Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * "splice": joining two ropes together by interweaving their strands.
   4 *
   5 * This is the "extended pipe" functionality, where a pipe is used as
   6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   7 * buffer that you can use to transfer data from one end to the other.
   8 *
   9 * The traditional unix read/write is extended with a "splice()" operation
  10 * that transfers data buffers to or from a pipe buffer.
  11 *
  12 * Named by Larry McVoy, original implementation from Linus, extended by
  13 * Jens to support splicing to files, network, direct splicing, etc and
  14 * fixing lots of bugs.
  15 *
  16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  19 *
  20 */
  21#include <linux/bvec.h>
  22#include <linux/fs.h>
  23#include <linux/file.h>
  24#include <linux/pagemap.h>
  25#include <linux/splice.h>
  26#include <linux/memcontrol.h>
  27#include <linux/mm_inline.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/export.h>
  31#include <linux/syscalls.h>
  32#include <linux/uio.h>
  33#include <linux/fsnotify.h>
  34#include <linux/security.h>
  35#include <linux/gfp.h>
  36#include <linux/net.h>
  37#include <linux/socket.h>
  38#include <linux/sched/signal.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
  44 * indicate they support non-blocking reads or writes, we must clear it
  45 * here if set to avoid blocking other users of this pipe if splice is
  46 * being done on it.
  47 */
  48static noinline void noinline pipe_clear_nowait(struct file *file)
  49{
  50	fmode_t fmode = READ_ONCE(file->f_mode);
  51
  52	do {
  53		if (!(fmode & FMODE_NOWAIT))
  54			break;
  55	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
  56}
  57
  58/*
  59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  60 * a vm helper function, it's already simplified quite a bit by the
  61 * addition of remove_mapping(). If success is returned, the caller may
  62 * attempt to reuse this page for another destination.
  63 */
  64static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
  65		struct pipe_buffer *buf)
  66{
  67	struct folio *folio = page_folio(buf->page);
  68	struct address_space *mapping;
  69
  70	folio_lock(folio);
  71
  72	mapping = folio_mapping(folio);
  73	if (mapping) {
  74		WARN_ON(!folio_test_uptodate(folio));
  75
  76		/*
  77		 * At least for ext2 with nobh option, we need to wait on
  78		 * writeback completing on this folio, since we'll remove it
  79		 * from the pagecache.  Otherwise truncate wont wait on the
  80		 * folio, allowing the disk blocks to be reused by someone else
  81		 * before we actually wrote our data to them. fs corruption
  82		 * ensues.
  83		 */
  84		folio_wait_writeback(folio);
  85
  86		if (!filemap_release_folio(folio, GFP_KERNEL))
 
  87			goto out_unlock;
  88
  89		/*
  90		 * If we succeeded in removing the mapping, set LRU flag
  91		 * and return good.
  92		 */
  93		if (remove_mapping(mapping, folio)) {
  94			buf->flags |= PIPE_BUF_FLAG_LRU;
  95			return true;
  96		}
  97	}
  98
  99	/*
 100	 * Raced with truncate or failed to remove folio from current
 101	 * address space, unlock and return failure.
 102	 */
 103out_unlock:
 104	folio_unlock(folio);
 105	return false;
 106}
 107
 108static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
 109					struct pipe_buffer *buf)
 110{
 111	put_page(buf->page);
 112	buf->flags &= ~PIPE_BUF_FLAG_LRU;
 113}
 114
 115/*
 116 * Check whether the contents of buf is OK to access. Since the content
 117 * is a page cache page, IO may be in flight.
 118 */
 119static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
 120				       struct pipe_buffer *buf)
 121{
 122	struct folio *folio = page_folio(buf->page);
 123	int err;
 124
 125	if (!folio_test_uptodate(folio)) {
 126		folio_lock(folio);
 127
 128		/*
 129		 * Folio got truncated/unhashed. This will cause a 0-byte
 130		 * splice, if this is the first page.
 131		 */
 132		if (!folio->mapping) {
 133			err = -ENODATA;
 134			goto error;
 135		}
 136
 137		/*
 138		 * Uh oh, read-error from disk.
 139		 */
 140		if (!folio_test_uptodate(folio)) {
 141			err = -EIO;
 142			goto error;
 143		}
 144
 145		/* Folio is ok after all, we are done */
 146		folio_unlock(folio);
 
 
 147	}
 148
 149	return 0;
 150error:
 151	folio_unlock(folio);
 152	return err;
 153}
 154
 155const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 156	.confirm	= page_cache_pipe_buf_confirm,
 157	.release	= page_cache_pipe_buf_release,
 158	.try_steal	= page_cache_pipe_buf_try_steal,
 159	.get		= generic_pipe_buf_get,
 
 160};
 161
 162static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 163		struct pipe_buffer *buf)
 164{
 165	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 166		return false;
 167
 168	buf->flags |= PIPE_BUF_FLAG_LRU;
 169	return generic_pipe_buf_try_steal(pipe, buf);
 170}
 171
 172static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 173	.release	= page_cache_pipe_buf_release,
 174	.try_steal	= user_page_pipe_buf_try_steal,
 175	.get		= generic_pipe_buf_get,
 
 
 176};
 177
 178static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 179{
 180	smp_mb();
 181	if (waitqueue_active(&pipe->rd_wait))
 182		wake_up_interruptible(&pipe->rd_wait);
 183	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 184}
 185
 186/**
 187 * splice_to_pipe - fill passed data into a pipe
 188 * @pipe:	pipe to fill
 189 * @spd:	data to fill
 190 *
 191 * Description:
 192 *    @spd contains a map of pages and len/offset tuples, along with
 193 *    the struct pipe_buf_operations associated with these pages. This
 194 *    function will link that data to the pipe.
 195 *
 196 */
 197ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 198		       struct splice_pipe_desc *spd)
 199{
 200	unsigned int spd_pages = spd->nr_pages;
 201	unsigned int tail = pipe->tail;
 202	unsigned int head = pipe->head;
 203	unsigned int mask = pipe->ring_size - 1;
 204	ssize_t ret = 0;
 205	int page_nr = 0;
 206
 207	if (!spd_pages)
 208		return 0;
 
 209
 210	if (unlikely(!pipe->readers)) {
 211		send_sig(SIGPIPE, current, 0);
 212		ret = -EPIPE;
 213		goto out;
 214	}
 215
 216	while (!pipe_full(head, tail, pipe->max_usage)) {
 217		struct pipe_buffer *buf = &pipe->bufs[head & mask];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219		buf->page = spd->pages[page_nr];
 220		buf->offset = spd->partial[page_nr].offset;
 221		buf->len = spd->partial[page_nr].len;
 222		buf->private = spd->partial[page_nr].private;
 223		buf->ops = spd->ops;
 224		buf->flags = 0;
 225
 226		head++;
 227		pipe->head = head;
 228		page_nr++;
 229		ret += buf->len;
 
 
 
 
 230
 231		if (!--spd->nr_pages)
 
 
 232			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 233	}
 234
 235	if (!ret)
 236		ret = -EAGAIN;
 
 
 237
 238out:
 239	while (page_nr < spd_pages)
 240		spd->spd_release(spd, page_nr++);
 241
 242	return ret;
 243}
 244EXPORT_SYMBOL_GPL(splice_to_pipe);
 245
 246ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 247{
 248	unsigned int head = pipe->head;
 249	unsigned int tail = pipe->tail;
 250	unsigned int mask = pipe->ring_size - 1;
 251	int ret;
 252
 253	if (unlikely(!pipe->readers)) {
 254		send_sig(SIGPIPE, current, 0);
 255		ret = -EPIPE;
 256	} else if (pipe_full(head, tail, pipe->max_usage)) {
 257		ret = -EAGAIN;
 258	} else {
 259		pipe->bufs[head & mask] = *buf;
 260		pipe->head = head + 1;
 261		return buf->len;
 262	}
 263	pipe_buf_release(pipe, buf);
 264	return ret;
 265}
 266EXPORT_SYMBOL(add_to_pipe);
 267
 268/*
 269 * Check if we need to grow the arrays holding pages and partial page
 270 * descriptions.
 271 */
 272int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 273{
 274	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 275
 276	spd->nr_pages_max = max_usage;
 277	if (max_usage <= PIPE_DEF_BUFFERS)
 278		return 0;
 279
 280	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
 281	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
 282				     GFP_KERNEL);
 283
 284	if (spd->pages && spd->partial)
 285		return 0;
 286
 287	kfree(spd->pages);
 288	kfree(spd->partial);
 289	return -ENOMEM;
 290}
 291
 292void splice_shrink_spd(struct splice_pipe_desc *spd)
 293{
 294	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
 295		return;
 296
 297	kfree(spd->pages);
 298	kfree(spd->partial);
 299}
 300
 301/**
 302 * copy_splice_read -  Copy data from a file and splice the copy into a pipe
 303 * @in: The file to read from
 304 * @ppos: Pointer to the file position to read from
 305 * @pipe: The pipe to splice into
 306 * @len: The amount to splice
 307 * @flags: The SPLICE_F_* flags
 308 *
 309 * This function allocates a bunch of pages sufficient to hold the requested
 310 * amount of data (but limited by the remaining pipe capacity), passes it to
 311 * the file's ->read_iter() to read into and then splices the used pages into
 312 * the pipe.
 313 *
 314 * Return: On success, the number of bytes read will be returned and *@ppos
 315 * will be updated if appropriate; 0 will be returned if there is no more data
 316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
 317 * other negative error code will be returned on error.  A short read may occur
 318 * if the pipe has insufficient space, we reach the end of the data or we hit a
 319 * hole.
 320 */
 321ssize_t copy_splice_read(struct file *in, loff_t *ppos,
 322			 struct pipe_inode_info *pipe,
 323			 size_t len, unsigned int flags)
 324{
 325	struct iov_iter to;
 326	struct bio_vec *bv;
 327	struct kiocb kiocb;
 328	struct page **pages;
 329	ssize_t ret;
 330	size_t used, npages, chunk, remain, keep = 0;
 331	int i;
 332
 333	/* Work out how much data we can actually add into the pipe */
 334	used = pipe_occupancy(pipe->head, pipe->tail);
 335	npages = max_t(ssize_t, pipe->max_usage - used, 0);
 336	len = min_t(size_t, len, npages * PAGE_SIZE);
 337	npages = DIV_ROUND_UP(len, PAGE_SIZE);
 338
 339	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
 340		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
 341	if (!bv)
 342		return -ENOMEM;
 343
 344	pages = (struct page **)(bv + npages);
 345	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
 346	if (!npages) {
 347		kfree(bv);
 348		return -ENOMEM;
 349	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350
 351	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353	for (i = 0; i < npages; i++) {
 354		chunk = min_t(size_t, PAGE_SIZE, remain);
 355		bv[i].bv_page = pages[i];
 356		bv[i].bv_offset = 0;
 357		bv[i].bv_len = chunk;
 358		remain -= chunk;
 359	}
 360
 361	/* Do the I/O */
 362	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
 363	init_sync_kiocb(&kiocb, in);
 364	kiocb.ki_pos = *ppos;
 365	ret = in->f_op->read_iter(&kiocb, &to);
 
 
 
 
 366
 367	if (ret > 0) {
 368		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
 369		*ppos = kiocb.ki_pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370	}
 371
 372	/*
 373	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
 374	 * there", rather than -EFAULT.
 375	 */
 376	if (ret == -EFAULT)
 377		ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/* Free any pages that didn't get touched at all. */
 380	if (keep < npages)
 381		release_pages(pages + keep, npages - keep);
 382
 383	/* Push the remaining pages into the pipe. */
 384	remain = ret;
 385	for (i = 0; i < keep; i++) {
 386		struct pipe_buffer *buf = pipe_head_buf(pipe);
 387
 388		chunk = min_t(size_t, remain, PAGE_SIZE);
 389		*buf = (struct pipe_buffer) {
 390			.ops	= &default_pipe_buf_ops,
 391			.page	= bv[i].bv_page,
 392			.offset	= 0,
 393			.len	= chunk,
 394		};
 395		pipe->head++;
 396		remain -= chunk;
 397	}
 398
 399	kfree(bv);
 400	return ret;
 401}
 402EXPORT_SYMBOL(copy_splice_read);
 403
 404const struct pipe_buf_operations default_pipe_buf_ops = {
 405	.release	= generic_pipe_buf_release,
 406	.try_steal	= generic_pipe_buf_try_steal,
 407	.get		= generic_pipe_buf_get,
 
 
 408};
 409
 
 
 
 
 
 
 410/* Pipe buffer operations for a socket and similar. */
 411const struct pipe_buf_operations nosteal_pipe_buf_ops = {
 412	.release	= generic_pipe_buf_release,
 413	.get		= generic_pipe_buf_get,
 
 
 
 414};
 415EXPORT_SYMBOL(nosteal_pipe_buf_ops);
 416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 418{
 419	smp_mb();
 420	if (waitqueue_active(&pipe->wr_wait))
 421		wake_up_interruptible(&pipe->wr_wait);
 422	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 423}
 424
 425/**
 426 * splice_from_pipe_feed - feed available data from a pipe to a file
 427 * @pipe:	pipe to splice from
 428 * @sd:		information to @actor
 429 * @actor:	handler that splices the data
 430 *
 431 * Description:
 432 *    This function loops over the pipe and calls @actor to do the
 433 *    actual moving of a single struct pipe_buffer to the desired
 434 *    destination.  It returns when there's no more buffers left in
 435 *    the pipe or if the requested number of bytes (@sd->total_len)
 436 *    have been copied.  It returns a positive number (one) if the
 437 *    pipe needs to be filled with more data, zero if the required
 438 *    number of bytes have been copied and -errno on error.
 439 *
 440 *    This, together with splice_from_pipe_{begin,end,next}, may be
 441 *    used to implement the functionality of __splice_from_pipe() when
 442 *    locking is required around copying the pipe buffers to the
 443 *    destination.
 444 */
 445static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 446			  splice_actor *actor)
 447{
 448	unsigned int head = pipe->head;
 449	unsigned int tail = pipe->tail;
 450	unsigned int mask = pipe->ring_size - 1;
 451	int ret;
 452
 453	while (!pipe_empty(head, tail)) {
 454		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 
 455
 456		sd->len = buf->len;
 457		if (sd->len > sd->total_len)
 458			sd->len = sd->total_len;
 459
 460		ret = pipe_buf_confirm(pipe, buf);
 461		if (unlikely(ret)) {
 462			if (ret == -ENODATA)
 463				ret = 0;
 464			return ret;
 465		}
 466
 467		ret = actor(pipe, buf, sd);
 468		if (ret <= 0)
 469			return ret;
 470
 471		buf->offset += ret;
 472		buf->len -= ret;
 473
 474		sd->num_spliced += ret;
 475		sd->len -= ret;
 476		sd->pos += ret;
 477		sd->total_len -= ret;
 478
 479		if (!buf->len) {
 480			pipe_buf_release(pipe, buf);
 481			tail++;
 482			pipe->tail = tail;
 
