Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/fsnotify.h>
34#include <linux/security.h>
35#include <linux/gfp.h>
36#include <linux/net.h>
37#include <linux/socket.h>
38#include <linux/sched/signal.h>
39
40#include "internal.h"
41
42/*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
48static noinline void noinline pipe_clear_nowait(struct file *file)
49{
50 fmode_t fmode = READ_ONCE(file->f_mode);
51
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56}
57
58/*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
64static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
66{
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
69
70 folio_lock(folio);
71
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
75
76 /*
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
83 */
84 folio_wait_writeback(folio);
85
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
88
89 /*
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
92 */
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
96 }
97 }
98
99 /*
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
102 */
103out_unlock:
104 folio_unlock(folio);
105 return false;
106}
107
108static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
110{
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
113}
114
115/*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
119static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
121{
122 struct folio *folio = page_folio(buf->page);
123 int err;
124
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
127
128 /*
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
131 */
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
135 }
136
137 /*
138 * Uh oh, read-error from disk.
139 */
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
143 }
144
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
147 }
148
149 return 0;
150error:
151 folio_unlock(folio);
152 return err;
153}
154
155const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
160};
161
162static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
164{
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
167
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
170}
171
172static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
176};
177
178static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179{
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184}
185
186/**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
190 *
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
195 *
196 */
197ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
199{
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 unsigned int mask = pipe->ring_size - 1;
204 ssize_t ret = 0;
205 int page_nr = 0;
206
207 if (!spd_pages)
208 return 0;
209
210 if (unlikely(!pipe->readers)) {
211 send_sig(SIGPIPE, current, 0);
212 ret = -EPIPE;
213 goto out;
214 }
215
216 while (!pipe_full(head, tail, pipe->max_usage)) {
217 struct pipe_buffer *buf = &pipe->bufs[head & mask];
218
219 buf->page = spd->pages[page_nr];
220 buf->offset = spd->partial[page_nr].offset;
221 buf->len = spd->partial[page_nr].len;
222 buf->private = spd->partial[page_nr].private;
223 buf->ops = spd->ops;
224 buf->flags = 0;
225
226 head++;
227 pipe->head = head;
228 page_nr++;
229 ret += buf->len;
230
231 if (!--spd->nr_pages)
232 break;
233 }
234
235 if (!ret)
236 ret = -EAGAIN;
237
238out:
239 while (page_nr < spd_pages)
240 spd->spd_release(spd, page_nr++);
241
242 return ret;
243}
244EXPORT_SYMBOL_GPL(splice_to_pipe);
245
246ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247{
248 unsigned int head = pipe->head;
249 unsigned int tail = pipe->tail;
250 unsigned int mask = pipe->ring_size - 1;
251 int ret;
252
253 if (unlikely(!pipe->readers)) {
254 send_sig(SIGPIPE, current, 0);
255 ret = -EPIPE;
256 } else if (pipe_full(head, tail, pipe->max_usage)) {
257 ret = -EAGAIN;
258 } else {
259 pipe->bufs[head & mask] = *buf;
260 pipe->head = head + 1;
261 return buf->len;
262 }
263 pipe_buf_release(pipe, buf);
264 return ret;
265}
266EXPORT_SYMBOL(add_to_pipe);
267
268/*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273{
274 unsigned int max_usage = READ_ONCE(pipe->max_usage);
275
276 spd->nr_pages_max = max_usage;
277 if (max_usage <= PIPE_DEF_BUFFERS)
278 return 0;
279
280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct splice_pipe_desc *spd)
293{
294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 return;
296
297 kfree(spd->pages);
298 kfree(spd->partial);
299}
300
301/**
302 * copy_splice_read - Copy data from a file and splice the copy into a pipe
303 * @in: The file to read from
304 * @ppos: Pointer to the file position to read from
305 * @pipe: The pipe to splice into
306 * @len: The amount to splice
307 * @flags: The SPLICE_F_* flags
308 *
309 * This function allocates a bunch of pages sufficient to hold the requested
310 * amount of data (but limited by the remaining pipe capacity), passes it to
311 * the file's ->read_iter() to read into and then splices the used pages into
312 * the pipe.
313 *
314 * Return: On success, the number of bytes read will be returned and *@ppos
315 * will be updated if appropriate; 0 will be returned if there is no more data
316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
317 * other negative error code will be returned on error. A short read may occur
318 * if the pipe has insufficient space, we reach the end of the data or we hit a
319 * hole.
320 */
321ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t len, unsigned int flags)
324{
325 struct iov_iter to;
326 struct bio_vec *bv;
327 struct kiocb kiocb;
328 struct page **pages;
329 ssize_t ret;
330 size_t used, npages, chunk, remain, keep = 0;
331 int i;
332
333 /* Work out how much data we can actually add into the pipe */
334 used = pipe_occupancy(pipe->head, pipe->tail);
335 npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 len = min_t(size_t, len, npages * PAGE_SIZE);
337 npages = DIV_ROUND_UP(len, PAGE_SIZE);
338
339 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 if (!bv)
342 return -ENOMEM;
343
344 pages = (struct page **)(bv + npages);
345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 if (!npages) {
347 kfree(bv);
348 return -ENOMEM;
349 }
350
351 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352
353 for (i = 0; i < npages; i++) {
354 chunk = min_t(size_t, PAGE_SIZE, remain);
355 bv[i].bv_page = pages[i];
356 bv[i].bv_offset = 0;
357 bv[i].bv_len = chunk;
358 remain -= chunk;
359 }
360
361 /* Do the I/O */
362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 init_sync_kiocb(&kiocb, in);
364 kiocb.ki_pos = *ppos;
365 ret = in->f_op->read_iter(&kiocb, &to);
366
367 if (ret > 0) {
368 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 *ppos = kiocb.ki_pos;
370 }
371
372 /*
373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 * there", rather than -EFAULT.
375 */
376 if (ret == -EFAULT)
377 ret = -EAGAIN;
378
379 /* Free any pages that didn't get touched at all. */
380 if (keep < npages)
381 release_pages(pages + keep, npages - keep);
382
383 /* Push the remaining pages into the pipe. */
384 remain = ret;
385 for (i = 0; i < keep; i++) {
386 struct pipe_buffer *buf = pipe_head_buf(pipe);
387
388 chunk = min_t(size_t, remain, PAGE_SIZE);
389 *buf = (struct pipe_buffer) {
390 .ops = &default_pipe_buf_ops,
391 .page = bv[i].bv_page,
392 .offset = 0,
393 .len = chunk,
394 };
395 pipe->head++;
396 remain -= chunk;
397 }
398
399 kfree(bv);
400 return ret;
401}
402EXPORT_SYMBOL(copy_splice_read);
403
404const struct pipe_buf_operations default_pipe_buf_ops = {
405 .release = generic_pipe_buf_release,
406 .try_steal = generic_pipe_buf_try_steal,
407 .get = generic_pipe_buf_get,
408};
409
410/* Pipe buffer operations for a socket and similar. */
411const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 .release = generic_pipe_buf_release,
413 .get = generic_pipe_buf_get,
414};
415EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416
417static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418{
419 smp_mb();
420 if (waitqueue_active(&pipe->wr_wait))
421 wake_up_interruptible(&pipe->wr_wait);
422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423}
424
425/**
426 * splice_from_pipe_feed - feed available data from a pipe to a file
427 * @pipe: pipe to splice from
428 * @sd: information to @actor
429 * @actor: handler that splices the data
430 *
431 * Description:
432 * This function loops over the pipe and calls @actor to do the
433 * actual moving of a single struct pipe_buffer to the desired
434 * destination. It returns when there's no more buffers left in
435 * the pipe or if the requested number of bytes (@sd->total_len)
436 * have been copied. It returns a positive number (one) if the
437 * pipe needs to be filled with more data, zero if the required
438 * number of bytes have been copied and -errno on error.
439 *
440 * This, together with splice_from_pipe_{begin,end,next}, may be
441 * used to implement the functionality of __splice_from_pipe() when
442 * locking is required around copying the pipe buffers to the
443 * destination.
444 */
445static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 splice_actor *actor)
447{
448 unsigned int head = pipe->head;
449 unsigned int tail = pipe->tail;
450 unsigned int mask = pipe->ring_size - 1;
451 int ret;
452
453 while (!pipe_empty(head, tail)) {
454 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455
456 sd->len = buf->len;
457 if (sd->len > sd->total_len)
458 sd->len = sd->total_len;
459
460 ret = pipe_buf_confirm(pipe, buf);
461 if (unlikely(ret)) {
462 if (ret == -ENODATA)
463 ret = 0;
464 return ret;
465 }
466
467 ret = actor(pipe, buf, sd);
468 if (ret <= 0)
469 return ret;
470
471 buf->offset += ret;
472 buf->len -= ret;
473
474 sd->num_spliced += ret;
475 sd->len -= ret;
476 sd->pos += ret;
477 sd->total_len -= ret;
478
479 if (!buf->len) {
480 pipe_buf_release(pipe, buf);
481 tail++;
482 pipe->tail = tail;
483 if (pipe->files)
484 sd->need_wakeup = true;
485 }
486
487 if (!sd->total_len)
488 return 0;
489 }
490
491 return 1;
492}
493
494/* We know we have a pipe buffer, but maybe it's empty? */
495static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496{
497 unsigned int tail = pipe->tail;
498 unsigned int mask = pipe->ring_size - 1;
499 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501 if (unlikely(!buf->len)) {
502 pipe_buf_release(pipe, buf);
503 pipe->tail = tail+1;
504 return true;
505 }
506
507 return false;
508}
509
510/**
511 * splice_from_pipe_next - wait for some data to splice from
512 * @pipe: pipe to splice from
513 * @sd: information about the splice operation
514 *
515 * Description:
516 * This function will wait for some data and return a positive
517 * value (one) if pipe buffers are available. It will return zero
518 * or -errno if no more data needs to be spliced.
519 */
520static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521{
522 /*
523 * Check for signal early to make process killable when there are
524 * always buffers available
525 */
526 if (signal_pending(current))
527 return -ERESTARTSYS;
528
529repeat:
530 while (pipe_empty(pipe->head, pipe->tail)) {
531 if (!pipe->writers)
532 return 0;
533
534 if (sd->num_spliced)
535 return 0;
536
537 if (sd->flags & SPLICE_F_NONBLOCK)
538 return -EAGAIN;
539
540 if (signal_pending(current))
541 return -ERESTARTSYS;
542
543 if (sd->need_wakeup) {
544 wakeup_pipe_writers(pipe);
545 sd->need_wakeup = false;
546 }
547
548 pipe_wait_readable(pipe);
549 }
550
551 if (eat_empty_buffer(pipe))
552 goto repeat;
553
554 return 1;
555}
556
557/**
558 * splice_from_pipe_begin - start splicing from pipe
559 * @sd: information about the splice operation
560 *
561 * Description:
562 * This function should be called before a loop containing
563 * splice_from_pipe_next() and splice_from_pipe_feed() to
564 * initialize the necessary fields of @sd.
