMARK);
1814		break;
1815
1816	case SO_RXQ_OVFL:
1817		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818		break;
1819
1820	case SO_WIFI_STATUS:
1821		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822		break;
1823
1824	case SO_PEEK_OFF:
1825		if (!sock->ops->set_peek_off)
1826			return -EOPNOTSUPP;
1827
1828		v.val = sk->sk_peek_off;
1829		break;
1830	case SO_NOFCS:
1831		v.val = sock_flag(sk, SOCK_NOFCS);
1832		break;
1833
1834	case SO_BINDTODEVICE:
1835		return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837	case SO_GET_FILTER:
1838		len = sk_get_filter(sk, optval, len);
1839		if (len < 0)
1840			return len;
1841
1842		goto lenout;
1843
1844	case SO_LOCK_FILTER:
1845		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846		break;
1847
1848	case SO_BPF_EXTENSIONS:
1849		v.val = bpf_tell_extensions();
1850		break;
1851
1852	case SO_SELECT_ERR_QUEUE:
1853		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854		break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857	case SO_BUSY_POLL:
1858		v.val = sk->sk_ll_usec;
1859		break;
1860	case SO_PREFER_BUSY_POLL:
1861		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862		break;
1863#endif
1864
1865	case SO_MAX_PACING_RATE:
 
1866		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867			lv = sizeof(v.ulval);
1868			v.ulval = sk->sk_max_pacing_rate;
1869		} else {
1870			/* 32bit version */
1871			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
 
1872		}
1873		break;
1874
1875	case SO_INCOMING_CPU:
1876		v.val = READ_ONCE(sk->sk_incoming_cpu);
1877		break;
1878
1879	case SO_MEMINFO:
1880	{
1881		u32 meminfo[SK_MEMINFO_VARS];
1882
1883		sk_get_meminfo(sk, meminfo);
1884
1885		len = min_t(unsigned int, len, sizeof(meminfo));
1886		if (copy_to_sockptr(optval, &meminfo, len))
1887			return -EFAULT;
1888
1889		goto lenout;
1890	}
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893	case SO_INCOMING_NAPI_ID:
1894		v.val = READ_ONCE(sk->sk_napi_id);
1895
1896		/* aggregate non-NAPI IDs down to 0 */
1897		if (v.val < MIN_NAPI_ID)
1898			v.val = 0;
1899
1900		break;
1901#endif
1902
1903	case SO_COOKIE:
1904		lv = sizeof(u64);
1905		if (len < lv)
1906			return -EINVAL;
1907		v.val64 = sock_gen_cookie(sk);
1908		break;
1909
1910	case SO_ZEROCOPY:
1911		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912		break;
1913
1914	case SO_TXTIME:
1915		lv = sizeof(v.txtime);
1916		v.txtime.clockid = sk->sk_clockid;
1917		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918				  SOF_TXTIME_DEADLINE_MODE : 0;
1919		v.txtime.flags |= sk->sk_txtime_report_errors ?
1920				  SOF_TXTIME_REPORT_ERRORS : 0;
1921		break;
1922
1923	case SO_BINDTOIFINDEX:
1924		v.val = READ_ONCE(sk->sk_bound_dev_if);
1925		break;
1926
1927	case SO_NETNS_COOKIE:
1928		lv = sizeof(u64);
1929		if (len != lv)
1930			return -EINVAL;
1931		v.val64 = sock_net(sk)->net_cookie;
1932		break;
1933
1934	case SO_BUF_LOCK:
1935		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936		break;
1937
1938	case SO_RESERVE_MEM:
1939		v.val = sk->sk_reserved_mem;
1940		break;
1941
1942	case SO_TXREHASH:
1943		v.val = sk->sk_txrehash;
 
1944		break;
1945
1946	default:
1947		/* We implement the SO_SNDLOWAT etc to not be settable
1948		 * (1003.1g 7).
1949		 */
1950		return -ENOPROTOOPT;
1951	}
1952
1953	if (len > lv)
1954		len = lv;
1955	if (copy_to_sockptr(optval, &v, len))
1956		return -EFAULT;
1957lenout:
1958	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959		return -EFAULT;
1960	return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964		    char __user *optval, int __user *optlen)
1965{
1966	return sk_getsockopt(sock->sk, level, optname,
1967			     USER_SOCKPTR(optval),
1968			     USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978	if (sk->sk_kern_sock)
1979		sock_lock_init_class_and_name(
1980			sk,
1981			af_family_kern_slock_key_strings[sk->sk_family],
1982			af_family_kern_slock_keys + sk->sk_family,
1983			af_family_kern_key_strings[sk->sk_family],
1984			af_family_kern_keys + sk->sk_family);
1985	else
1986		sock_lock_init_class_and_name(
1987			sk,
1988			af_family_slock_key_strings[sk->sk_family],
1989			af_family_slock_keys + sk->sk_family,
1990			af_family_key_strings[sk->sk_family],
1991			af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001	const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003	void *sptr = nsk->sk_security;
2004#endif
2005
2006	/* If we move sk_tx_queue_mapping out of the private section,
2007	 * we must check if sk_tx_queue_clear() is called after
2008	 * sock_copy() in sk_clone_lock().
2009	 */
2010	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011		     offsetof(struct sock, sk_dontcopy_begin) ||
2012		     offsetof(struct sock, sk_tx_queue_mapping) >=
2013		     offsetof(struct sock, sk_dontcopy_end));
2014
2015	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021	nsk->sk_security = sptr;
2022	security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027		int family)
2028{
2029	struct sock *sk;
2030	struct kmem_cache *slab;
2031
2032	slab = prot->slab;
2033	if (slab != NULL) {
2034		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035		if (!sk)
2036			return sk;
2037		if (want_init_on_alloc(priority))
2038			sk_prot_clear_nulls(sk, prot->obj_size);
2039	} else
2040		sk = kmalloc(prot->obj_size, priority);
2041
2042	if (sk != NULL) {
2043		if (security_sk_alloc(sk, family, priority))
2044			goto out_free;
2045
2046		if (!try_module_get(prot->owner))
2047			goto out_free_sec;
2048	}
2049
2050	return sk;
2051
2052out_free_sec:
2053	security_sk_free(sk);
2054out_free:
2055	if (slab != NULL)
2056		kmem_cache_free(slab, sk);
2057	else
2058		kfree(sk);
2059	return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064	struct kmem_cache *slab;
2065	struct module *owner;
2066
2067	owner = prot->owner;
2068	slab = prot->slab;
2069
2070	cgroup_sk_free(&sk->sk_cgrp_data);
2071	mem_cgroup_sk_free(sk);
2072	security_sk_free(sk);
2073	if (slab != NULL)
2074		kmem_cache_free(slab, sk);
2075	else
2076		kfree(sk);
2077	module_put(owner);
2078}
2079
2080/**
2081 *	sk_alloc - All socket objects are allocated here
2082 *	@net: the applicable net namespace
2083 *	@family: protocol family
2084 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 *	@prot: struct proto associated with this new sock instance
2086 *	@kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089		      struct proto *prot, int kern)
2090{
2091	struct sock *sk;
2092
2093	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094	if (sk) {
2095		sk->sk_family = family;
2096		/*
2097		 * See comment in struct sock definition to understand
2098		 * why we need sk_prot_creator -acme
2099		 */
2100		sk->sk_prot = sk->sk_prot_creator = prot;
2101		sk->sk_kern_sock = kern;
2102		sock_lock_init(sk);
2103		sk->sk_net_refcnt = kern ? 0 : 1;
2104		if (likely(sk->sk_net_refcnt)) {
2105			get_net_track(net, &sk->ns_tracker, priority);
2106			sock_inuse_add(net, 1);
2107		} else {
 
