Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/fsnotify.h>
34#include <linux/security.h>
35#include <linux/gfp.h>
36#include <linux/net.h>
37#include <linux/socket.h>
38#include <linux/sched/signal.h>
39
40#include "internal.h"
41
42/*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
48static noinline void noinline pipe_clear_nowait(struct file *file)
49{
50 fmode_t fmode = READ_ONCE(file->f_mode);
51
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56}
57
58/*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
64static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
66{
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
69
70 folio_lock(folio);
71
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
75
76 /*
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
83 */
84 folio_wait_writeback(folio);
85
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
88
89 /*
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
92 */
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
96 }
97 }
98
99 /*
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
102 */
103out_unlock:
104 folio_unlock(folio);
105 return false;
106}
107
108static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
110{
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
113}
114
115/*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
119static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
121{
122 struct folio *folio = page_folio(buf->page);
123 int err;
124
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
127
128 /*
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
131 */
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
135 }
136
137 /*
138 * Uh oh, read-error from disk.
139 */
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
143 }
144
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
147 }
148
149 return 0;
150error:
151 folio_unlock(folio);
152 return err;
153}
154
155const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
160};
161
162static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
164{
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
167
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
170}
171
172static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
176};
177
178static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179{
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184}
185
186/**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
190 *
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
195 *
196 */
197ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
199{
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 unsigned int mask = pipe->ring_size - 1;
204 ssize_t ret = 0;
205 int page_nr = 0;
206
207 if (!spd_pages)
208 return 0;
209
210 if (unlikely(!pipe->readers)) {
211 send_sig(SIGPIPE, current, 0);
212 ret = -EPIPE;
213 goto out;
214 }
215
216 while (!pipe_full(head, tail, pipe->max_usage)) {
217 struct pipe_buffer *buf = &pipe->bufs[head & mask];
218
219 buf->page = spd->pages[page_nr];
220 buf->offset = spd->partial[page_nr].offset;
221 buf->len = spd->partial[page_nr].len;
222 buf->private = spd->partial[page_nr].private;
223 buf->ops = spd->ops;
224 buf->flags = 0;
225
226 head++;
227 pipe->head = head;
228 page_nr++;
229 ret += buf->len;
230
231 if (!--spd->nr_pages)
232 break;
233 }
234
235 if (!ret)
236 ret = -EAGAIN;
237
238out:
239 while (page_nr < spd_pages)
240 spd->spd_release(spd, page_nr++);
241
242 return ret;
243}
244EXPORT_SYMBOL_GPL(splice_to_pipe);
245
246ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247{
248 unsigned int head = pipe->head;
249 unsigned int tail = pipe->tail;
250 unsigned int mask = pipe->ring_size - 1;
251 int ret;
252
253 if (unlikely(!pipe->readers)) {
254 send_sig(SIGPIPE, current, 0);
255 ret = -EPIPE;
256 } else if (pipe_full(head, tail, pipe->max_usage)) {
257 ret = -EAGAIN;
258 } else {
259 pipe->bufs[head & mask] = *buf;
260 pipe->head = head + 1;
261 return buf->len;
262 }
263 pipe_buf_release(pipe, buf);
264 return ret;
265}
266EXPORT_SYMBOL(add_to_pipe);
267
268/*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273{
274 unsigned int max_usage = READ_ONCE(pipe->max_usage);
275
276 spd->nr_pages_max = max_usage;
277 if (max_usage <= PIPE_DEF_BUFFERS)
278 return 0;
279
280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct splice_pipe_desc *spd)
293{
294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 return;
296
297 kfree(spd->pages);
298 kfree(spd->partial);
299}
300
301/**
302 * copy_splice_read - Copy data from a file and splice the copy into a pipe
303 * @in: The file to read from
304 * @ppos: Pointer to the file position to read from
305 * @pipe: The pipe to splice into
306 * @len: The amount to splice
307 * @flags: The SPLICE_F_* flags
308 *
309 * This function allocates a bunch of pages sufficient to hold the requested
310 * amount of data (but limited by the remaining pipe capacity), passes it to
311 * the file's ->read_iter() to read into and then splices the used pages into
312 * the pipe.
313 *
314 * Return: On success, the number of bytes read will be returned and *@ppos
315 * will be updated if appropriate; 0 will be returned if there is no more data
316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
317 * other negative error code will be returned on error. A short read may occur
318 * if the pipe has insufficient space, we reach the end of the data or we hit a
319 * hole.
320 */
321ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t len, unsigned int flags)
324{
325 struct iov_iter to;
326 struct bio_vec *bv;
327 struct kiocb kiocb;
328 struct page **pages;
329 ssize_t ret;
330 size_t used, npages, chunk, remain, keep = 0;
331 int i;
332
333 /* Work out how much data we can actually add into the pipe */
334 used = pipe_occupancy(pipe->head, pipe->tail);
335 npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 len = min_t(size_t, len, npages * PAGE_SIZE);
337 npages = DIV_ROUND_UP(len, PAGE_SIZE);
338
339 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 if (!bv)
342 return -ENOMEM;
343
344 pages = (struct page **)(bv + npages);
345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 if (!npages) {
347 kfree(bv);
348 return -ENOMEM;
349 }
350
351 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352
353 for (i = 0; i < npages; i++) {
354 chunk = min_t(size_t, PAGE_SIZE, remain);
355 bv[i].bv_page = pages[i];
356 bv[i].bv_offset = 0;
357 bv[i].bv_len = chunk;
358 remain -= chunk;
359 }
360
361 /* Do the I/O */
362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 init_sync_kiocb(&kiocb, in);
364 kiocb.ki_pos = *ppos;
365 ret = in->f_op->read_iter(&kiocb, &to);
366
367 if (ret > 0) {
368 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 *ppos = kiocb.ki_pos;
370 }
371
372 /*
373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 * there", rather than -EFAULT.
375 */
376 if (ret == -EFAULT)
377 ret = -EAGAIN;
378
379 /* Free any pages that didn't get touched at all. */
380 if (keep < npages)
381 release_pages(pages + keep, npages - keep);
382
383 /* Push the remaining pages into the pipe. */
384 remain = ret;
385 for (i = 0; i < keep; i++) {
386 struct pipe_buffer *buf = pipe_head_buf(pipe);
387
388 chunk = min_t(size_t, remain, PAGE_SIZE);
389 *buf = (struct pipe_buffer) {
390 .ops = &default_pipe_buf_ops,
391 .page = bv[i].bv_page,
392 .offset = 0,
393 .len = chunk,
394 };
395 pipe->head++;
396 remain -= chunk;
397 }
398
399 kfree(bv);
400 return ret;
401}
402EXPORT_SYMBOL(copy_splice_read);
403
404const struct pipe_buf_operations default_pipe_buf_ops = {
405 .release = generic_pipe_buf_release,
406 .try_steal = generic_pipe_buf_try_steal,
407 .get = generic_pipe_buf_get,
408};
409
410/* Pipe buffer operations for a socket and similar. */
411const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 .release = generic_pipe_buf_release,
413 .get = generic_pipe_buf_get,
414};
415EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416
417static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418{
419 smp_mb();
420 if (waitqueue_active(&pipe->wr_wait))
421 wake_up_interruptible(&pipe->wr_wait);
422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423}
424
425/**
426 * splice_from_pipe_feed - feed available data from a pipe to a file
427 * @pipe: pipe to splice from
428 * @sd: information to @actor
429 * @actor: handler that splices the data
430 *
431 * Description:
432 * This function loops over the pipe and calls @actor to do the
433 * actual moving of a single struct pipe_buffer to the desired
434 * destination. It returns when there's no more buffers left in
435 * the pipe or if the requested number of bytes (@sd->total_len)
436 * have been copied. It returns a positive number (one) if the
437 * pipe needs to be filled with more data, zero if the required
438 * number of bytes have been copied and -errno on error.
439 *
440 * This, together with splice_from_pipe_{begin,end,next}, may be
441 * used to implement the functionality of __splice_from_pipe() when
442 * locking is required around copying the pipe buffers to the
443 * destination.
444 */
445static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 splice_actor *actor)
447{
448 unsigned int head = pipe->head;
449 unsigned int tail = pipe->tail;
450 unsigned int mask = pipe->ring_size - 1;
451 int ret;
452
453 while (!pipe_empty(head, tail)) {
454 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455
456 sd->len = buf->len;
457 if (sd->len > sd->total_len)
458 sd->len = sd->total_len;
459
460 ret = pipe_buf_confirm(pipe, buf);
461 if (unlikely(ret)) {
462 if (ret == -ENODATA)
463 ret = 0;
464 return ret;
465 }
466
467 ret = actor(pipe, buf, sd);
468 if (ret <= 0)
469 return ret;
470
471 buf->offset += ret;
472 buf->len -= ret;
473
474 sd->num_spliced += ret;
475 sd->len -= ret;
476 sd->pos += ret;
477 sd->total_len -= ret;
478
479 if (!buf->len) {
480 pipe_buf_release(pipe, buf);
481 tail++;
482 pipe->tail = tail;
483 if (pipe->files)
484 sd->need_wakeup = true;
485 }
486
487 if (!sd->total_len)
488 return 0;
489 }
490
491 return 1;
492}
493
494/* We know we have a pipe buffer, but maybe it's empty? */
495static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496{
497 unsigned int tail = pipe->tail;
498 unsigned int mask = pipe->ring_size - 1;
499 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501 if (unlikely(!buf->len)) {
502 pipe_buf_release(pipe, buf);
503 pipe->tail = tail+1;
504 return true;
505 }
506
507 return false;
508}
509
510/**
511 * splice_from_pipe_next - wait for some data to splice from
512 * @pipe: pipe to splice from
513 * @sd: information about the splice operation
514 *
515 * Description:
516 * This function will wait for some data and return a positive
517 * value (one) if pipe buffers are available. It will return zero
518 * or -errno if no more data needs to be spliced.
519 */
520static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521{
522 /*
523 * Check for signal early to make process killable when there are
524 * always buffers available
525 */
526 if (signal_pending(current))
527 return -ERESTARTSYS;
528
529repeat:
530 while (pipe_empty(pipe->head, pipe->tail)) {
531 if (!pipe->writers)
532 return 0;
533
534 if (sd->num_spliced)
535 return 0;
536
537 if (sd->flags & SPLICE_F_NONBLOCK)
538 return -EAGAIN;
539
540 if (signal_pending(current))
541 return -ERESTARTSYS;
542
543 if (sd->need_wakeup) {
544 wakeup_pipe_writers(pipe);
545 sd->need_wakeup = false;
546 }
547
548 pipe_wait_readable(pipe);
549 }
550
551 if (eat_empty_buffer(pipe))
552 goto repeat;
553
554 return 1;
555}
556
557/**
558 * splice_from_pipe_begin - start splicing from pipe
559 * @sd: information about the splice operation
560 *
561 * Description:
562 * This function should be called before a loop containing
563 * splice_from_pipe_next() and splice_from_pipe_feed() to
564 * initialize the necessary fields of @sd.
565 */
566static void splice_from_pipe_begin(struct splice_desc *sd)
567{
568 sd->num_spliced = 0;
569 sd->need_wakeup = false;
570}
571
572/**
573 * splice_from_pipe_end - finish splicing from pipe
574 * @pipe: pipe to splice from
575 * @sd: information about the splice operation
576 *
577 * Description:
578 * This function will wake up pipe writers if necessary. It should
579 * be called after a loop containing splice_from_pipe_next() and
580 * splice_from_pipe_feed().
581 */
582static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583{
584 if (sd->need_wakeup)
585 wakeup_pipe_writers(pipe);
586}
587
588/**
589 * __splice_from_pipe - splice data from a pipe to given actor
590 * @pipe: pipe to splice from
591 * @sd: information to @actor
592 * @actor: handler that splices the data
593 *
594 * Description:
595 * This function does little more than loop over the pipe and call
596 * @actor to do the actual moving of a single struct pipe_buffer to
597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598 * pipe_to_user.