 483			if (pipe->files)
 484				sd->need_wakeup = true;
 485		}
 486
 487		if (!sd->total_len)
 488			return 0;
 489	}
 490
 491	return 1;
 492}
 493
 494/* We know we have a pipe buffer, but maybe it's empty? */
 495static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
 496{
 497	unsigned int tail = pipe->tail;
 498	unsigned int mask = pipe->ring_size - 1;
 499	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 500
 501	if (unlikely(!buf->len)) {
 502		pipe_buf_release(pipe, buf);
 503		pipe->tail = tail+1;
 504		return true;
 505	}
 506
 507	return false;
 508}
 509
 510/**
 511 * splice_from_pipe_next - wait for some data to splice from
 512 * @pipe:	pipe to splice from
 513 * @sd:		information about the splice operation
 514 *
 515 * Description:
 516 *    This function will wait for some data and return a positive
 517 *    value (one) if pipe buffers are available.  It will return zero
 518 *    or -errno if no more data needs to be spliced.
 519 */
 520static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 521{
 522	/*
 523	 * Check for signal early to make process killable when there are
 524	 * always buffers available
 525	 */
 526	if (signal_pending(current))
 527		return -ERESTARTSYS;
 528
 529repeat:
 530	while (pipe_empty(pipe->head, pipe->tail)) {
 531		if (!pipe->writers)
 532			return 0;
 533
 534		if (sd->num_spliced)
 535			return 0;
 536
 537		if (sd->flags & SPLICE_F_NONBLOCK)
 538			return -EAGAIN;
 539
 540		if (signal_pending(current))
 541			return -ERESTARTSYS;
 542
 543		if (sd->need_wakeup) {
 544			wakeup_pipe_writers(pipe);
 545			sd->need_wakeup = false;
 546		}
 547
 548		pipe_wait_readable(pipe);
 549	}
 550
 551	if (eat_empty_buffer(pipe))
 552		goto repeat;
 553
 554	return 1;
 555}
 
 556
 557/**
 558 * splice_from_pipe_begin - start splicing from pipe
 559 * @sd:		information about the splice operation
 560 *
 561 * Description:
 562 *    This function should be called before a loop containing
 563 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 564 *    initialize the necessary fields of @sd.
 565 */
 566static void splice_from_pipe_begin(struct splice_desc *sd)
 567{
 568	sd->num_spliced = 0;
 569	sd->need_wakeup = false;
 570}
 
 571
 572/**
 573 * splice_from_pipe_end - finish splicing from pipe
 574 * @pipe:	pipe to splice from
 575 * @sd:		information about the splice operation
 576 *
 577 * Description:
 578 *    This function will wake up pipe writers if necessary.  It should
 579 *    be called after a loop containing splice_from_pipe_next() and
 580 *    splice_from_pipe_feed().
 581 */
 582static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 583{
 584	if (sd->need_wakeup)
 585		wakeup_pipe_writers(pipe);
 586}
 
 587
 588/**
 589 * __splice_from_pipe - splice data from a pipe to given actor
 590 * @pipe:	pipe to splice from
 591 * @sd:		information to @actor
 592 * @actor:	handler that splices the data
 593 *
 594 * Description:
 595 *    This function does little more than loop over the pipe and call
 596 *    @actor to do the actual moving of a single struct pipe_buffer to
 597 *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
 598 *    pipe_to_user.
 599 *
 600 */
 601ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 602			   splice_actor *actor)
 603{
 604	int ret;
 605
 606	splice_from_pipe_begin(sd);
 607	do {
 608		cond_resched();
 609		ret = splice_from_pipe_next(pipe, sd);
 610		if (ret > 0)
 611			ret = splice_from_pipe_feed(pipe, sd, actor);
 612	} while (ret > 0);
 613	splice_from_pipe_end(pipe, sd);
 614
 615	return sd->num_spliced ? sd->num_spliced : ret;
 616}
 617EXPORT_SYMBOL(__splice_from_pipe);
 618
 619/**
 620 * splice_from_pipe - splice data from a pipe to a file
 621 * @pipe:	pipe to splice from
 622 * @out:	file to splice to
 623 * @ppos:	position in @out
 624 * @len:	how many bytes to splice
 625 * @flags:	splice modifier flags
 626 * @actor:	handler that splices the data
 627 *
 628 * Description:
 629 *    See __splice_from_pipe. This function locks the pipe inode,
 630 *    otherwise it's identical to __splice_from_pipe().
 631 *
 632 */
 633ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 634			 loff_t *ppos, size_t len, unsigned int flags,
 635			 splice_actor *actor)
 636{
 637	ssize_t ret;
 638	struct splice_desc sd = {
 639		.total_len = len,
 640		.flags = flags,
 641		.pos = *ppos,
 642		.u.file = out,
 643	};
 644
 645	pipe_lock(pipe);
 646	ret = __splice_from_pipe(pipe, &sd, actor);
 647	pipe_unlock(pipe);
 648
 649	return ret;
 650}
 651
 652/**
 653 * iter_file_splice_write - splice data from a pipe to a file
 654 * @pipe:	pipe info
 655 * @out:	file to write to
 656 * @ppos:	position in @out
 657 * @len:	number of bytes to splice
 658 * @flags:	splice modifier flags
 659 *
 660 * Description:
 661 *    Will either move or copy pages (determined by @flags options) from
 662 *    the given pipe inode to the given file.
 663 *    This one is ->write_iter-based.
 664 *
 665 */
 666ssize_t
 667iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 668			  loff_t *ppos, size_t len, unsigned int flags)
 669{
 
 
 670	struct splice_desc sd = {
 671		.total_len = len,
 672		.flags = flags,
 673		.pos = *ppos,
 674		.u.file = out,
 675	};
 676	int nbufs = pipe->max_usage;
 677	struct bio_vec *array;
 678	ssize_t ret;
 679
 680	if (!out->f_op->write_iter)
 681		return -EINVAL;
 682
 683	array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
 684	if (unlikely(!array))
 685		return -ENOMEM;
 686
 687	pipe_lock(pipe);
 688
 689	splice_from_pipe_begin(&sd);
 690	while (sd.total_len) {
 691		struct kiocb kiocb;
 692		struct iov_iter from;
 693		unsigned int head, tail, mask;
 694		size_t left;
 695		int n;
 696
 697		ret = splice_from_pipe_next(pipe, &sd);
 698		if (ret <= 0)
 699			break;
 700
 701		if (unlikely(nbufs < pipe->max_usage)) {
 702			kfree(array);
 703			nbufs = pipe->max_usage;
 704			array = kcalloc(nbufs, sizeof(struct bio_vec),
 705					GFP_KERNEL);
 706			if (!array) {
 707				ret = -ENOMEM;
 708				break;
 709			}
 710		}
 
 
 
 711
 712		head = pipe->head;
 713		tail = pipe->tail;
 714		mask = pipe->ring_size - 1;
 715
 716		/* build the vector */
 717		left = sd.total_len;
 718		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
 719			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 720			size_t this_len = buf->len;
 721
 722			/* zero-length bvecs are not supported, skip them */
 723			if (!this_len)
 724				continue;
 725			this_len = min(this_len, left);
 726
 727			ret = pipe_buf_confirm(pipe, buf);
 728			if (unlikely(ret)) {
 729				if (ret == -ENODATA)
 730					ret = 0;
 731				goto done;
 732			}
 733
 734			bvec_set_page(&array[n], buf->page, this_len,
 735				      buf->offset);
 736			left -= this_len;
 737			n++;
 738		}
 739
 740		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
 741		init_sync_kiocb(&kiocb, out);
 742		kiocb.ki_pos = sd.pos;
 743		ret = out->f_op->write_iter(&kiocb, &from);
 744		sd.pos = kiocb.ki_pos;
 745		if (ret <= 0)
 746			break;
 747
 748		sd.num_spliced += ret;
 749		sd.total_len -= ret;
 750		*ppos = sd.pos;
 751
 752		/* dismiss the fully eaten buffers, adjust the partial one */
 753		tail = pipe->tail;
 754		while (ret) {
 755			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 756			if (ret >= buf->len) {
 757				ret -= buf->len;
 758				buf->len = 0;
 759				pipe_buf_release(pipe, buf);
 760				tail++;
 761				pipe->tail = tail;
 762				if (pipe->files)
 763					sd.need_wakeup = true;
 764			} else {
 765				buf->offset += ret;
 766				buf->len -= ret;
 767				ret = 0;
 768			}
 769		}
 770	}
 771done:
 772	kfree(array);
 773	splice_from_pipe_end(pipe, &sd);
 774
 775	pipe_unlock(pipe);
 
 
 
 
 
 776
 777	if (sd.num_spliced)
 778		ret = sd.num_spliced;
 
 779
 780	return ret;
 781}
 782
 783EXPORT_SYMBOL(iter_file_splice_write);
 
 
 
 
 
 
 
 
 
 
 
 784
 785#ifdef CONFIG_NET
 786/**
 787 * splice_to_socket - splice data from a pipe to a socket
 788 * @pipe:	pipe to splice from
 789 * @out:	socket to write to
 790 * @ppos:	position in @out
 791 * @len:	number of bytes to splice
 792 * @flags:	splice modifier flags
 793 *
 794 * Description:
 795 *    Will send @len bytes from the pipe to a network socket. No data copying
 796 *    is involved.
 797 *
 798 */
 799ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
 800			 loff_t *ppos, size_t len, unsigned int flags)
 801{
 802	struct socket *sock = sock_from_file(out);
 803	struct bio_vec bvec[16];
 804	struct msghdr msg = {};
 805	ssize_t ret = 0;
 806	size_t spliced = 0;
 807	bool need_wakeup = false;
 808
 809	pipe_lock(pipe);
 810
 811	while (len > 0) {
 812		unsigned int head, tail, mask, bc = 0;
 813		size_t remain = len;
 814
 815		/*
 816		 * Check for signal early to make process killable when there
 817		 * are always buffers available
 818		 */
 819		ret = -ERESTARTSYS;
 820		if (signal_pending(current))
 821			break;
 822
 823		while (pipe_empty(pipe->head, pipe->tail)) {
 824			ret = 0;
 825			if (!pipe->writers)
 826				goto out;
 827
 828			if (spliced)
 829				goto out;
 830
 831			ret = -EAGAIN;
 832			if (flags & SPLICE_F_NONBLOCK)
 833				goto out;
 834
 835			ret = -ERESTARTSYS;
 836			if (signal_pending(current))
 837				goto out;
 838
 839			if (need_wakeup) {
 840				wakeup_pipe_writers(pipe);
 841				need_wakeup = false;
 842			}
 843
 844			pipe_wait_readable(pipe);
 845		}
 846
 847		head = pipe->head;
 848		tail = pipe->tail;
 849		mask = pipe->ring_size - 1;
 850
 851		while (!pipe_empty(head, tail)) {
 852			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 853			size_t seg;
 854
 855			if (!buf->len) {
 856				tail++;
 857				continue;
 858			}
 859
 860			seg = min_t(size_t, remain, buf->len);
 861
 862			ret = pipe_buf_confirm(pipe, buf);
 863			if (unlikely(ret)) {
 864				if (ret == -ENODATA)
 865					ret = 0;
 866				break;
 867			}
 868
 869			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
 870			remain -= seg;
 871			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
 872				break;
 873			tail++;
 874		}
 875
 876		if (!bc)
 877			break;
 878
 879		msg.msg_flags = MSG_SPLICE_PAGES;
 880		if (flags & SPLICE_F_MORE)
 881			msg.msg_flags |= MSG_MORE;
 882		if (remain && pipe_occupancy(pipe->head, tail) > 0)
 883			msg.msg_flags |= MSG_MORE;
 884		if (out->f_flags & O_NONBLOCK)
 885			msg.msg_flags |= MSG_DONTWAIT;
 886
 887		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
 888			      len - remain);
 889		ret = sock_sendmsg(sock, &msg);
 890		if (ret <= 0)
 891			break;
 892
 893		spliced += ret;
 894		len -= ret;
 895		tail = pipe->tail;
 896		while (ret > 0) {
 897			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 898			size_t seg = min_t(size_t, ret, buf->len);
 899
 900			buf->offset += seg;
 901			buf->len -= seg;
 902			ret -= seg;
 903
 904			if (!buf->len) {
 905				pipe_buf_release(pipe, buf);
 906				tail++;
 907			}
 908		}
 909
 910		if (tail != pipe->tail) {
 911			pipe->tail = tail;
 912			if (pipe->files)
 913				need_wakeup = true;
 914		}
 915	}
 916
 917out:
 918	pipe_unlock(pipe);
 919	if (need_wakeup)
 920		wakeup_pipe_writers(pipe);
 921	return spliced ?: ret;
 922}
 923#endif
 924
 925static int warn_unsupported(struct file *file, const char *op)
 926{
 927	pr_debug_ratelimited(
 928		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
 929		op, file, current->pid, current->comm);
 930	return -EINVAL;
 931}
 932
 933/*
 934 * Attempt to initiate a splice from pipe to file.
 935 */
 936static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
 937			      loff_t *ppos, size_t len, unsigned int flags)
 938{
 939	if (unlikely(!out->f_op->splice_write))
 940		return warn_unsupported(out, "write");
 941	return out->f_op->splice_write(pipe, out, ppos, len, flags);
 942}
 943
 944/*
 945 * Indicate to the caller that there was a premature EOF when reading from the
 946 * source and the caller didn't indicate they would be sending more data after
 947 * this.
 948 */
 949static void do_splice_eof(struct splice_desc *sd)
 950{
 951	if (sd->splice_eof)
 952		sd->splice_eof(sd);
 953}
 954
 955/*
 956 * Callers already called rw_verify_area() on the entire range.
 957 * No need to call it for sub ranges.
 958 */
 959static ssize_t do_splice_read(struct file *in, loff_t *ppos,
 960			      struct pipe_inode_info *pipe, size_t len,
 961			      unsigned int flags)
 962{
 963	unsigned int p_space;
 