2108			__netns_tracker_alloc(net, &sk->ns_tracker,
2109					      false, priority);
2110		}
2111
2112		sock_net_set(sk, net);
2113		refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115		mem_cgroup_sk_alloc(sk);
2116		cgroup_sk_alloc(&sk->sk_cgrp_data);
2117		sock_update_classid(&sk->sk_cgrp_data);
2118		sock_update_netprioidx(&sk->sk_cgrp_data);
2119		sk_tx_queue_clear(sk);
2120	}
2121
2122	return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131	struct sock *sk = container_of(head, struct sock, sk_rcu);
 
2132	struct sk_filter *filter;
2133
2134	if (sk->sk_destruct)
2135		sk->sk_destruct(sk);
2136
2137	filter = rcu_dereference_check(sk->sk_filter,
2138				       refcount_read(&sk->sk_wmem_alloc) == 0);
2139	if (filter) {
2140		sk_filter_uncharge(sk, filter);
2141		RCU_INIT_POINTER(sk->sk_filter, NULL);
2142	}
2143
2144	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147	bpf_sk_storage_free(sk);
2148#endif
2149
2150	if (atomic_read(&sk->sk_omem_alloc))
2151		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152			 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154	if (sk->sk_frag.page) {
2155		put_page(sk->sk_frag.page);
2156		sk->sk_frag.page = NULL;
2157	}
2158
2159	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160	put_cred(sk->sk_peer_cred);
2161	put_pid(sk->sk_peer_pid);
2162
2163	if (likely(sk->sk_net_refcnt))
2164		put_net_track(sock_net(sk), &sk->ns_tracker);
2165	else
2166		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
 
 
 
 
 
 
 
 
2167
2168	sk_prot_free(sk->sk_prot_creator, sk);
 
 
 
 
 
2169}
 
2170
2171void sk_destruct(struct sock *sk)
2172{
2173	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176		reuseport_detach_sock(sk);
2177		use_call_rcu = true;
2178	}
2179
2180	if (use_call_rcu)
2181		call_rcu(&sk->sk_rcu, __sk_destruct);
2182	else
2183		__sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188	if (likely(sk->sk_net_refcnt))
2189		sock_inuse_add(sock_net(sk), -1);
2190
2191	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192		sock_diag_broadcast_destroy(sk);
2193	else
2194		sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199	/*
2200	 * We subtract one from sk_wmem_alloc and can know if
2201	 * some packets are still in some tx queue.
2202	 * If not null, sock_wfree() will call __sk_free(sk) later
2203	 */
2204	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205		__sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211	skb_queue_head_init(&sk->sk_receive_queue);
2212	skb_queue_head_init(&sk->sk_write_queue);
2213	skb_queue_head_init(&sk->sk_error_queue);
2214
2215	rwlock_init(&sk->sk_callback_lock);
2216	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217			af_rlock_keys + sk->sk_family,
2218			af_family_rlock_key_strings[sk->sk_family]);
2219	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220			af_wlock_keys + sk->sk_family,
2221			af_family_wlock_key_strings[sk->sk_family]);
2222	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223			af_elock_keys + sk->sk_family,
2224			af_family_elock_key_strings[sk->sk_family]);
2225	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
2226			af_callback_keys + sk->sk_family,
2227			af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 *	sk_clone_lock - clone a socket, and lock its clone
2232 *	@sk: the socket to clone
2233 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239	struct proto *prot = READ_ONCE(sk->sk_prot);
2240	struct sk_filter *filter;
2241	bool is_charged = true;
2242	struct sock *newsk;
2243
2244	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245	if (!newsk)
2246		goto out;
2247
2248	sock_copy(newsk, sk);
2249
2250	newsk->sk_prot_creator = prot;
2251
2252	/* SANITY */
2253	if (likely(newsk->sk_net_refcnt)) {
2254		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255		sock_inuse_add(sock_net(newsk), 1);
2256	} else {
2257		/* Kernel sockets are not elevating the struct net refcount.
2258		 * Instead, use a tracker to more easily detect if a layer
2259		 * is not properly dismantling its kernel sockets at netns
2260		 * destroy time.
2261		 */
 