599 *
600 */
601ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 splice_actor *actor)
603{
604 int ret;
605
606 splice_from_pipe_begin(sd);
607 do {
608 cond_resched();
609 ret = splice_from_pipe_next(pipe, sd);
610 if (ret > 0)
611 ret = splice_from_pipe_feed(pipe, sd, actor);
612 } while (ret > 0);
613 splice_from_pipe_end(pipe, sd);
614
615 return sd->num_spliced ? sd->num_spliced : ret;
616}
617EXPORT_SYMBOL(__splice_from_pipe);
618
619/**
620 * splice_from_pipe - splice data from a pipe to a file
621 * @pipe: pipe to splice from
622 * @out: file to splice to
623 * @ppos: position in @out
624 * @len: how many bytes to splice
625 * @flags: splice modifier flags
626 * @actor: handler that splices the data
627 *
628 * Description:
629 * See __splice_from_pipe. This function locks the pipe inode,
630 * otherwise it's identical to __splice_from_pipe().
631 *
632 */
633ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 loff_t *ppos, size_t len, unsigned int flags,
635 splice_actor *actor)
636{
637 ssize_t ret;
638 struct splice_desc sd = {
639 .total_len = len,
640 .flags = flags,
641 .pos = *ppos,
642 .u.file = out,
643 };
644
645 pipe_lock(pipe);
646 ret = __splice_from_pipe(pipe, &sd, actor);
647 pipe_unlock(pipe);
648
649 return ret;
650}
651
652/**
653 * iter_file_splice_write - splice data from a pipe to a file
654 * @pipe: pipe info
655 * @out: file to write to
656 * @ppos: position in @out
657 * @len: number of bytes to splice
658 * @flags: splice modifier flags
659 *
660 * Description:
661 * Will either move or copy pages (determined by @flags options) from
662 * the given pipe inode to the given file.
663 * This one is ->write_iter-based.
664 *
665 */
666ssize_t
667iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 loff_t *ppos, size_t len, unsigned int flags)
669{
670 struct splice_desc sd = {
671 .total_len = len,
672 .flags = flags,
673 .pos = *ppos,
674 .u.file = out,
675 };
676 int nbufs = pipe->max_usage;
677 struct bio_vec *array;
678 ssize_t ret;
679
680 if (!out->f_op->write_iter)
681 return -EINVAL;
682
683 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684 if (unlikely(!array))
685 return -ENOMEM;
686
687 pipe_lock(pipe);
688
689 splice_from_pipe_begin(&sd);
690 while (sd.total_len) {
691 struct kiocb kiocb;
692 struct iov_iter from;
693 unsigned int head, tail, mask;
694 size_t left;
695 int n;
696
697 ret = splice_from_pipe_next(pipe, &sd);
698 if (ret <= 0)
699 break;
700
701 if (unlikely(nbufs < pipe->max_usage)) {
702 kfree(array);
703 nbufs = pipe->max_usage;
704 array = kcalloc(nbufs, sizeof(struct bio_vec),
705 GFP_KERNEL);
706 if (!array) {
707 ret = -ENOMEM;
708 break;
709 }
710 }
711
712 head = pipe->head;
713 tail = pipe->tail;
714 mask = pipe->ring_size - 1;
715
716 /* build the vector */
717 left = sd.total_len;
718 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720 size_t this_len = buf->len;
721
722 /* zero-length bvecs are not supported, skip them */
723 if (!this_len)
724 continue;
725 this_len = min(this_len, left);
726
727 ret = pipe_buf_confirm(pipe, buf);
728 if (unlikely(ret)) {
729 if (ret == -ENODATA)
730 ret = 0;
731 goto done;
732 }
733
734 bvec_set_page(&array[n], buf->page, this_len,
735 buf->offset);
736 left -= this_len;
737 n++;
738 }
739
740 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741 init_sync_kiocb(&kiocb, out);
742 kiocb.ki_pos = sd.pos;
743 ret = out->f_op->write_iter(&kiocb, &from);
744 sd.pos = kiocb.ki_pos;
745 if (ret <= 0)
746 break;
747
748 sd.num_spliced += ret;
749 sd.total_len -= ret;
750 *ppos = sd.pos;
751
752 /* dismiss the fully eaten buffers, adjust the partial one */
753 tail = pipe->tail;
754 while (ret) {
755 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756 if (ret >= buf->len) {
757 ret -= buf->len;
758 buf->len = 0;
759 pipe_buf_release(pipe, buf);
760 tail++;
761 pipe->tail = tail;
762 if (pipe->files)
763 sd.need_wakeup = true;
764 } else {
765 buf->offset += ret;
766 buf->len -= ret;
767 ret = 0;
768 }
769 }
770 }
771done:
772 kfree(array);
773 splice_from_pipe_end(pipe, &sd);
774
775 pipe_unlock(pipe);
776
777 if (sd.num_spliced)
778 ret = sd.num_spliced;
779
780 return ret;
781}
782
783EXPORT_SYMBOL(iter_file_splice_write);
784
785#ifdef CONFIG_NET
786/**
787 * splice_to_socket - splice data from a pipe to a socket
788 * @pipe: pipe to splice from
789 * @out: socket to write to
790 * @ppos: position in @out
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will send @len bytes from the pipe to a network socket. No data copying
796 * is involved.
797 *
798 */
799ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800 loff_t *ppos, size_t len, unsigned int flags)
801{
802 struct socket *sock = sock_from_file(out);
803 struct bio_vec bvec[16];
804 struct msghdr msg = {};
805 ssize_t ret = 0;
806 size_t spliced = 0;
807 bool need_wakeup = false;
808
809 pipe_lock(pipe);
810
811 while (len > 0) {
812 unsigned int head, tail, mask, bc = 0;
813 size_t remain = len;
814
815 /*
816 * Check for signal early to make process killable when there
817 * are always buffers available
818 */
819 ret = -ERESTARTSYS;
820 if (signal_pending(current))
821 break;
822
823 while (pipe_empty(pipe->head, pipe->tail)) {
824 ret = 0;
825 if (!pipe->writers)
826 goto out;
827
828 if (spliced)
829 goto out;
830
831 ret = -EAGAIN;
832 if (flags & SPLICE_F_NONBLOCK)
833 goto out;
834
835 ret = -ERESTARTSYS;
836 if (signal_pending(current))
837 goto out;
838
839 if (need_wakeup) {
840 wakeup_pipe_writers(pipe);
841 need_wakeup = false;
842 }
843
844 pipe_wait_readable(pipe);
845 }
846
847 head = pipe->head;
848 tail = pipe->tail;
849 mask = pipe->ring_size - 1;
850
851 while (!pipe_empty(head, tail)) {
852 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853 size_t seg;
854
855 if (!buf->len) {
856 tail++;
857 continue;
858 }
859
860 seg = min_t(size_t, remain, buf->len);
861
862 ret = pipe_buf_confirm(pipe, buf);
863 if (unlikely(ret)) {
864 if (ret == -ENODATA)
865 ret = 0;
866 break;
867 }
868
869 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870 remain -= seg;
871 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872 break;
873 tail++;
874 }
875
876 if (!bc)
877 break;
878
879 msg.msg_flags = MSG_SPLICE_PAGES;
880 if (flags & SPLICE_F_MORE)
881 msg.msg_flags |= MSG_MORE;
882 if (remain && pipe_occupancy(pipe->head, tail) > 0)
883 msg.msg_flags |= MSG_MORE;
884 if (out->f_flags & O_NONBLOCK)
885 msg.msg_flags |= MSG_DONTWAIT;
886
887 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888 len - remain);
889 ret = sock_sendmsg(sock, &msg);
890 if (ret <= 0)
891 break;
892
893 spliced += ret;
894 len -= ret;
895 tail = pipe->tail;
896 while (ret > 0) {
897 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898 size_t seg = min_t(size_t, ret, buf->len);
899
900 buf->offset += seg;
901 buf->len -= seg;
902 ret -= seg;
903
904 if (!buf->len) {
905 pipe_buf_release(pipe, buf);
906 tail++;
907 }
908 }
909
910 if (tail != pipe->tail) {
911 pipe->tail = tail;
912 if (pipe->files)
913 need_wakeup = true;
914 }
915 }
916
917out:
918 pipe_unlock(pipe);
919 if (need_wakeup)
920 wakeup_pipe_writers(pipe);
921 return spliced ?: ret;
922}
923#endif
924
925static int warn_unsupported(struct file *file, const char *op)
926{
927 pr_debug_ratelimited(
928 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929 op, file, current->pid, current->comm);
930 return -EINVAL;
931}
932
933/*
934 * Attempt to initiate a splice from pipe to file.
935 */
936static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937 loff_t *ppos, size_t len, unsigned int flags)
938{
939 if (unlikely(!out->f_op->splice_write))
940 return warn_unsupported(out, "write");
941 return out->f_op->splice_write(pipe, out, ppos, len, flags);
942}
943
944/*
945 * Indicate to the caller that there was a premature EOF when reading from the
946 * source and the caller didn't indicate they would be sending more data after
947 * this.
948 */
949static void do_splice_eof(struct splice_desc *sd)
950{
951 if (sd->splice_eof)
952 sd->splice_eof(sd);
953}
954
955/*
956 * Callers already called rw_verify_area() on the entire range.
957 * No need to call it for sub ranges.
958 */
959static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960 struct pipe_inode_info *pipe, size_t len,
961 unsigned int flags)
962{
963 unsigned int p_space;
964
965 if (unlikely(!(in->f_mode & FMODE_READ)))
966 return -EBADF;
967 if (!len)
968 return 0;
969
970 /* Don't try to read more the pipe has space for. */
971 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972 len = min_t(size_t, len, p_space << PAGE_SHIFT);
973
974 if (unlikely(len > MAX_RW_COUNT))
975 len = MAX_RW_COUNT;
976
977 if (unlikely(!in->f_op->splice_read))
978 return warn_unsupported(in, "read");
979 /*
980 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981 * buffer, copy into it and splice that into the pipe.
982 */
983 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984 return copy_splice_read(in, ppos, pipe, len, flags);
985 return in->f_op->splice_read(in, ppos, pipe, len, flags);
986}
987
988/**
989 * vfs_splice_read - Read data from a file and splice it into a pipe
990 * @in: File to splice from
991 * @ppos: Input file offset
992 * @pipe: Pipe to splice to
993 * @len: Number of bytes to splice
994 * @flags: Splice modifier flags (SPLICE_F_*)
995 *
996 * Splice the requested amount of data from the input file to the pipe. This
997 * is synchronous as the caller must hold the pipe lock across the entire
998 * operation.
999 *
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1002 */
1003ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004 struct pipe_inode_info *pipe, size_t len,
1005 unsigned int flags)
1006{
1007 ssize_t ret;
1008
1009 ret = rw_verify_area(READ, in, ppos, len);
1010 if (unlikely(ret < 0))
1011 return ret;
1012
1013 return do_splice_read(in, ppos, pipe, len, flags);
1014}
1015EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017/**
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in: file to splice from
1020 * @sd: actor information on where to splice to
1021 * @actor: handles the data splicing
1022 *
1023 * Description:
1024 * This is a special case helper to splice directly between two
1025 * points, without requiring an explicit pipe. Internally an allocated
1026 * pipe is cached in the process, and reused during the lifetime of
1027 * that process.
1028 *
1029 */
1030ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031 splice_direct_actor *actor)
1032{
1033 struct pipe_inode_info *pipe;
1034 ssize_t ret, bytes;
1035 size_t len;
1036 int i, flags, more;
1037
1038 /*
1039 * We require the input to be seekable, as we don't want to randomly
1040 * drop data for eg socket -> socket splicing. Use the piped splicing
1041 * for that!
1042 */
1043 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044 return -EINVAL;
1045
1046 /*
1047 * neither in nor out is a pipe, setup an internal pipe attached to
1048 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049 */
1050 pipe = current->splice_pipe;
1051 if (unlikely(!pipe)) {
1052 pipe = alloc_pipe_info();
1053 if (!pipe)
1054 return -ENOMEM;
1055
1056 /*
1057 * We don't have an immediate reader, but we'll read the stuff
1058 * out of the pipe right after the splice_to_pipe(). So set
1059 * PIPE_READERS appropriately.
1060 */
1061 pipe->readers = 1;
1062
1063 current->splice_pipe = pipe;
1064 }
1065
1066 /*
1067 * Do the splice.