565 */
566static void splice_from_pipe_begin(struct splice_desc *sd)
567{
568 sd->num_spliced = 0;
569 sd->need_wakeup = false;
570}
571
572/**
573 * splice_from_pipe_end - finish splicing from pipe
574 * @pipe: pipe to splice from
575 * @sd: information about the splice operation
576 *
577 * Description:
578 * This function will wake up pipe writers if necessary. It should
579 * be called after a loop containing splice_from_pipe_next() and
580 * splice_from_pipe_feed().
581 */
582static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583{
584 if (sd->need_wakeup)
585 wakeup_pipe_writers(pipe);
586}
587
588/**
589 * __splice_from_pipe - splice data from a pipe to given actor
590 * @pipe: pipe to splice from
591 * @sd: information to @actor
592 * @actor: handler that splices the data
593 *
594 * Description:
595 * This function does little more than loop over the pipe and call
596 * @actor to do the actual moving of a single struct pipe_buffer to
597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598 * pipe_to_user.
599 *
600 */
601ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 splice_actor *actor)
603{
604 int ret;
605
606 splice_from_pipe_begin(sd);
607 do {
608 cond_resched();
609 ret = splice_from_pipe_next(pipe, sd);
610 if (ret > 0)
611 ret = splice_from_pipe_feed(pipe, sd, actor);
612 } while (ret > 0);
613 splice_from_pipe_end(pipe, sd);
614
615 return sd->num_spliced ? sd->num_spliced : ret;
616}
617EXPORT_SYMBOL(__splice_from_pipe);
618
619/**
620 * splice_from_pipe - splice data from a pipe to a file
621 * @pipe: pipe to splice from
622 * @out: file to splice to
623 * @ppos: position in @out
624 * @len: how many bytes to splice
625 * @flags: splice modifier flags
626 * @actor: handler that splices the data
627 *
628 * Description:
629 * See __splice_from_pipe. This function locks the pipe inode,
630 * otherwise it's identical to __splice_from_pipe().
631 *
632 */
633ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 loff_t *ppos, size_t len, unsigned int flags,
635 splice_actor *actor)
636{
637 ssize_t ret;
638 struct splice_desc sd = {
639 .total_len = len,
640 .flags = flags,
641 .pos = *ppos,
642 .u.file = out,
643 };
644
645 pipe_lock(pipe);
646 ret = __splice_from_pipe(pipe, &sd, actor);
647 pipe_unlock(pipe);
648
649 return ret;
650}
651
652/**
653 * iter_file_splice_write - splice data from a pipe to a file
654 * @pipe: pipe info
655 * @out: file to write to
656 * @ppos: position in @out
657 * @len: number of bytes to splice
658 * @flags: splice modifier flags
659 *
660 * Description:
661 * Will either move or copy pages (determined by @flags options) from
662 * the given pipe inode to the given file.
663 * This one is ->write_iter-based.
664 *
665 */
666ssize_t
667iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 loff_t *ppos, size_t len, unsigned int flags)
669{
670 struct splice_desc sd = {
671 .total_len = len,
672 .flags = flags,
673 .pos = *ppos,
674 .u.file = out,
675 };
676 int nbufs = pipe->max_usage;
677 struct bio_vec *array;
678 ssize_t ret;
679
680 if (!out->f_op->write_iter)
681 return -EINVAL;
682
683 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684 if (unlikely(!array))
685 return -ENOMEM;
686
687 pipe_lock(pipe);
688
689 splice_from_pipe_begin(&sd);
690 while (sd.total_len) {
691 struct kiocb kiocb;
692 struct iov_iter from;
693 unsigned int head, tail, mask;
694 size_t left;
695 int n;
696
697 ret = splice_from_pipe_next(pipe, &sd);
698 if (ret <= 0)
699 break;
700
701 if (unlikely(nbufs < pipe->max_usage)) {
702 kfree(array);
703 nbufs = pipe->max_usage;
704 array = kcalloc(nbufs, sizeof(struct bio_vec),
705 GFP_KERNEL);
706 if (!array) {
707 ret = -ENOMEM;
708 break;
709 }
710 }
711
712 head = pipe->head;
713 tail = pipe->tail;
714 mask = pipe->ring_size - 1;
715
716 /* build the vector */
717 left = sd.total_len;
718 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720 size_t this_len = buf->len;
721
722 /* zero-length bvecs are not supported, skip them */
723 if (!this_len)
724 continue;
725 this_len = min(this_len, left);
726
727 ret = pipe_buf_confirm(pipe, buf);
728 if (unlikely(ret)) {
729 if (ret == -ENODATA)
730 ret = 0;
731 goto done;
732 }
733
734 bvec_set_page(&array[n], buf->page, this_len,
735 buf->offset);
736 left -= this_len;
737 n++;
738 }
739
740 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741 init_sync_kiocb(&kiocb, out);
742 kiocb.ki_pos = sd.pos;
743 ret = out->f_op->write_iter(&kiocb, &from);
744 sd.pos = kiocb.ki_pos;
745 if (ret <= 0)
746 break;
747
748 sd.num_spliced += ret;
749 sd.total_len -= ret;
750 *ppos = sd.pos;
751
752 /* dismiss the fully eaten buffers, adjust the partial one */
753 tail = pipe->tail;
754 while (ret) {
755 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756 if (ret >= buf->len) {
757 ret -= buf->len;
758 buf->len = 0;
759 pipe_buf_release(pipe, buf);
760 tail++;
761 pipe->tail = tail;
762 if (pipe->files)
763 sd.need_wakeup = true;
764 } else {
765 buf->offset += ret;
766 buf->len -= ret;
767 ret = 0;
768 }
769 }
770 }
771done:
772 kfree(array);
773 splice_from_pipe_end(pipe, &sd);
774
775 pipe_unlock(pipe);
776
777 if (sd.num_spliced)
778 ret = sd.num_spliced;
779
780 return ret;
781}
782
783EXPORT_SYMBOL(iter_file_splice_write);
784
785#ifdef CONFIG_NET
786/**
787 * splice_to_socket - splice data from a pipe to a socket
788 * @pipe: pipe to splice from
789 * @out: socket to write to
790 * @ppos: position in @out
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will send @len bytes from the pipe to a network socket. No data copying
796 * is involved.
797 *
798 */
799ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800 loff_t *ppos, size_t len, unsigned int flags)
801{
802 struct socket *sock = sock_from_file(out);
803 struct bio_vec bvec[16];
804 struct msghdr msg = {};
805 ssize_t ret = 0;
806 size_t spliced = 0;
807 bool need_wakeup = false;
808
809 pipe_lock(pipe);
810
811 while (len > 0) {
812 unsigned int head, tail, mask, bc = 0;
813 size_t remain = len;
814
815 /*
816 * Check for signal early to make process killable when there
817 * are always buffers available
818 */
819 ret = -ERESTARTSYS;
820 if (signal_pending(current))
821 break;
822
823 while (pipe_empty(pipe->head, pipe->tail)) {
824 ret = 0;
825 if (!pipe->writers)
826 goto out;
827
828 if (spliced)
829 goto out;
830
831 ret = -EAGAIN;
832 if (flags & SPLICE_F_NONBLOCK)
833 goto out;
834
835 ret = -ERESTARTSYS;
836 if (signal_pending(current))
837 goto out;
838
839 if (need_wakeup) {
840 wakeup_pipe_writers(pipe);
841 need_wakeup = false;
842 }
843
844 pipe_wait_readable(pipe);
845 }
846
847 head = pipe->head;
848 tail = pipe->tail;
849 mask = pipe->ring_size - 1;
850
851 while (!pipe_empty(head, tail)) {
852 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853 size_t seg;
854
855 if (!buf->len) {
856 tail++;
857 continue;
858 }
859
860 seg = min_t(size_t, remain, buf->len);
861
862 ret = pipe_buf_confirm(pipe, buf);
863 if (unlikely(ret)) {
864 if (ret == -ENODATA)
865 ret = 0;
866 break;
867 }
868
869 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870 remain -= seg;
871 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872 break;
873 tail++;
874 }
875
876 if (!bc)
877 break;
878
879 msg.msg_flags = MSG_SPLICE_PAGES;
880 if (flags & SPLICE_F_MORE)
881 msg.msg_flags |= MSG_MORE;
882 if (remain && pipe_occupancy(pipe->head, tail) > 0)
883 msg.msg_flags |= MSG_MORE;
884 if (out->f_flags & O_NONBLOCK)
885 msg.msg_flags |= MSG_DONTWAIT;
886
887 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888 len - remain);
889 ret = sock_sendmsg(sock, &msg);
890 if (ret <= 0)
891 break;
892
893 spliced += ret;
894 len -= ret;
895 tail = pipe->tail;
896 while (ret > 0) {
897 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898 size_t seg = min_t(size_t, ret, buf->len);
899
900 buf->offset += seg;
901 buf->len -= seg;
902 ret -= seg;
903
904 if (!buf->len) {
905 pipe_buf_release(pipe, buf);
906 tail++;
907 }
908 }
909
910 if (tail != pipe->tail) {
911 pipe->tail = tail;
912 if (pipe->files)
913 need_wakeup = true;
914 }
915 }
916
917out:
918 pipe_unlock(pipe);
919 if (need_wakeup)
920 wakeup_pipe_writers(pipe);
921 return spliced ?: ret;
922}
923#endif
924
925static int warn_unsupported(struct file *file, const char *op)
926{
927 pr_debug_ratelimited(
928 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929 op, file, current->pid, current->comm);
930 return -EINVAL;
931}
932
933/*
934 * Attempt to initiate a splice from pipe to file.
935 */
936static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937 loff_t *ppos, size_t len, unsigned int flags)
938{
939 if (unlikely(!out->f_op->splice_write))
940 return warn_unsupported(out, "write");
941 return out->f_op->splice_write(pipe, out, ppos, len, flags);
942}
943
944/*
945 * Indicate to the caller that there was a premature EOF when reading from the
946 * source and the caller didn't indicate they would be sending more data after
947 * this.
948 */
949static void do_splice_eof(struct splice_desc *sd)
950{
951 if (sd->splice_eof)
952 sd->splice_eof(sd);
953}
954
955/*
956 * Callers already called rw_verify_area() on the entire range.
957 * No need to call it for sub ranges.