 
 964
 965	if (unlikely(!(in->f_mode & FMODE_READ)))
 966		return -EBADF;
 967	if (!len)
 968		return 0;
 969
 970	/* Don't try to read more the pipe has space for. */
 971	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
 972	len = min_t(size_t, len, p_space << PAGE_SHIFT);
 973
 974	if (unlikely(len > MAX_RW_COUNT))
 975		len = MAX_RW_COUNT;
 976
 977	if (unlikely(!in->f_op->splice_read))
 978		return warn_unsupported(in, "read");
 979	/*
 980	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
 981	 * buffer, copy into it and splice that into the pipe.
 982	 */
 983	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
 984		return copy_splice_read(in, ppos, pipe, len, flags);
 985	return in->f_op->splice_read(in, ppos, pipe, len, flags);
 986}
 987
 988/**
 989 * vfs_splice_read - Read data from a file and splice it into a pipe
 990 * @in:		File to splice from
 991 * @ppos:	Input file offset
 992 * @pipe:	Pipe to splice to
 993 * @len:	Number of bytes to splice
 994 * @flags:	Splice modifier flags (SPLICE_F_*)
 995 *
 996 * Splice the requested amount of data from the input file to the pipe.  This
 997 * is synchronous as the caller must hold the pipe lock across the entire
 998 * operation.
 999 *
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1002 */
1003ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004			struct pipe_inode_info *pipe, size_t len,
1005			unsigned int flags)
1006{
1007	ssize_t ret;
1008
1009	ret = rw_verify_area(READ, in, ppos, len);
1010	if (unlikely(ret < 0))
1011		return ret;
1012
1013	return do_splice_read(in, ppos, pipe, len, flags);
 
 
 
 
 
1014}
1015EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017/**
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in:		file to splice from
1020 * @sd:		actor information on where to splice to
1021 * @actor:	handles the data splicing
1022 *
1023 * Description:
1024 *    This is a special case helper to splice directly between two
1025 *    points, without requiring an explicit pipe. Internally an allocated
1026 *    pipe is cached in the process, and reused during the lifetime of
1027 *    that process.
1028 *
1029 */
1030ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031			       splice_direct_actor *actor)
1032{
1033	struct pipe_inode_info *pipe;
1034	ssize_t ret, bytes;
 
1035	size_t len;
1036	int i, flags, more;
1037
1038	/*
1039	 * We require the input to be seekable, as we don't want to randomly
1040	 * drop data for eg socket -> socket splicing. Use the piped splicing
1041	 * for that!
1042	 */
1043	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
 
1044		return -EINVAL;
1045
1046	/*
1047	 * neither in nor out is a pipe, setup an internal pipe attached to
1048	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049	 */
1050	pipe = current->splice_pipe;
1051	if (unlikely(!pipe)) {
1052		pipe = alloc_pipe_info();
1053		if (!pipe)
1054			return -ENOMEM;
1055
1056		/*
1057		 * We don't have an immediate reader, but we'll read the stuff
1058		 * out of the pipe right after the splice_to_pipe(). So set
1059		 * PIPE_READERS appropriately.
1060		 */
1061		pipe->readers = 1;
1062
1063		current->splice_pipe = pipe;
1064	}
1065
1066	/*
1067	 * Do the splice.
1068	 */
 
1069	bytes = 0;
1070	len = sd->total_len;
1071
1072	/* Don't block on output, we have to drain the direct pipe. */
1073	flags = sd->flags;
1074	sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076	/*
1077	 * We signal MORE until we've read sufficient data to fulfill the
1078	 * request and we keep signalling it if the caller set it.
1079	 */
1080	more = sd->flags & SPLICE_F_MORE;
1081	sd->flags |= SPLICE_F_MORE;
1082
1083	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085	while (len) {
1086		size_t read_len;
1087		loff_t pos = sd->pos, prev_pos = pos;
1088
1089		ret = do_splice_read(in, &pos, pipe, len, flags);
1090		if (unlikely(ret <= 0))
1091			goto read_failure;
1092
1093		read_len = ret;
1094		sd->total_len = read_len;
1095
1096		/*
1097		 * If we now have sufficient data to fulfill the request then
1098		 * we clear SPLICE_F_MORE if it was not set initially.
1099		 */
1100		if (read_len >= len && !more)
1101			sd->flags &= ~SPLICE_F_MORE;
1102
1103		/*
1104		 * NOTE: nonblocking mode only applies to the input. We
1105		 * must not do the output in nonblocking mode as then we
1106		 * could get stuck data in the internal pipe:
1107		 */
1108		ret = actor(pipe, sd);
1109		if (unlikely(ret <= 0)) {
1110			sd->pos = prev_pos;
1111			goto out_release;
1112		}
1113
1114		bytes += ret;
1115		len -= ret;
1116		sd->pos = pos;
1117
1118		if (ret < read_len) {
1119			sd->pos = prev_pos + ret;
1120			goto out_release;
1121		}
1122	}
1123
1124done:
1125	pipe->tail = pipe->head = 0;
1126	file_accessed(in);
1127	return bytes;
1128
1129read_failure:
1130	/*
1131	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134	 * least 1 byte *then* we will also do the ->splice_eof() call.
1135	 */
1136	if (ret == 0 && !more && len > 0 && bytes)
1137		do_splice_eof(sd);
1138out_release:
1139	/*
1140	 * If we did an incomplete transfer we must release
1141	 * the pipe buffers in question:
1142	 */
1143	for (i = 0; i < pipe->ring_size; i++) {
1144		struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146		if (buf->ops)
1147			pipe_buf_release(pipe, buf);
 
 
1148	}
1149
1150	if (!bytes)
1151		bytes = ret;
1152
1153	goto done;
1154}
1155EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157static int direct_splice_actor(struct pipe_inode_info *pipe,
1158			       struct splice_desc *sd)
1159{
1160	struct file *file = sd->u.file;
1161	long ret;
1162
1163	file_start_write(file);
1164	ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165	file_end_write(file);
1166	return ret;
1167}
1168
1169static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170					struct splice_desc *sd)
1171{
1172	struct file *file = sd->u.file;
1173
1174	return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175}
1176
1177static void direct_file_splice_eof(struct splice_desc *sd)
1178{
1179	struct file *file = sd->u.file;
1180
1181	if (file->f_op->splice_eof)
1182		file->f_op->splice_eof(file);
1183}
1184
1185static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186				      struct file *out, loff_t *opos,
1187				      size_t len, unsigned int flags,
1188				      splice_direct_actor *actor)
1189{
1190	struct splice_desc sd = {
1191		.len		= len,
1192		.total_len	= len,
1193		.flags		= flags,
1194		.pos		= *ppos,
1195		.u.file		= out,
1196		.splice_eof	= direct_file_splice_eof,
1197		.opos		= opos,
1198	};
1199	ssize_t ret;
1200
1201	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202		return -EBADF;
1203
1204	if (unlikely(out->f_flags & O_APPEND))
1205		return -EINVAL;
1206
1207	ret = splice_direct_to_actor(in, &sd, actor);
1208	if (ret > 0)
1209		*ppos = sd.pos;
1210
1211	return ret;
1212}
1213/**
1214 * do_splice_direct - splices data directly between two files
1215 * @in:		file to splice from
1216 * @ppos:	input file offset
1217 * @out:	file to splice to
1218 * @opos:	output file offset
1219 * @len:	number of bytes to splice
1220 * @flags:	splice modifier flags
1221 *
1222 * Description:
1223 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1224 *    doing it in the application would incur an extra system call
1225 *    (splice in + splice out, as compared to just sendfile()). So this helper
1226 *    can splice directly through a process-private pipe.
1227 *
1228 * Callers already called rw_verify_area() on the entire range.
1229 */
1230ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231			 loff_t *opos, size_t len, unsigned int flags)
1232{
1233	return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234				      direct_splice_actor);
1235}
1236EXPORT_SYMBOL(do_splice_direct);
 
 
 
 
 
1237
1238/**
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in:		file to splice from
1241 * @ppos:	input file offset
1242 * @out:	file to splice to
1243 * @opos:	output file offset
1244 * @len:	number of bytes to splice
1245 *
1246 * Description:
1247 *    For use by ->copy_file_range() methods.
1248 *    Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 *    start_file_write() on @out file.
1250 *
1251 * Callers already called rw_verify_area() on the entire range.
1252 */
1253ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254			  loff_t *opos, size_t len)
1255{
1256	lockdep_assert(file_write_started(out));
1257
1258	return do_splice_direct_actor(in, ppos, out, opos,
1259				      min_t(size_t, len, MAX_RW_COUNT),
1260				      0, splice_file_range_actor);
1261}
1262EXPORT_SYMBOL(splice_file_range);
1263
1264static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265{
1266	for (;;) {
1267		if (unlikely(!pipe->readers)) {
1268			send_sig(SIGPIPE, current, 0);
1269			return -EPIPE;
1270		}
1271		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272			return 0;
1273		if (flags & SPLICE_F_NONBLOCK)
1274			return -EAGAIN;
1275		if (signal_pending(current))
1276			return -ERESTARTSYS;
1277		pipe_wait_writable(pipe);
1278	}
1279}
1280
1281static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282			       struct pipe_inode_info *opipe,
1283			       size_t len, unsigned int flags);
1284
1285ssize_t splice_file_to_pipe(struct file *in,
1286			    struct pipe_inode_info *opipe,
1287			    loff_t *offset,
1288			    size_t len, unsigned int flags)
1289{
1290	ssize_t ret;
1291
1292	pipe_lock(opipe);
1293	ret = wait_for_space(opipe, flags);
1294	if (!ret)
1295		ret = do_splice_read(in, offset, opipe, len, flags);
1296	pipe_unlock(opipe);
1297	if (ret > 0)
1298		wakeup_pipe_readers(opipe);
1299	return ret;
1300}
1301
1302/*
1303 * Determine where to splice to/from.
1304 */
1305ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306		  loff_t *off_out, size_t len, unsigned int flags)
 
1307{
1308	struct pipe_inode_info *ipipe;
1309	struct pipe_inode_info *opipe;
1310	loff_t offset;
1311	ssize_t ret;
1312
1313	if (unlikely(!(in->f_mode & FMODE_READ) ||
1314		     !(out->f_mode & FMODE_WRITE)))
1315		return -EBADF;
1316
1317	ipipe = get_pipe_info(in, true);
1318	opipe = get_pipe_info(out, true);
1319
1320	if (ipipe && opipe) {
1321		if (off_in || off_out)
1322			return -ESPIPE;
1323
 
 
 
 
 
 
1324		/* Splicing to self would be fun, but... */
1325		if (ipipe == opipe)
1326			return -EINVAL;
1327
1328		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329			flags |= SPLICE_F_NONBLOCK;
1330
1331		ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332	} else if (ipipe) {
1333		if (off_in)
1334			return -ESPIPE;
1335		if (off_out) {
1336			if (!(out->f_mode & FMODE_PWRITE))
1337				return -EINVAL;
1338			offset = *off_out;
 
1339		} else {
1340			offset = out->f_pos;
1341		}
1342
 
 
 
1343		if (unlikely(out->f_flags & O_APPEND))
1344			return -EINVAL;
1345
1346		ret = rw_verify_area(WRITE, out, &offset, len);
1347		if (unlikely(ret < 0))
1348			return ret;
1349
1350		if (in->f_flags & O_NONBLOCK)
1351			flags |= SPLICE_F_NONBLOCK;
1352
1353		file_start_write(out);
1354		ret = do_splice_from(ipipe, out, &offset, len, flags);
1355		file_end_write(out);
1356
1357		if (!off_out)
1358			out->f_pos = offset;
1359		else
1360			*off_out = offset;
1361	} else if (opipe) {
 
 
 
 
1362		if (off_out)
1363			return -ESPIPE;
1364		if (off_in) {
1365			if (!(in->f_mode & FMODE_PREAD))
1366				return -EINVAL;
1367			offset = *off_in;
 
1368		} else {
1369			offset = in->f_pos;
1370		}
1371
1372		ret = rw_verify_area(READ, in, &offset, len);
1373		if (unlikely(ret < 0))
1374			return ret;
1375
1376		if (out->f_flags & O_NONBLOCK)
1377			flags |= SPLICE_F_NONBLOCK;
1378
1379		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381		if (!off_in)
1382			in->f_pos = offset;
1383		else
1384			*off_in = offset;
1385	} else {
1386		ret = -EINVAL;
1387	}
1388
1389	if (ret > 0) {
1390		/*
1391		 * Generate modify out before access in:
1392		 * do_splice_from() may've already sent modify out,
1393		 * and this ensures the events get merged.
1394		 */
1395		fsnotify_modify(out);
1396		fsnotify_access(in);
1397	}
1398
1399	return ret;
1400}
1401
1402static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403			   struct file *out, loff_t __user *off_out,
1404			   size_t len, unsigned int flags)
1405{
1406	struct pipe_inode_info *ipipe;
1407	struct pipe_inode_info *opipe;
1408	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	ipipe = get_pipe_info(in, true);
1412	opipe = get_pipe_info(out, true);
 
1413
1414	if (ipipe) {
1415		if (off_in)
1416			return -ESPIPE;
1417		pipe_clear_nowait(in);
1418	}
1419	if (opipe) {
1420		if (off_out)
1421			return -ESPIPE;
1422		pipe_clear_nowait(out);
1423	}
1424
1425	if (off_out) {
1426		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427			return -EFAULT;
1428		__off_out = &offset;
1429	}
1430	if (off_in) {
1431		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432			return -EFAULT;
1433		__off_in = &offset;
1434	}
1435
1436	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437	if (ret < 0)
1438		return ret;
 