1068 */
1069 bytes = 0;
1070 len = sd->total_len;
1071
1072 /* Don't block on output, we have to drain the direct pipe. */
1073 flags = sd->flags;
1074 sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076 /*
1077 * We signal MORE until we've read sufficient data to fulfill the
1078 * request and we keep signalling it if the caller set it.
1079 */
1080 more = sd->flags & SPLICE_F_MORE;
1081 sd->flags |= SPLICE_F_MORE;
1082
1083 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085 while (len) {
1086 size_t read_len;
1087 loff_t pos = sd->pos, prev_pos = pos;
1088
1089 ret = do_splice_read(in, &pos, pipe, len, flags);
1090 if (unlikely(ret <= 0))
1091 goto read_failure;
1092
1093 read_len = ret;
1094 sd->total_len = read_len;
1095
1096 /*
1097 * If we now have sufficient data to fulfill the request then
1098 * we clear SPLICE_F_MORE if it was not set initially.
1099 */
1100 if (read_len >= len && !more)
1101 sd->flags &= ~SPLICE_F_MORE;
1102
1103 /*
1104 * NOTE: nonblocking mode only applies to the input. We
1105 * must not do the output in nonblocking mode as then we
1106 * could get stuck data in the internal pipe:
1107 */
1108 ret = actor(pipe, sd);
1109 if (unlikely(ret <= 0)) {
1110 sd->pos = prev_pos;
1111 goto out_release;
1112 }
1113
1114 bytes += ret;
1115 len -= ret;
1116 sd->pos = pos;
1117
1118 if (ret < read_len) {
1119 sd->pos = prev_pos + ret;
1120 goto out_release;
1121 }
1122 }
1123
1124done:
1125 pipe->tail = pipe->head = 0;
1126 file_accessed(in);
1127 return bytes;
1128
1129read_failure:
1130 /*
1131 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134 * least 1 byte *then* we will also do the ->splice_eof() call.
1135 */
1136 if (ret == 0 && !more && len > 0 && bytes)
1137 do_splice_eof(sd);
1138out_release:
1139 /*
1140 * If we did an incomplete transfer we must release
1141 * the pipe buffers in question:
1142 */
1143 for (i = 0; i < pipe->ring_size; i++) {
1144 struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146 if (buf->ops)
1147 pipe_buf_release(pipe, buf);
1148 }
1149
1150 if (!bytes)
1151 bytes = ret;
1152
1153 goto done;
1154}
1155EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157static int direct_splice_actor(struct pipe_inode_info *pipe,
1158 struct splice_desc *sd)
1159{
1160 struct file *file = sd->u.file;
1161 long ret;
1162
1163 file_start_write(file);
1164 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165 file_end_write(file);
1166 return ret;
1167}
1168
1169static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170 struct splice_desc *sd)
1171{
1172 struct file *file = sd->u.file;
1173
1174 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175}
1176
1177static void direct_file_splice_eof(struct splice_desc *sd)
1178{
1179 struct file *file = sd->u.file;
1180
1181 if (file->f_op->splice_eof)
1182 file->f_op->splice_eof(file);
1183}
1184
1185static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186 struct file *out, loff_t *opos,
1187 size_t len, unsigned int flags,
1188 splice_direct_actor *actor)
1189{
1190 struct splice_desc sd = {
1191 .len = len,
1192 .total_len = len,
1193 .flags = flags,
1194 .pos = *ppos,
1195 .u.file = out,
1196 .splice_eof = direct_file_splice_eof,
1197 .opos = opos,
1198 };
1199 ssize_t ret;
1200
1201 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202 return -EBADF;
1203
1204 if (unlikely(out->f_flags & O_APPEND))
1205 return -EINVAL;
1206
1207 ret = splice_direct_to_actor(in, &sd, actor);
1208 if (ret > 0)
1209 *ppos = sd.pos;
1210
1211 return ret;
1212}
1213/**
1214 * do_splice_direct - splices data directly between two files
1215 * @in: file to splice from
1216 * @ppos: input file offset
1217 * @out: file to splice to
1218 * @opos: output file offset
1219 * @len: number of bytes to splice
1220 * @flags: splice modifier flags
1221 *
1222 * Description:
1223 * For use by do_sendfile(). splice can easily emulate sendfile, but
1224 * doing it in the application would incur an extra system call
1225 * (splice in + splice out, as compared to just sendfile()). So this helper
1226 * can splice directly through a process-private pipe.
1227 *
1228 * Callers already called rw_verify_area() on the entire range.
1229 */
1230ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231 loff_t *opos, size_t len, unsigned int flags)
1232{
1233 return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234 direct_splice_actor);
1235}
1236EXPORT_SYMBOL(do_splice_direct);
1237
1238/**
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in: file to splice from
1241 * @ppos: input file offset
1242 * @out: file to splice to
1243 * @opos: output file offset
1244 * @len: number of bytes to splice
1245 *
1246 * Description:
1247 * For use by ->copy_file_range() methods.
1248 * Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 * start_file_write() on @out file.
1250 *
1251 * Callers already called rw_verify_area() on the entire range.
1252 */
1253ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254 loff_t *opos, size_t len)
1255{
1256 lockdep_assert(file_write_started(out));
1257
1258 return do_splice_direct_actor(in, ppos, out, opos,
1259 min_t(size_t, len, MAX_RW_COUNT),
1260 0, splice_file_range_actor);
1261}
1262EXPORT_SYMBOL(splice_file_range);
1263
1264static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265{
1266 for (;;) {
1267 if (unlikely(!pipe->readers)) {
1268 send_sig(SIGPIPE, current, 0);
1269 return -EPIPE;
1270 }
1271 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272 return 0;
1273 if (flags & SPLICE_F_NONBLOCK)
1274 return -EAGAIN;
1275 if (signal_pending(current))
1276 return -ERESTARTSYS;
1277 pipe_wait_writable(pipe);
1278 }
1279}
1280
1281static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282 struct pipe_inode_info *opipe,
1283 size_t len, unsigned int flags);
1284
1285ssize_t splice_file_to_pipe(struct file *in,
1286 struct pipe_inode_info *opipe,
1287 loff_t *offset,
1288 size_t len, unsigned int flags)
1289{
1290 ssize_t ret;
1291
1292 pipe_lock(opipe);
1293 ret = wait_for_space(opipe, flags);
1294 if (!ret)
1295 ret = do_splice_read(in, offset, opipe, len, flags);
1296 pipe_unlock(opipe);
1297 if (ret > 0)
1298 wakeup_pipe_readers(opipe);
1299 return ret;
1300}
1301
1302/*
1303 * Determine where to splice to/from.
1304 */
1305ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306 loff_t *off_out, size_t len, unsigned int flags)
1307{
1308 struct pipe_inode_info *ipipe;
1309 struct pipe_inode_info *opipe;
1310 loff_t offset;
1311 ssize_t ret;
1312
1313 if (unlikely(!(in->f_mode & FMODE_READ) ||
1314 !(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1316
1317 ipipe = get_pipe_info(in, true);
1318 opipe = get_pipe_info(out, true);
1319
1320 if (ipipe && opipe) {
1321 if (off_in || off_out)
1322 return -ESPIPE;
1323
1324 /* Splicing to self would be fun, but... */
1325 if (ipipe == opipe)
1326 return -EINVAL;
1327
1328 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329 flags |= SPLICE_F_NONBLOCK;
1330
1331 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332 } else if (ipipe) {
1333 if (off_in)
1334 return -ESPIPE;
1335 if (off_out) {
1336 if (!(out->f_mode & FMODE_PWRITE))
1337 return -EINVAL;
1338 offset = *off_out;
1339 } else {
1340 offset = out->f_pos;
1341 }
1342
1343 if (unlikely(out->f_flags & O_APPEND))
1344 return -EINVAL;
1345
1346 ret = rw_verify_area(WRITE, out, &offset, len);
1347 if (unlikely(ret < 0))
1348 return ret;
1349
1350 if (in->f_flags & O_NONBLOCK)
1351 flags |= SPLICE_F_NONBLOCK;
1352
1353 file_start_write(out);
1354 ret = do_splice_from(ipipe, out, &offset, len, flags);
1355 file_end_write(out);
1356
1357 if (!off_out)
1358 out->f_pos = offset;
1359 else
1360 *off_out = offset;
1361 } else if (opipe) {
1362 if (off_out)
1363 return -ESPIPE;
1364 if (off_in) {
1365 if (!(in->f_mode & FMODE_PREAD))
1366 return -EINVAL;
1367 offset = *off_in;
1368 } else {
1369 offset = in->f_pos;
1370 }
1371
1372 ret = rw_verify_area(READ, in, &offset, len);
1373 if (unlikely(ret < 0))
1374 return ret;
1375
1376 if (out->f_flags & O_NONBLOCK)
1377 flags |= SPLICE_F_NONBLOCK;
1378
1379 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381 if (!off_in)
1382 in->f_pos = offset;
1383 else
1384 *off_in = offset;
1385 } else {
1386 ret = -EINVAL;
1387 }
1388
1389 if (ret > 0) {
1390 /*
1391 * Generate modify out before access in:
1392 * do_splice_from() may've already sent modify out,
1393 * and this ensures the events get merged.
1394 */
1395 fsnotify_modify(out);
1396 fsnotify_access(in);
1397 }
1398
1399 return ret;
1400}
1401
1402static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403 struct file *out, loff_t __user *off_out,
1404 size_t len, unsigned int flags)
1405{
1406 struct pipe_inode_info *ipipe;
1407 struct pipe_inode_info *opipe;
1408 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409 ssize_t ret;
1410
1411 ipipe = get_pipe_info(in, true);
1412 opipe = get_pipe_info(out, true);
1413
1414 if (ipipe) {
1415 if (off_in)
1416 return -ESPIPE;
1417 pipe_clear_nowait(in);
1418 }
1419 if (opipe) {
1420 if (off_out)
1421 return -ESPIPE;
1422 pipe_clear_nowait(out);
1423 }
1424
1425 if (off_out) {
1426 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427 return -EFAULT;
1428 __off_out = &offset;
1429 }
1430 if (off_in) {
1431 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432 return -EFAULT;
1433 __off_in = &offset;
1434 }
1435
1436 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437 if (ret < 0)
1438 return ret;
1439
1440 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441 return -EFAULT;
1442 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443 return -EFAULT;
1444
1445 return ret;
1446}
1447
1448static ssize_t iter_to_pipe(struct iov_iter *from,
1449 struct pipe_inode_info *pipe,
1450 unsigned int flags)
1451{
1452 struct pipe_buffer buf = {
1453 .ops = &user_page_pipe_buf_ops,
1454 .flags = flags
1455 };
1456 size_t total = 0;
1457 ssize_t ret = 0;
1458
1459 while (iov_iter_count(from)) {
1460 struct page *pages[16];
1461 ssize_t left;
1462 size_t start;
1463 int i, n;
1464
1465 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466 if (left <= 0) {
1467 ret = left;
1468 break;
1469 }
1470
1471 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472 for (i = 0; i < n; i++) {
1473 int size = min_t(int, left, PAGE_SIZE - start);
1474
1475 buf.page = pages[i];
1476 buf.offset = start;
1477 buf.len = size;
1478 ret = add_to_pipe(pipe, &buf);
1479 if (unlikely(ret < 0)) {
1480 iov_iter_revert(from, left);
1481 // this one got dropped by add_to_pipe()
1482 while (++i < n)
1483 put_page(pages[i]);
1484 goto out;
1485 }
1486 total += ret;
1487 left -= size;
1488 start = 0;
1489 }
1490 }
1491out:
1492 return total ? total : ret;
1493}
1494
1495static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 struct splice_desc *sd)
1497{
1498 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499 return n == sd->len ? n : -EFAULT;
1500}
1501
1502/*
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1505 */
1506static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507 unsigned int flags)
1508{
1509 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510 struct splice_desc sd = {
1511 .total_len = iov_iter_count(iter),
1512 .flags = flags,
1513 .u.data = iter
1514 };
1515 ssize_t ret = 0;
1516
1517 if (!pipe)
1518 return -EBADF;
1519
1520 pipe_clear_nowait(file);
1521
1522 if (sd.total_len) {
1523 pipe_lock(pipe);
1524 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525 pipe_unlock(pipe);
1526 }
1527
1528 if (ret > 0)
1529 fsnotify_access(file);
1530
1531 return ret;
1532}
1533
1534/*
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1538 */
1539static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540 unsigned int flags)
1541{
1542 struct pipe_inode_info *pipe;
1543 ssize_t ret = 0;
1544 unsigned buf_flag = 0;
1545
1546 if (flags & SPLICE_F_GIFT)
1547 buf_flag = PIPE_BUF_FLAG_GIFT;
1548
1549 pipe = get_pipe_info(file, true);
1550 if (!pipe)
1551 return -EBADF;
1552
1553 pipe_clear_nowait(file);
1554
1555 pipe_lock(pipe);
1556 ret = wait_for_space(pipe, flags);
1557 if (!ret)
1558 ret = iter_to_pipe(iter, pipe, buf_flag);
1559 pipe_unlock(pipe);
1560 if (ret > 0) {
1561 wakeup_pipe_readers(pipe);
1562 fsnotify_modify(file);
1563 }
1564 return ret;
1565}
1566
1567/*
1568 * Note that vmsplice only really supports true splicing _from_ user memory
1569 * to a pipe, not the other way around. Splicing from user memory is a simple
1570 * operation that can be supported without any funky alignment restrictions
1571 * or nasty vm tricks. We simply map in the user memory and fill them into
1572 * a pipe. The reverse isn't quite as easy, though. There are two possible
1573 * solutions for that:
1574 *
1575 * - memcpy() the data internally, at which point we might as well just
1576 * do a regular read() on the buffer anyway.