958 */
959static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960 struct pipe_inode_info *pipe, size_t len,
961 unsigned int flags)
962{
963 unsigned int p_space;
964
965 if (unlikely(!(in->f_mode & FMODE_READ)))
966 return -EBADF;
967 if (!len)
968 return 0;
969
970 /* Don't try to read more the pipe has space for. */
971 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972 len = min_t(size_t, len, p_space << PAGE_SHIFT);
973
974 if (unlikely(len > MAX_RW_COUNT))
975 len = MAX_RW_COUNT;
976
977 if (unlikely(!in->f_op->splice_read))
978 return warn_unsupported(in, "read");
979 /*
980 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981 * buffer, copy into it and splice that into the pipe.
982 */
983 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984 return copy_splice_read(in, ppos, pipe, len, flags);
985 return in->f_op->splice_read(in, ppos, pipe, len, flags);
986}
987
988/**
989 * vfs_splice_read - Read data from a file and splice it into a pipe
990 * @in: File to splice from
991 * @ppos: Input file offset
992 * @pipe: Pipe to splice to
993 * @len: Number of bytes to splice
994 * @flags: Splice modifier flags (SPLICE_F_*)
995 *
996 * Splice the requested amount of data from the input file to the pipe. This
997 * is synchronous as the caller must hold the pipe lock across the entire
998 * operation.
999 *
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1002 */
1003ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004 struct pipe_inode_info *pipe, size_t len,
1005 unsigned int flags)
1006{
1007 ssize_t ret;
1008
1009 ret = rw_verify_area(READ, in, ppos, len);
1010 if (unlikely(ret < 0))
1011 return ret;
1012
1013 return do_splice_read(in, ppos, pipe, len, flags);
1014}
1015EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017/**
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in: file to splice from
1020 * @sd: actor information on where to splice to
1021 * @actor: handles the data splicing
1022 *
1023 * Description:
1024 * This is a special case helper to splice directly between two
1025 * points, without requiring an explicit pipe. Internally an allocated
1026 * pipe is cached in the process, and reused during the lifetime of
1027 * that process.
1028 *
1029 */
1030ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031 splice_direct_actor *actor)
1032{
1033 struct pipe_inode_info *pipe;
1034 ssize_t ret, bytes;
1035 size_t len;
1036 int i, flags, more;
1037
1038 /*
1039 * We require the input to be seekable, as we don't want to randomly
1040 * drop data for eg socket -> socket splicing. Use the piped splicing
1041 * for that!
1042 */
1043 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044 return -EINVAL;
1045
1046 /*
1047 * neither in nor out is a pipe, setup an internal pipe attached to
1048 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049 */
1050 pipe = current->splice_pipe;
1051 if (unlikely(!pipe)) {
1052 pipe = alloc_pipe_info();
1053 if (!pipe)
1054 return -ENOMEM;
1055
1056 /*
1057 * We don't have an immediate reader, but we'll read the stuff
1058 * out of the pipe right after the splice_to_pipe(). So set
1059 * PIPE_READERS appropriately.
1060 */
1061 pipe->readers = 1;
1062
1063 current->splice_pipe = pipe;
1064 }
1065
1066 /*
1067 * Do the splice.
1068 */
1069 bytes = 0;
1070 len = sd->total_len;
1071
1072 /* Don't block on output, we have to drain the direct pipe. */
1073 flags = sd->flags;
1074 sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076 /*
1077 * We signal MORE until we've read sufficient data to fulfill the
1078 * request and we keep signalling it if the caller set it.
1079 */
1080 more = sd->flags & SPLICE_F_MORE;
1081 sd->flags |= SPLICE_F_MORE;
1082
1083 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085 while (len) {
1086 size_t read_len;
1087 loff_t pos = sd->pos, prev_pos = pos;
1088
1089 ret = do_splice_read(in, &pos, pipe, len, flags);
1090 if (unlikely(ret <= 0))
1091 goto read_failure;
1092
1093 read_len = ret;
1094 sd->total_len = read_len;
1095
1096 /*
1097 * If we now have sufficient data to fulfill the request then
1098 * we clear SPLICE_F_MORE if it was not set initially.
1099 */
1100 if (read_len >= len && !more)
1101 sd->flags &= ~SPLICE_F_MORE;
1102
1103 /*
1104 * NOTE: nonblocking mode only applies to the input. We
1105 * must not do the output in nonblocking mode as then we
1106 * could get stuck data in the internal pipe:
1107 */
1108 ret = actor(pipe, sd);
1109 if (unlikely(ret <= 0)) {
1110 sd->pos = prev_pos;
1111 goto out_release;
1112 }
1113
1114 bytes += ret;
1115 len -= ret;
1116 sd->pos = pos;
1117
1118 if (ret < read_len) {
1119 sd->pos = prev_pos + ret;
1120 goto out_release;
1121 }
1122 }
1123
1124done:
1125 pipe->tail = pipe->head = 0;
1126 file_accessed(in);
1127 return bytes;
1128
1129read_failure:
1130 /*
1131 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134 * least 1 byte *then* we will also do the ->splice_eof() call.
1135 */
1136 if (ret == 0 && !more && len > 0 && bytes)
1137 do_splice_eof(sd);
1138out_release:
1139 /*
1140 * If we did an incomplete transfer we must release
1141 * the pipe buffers in question:
1142 */
1143 for (i = 0; i < pipe->ring_size; i++) {
1144 struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146 if (buf->ops)
1147 pipe_buf_release(pipe, buf);
1148 }
1149
1150 if (!bytes)
1151 bytes = ret;
1152
1153 goto done;
1154}
1155EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157static int direct_splice_actor(struct pipe_inode_info *pipe,
1158 struct splice_desc *sd)
1159{
1160 struct file *file = sd->u.file;
1161 long ret;
1162
1163 file_start_write(file);
1164 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165 file_end_write(file);
1166 return ret;
1167}
1168
1169static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170 struct splice_desc *sd)
1171{
1172 struct file *file = sd->u.file;
1173
1174 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175}
1176
1177static void direct_file_splice_eof(struct splice_desc *sd)
1178{
1179 struct file *file = sd->u.file;
1180
1181 if (file->f_op->splice_eof)
1182 file->f_op->splice_eof(file);
1183}
1184
1185static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186 struct file *out, loff_t *opos,
1187 size_t len, unsigned int flags,
1188 splice_direct_actor *actor)
1189{
1190 struct splice_desc sd = {
1191 .len = len,
1192 .total_len = len,
1193 .flags = flags,
1194 .pos = *ppos,
1195 .u.file = out,
1196 .splice_eof = direct_file_splice_eof,
1197 .opos = opos,
1198 };
1199 ssize_t ret;
1200
1201 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202 return -EBADF;
1203
1204 if (unlikely(out->f_flags & O_APPEND))
1205 return -EINVAL;
1206
1207 ret = splice_direct_to_actor(in, &sd, actor);
1208 if (ret > 0)
1209 *ppos = sd.pos;
1210
1211 return ret;
1212}
1213/**
1214 * do_splice_direct - splices data directly between two files
1215 * @in: file to splice from
1216 * @ppos: input file offset
1217 * @out: file to splice to
1218 * @opos: output file offset
1219 * @len: number of bytes to splice
1220 * @flags: splice modifier flags
1221 *
1222 * Description:
1223 * For use by do_sendfile(). splice can easily emulate sendfile, but
1224 * doing it in the application would incur an extra system call
1225 * (splice in + splice out, as compared to just sendfile()). So this helper
1226 * can splice directly through a process-private pipe.
1227 *
1228 * Callers already called rw_verify_area() on the entire range.
1229 */
1230ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231 loff_t *opos, size_t len, unsigned int flags)
1232{
1233 return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234 direct_splice_actor);
1235}
1236EXPORT_SYMBOL(do_splice_direct);
1237
1238/**
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in: file to splice from
1241 * @ppos: input file offset
1242 * @out: file to splice to
1243 * @opos: output file offset
1244 * @len: number of bytes to splice
1245 *
1246 * Description:
1247 * For use by ->copy_file_range() methods.
1248 * Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 * start_file_write() on @out file.
1250 *
1251 * Callers already called rw_verify_area() on the entire range.
1252 */
1253ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254 loff_t *opos, size_t len)
1255{
1256 lockdep_assert(file_write_started(out));
1257
1258 return do_splice_direct_actor(in, ppos, out, opos,
1259 min_t(size_t, len, MAX_RW_COUNT),
1260 0, splice_file_range_actor);
1261}
1262EXPORT_SYMBOL(splice_file_range);
1263
1264static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265{
1266 for (;;) {
1267 if (unlikely(!pipe->readers)) {
1268 send_sig(SIGPIPE, current, 0);
1269 return -EPIPE;
1270 }
1271 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272 return 0;
1273 if (flags & SPLICE_F_NONBLOCK)
1274 return -EAGAIN;
1275 if (signal_pending(current))
1276 return -ERESTARTSYS;
1277 pipe_wait_writable(pipe);
1278 }
1279}
1280
1281static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282 struct pipe_inode_info *opipe,
1283 size_t len, unsigned int flags);
1284
1285ssize_t splice_file_to_pipe(struct file *in,
1286 struct pipe_inode_info *opipe,
1287 loff_t *offset,
1288 size_t len, unsigned int flags)
1289{
1290 ssize_t ret;
1291
1292 pipe_lock(opipe);
1293 ret = wait_for_space(opipe, flags);
1294 if (!ret)
1295 ret = do_splice_read(in, offset, opipe, len, flags);
1296 pipe_unlock(opipe);
1297 if (ret > 0)
1298 wakeup_pipe_readers(opipe);
1299 return ret;
1300}
1301
1302/*
1303 * Determine where to splice to/from.