 
1439
1440	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441		return -EFAULT;
1442	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443		return -EFAULT;
 
 
 
1444
1445	return ret;
1446}
 
1447
1448static ssize_t iter_to_pipe(struct iov_iter *from,
1449			    struct pipe_inode_info *pipe,
1450			    unsigned int flags)
1451{
1452	struct pipe_buffer buf = {
1453		.ops = &user_page_pipe_buf_ops,
1454		.flags = flags
1455	};
1456	size_t total = 0;
1457	ssize_t ret = 0;
1458
1459	while (iov_iter_count(from)) {
1460		struct page *pages[16];
1461		ssize_t left;
1462		size_t start;
1463		int i, n;
1464
1465		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466		if (left <= 0) {
1467			ret = left;
1468			break;
1469		}
1470
1471		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472		for (i = 0; i < n; i++) {
1473			int size = min_t(int, left, PAGE_SIZE - start);
1474
1475			buf.page = pages[i];
1476			buf.offset = start;
1477			buf.len = size;
1478			ret = add_to_pipe(pipe, &buf);
1479			if (unlikely(ret < 0)) {
1480				iov_iter_revert(from, left);
1481				// this one got dropped by add_to_pipe()
1482				while (++i < n)
1483					put_page(pages[i]);
1484				goto out;
1485			}
1486			total += ret;
1487			left -= size;
1488			start = 0;
1489		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	}
1491out:
1492	return total ? total : ret;
 
 
 
1493}
1494
1495static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496			struct splice_desc *sd)
1497{
1498	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499	return n == sd->len ? n : -EFAULT;
1500}
1501
1502/*
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1505 */
1506static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507				unsigned int flags)
1508{
1509	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510	struct splice_desc sd = {
1511		.total_len = iov_iter_count(iter),
1512		.flags = flags,
1513		.u.data = iter
1514	};
1515	ssize_t ret = 0;
1516
 
1517	if (!pipe)
1518		return -EBADF;
1519
1520	pipe_clear_nowait(file);
 
 
 
1521
1522	if (sd.total_len) {
1523		pipe_lock(pipe);
1524		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525		pipe_unlock(pipe);
1526	}
1527
1528	if (ret > 0)
1529		fsnotify_access(file);
 
 
 
 
 
 
 
 
 
 
 
1530
1531	return ret;
1532}
1533
1534/*
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1538 */
1539static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540				unsigned int flags)
1541{
1542	struct pipe_inode_info *pipe;
1543	ssize_t ret = 0;
1544	unsigned buf_flag = 0;
1545
1546	if (flags & SPLICE_F_GIFT)
1547		buf_flag = PIPE_BUF_FLAG_GIFT;
 
 
 
 
 
 
1548
1549	pipe = get_pipe_info(file, true);
1550	if (!pipe)
1551		return -EBADF;
1552
1553	pipe_clear_nowait(file);
 
 
 
 
 
 
 
 
 
1554
1555	pipe_lock(pipe);
1556	ret = wait_for_space(pipe, flags);
1557	if (!ret)
1558		ret = iter_to_pipe(iter, pipe, buf_flag);
1559	pipe_unlock(pipe);
1560	if (ret > 0) {
1561		wakeup_pipe_readers(pipe);
1562		fsnotify_modify(file);
1563	}
1564	return ret;
1565}
1566
1567/*
1568 * Note that vmsplice only really supports true splicing _from_ user memory
1569 * to a pipe, not the other way around. Splicing from user memory is a simple
1570 * operation that can be supported without any funky alignment restrictions
1571 * or nasty vm tricks. We simply map in the user memory and fill them into
1572 * a pipe. The reverse isn't quite as easy, though. There are two possible
1573 * solutions for that:
1574 *
1575 *	- memcpy() the data internally, at which point we might as well just
1576 *	  do a regular read() on the buffer anyway.
1577 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1578 *	  has restriction limitations on both ends of the pipe).
1579 *
1580 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1581 *
1582 */
1583SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1584		unsigned long, nr_segs, unsigned int, flags)
1585{
1586	struct iovec iovstack[UIO_FASTIOV];
1587	struct iovec *iov = iovstack;
1588	struct iov_iter iter;
1589	ssize_t error;
1590	int type;
1591
1592	if (unlikely(flags & ~SPLICE_F_ALL))
1593		return -EINVAL;
 
 
1594
1595	CLASS(fd, f)(fd);
1596	if (fd_empty(f))
1597		return -EBADF;
1598	if (fd_file(f)->f_mode & FMODE_WRITE)
1599		type = ITER_SOURCE;
1600	else if (fd_file(f)->f_mode & FMODE_READ)
1601		type = ITER_DEST;
1602	else
1603		return -EBADF;
1604
1605	error = import_iovec(type, uiov, nr_segs,
1606			     ARRAY_SIZE(iovstack), &iov, &iter);
1607	if (error < 0)
1608		return error;
1609
1610	if (!iov_iter_count(&iter))
1611		error = 0;
1612	else if (type == ITER_SOURCE)
1613		error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1614	else
1615		error = vmsplice_to_user(fd_file(f), &iter, flags);
1616
1617	kfree(iov);
1618	return error;
1619}
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1622		int, fd_out, loff_t __user *, off_out,
1623		size_t, len, unsigned int, flags)
1624{
 
 
 
1625	if (unlikely(!len))
1626		return 0;
1627
1628	if (unlikely(flags & ~SPLICE_F_ALL))
1629		return -EINVAL;
1630
1631	CLASS(fd, in)(fd_in);
1632	if (fd_empty(in))
1633		return -EBADF;
1634
1635	CLASS(fd, out)(fd_out);
1636	if (fd_empty(out))
1637		return -EBADF;
1638
1639	return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1640					    len, flags);
 
 
 
1641}
1642
1643/*
1644 * Make sure there's data to read. Wait for input if we can, otherwise
1645 * return an appropriate error.
1646 */
1647static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1648{
1649	int ret;
1650
1651	/*
1652	 * Check the pipe occupancy without the inode lock first. This function
1653	 * is speculative anyways, so missing one is ok.
1654	 */
1655	if (!pipe_empty(pipe->head, pipe->tail))
1656		return 0;
1657
1658	ret = 0;
1659	pipe_lock(pipe);
1660
1661	while (pipe_empty(pipe->head, pipe->tail)) {
1662		if (signal_pending(current)) {
1663			ret = -ERESTARTSYS;
1664			break;
1665		}
1666		if (!pipe->writers)
1667			break;
1668		if (flags & SPLICE_F_NONBLOCK) {
1669			ret = -EAGAIN;
1670			break;
 
 
1671		}
1672		pipe_wait_readable(pipe);
1673	}
1674
1675	pipe_unlock(pipe);
1676	return ret;
1677}
1678
1679/*
1680 * Make sure there's writeable room. Wait for room if we can, otherwise
1681 * return an appropriate error.
1682 */
1683static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1684{
1685	int ret;
1686
1687	/*
1688	 * Check pipe occupancy without the inode lock first. This function
1689	 * is speculative anyways, so missing one is ok.
1690	 */
1691	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1692		return 0;
1693
1694	ret = 0;
1695	pipe_lock(pipe);
1696
1697	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1698		if (!pipe->readers) {
1699			send_sig(SIGPIPE, current, 0);
1700			ret = -EPIPE;
1701			break;
1702		}
1703		if (flags & SPLICE_F_NONBLOCK) {
1704			ret = -EAGAIN;
1705			break;
1706		}
1707		if (signal_pending(current)) {
1708			ret = -ERESTARTSYS;
1709			break;
1710		}
1711		pipe_wait_writable(pipe);
 
 
1712	}
1713
1714	pipe_unlock(pipe);
1715	return ret;
1716}
1717
1718/*
1719 * Splice contents of ipipe to opipe.
1720 */
1721static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1722			       struct pipe_inode_info *opipe,
1723			       size_t len, unsigned int flags)
1724{
1725	struct pipe_buffer *ibuf, *obuf;
1726	unsigned int i_head, o_head;
1727	unsigned int i_tail, o_tail;
1728	unsigned int i_mask, o_mask;
1729	int ret = 0;
1730	bool input_wakeup = false;
1731
1732
1733retry:
1734	ret = ipipe_prep(ipipe, flags);
1735	if (ret)
1736		return ret;
1737
1738	ret = opipe_prep(opipe, flags);
1739	if (ret)
1740		return ret;
1741
1742	/*
1743	 * Potential ABBA deadlock, work around it by ordering lock
1744	 * grabbing by pipe info address. Otherwise two different processes
1745	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1746	 */
1747	pipe_double_lock(ipipe, opipe);
1748
1749	i_tail = ipipe->tail;
1750	i_mask = ipipe->ring_size - 1;
1751	o_head = opipe->head;
1752	o_mask = opipe->ring_size - 1;
1753
1754	do {
1755		size_t o_len;
1756
1757		if (!opipe->readers) {
1758			send_sig(SIGPIPE, current, 0);
1759			if (!ret)
1760				ret = -EPIPE;
1761			break;
1762		}
1763
1764		i_head = ipipe->head;
1765		o_tail = opipe->tail;
1766
1767		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1768			break;
1769
1770		/*
1771		 * Cannot make any progress, because either the input
1772		 * pipe is empty or the output pipe is full.
1773		 */
1774		if (pipe_empty(i_head, i_tail) ||
1775		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1776			/* Already processed some buffers, break */
1777			if (ret)
1778				break;
1779
1780			if (flags & SPLICE_F_NONBLOCK) {
1781				ret = -EAGAIN;
1782				break;
1783			}
1784
1785			/*
1786			 * We raced with another reader/writer and haven't
1787			 * managed to process any buffers.  A zero return
1788			 * value means EOF, so retry instead.
1789			 */
1790			pipe_unlock(ipipe);
1791			pipe_unlock(opipe);
1792			goto retry;
1793		}
1794
1795		ibuf = &ipipe->bufs[i_tail & i_mask];
1796		obuf = &opipe->bufs[o_head & o_mask];
 
1797
1798		if (len >= ibuf->len) {
1799			/*
1800			 * Simply move the whole buffer from ipipe to opipe
1801			 */
1802			*obuf = *ibuf;
1803			ibuf->ops = NULL;
1804			i_tail++;
1805			ipipe->tail = i_tail;
 
1806			input_wakeup = true;
1807			o_len = obuf->len;
1808			o_head++;
1809			opipe->head = o_head;
1810		} else {
1811			/*
1812			 * Get a reference to this pipe buffer,
1813			 * so we can copy the contents over.
1814			 */
1815			if (!pipe_buf_get(ipipe, ibuf)) {
1816				if (ret == 0)
1817					ret = -EFAULT;
1818				break;
1819			}
1820			*obuf = *ibuf;
1821
1822			/*
1823			 * Don't inherit the gift and merge flags, we need to
1824			 * prevent multiple steals of this page.
1825			 */
1826			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1827			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1828
1829			obuf->len = len;
1830			ibuf->offset += len;
1831			ibuf->len -= len;
1832			o_len = len;
1833			o_head++;
1834			opipe->head = o_head;
1835		}
1836		ret += o_len;
1837		len -= o_len;
1838	} while (len);
1839
1840	pipe_unlock(ipipe);
1841	pipe_unlock(opipe);
1842
1843	/*
1844	 * If we put data in the output pipe, wakeup any potential readers.
1845	 */
1846	if (ret > 0)
1847		wakeup_pipe_readers(opipe);
1848
1849	if (input_wakeup)
1850		wakeup_pipe_writers(ipipe);
1851
1852	return ret;
1853}
1854
1855/*
1856 * Link contents of ipipe to opipe.
1857 */
1858static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1859			 struct pipe_inode_info *opipe,
1860			 size_t len, unsigned int flags)
1861{
1862	struct pipe_buffer *ibuf, *obuf;
1863	unsigned int i_head, o_head;
1864	unsigned int i_tail, o_tail;
1865	unsigned int i_mask, o_mask;
1866	ssize_t ret = 0;
1867
1868	/*
1869	 * Potential ABBA deadlock, work around it by ordering lock
1870	 * grabbing by pipe info address. Otherwise two different processes
1871	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1872	 */
1873	pipe_double_lock(ipipe, opipe);
1874
1875	i_tail = ipipe->tail;
1876	i_mask = ipipe->ring_size - 1;
1877	o_head = opipe->head;
1878	o_mask = opipe->ring_size - 1;
1879
1880	do {
1881		if (!opipe->readers) {
1882			send_sig(SIGPIPE, current, 0);
1883			if (!ret)
1884				ret = -EPIPE;
1885			break;
1886		}
1887
1888		i_head = ipipe->head;
1889		o_tail = opipe->tail;
1890
1891		/*
1892		 * If we have iterated all input buffers or run out of
1893		 * output room, break.
1894		 */
1895		if (pipe_empty(i_head, i_tail) ||
1896		    pipe_full(o_head, o_tail, opipe->max_usage))
1897			break;
1898
1899		ibuf = &ipipe->bufs[i_tail & i_mask];
1900		obuf = &opipe->bufs[o_head & o_mask];
1901
1902		/*
1903		 * Get a reference to this pipe buffer,
1904		 * so we can copy the contents over.
1905		 */
1906		if (!pipe_buf_get(ipipe, ibuf)) {
1907			if (ret == 0)
1908				ret = -EFAULT;
1909			break;
1910		}
1911
 
1912		*obuf = *ibuf;
1913
1914		/*
1915		 * Don't inherit the gift and merge flag, we need to prevent
1916		 * multiple steals of this page.
1917		 */
1918		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1919		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1920
1921		if (obuf->len > len)
1922			obuf->len = len;
 
 
1923		ret += obuf->len;
1924		len -= obuf->len;
1925
1926		o_head++;
1927		opipe->head = o_head;
1928		i_tail++;
1929	} while (len);
1930
 
 
 
 
 
 
 