1577 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1578 * has restriction limitations on both ends of the pipe).
1579 *
1580 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1581 *
1582 */
1583SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1584 unsigned long, nr_segs, unsigned int, flags)
1585{
1586 struct iovec iovstack[UIO_FASTIOV];
1587 struct iovec *iov = iovstack;
1588 struct iov_iter iter;
1589 ssize_t error;
1590 int type;
1591
1592 if (unlikely(flags & ~SPLICE_F_ALL))
1593 return -EINVAL;
1594
1595 CLASS(fd, f)(fd);
1596 if (fd_empty(f))
1597 return -EBADF;
1598 if (fd_file(f)->f_mode & FMODE_WRITE)
1599 type = ITER_SOURCE;
1600 else if (fd_file(f)->f_mode & FMODE_READ)
1601 type = ITER_DEST;
1602 else
1603 return -EBADF;
1604
1605 error = import_iovec(type, uiov, nr_segs,
1606 ARRAY_SIZE(iovstack), &iov, &iter);
1607 if (error < 0)
1608 return error;
1609
1610 if (!iov_iter_count(&iter))
1611 error = 0;
1612 else if (type == ITER_SOURCE)
1613 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1614 else
1615 error = vmsplice_to_user(fd_file(f), &iter, flags);
1616
1617 kfree(iov);
1618 return error;
1619}
1620
1621SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1622 int, fd_out, loff_t __user *, off_out,
1623 size_t, len, unsigned int, flags)
1624{
1625 if (unlikely(!len))
1626 return 0;
1627
1628 if (unlikely(flags & ~SPLICE_F_ALL))
1629 return -EINVAL;
1630
1631 CLASS(fd, in)(fd_in);
1632 if (fd_empty(in))
1633 return -EBADF;
1634
1635 CLASS(fd, out)(fd_out);
1636 if (fd_empty(out))
1637 return -EBADF;
1638
1639 return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1640 len, flags);
1641}
1642
1643/*
1644 * Make sure there's data to read. Wait for input if we can, otherwise
1645 * return an appropriate error.
1646 */
1647static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1648{
1649 int ret;
1650
1651 /*
1652 * Check the pipe occupancy without the inode lock first. This function
1653 * is speculative anyways, so missing one is ok.
1654 */
1655 if (!pipe_empty(pipe->head, pipe->tail))
1656 return 0;
1657
1658 ret = 0;
1659 pipe_lock(pipe);
1660
1661 while (pipe_empty(pipe->head, pipe->tail)) {
1662 if (signal_pending(current)) {
1663 ret = -ERESTARTSYS;
1664 break;
1665 }
1666 if (!pipe->writers)
1667 break;
1668 if (flags & SPLICE_F_NONBLOCK) {
1669 ret = -EAGAIN;
1670 break;
1671 }
1672 pipe_wait_readable(pipe);
1673 }
1674
1675 pipe_unlock(pipe);
1676 return ret;
1677}
1678
1679/*
1680 * Make sure there's writeable room. Wait for room if we can, otherwise
1681 * return an appropriate error.
1682 */
1683static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1684{
1685 int ret;
1686
1687 /*
1688 * Check pipe occupancy without the inode lock first. This function
1689 * is speculative anyways, so missing one is ok.
1690 */
1691 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1692 return 0;
1693
1694 ret = 0;
1695 pipe_lock(pipe);
1696
1697 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1698 if (!pipe->readers) {
1699 send_sig(SIGPIPE, current, 0);
1700 ret = -EPIPE;
1701 break;
1702 }
1703 if (flags & SPLICE_F_NONBLOCK) {
1704 ret = -EAGAIN;
1705 break;
1706 }
1707 if (signal_pending(current)) {
1708 ret = -ERESTARTSYS;
1709 break;
1710 }
1711 pipe_wait_writable(pipe);
1712 }
1713
1714 pipe_unlock(pipe);
1715 return ret;
1716}
1717
1718/*
1719 * Splice contents of ipipe to opipe.
1720 */
1721static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1722 struct pipe_inode_info *opipe,
1723 size_t len, unsigned int flags)
1724{
1725 struct pipe_buffer *ibuf, *obuf;
1726 unsigned int i_head, o_head;
1727 unsigned int i_tail, o_tail;
1728 unsigned int i_mask, o_mask;
1729 int ret = 0;
1730 bool input_wakeup = false;
1731
1732
1733retry:
1734 ret = ipipe_prep(ipipe, flags);
1735 if (ret)
1736 return ret;
1737
1738 ret = opipe_prep(opipe, flags);
1739 if (ret)
1740 return ret;
1741
1742 /*
1743 * Potential ABBA deadlock, work around it by ordering lock
1744 * grabbing by pipe info address. Otherwise two different processes
1745 * could deadlock (one doing tee from A -> B, the other from B -> A).
1746 */
1747 pipe_double_lock(ipipe, opipe);
1748
1749 i_tail = ipipe->tail;
1750 i_mask = ipipe->ring_size - 1;
1751 o_head = opipe->head;
1752 o_mask = opipe->ring_size - 1;
1753
1754 do {
1755 size_t o_len;
1756
1757 if (!opipe->readers) {
1758 send_sig(SIGPIPE, current, 0);
1759 if (!ret)
1760 ret = -EPIPE;
1761 break;
1762 }
1763
1764 i_head = ipipe->head;
1765 o_tail = opipe->tail;
1766
1767 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1768 break;
1769
1770 /*
1771 * Cannot make any progress, because either the input
1772 * pipe is empty or the output pipe is full.
1773 */
1774 if (pipe_empty(i_head, i_tail) ||
1775 pipe_full(o_head, o_tail, opipe->max_usage)) {
1776 /* Already processed some buffers, break */
1777 if (ret)
1778 break;
1779
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784
1785 /*
1786 * We raced with another reader/writer and haven't
1787 * managed to process any buffers. A zero return
1788 * value means EOF, so retry instead.
1789 */
1790 pipe_unlock(ipipe);
1791 pipe_unlock(opipe);
1792 goto retry;
1793 }
1794
1795 ibuf = &ipipe->bufs[i_tail & i_mask];
1796 obuf = &opipe->bufs[o_head & o_mask];
1797
1798 if (len >= ibuf->len) {
1799 /*
1800 * Simply move the whole buffer from ipipe to opipe
1801 */
1802 *obuf = *ibuf;
1803 ibuf->ops = NULL;
1804 i_tail++;
1805 ipipe->tail = i_tail;
1806 input_wakeup = true;
1807 o_len = obuf->len;
1808 o_head++;
1809 opipe->head = o_head;
1810 } else {
1811 /*
1812 * Get a reference to this pipe buffer,
1813 * so we can copy the contents over.
1814 */
1815 if (!pipe_buf_get(ipipe, ibuf)) {
1816 if (ret == 0)
1817 ret = -EFAULT;
1818 break;
1819 }
1820 *obuf = *ibuf;
1821
1822 /*
1823 * Don't inherit the gift and merge flags, we need to
1824 * prevent multiple steals of this page.
1825 */
1826 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1827 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1828
1829 obuf->len = len;
1830 ibuf->offset += len;
1831 ibuf->len -= len;
1832 o_len = len;
1833 o_head++;
1834 opipe->head = o_head;
1835 }
1836 ret += o_len;
1837 len -= o_len;
1838 } while (len);
1839
1840 pipe_unlock(ipipe);
1841 pipe_unlock(opipe);
1842
1843 /*
1844 * If we put data in the output pipe, wakeup any potential readers.
1845 */
1846 if (ret > 0)
1847 wakeup_pipe_readers(opipe);
1848
1849 if (input_wakeup)
1850 wakeup_pipe_writers(ipipe);
1851
1852 return ret;
1853}
1854
1855/*
1856 * Link contents of ipipe to opipe.
1857 */
1858static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1859 struct pipe_inode_info *opipe,
1860 size_t len, unsigned int flags)
1861{
1862 struct pipe_buffer *ibuf, *obuf;
1863 unsigned int i_head, o_head;
1864 unsigned int i_tail, o_tail;
1865 unsigned int i_mask, o_mask;
1866 ssize_t ret = 0;
1867
1868 /*
1869 * Potential ABBA deadlock, work around it by ordering lock
1870 * grabbing by pipe info address. Otherwise two different processes
1871 * could deadlock (one doing tee from A -> B, the other from B -> A).
1872 */
1873 pipe_double_lock(ipipe, opipe);
1874
1875 i_tail = ipipe->tail;
1876 i_mask = ipipe->ring_size - 1;
1877 o_head = opipe->head;
1878 o_mask = opipe->ring_size - 1;
1879
1880 do {
1881 if (!opipe->readers) {
1882 send_sig(SIGPIPE, current, 0);
1883 if (!ret)
1884 ret = -EPIPE;
1885 break;
1886 }
1887
1888 i_head = ipipe->head;
1889 o_tail = opipe->tail;
1890
1891 /*
1892 * If we have iterated all input buffers or run out of
1893 * output room, break.
1894 */
1895 if (pipe_empty(i_head, i_tail) ||
1896 pipe_full(o_head, o_tail, opipe->max_usage))
1897 break;
1898
1899 ibuf = &ipipe->bufs[i_tail & i_mask];
1900 obuf = &opipe->bufs[o_head & o_mask];
1901
1902 /*
1903 * Get a reference to this pipe buffer,
1904 * so we can copy the contents over.
1905 */
1906 if (!pipe_buf_get(ipipe, ibuf)) {
1907 if (ret == 0)
1908 ret = -EFAULT;
1909 break;
1910 }
1911
1912 *obuf = *ibuf;
1913
1914 /*
1915 * Don't inherit the gift and merge flag, we need to prevent
1916 * multiple steals of this page.
1917 */
1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1919 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1920
1921 if (obuf->len > len)
1922 obuf->len = len;
1923 ret += obuf->len;
1924 len -= obuf->len;
1925
1926 o_head++;
1927 opipe->head = o_head;
1928 i_tail++;
1929 } while (len);
1930
1931 pipe_unlock(ipipe);
1932 pipe_unlock(opipe);
1933
1934 /*
1935 * If we put data in the output pipe, wakeup any potential readers.
1936 */
1937 if (ret > 0)
1938 wakeup_pipe_readers(opipe);
1939
1940 return ret;
1941}
1942
1943/*
1944 * This is a tee(1) implementation that works on pipes. It doesn't copy
1945 * any data, it simply references the 'in' pages on the 'out' pipe.
1946 * The 'flags' used are the SPLICE_F_* variants, currently the only
1947 * applicable one is SPLICE_F_NONBLOCK.