1304 */
1305ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306 loff_t *off_out, size_t len, unsigned int flags)
1307{
1308 struct pipe_inode_info *ipipe;
1309 struct pipe_inode_info *opipe;
1310 loff_t offset;
1311 ssize_t ret;
1312
1313 if (unlikely(!(in->f_mode & FMODE_READ) ||
1314 !(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1316
1317 ipipe = get_pipe_info(in, true);
1318 opipe = get_pipe_info(out, true);
1319
1320 if (ipipe && opipe) {
1321 if (off_in || off_out)
1322 return -ESPIPE;
1323
1324 /* Splicing to self would be fun, but... */
1325 if (ipipe == opipe)
1326 return -EINVAL;
1327
1328 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329 flags |= SPLICE_F_NONBLOCK;
1330
1331 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332 } else if (ipipe) {
1333 if (off_in)
1334 return -ESPIPE;
1335 if (off_out) {
1336 if (!(out->f_mode & FMODE_PWRITE))
1337 return -EINVAL;
1338 offset = *off_out;
1339 } else {
1340 offset = out->f_pos;
1341 }
1342
1343 if (unlikely(out->f_flags & O_APPEND))
1344 return -EINVAL;
1345
1346 ret = rw_verify_area(WRITE, out, &offset, len);
1347 if (unlikely(ret < 0))
1348 return ret;
1349
1350 if (in->f_flags & O_NONBLOCK)
1351 flags |= SPLICE_F_NONBLOCK;
1352
1353 file_start_write(out);
1354 ret = do_splice_from(ipipe, out, &offset, len, flags);
1355 file_end_write(out);
1356
1357 if (!off_out)
1358 out->f_pos = offset;
1359 else
1360 *off_out = offset;
1361 } else if (opipe) {
1362 if (off_out)
1363 return -ESPIPE;
1364 if (off_in) {
1365 if (!(in->f_mode & FMODE_PREAD))
1366 return -EINVAL;
1367 offset = *off_in;
1368 } else {
1369 offset = in->f_pos;
1370 }
1371
1372 ret = rw_verify_area(READ, in, &offset, len);
1373 if (unlikely(ret < 0))
1374 return ret;
1375
1376 if (out->f_flags & O_NONBLOCK)
1377 flags |= SPLICE_F_NONBLOCK;
1378
1379 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381 if (!off_in)
1382 in->f_pos = offset;
1383 else
1384 *off_in = offset;
1385 } else {
1386 ret = -EINVAL;
1387 }
1388
1389 if (ret > 0) {
1390 /*
1391 * Generate modify out before access in:
1392 * do_splice_from() may've already sent modify out,
1393 * and this ensures the events get merged.
1394 */
1395 fsnotify_modify(out);
1396 fsnotify_access(in);
1397 }
1398
1399 return ret;
1400}
1401
1402static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403 struct file *out, loff_t __user *off_out,
1404 size_t len, unsigned int flags)
1405{
1406 struct pipe_inode_info *ipipe;
1407 struct pipe_inode_info *opipe;
1408 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409 ssize_t ret;
1410
1411 ipipe = get_pipe_info(in, true);
1412 opipe = get_pipe_info(out, true);
1413
1414 if (ipipe) {
1415 if (off_in)
1416 return -ESPIPE;
1417 pipe_clear_nowait(in);
1418 }
1419 if (opipe) {
1420 if (off_out)
1421 return -ESPIPE;
1422 pipe_clear_nowait(out);
1423 }
1424
1425 if (off_out) {
1426 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427 return -EFAULT;
1428 __off_out = &offset;
1429 }
1430 if (off_in) {
1431 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432 return -EFAULT;
1433 __off_in = &offset;
1434 }
1435
1436 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437 if (ret < 0)
1438 return ret;
1439
1440 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441 return -EFAULT;
1442 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443 return -EFAULT;
1444
1445 return ret;
1446}
1447
1448static ssize_t iter_to_pipe(struct iov_iter *from,
1449 struct pipe_inode_info *pipe,
1450 unsigned int flags)
1451{
1452 struct pipe_buffer buf = {
1453 .ops = &user_page_pipe_buf_ops,
1454 .flags = flags
1455 };
1456 size_t total = 0;
1457 ssize_t ret = 0;
1458
1459 while (iov_iter_count(from)) {
1460 struct page *pages[16];
1461 ssize_t left;
1462 size_t start;
1463 int i, n;
1464
1465 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466 if (left <= 0) {
1467 ret = left;
1468 break;
1469 }
1470
1471 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472 for (i = 0; i < n; i++) {
1473 int size = min_t(int, left, PAGE_SIZE - start);
1474
1475 buf.page = pages[i];
1476 buf.offset = start;
1477 buf.len = size;
1478 ret = add_to_pipe(pipe, &buf);
1479 if (unlikely(ret < 0)) {
1480 iov_iter_revert(from, left);
1481 // this one got dropped by add_to_pipe()
1482 while (++i < n)
1483 put_page(pages[i]);
1484 goto out;
1485 }
1486 total += ret;
1487 left -= size;
1488 start = 0;
1489 }
1490 }
1491out:
1492 return total ? total : ret;
1493}
1494
1495static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 struct splice_desc *sd)
1497{
1498 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499 return n == sd->len ? n : -EFAULT;
1500}
1501
1502/*
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1505 */
1506static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507 unsigned int flags)
1508{
1509 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510 struct splice_desc sd = {
1511 .total_len = iov_iter_count(iter),
1512 .flags = flags,
1513 .u.data = iter
1514 };
1515 ssize_t ret = 0;
1516
1517 if (!pipe)
1518 return -EBADF;
1519
1520 pipe_clear_nowait(file);
1521
1522 if (sd.total_len) {
1523 pipe_lock(pipe);
1524 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525 pipe_unlock(pipe);
1526 }
1527
1528 if (ret > 0)
1529 fsnotify_access(file);
1530
1531 return ret;
1532}
1533
1534/*
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1538 */
1539static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540 unsigned int flags)
1541{
1542 struct pipe_inode_info *pipe;
1543 ssize_t ret = 0;
1544 unsigned buf_flag = 0;
1545
1546 if (flags & SPLICE_F_GIFT)
1547 buf_flag = PIPE_BUF_FLAG_GIFT;
1548
1549 pipe = get_pipe_info(file, true);
1550 if (!pipe)
1551 return -EBADF;
1552
1553 pipe_clear_nowait(file);
1554
1555 pipe_lock(pipe);
1556 ret = wait_for_space(pipe, flags);
1557 if (!ret)
1558 ret = iter_to_pipe(iter, pipe, buf_flag);
1559 pipe_unlock(pipe);
1560 if (ret > 0) {
1561 wakeup_pipe_readers(pipe);
1562 fsnotify_modify(file);
1563 }
1564 return ret;
1565}
1566
1567/*
1568 * Note that vmsplice only really supports true splicing _from_ user memory
1569 * to a pipe, not the other way around. Splicing from user memory is a simple
1570 * operation that can be supported without any funky alignment restrictions
1571 * or nasty vm tricks. We simply map in the user memory and fill them into
1572 * a pipe. The reverse isn't quite as easy, though. There are two possible
1573 * solutions for that:
1574 *
1575 * - memcpy() the data internally, at which point we might as well just
1576 * do a regular read() on the buffer anyway.
1577 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1578 * has restriction limitations on both ends of the pipe).
1579 *
1580 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1581 *
1582 */
1583SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1584 unsigned long, nr_segs, unsigned int, flags)
1585{
1586 struct iovec iovstack[UIO_FASTIOV];
1587 struct iovec *iov = iovstack;
1588 struct iov_iter iter;
1589 ssize_t error;
1590 int type;
1591
1592 if (unlikely(flags & ~SPLICE_F_ALL))
1593 return -EINVAL;
1594
1595 CLASS(fd, f)(fd);
1596 if (fd_empty(f))
1597 return -EBADF;
1598 if (fd_file(f)->f_mode & FMODE_WRITE)
1599 type = ITER_SOURCE;
1600 else if (fd_file(f)->f_mode & FMODE_READ)
1601 type = ITER_DEST;
1602 else
1603 return -EBADF;
1604
1605 error = import_iovec(type, uiov, nr_segs,
1606 ARRAY_SIZE(iovstack), &iov, &iter);
1607 if (error < 0)
1608 return error;
1609
1610 if (!iov_iter_count(&iter))
1611 error = 0;
1612 else if (type == ITER_SOURCE)
1613 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1614 else
1615 error = vmsplice_to_user(fd_file(f), &iter, flags);
1616
1617 kfree(iov);
1618 return error;
1619}
1620
1621SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1622 int, fd_out, loff_t __user *, off_out,
1623 size_t, len, unsigned int, flags)
1624{
1625 if (unlikely(!len))
1626 return 0;
1627
1628 if (unlikely(flags & ~SPLICE_F_ALL))
1629 return -EINVAL;
1630
1631 CLASS(fd, in)(fd_in);
1632 if (fd_empty(in))
1633 return -EBADF;
1634
1635 CLASS(fd, out)(fd_out);
1636 if (fd_empty(out))
1637 return -EBADF;
1638
1639 return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1640 len, flags);
1641}
1642
1643/*
1644 * Make sure there's data to read. Wait for input if we can, otherwise
1645 * return an appropriate error.
1646 */
1647static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1648{
1649 int ret;
1650
1651 /*
1652 * Check the pipe occupancy without the inode lock first. This function
1653 * is speculative anyways, so missing one is ok.
1654 */
1655 if (!pipe_empty(pipe->head, pipe->tail))
1656 return 0;
1657
1658 ret = 0;
1659 pipe_lock(pipe);
1660
1661 while (pipe_empty(pipe->head, pipe->tail)) {
1662 if (signal_pending(current)) {
1663 ret = -ERESTARTSYS;
1664 break;
1665 }
1666 if (!pipe->writers)
1667 break;
1668 if (flags & SPLICE_F_NONBLOCK) {
1669 ret = -EAGAIN;
1670 break;
1671 }
1672 pipe_wait_readable(pipe);
1673 }
1674
1675 pipe_unlock(pipe);
1676 return ret;
1677}
1678
1679/*
1680 * Make sure there's writeable room. Wait for room if we can, otherwise
1681 * return an appropriate error.
1682 */
1683static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1684{
1685 int ret;
1686
1687 /*
1688 * Check pipe occupancy without the inode lock first. This function
1689 * is speculative anyways, so missing one is ok.
1690 */
1691 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1692 return 0;
1693
1694 ret = 0;
1695 pipe_lock(pipe);
1696
1697 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1698 if (!pipe->readers) {
1699 send_sig(SIGPIPE, current, 0);
1700 ret = -EPIPE;
1701 break;
1702 }
1703 if (flags & SPLICE_F_NONBLOCK) {
1704 ret = -EAGAIN;
1705 break;
1706 }
1707 if (signal_pending(current)) {
1708 ret = -ERESTARTSYS;
1709 break;
1710 }
1711 pipe_wait_writable(pipe);
1712 }
1713
1714 pipe_unlock(pipe);
1715 return ret;
1716}
1717
1718/*
1719 * Splice contents of ipipe to opipe.
1720 */
1721static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1722 struct pipe_inode_info *opipe,
1723 size_t len, unsigned int flags)
1724{
1725 struct pipe_buffer *ibuf, *obuf;
1726 unsigned int i_head, o_head;
1727 unsigned int i_tail, o_tail;
1728 unsigned int i_mask, o_mask;
1729 int ret = 0;
1730 bool input_wakeup = false;
1731
1732
1733retry:
1734 ret = ipipe_prep(ipipe, flags);
1735 if (ret)
1736 return ret;
1737
1738 ret = opipe_prep(opipe, flags);
1739 if (ret)
1740 return ret;
1741
1742 /*
1743 * Potential ABBA deadlock, work around it by ordering lock
1744 * grabbing by pipe info address. Otherwise two different processes
1745 * could deadlock (one doing tee from A -> B, the other from B -> A).