1931	pipe_unlock(ipipe);
1932	pipe_unlock(opipe);
1933
1934	/*
1935	 * If we put data in the output pipe, wakeup any potential readers.
1936	 */
1937	if (ret > 0)
1938		wakeup_pipe_readers(opipe);
1939
1940	return ret;
1941}
1942
1943/*
1944 * This is a tee(1) implementation that works on pipes. It doesn't copy
1945 * any data, it simply references the 'in' pages on the 'out' pipe.
1946 * The 'flags' used are the SPLICE_F_* variants, currently the only
1947 * applicable one is SPLICE_F_NONBLOCK.
1948 */
1949ssize_t do_tee(struct file *in, struct file *out, size_t len,
1950	       unsigned int flags)
1951{
1952	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1953	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1954	ssize_t ret = -EINVAL;
1955
1956	if (unlikely(!(in->f_mode & FMODE_READ) ||
1957		     !(out->f_mode & FMODE_WRITE)))
1958		return -EBADF;
1959
1960	/*
1961	 * Duplicate the contents of ipipe to opipe without actually
1962	 * copying the data.
1963	 */
1964	if (ipipe && opipe && ipipe != opipe) {
1965		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1966			flags |= SPLICE_F_NONBLOCK;
1967
1968		/*
1969		 * Keep going, unless we encounter an error. The ipipe/opipe
1970		 * ordering doesn't really matter.
1971		 */
1972		ret = ipipe_prep(ipipe, flags);
1973		if (!ret) {
1974			ret = opipe_prep(opipe, flags);
1975			if (!ret)
1976				ret = link_pipe(ipipe, opipe, len, flags);
1977		}
1978	}
1979
1980	if (ret > 0) {
1981		fsnotify_access(in);
1982		fsnotify_modify(out);
1983	}
1984
1985	return ret;
1986}
1987
1988SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1989{
1990	if (unlikely(flags & ~SPLICE_F_ALL))
1991		return -EINVAL;
1992
1993	if (unlikely(!len))
1994		return 0;
1995
1996	CLASS(fd, in)(fdin);
1997	if (fd_empty(in))
1998		return -EBADF;
1999
2000	CLASS(fd, out)(fdout);
2001	if (fd_empty(out))
2002		return -EBADF;
 
 
 
 
 
 
 
2003
2004	return do_tee(fd_file(in), fd_file(out), len, flags);
2005}
v3.15
 
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
 
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/pagemap.h>
  23#include <linux/splice.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/export.h>
  29#include <linux/syscalls.h>
  30#include <linux/uio.h>
 
  31#include <linux/security.h>
  32#include <linux/gfp.h>
 
  33#include <linux/socket.h>
  34#include <linux/compat.h>
 
  35#include "internal.h"
  36
  37/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  39 * a vm helper function, it's already simplified quite a bit by the
  40 * addition of remove_mapping(). If success is returned, the caller may
  41 * attempt to reuse this page for another destination.
  42 */
  43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  44				     struct pipe_buffer *buf)
  45{
  46	struct page *page = buf->page;
  47	struct address_space *mapping;
  48
  49	lock_page(page);
  50
  51	mapping = page_mapping(page);
  52	if (mapping) {
  53		WARN_ON(!PageUptodate(page));
  54
  55		/*
  56		 * At least for ext2 with nobh option, we need to wait on
  57		 * writeback completing on this page, since we'll remove it
  58		 * from the pagecache.  Otherwise truncate wont wait on the
  59		 * page, allowing the disk blocks to be reused by someone else
  60		 * before we actually wrote our data to them. fs corruption
  61		 * ensues.
  62		 */
  63		wait_on_page_writeback(page);
  64
  65		if (page_has_private(page) &&
  66		    !try_to_release_page(page, GFP_KERNEL))
  67			goto out_unlock;
  68
  69		/*
  70		 * If we succeeded in removing the mapping, set LRU flag
  71		 * and return good.
  72		 */
  73		if (remove_mapping(mapping, page)) {
  74			buf->flags |= PIPE_BUF_FLAG_LRU;
  75			return 0;
  76		}
  77	}
  78
  79	/*
  80	 * Raced with truncate or failed to remove page from current
  81	 * address space, unlock and return failure.
  82	 */
  83out_unlock:
  84	unlock_page(page);
  85	return 1;
  86}
  87
  88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  89					struct pipe_buffer *buf)
  90{
  91	page_cache_release(buf->page);
  92	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  93}
  94
  95/*
  96 * Check whether the contents of buf is OK to access. Since the content
  97 * is a page cache page, IO may be in flight.
  98 */
  99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
 100				       struct pipe_buffer *buf)
 101{
 102	struct page *page = buf->page;
 103	int err;
 104
 105	if (!PageUptodate(page)) {
 106		lock_page(page);
 107
 108		/*
 109		 * Page got truncated/unhashed. This will cause a 0-byte
 110		 * splice, if this is the first page.
 111		 */
 112		if (!page->mapping) {
 113			err = -ENODATA;
 114			goto error;
 115		}
 116
 117		/*
 118		 * Uh oh, read-error from disk.
 119		 */
 120		if (!PageUptodate(page)) {
 121			err = -EIO;
 122			goto error;
 123		}
 124
 125		/*
 126		 * Page is ok afterall, we are done.
 127		 */
 128		unlock_page(page);
 129	}
 130
 131	return 0;
 132error:
 133	unlock_page(page);
 134	return err;
 135}
 136
 137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 138	.can_merge = 0,
 139	.confirm = page_cache_pipe_buf_confirm,
 140	.release = page_cache_pipe_buf_release,
 141	.steal = page_cache_pipe_buf_steal,
 142	.get = generic_pipe_buf_get,
 143};
 144
 145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 146				    struct pipe_buffer *buf)
 147{
 148	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 149		return 1;
 150
 151	buf->flags |= PIPE_BUF_FLAG_LRU;
 152	return generic_pipe_buf_steal(pipe, buf);
 153}
 154
 155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 156	.can_merge = 0,
 157	.confirm = generic_pipe_buf_confirm,
 158	.release = page_cache_pipe_buf_release,
 159	.steal = user_page_pipe_buf_steal,
 160	.get = generic_pipe_buf_get,
 161};
 162
 163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 164{
 165	smp_mb();
 166	if (waitqueue_active(&pipe->wait))
 167		wake_up_interruptible(&pipe->wait);
 168	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 169}
 170
 171/**
 172 * splice_to_pipe - fill passed data into a pipe
 173 * @pipe:	pipe to fill
 174 * @spd:	data to fill
 175 *
 176 * Description:
 177 *    @spd contains a map of pages and len/offset tuples, along with
 178 *    the struct pipe_buf_operations associated with these pages. This
 179 *    function will link that data to the pipe.
 180 *
 181 */
 182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 183		       struct splice_pipe_desc *spd)
 184{
 185	unsigned int spd_pages = spd->nr_pages;
 186	int ret, do_wakeup, page_nr;
 
 
 
 
 187
 188	ret = 0;
 189	do_wakeup = 0;
 190	page_nr = 0;
 191
 192	pipe_lock(pipe);
 
 
 
 
 193
 194	for (;;) {
 195		if (!pipe->readers) {
 196			send_sig(SIGPIPE, current, 0);
 197			if (!ret)
 198				ret = -EPIPE;
 199			break;
 200		}
 201
 202		if (pipe->nrbufs < pipe->buffers) {
 203			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 204			struct pipe_buffer *buf = pipe->bufs + newbuf;
 205
 206			buf->page = spd->pages[page_nr];
 207			buf->offset = spd->partial[page_nr].offset;
 208			buf->len = spd->partial[page_nr].len;
 209			buf->private = spd->partial[page_nr].private;
 210			buf->ops = spd->ops;
 211			if (spd->flags & SPLICE_F_GIFT)
 212				buf->flags |= PIPE_BUF_FLAG_GIFT;
 213
 214			pipe->nrbufs++;
 215			page_nr++;
 216			ret += buf->len;
 217
 218			if (pipe->files)
 219				do_wakeup = 1;
 220
 221			if (!--spd->nr_pages)
 222				break;
 223			if (pipe->nrbufs < pipe->buffers)
 224				continue;
 
 
 225
 226			break;
 227		}
 228
 229		if (spd->flags & SPLICE_F_NONBLOCK) {
 230			if (!ret)
 231				ret = -EAGAIN;
 232			break;
 233		}
 234
 235		if (signal_pending(current)) {
 236			if (!ret)
 237				ret = -ERESTARTSYS;
 238			break;
 239		}
 240
 241		if (do_wakeup) {
 242			smp_mb();
 243			if (waitqueue_active(&pipe->wait))
 244				wake_up_interruptible_sync(&pipe->wait);
 245			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 246			do_wakeup = 0;
 247		}
 248
 249		pipe->waiting_writers++;
 250		pipe_wait(pipe);
 251		pipe->waiting_writers--;
 252	}
 253
 254	pipe_unlock(pipe);
 255
 256	if (do_wakeup)
 257		wakeup_pipe_readers(pipe);
 258
 
 259	while (page_nr < spd_pages)
 260		spd->spd_release(spd, page_nr++);
 261
 262	return ret;
 263}
 
 264
 265void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 266{
 267	page_cache_release(spd->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268}
 
 269
 270/*
 271 * Check if we need to grow the arrays holding pages and partial page
 272 * descriptions.
 273 */
 274int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 275{
 276	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
 277
 278	spd->nr_pages_max = buffers;
 279	if (buffers <= PIPE_DEF_BUFFERS)
 280		return 0;
 281
 282	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
 283	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
 
 284
 285	if (spd->pages && spd->partial)
 286		return 0;
 287
 288	kfree(spd->pages);
 289	kfree(spd->partial);
 290	return -ENOMEM;
 291}
 292
 293void splice_shrink_spd(struct splice_pipe_desc *spd)
 294{
 295	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
 296		return;
 297
 298	kfree(spd->pages);
 299	kfree(spd->partial);
 300}
 301
 302static int
 303__generic_file_splice_read(struct file *in, loff_t *ppos,
 304			   struct pipe_inode_info *pipe, size_t len,
 305			   unsigned int flags)
 306{
 307	struct address_space *mapping = in->f_mapping;
 308	unsigned int loff, nr_pages, req_pages;
 309	struct page *pages[PIPE_DEF_BUFFERS];
 310	struct partial_page partial[PIPE_DEF_BUFFERS];
 311	struct page *page;
 312	pgoff_t index, end_index;
 313	loff_t isize;
 314	int error, page_nr;
 315	struct splice_pipe_desc spd = {
 316		.pages = pages,
 317		.partial = partial,
 318		.nr_pages_max = PIPE_DEF_BUFFERS,
 319		.flags = flags,
 320		.ops = &page_cache_pipe_buf_ops,
 321		.spd_release = spd_release_page,
 322	};
 
 
 
 
 
 
 
 
 
 
 323
 324	if (splice_grow_spd(pipe, &spd))
 
 
 
 
 
 
 
 
 325		return -ENOMEM;
 326
 327	index = *ppos >> PAGE_CACHE_SHIFT;
 328	loff = *ppos & ~PAGE_CACHE_MASK;
 329	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 330	nr_pages = min(req_pages, spd.nr_pages_max);
 331
 332	/*
 333	 * Lookup the (hopefully) full range of pages we need.
 334	 */
 335	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
 336	index += spd.nr_pages;
 337
 338	/*
 339	 * If find_get_pages_contig() returned fewer pages than we needed,
 340	 * readahead/allocate the rest and fill in the holes.
 341	 */
 342	if (spd.nr_pages < nr_pages)
 343		page_cache_sync_readahead(mapping, &in->f_ra, in,
 344				index, req_pages - spd.nr_pages);
 345
 346	error = 0;
 347	while (spd.nr_pages < nr_pages) {
 348		/*
 349		 * Page could be there, find_get_pages_contig() breaks on
 350		 * the first hole.
 351		 */
 352		page = find_get_page(mapping, index);
 353		if (!page) {
 354			/*
 355			 * page didn't exist, allocate one.
 356			 */
 357			page = page_cache_alloc_cold(mapping);
 358			if (!page)
 359				break;
 360
 361			error = add_to_page_cache_lru(page, mapping, index,
 362						GFP_KERNEL);
 363			if (unlikely(error)) {
 364				page_cache_release(page);
 365				if (error == -EEXIST)
 366					continue;
 367				break;
 368			}
 369			/*
 370			 * add_to_page_cache() locks the page, unlock it
 371			 * to avoid convoluting the logic below even more.
 372			 */
 373			unlock_page(page);
 374		}
 375
 376		spd.pages[spd.nr_pages++] = page;
 377		index++;
 
 
 