1948 */
1949ssize_t do_tee(struct file *in, struct file *out, size_t len,
1950 unsigned int flags)
1951{
1952 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1953 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1954 ssize_t ret = -EINVAL;
1955
1956 if (unlikely(!(in->f_mode & FMODE_READ) ||
1957 !(out->f_mode & FMODE_WRITE)))
1958 return -EBADF;
1959
1960 /*
1961 * Duplicate the contents of ipipe to opipe without actually
1962 * copying the data.
1963 */
1964 if (ipipe && opipe && ipipe != opipe) {
1965 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1966 flags |= SPLICE_F_NONBLOCK;
1967
1968 /*
1969 * Keep going, unless we encounter an error. The ipipe/opipe
1970 * ordering doesn't really matter.
1971 */
1972 ret = ipipe_prep(ipipe, flags);
1973 if (!ret) {
1974 ret = opipe_prep(opipe, flags);
1975 if (!ret)
1976 ret = link_pipe(ipipe, opipe, len, flags);
1977 }
1978 }
1979
1980 if (ret > 0) {
1981 fsnotify_access(in);
1982 fsnotify_modify(out);
1983 }
1984
1985 return ret;
1986}
1987
1988SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1989{
1990 if (unlikely(flags & ~SPLICE_F_ALL))
1991 return -EINVAL;
1992
1993 if (unlikely(!len))
1994 return 0;
1995
1996 CLASS(fd, in)(fdin);
1997 if (fd_empty(in))
1998 return -EBADF;
1999
2000 CLASS(fd, out)(fdout);
2001 if (fd_empty(out))
2002 return -EBADF;
2003
2004 return do_tee(fd_file(in), fd_file(out), len, flags);
2005}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
191
192 pipe_lock(pipe);
193
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
200 }
201
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
217
218 if (pipe->files)
219 do_wakeup = 1;
220
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
225
226 break;
227 }
228
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
233 }
234
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
239 }
240
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
247 }
248
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
252 }
253
254 pipe_unlock(pipe);
255
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263}
264
265void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266{
267 page_cache_release(spd->pages[i]);
268}
269
270/*
271 * Check if we need to grow the arrays holding pages and partial page
272 * descriptions.
273 */
274int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275{
276 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277
278 spd->nr_pages_max = buffers;
279 if (buffers <= PIPE_DEF_BUFFERS)
280 return 0;
281
282 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284
285 if (spd->pages && spd->partial)
286 return 0;
287
288 kfree(spd->pages);
289 kfree(spd->partial);
290 return -ENOMEM;
291}
292
293void splice_shrink_spd(struct splice_pipe_desc *spd)
294{
295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300}
301
302static int
303__generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306{
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .nr_pages_max = PIPE_DEF_BUFFERS,
319 .flags = flags,
320 .ops = &page_cache_pipe_buf_ops,
321 .spd_release = spd_release_page,
322 };
323
324 if (splice_grow_spd(pipe, &spd))
325 return -ENOMEM;
326
327 index = *ppos >> PAGE_CACHE_SHIFT;
328 loff = *ppos & ~PAGE_CACHE_MASK;
329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 nr_pages = min(req_pages, spd.nr_pages_max);
331
332 /*
333 * Lookup the (hopefully) full range of pages we need.
334 */
335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 index += spd.nr_pages;
337
338 /*
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
341 */
342 if (spd.nr_pages < nr_pages)
343 page_cache_sync_readahead(mapping, &in->f_ra, in,
344 index, req_pages - spd.nr_pages);
345
346 error = 0;
347 while (spd.nr_pages < nr_pages) {
348 /*
349 * Page could be there, find_get_pages_contig() breaks on
350 * the first hole.
351 */
352 page = find_get_page(mapping, index);
353 if (!page) {
354 /*
355 * page didn't exist, allocate one.
356 */
357 page = page_cache_alloc_cold(mapping);
358 if (!page)
359 break;
360
361 error = add_to_page_cache_lru(page, mapping, index,
362 GFP_KERNEL);
363 if (unlikely(error)) {
364 page_cache_release(page);
365 if (error == -EEXIST)
366 continue;
367 break;
368 }
369 /*
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
372 */
373 unlock_page(page);
374 }
375
376 spd.pages[spd.nr_pages++] = page;
377 index++;
378 }
379
380 /*
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
383 */
384 index = *ppos >> PAGE_CACHE_SHIFT;
385 nr_pages = spd.nr_pages;
386 spd.nr_pages = 0;
387 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 unsigned int this_len;
389
390 if (!len)
391 break;
392
393 /*
394 * this_len is the max we'll use from this page
395 */
396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 page = spd.pages[page_nr];
398
399 if (PageReadahead(page))
400 page_cache_async_readahead(mapping, &in->f_ra, in,
401 page, index, req_pages - page_nr);
402
403 /*
404 * If the page isn't uptodate, we may need to start io on it
405 */
406 if (!PageUptodate(page)) {
407 lock_page(page);
408
409 /*
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
414 */
415 if (!page->mapping) {
416 unlock_page(page);
417 page = find_or_create_page(mapping, index,
418 mapping_gfp_mask(mapping));
419
420 if (!page) {
421 error = -ENOMEM;
422 break;
423 }
424 page_cache_release(spd.pages[page_nr]);
425 spd.pages[page_nr] = page;
426 }
427 /*
428 * page was already under io and is now done, great
429 */
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 goto fill_it;
433 }
434
435 /*
436 * need to read in the page
437 */
438 error = mapping->a_ops->readpage(in, page);
439 if (unlikely(error)) {
440 /*
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
445 */
446 if (error == AOP_TRUNCATED_PAGE)
447 error = 0;
448
449 break;
450 }
451 }
452fill_it:
453 /*
454 * i_size must be checked after PageUptodate.
455 */
456 isize = i_size_read(mapping->host);
457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 if (unlikely(!isize || index > end_index))
459 break;
460
461 /*
462 * if this is the last page, see if we need to shrink
463 * the length and stop
464 */
465 if (end_index == index) {
466 unsigned int plen;
467
468 /*
469 * max good bytes in this page
470 */
471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 if (plen <= loff)
473 break;
474
475 /*
476 * force quit after adding this page
477 */
478 this_len = min(this_len, plen - loff);
479 len = this_len;
480 }
481
482 spd.partial[page_nr].offset = loff;
483 spd.partial[page_nr].len = this_len;
484 len -= this_len;
485 loff = 0;
486 spd.nr_pages++;
487 index++;
488 }
489
490 /*
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
493 */
494 while (page_nr < nr_pages)
495 page_cache_release(spd.pages[page_nr++]);
496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497
498 if (spd.nr_pages)
499 error = splice_to_pipe(pipe, &spd);
500
501 splice_shrink_spd(&spd);
502 return error;
503}
504
505/**
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
512 *
513 * Description:
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
516 * a readpage() hook.
517 *
518 */
519ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 struct pipe_inode_info *pipe, size_t len,
521 unsigned int flags)
522{
523 loff_t isize, left;
524 int ret;
525
526 isize = i_size_read(in->f_mapping->host);
527 if (unlikely(*ppos >= isize))
528 return 0;
529
530 left = isize - *ppos;
531 if (unlikely(left < len))
532 len = left;
533
534 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535 if (ret > 0) {
536 *ppos += ret;
537 file_accessed(in);
538 }
539
540 return ret;
541}
542EXPORT_SYMBOL(generic_file_splice_read);
543
544static const struct pipe_buf_operations default_pipe_buf_ops = {
545 .can_merge = 0,
546 .confirm = generic_pipe_buf_confirm,
547 .release = generic_pipe_buf_release,
548 .steal = generic_pipe_buf_steal,
549 .get = generic_pipe_buf_get,
550};
551
552static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
553 struct pipe_buffer *buf)
554{
555 return 1;
556}
557
558/* Pipe buffer operations for a socket and similar. */
559const struct pipe_buf_operations nosteal_pipe_buf_ops = {
560 .can_merge = 0,
561 .confirm = generic_pipe_buf_confirm,
562 .release = generic_pipe_buf_release,
563 .steal = generic_pipe_buf_nosteal,
564 .get = generic_pipe_buf_get,
565};
566EXPORT_SYMBOL(nosteal_pipe_buf_ops);
567
568static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
569 unsigned long vlen, loff_t offset)
570{
571 mm_segment_t old_fs;
572 loff_t pos = offset;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
579 set_fs(old_fs);
580
581 return res;
582}
583
584ssize_t kernel_write(struct file *file, const char *buf, size_t count,
585 loff_t pos)
586{
587 mm_segment_t old_fs;
588 ssize_t res;
589
590 old_fs = get_fs();
591 set_fs(get_ds());
592 /* The cast to a user pointer is valid due to the set_fs() */
593 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
594 set_fs(old_fs);
595
596 return res;
597}
598EXPORT_SYMBOL(kernel_write);
599
600ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
601 struct pipe_inode_info *pipe, size_t len,
602 unsigned int flags)
603{
604 unsigned int nr_pages;
605 unsigned int nr_freed;
606 size_t offset;
607 struct page *pages[PIPE_DEF_BUFFERS];
608 struct partial_page partial[PIPE_DEF_BUFFERS];
609 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
610 ssize_t res;
611 size_t this_len;
612 int error;
613 int i;
614 struct splice_pipe_desc spd = {
615 .pages = pages,
616 .partial = partial,
617 .nr_pages_max = PIPE_DEF_BUFFERS,
618 .flags = flags,
619 .ops = &default_pipe_buf_ops,
620 .spd_release = spd_release_page,
621 };
622
623 if (splice_grow_spd(pipe, &spd))
624 return -ENOMEM;
625
626 res = -ENOMEM;
627 vec = __vec;
628 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
629 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
630 if (!vec)
631 goto shrink_ret;
632 }
633
634 offset = *ppos & ~PAGE_CACHE_MASK;
635 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
636
637 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
638 struct page *page;
639
640 page = alloc_page(GFP_USER);
641 error = -ENOMEM;
642 if (!page)
643 goto err;
644
645 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
646 vec[i].iov_base = (void __user *) page_address(page);
647 vec[i].iov_len = this_len;
648 spd.pages[i] = page;
649 spd.nr_pages++;
650 len -= this_len;
651 offset = 0;
652 }
653
654 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655 if (res < 0) {
656 error = res;
657 goto err;
658 }
659
660 error = 0;
661 if (!res)
662 goto err;
663
664 nr_freed = 0;
665 for (i = 0; i < spd.nr_pages; i++) {
666 this_len = min_t(size_t, vec[i].iov_len, res);
667 spd.partial[i].offset = 0;
668 spd.partial[i].len = this_len;
669 if (!this_len) {
670 __free_page(spd.pages[i]);
671 spd.pages[i] = NULL;
672 nr_freed++;
673 }
674 res -= this_len;
675 }
676 spd.nr_pages -= nr_freed;
677
678 res = splice_to_pipe(pipe, &spd);
679 if (res > 0)
680 *ppos += res;
681
682shrink_ret:
683 if (vec != __vec)
684 kfree(vec);
685 splice_shrink_spd(&spd);
686 return res;
687
688err:
689 for (i = 0; i < spd.nr_pages; i++)
690 __free_page(spd.pages[i]);
691
692 res = error;
693 goto shrink_ret;
694}
695EXPORT_SYMBOL(default_file_splice_read);
696
697/*
698 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
699 * using sendpage(). Return the number of bytes sent.
700 */
701static int pipe_to_sendpage(struct pipe_inode_info *pipe,
702 struct pipe_buffer *buf, struct splice_desc *sd)
703{
704 struct file *file = sd->u.file;
705 loff_t pos = sd->pos;
706 int more;
707
708 if (!likely(file->f_op->sendpage))
709 return -EINVAL;
710
711 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
712
713 if (sd->len < sd->total_len && pipe->nrbufs > 1)
714 more |= MSG_SENDPAGE_NOTLAST;
715
716 return file->f_op->sendpage(file, buf->page, buf->offset,
717 sd->len, &pos, more);
718}
719
720/*
721 * This is a little more tricky than the file -> pipe splicing. There are
722 * basically three cases:
723 *
724 * - Destination page already exists in the address space and there
725 * are users of it. For that case we have no other option that
726 * copying the data. Tough luck.