1746 */
1747 pipe_double_lock(ipipe, opipe);
1748
1749 i_tail = ipipe->tail;
1750 i_mask = ipipe->ring_size - 1;
1751 o_head = opipe->head;
1752 o_mask = opipe->ring_size - 1;
1753
1754 do {
1755 size_t o_len;
1756
1757 if (!opipe->readers) {
1758 send_sig(SIGPIPE, current, 0);
1759 if (!ret)
1760 ret = -EPIPE;
1761 break;
1762 }
1763
1764 i_head = ipipe->head;
1765 o_tail = opipe->tail;
1766
1767 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1768 break;
1769
1770 /*
1771 * Cannot make any progress, because either the input
1772 * pipe is empty or the output pipe is full.
1773 */
1774 if (pipe_empty(i_head, i_tail) ||
1775 pipe_full(o_head, o_tail, opipe->max_usage)) {
1776 /* Already processed some buffers, break */
1777 if (ret)
1778 break;
1779
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784
1785 /*
1786 * We raced with another reader/writer and haven't
1787 * managed to process any buffers. A zero return
1788 * value means EOF, so retry instead.
1789 */
1790 pipe_unlock(ipipe);
1791 pipe_unlock(opipe);
1792 goto retry;
1793 }
1794
1795 ibuf = &ipipe->bufs[i_tail & i_mask];
1796 obuf = &opipe->bufs[o_head & o_mask];
1797
1798 if (len >= ibuf->len) {
1799 /*
1800 * Simply move the whole buffer from ipipe to opipe
1801 */
1802 *obuf = *ibuf;
1803 ibuf->ops = NULL;
1804 i_tail++;
1805 ipipe->tail = i_tail;
1806 input_wakeup = true;
1807 o_len = obuf->len;
1808 o_head++;
1809 opipe->head = o_head;
1810 } else {
1811 /*
1812 * Get a reference to this pipe buffer,
1813 * so we can copy the contents over.
1814 */
1815 if (!pipe_buf_get(ipipe, ibuf)) {
1816 if (ret == 0)
1817 ret = -EFAULT;
1818 break;
1819 }
1820 *obuf = *ibuf;
1821
1822 /*
1823 * Don't inherit the gift and merge flags, we need to
1824 * prevent multiple steals of this page.
1825 */
1826 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1827 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1828
1829 obuf->len = len;
1830 ibuf->offset += len;
1831 ibuf->len -= len;
1832 o_len = len;
1833 o_head++;
1834 opipe->head = o_head;
1835 }
1836 ret += o_len;
1837 len -= o_len;
1838 } while (len);
1839
1840 pipe_unlock(ipipe);
1841 pipe_unlock(opipe);
1842
1843 /*
1844 * If we put data in the output pipe, wakeup any potential readers.
1845 */
1846 if (ret > 0)
1847 wakeup_pipe_readers(opipe);
1848
1849 if (input_wakeup)
1850 wakeup_pipe_writers(ipipe);
1851
1852 return ret;
1853}
1854
1855/*
1856 * Link contents of ipipe to opipe.
1857 */
1858static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1859 struct pipe_inode_info *opipe,
1860 size_t len, unsigned int flags)
1861{
1862 struct pipe_buffer *ibuf, *obuf;
1863 unsigned int i_head, o_head;
1864 unsigned int i_tail, o_tail;
1865 unsigned int i_mask, o_mask;
1866 ssize_t ret = 0;
1867
1868 /*
1869 * Potential ABBA deadlock, work around it by ordering lock
1870 * grabbing by pipe info address. Otherwise two different processes
1871 * could deadlock (one doing tee from A -> B, the other from B -> A).
1872 */
1873 pipe_double_lock(ipipe, opipe);
1874
1875 i_tail = ipipe->tail;
1876 i_mask = ipipe->ring_size - 1;
1877 o_head = opipe->head;
1878 o_mask = opipe->ring_size - 1;
1879
1880 do {
1881 if (!opipe->readers) {
1882 send_sig(SIGPIPE, current, 0);
1883 if (!ret)
1884 ret = -EPIPE;
1885 break;
1886 }
1887
1888 i_head = ipipe->head;
1889 o_tail = opipe->tail;
1890
1891 /*
1892 * If we have iterated all input buffers or run out of
1893 * output room, break.
1894 */
1895 if (pipe_empty(i_head, i_tail) ||
1896 pipe_full(o_head, o_tail, opipe->max_usage))
1897 break;
1898
1899 ibuf = &ipipe->bufs[i_tail & i_mask];
1900 obuf = &opipe->bufs[o_head & o_mask];
1901
1902 /*
1903 * Get a reference to this pipe buffer,
1904 * so we can copy the contents over.
1905 */
1906 if (!pipe_buf_get(ipipe, ibuf)) {
1907 if (ret == 0)
1908 ret = -EFAULT;
1909 break;
1910 }
1911
1912 *obuf = *ibuf;
1913
1914 /*
1915 * Don't inherit the gift and merge flag, we need to prevent
1916 * multiple steals of this page.
1917 */
1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1919 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1920
1921 if (obuf->len > len)
1922 obuf->len = len;
1923 ret += obuf->len;
1924 len -= obuf->len;
1925
1926 o_head++;
1927 opipe->head = o_head;
1928 i_tail++;
1929 } while (len);
1930
1931 pipe_unlock(ipipe);
1932 pipe_unlock(opipe);
1933
1934 /*
1935 * If we put data in the output pipe, wakeup any potential readers.
1936 */
1937 if (ret > 0)
1938 wakeup_pipe_readers(opipe);
1939
1940 return ret;
1941}
1942
1943/*
1944 * This is a tee(1) implementation that works on pipes. It doesn't copy
1945 * any data, it simply references the 'in' pages on the 'out' pipe.
1946 * The 'flags' used are the SPLICE_F_* variants, currently the only
1947 * applicable one is SPLICE_F_NONBLOCK.
1948 */
1949ssize_t do_tee(struct file *in, struct file *out, size_t len,
1950 unsigned int flags)
1951{
1952 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1953 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1954 ssize_t ret = -EINVAL;
1955
1956 if (unlikely(!(in->f_mode & FMODE_READ) ||
1957 !(out->f_mode & FMODE_WRITE)))
1958 return -EBADF;
1959
1960 /*
1961 * Duplicate the contents of ipipe to opipe without actually
1962 * copying the data.
1963 */
1964 if (ipipe && opipe && ipipe != opipe) {
1965 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1966 flags |= SPLICE_F_NONBLOCK;
1967
1968 /*
1969 * Keep going, unless we encounter an error. The ipipe/opipe
1970 * ordering doesn't really matter.
1971 */
1972 ret = ipipe_prep(ipipe, flags);
1973 if (!ret) {
1974 ret = opipe_prep(opipe, flags);
1975 if (!ret)
1976 ret = link_pipe(ipipe, opipe, len, flags);
1977 }
1978 }
1979
1980 if (ret > 0) {
1981 fsnotify_access(in);
1982 fsnotify_modify(out);
1983 }
1984
1985 return ret;
1986}
1987
1988SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1989{
1990 if (unlikely(flags & ~SPLICE_F_ALL))
1991 return -EINVAL;
1992
1993 if (unlikely(!len))
1994 return 0;
1995
1996 CLASS(fd, in)(fdin);
1997 if (fd_empty(in))
1998 return -EBADF;
1999
2000 CLASS(fd, out)(fdout);
2001 if (fd_empty(out))
2002 return -EBADF;
2003
2004 return do_tee(fd_file(in), fd_file(out), len, flags);
2005}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/buffer_head.h>
29#include <linux/module.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34
35/*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43{
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81out_unlock:
82 unlock_page(page);
83 return 1;
84}
85
86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88{
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91}
92
93/*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99{
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130error:
131 unlock_page(page);
132 return err;
133}
134
135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163};
164
165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166{
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171}
172
173/**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186{
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265}
266
267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268{
269 page_cache_release(spd->pages[i]);
270}
271
272/*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277{
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
280
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
294{
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300}
301
302static int
303__generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306{
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
321 };
322
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
325
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
330
331 /*
332 * Lookup the (hopefully) full range of pages we need.
333 */
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
336
337 /*
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
340 */
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
344
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
347 /*
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
350 */
351 page = find_get_page(mapping, index);
352 if (!page) {
353 /*
354 * page didn't exist, allocate one.
355 */
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
359
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
367 }
368 /*
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
371 */
372 unlock_page(page);
373 }
374
375 spd.pages[spd.nr_pages++] = page;
376 index++;
377 }
378
379 /*
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
382 */
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
388
389 if (!len)
390 break;
391
392 /*
393 * this_len is the max we'll use from this page
394 */
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
397
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
401
402 /*
403 * If the page isn't uptodate, we may need to start io on it
404 */
405 if (!PageUptodate(page)) {
406 lock_page(page);
407
408 /*
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
413 */
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
418
419 if (!page) {
420 error = -ENOMEM;
421 break;
422 }
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
425 }
426 /*
427 * page was already under io and is now done, great
428 */
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
432 }
433
434 /*
435 * need to read in the page
436 */
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
439 /*
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
447
448 break;
449 }
450 }
451fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(pipe, &spd);
501 return error;
502}
503
504/**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521{
522 loff_t isize, left;
523 int ret;
524
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
528
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
532
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
537 }
538
539 return ret;
540}
541EXPORT_SYMBOL(generic_file_splice_read);
542
543static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551};
552
553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
555{
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
559
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
565
566 return res;
567}
568
569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
571{
572 mm_segment_t old_fs;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
580
581 return res;
582}
583
584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
587{
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
604 };
605
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
608
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
615 }
616
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
622
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
627
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
635 }
636
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
641 }
642
643 error = 0;
644 if (!res)
645 goto err;
646
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
656 }
657 res -= this_len;
658 }
659 spd.nr_pages -= nr_freed;
660
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
664
665shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
670
671err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
674
675 res = error;
676 goto shrink_ret;
677}
678EXPORT_SYMBOL(default_file_splice_read);
679
680/*
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
683 */
684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
686{
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
690
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
693
694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 return file->f_op->sendpage(file, buf->page, buf->offset,
696 sd->len, &pos, more);
697}
698
699/*
700 * This is a little more tricky than the file -> pipe splicing. There are
701 * basically three cases:
702 *
703 * - Destination page already exists in the address space and there
704 * are users of it. For that case we have no other option that
705 * copying the data. Tough luck.