 
 378	}
 379
 380	/*
 381	 * Now loop over the map and see if we need to start IO on any
 382	 * pages, fill in the partial map, etc.
 383	 */
 384	index = *ppos >> PAGE_CACHE_SHIFT;
 385	nr_pages = spd.nr_pages;
 386	spd.nr_pages = 0;
 387	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 388		unsigned int this_len;
 389
 390		if (!len)
 391			break;
 392
 393		/*
 394		 * this_len is the max we'll use from this page
 395		 */
 396		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 397		page = spd.pages[page_nr];
 398
 399		if (PageReadahead(page))
 400			page_cache_async_readahead(mapping, &in->f_ra, in,
 401					page, index, req_pages - page_nr);
 402
 403		/*
 404		 * If the page isn't uptodate, we may need to start io on it
 405		 */
 406		if (!PageUptodate(page)) {
 407			lock_page(page);
 408
 409			/*
 410			 * Page was truncated, or invalidated by the
 411			 * filesystem.  Redo the find/create, but this time the
 412			 * page is kept locked, so there's no chance of another
 413			 * race with truncate/invalidate.
 414			 */
 415			if (!page->mapping) {
 416				unlock_page(page);
 417				page = find_or_create_page(mapping, index,
 418						mapping_gfp_mask(mapping));
 419
 420				if (!page) {
 421					error = -ENOMEM;
 422					break;
 423				}
 424				page_cache_release(spd.pages[page_nr]);
 425				spd.pages[page_nr] = page;
 426			}
 427			/*
 428			 * page was already under io and is now done, great
 429			 */
 430			if (PageUptodate(page)) {
 431				unlock_page(page);
 432				goto fill_it;
 433			}
 434
 435			/*
 436			 * need to read in the page
 437			 */
 438			error = mapping->a_ops->readpage(in, page);
 439			if (unlikely(error)) {
 440				/*
 441				 * We really should re-lookup the page here,
 442				 * but it complicates things a lot. Instead
 443				 * lets just do what we already stored, and
 444				 * we'll get it the next time we are called.
 445				 */
 446				if (error == AOP_TRUNCATED_PAGE)
 447					error = 0;
 448
 449				break;
 450			}
 451		}
 452fill_it:
 453		/*
 454		 * i_size must be checked after PageUptodate.
 455		 */
 456		isize = i_size_read(mapping->host);
 457		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 458		if (unlikely(!isize || index > end_index))
 459			break;
 460
 461		/*
 462		 * if this is the last page, see if we need to shrink
 463		 * the length and stop
 464		 */
 465		if (end_index == index) {
 466			unsigned int plen;
 467
 468			/*
 469			 * max good bytes in this page
 470			 */
 471			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 472			if (plen <= loff)
 473				break;
 474
 475			/*
 476			 * force quit after adding this page
 477			 */
 478			this_len = min(this_len, plen - loff);
 479			len = this_len;
 480		}
 481
 482		spd.partial[page_nr].offset = loff;
 483		spd.partial[page_nr].len = this_len;
 484		len -= this_len;
 485		loff = 0;
 486		spd.nr_pages++;
 487		index++;
 488	}
 489
 490	/*
 491	 * Release any pages at the end, if we quit early. 'page_nr' is how far
 492	 * we got, 'nr_pages' is how many pages are in the map.
 493	 */
 494	while (page_nr < nr_pages)
 495		page_cache_release(spd.pages[page_nr++]);
 496	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
 497
 498	if (spd.nr_pages)
 499		error = splice_to_pipe(pipe, &spd);
 500
 501	splice_shrink_spd(&spd);
 502	return error;
 503}
 504
 505/**
 506 * generic_file_splice_read - splice data from file to a pipe
 507 * @in:		file to splice from
 508 * @ppos:	position in @in
 509 * @pipe:	pipe to splice to
 510 * @len:	number of bytes to splice
 511 * @flags:	splice modifier flags
 512 *
 513 * Description:
 514 *    Will read pages from given file and fill them into a pipe. Can be
 515 *    used as long as the address_space operations for the source implements
 516 *    a readpage() hook.
 517 *
 518 */
 519ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 520				 struct pipe_inode_info *pipe, size_t len,
 521				 unsigned int flags)
 522{
 523	loff_t isize, left;
 524	int ret;
 525
 526	isize = i_size_read(in->f_mapping->host);
 527	if (unlikely(*ppos >= isize))
 528		return 0;
 529
 530	left = isize - *ppos;
 531	if (unlikely(left < len))
 532		len = left;
 533
 534	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
 535	if (ret > 0) {
 536		*ppos += ret;
 537		file_accessed(in);
 
 
 
 
 
 
 
 
 
 
 538	}
 539
 
 540	return ret;
 541}
 542EXPORT_SYMBOL(generic_file_splice_read);
 543
 544static const struct pipe_buf_operations default_pipe_buf_ops = {
 545	.can_merge = 0,
 546	.confirm = generic_pipe_buf_confirm,
 547	.release = generic_pipe_buf_release,
 548	.steal = generic_pipe_buf_steal,
 549	.get = generic_pipe_buf_get,
 550};
 551
 552static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
 553				    struct pipe_buffer *buf)
 554{
 555	return 1;
 556}
 557
 558/* Pipe buffer operations for a socket and similar. */
 559const struct pipe_buf_operations nosteal_pipe_buf_ops = {
 560	.can_merge = 0,
 561	.confirm = generic_pipe_buf_confirm,
 562	.release = generic_pipe_buf_release,
 563	.steal = generic_pipe_buf_nosteal,
 564	.get = generic_pipe_buf_get,
 565};
 566EXPORT_SYMBOL(nosteal_pipe_buf_ops);
 567
 568static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
 569			    unsigned long vlen, loff_t offset)
 570{
 571	mm_segment_t old_fs;
 572	loff_t pos = offset;
 573	ssize_t res;
 574
 575	old_fs = get_fs();
 576	set_fs(get_ds());
 577	/* The cast to a user pointer is valid due to the set_fs() */
 578	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
 579	set_fs(old_fs);
 580
 581	return res;
 582}
 583
 584ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 585			    loff_t pos)
 586{
 587	mm_segment_t old_fs;
 588	ssize_t res;
 589
 590	old_fs = get_fs();
 591	set_fs(get_ds());
 592	/* The cast to a user pointer is valid due to the set_fs() */
 593	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
 594	set_fs(old_fs);
 595
 596	return res;
 597}
 598EXPORT_SYMBOL(kernel_write);
 599
 600ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 601				 struct pipe_inode_info *pipe, size_t len,
 602				 unsigned int flags)
 603{
 604	unsigned int nr_pages;
 605	unsigned int nr_freed;
 606	size_t offset;
 607	struct page *pages[PIPE_DEF_BUFFERS];
 608	struct partial_page partial[PIPE_DEF_BUFFERS];
 609	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
 610	ssize_t res;
 611	size_t this_len;
 612	int error;
 613	int i;
 614	struct splice_pipe_desc spd = {
 615		.pages = pages,
 616		.partial = partial,
 617		.nr_pages_max = PIPE_DEF_BUFFERS,
 618		.flags = flags,
 619		.ops = &default_pipe_buf_ops,
 620		.spd_release = spd_release_page,
 621	};
 622
 623	if (splice_grow_spd(pipe, &spd))
 624		return -ENOMEM;
 625
 626	res = -ENOMEM;
 627	vec = __vec;
 628	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
 629		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
 630		if (!vec)
 631			goto shrink_ret;
 632	}
 633
 634	offset = *ppos & ~PAGE_CACHE_MASK;
 635	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 636
 637	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
 638		struct page *page;
 639
 640		page = alloc_page(GFP_USER);
 641		error = -ENOMEM;
 642		if (!page)
 643			goto err;
 644
 645		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
 646		vec[i].iov_base = (void __user *) page_address(page);
 647		vec[i].iov_len = this_len;
 648		spd.pages[i] = page;
 649		spd.nr_pages++;
 650		len -= this_len;
 651		offset = 0;
 652	}
 653
 654	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
 655	if (res < 0) {
 656		error = res;
 657		goto err;
 658	}
 659
 660	error = 0;
 661	if (!res)
 662		goto err;
 663
 664	nr_freed = 0;
 665	for (i = 0; i < spd.nr_pages; i++) {
 666		this_len = min_t(size_t, vec[i].iov_len, res);
 667		spd.partial[i].offset = 0;
 668		spd.partial[i].len = this_len;
 669		if (!this_len) {
 670			__free_page(spd.pages[i]);
 671			spd.pages[i] = NULL;
 672			nr_freed++;
 673		}
 674		res -= this_len;
 675	}
 676	spd.nr_pages -= nr_freed;
 677
 678	res = splice_to_pipe(pipe, &spd);
 679	if (res > 0)
 680		*ppos += res;
 681
 682shrink_ret:
 683	if (vec != __vec)
 684		kfree(vec);
 685	splice_shrink_spd(&spd);
 686	return res;
 687
 688err:
 689	for (i = 0; i < spd.nr_pages; i++)
 690		__free_page(spd.pages[i]);
 691
 692	res = error;
 693	goto shrink_ret;
 694}
 695EXPORT_SYMBOL(default_file_splice_read);
 696
 697/*
 698 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 699 * using sendpage(). Return the number of bytes sent.
 700 */
 701static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 702			    struct pipe_buffer *buf, struct splice_desc *sd)
 703{
 704	struct file *file = sd->u.file;
 705	loff_t pos = sd->pos;
 706	int more;
 707
 708	if (!likely(file->f_op->sendpage))
 709		return -EINVAL;
 710
 711	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
 712
 713	if (sd->len < sd->total_len && pipe->nrbufs > 1)
 714		more |= MSG_SENDPAGE_NOTLAST;
 715
 716	return file->f_op->sendpage(file, buf->page, buf->offset,
 717				    sd->len, &pos, more);
 718}
 719
 720/*
 721 * This is a little more tricky than the file -> pipe splicing. There are
 722 * basically three cases:
 723 *
 724 *	- Destination page already exists in the address space and there
 725 *	  are users of it. For that case we have no other option that
 726 *	  copying the data. Tough luck.
 727 *	- Destination page already exists in the address space, but there
 728 *	  are no users of it. Make sure it's uptodate, then drop it. Fall
 729 *	  through to last case.
 730 *	- Destination page does not exist, we can add the pipe page to
 731 *	  the page cache and avoid the copy.
 732 *
 733 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 734 * sd->flags), we attempt to migrate pages from the pipe to the output
 735 * file address space page cache. This is possible if no one else has
 736 * the pipe page referenced outside of the pipe and page cache. If
 737 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 738 * a new page in the output file page cache and fill/dirty that.
 739 */
 740int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 741		 struct splice_desc *sd)
 742{
 743	struct file *file = sd->u.file;
 744	struct address_space *mapping = file->f_mapping;
 745	unsigned int offset, this_len;
 746	struct page *page;
 747	void *fsdata;
 748	int ret;
 749
 750	offset = sd->pos & ~PAGE_CACHE_MASK;
 751
 752	this_len = sd->len;
 753	if (this_len + offset > PAGE_CACHE_SIZE)
 754		this_len = PAGE_CACHE_SIZE - offset;
 755
 756	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
 757				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
 758	if (unlikely(ret))
 759		goto out;
 760
 761	if (buf->page != page) {
 762		char *src = kmap_atomic(buf->page);
 763		char *dst = kmap_atomic(page);
 764
 765		memcpy(dst + offset, src + buf->offset, this_len);
 766		flush_dcache_page(page);
 767		kunmap_atomic(dst);
 768		kunmap_atomic(src);
 769	}
 770	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
 771				page, fsdata);
 772out:
 773	return ret;
 774}
 775EXPORT_SYMBOL(pipe_to_file);
 776
 777static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 778{
 779	smp_mb();
 780	if (waitqueue_active(&pipe->wait))
 781		wake_up_interruptible(&pipe->wait);
 782	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 783}
 784
 785/**
 786 * splice_from_pipe_feed - feed available data from a pipe to a file
 787 * @pipe:	pipe to splice from
 788 * @sd:		information to @actor
 789 * @actor:	handler that splices the data
 790 *
 791 * Description:
 792 *    This function loops over the pipe and calls @actor to do the
 793 *    actual moving of a single struct pipe_buffer to the desired
 794 *    destination.  It returns when there's no more buffers left in
 795 *    the pipe or if the requested number of bytes (@sd->total_len)
 796 *    have been copied.  It returns a positive number (one) if the
 797 *    pipe needs to be filled with more data, zero if the required
 798 *    number of bytes have been copied and -errno on error.
 799 *
 800 *    This, together with splice_from_pipe_{begin,end,next}, may be
 801 *    used to implement the functionality of __splice_from_pipe() when
 802 *    locking is required around copying the pipe buffers to the
 803 *    destination.
 804 */
 805int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 806			  splice_actor *actor)
 807{
 
 
 
 808	int ret;
 809
 810	while (pipe->nrbufs) {
 811		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 812		const struct pipe_buf_operations *ops = buf->ops;
 813
 814		sd->len = buf->len;
 815		if (sd->len > sd->total_len)
 816			sd->len = sd->total_len;
 817
 818		ret = buf->ops->confirm(pipe, buf);
 819		if (unlikely(ret)) {
 820			if (ret == -ENODATA)
 821				ret = 0;
 822			return ret;
 823		}
 824
 825		ret = actor(pipe, buf, sd);
 826		if (ret <= 0)
 827			return ret;
 828
 829		buf->offset += ret;
 830		buf->len -= ret;
 831
 832		sd->num_spliced += ret;
 833		sd->len -= ret;
 834		sd->pos += ret;
 835		sd->total_len -= ret;
 836
 837		if (!buf->len) {
 838			buf->ops = NULL;
 839			ops->release(pipe, buf);
 840			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 841			pipe->nrbufs--;
 842			if (pipe->files)
 843				sd->need_wakeup = true;
 844		}
 845
 846		if (!sd->total_len)
 847			return 0;
 848	}
 849
 850	return 1;
 851}
 852EXPORT_SYMBOL(splice_from_pipe_feed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853
 854/**
 855 * splice_from_pipe_next - wait for some data to splice from
 856 * @pipe:	pipe to splice from
 857 * @sd:		information about the splice operation
 858 *
 859 * Description:
 860 *    This function will wait for some data and return a positive
 861 *    value (one) if pipe buffers are available.  It will return zero
 862 *    or -errno if no more data needs to be spliced.
 863 */
 864int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 865{
 866	while (!pipe->nrbufs) {
 
 
 
 
 
 
 
 
 867		if (!pipe->writers)
 868			return 0;
 869
 870		if (!pipe->waiting_writers && sd->num_spliced)
 871			return 0;
 872
 873		if (sd->flags & SPLICE_F_NONBLOCK)
 874			return -EAGAIN;
 875
 876		if (signal_pending(current))
 877			return -ERESTARTSYS;
 878
 879		if (sd->need_wakeup) {
 880			wakeup_pipe_writers(pipe);
 881			sd->need_wakeup = false;
 882		}
 883
 884		pipe_wait(pipe);
 885	}
 886
 
 
 
 887	return 1;
 888}
 889EXPORT_SYMBOL(splice_from_pipe_next);
 890
 891/**
 892 * splice_from_pipe_begin - start splicing from pipe
 893 * @sd:		information about the splice operation
 894 *
 895 * Description:
 896 *    This function should be called before a loop containing
 897 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 898 *    initialize the necessary fields of @sd.
 899 */
 900void splice_from_pipe_begin(struct splice_desc *sd)
 901{
 902	sd->num_spliced = 0;
 903	sd->need_wakeup = false;
 904}
 905EXPORT_SYMBOL(splice_from_pipe_begin);
 906
 907/**
 908 * splice_from_pipe_end - finish splicing from pipe
 909 * @pipe:	pipe to splice from
 910 * @sd:		information about the splice operation
 911 *
 912 * Description:
 913 *    This function will wake up pipe writers if necessary.  It should
 914 *    be called after a loop containing splice_from_pipe_next() and
 915 *    splice_from_pipe_feed().
 916 */
 917void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 918{
 919	if (sd->need_wakeup)
 920		wakeup_pipe_writers(pipe);
 921}
 922EXPORT_SYMBOL(splice_from_pipe_end);
 923
 924/**
 925 * __splice_from_pipe - splice data from a pipe to given actor
 926 * @pipe:	pipe to splice from
 927 * @sd:		information to @actor
 928 * @actor:	handler that splices the data
 929 *
 930 * Description:
 931 *    This function does little more than loop over the pipe and call
 932 *    @actor to do the actual moving of a single struct pipe_buffer to
 933 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 934 *    pipe_to_user.
 935 *
 936 */
 937ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 938			   splice_actor *actor)
 939{
 940	int ret;
 941
 942	splice_from_pipe_begin(sd);
 943	do {
 