727 * - Destination page already exists in the address space, but there
728 * are no users of it. Make sure it's uptodate, then drop it. Fall
729 * through to last case.
730 * - Destination page does not exist, we can add the pipe page to
731 * the page cache and avoid the copy.
732 *
733 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
734 * sd->flags), we attempt to migrate pages from the pipe to the output
735 * file address space page cache. This is possible if no one else has
736 * the pipe page referenced outside of the pipe and page cache. If
737 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
738 * a new page in the output file page cache and fill/dirty that.
739 */
740int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
741 struct splice_desc *sd)
742{
743 struct file *file = sd->u.file;
744 struct address_space *mapping = file->f_mapping;
745 unsigned int offset, this_len;
746 struct page *page;
747 void *fsdata;
748 int ret;
749
750 offset = sd->pos & ~PAGE_CACHE_MASK;
751
752 this_len = sd->len;
753 if (this_len + offset > PAGE_CACHE_SIZE)
754 this_len = PAGE_CACHE_SIZE - offset;
755
756 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
757 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
758 if (unlikely(ret))
759 goto out;
760
761 if (buf->page != page) {
762 char *src = kmap_atomic(buf->page);
763 char *dst = kmap_atomic(page);
764
765 memcpy(dst + offset, src + buf->offset, this_len);
766 flush_dcache_page(page);
767 kunmap_atomic(dst);
768 kunmap_atomic(src);
769 }
770 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
771 page, fsdata);
772out:
773 return ret;
774}
775EXPORT_SYMBOL(pipe_to_file);
776
777static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
778{
779 smp_mb();
780 if (waitqueue_active(&pipe->wait))
781 wake_up_interruptible(&pipe->wait);
782 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
783}
784
785/**
786 * splice_from_pipe_feed - feed available data from a pipe to a file
787 * @pipe: pipe to splice from
788 * @sd: information to @actor
789 * @actor: handler that splices the data
790 *
791 * Description:
792 * This function loops over the pipe and calls @actor to do the
793 * actual moving of a single struct pipe_buffer to the desired
794 * destination. It returns when there's no more buffers left in
795 * the pipe or if the requested number of bytes (@sd->total_len)
796 * have been copied. It returns a positive number (one) if the
797 * pipe needs to be filled with more data, zero if the required
798 * number of bytes have been copied and -errno on error.
799 *
800 * This, together with splice_from_pipe_{begin,end,next}, may be
801 * used to implement the functionality of __splice_from_pipe() when
802 * locking is required around copying the pipe buffers to the
803 * destination.
804 */
805int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
806 splice_actor *actor)
807{
808 int ret;
809
810 while (pipe->nrbufs) {
811 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
812 const struct pipe_buf_operations *ops = buf->ops;
813
814 sd->len = buf->len;
815 if (sd->len > sd->total_len)
816 sd->len = sd->total_len;
817
818 ret = buf->ops->confirm(pipe, buf);
819 if (unlikely(ret)) {
820 if (ret == -ENODATA)
821 ret = 0;
822 return ret;
823 }
824
825 ret = actor(pipe, buf, sd);
826 if (ret <= 0)
827 return ret;
828
829 buf->offset += ret;
830 buf->len -= ret;
831
832 sd->num_spliced += ret;
833 sd->len -= ret;
834 sd->pos += ret;
835 sd->total_len -= ret;
836
837 if (!buf->len) {
838 buf->ops = NULL;
839 ops->release(pipe, buf);
840 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
841 pipe->nrbufs--;
842 if (pipe->files)
843 sd->need_wakeup = true;
844 }
845
846 if (!sd->total_len)
847 return 0;
848 }
849
850 return 1;
851}
852EXPORT_SYMBOL(splice_from_pipe_feed);
853
854/**
855 * splice_from_pipe_next - wait for some data to splice from
856 * @pipe: pipe to splice from
857 * @sd: information about the splice operation
858 *
859 * Description:
860 * This function will wait for some data and return a positive
861 * value (one) if pipe buffers are available. It will return zero
862 * or -errno if no more data needs to be spliced.
863 */
864int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
865{
866 while (!pipe->nrbufs) {
867 if (!pipe->writers)
868 return 0;
869
870 if (!pipe->waiting_writers && sd->num_spliced)
871 return 0;
872
873 if (sd->flags & SPLICE_F_NONBLOCK)
874 return -EAGAIN;
875
876 if (signal_pending(current))
877 return -ERESTARTSYS;
878
879 if (sd->need_wakeup) {
880 wakeup_pipe_writers(pipe);
881 sd->need_wakeup = false;
882 }
883
884 pipe_wait(pipe);
885 }
886
887 return 1;
888}
889EXPORT_SYMBOL(splice_from_pipe_next);
890
891/**
892 * splice_from_pipe_begin - start splicing from pipe
893 * @sd: information about the splice operation
894 *
895 * Description:
896 * This function should be called before a loop containing
897 * splice_from_pipe_next() and splice_from_pipe_feed() to
898 * initialize the necessary fields of @sd.
899 */
900void splice_from_pipe_begin(struct splice_desc *sd)
901{
902 sd->num_spliced = 0;
903 sd->need_wakeup = false;
904}
905EXPORT_SYMBOL(splice_from_pipe_begin);
906
907/**
908 * splice_from_pipe_end - finish splicing from pipe
909 * @pipe: pipe to splice from
910 * @sd: information about the splice operation
911 *
912 * Description:
913 * This function will wake up pipe writers if necessary. It should
914 * be called after a loop containing splice_from_pipe_next() and
915 * splice_from_pipe_feed().
916 */
917void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
918{
919 if (sd->need_wakeup)
920 wakeup_pipe_writers(pipe);
921}
922EXPORT_SYMBOL(splice_from_pipe_end);
923
924/**
925 * __splice_from_pipe - splice data from a pipe to given actor
926 * @pipe: pipe to splice from
927 * @sd: information to @actor
928 * @actor: handler that splices the data
929 *
930 * Description:
931 * This function does little more than loop over the pipe and call
932 * @actor to do the actual moving of a single struct pipe_buffer to
933 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
934 * pipe_to_user.
935 *
936 */
937ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
938 splice_actor *actor)
939{
940 int ret;
941
942 splice_from_pipe_begin(sd);
943 do {
944 ret = splice_from_pipe_next(pipe, sd);
945 if (ret > 0)
946 ret = splice_from_pipe_feed(pipe, sd, actor);
947 } while (ret > 0);
948 splice_from_pipe_end(pipe, sd);
949
950 return sd->num_spliced ? sd->num_spliced : ret;
951}
952EXPORT_SYMBOL(__splice_from_pipe);
953
954/**
955 * splice_from_pipe - splice data from a pipe to a file
956 * @pipe: pipe to splice from
957 * @out: file to splice to
958 * @ppos: position in @out
959 * @len: how many bytes to splice
960 * @flags: splice modifier flags
961 * @actor: handler that splices the data
962 *
963 * Description:
964 * See __splice_from_pipe. This function locks the pipe inode,
965 * otherwise it's identical to __splice_from_pipe().
966 *
967 */
968ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
969 loff_t *ppos, size_t len, unsigned int flags,
970 splice_actor *actor)
971{
972 ssize_t ret;
973 struct splice_desc sd = {
974 .total_len = len,
975 .flags = flags,
976 .pos = *ppos,
977 .u.file = out,
978 };
979
980 pipe_lock(pipe);
981 ret = __splice_from_pipe(pipe, &sd, actor);
982 pipe_unlock(pipe);
983
984 return ret;
985}
986
987/**
988 * generic_file_splice_write - splice data from a pipe to a file
989 * @pipe: pipe info
990 * @out: file to write to
991 * @ppos: position in @out
992 * @len: number of bytes to splice
993 * @flags: splice modifier flags
994 *
995 * Description:
996 * Will either move or copy pages (determined by @flags options) from
997 * the given pipe inode to the given file.
998 *
999 */
1000ssize_t
1001generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1002 loff_t *ppos, size_t len, unsigned int flags)
1003{
1004 struct address_space *mapping = out->f_mapping;
1005 struct inode *inode = mapping->host;
1006 struct splice_desc sd = {
1007 .total_len = len,
1008 .flags = flags,
1009 .pos = *ppos,
1010 .u.file = out,
1011 };
1012 ssize_t ret;
1013
1014 pipe_lock(pipe);
1015
1016 splice_from_pipe_begin(&sd);
1017 do {
1018 ret = splice_from_pipe_next(pipe, &sd);
1019 if (ret <= 0)
1020 break;
1021
1022 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1023 ret = file_remove_suid(out);
1024 if (!ret) {
1025 ret = file_update_time(out);
1026 if (!ret)
1027 ret = splice_from_pipe_feed(pipe, &sd,
1028 pipe_to_file);
1029 }
1030 mutex_unlock(&inode->i_mutex);
1031 } while (ret > 0);
1032 splice_from_pipe_end(pipe, &sd);
1033
1034 pipe_unlock(pipe);
1035
1036 if (sd.num_spliced)
1037 ret = sd.num_spliced;
1038
1039 if (ret > 0) {
1040 int err;
1041
1042 err = generic_write_sync(out, *ppos, ret);
1043 if (err)
1044 ret = err;
1045 else
1046 *ppos += ret;
1047 balance_dirty_pages_ratelimited(mapping);
1048 }
1049
1050 return ret;
1051}
1052
1053EXPORT_SYMBOL(generic_file_splice_write);
1054
1055static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1056 struct splice_desc *sd)
1057{
1058 int ret;
1059 void *data;
1060 loff_t tmp = sd->pos;
1061
1062 data = kmap(buf->page);
1063 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1064 kunmap(buf->page);
1065
1066 return ret;
1067}
1068
1069static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1070 struct file *out, loff_t *ppos,
1071 size_t len, unsigned int flags)
1072{
1073 ssize_t ret;
1074
1075 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1076 if (ret > 0)
1077 *ppos += ret;
1078
1079 return ret;
1080}
1081
1082/**
1083 * generic_splice_sendpage - splice data from a pipe to a socket
1084 * @pipe: pipe to splice from
1085 * @out: socket to write to
1086 * @ppos: position in @out
1087 * @len: number of bytes to splice
1088 * @flags: splice modifier flags
1089 *
1090 * Description:
1091 * Will send @len bytes from the pipe to a network socket. No data copying
1092 * is involved.
1093 *
1094 */
1095ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1096 loff_t *ppos, size_t len, unsigned int flags)
1097{
1098 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1099}
1100
1101EXPORT_SYMBOL(generic_splice_sendpage);
1102
1103/*
1104 * Attempt to initiate a splice from pipe to file.
1105 */
1106static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1107 loff_t *ppos, size_t len, unsigned int flags)
1108{
1109 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1110 loff_t *, size_t, unsigned int);
1111
1112 if (out->f_op->splice_write)
1113 splice_write = out->f_op->splice_write;
1114 else
1115 splice_write = default_file_splice_write;
1116
1117 return splice_write(pipe, out, ppos, len, flags);
1118}
1119
1120/*
1121 * Attempt to initiate a splice from a file to a pipe.
1122 */
1123static long do_splice_to(struct file *in, loff_t *ppos,
1124 struct pipe_inode_info *pipe, size_t len,
1125 unsigned int flags)
1126{
1127 ssize_t (*splice_read)(struct file *, loff_t *,
1128 struct pipe_inode_info *, size_t, unsigned int);
1129 int ret;
1130
1131 if (unlikely(!(in->f_mode & FMODE_READ)))
1132 return -EBADF;
1133
1134 ret = rw_verify_area(READ, in, ppos, len);
1135 if (unlikely(ret < 0))
1136 return ret;
1137
1138 if (in->f_op->splice_read)
1139 splice_read = in->f_op->splice_read;
1140 else
1141 splice_read = default_file_splice_read;
1142
1143 return splice_read(in, ppos, pipe, len, flags);
1144}
1145
1146/**
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in: file to splice from
1149 * @sd: actor information on where to splice to
1150 * @actor: handles the data splicing
1151 *
1152 * Description:
1153 * This is a special case helper to splice directly between two
1154 * points, without requiring an explicit pipe. Internally an allocated
1155 * pipe is cached in the process, and reused during the lifetime of
1156 * that process.