2262		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263				      false, priority);
2264	}
2265	sk_node_init(&newsk->sk_node);
2266	sock_lock_init(newsk);
2267	bh_lock_sock(newsk);
2268	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2269	newsk->sk_backlog.len = 0;
2270
2271	atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274	refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276	atomic_set(&newsk->sk_omem_alloc, 0);
2277	sk_init_common(newsk);
2278
2279	newsk->sk_dst_cache	= NULL;
2280	newsk->sk_dst_pending_confirm = 0;
2281	newsk->sk_wmem_queued	= 0;
2282	newsk->sk_forward_alloc = 0;
2283	newsk->sk_reserved_mem  = 0;
2284	atomic_set(&newsk->sk_drops, 0);
2285	newsk->sk_send_head	= NULL;
2286	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287	atomic_set(&newsk->sk_zckey, 0);
2288
2289	sock_reset_flag(newsk, SOCK_DONE);
2290
2291	/* sk->sk_memcg will be populated at accept() time */
2292	newsk->sk_memcg = NULL;
2293
2294	cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296	rcu_read_lock();
2297	filter = rcu_dereference(sk->sk_filter);
2298	if (filter != NULL)
2299		/* though it's an empty new sock, the charging may fail
2300		 * if sysctl_optmem_max was changed between creation of
2301		 * original socket and cloning
2302		 */
2303		is_charged = sk_filter_charge(newsk, filter);
2304	RCU_INIT_POINTER(newsk->sk_filter, filter);
2305	rcu_read_unlock();
2306
2307	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308		/* We need to make sure that we don't uncharge the new
2309		 * socket if we couldn't charge it in the first place
2310		 * as otherwise we uncharge the parent's filter.
2311		 */
2312		if (!is_charged)
2313			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314		sk_free_unlock_clone(newsk);
2315		newsk = NULL;
2316		goto out;
2317	}
2318	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320	if (bpf_sk_storage_clone(sk, newsk)) {
2321		sk_free_unlock_clone(newsk);
2322		newsk = NULL;
2323		goto out;
2324	}
2325
2326	/* Clear sk_user_data if parent had the pointer tagged
2327	 * as not suitable for copying when cloning.
2328	 */
2329	if (sk_user_data_is_nocopy(newsk))
2330		newsk->sk_user_data = NULL;
2331
2332	newsk->sk_err	   = 0;
2333	newsk->sk_err_soft = 0;
2334	newsk->sk_priority = 0;
2335	newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337	/* Before updating sk_refcnt, we must commit prior changes to memory
2338	 * (Documentation/RCU/rculist_nulls.rst for details)
2339	 */
2340	smp_wmb();
2341	refcount_set(&newsk->sk_refcnt, 2);
2342
2343	/* Increment the counter in the same struct proto as the master
2344	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345	 * is the same as sk->sk_prot->socks, as this field was copied
2346	 * with memcpy).
2347	 *
2348	 * This _changes_ the previous behaviour, where
2349	 * tcp_create_openreq_child always was incrementing the
2350	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351	 * to be taken into account in all callers. -acme
2352	 */
2353	sk_refcnt_debug_inc(newsk);
2354	sk_set_socket(newsk, NULL);
2355	sk_tx_queue_clear(newsk);
2356	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358	if (newsk->sk_prot->sockets_allocated)
2359		sk_sockets_allocated_inc(newsk);
2360
2361	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362		net_enable_timestamp();
2363out:
2364	return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370	/* It is still raw copy of parent, so invalidate
2371	 * destructor and make plain sk_free() */
2372	sk->sk_destruct = NULL;
2373	bh_unlock_sock(sk);
2374	sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381		return;
 
2382#if IS_ENABLED(CONFIG_IPV6)
2383	if (sk->sk_family == AF_INET6 &&
2384	    sk_is_tcp(sk) &&
2385	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386		return;
2387#endif
2388	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
 
 
 
 
 
 
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393	u32 max_segs = 1;
2394
2395	sk_dst_set(sk, dst);
2396	sk->sk_route_caps = dst->dev->features;
2397	if (sk_is_tcp(sk))
2398		sk->sk_route_caps |= NETIF_F_GSO;
2399	if (sk->sk_route_caps & NETIF_F_GSO)
2400		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401	if (unlikely(sk->sk_gso_disabled))
2402		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403	if (sk_can_gso(sk)) {
2404		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406		} else {
2407			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410			sk_trim_gso_size(sk);
2411			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414		}
2415	}
2416	sk->sk_gso_max_segs = max_segs;
 
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 *	Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430	struct sock *sk = skb->sk;
2431	unsigned int len = skb->truesize;
2432	bool free;
2433
2434	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435		if (sock_flag(sk, SOCK_RCU_FREE) &&
2436		    sk->sk_write_space == sock_def_write_space) {
2437			rcu_read_lock();
2438			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439			sock_def_write_space_wfree(sk);
2440			rcu_read_unlock();
2441			if (unlikely(free))
2442				__sk_free(sk);
2443			return;
2444		}
2445
2446		/*
2447		 * Keep a reference on sk_wmem_alloc, this will be released
2448		 * after sk_write_space() call
2449		 */
2450		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451		sk->sk_write_space(sk);
2452		len = 1;
2453	}
2454	/*
2455	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456	 * could not do because of in-flight packets
2457	 */
2458	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459		__sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468	struct sock *sk = skb->sk;
2469
2470	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471		__sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476	skb_orphan(skb);
2477	skb->sk = sk;
2478#ifdef CONFIG_INET
2479	if (unlikely(!sk_fullsock(sk))) {
2480		skb->destructor = sock_edemux;
2481		sock_hold(sk);
2482		return;
2483	}
2484#endif
 
2485	skb->destructor = sock_wfree;
2486	skb_set_hash_from_sk(skb, sk);
2487	/*
2488	 * We used to take a refcount on sk, but following operation
2489	 * is enough to guarantee sk_free() wont free this sock until
2490	 * all in-flight packets are completed
2491	 */
2492	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499	/* Drivers depend on in-order delivery for crypto offload,
2500	 * partial orphan breaks out-of-order-OK logic.
2501	 */
2502	if (skb->decrypted)
2503		return false;
2504#endif
2505	return (skb->destructor == sock_wfree ||
2506		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517	if (skb_is_tcp_pure_ack(skb))
2518		return;
2519
2520	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521		return;
2522
2523	skb_orphan(skb);
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532	struct sock *sk = skb->sk;
2533	unsigned int len = skb->truesize;
2534
2535	atomic_sub(len, &sk->sk_rmem_alloc);
2536	sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546	sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556	if (sk_is_refcounted(skb->sk))
2557		sock_gen_put(skb->sk);
 
 
 
 
 
 
 
 
 
 
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564	kuid_t uid;
2565
2566	read_lock_bh(&sk->sk_callback_lock);
2567	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568	read_unlock_bh(&sk->sk_callback_lock);
2569	return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
 