706 * - Destination page already exists in the address space, but there
707 * are no users of it. Make sure it's uptodate, then drop it. Fall
708 * through to last case.
709 * - Destination page does not exist, we can add the pipe page to
710 * the page cache and avoid the copy.
711 *
712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713 * sd->flags), we attempt to migrate pages from the pipe to the output
714 * file address space page cache. This is possible if no one else has
715 * the pipe page referenced outside of the pipe and page cache. If
716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717 * a new page in the output file page cache and fill/dirty that.
718 */
719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 struct splice_desc *sd)
721{
722 struct file *file = sd->u.file;
723 struct address_space *mapping = file->f_mapping;
724 unsigned int offset, this_len;
725 struct page *page;
726 void *fsdata;
727 int ret;
728
729 offset = sd->pos & ~PAGE_CACHE_MASK;
730
731 this_len = sd->len;
732 if (this_len + offset > PAGE_CACHE_SIZE)
733 this_len = PAGE_CACHE_SIZE - offset;
734
735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 if (unlikely(ret))
738 goto out;
739
740 if (buf->page != page) {
741 /*
742 * Careful, ->map() uses KM_USER0!
743 */
744 char *src = buf->ops->map(pipe, buf, 1);
745 char *dst = kmap_atomic(page, KM_USER1);
746
747 memcpy(dst + offset, src + buf->offset, this_len);
748 flush_dcache_page(page);
749 kunmap_atomic(dst, KM_USER1);
750 buf->ops->unmap(pipe, buf, src);
751 }
752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 page, fsdata);
754out:
755 return ret;
756}
757EXPORT_SYMBOL(pipe_to_file);
758
759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760{
761 smp_mb();
762 if (waitqueue_active(&pipe->wait))
763 wake_up_interruptible(&pipe->wait);
764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765}
766
767/**
768 * splice_from_pipe_feed - feed available data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @sd: information to @actor
771 * @actor: handler that splices the data
772 *
773 * Description:
774 * This function loops over the pipe and calls @actor to do the
775 * actual moving of a single struct pipe_buffer to the desired
776 * destination. It returns when there's no more buffers left in
777 * the pipe or if the requested number of bytes (@sd->total_len)
778 * have been copied. It returns a positive number (one) if the
779 * pipe needs to be filled with more data, zero if the required
780 * number of bytes have been copied and -errno on error.
781 *
782 * This, together with splice_from_pipe_{begin,end,next}, may be
783 * used to implement the functionality of __splice_from_pipe() when
784 * locking is required around copying the pipe buffers to the
785 * destination.
786 */
787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 splice_actor *actor)
789{
790 int ret;
791
792 while (pipe->nrbufs) {
793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 const struct pipe_buf_operations *ops = buf->ops;
795
796 sd->len = buf->len;
797 if (sd->len > sd->total_len)
798 sd->len = sd->total_len;
799
800 ret = buf->ops->confirm(pipe, buf);
801 if (unlikely(ret)) {
802 if (ret == -ENODATA)
803 ret = 0;
804 return ret;
805 }
806
807 ret = actor(pipe, buf, sd);
808 if (ret <= 0)
809 return ret;
810
811 buf->offset += ret;
812 buf->len -= ret;
813
814 sd->num_spliced += ret;
815 sd->len -= ret;
816 sd->pos += ret;
817 sd->total_len -= ret;
818
819 if (!buf->len) {
820 buf->ops = NULL;
821 ops->release(pipe, buf);
822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 pipe->nrbufs--;
824 if (pipe->inode)
825 sd->need_wakeup = true;
826 }
827
828 if (!sd->total_len)
829 return 0;
830 }
831
832 return 1;
833}
834EXPORT_SYMBOL(splice_from_pipe_feed);
835
836/**
837 * splice_from_pipe_next - wait for some data to splice from
838 * @pipe: pipe to splice from
839 * @sd: information about the splice operation
840 *
841 * Description:
842 * This function will wait for some data and return a positive
843 * value (one) if pipe buffers are available. It will return zero
844 * or -errno if no more data needs to be spliced.
845 */
846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847{
848 while (!pipe->nrbufs) {
849 if (!pipe->writers)
850 return 0;
851
852 if (!pipe->waiting_writers && sd->num_spliced)
853 return 0;
854
855 if (sd->flags & SPLICE_F_NONBLOCK)
856 return -EAGAIN;
857
858 if (signal_pending(current))
859 return -ERESTARTSYS;
860
861 if (sd->need_wakeup) {
862 wakeup_pipe_writers(pipe);
863 sd->need_wakeup = false;
864 }
865
866 pipe_wait(pipe);
867 }
868
869 return 1;
870}
871EXPORT_SYMBOL(splice_from_pipe_next);
872
873/**
874 * splice_from_pipe_begin - start splicing from pipe
875 * @sd: information about the splice operation
876 *
877 * Description:
878 * This function should be called before a loop containing
879 * splice_from_pipe_next() and splice_from_pipe_feed() to
880 * initialize the necessary fields of @sd.
881 */
882void splice_from_pipe_begin(struct splice_desc *sd)
883{
884 sd->num_spliced = 0;
885 sd->need_wakeup = false;
886}
887EXPORT_SYMBOL(splice_from_pipe_begin);
888
889/**
890 * splice_from_pipe_end - finish splicing from pipe
891 * @pipe: pipe to splice from
892 * @sd: information about the splice operation
893 *
894 * Description:
895 * This function will wake up pipe writers if necessary. It should
896 * be called after a loop containing splice_from_pipe_next() and
897 * splice_from_pipe_feed().
898 */
899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900{
901 if (sd->need_wakeup)
902 wakeup_pipe_writers(pipe);
903}
904EXPORT_SYMBOL(splice_from_pipe_end);
905
906/**
907 * __splice_from_pipe - splice data from a pipe to given actor
908 * @pipe: pipe to splice from
909 * @sd: information to @actor
910 * @actor: handler that splices the data
911 *
912 * Description:
913 * This function does little more than loop over the pipe and call
914 * @actor to do the actual moving of a single struct pipe_buffer to
915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
916 * pipe_to_user.
917 *
918 */
919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_actor *actor)
921{
922 int ret;
923
924 splice_from_pipe_begin(sd);
925 do {
926 ret = splice_from_pipe_next(pipe, sd);
927 if (ret > 0)
928 ret = splice_from_pipe_feed(pipe, sd, actor);
929 } while (ret > 0);
930 splice_from_pipe_end(pipe, sd);
931
932 return sd->num_spliced ? sd->num_spliced : ret;
933}
934EXPORT_SYMBOL(__splice_from_pipe);
935
936/**
937 * splice_from_pipe - splice data from a pipe to a file
938 * @pipe: pipe to splice from
939 * @out: file to splice to
940 * @ppos: position in @out
941 * @len: how many bytes to splice
942 * @flags: splice modifier flags
943 * @actor: handler that splices the data
944 *
945 * Description:
946 * See __splice_from_pipe. This function locks the pipe inode,
947 * otherwise it's identical to __splice_from_pipe().
948 *
949 */
950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags,
952 splice_actor *actor)
953{
954 ssize_t ret;
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 };
961
962 pipe_lock(pipe);
963 ret = __splice_from_pipe(pipe, &sd, actor);
964 pipe_unlock(pipe);
965
966 return ret;
967}
968
969/**
970 * generic_file_splice_write - splice data from a pipe to a file
971 * @pipe: pipe info
972 * @out: file to write to
973 * @ppos: position in @out
974 * @len: number of bytes to splice
975 * @flags: splice modifier flags
976 *
977 * Description:
978 * Will either move or copy pages (determined by @flags options) from
979 * the given pipe inode to the given file.
980 *
981 */
982ssize_t
983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 loff_t *ppos, size_t len, unsigned int flags)
985{
986 struct address_space *mapping = out->f_mapping;
987 struct inode *inode = mapping->host;
988 struct splice_desc sd = {
989 .total_len = len,
990 .flags = flags,
991 .pos = *ppos,
992 .u.file = out,
993 };
994 ssize_t ret;
995
996 pipe_lock(pipe);
997
998 splice_from_pipe_begin(&sd);
999 do {
1000 ret = splice_from_pipe_next(pipe, &sd);
1001 if (ret <= 0)
1002 break;
1003
1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 ret = file_remove_suid(out);
1006 if (!ret) {
1007 file_update_time(out);
1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009 }
1010 mutex_unlock(&inode->i_mutex);
1011 } while (ret > 0);
1012 splice_from_pipe_end(pipe, &sd);
1013
1014 pipe_unlock(pipe);
1015
1016 if (sd.num_spliced)
1017 ret = sd.num_spliced;
1018
1019 if (ret > 0) {
1020 unsigned long nr_pages;
1021 int err;
1022
1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024
1025 err = generic_write_sync(out, *ppos, ret);
1026 if (err)
1027 ret = err;
1028 else
1029 *ppos += ret;
1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031 }
1032
1033 return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 struct splice_desc *sd)
1040{
1041 int ret;
1042 void *data;
1043
1044 data = buf->ops->map(pipe, buf, 0);
1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 buf->ops->unmap(pipe, buf, data);
1047
1048 return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 struct file *out, loff_t *ppos,
1053 size_t len, unsigned int flags)
1054{
1055 ssize_t ret;
1056
1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 if (ret > 0)
1059 *ppos += ret;
1060
1061 return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe: pipe to splice from
1067 * @out: socket to write to
1068 * @ppos: position in @out
1069 * @len: number of bytes to splice
1070 * @flags: splice modifier flags
1071 *
1072 * Description:
1073 * Will send @len bytes from the pipe to a network socket. No data copying
1074 * is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 loff_t *ppos, size_t len, unsigned int flags)
1079{
1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 loff_t *ppos, size_t len, unsigned int flags)
1090{
1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 loff_t *, size_t, unsigned int);
1093 int ret;
1094
1095 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1097
1098 if (unlikely(out->f_flags & O_APPEND))
1099 return -EINVAL;
1100
1101 ret = rw_verify_area(WRITE, out, ppos, len);
1102 if (unlikely(ret < 0))
1103 return ret;
1104
1105 if (out->f_op && out->f_op->splice_write)
1106 splice_write = out->f_op->splice_write;
1107 else
1108 splice_write = default_file_splice_write;
1109
1110 return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117 struct pipe_inode_info *pipe, size_t len,
1118 unsigned int flags)
1119{
1120 ssize_t (*splice_read)(struct file *, loff_t *,
1121 struct pipe_inode_info *, size_t, unsigned int);
1122 int ret;
1123
1124 if (unlikely(!(in->f_mode & FMODE_READ)))
1125 return -EBADF;
1126
1127 ret = rw_verify_area(READ, in, ppos, len);
1128 if (unlikely(ret < 0))
1129 return ret;
1130
1131 if (in->f_op && in->f_op->splice_read)
1132 splice_read = in->f_op->splice_read;
1133 else
1134 splice_read = default_file_splice_read;
1135
1136 return splice_read(in, ppos, pipe, len, flags);
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in: file to splice from
1142 * @sd: actor information on where to splice to
1143 * @actor: handles the data splicing
1144 *
1145 * Description:
1146 * This is a special case helper to splice directly between two
1147 * points, without requiring an explicit pipe. Internally an allocated
1148 * pipe is cached in the process, and reused during the lifetime of
1149 * that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 splice_direct_actor *actor)
1154{
1155 struct pipe_inode_info *pipe;
1156 long ret, bytes;
1157 umode_t i_mode;
1158 size_t len;
1159 int i, flags;
1160
1161 /*
1162 * We require the input being a regular file, as we don't want to
1163 * randomly drop data for eg socket -> socket splicing. Use the
1164 * piped splicing for that!