1157 *
1158 */
1159ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 splice_direct_actor *actor)
1161{
1162 struct pipe_inode_info *pipe;
1163 long ret, bytes;
1164 umode_t i_mode;
1165 size_t len;
1166 int i, flags;
1167
1168 /*
1169 * We require the input being a regular file, as we don't want to
1170 * randomly drop data for eg socket -> socket splicing. Use the
1171 * piped splicing for that!
1172 */
1173 i_mode = file_inode(in)->i_mode;
1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 return -EINVAL;
1176
1177 /*
1178 * neither in nor out is a pipe, setup an internal pipe attached to
1179 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 */
1181 pipe = current->splice_pipe;
1182 if (unlikely(!pipe)) {
1183 pipe = alloc_pipe_info();
1184 if (!pipe)
1185 return -ENOMEM;
1186
1187 /*
1188 * We don't have an immediate reader, but we'll read the stuff
1189 * out of the pipe right after the splice_to_pipe(). So set
1190 * PIPE_READERS appropriately.
1191 */
1192 pipe->readers = 1;
1193
1194 current->splice_pipe = pipe;
1195 }
1196
1197 /*
1198 * Do the splice.
1199 */
1200 ret = 0;
1201 bytes = 0;
1202 len = sd->total_len;
1203 flags = sd->flags;
1204
1205 /*
1206 * Don't block on output, we have to drain the direct pipe.
1207 */
1208 sd->flags &= ~SPLICE_F_NONBLOCK;
1209
1210 while (len) {
1211 size_t read_len;
1212 loff_t pos = sd->pos, prev_pos = pos;
1213
1214 ret = do_splice_to(in, &pos, pipe, len, flags);
1215 if (unlikely(ret <= 0))
1216 goto out_release;
1217
1218 read_len = ret;
1219 sd->total_len = read_len;
1220
1221 /*
1222 * NOTE: nonblocking mode only applies to the input. We
1223 * must not do the output in nonblocking mode as then we
1224 * could get stuck data in the internal pipe:
1225 */
1226 ret = actor(pipe, sd);
1227 if (unlikely(ret <= 0)) {
1228 sd->pos = prev_pos;
1229 goto out_release;
1230 }
1231
1232 bytes += ret;
1233 len -= ret;
1234 sd->pos = pos;
1235
1236 if (ret < read_len) {
1237 sd->pos = prev_pos + ret;
1238 goto out_release;
1239 }
1240 }
1241
1242done:
1243 pipe->nrbufs = pipe->curbuf = 0;
1244 file_accessed(in);
1245 return bytes;
1246
1247out_release:
1248 /*
1249 * If we did an incomplete transfer we must release
1250 * the pipe buffers in question:
1251 */
1252 for (i = 0; i < pipe->buffers; i++) {
1253 struct pipe_buffer *buf = pipe->bufs + i;
1254
1255 if (buf->ops) {
1256 buf->ops->release(pipe, buf);
1257 buf->ops = NULL;
1258 }
1259 }
1260
1261 if (!bytes)
1262 bytes = ret;
1263
1264 goto done;
1265}
1266EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 struct splice_desc *sd)
1270{
1271 struct file *file = sd->u.file;
1272
1273 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1274 sd->flags);
1275}
1276
1277/**
1278 * do_splice_direct - splices data directly between two files
1279 * @in: file to splice from
1280 * @ppos: input file offset
1281 * @out: file to splice to
1282 * @opos: output file offset
1283 * @len: number of bytes to splice
1284 * @flags: splice modifier flags
1285 *
1286 * Description:
1287 * For use by do_sendfile(). splice can easily emulate sendfile, but
1288 * doing it in the application would incur an extra system call
1289 * (splice in + splice out, as compared to just sendfile()). So this helper
1290 * can splice directly through a process-private pipe.
1291 *
1292 */
1293long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 loff_t *opos, size_t len, unsigned int flags)
1295{
1296 struct splice_desc sd = {
1297 .len = len,
1298 .total_len = len,
1299 .flags = flags,
1300 .pos = *ppos,
1301 .u.file = out,
1302 .opos = opos,
1303 };
1304 long ret;
1305
1306 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1307 return -EBADF;
1308
1309 if (unlikely(out->f_flags & O_APPEND))
1310 return -EINVAL;
1311
1312 ret = rw_verify_area(WRITE, out, opos, len);
1313 if (unlikely(ret < 0))
1314 return ret;
1315
1316 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1317 if (ret > 0)
1318 *ppos = sd.pos;
1319
1320 return ret;
1321}
1322
1323static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1324 struct pipe_inode_info *opipe,
1325 size_t len, unsigned int flags);
1326
1327/*
1328 * Determine where to splice to/from.
1329 */
1330static long do_splice(struct file *in, loff_t __user *off_in,
1331 struct file *out, loff_t __user *off_out,
1332 size_t len, unsigned int flags)
1333{
1334 struct pipe_inode_info *ipipe;
1335 struct pipe_inode_info *opipe;
1336 loff_t offset;
1337 long ret;
1338
1339 ipipe = get_pipe_info(in);
1340 opipe = get_pipe_info(out);
1341
1342 if (ipipe && opipe) {
1343 if (off_in || off_out)
1344 return -ESPIPE;
1345
1346 if (!(in->f_mode & FMODE_READ))
1347 return -EBADF;
1348
1349 if (!(out->f_mode & FMODE_WRITE))
1350 return -EBADF;
1351
1352 /* Splicing to self would be fun, but... */
1353 if (ipipe == opipe)
1354 return -EINVAL;
1355
1356 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1357 }
1358
1359 if (ipipe) {
1360 if (off_in)
1361 return -ESPIPE;
1362 if (off_out) {
1363 if (!(out->f_mode & FMODE_PWRITE))
1364 return -EINVAL;
1365 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366 return -EFAULT;
1367 } else {
1368 offset = out->f_pos;
1369 }
1370
1371 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1372 return -EBADF;
1373
1374 if (unlikely(out->f_flags & O_APPEND))
1375 return -EINVAL;
1376
1377 ret = rw_verify_area(WRITE, out, &offset, len);
1378 if (unlikely(ret < 0))
1379 return ret;
1380
1381 file_start_write(out);
1382 ret = do_splice_from(ipipe, out, &offset, len, flags);
1383 file_end_write(out);
1384
1385 if (!off_out)
1386 out->f_pos = offset;
1387 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1388 ret = -EFAULT;
1389
1390 return ret;
1391 }
1392
1393 if (opipe) {
1394 if (off_out)
1395 return -ESPIPE;
1396 if (off_in) {
1397 if (!(in->f_mode & FMODE_PREAD))
1398 return -EINVAL;
1399 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1400 return -EFAULT;
1401 } else {
1402 offset = in->f_pos;
1403 }
1404
1405 ret = do_splice_to(in, &offset, opipe, len, flags);
1406
1407 if (!off_in)
1408 in->f_pos = offset;
1409 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 return -EINVAL;
1416}
1417
1418/*
1419 * Map an iov into an array of pages and offset/length tupples. With the
1420 * partial_page structure, we can map several non-contiguous ranges into
1421 * our ones pages[] map instead of splitting that operation into pieces.
1422 * Could easily be exported as a generic helper for other users, in which
1423 * case one would probably want to add a 'max_nr_pages' parameter as well.
1424 */
1425static int get_iovec_page_array(const struct iovec __user *iov,
1426 unsigned int nr_vecs, struct page **pages,
1427 struct partial_page *partial, bool aligned,
1428 unsigned int pipe_buffers)
1429{
1430 int buffers = 0, error = 0;
1431
1432 while (nr_vecs) {
1433 unsigned long off, npages;
1434 struct iovec entry;
1435 void __user *base;
1436 size_t len;
1437 int i;
1438
1439 error = -EFAULT;
1440 if (copy_from_user(&entry, iov, sizeof(entry)))
1441 break;
1442
1443 base = entry.iov_base;
1444 len = entry.iov_len;
1445
1446 /*
1447 * Sanity check this iovec. 0 read succeeds.
1448 */
1449 error = 0;
1450 if (unlikely(!len))
1451 break;
1452 error = -EFAULT;
1453 if (!access_ok(VERIFY_READ, base, len))
1454 break;
1455
1456 /*
1457 * Get this base offset and number of pages, then map
1458 * in the user pages.
1459 */
1460 off = (unsigned long) base & ~PAGE_MASK;
1461
1462 /*
1463 * If asked for alignment, the offset must be zero and the
1464 * length a multiple of the PAGE_SIZE.
1465 */
1466 error = -EINVAL;
1467 if (aligned && (off || len & ~PAGE_MASK))
1468 break;
1469
1470 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 if (npages > pipe_buffers - buffers)
1472 npages = pipe_buffers - buffers;
1473
1474 error = get_user_pages_fast((unsigned long)base, npages,
1475 0, &pages[buffers]);
1476
1477 if (unlikely(error <= 0))
1478 break;
1479
1480 /*
1481 * Fill this contiguous range into the partial page map.
1482 */
1483 for (i = 0; i < error; i++) {
1484 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1485
1486 partial[buffers].offset = off;
1487 partial[buffers].len = plen;
1488
1489 off = 0;
1490 len -= plen;
1491 buffers++;
1492 }
1493
1494 /*
1495 * We didn't complete this iov, stop here since it probably
1496 * means we have to move some of this into a pipe to
1497 * be able to continue.
1498 */
1499 if (len)
1500 break;
1501
1502 /*
1503 * Don't continue if we mapped fewer pages than we asked for,
1504 * or if we mapped the max number of pages that we have
1505 * room for.
1506 */
1507 if (error < npages || buffers == pipe_buffers)
1508 break;
1509
1510 nr_vecs--;
1511 iov++;
1512 }
1513
1514 if (buffers)
1515 return buffers;
1516
1517 return error;
1518}
1519
1520static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1521 struct splice_desc *sd)
1522{
1523 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1524 return n == sd->len ? n : -EFAULT;
1525}
1526
1527/*
1528 * For lack of a better implementation, implement vmsplice() to userspace
1529 * as a simple copy of the pipes pages to the user iov.
1530 */
1531static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1532 unsigned long nr_segs, unsigned int flags)
1533{
1534 struct pipe_inode_info *pipe;
1535 struct splice_desc sd;
1536 long ret;
1537 struct iovec iovstack[UIO_FASTIOV];
1538 struct iovec *iov = iovstack;
1539 struct iov_iter iter;
1540 ssize_t count;
1541
1542 pipe = get_pipe_info(file);
1543 if (!pipe)
1544 return -EBADF;
1545
1546 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1547 ARRAY_SIZE(iovstack), iovstack, &iov);
1548 if (ret <= 0)
1549 goto out;
1550
1551 count = ret;
1552 iov_iter_init(&iter, iov, nr_segs, count, 0);
1553
1554 sd.len = 0;
1555 sd.total_len = count;
1556 sd.flags = flags;
1557 sd.u.data = &iter;
1558 sd.pos = 0;
1559
1560 pipe_lock(pipe);
1561 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1562 pipe_unlock(pipe);
1563
1564out:
1565 if (iov != iovstack)
1566 kfree(iov);
1567
1568 return ret;
1569}
1570
1571/*
1572 * vmsplice splices a user address range into a pipe. It can be thought of
1573 * as splice-from-memory, where the regular splice is splice-from-file (or
1574 * to file). In both cases the output is a pipe, naturally.
1575 */
1576static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1577 unsigned long nr_segs, unsigned int flags)
1578{
1579 struct pipe_inode_info *pipe;
1580 struct page *pages[PIPE_DEF_BUFFERS];
1581 struct partial_page partial[PIPE_DEF_BUFFERS];
1582 struct splice_pipe_desc spd = {
1583 .pages = pages,
1584 .partial = partial,
1585 .nr_pages_max = PIPE_DEF_BUFFERS,
1586 .flags = flags,
1587 .ops = &user_page_pipe_buf_ops,
1588 .spd_release = spd_release_page,
1589 };
1590 long ret;
1591
1592 pipe = get_pipe_info(file);
1593 if (!pipe)
1594 return -EBADF;
1595
1596 if (splice_grow_spd(pipe, &spd))
1597 return -ENOMEM;
1598
1599 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1600 spd.partial, false,
1601 spd.nr_pages_max);
1602 if (spd.nr_pages <= 0)
1603 ret = spd.nr_pages;
1604 else
1605 ret = splice_to_pipe(pipe, &spd);
1606
1607 splice_shrink_spd(&spd);
1608 return ret;
1609}
1610
1611/*
1612 * Note that vmsplice only really supports true splicing _from_ user memory
1613 * to a pipe, not the other way around. Splicing from user memory is a simple
1614 * operation that can be supported without any funky alignment restrictions
1615 * or nasty vm tricks. We simply map in the user memory and fill them into
1616 * a pipe. The reverse isn't quite as easy, though. There are two possible
1617 * solutions for that:
1618 *
1619 * - memcpy() the data internally, at which point we might as well just
1620 * do a regular read() on the buffer anyway.