 
 
 
 
 
 
 
 
 
 
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575	unsigned long ino;
2576
2577	read_lock_bh(&sk->sk_callback_lock);
2578	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579	read_unlock_bh(&sk->sk_callback_lock);
2580	return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588			     gfp_t priority)
2589{
2590	if (force ||
2591	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592		struct sk_buff *skb = alloc_skb(size, priority);
2593
2594		if (skb) {
2595			skb_set_owner_w(skb, sk);
2596			return skb;
2597		}
2598	}
2599	return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605	struct sock *sk = skb->sk;
2606
2607	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611			     gfp_t priority)
2612{
2613	struct sk_buff *skb;
2614
2615	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617	    READ_ONCE(sysctl_optmem_max))
2618		return NULL;
2619
2620	skb = alloc_skb(size, priority);
2621	if (!skb)
2622		return NULL;
2623
2624	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625	skb->sk = sk;
2626	skb->destructor = sock_ofree;
2627	return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635	int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637	if ((unsigned int)size <= optmem_max &&
2638	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639		void *mem;
2640		/* First do the add, to avoid the race if kmalloc
2641		 * might sleep.
2642		 */
2643		atomic_add(size, &sk->sk_omem_alloc);
2644		mem = kmalloc(size, priority);
2645		if (mem)
2646			return mem;
2647		atomic_sub(size, &sk->sk_omem_alloc);
2648	}
2649	return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658				  const bool nullify)
2659{
2660	if (WARN_ON_ONCE(!mem))
2661		return;
2662	if (nullify)
2663		kfree_sensitive(mem);
2664	else
2665		kfree(mem);
2666	atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671	__sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677	__sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682   I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686	DEFINE_WAIT(wait);
2687
2688	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689	for (;;) {
2690		if (!timeo)
2691			break;
2692		if (signal_pending(current))
2693			break;
2694		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697			break;
2698		if (sk->sk_shutdown & SEND_SHUTDOWN)
2699			break;
2700		if (sk->sk_err)
2701			break;
2702		timeo = schedule_timeout(timeo);
2703	}
2704	finish_wait(sk_sleep(sk), &wait);
2705	return timeo;
2706}
2707
2708
2709/*
2710 *	Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714				     unsigned long data_len, int noblock,
2715				     int *errcode, int max_page_order)
2716{
2717	struct sk_buff *skb;
2718	long timeo;
2719	int err;
2720
2721	timeo = sock_sndtimeo(sk, noblock);
2722	for (;;) {
2723		err = sock_error(sk);
2724		if (err != 0)
2725			goto failure;
2726
2727		err = -EPIPE;
2728		if (sk->sk_shutdown & SEND_SHUTDOWN)
2729			goto failure;
2730
2731		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732			break;
2733
2734		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736		err = -EAGAIN;
2737		if (!timeo)
2738			goto failure;
2739		if (signal_pending(current))
2740			goto interrupted;
2741		timeo = sock_wait_for_wmem(sk, timeo);
2742	}
2743	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744				   errcode, sk->sk_allocation);
2745	if (skb)
2746		skb_set_owner_w(skb, sk);
2747	return skb;
2748
2749interrupted:
2750	err = sock_intr_errno(timeo);
2751failure:
2752	*errcode = err;
2753	return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2758		     struct sockcm_cookie *sockc)
2759{
2760	u32 tsflags;
2761
 
 
2762	switch (cmsg->cmsg_type) {
2763	case SO_MARK:
2764		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766			return -EPERM;
2767		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768			return -EINVAL;
2769		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770		break;
2771	case SO_TIMESTAMPING_OLD:
 
2772		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773			return -EINVAL;
2774
2775		tsflags = *(u32 *)CMSG_DATA(cmsg);
2776		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777			return -EINVAL;
2778
2779		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780		sockc->tsflags |= tsflags;
2781		break;
2782	case SCM_TXTIME:
2783		if (!sock_flag(sk, SOCK_TXTIME))
2784			return -EINVAL;
2785		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786			return -EINVAL;
2787		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788		break;
 
 
 
 
 
 
 
 
 
 
 
2789	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790	case SCM_RIGHTS:
2791	case SCM_CREDENTIALS:
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796	return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801		   struct sockcm_cookie *sockc)
2802{
2803	struct cmsghdr *cmsg;
2804	int ret;
2805
2806	for_each_cmsghdr(cmsg, msg) {
2807		if (!CMSG_OK(msg, cmsg))
2808			return -EINVAL;
2809		if (cmsg->cmsg_level != SOL_SOCKET)
2810			continue;
2811		ret = __sock_cmsg_send(sk, cmsg, sockc);
2812		if (ret)
2813			return ret;
2814	}
2815	return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821	if (!sk->sk_prot->enter_memory_pressure)
2822		return;
2823
2824	sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829	if (sk->sk_prot->leave_memory_pressure) {
2830		sk->sk_prot->leave_memory_pressure(sk);
 