 944		ret = splice_from_pipe_next(pipe, sd);
 945		if (ret > 0)
 946			ret = splice_from_pipe_feed(pipe, sd, actor);
 947	} while (ret > 0);
 948	splice_from_pipe_end(pipe, sd);
 949
 950	return sd->num_spliced ? sd->num_spliced : ret;
 951}
 952EXPORT_SYMBOL(__splice_from_pipe);
 953
 954/**
 955 * splice_from_pipe - splice data from a pipe to a file
 956 * @pipe:	pipe to splice from
 957 * @out:	file to splice to
 958 * @ppos:	position in @out
 959 * @len:	how many bytes to splice
 960 * @flags:	splice modifier flags
 961 * @actor:	handler that splices the data
 962 *
 963 * Description:
 964 *    See __splice_from_pipe. This function locks the pipe inode,
 965 *    otherwise it's identical to __splice_from_pipe().
 966 *
 967 */
 968ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 969			 loff_t *ppos, size_t len, unsigned int flags,
 970			 splice_actor *actor)
 971{
 972	ssize_t ret;
 973	struct splice_desc sd = {
 974		.total_len = len,
 975		.flags = flags,
 976		.pos = *ppos,
 977		.u.file = out,
 978	};
 979
 980	pipe_lock(pipe);
 981	ret = __splice_from_pipe(pipe, &sd, actor);
 982	pipe_unlock(pipe);
 983
 984	return ret;
 985}
 986
 987/**
 988 * generic_file_splice_write - splice data from a pipe to a file
 989 * @pipe:	pipe info
 990 * @out:	file to write to
 991 * @ppos:	position in @out
 992 * @len:	number of bytes to splice
 993 * @flags:	splice modifier flags
 994 *
 995 * Description:
 996 *    Will either move or copy pages (determined by @flags options) from
 997 *    the given pipe inode to the given file.
 
 998 *
 999 */
1000ssize_t
1001generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1002			  loff_t *ppos, size_t len, unsigned int flags)
1003{
1004	struct address_space *mapping = out->f_mapping;
1005	struct inode *inode = mapping->host;
1006	struct splice_desc sd = {
1007		.total_len = len,
1008		.flags = flags,
1009		.pos = *ppos,
1010		.u.file = out,
1011	};
 
 
1012	ssize_t ret;
1013
 
 
 
 
 
 
 
1014	pipe_lock(pipe);
1015
1016	splice_from_pipe_begin(&sd);
1017	do {
 
 
 
 
 
 
1018		ret = splice_from_pipe_next(pipe, &sd);
1019		if (ret <= 0)
1020			break;
1021
1022		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1023		ret = file_remove_suid(out);
1024		if (!ret) {
1025			ret = file_update_time(out);
1026			if (!ret)
1027				ret = splice_from_pipe_feed(pipe, &sd,
1028							    pipe_to_file);
 
 
1029		}
1030		mutex_unlock(&inode->i_mutex);
1031	} while (ret > 0);
1032	splice_from_pipe_end(pipe, &sd);
1033
1034	pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036	if (sd.num_spliced)
1037		ret = sd.num_spliced;
 
 
 
 
1038
1039	if (ret > 0) {
1040		int err;
 
 
 
1041
1042		err = generic_write_sync(out, *ppos, ret);
1043		if (err)
1044			ret = err;
1045		else
1046			*ppos += ret;
1047		balance_dirty_pages_ratelimited(mapping);
1048	}
1049
1050	return ret;
1051}
 
1052
1053EXPORT_SYMBOL(generic_file_splice_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1056			  struct splice_desc *sd)
1057{
1058	int ret;
1059	void *data;
1060	loff_t tmp = sd->pos;
1061
1062	data = kmap(buf->page);
1063	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1064	kunmap(buf->page);
1065
1066	return ret;
1067}
1068
1069static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1070					 struct file *out, loff_t *ppos,
1071					 size_t len, unsigned int flags)
1072{
1073	ssize_t ret;
1074
1075	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1076	if (ret > 0)
1077		*ppos += ret;
1078
1079	return ret;
1080}
1081
 
1082/**
1083 * generic_splice_sendpage - splice data from a pipe to a socket
1084 * @pipe:	pipe to splice from
1085 * @out:	socket to write to
1086 * @ppos:	position in @out
1087 * @len:	number of bytes to splice
1088 * @flags:	splice modifier flags
1089 *
1090 * Description:
1091 *    Will send @len bytes from the pipe to a network socket. No data copying
1092 *    is involved.
1093 *
1094 */
1095ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1096				loff_t *ppos, size_t len, unsigned int flags)
1097{
1098	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099}
 
1100
1101EXPORT_SYMBOL(generic_splice_sendpage);
 
 
 
 
 
 
1102
1103/*
1104 * Attempt to initiate a splice from pipe to file.
1105 */
1106static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1107			   loff_t *ppos, size_t len, unsigned int flags)
1108{
1109	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1110				loff_t *, size_t, unsigned int);
 
 
1111
1112	if (out->f_op->splice_write)
1113		splice_write = out->f_op->splice_write;
1114	else
1115		splice_write = default_file_splice_write;
1116
1117	return splice_write(pipe, out, ppos, len, flags);
 
 
 
1118}
1119
1120/*
1121 * Attempt to initiate a splice from a file to a pipe.
 
1122 */
1123static long do_splice_to(struct file *in, loff_t *ppos,
1124			 struct pipe_inode_info *pipe, size_t len,
1125			 unsigned int flags)
1126{
1127	ssize_t (*splice_read)(struct file *, loff_t *,
1128			       struct pipe_inode_info *, size_t, unsigned int);
1129	int ret;
1130
1131	if (unlikely(!(in->f_mode & FMODE_READ)))
1132		return -EBADF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
1134	ret = rw_verify_area(READ, in, ppos, len);
1135	if (unlikely(ret < 0))
1136		return ret;
1137
1138	if (in->f_op->splice_read)
1139		splice_read = in->f_op->splice_read;
1140	else
1141		splice_read = default_file_splice_read;
1142
1143	return splice_read(in, ppos, pipe, len, flags);
1144}
 
1145
1146/**
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in:		file to splice from
1149 * @sd:		actor information on where to splice to
1150 * @actor:	handles the data splicing
1151 *
1152 * Description:
1153 *    This is a special case helper to splice directly between two
1154 *    points, without requiring an explicit pipe. Internally an allocated
1155 *    pipe is cached in the process, and reused during the lifetime of
1156 *    that process.
1157 *
1158 */
1159ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160			       splice_direct_actor *actor)
1161{
1162	struct pipe_inode_info *pipe;
1163	long ret, bytes;
1164	umode_t i_mode;
1165	size_t len;
1166	int i, flags;
1167
1168	/*
1169	 * We require the input being a regular file, as we don't want to
1170	 * randomly drop data for eg socket -> socket splicing. Use the
1171	 * piped splicing for that!
1172	 */
1173	i_mode = file_inode(in)->i_mode;
1174	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175		return -EINVAL;
1176
1177	/*
1178	 * neither in nor out is a pipe, setup an internal pipe attached to
1179	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180	 */
1181	pipe = current->splice_pipe;
1182	if (unlikely(!pipe)) {
1183		pipe = alloc_pipe_info();
1184		if (!pipe)
1185			return -ENOMEM;
1186
1187		/*
1188		 * We don't have an immediate reader, but we'll read the stuff
1189		 * out of the pipe right after the splice_to_pipe(). So set
1190		 * PIPE_READERS appropriately.
1191		 */
1192		pipe->readers = 1;
1193
1194		current->splice_pipe = pipe;
1195	}
1196
1197	/*
1198	 * Do the splice.
1199	 */
1200	ret = 0;
1201	bytes = 0;
1202	len = sd->total_len;
 
 
1203	flags = sd->flags;
 
1204
1205	/*
1206	 * Don't block on output, we have to drain the direct pipe.
 
1207	 */
1208	sd->flags &= ~SPLICE_F_NONBLOCK;
 
 
 
1209
1210	while (len) {
1211		size_t read_len;
1212		loff_t pos = sd->pos, prev_pos = pos;
1213
1214		ret = do_splice_to(in, &pos, pipe, len, flags);
1215		if (unlikely(ret <= 0))
1216			goto out_release;
1217
1218		read_len = ret;
1219		sd->total_len = read_len;
1220
1221		/*
 
 
 
 
 
 
 
1222		 * NOTE: nonblocking mode only applies to the input. We
1223		 * must not do the output in nonblocking mode as then we
1224		 * could get stuck data in the internal pipe:
1225		 */
1226		ret = actor(pipe, sd);
1227		if (unlikely(ret <= 0)) {
1228			sd->pos = prev_pos;
1229			goto out_release;
1230		}
1231
1232		bytes += ret;
1233		len -= ret;
1234		sd->pos = pos;
1235
1236		if (ret < read_len) {
1237			sd->pos = prev_pos + ret;
1238			goto out_release;
1239		}
1240	}
1241
1242done:
1243	pipe->nrbufs = pipe->curbuf = 0;
1244	file_accessed(in);
1245	return bytes;
1246
 
 
 
 
 
 
 
 
 
1247out_release:
1248	/*
1249	 * If we did an incomplete transfer we must release
1250	 * the pipe buffers in question:
1251	 */
1252	for (i = 0; i < pipe->buffers; i++) {
1253		struct pipe_buffer *buf = pipe->bufs + i;
1254
1255		if (buf->ops) {
1256			buf->ops->release(pipe, buf);
1257			buf->ops = NULL;
1258		}
1259	}
1260
1261	if (!bytes)
1262		bytes = ret;
1263
1264	goto done;
1265}
1266EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268static int direct_splice_actor(struct pipe_inode_info *pipe,
1269			       struct splice_desc *sd)
1270{
1271	struct file *file = sd->u.file;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1274			      sd->flags);
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277/**
1278 * do_splice_direct - splices data directly between two files
1279 * @in:		file to splice from
1280 * @ppos:	input file offset
1281 * @out:	file to splice to
1282 * @opos:	output file offset
1283 * @len:	number of bytes to splice
1284 * @flags:	splice modifier flags
1285 *
1286 * Description:
1287 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1288 *    doing it in the application would incur an extra system call
1289 *    (splice in + splice out, as compared to just sendfile()). So this helper
1290 *    can splice directly through a process-private pipe.
1291 *
 
1292 */
1293long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294		      loff_t *opos, size_t len, unsigned int flags)
1295{
1296	struct splice_desc sd = {
1297		.len		= len,
1298		.total_len	= len,
1299		.flags		= flags,
1300		.pos		= *ppos,
1301		.u.file		= out,
1302		.opos		= opos,
1303	};
1304	long ret;
1305
1306	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1307		return -EBADF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
1309	if (unlikely(out->f_flags & O_APPEND))
1310		return -EINVAL;
 
 
 
1311
1312	ret = rw_verify_area(WRITE, out, opos, len);
1313	if (unlikely(ret < 0))
1314		return ret;
1315
1316	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1317	if (ret > 0)
1318		*ppos = sd.pos;
1319
1320	return ret;
 
 
 
 
 
 
1321}
1322
1323static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1324			       struct pipe_inode_info *opipe,
1325			       size_t len, unsigned int flags);
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327/*
1328 * Determine where to splice to/from.
1329 */
1330static long do_splice(struct file *in, loff_t __user *off_in,
1331		      struct file *out, loff_t __user *off_out,
1332		      size_t len, unsigned int flags)
1333{
1334	struct pipe_inode_info *ipipe;
1335	struct pipe_inode_info *opipe;
1336	loff_t offset;
1337	long ret;
 
 
 
 
1338
1339	ipipe = get_pipe_info(in);
1340	opipe = get_pipe_info(out);
1341
1342	if (ipipe && opipe) {
1343		if (off_in || off_out)
1344			return -ESPIPE;
1345
1346		if (!(in->f_mode & FMODE_READ))
1347			return -EBADF;
1348
1349		if (!(out->f_mode & FMODE_WRITE))
1350			return -EBADF;
1351
1352		/* Splicing to self would be fun, but... */
1353		if (ipipe == opipe)
1354			return -EINVAL;
1355
1356		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1357	}
1358
1359	if (ipipe) {
 
1360		if (off_in)
1361			return -ESPIPE;
1362		if (off_out) {
1363			if (!(out->f_mode & FMODE_PWRITE))
1364				return -EINVAL;
1365			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366				return -EFAULT;
1367		} else {
1368			offset = out->f_pos;
1369		}
1370
1371		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1372			return -EBADF;
1373
1374		if (unlikely(out->f_flags & O_APPEND))
1375			return -EINVAL;
1376
1377		ret = rw_verify_area(WRITE, out, &offset, len);
1378		if (unlikely(ret < 0))
1379			return ret;
1380
 
 
 
1381		file_start_write(out);
1382		ret = do_splice_from(ipipe, out, &offset, len, flags);
1383		file_end_write(out);
1384
1385		if (!off_out)
1386			out->f_pos = offset;
1387		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1388			ret = -EFAULT;
1389
1390		return ret;
1391	}
1392
1393	if (opipe) {
1394		if (off_out)
1395			return -ESPIPE;
1396		if (off_in) {
1397			if (!(in->f_mode & FMODE_PREAD))
1398				return -EINVAL;
1399			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1400				return -EFAULT;
1401		} else {
1402			offset = in->f_pos;
1403		}
1404
1405		ret = do_splice_to(in, &offset, opipe, len, flags);
 
 
 
 
 
 
 
1406
1407		if (!off_in)
1408			in->f_pos = offset;
1409		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1410			ret = -EFAULT;
 