1165 */
1166 i_mode = in->f_path.dentry->d_inode->i_mode;
1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 return -EINVAL;
1169
1170 /*
1171 * neither in nor out is a pipe, setup an internal pipe attached to
1172 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 */
1174 pipe = current->splice_pipe;
1175 if (unlikely(!pipe)) {
1176 pipe = alloc_pipe_info(NULL);
1177 if (!pipe)
1178 return -ENOMEM;
1179
1180 /*
1181 * We don't have an immediate reader, but we'll read the stuff
1182 * out of the pipe right after the splice_to_pipe(). So set
1183 * PIPE_READERS appropriately.
1184 */
1185 pipe->readers = 1;
1186
1187 current->splice_pipe = pipe;
1188 }
1189
1190 /*
1191 * Do the splice.
1192 */
1193 ret = 0;
1194 bytes = 0;
1195 len = sd->total_len;
1196 flags = sd->flags;
1197
1198 /*
1199 * Don't block on output, we have to drain the direct pipe.
1200 */
1201 sd->flags &= ~SPLICE_F_NONBLOCK;
1202
1203 while (len) {
1204 size_t read_len;
1205 loff_t pos = sd->pos, prev_pos = pos;
1206
1207 ret = do_splice_to(in, &pos, pipe, len, flags);
1208 if (unlikely(ret <= 0))
1209 goto out_release;
1210
1211 read_len = ret;
1212 sd->total_len = read_len;
1213
1214 /*
1215 * NOTE: nonblocking mode only applies to the input. We
1216 * must not do the output in nonblocking mode as then we
1217 * could get stuck data in the internal pipe:
1218 */
1219 ret = actor(pipe, sd);
1220 if (unlikely(ret <= 0)) {
1221 sd->pos = prev_pos;
1222 goto out_release;
1223 }
1224
1225 bytes += ret;
1226 len -= ret;
1227 sd->pos = pos;
1228
1229 if (ret < read_len) {
1230 sd->pos = prev_pos + ret;
1231 goto out_release;
1232 }
1233 }
1234
1235done:
1236 pipe->nrbufs = pipe->curbuf = 0;
1237 file_accessed(in);
1238 return bytes;
1239
1240out_release:
1241 /*
1242 * If we did an incomplete transfer we must release
1243 * the pipe buffers in question:
1244 */
1245 for (i = 0; i < pipe->buffers; i++) {
1246 struct pipe_buffer *buf = pipe->bufs + i;
1247
1248 if (buf->ops) {
1249 buf->ops->release(pipe, buf);
1250 buf->ops = NULL;
1251 }
1252 }
1253
1254 if (!bytes)
1255 bytes = ret;
1256
1257 goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 struct splice_desc *sd)
1263{
1264 struct file *file = sd->u.file;
1265
1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in: file to splice from
1273 * @ppos: input file offset
1274 * @out: file to splice to
1275 * @len: number of bytes to splice
1276 * @flags: splice modifier flags
1277 *
1278 * Description:
1279 * For use by do_sendfile(). splice can easily emulate sendfile, but
1280 * doing it in the application would incur an extra system call
1281 * (splice in + splice out, as compared to just sendfile()). So this helper
1282 * can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 size_t len, unsigned int flags)
1287{
1288 struct splice_desc sd = {
1289 .len = len,
1290 .total_len = len,
1291 .flags = flags,
1292 .pos = *ppos,
1293 .u.file = out,
1294 };
1295 long ret;
1296
1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 if (ret > 0)
1299 *ppos = sd.pos;
1300
1301 return ret;
1302}
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 struct pipe_inode_info *opipe,
1306 size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312 struct file *out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1314{
1315 struct pipe_inode_info *ipipe;
1316 struct pipe_inode_info *opipe;
1317 loff_t offset, *off;
1318 long ret;
1319
1320 ipipe = get_pipe_info(in);
1321 opipe = get_pipe_info(out);
1322
1323 if (ipipe && opipe) {
1324 if (off_in || off_out)
1325 return -ESPIPE;
1326
1327 if (!(in->f_mode & FMODE_READ))
1328 return -EBADF;
1329
1330 if (!(out->f_mode & FMODE_WRITE))
1331 return -EBADF;
1332
1333 /* Splicing to self would be fun, but... */
1334 if (ipipe == opipe)
1335 return -EINVAL;
1336
1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338 }
1339
1340 if (ipipe) {
1341 if (off_in)
1342 return -ESPIPE;
1343 if (off_out) {
1344 if (!(out->f_mode & FMODE_PWRITE))
1345 return -EINVAL;
1346 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 return -EFAULT;
1348 off = &offset;
1349 } else
1350 off = &out->f_pos;
1351
1352 ret = do_splice_from(ipipe, out, off, len, flags);
1353
1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
1360 if (opipe) {
1361 if (off_out)
1362 return -ESPIPE;
1363 if (off_in) {
1364 if (!(in->f_mode & FMODE_PREAD))
1365 return -EINVAL;
1366 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 return -EFAULT;
1368 off = &offset;
1369 } else
1370 off = &in->f_pos;
1371
1372 ret = do_splice_to(in, off, opipe, len, flags);
1373
1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 ret = -EFAULT;
1376
1377 return ret;
1378 }
1379
1380 return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391 unsigned int nr_vecs, struct page **pages,
1392 struct partial_page *partial, int aligned,
1393 unsigned int pipe_buffers)
1394{
1395 int buffers = 0, error = 0;
1396
1397 while (nr_vecs) {
1398 unsigned long off, npages;
1399 struct iovec entry;
1400 void __user *base;
1401 size_t len;
1402 int i;
1403
1404 error = -EFAULT;
1405 if (copy_from_user(&entry, iov, sizeof(entry)))
1406 break;
1407
1408 base = entry.iov_base;
1409 len = entry.iov_len;
1410
1411 /*
1412 * Sanity check this iovec. 0 read succeeds.
1413 */
1414 error = 0;
1415 if (unlikely(!len))
1416 break;
1417 error = -EFAULT;
1418 if (!access_ok(VERIFY_READ, base, len))
1419 break;
1420
1421 /*
1422 * Get this base offset and number of pages, then map
1423 * in the user pages.
1424 */
1425 off = (unsigned long) base & ~PAGE_MASK;
1426
1427 /*
1428 * If asked for alignment, the offset must be zero and the
1429 * length a multiple of the PAGE_SIZE.
1430 */
1431 error = -EINVAL;
1432 if (aligned && (off || len & ~PAGE_MASK))
1433 break;
1434
1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 if (npages > pipe_buffers - buffers)
1437 npages = pipe_buffers - buffers;
1438
1439 error = get_user_pages_fast((unsigned long)base, npages,
1440 0, &pages[buffers]);
1441
1442 if (unlikely(error <= 0))
1443 break;
1444
1445 /*
1446 * Fill this contiguous range into the partial page map.
1447 */
1448 for (i = 0; i < error; i++) {
1449 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451 partial[buffers].offset = off;
1452 partial[buffers].len = plen;
1453
1454 off = 0;
1455 len -= plen;
1456 buffers++;
1457 }
1458
1459 /*
1460 * We didn't complete this iov, stop here since it probably
1461 * means we have to move some of this into a pipe to
1462 * be able to continue.
1463 */
1464 if (len)
1465 break;
1466
1467 /*
1468 * Don't continue if we mapped fewer pages than we asked for,
1469 * or if we mapped the max number of pages that we have
1470 * room for.
1471 */
1472 if (error < npages || buffers == pipe_buffers)
1473 break;
1474
1475 nr_vecs--;
1476 iov++;
1477 }
1478
1479 if (buffers)
1480 return buffers;
1481
1482 return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 struct splice_desc *sd)
1487{
1488 char *src;
1489 int ret;
1490
1491 /*
1492 * See if we can use the atomic maps, by prefaulting in the
1493 * pages and doing an atomic copy
1494 */
1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 src = buf->ops->map(pipe, buf, 1);
1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 sd->len);
1499 buf->ops->unmap(pipe, buf, src);
1500 if (!ret) {
1501 ret = sd->len;
1502 goto out;
1503 }
1504 }
1505
1506 /*
1507 * No dice, use slow non-atomic map and copy
1508 */
1509 src = buf->ops->map(pipe, buf, 0);
1510
1511 ret = sd->len;
1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 ret = -EFAULT;
1514
1515 buf->ops->unmap(pipe, buf, src);
1516out:
1517 if (ret > 0)
1518 sd->u.userptr += ret;
1519 return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 unsigned long nr_segs, unsigned int flags)
1528{
1529 struct pipe_inode_info *pipe;
1530 struct splice_desc sd;
1531 ssize_t size;
1532 int error;
1533 long ret;
1534
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1538
1539 pipe_lock(pipe);
1540
1541 error = ret = 0;
1542 while (nr_segs) {
1543 void __user *base;
1544 size_t len;
1545
1546 /*
1547 * Get user address base and length for this iovec.
1548 */
1549 error = get_user(base, &iov->iov_base);
1550 if (unlikely(error))
1551 break;
1552 error = get_user(len, &iov->iov_len);
1553 if (unlikely(error))
1554 break;
1555
1556 /*
1557 * Sanity check this iovec. 0 read succeeds.