2831	} else {
2832		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834		if (memory_pressure && READ_ONCE(*memory_pressure))
2835			WRITE_ONCE(*memory_pressure, 0);
2836	}
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853	if (pfrag->page) {
2854		if (page_ref_count(pfrag->page) == 1) {
2855			pfrag->offset = 0;
2856			return true;
2857		}
2858		if (pfrag->offset + sz <= pfrag->size)
2859			return true;
2860		put_page(pfrag->page);
2861	}
2862
2863	pfrag->offset = 0;
2864	if (SKB_FRAG_PAGE_ORDER &&
2865	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866		/* Avoid direct reclaim but allow kswapd to wake */
2867		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868					  __GFP_COMP | __GFP_NOWARN |
2869					  __GFP_NORETRY,
2870					  SKB_FRAG_PAGE_ORDER);
2871		if (likely(pfrag->page)) {
2872			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873			return true;
2874		}
2875	}
2876	pfrag->page = alloc_page(gfp);
2877	if (likely(pfrag->page)) {
2878		pfrag->size = PAGE_SIZE;
2879		return true;
2880	}
2881	return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888		return true;
2889
2890	sk_enter_memory_pressure(sk);
2891	sk_stream_moderate_sndbuf(sk);
2892	return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897	__releases(&sk->sk_lock.slock)
2898	__acquires(&sk->sk_lock.slock)
2899{
2900	DEFINE_WAIT(wait);
2901
2902	for (;;) {
2903		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904					TASK_UNINTERRUPTIBLE);
2905		spin_unlock_bh(&sk->sk_lock.slock);
2906		schedule();
2907		spin_lock_bh(&sk->sk_lock.slock);
2908		if (!sock_owned_by_user(sk))
2909			break;
2910	}
2911	finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915	__releases(&sk->sk_lock.slock)
2916	__acquires(&sk->sk_lock.slock)
2917{
2918	struct sk_buff *skb, *next;
2919
2920	while ((skb = sk->sk_backlog.head) != NULL) {
2921		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923		spin_unlock_bh(&sk->sk_lock.slock);
2924
2925		do {
2926			next = skb->next;
2927			prefetch(next);
2928			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929			skb_mark_not_on_list(skb);
2930			sk_backlog_rcv(sk, skb);
2931
2932			cond_resched();
2933
2934			skb = next;
2935		} while (skb != NULL);
2936
2937		spin_lock_bh(&sk->sk_lock.slock);
2938	}
2939
2940	/*
2941	 * Doing the zeroing here guarantee we can not loop forever
2942	 * while a wild producer attempts to flood us.
2943	 */
2944	sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949	spin_lock_bh(&sk->sk_lock.slock);
2950	__release_sock(sk);
 
 
 
 
 
2951	spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk:    sock to wait on
2958 * @timeo: for how long
2959 * @skb:   last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969	int rc;
2970
2971	add_wait_queue(sk_sleep(sk), &wait);
2972	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975	remove_wait_queue(sk_sleep(sk), &wait);
2976	return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 *	__sk_mem_raise_allocated - increase memory_allocated
2982 *	@sk: socket
2983 *	@size: memory size to allocate
2984 *	@amt: pages to allocate
2985 *	@kind: allocation type
2986 *
2987 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
 
 
 
 
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992	struct proto *prot = sk->sk_prot;
2993	bool charged = true;
2994	long allocated;
2995
2996	sk_memory_allocated_add(sk, amt);
2997	allocated = sk_memory_allocated(sk);
2998	if (memcg_charge &&
2999	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000						gfp_memcg_charge())))
3001		goto suppress_allocation;
 
 
3002
3003	/* Under limit. */
3004	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005		sk_leave_memory_pressure(sk);
3006		return 1;
3007	}
3008
3009	/* Under pressure. */
3010	if (allocated > sk_prot_mem_limits(sk, 1))
3011		sk_enter_memory_pressure(sk);
3012
3013	/* Over hard limit. */
3014	if (allocated > sk_prot_mem_limits(sk, 2))
3015		goto suppress_allocation;
3016
3017	/* guarantee minimum buffer size under pressure */
 
 
 
 
 
 
 
3018	if (kind == SK_MEM_RECV) {
3019		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020			return 1;
3021
3022	} else { /* SK_MEM_SEND */
3023		int wmem0 = sk_get_wmem0(sk, prot);
3024
3025		if (sk->sk_type == SOCK_STREAM) {
3026			if (sk->sk_wmem_queued < wmem0)
3027				return 1;
3028		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029				return 1;
3030		}
3031	}
3032
3033	if (sk_has_memory_pressure(sk)) {
3034		u64 alloc;
3035
3036		if (!sk_under_memory_pressure(sk))
 
 
 
 
3037			return 1;
 
 
 
 
 
3038		alloc = sk_sockets_allocated_read_positive(sk);
3039		if (sk_prot_mem_limits(sk, 2) > alloc *
3040		    sk_mem_pages(sk->sk_wmem_queued +
3041				 atomic_read(&sk->sk_rmem_alloc) +
3042				 sk->sk_forward_alloc))
3043			return 1;
3044	}
3045
3046suppress_allocation:
3047
3048	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049		sk_stream_moderate_sndbuf(sk);
3050
3051		/* Fail only if socket is _under_ its sndbuf.
3052		 * In this case we cannot block, so that we have to fail.
3053		 */
3054		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055			/* Force charge with __GFP_NOFAIL */
3056			if (memcg_charge && !charged) {
3057				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058					gfp_memcg_charge() | __GFP_NOFAIL);
3059			}
3060			return 1;
3061		}
3062	}
3063
3064	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067	sk_memory_allocated_sub(sk, amt);
3068
3069	if (memcg_charge && charged)
3070		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072	return 0;
3073}
3074
3075/**
3076 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 *	@sk: socket
3078 *	@size: memory size to allocate
3079 *	@kind: allocation type
3080 *
3081 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 *	rmem allocation. This function assumes that protocols which have
3083 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087	int ret, amt = sk_mem_pages(size);
3088
3089	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091	if (!ret)
3092		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093	return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3099 *	@sk: socket
3100 *	@amount: number of quanta
3101 *
3102 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106	sk_memory_allocated_sub(sk, amount);
3107
3108	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111	if (sk_under_memory_pressure(sk) &&
3112	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113		sk_leave_memory_pressure(sk);
3114}
3115
3116/**
3117 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 *	@sk: socket
3119 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123	amount >>= PAGE_SHIFT;
3124	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125	__sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131	sk->sk_peek_off = val;
3132	return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145	return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150		    int len, int flags)
3151{
3152	return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158	return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163		   bool kern)
3164{
3165	return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170		    int peer)
3171{
3172	return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178	return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184	return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190	return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196	return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202	return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207		    int flags)
3208{
3209	return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215	/* Mirror missing mmap method error code */
3216	return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226	struct socket *sock;
3227
3228	sock = sock_from_file(file);
3229	if (sock) {
3230		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231		sock_update_classid(&sock->sk->sk_cgrp_data);
3232	}
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237	ssize_t res;
3238	struct msghdr msg = {.msg_flags = flags};
3239	struct kvec iov;
3240	char *kaddr = kmap(page);
3241	iov.iov_base = kaddr + offset;
3242	iov.iov_len = size;
3243	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244	kunmap(page);
3245	return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250				int offset, size_t size, int flags)
3251{
3252	ssize_t res;
3253	struct msghdr msg = {.msg_flags = flags};
3254	struct kvec iov;
3255	char *kaddr = kmap(page);
3256
3257	iov.iov_base = kaddr + offset;
3258	iov.iov_len = size;
3259	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260	kunmap(page);
3261	return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 *	Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271	struct socket_wq *wq;
3272
3273	rcu_read_lock();
3274	wq = rcu_dereference(sk->sk_wq);
3275	if (skwq_has_sleeper(wq))
3276		wake_up_interruptible_all(&wq->wait);
3277	rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282	struct socket_wq *wq;
3283
3284	rcu_read_lock();
3285	wq = rcu_dereference(sk->sk_wq);
3286	if (skwq_has_sleeper(wq))
3287		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289	rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294	struct socket_wq *wq;
3295
 