1621 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1622 * has restriction limitations on both ends of the pipe).
1623 *
1624 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1625 *
1626 */
1627SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1628 unsigned long, nr_segs, unsigned int, flags)
1629{
1630 struct fd f;
1631 long error;
1632
1633 if (unlikely(nr_segs > UIO_MAXIOV))
1634 return -EINVAL;
1635 else if (unlikely(!nr_segs))
1636 return 0;
1637
1638 error = -EBADF;
1639 f = fdget(fd);
1640 if (f.file) {
1641 if (f.file->f_mode & FMODE_WRITE)
1642 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1643 else if (f.file->f_mode & FMODE_READ)
1644 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1645
1646 fdput(f);
1647 }
1648
1649 return error;
1650}
1651
1652#ifdef CONFIG_COMPAT
1653COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1654 unsigned int, nr_segs, unsigned int, flags)
1655{
1656 unsigned i;
1657 struct iovec __user *iov;
1658 if (nr_segs > UIO_MAXIOV)
1659 return -EINVAL;
1660 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1661 for (i = 0; i < nr_segs; i++) {
1662 struct compat_iovec v;
1663 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1664 get_user(v.iov_len, &iov32[i].iov_len) ||
1665 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1666 put_user(v.iov_len, &iov[i].iov_len))
1667 return -EFAULT;
1668 }
1669 return sys_vmsplice(fd, iov, nr_segs, flags);
1670}
1671#endif
1672
1673SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1674 int, fd_out, loff_t __user *, off_out,
1675 size_t, len, unsigned int, flags)
1676{
1677 struct fd in, out;
1678 long error;
1679
1680 if (unlikely(!len))
1681 return 0;
1682
1683 error = -EBADF;
1684 in = fdget(fd_in);
1685 if (in.file) {
1686 if (in.file->f_mode & FMODE_READ) {
1687 out = fdget(fd_out);
1688 if (out.file) {
1689 if (out.file->f_mode & FMODE_WRITE)
1690 error = do_splice(in.file, off_in,
1691 out.file, off_out,
1692 len, flags);
1693 fdput(out);
1694 }
1695 }
1696 fdput(in);
1697 }
1698 return error;
1699}
1700
1701/*
1702 * Make sure there's data to read. Wait for input if we can, otherwise
1703 * return an appropriate error.
1704 */
1705static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1706{
1707 int ret;
1708
1709 /*
1710 * Check ->nrbufs without the inode lock first. This function
1711 * is speculative anyways, so missing one is ok.
1712 */
1713 if (pipe->nrbufs)
1714 return 0;
1715
1716 ret = 0;
1717 pipe_lock(pipe);
1718
1719 while (!pipe->nrbufs) {
1720 if (signal_pending(current)) {
1721 ret = -ERESTARTSYS;
1722 break;
1723 }
1724 if (!pipe->writers)
1725 break;
1726 if (!pipe->waiting_writers) {
1727 if (flags & SPLICE_F_NONBLOCK) {
1728 ret = -EAGAIN;
1729 break;
1730 }
1731 }
1732 pipe_wait(pipe);
1733 }
1734
1735 pipe_unlock(pipe);
1736 return ret;
1737}
1738
1739/*
1740 * Make sure there's writeable room. Wait for room if we can, otherwise
1741 * return an appropriate error.
1742 */
1743static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1744{
1745 int ret;
1746
1747 /*
1748 * Check ->nrbufs without the inode lock first. This function
1749 * is speculative anyways, so missing one is ok.
1750 */
1751 if (pipe->nrbufs < pipe->buffers)
1752 return 0;
1753
1754 ret = 0;
1755 pipe_lock(pipe);
1756
1757 while (pipe->nrbufs >= pipe->buffers) {
1758 if (!pipe->readers) {
1759 send_sig(SIGPIPE, current, 0);
1760 ret = -EPIPE;
1761 break;
1762 }
1763 if (flags & SPLICE_F_NONBLOCK) {
1764 ret = -EAGAIN;
1765 break;
1766 }
1767 if (signal_pending(current)) {
1768 ret = -ERESTARTSYS;
1769 break;
1770 }
1771 pipe->waiting_writers++;
1772 pipe_wait(pipe);
1773 pipe->waiting_writers--;
1774 }
1775
1776 pipe_unlock(pipe);
1777 return ret;
1778}
1779
1780/*
1781 * Splice contents of ipipe to opipe.
1782 */
1783static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1784 struct pipe_inode_info *opipe,
1785 size_t len, unsigned int flags)
1786{
1787 struct pipe_buffer *ibuf, *obuf;
1788 int ret = 0, nbuf;
1789 bool input_wakeup = false;
1790
1791
1792retry:
1793 ret = ipipe_prep(ipipe, flags);
1794 if (ret)
1795 return ret;
1796
1797 ret = opipe_prep(opipe, flags);
1798 if (ret)
1799 return ret;
1800
1801 /*
1802 * Potential ABBA deadlock, work around it by ordering lock
1803 * grabbing by pipe info address. Otherwise two different processes
1804 * could deadlock (one doing tee from A -> B, the other from B -> A).
1805 */
1806 pipe_double_lock(ipipe, opipe);
1807
1808 do {
1809 if (!opipe->readers) {
1810 send_sig(SIGPIPE, current, 0);
1811 if (!ret)
1812 ret = -EPIPE;
1813 break;
1814 }
1815
1816 if (!ipipe->nrbufs && !ipipe->writers)
1817 break;
1818
1819 /*
1820 * Cannot make any progress, because either the input
1821 * pipe is empty or the output pipe is full.
1822 */
1823 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1824 /* Already processed some buffers, break */
1825 if (ret)
1826 break;
1827
1828 if (flags & SPLICE_F_NONBLOCK) {
1829 ret = -EAGAIN;
1830 break;
1831 }
1832
1833 /*
1834 * We raced with another reader/writer and haven't
1835 * managed to process any buffers. A zero return
1836 * value means EOF, so retry instead.
1837 */
1838 pipe_unlock(ipipe);
1839 pipe_unlock(opipe);
1840 goto retry;
1841 }
1842
1843 ibuf = ipipe->bufs + ipipe->curbuf;
1844 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1845 obuf = opipe->bufs + nbuf;
1846
1847 if (len >= ibuf->len) {
1848 /*
1849 * Simply move the whole buffer from ipipe to opipe
1850 */
1851 *obuf = *ibuf;
1852 ibuf->ops = NULL;
1853 opipe->nrbufs++;
1854 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1855 ipipe->nrbufs--;
1856 input_wakeup = true;
1857 } else {
1858 /*
1859 * Get a reference to this pipe buffer,
1860 * so we can copy the contents over.
1861 */
1862 ibuf->ops->get(ipipe, ibuf);
1863 *obuf = *ibuf;
1864
1865 /*
1866 * Don't inherit the gift flag, we need to
1867 * prevent multiple steals of this page.
1868 */
1869 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1870
1871 obuf->len = len;
1872 opipe->nrbufs++;
1873 ibuf->offset += obuf->len;
1874 ibuf->len -= obuf->len;
1875 }
1876 ret += obuf->len;
1877 len -= obuf->len;
1878 } while (len);
1879
1880 pipe_unlock(ipipe);
1881 pipe_unlock(opipe);
1882
1883 /*
1884 * If we put data in the output pipe, wakeup any potential readers.
1885 */
1886 if (ret > 0)
1887 wakeup_pipe_readers(opipe);
1888
1889 if (input_wakeup)
1890 wakeup_pipe_writers(ipipe);
1891
1892 return ret;
1893}
1894
1895/*
1896 * Link contents of ipipe to opipe.
1897 */
1898static int link_pipe(struct pipe_inode_info *ipipe,
1899 struct pipe_inode_info *opipe,
1900 size_t len, unsigned int flags)
1901{
1902 struct pipe_buffer *ibuf, *obuf;
1903 int ret = 0, i = 0, nbuf;
1904
1905 /*
1906 * Potential ABBA deadlock, work around it by ordering lock
1907 * grabbing by pipe info address. Otherwise two different processes
1908 * could deadlock (one doing tee from A -> B, the other from B -> A).
1909 */
1910 pipe_double_lock(ipipe, opipe);
1911
1912 do {
1913 if (!opipe->readers) {
1914 send_sig(SIGPIPE, current, 0);
1915 if (!ret)
1916 ret = -EPIPE;
1917 break;
1918 }
1919
1920 /*
1921 * If we have iterated all input buffers or ran out of
1922 * output room, break.
1923 */
1924 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1925 break;
1926
1927 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1928 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1929
1930 /*
1931 * Get a reference to this pipe buffer,
1932 * so we can copy the contents over.
1933 */
1934 ibuf->ops->get(ipipe, ibuf);
1935
1936 obuf = opipe->bufs + nbuf;
1937 *obuf = *ibuf;
1938
1939 /*
1940 * Don't inherit the gift flag, we need to
1941 * prevent multiple steals of this page.
1942 */
1943 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1944
1945 if (obuf->len > len)
1946 obuf->len = len;
1947
1948 opipe->nrbufs++;
1949 ret += obuf->len;
1950 len -= obuf->len;
1951 i++;
1952 } while (len);
1953
1954 /*
1955 * return EAGAIN if we have the potential of some data in the
1956 * future, otherwise just return 0
1957 */
1958 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1959 ret = -EAGAIN;
1960
1961 pipe_unlock(ipipe);
1962 pipe_unlock(opipe);
1963
1964 /*
1965 * If we put data in the output pipe, wakeup any potential readers.
1966 */
1967 if (ret > 0)
1968 wakeup_pipe_readers(opipe);
1969
1970 return ret;
1971}
1972
1973/*
1974 * This is a tee(1) implementation that works on pipes. It doesn't copy
1975 * any data, it simply references the 'in' pages on the 'out' pipe.
1976 * The 'flags' used are the SPLICE_F_* variants, currently the only
1977 * applicable one is SPLICE_F_NONBLOCK.
1978 */
1979static long do_tee(struct file *in, struct file *out, size_t len,
1980 unsigned int flags)
1981{
1982 struct pipe_inode_info *ipipe = get_pipe_info(in);
1983 struct pipe_inode_info *opipe = get_pipe_info(out);
1984 int ret = -EINVAL;
1985
1986 /*
1987 * Duplicate the contents of ipipe to opipe without actually
1988 * copying the data.
1989 */
1990 if (ipipe && opipe && ipipe != opipe) {
1991 /*
1992 * Keep going, unless we encounter an error. The ipipe/opipe
1993 * ordering doesn't really matter.
1994 */
1995 ret = ipipe_prep(ipipe, flags);
1996 if (!ret) {
1997 ret = opipe_prep(opipe, flags);
1998 if (!ret)
1999 ret = link_pipe(ipipe, opipe, len, flags);
2000 }
2001 }
2002
2003 return ret;
2004}
2005
2006SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2007{
2008 struct fd in;
2009 int error;
2010
2011 if (unlikely(!len))
2012 return 0;
2013
2014 error = -EBADF;
2015 in = fdget(fdin);
2016 if (in.file) {
2017 if (in.file->f_mode & FMODE_READ) {
2018 struct fd out = fdget(fdout);
2019 if (out.file) {
2020 if (out.file->f_mode & FMODE_WRITE)
2021 error = do_tee(in.file, out.file,
2022 len, flags);
2023 fdput(out);
2024 }
2025 }
2026 fdput(in);
2027 }
2028
2029 return error;
2030}