1558 */
1559 if (unlikely(!len))
1560 break;
1561 if (unlikely(!base)) {
1562 error = -EFAULT;
1563 break;
1564 }
1565
1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 error = -EFAULT;
1568 break;
1569 }
1570
1571 sd.len = 0;
1572 sd.total_len = len;
1573 sd.flags = flags;
1574 sd.u.userptr = base;
1575 sd.pos = 0;
1576
1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 if (size < 0) {
1579 if (!ret)
1580 ret = size;
1581
1582 break;
1583 }
1584
1585 ret += size;
1586
1587 if (size < len)
1588 break;
1589
1590 nr_segs--;
1591 iov++;
1592 }
1593
1594 pipe_unlock(pipe);
1595
1596 if (!ret)
1597 ret = error;
1598
1599 return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 unsigned long nr_segs, unsigned int flags)
1609{
1610 struct pipe_inode_info *pipe;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct splice_pipe_desc spd = {
1614 .pages = pages,
1615 .partial = partial,
1616 .flags = flags,
1617 .ops = &user_page_pipe_buf_ops,
1618 .spd_release = spd_release_page,
1619 };
1620 long ret;
1621
1622 pipe = get_pipe_info(file);
1623 if (!pipe)
1624 return -EBADF;
1625
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1628
1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 spd.partial, flags & SPLICE_F_GIFT,
1631 pipe->buffers);
1632 if (spd.nr_pages <= 0)
1633 ret = spd.nr_pages;
1634 else
1635 ret = splice_to_pipe(pipe, &spd);
1636
1637 splice_shrink_spd(pipe, &spd);
1638 return ret;
1639}
1640
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 * - memcpy() the data internally, at which point we might as well just
1650 * do a regular read() on the buffer anyway.
1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 * has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 unsigned long, nr_segs, unsigned int, flags)
1659{
1660 struct file *file;
1661 long error;
1662 int fput;
1663
1664 if (unlikely(nr_segs > UIO_MAXIOV))
1665 return -EINVAL;
1666 else if (unlikely(!nr_segs))
1667 return 0;
1668
1669 error = -EBADF;
1670 file = fget_light(fd, &fput);
1671 if (file) {
1672 if (file->f_mode & FMODE_WRITE)
1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 else if (file->f_mode & FMODE_READ)
1675 error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677 fput_light(file, fput);
1678 }
1679
1680 return error;
1681}
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 int, fd_out, loff_t __user *, off_out,
1685 size_t, len, unsigned int, flags)
1686{
1687 long error;
1688 struct file *in, *out;
1689 int fput_in, fput_out;
1690
1691 if (unlikely(!len))
1692 return 0;
1693
1694 error = -EBADF;
1695 in = fget_light(fd_in, &fput_in);
1696 if (in) {
1697 if (in->f_mode & FMODE_READ) {
1698 out = fget_light(fd_out, &fput_out);
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_splice(in, off_in,
1702 out, off_out,
1703 len, flags);
1704 fput_light(out, fput_out);
1705 }
1706 }
1707
1708 fput_light(in, fput_in);
1709 }
1710
1711 return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720 int ret;
1721
1722 /*
1723 * Check ->nrbufs without the inode lock first. This function
1724 * is speculative anyways, so missing one is ok.
1725 */
1726 if (pipe->nrbufs)
1727 return 0;
1728
1729 ret = 0;
1730 pipe_lock(pipe);
1731
1732 while (!pipe->nrbufs) {
1733 if (signal_pending(current)) {
1734 ret = -ERESTARTSYS;
1735 break;
1736 }
1737 if (!pipe->writers)
1738 break;
1739 if (!pipe->waiting_writers) {
1740 if (flags & SPLICE_F_NONBLOCK) {
1741 ret = -EAGAIN;
1742 break;
1743 }
1744 }
1745 pipe_wait(pipe);
1746 }
1747
1748 pipe_unlock(pipe);
1749 return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758 int ret;
1759
1760 /*
1761 * Check ->nrbufs without the inode lock first. This function
1762 * is speculative anyways, so missing one is ok.
1763 */
1764 if (pipe->nrbufs < pipe->buffers)
1765 return 0;
1766
1767 ret = 0;
1768 pipe_lock(pipe);
1769
1770 while (pipe->nrbufs >= pipe->buffers) {
1771 if (!pipe->readers) {
1772 send_sig(SIGPIPE, current, 0);
1773 ret = -EPIPE;
1774 break;
1775 }
1776 if (flags & SPLICE_F_NONBLOCK) {
1777 ret = -EAGAIN;
1778 break;
1779 }
1780 if (signal_pending(current)) {
1781 ret = -ERESTARTSYS;
1782 break;
1783 }
1784 pipe->waiting_writers++;
1785 pipe_wait(pipe);
1786 pipe->waiting_writers--;
1787 }
1788
1789 pipe_unlock(pipe);
1790 return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 struct pipe_inode_info *opipe,
1798 size_t len, unsigned int flags)
1799{
1800 struct pipe_buffer *ibuf, *obuf;
1801 int ret = 0, nbuf;
1802 bool input_wakeup = false;
1803
1804
1805retry:
1806 ret = ipipe_prep(ipipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 ret = opipe_prep(opipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 /*
1815 * Potential ABBA deadlock, work around it by ordering lock
1816 * grabbing by pipe info address. Otherwise two different processes
1817 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 */
1819 pipe_double_lock(ipipe, opipe);
1820
1821 do {
1822 if (!opipe->readers) {
1823 send_sig(SIGPIPE, current, 0);
1824 if (!ret)
1825 ret = -EPIPE;
1826 break;
1827 }
1828
1829 if (!ipipe->nrbufs && !ipipe->writers)
1830 break;
1831
1832 /*
1833 * Cannot make any progress, because either the input
1834 * pipe is empty or the output pipe is full.
1835 */
1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 /* Already processed some buffers, break */
1838 if (ret)
1839 break;
1840
1841 if (flags & SPLICE_F_NONBLOCK) {
1842 ret = -EAGAIN;
1843 break;
1844 }
1845
1846 /*
1847 * We raced with another reader/writer and haven't
1848 * managed to process any buffers. A zero return
1849 * value means EOF, so retry instead.
1850 */
1851 pipe_unlock(ipipe);
1852 pipe_unlock(opipe);
1853 goto retry;
1854 }
1855
1856 ibuf = ipipe->bufs + ipipe->curbuf;
1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 obuf = opipe->bufs + nbuf;
1859
1860 if (len >= ibuf->len) {
1861 /*
1862 * Simply move the whole buffer from ipipe to opipe
1863 */
1864 *obuf = *ibuf;
1865 ibuf->ops = NULL;
1866 opipe->nrbufs++;
1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 ipipe->nrbufs--;
1869 input_wakeup = true;
1870 } else {
1871 /*
1872 * Get a reference to this pipe buffer,
1873 * so we can copy the contents over.
1874 */
1875 ibuf->ops->get(ipipe, ibuf);
1876 *obuf = *ibuf;
1877
1878 /*
1879 * Don't inherit the gift flag, we need to
1880 * prevent multiple steals of this page.
1881 */
1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884 obuf->len = len;
1885 opipe->nrbufs++;
1886 ibuf->offset += obuf->len;
1887 ibuf->len -= obuf->len;
1888 }
1889 ret += obuf->len;
1890 len -= obuf->len;
1891 } while (len);
1892
1893 pipe_unlock(ipipe);
1894 pipe_unlock(opipe);
1895
1896 /*
1897 * If we put data in the output pipe, wakeup any potential readers.
1898 */
1899 if (ret > 0)
1900 wakeup_pipe_readers(opipe);
1901
1902 if (input_wakeup)
1903 wakeup_pipe_writers(ipipe);
1904
1905 return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912 struct pipe_inode_info *opipe,
1913 size_t len, unsigned int flags)
1914{
1915 struct pipe_buffer *ibuf, *obuf;
1916 int ret = 0, i = 0, nbuf;
1917
1918 /*
1919 * Potential ABBA deadlock, work around it by ordering lock
1920 * grabbing by pipe info address. Otherwise two different processes
1921 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 */
1923 pipe_double_lock(ipipe, opipe);
1924
1925 do {
1926 if (!opipe->readers) {
1927 send_sig(SIGPIPE, current, 0);
1928 if (!ret)
1929 ret = -EPIPE;
1930 break;
1931 }
1932
1933 /*
1934 * If we have iterated all input buffers or ran out of
1935 * output room, break.
1936 */
1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 break;
1939
1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943 /*
1944 * Get a reference to this pipe buffer,
1945 * so we can copy the contents over.
1946 */
1947 ibuf->ops->get(ipipe, ibuf);
1948
1949 obuf = opipe->bufs + nbuf;
1950 *obuf = *ibuf;
1951
1952 /*
1953 * Don't inherit the gift flag, we need to
1954 * prevent multiple steals of this page.
1955 */
1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958 if (obuf->len > len)
1959 obuf->len = len;
1960
1961 opipe->nrbufs++;
1962 ret += obuf->len;
1963 len -= obuf->len;
1964 i++;
1965 } while (len);
1966
1967 /*
1968 * return EAGAIN if we have the potential of some data in the
1969 * future, otherwise just return 0
1970 */
1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 ret = -EAGAIN;
1973
1974 pipe_unlock(ipipe);
1975 pipe_unlock(opipe);
1976
1977 /*
1978 * If we put data in the output pipe, wakeup any potential readers.
1979 */
1980 if (ret > 0)
1981 wakeup_pipe_readers(opipe);
1982
1983 return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993 unsigned int flags)
1994{
1995 struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 struct pipe_inode_info *opipe = get_pipe_info(out);
1997 int ret = -EINVAL;
1998
1999 /*
2000 * Duplicate the contents of ipipe to opipe without actually
2001 * copying the data.
2002 */
2003 if (ipipe && opipe && ipipe != opipe) {
2004 /*
2005 * Keep going, unless we encounter an error. The ipipe/opipe
2006 * ordering doesn't really matter.
2007 */
2008 ret = ipipe_prep(ipipe, flags);
2009 if (!ret) {
2010 ret = opipe_prep(opipe, flags);
2011 if (!ret)
2012 ret = link_pipe(ipipe, opipe, len, flags);
2013 }
2014 }
2015
2016 return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021 struct file *in;
2022 int error, fput_in;
2023
2024 if (unlikely(!len))
2025 return 0;
2026
2027 error = -EBADF;
2028 in = fget_light(fdin, &fput_in);
2029 if (in) {
2030 if (in->f_mode & FMODE_READ) {
2031 int fput_out;
2032 struct file *out = fget_light(fdout, &fput_out);
2033
2034 if (out) {
2035 if (out->f_mode & FMODE_WRITE)
2036 error = do_tee(in, out, len, flags);
2037 fput_light(out, fput_out);
2038 }
2039 }
2040 fput_light(in, fput_in);
2041 }
2042
2043 return error;
2044}