 
3296	rcu_read_lock();
3297	wq = rcu_dereference(sk->sk_wq);
3298	if (skwq_has_sleeper(wq))
3299		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300						EPOLLRDNORM | EPOLLRDBAND);
3301	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302	rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307	struct socket_wq *wq;
3308
3309	rcu_read_lock();
3310
3311	/* Do not wake up a writer until he can make "significant"
3312	 * progress.  --DaveM
3313	 */
3314	if (sock_writeable(sk)) {
3315		wq = rcu_dereference(sk->sk_wq);
3316		if (skwq_has_sleeper(wq))
3317			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318						EPOLLWRNORM | EPOLLWRBAND);
3319
3320		/* Should agree with poll, otherwise some programs break */
3321		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3322	}
3323
3324	rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333	/* Do not wake up a writer until he can make "significant"
3334	 * progress.  --DaveM
3335	 */
3336	if (sock_writeable(sk)) {
3337		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339		/* rely on refcount_sub from sock_wfree() */
3340		smp_mb__after_atomic();
3341		if (wq && waitqueue_active(&wq->wait))
3342			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343						EPOLLWRNORM | EPOLLWRBAND);
3344
3345		/* Should agree with poll, otherwise some programs break */
3346		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347	}
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356	if (sk->sk_socket && sk->sk_socket->file)
3357		if (send_sigurg(&sk->sk_socket->file->f_owner))
3358			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363		    unsigned long expires)
3364{
3365	if (!mod_timer(timer, expires))
3366		sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372	if (del_timer(timer))
3373		__sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379	if (del_timer_sync(timer))
3380		__sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386	sk_init_common(sk);
3387	sk->sk_send_head	=	NULL;
3388
3389	timer_setup(&sk->sk_timer, NULL, 0);
3390
3391	sk->sk_allocation	=	GFP_KERNEL;
3392	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3393	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3394	sk->sk_state		=	TCP_CLOSE;
3395	sk->sk_use_task_frag	=	true;
3396	sk_set_socket(sk, sock);
3397
3398	sock_set_flag(sk, SOCK_ZAPPED);
3399
3400	if (sock) {
3401		sk->sk_type	=	sock->type;
3402		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403		sock->sk	=	sk;
3404		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3405	} else {
3406		RCU_INIT_POINTER(sk->sk_wq, NULL);
3407		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3408	}
3409
3410	rwlock_init(&sk->sk_callback_lock);
3411	if (sk->sk_kern_sock)
3412		lockdep_set_class_and_name(
3413			&sk->sk_callback_lock,
3414			af_kern_callback_keys + sk->sk_family,
3415			af_family_kern_clock_key_strings[sk->sk_family]);
3416	else
3417		lockdep_set_class_and_name(
3418			&sk->sk_callback_lock,
3419			af_callback_keys + sk->sk_family,
3420			af_family_clock_key_strings[sk->sk_family]);
3421
3422	sk->sk_state_change	=	sock_def_wakeup;
3423	sk->sk_data_ready	=	sock_def_readable;
3424	sk->sk_write_space	=	sock_def_write_space;
3425	sk->sk_error_report	=	sock_def_error_report;
3426	sk->sk_destruct		=	sock_def_destruct;
3427
3428	sk->sk_frag.page	=	NULL;
3429	sk->sk_frag.offset	=	0;
3430	sk->sk_peek_off		=	-1;
3431
3432	sk->sk_peer_pid 	=	NULL;
3433	sk->sk_peer_cred	=	NULL;
3434	spin_lock_init(&sk->sk_peer_lock);
3435
3436	sk->sk_write_pending	=	0;
3437	sk->sk_rcvlowat		=	1;
3438	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3439	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3440
3441	sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443	seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445	atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448	sk->sk_napi_id		=	0;
3449	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452	sk->sk_max_pacing_rate = ~0UL;
3453	sk->sk_pacing_rate = ~0UL;
3454	WRITE_ONCE(sk->sk_pacing_shift, 10);
3455	sk->sk_incoming_cpu = -1;
3456
3457	sk_rx_queue_clear(sk);
3458	/*
3459	 * Before updating sk_refcnt, we must commit prior changes to memory
3460	 * (Documentation/RCU/rculist_nulls.rst for details)
3461	 */
3462	smp_wmb();
3463	refcount_set(&sk->sk_refcnt, 1);
3464	atomic_set(&sk->sk_drops, 0);
3465}
 
 
 
 
 
 
 
 
 
 
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470	/* The sk_lock has mutex_lock() semantics here. */
3471	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473	might_sleep();
3474	spin_lock_bh(&sk->sk_lock.slock);
3475	if (sock_owned_by_user_nocheck(sk))
3476		__lock_sock(sk);
3477	sk->sk_lock.owned = 1;
3478	spin_unlock_bh(&sk->sk_lock.slock);
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484	spin_lock_bh(&sk->sk_lock.slock);
3485	if (sk->sk_backlog.tail)
3486		__release_sock(sk);
3487
3488	/* Warning : release_cb() might need to release sk ownership,
3489	 * ie call sock_release_ownership(sk) before us.
3490	 */
3491	if (sk->sk_prot->release_cb)
3492		sk->sk_prot->release_cb(sk);
 
3493
3494	sock_release_ownership(sk);
3495	if (waitqueue_active(&sk->sk_lock.wq))
3496		wake_up(&sk->sk_lock.wq);
3497	spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3502{
3503	might_sleep();
3504	spin_lock_bh(&sk->sk_lock.slock);
3505
3506	if (!sock_owned_by_user_nocheck(sk)) {
3507		/*
3508		 * Fast path return with bottom halves disabled and
3509		 * sock::sk_lock.slock held.
3510		 *
3511		 * The 'mutex' is not contended and holding
3512		 * sock::sk_lock.slock prevents all other lockers to
3513		 * proceed so the corresponding unlock_sock_fast() can
3514		 * avoid the slow path of release_sock() completely and
3515		 * just release slock.
3516		 *
3517		 * From a semantical POV this is equivalent to 'acquiring'
3518		 * the 'mutex', hence the corresponding lockdep
3519		 * mutex_release() has to happen in the fast path of
3520		 * unlock_sock_fast().
3521		 */
3522		return false;
3523	}
3524
3525	__lock_sock(sk);
3526	sk->sk_lock.owned = 1;
3527	__acquire(&sk->sk_lock.slock);
3528	spin_unlock_bh(&sk->sk_lock.slock);
3529	return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534		   bool timeval, bool time32)
3535{
3536	struct sock *sk = sock->sk;
3537	struct timespec64 ts;
3538
3539	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3541	if (ts.tv_sec == -1)
3542		return -ENOENT;
3543	if (ts.tv_sec == 0) {
3544		ktime_t kt = ktime_get_real();
3545		sock_write_timestamp(sk, kt);
3546		ts = ktime_to_timespec64(kt);
3547	}
3548
3549	if (timeval)
3550		ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553	if (time32)
3554		return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557	/* beware of padding in sparc64 timeval */
3558	if (timeval && !in_compat_syscall()) {
3559		struct __kernel_old_timeval __user tv = {
3560			.tv_sec = ts.tv_sec,
3561			.tv_usec = ts.tv_nsec,
3562		};
3563		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564			return -EFAULT;
3565		return 0;
3566	}
3567#endif
3568	return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574	if (!sock_flag(sk, flag)) {
3575		unsigned long previous_flags = sk->sk_flags;
3576
3577		sock_set_flag(sk, flag);
3578		/*
3579		 * we just set one of the two flags which require net
3580		 * time stamping, but time stamping might have been on
3581		 * already because of the other one
3582		 */
3583		if (sock_needs_netstamp(sk) &&
3584		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3585			net_enable_timestamp();
3586	}
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590		       int level, int type)
3591{
3592	struct sock_exterr_skb *serr;
3593	struct sk_buff *skb;
3594	int copied, err;
3595
3596	err = -EAGAIN;
3597	skb = sock_dequeue_err_skb(sk);
3598	if (skb == NULL)
3599		goto out;
3600
3601	copied = skb->len;
3602	if (copied > len) {
3603		msg->msg_flags |= MSG_TRUNC;
3604		copied = len;
3605	}
3606	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607	if (err)
3608		goto out_free_skb;
3609
3610	sock_recv_timestamp(msg, sk, skb);
3611
3612	serr = SKB_EXT_ERR(skb);
3613	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615	msg->msg_flags |= MSG_ERRQUEUE;
3616	err = copied;
3617
3618out_free_skb:
3619	kfree_skb(skb);
3620out:
3621	return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 *	Get a socket option on an socket.
3627 *
3628 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 *	asynchronous errors should be reported by getsockopt. We assume
3630 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633			   char __user *optval, int __user *optlen)
3634{
3635	struct sock *sk = sock->sk;
3636
3637	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643			int flags)
3644{
3645	struct sock *sk = sock->sk;
3646	int addr_len = 0;
3647	int err;
3648
3649	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3650	if (err >= 0)
3651		msg->msg_namelen = addr_len;
3652	return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 *	Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660			   sockptr_t optval, unsigned int optlen)
3661{
3662	struct sock *sk = sock->sk;
3663
3664	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
3669void sk_common_release(struct sock *sk)
3670{
3671	if (sk->sk_prot->destroy)
3672		sk->sk_prot->destroy(sk);
3673
3674	/*
3675	 * Observation: when sk_common_release is called, processes have
3676	 * no access to socket. But net still has.
3677	 * Step one, detach it from networking:
3678	 *
3679	 * A. Remove from hash tables.
3680	 */
3681
3682	sk->sk_prot->unhash(sk);
3683
3684	/*
3685	 * In this point socket cannot receive new packets, but it is possible
3686	 * that some packets are in flight because some CPU runs receiver and
3687	 * did hash table lookup before we unhashed socket. They will achieve
3688	 * receive queue and will be purged by socket destructor.
3689	 *
3690	 * Also we still have packets pending on receive queue and probably,
3691	 * our own packets waiting in device queues. sock_destroy will drain
3692	 * receive queue, but transmitted packets will delay socket destruction
3693	 * until the last reference will be released.
3694	 */
3695
3696	sock_orphan(sk);
3697
3698	xfrm_sk_free_policy(sk);
3699
3700	sk_refcnt_debug_release(sk);
3701
3702	sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726	int cpu, idx = prot->inuse_idx;
3727	int res = 0;
3728
3729	for_each_possible_cpu(cpu)
3730		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732	return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
3736int sock_inuse_get(struct net *net)
3737{
3738	int cpu, res = 0;
3739
3740	for_each_possible_cpu(cpu)
3741		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743	return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751	if (net->core.prot_inuse == NULL)
3752		return -ENOMEM;
3753	return 0;
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758	free_percpu(net->core.prot_inuse);
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762	.init = sock_inuse_init_net,
3763	.exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768	if (register_pernet_subsys(&net_inuse_ops))
3769		panic("Cannot initialize net inuse counters");
3770
3771	return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781		pr_err("PROTO_INUSE_NR exhausted\n");
3782		return -ENOSPC;
3783	}
3784
3785	set_bit(prot->inuse_idx, proto_inuse_idx);
3786	return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792		clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797	return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808	if (!twsk_prot)
3809		return;
3810	kfree(twsk_prot->twsk_slab_name);
3811	twsk_prot->twsk_slab_name = NULL;
3812	kmem_cache_destroy(twsk_prot->twsk_slab);
3813	twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820	if (!twsk_prot)
3821		return 0;
3822
3823	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824					      prot->name);
3825	if (!twsk_prot->twsk_slab_name)
3826		return -ENOMEM;
3827
3828	twsk_prot->twsk_slab =
3829		kmem_cache_create(twsk_prot->twsk_slab_name,
3830				  twsk_prot->twsk_obj_size, 0,
3831				  SLAB_ACCOUNT | prot->slab_flags,
3832				  NULL);
3833	if (!twsk_prot->twsk_slab) {
3834		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835			prot->name);
3836		return -ENOMEM;
3837	}
3838
3839	return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844	if (!rsk_prot)
3845		return;
3846	kfree(rsk_prot->slab_name);
3847	rsk_prot->slab_name = NULL;
3848	kmem_cache_destroy(rsk_prot->slab);
3849	rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856	if (!rsk_prot)
3857		return 0;
3858
3859	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860					prot->name);
3861	if (!rsk_prot->slab_name)
3862		return -ENOMEM;
3863
3864	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865					   rsk_prot->obj_size, 0,
3866					   SLAB_ACCOUNT | prot->slab_flags,
3867					   NULL);
3868
3869	if (!rsk_prot->slab) {
3870		pr_crit("%s: Can't create request sock SLAB cache!\n",
3871			prot->name);
3872		return -ENOMEM;
3873	}
3874	return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879	int ret = -ENOBUFS;
3880
3881	if (prot->memory_allocated && !prot->sysctl_mem) {
3882		pr_err("%s: missing sysctl_mem\n", prot->name);
3883		return -EINVAL;
3884	}
3885	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887		return -EINVAL;
3888	}
3889	if (alloc_slab) {
3890		prot->slab = kmem_cache_create_usercopy(prot->name,
3891					prot->obj_size, 0,
3892					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893					prot->slab_flags,
3894					prot->useroffset, prot->usersize,
3895					NULL);
3896
3897		if (prot->slab == NULL) {
3898			pr_crit("%s: Can't create sock SLAB cache!\n",
3899				prot->name);
3900			goto out;
3901		}
3902
3903		if (req_prot_init(prot))
3904			goto out_free_request_sock_slab;
3905
3906		if (tw_prot_init(prot))
3907			goto out_free_timewait_sock_slab;
3908	}
3909
3910	mutex_lock(&proto_list_mutex);
3911	ret = assign_proto_idx(prot);
3912	if (ret) {
3913		mutex_unlock(&proto_list_mutex);
3914		goto out_free_timewait_sock_slab;
3915	}
3916	list_add(&prot->node, &proto_list);
3917	mutex_unlock(&proto_list_mutex);
3918	return ret;
3919
3920out_free_timewait_sock_slab:
3921	if (alloc_slab)
3922		tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924	if (alloc_slab) {
3925		req_prot_cleanup(prot->rsk_prot);
3926
3927		kmem_cache_destroy(prot->slab);
3928		prot->slab = NULL;
3929	}
3930out:
3931	return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937	mutex_lock(&proto_list_mutex);
3938	release_proto_idx(prot);
3939	list_del(&prot->node);
3940	mutex_unlock(&proto_list_mutex);
3941
3942	kmem_cache_destroy(prot->slab);
3943	prot->slab = NULL;
3944
3945	req_prot_cleanup(prot->rsk_prot);
3946	tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952	if (!protocol) {
3953		if (!sock_is_registered(family))
3954			return -ENOENT;
3955
3956		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957				      NETLINK_SOCK_DIAG, family);
3958	}
3959
3960#ifdef CONFIG_INET
3961	if (family == AF_INET &&
3962	    protocol != IPPROTO_RAW &&
3963	    protocol < MAX_INET_PROTOS &&
3964	    !rcu_access_pointer(inet_protos[protocol]))
3965		return -ENOENT;
3966#endif
3967
3968	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969			      NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975	__acquires(proto_list_mutex)
3976{
3977	mutex_lock(&proto_list_mutex);
3978	return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983	return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987	__releases(proto_list_mutex)
3988{
3989	mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994	return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003	return proto->memory_pressure != NULL ?
4004	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4011			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012		   proto->name,
4013		   proto->obj_size,
4014		   sock_prot_inuse_get(seq_file_net(seq), proto),
4015		   sock_prot_memory_allocated(proto),
4016		   sock_prot_memory_pressure(proto),
4017		   proto->max_header,
4018		   proto->slab == NULL ? "no" : "yes",
4019		   module_name(proto->owner),
4020		   proto_method_implemented(proto->close),
4021		   proto_method_implemented(proto->connect),
4022		   proto_method_implemented(proto->disconnect),
4023		   proto_method_implemented(proto->accept),
4024		   proto_method_implemented(proto->ioctl),
4025		   proto_method_implemented(proto->init),
4026		   proto_method_implemented(proto->destroy),
4027		   proto_method_implemented(proto->shutdown),
4028		   proto_method_implemented(proto->setsockopt),
4029		   proto_method_implemented(proto->getsockopt),
4030		   proto_method_implemented(proto->sendmsg),
4031		   proto_method_implemented(proto->recvmsg),
4032		   proto_method_implemented(proto->sendpage),
4033		   proto_method_implemented(proto->bind),
4034		   proto_method_implemented(proto->backlog_rcv),
4035		   proto_method_implemented(proto->hash),
4036		   proto_method_implemented(proto->unhash),
4037		   proto_method_implemented(proto->get_port),
4038		   proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043	if (v == &proto_list)
4044		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045			   "protocol",
4046			   "size",
4047			   "sockets",
4048			   "memory",
4049			   "press",
4050			   "maxhdr",
4051			   "slab",
4052			   "module",
4053			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054	else
4055		proto_seq_printf(seq, list_entry(v, struct proto, node));
4056	return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060	.start  = proto_seq_start,
4061	.next   = proto_seq_next,
4062	.stop   = proto_seq_stop,
4063	.show   = proto_seq_show,
4064};
4065
4066static __net_init int proto_init_net(struct net *net)
4067{
4068	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069			sizeof(struct seq_net_private)))
4070		return -ENOMEM;
4071
4072	return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077	remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082	.init = proto_init_net,
4083	.exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088	return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098	struct sock *sk = p;
4099
4100	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101	       sk_busy_loop_timeout(sk, start_time);
 
 
 
 
 
 
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108	if (!sk->sk_prot->bind_add)
4109		return -EOPNOTSUPP;
4110	return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);