 
 
1411
1412		return ret;
 
 
 
 
 
 
 
1413	}
1414
1415	return -EINVAL;
1416}
1417
1418/*
1419 * Map an iov into an array of pages and offset/length tupples. With the
1420 * partial_page structure, we can map several non-contiguous ranges into
1421 * our ones pages[] map instead of splitting that operation into pieces.
1422 * Could easily be exported as a generic helper for other users, in which
1423 * case one would probably want to add a 'max_nr_pages' parameter as well.
1424 */
1425static int get_iovec_page_array(const struct iovec __user *iov,
1426				unsigned int nr_vecs, struct page **pages,
1427				struct partial_page *partial, bool aligned,
1428				unsigned int pipe_buffers)
1429{
1430	int buffers = 0, error = 0;
1431
1432	while (nr_vecs) {
1433		unsigned long off, npages;
1434		struct iovec entry;
1435		void __user *base;
1436		size_t len;
1437		int i;
1438
1439		error = -EFAULT;
1440		if (copy_from_user(&entry, iov, sizeof(entry)))
1441			break;
1442
1443		base = entry.iov_base;
1444		len = entry.iov_len;
 
 
 
 
 
 
 
 
1445
1446		/*
1447		 * Sanity check this iovec. 0 read succeeds.
1448		 */
1449		error = 0;
1450		if (unlikely(!len))
1451			break;
1452		error = -EFAULT;
1453		if (!access_ok(VERIFY_READ, base, len))
1454			break;
 
1455
1456		/*
1457		 * Get this base offset and number of pages, then map
1458		 * in the user pages.
1459		 */
1460		off = (unsigned long) base & ~PAGE_MASK;
1461
1462		/*
1463		 * If asked for alignment, the offset must be zero and the
1464		 * length a multiple of the PAGE_SIZE.
1465		 */
1466		error = -EINVAL;
1467		if (aligned && (off || len & ~PAGE_MASK))
1468			break;
1469
1470		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471		if (npages > pipe_buffers - buffers)
1472			npages = pipe_buffers - buffers;
1473
1474		error = get_user_pages_fast((unsigned long)base, npages,
1475					0, &pages[buffers]);
 
 
 
 
 
 
 
 
1476
1477		if (unlikely(error <= 0))
 
 
 
 
 
 
 
 
1478			break;
 
1479
1480		/*
1481		 * Fill this contiguous range into the partial page map.
1482		 */
1483		for (i = 0; i < error; i++) {
1484			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1485
1486			partial[buffers].offset = off;
1487			partial[buffers].len = plen;
1488
1489			off = 0;
1490			len -= plen;
1491			buffers++;
 
 
 
 
 
 
1492		}
1493
1494		/*
1495		 * We didn't complete this iov, stop here since it probably
1496		 * means we have to move some of this into a pipe to
1497		 * be able to continue.
1498		 */
1499		if (len)
1500			break;
1501
1502		/*
1503		 * Don't continue if we mapped fewer pages than we asked for,
1504		 * or if we mapped the max number of pages that we have
1505		 * room for.
1506		 */
1507		if (error < npages || buffers == pipe_buffers)
1508			break;
1509
1510		nr_vecs--;
1511		iov++;
1512	}
1513
1514	if (buffers)
1515		return buffers;
1516
1517	return error;
1518}
1519
1520static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1521			struct splice_desc *sd)
1522{
1523	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1524	return n == sd->len ? n : -EFAULT;
1525}
1526
1527/*
1528 * For lack of a better implementation, implement vmsplice() to userspace
1529 * as a simple copy of the pipes pages to the user iov.
1530 */
1531static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1532			     unsigned long nr_segs, unsigned int flags)
1533{
1534	struct pipe_inode_info *pipe;
1535	struct splice_desc sd;
1536	long ret;
1537	struct iovec iovstack[UIO_FASTIOV];
1538	struct iovec *iov = iovstack;
1539	struct iov_iter iter;
1540	ssize_t count;
1541
1542	pipe = get_pipe_info(file);
1543	if (!pipe)
1544		return -EBADF;
1545
1546	ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1547				    ARRAY_SIZE(iovstack), iovstack, &iov);
1548	if (ret <= 0)
1549		goto out;
1550
1551	count = ret;
1552	iov_iter_init(&iter, iov, nr_segs, count, 0);
 
 
 
1553
1554	sd.len = 0;
1555	sd.total_len = count;
1556	sd.flags = flags;
1557	sd.u.data = &iter;
1558	sd.pos = 0;
1559
1560	pipe_lock(pipe);
1561	ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1562	pipe_unlock(pipe);
1563
1564out:
1565	if (iov != iovstack)
1566		kfree(iov);
1567
1568	return ret;
1569}
1570
1571/*
1572 * vmsplice splices a user address range into a pipe. It can be thought of
1573 * as splice-from-memory, where the regular splice is splice-from-file (or
1574 * to file). In both cases the output is a pipe, naturally.
1575 */
1576static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1577			     unsigned long nr_segs, unsigned int flags)
1578{
1579	struct pipe_inode_info *pipe;
1580	struct page *pages[PIPE_DEF_BUFFERS];
1581	struct partial_page partial[PIPE_DEF_BUFFERS];
1582	struct splice_pipe_desc spd = {
1583		.pages = pages,
1584		.partial = partial,
1585		.nr_pages_max = PIPE_DEF_BUFFERS,
1586		.flags = flags,
1587		.ops = &user_page_pipe_buf_ops,
1588		.spd_release = spd_release_page,
1589	};
1590	long ret;
1591
1592	pipe = get_pipe_info(file);
1593	if (!pipe)
1594		return -EBADF;
1595
1596	if (splice_grow_spd(pipe, &spd))
1597		return -ENOMEM;
1598
1599	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1600					    spd.partial, false,
1601					    spd.nr_pages_max);
1602	if (spd.nr_pages <= 0)
1603		ret = spd.nr_pages;
1604	else
1605		ret = splice_to_pipe(pipe, &spd);
1606
1607	splice_shrink_spd(&spd);
 
 
 
 
 
 
 
 
1608	return ret;
1609}
1610
1611/*
1612 * Note that vmsplice only really supports true splicing _from_ user memory
1613 * to a pipe, not the other way around. Splicing from user memory is a simple
1614 * operation that can be supported without any funky alignment restrictions
1615 * or nasty vm tricks. We simply map in the user memory and fill them into
1616 * a pipe. The reverse isn't quite as easy, though. There are two possible
1617 * solutions for that:
1618 *
1619 *	- memcpy() the data internally, at which point we might as well just
1620 *	  do a regular read() on the buffer anyway.
1621 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1622 *	  has restriction limitations on both ends of the pipe).
1623 *
1624 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1625 *
1626 */
1627SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1628		unsigned long, nr_segs, unsigned int, flags)
1629{
1630	struct fd f;
1631	long error;
 
 
 
1632
1633	if (unlikely(nr_segs > UIO_MAXIOV))
1634		return -EINVAL;
1635	else if (unlikely(!nr_segs))
1636		return 0;
1637
1638	error = -EBADF;
1639	f = fdget(fd);
1640	if (f.file) {
1641		if (f.file->f_mode & FMODE_WRITE)
1642			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1643		else if (f.file->f_mode & FMODE_READ)
1644			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
 
 
 
 
 
 
 
1645
1646		fdput(f);
1647	}
 
 
 
 
1648
 
1649	return error;
1650}
1651
1652#ifdef CONFIG_COMPAT
1653COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1654		    unsigned int, nr_segs, unsigned int, flags)
1655{
1656	unsigned i;
1657	struct iovec __user *iov;
1658	if (nr_segs > UIO_MAXIOV)
1659		return -EINVAL;
1660	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1661	for (i = 0; i < nr_segs; i++) {
1662		struct compat_iovec v;
1663		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1664		    get_user(v.iov_len, &iov32[i].iov_len) ||
1665		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1666		    put_user(v.iov_len, &iov[i].iov_len))
1667			return -EFAULT;
1668	}
1669	return sys_vmsplice(fd, iov, nr_segs, flags);
1670}
1671#endif
1672
1673SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1674		int, fd_out, loff_t __user *, off_out,
1675		size_t, len, unsigned int, flags)
1676{
1677	struct fd in, out;
1678	long error;
1679
1680	if (unlikely(!len))
1681		return 0;
1682
1683	error = -EBADF;
1684	in = fdget(fd_in);
1685	if (in.file) {
1686		if (in.file->f_mode & FMODE_READ) {
1687			out = fdget(fd_out);
1688			if (out.file) {
1689				if (out.file->f_mode & FMODE_WRITE)
1690					error = do_splice(in.file, off_in,
1691							  out.file, off_out,
1692							  len, flags);
1693				fdput(out);
1694			}
1695		}
1696		fdput(in);
1697	}
1698	return error;
1699}
1700
1701/*
1702 * Make sure there's data to read. Wait for input if we can, otherwise
1703 * return an appropriate error.
1704 */
1705static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1706{
1707	int ret;
1708
1709	/*
1710	 * Check ->nrbufs without the inode lock first. This function
1711	 * is speculative anyways, so missing one is ok.
1712	 */
1713	if (pipe->nrbufs)
1714		return 0;
1715
1716	ret = 0;
1717	pipe_lock(pipe);
1718
1719	while (!pipe->nrbufs) {
1720		if (signal_pending(current)) {
1721			ret = -ERESTARTSYS;
1722			break;
1723		}
1724		if (!pipe->writers)
1725			break;
1726		if (!pipe->waiting_writers) {
1727			if (flags & SPLICE_F_NONBLOCK) {
1728				ret = -EAGAIN;
1729				break;
1730			}
1731		}
1732		pipe_wait(pipe);
1733	}
1734
1735	pipe_unlock(pipe);
1736	return ret;
1737}
1738
1739/*
1740 * Make sure there's writeable room. Wait for room if we can, otherwise
1741 * return an appropriate error.
1742 */
1743static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1744{
1745	int ret;
1746
1747	/*
1748	 * Check ->nrbufs without the inode lock first. This function
1749	 * is speculative anyways, so missing one is ok.
1750	 */
1751	if (pipe->nrbufs < pipe->buffers)
1752		return 0;
1753
1754	ret = 0;
1755	pipe_lock(pipe);
1756
1757	while (pipe->nrbufs >= pipe->buffers) {
1758		if (!pipe->readers) {
1759			send_sig(SIGPIPE, current, 0);
1760			ret = -EPIPE;
1761			break;
1762		}
1763		if (flags & SPLICE_F_NONBLOCK) {
1764			ret = -EAGAIN;
1765			break;
1766		}
1767		if (signal_pending(current)) {
1768			ret = -ERESTARTSYS;
1769			break;
1770		}
1771		pipe->waiting_writers++;
1772		pipe_wait(pipe);
1773		pipe->waiting_writers--;
1774	}
1775
1776	pipe_unlock(pipe);
1777	return ret;
1778}
1779
1780/*
1781 * Splice contents of ipipe to opipe.
1782 */
1783static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1784			       struct pipe_inode_info *opipe,
1785			       size_t len, unsigned int flags)
1786{
1787	struct pipe_buffer *ibuf, *obuf;
1788	int ret = 0, nbuf;
 
 
 
1789	bool input_wakeup = false;
1790
1791
1792retry:
1793	ret = ipipe_prep(ipipe, flags);
1794	if (ret)
1795		return ret;
1796
1797	ret = opipe_prep(opipe, flags);
1798	if (ret)
1799		return ret;
1800
1801	/*
1802	 * Potential ABBA deadlock, work around it by ordering lock
1803	 * grabbing by pipe info address. Otherwise two different processes
1804	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1805	 */
1806	pipe_double_lock(ipipe, opipe);
1807
 
 
 
 
 
1808	do {
 
 
1809		if (!opipe->readers) {
1810			send_sig(SIGPIPE, current, 0);
1811			if (!ret)
1812				ret = -EPIPE;
1813			break;
1814		}
1815
1816		if (!ipipe->nrbufs && !ipipe->writers)
 
 
 
1817			break;
1818
1819		/*
1820		 * Cannot make any progress, because either the input
1821		 * pipe is empty or the output pipe is full.
1822		 */
1823		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
 
1824			/* Already processed some buffers, break */
1825			if (ret)
1826				break;
1827
1828			if (flags & SPLICE_F_NONBLOCK) {
1829				ret = -EAGAIN;
1830				break;
1831			}
1832
1833			/*
1834			 * We raced with another reader/writer and haven't
1835			 * managed to process any buffers.  A zero return
1836			 * value means EOF, so retry instead.
1837			 */
1838			pipe_unlock(ipipe);
1839			pipe_unlock(opipe);
1840			goto retry;
1841		}
1842
1843		ibuf = ipipe->bufs + ipipe->curbuf;
1844		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1845		obuf = opipe->bufs + nbuf;
1846
1847		if (len >= ibuf->len) {
1848			/*
1849			 * Simply move the whole buffer from ipipe to opipe
1850			 */
1851			*obuf = *ibuf;
1852			ibuf->ops = NULL;
1853			opipe->nrbufs++;
1854			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1855			ipipe->nrbufs--;
1856			input_wakeup = true;
 
 
 
1857		} else {
1858			/*
1859			 * Get a reference to this pipe buffer,
1860			 * so we can copy the contents over.
1861			 */
1862			ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1863			*obuf = *ibuf;
1864
1865			/*
1866			 * Don't inherit the gift flag, we need to
1867			 * prevent multiple steals of this page.
1868			 */
1869			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1870
1871			obuf->len = len;
1872			opipe->nrbufs++;
1873			ibuf->offset += obuf->len;
1874			ibuf->len -= obuf->len;
 
 
1875		}
1876		ret += obuf->len;
1877		len -= obuf->len;
1878	} while (len);
1879
1880	pipe_unlock(ipipe);
1881	pipe_unlock(opipe);
1882
1883	/*
1884	 * If we put data in the output pipe, wakeup any potential readers.
1885	 */
1886	if (ret > 0)
1887		wakeup_pipe_readers(opipe);
1888
1889	if (input_wakeup)
1890		wakeup_pipe_writers(ipipe);
1891
1892	return ret;
1893}
1894
1895/*
1896 * Link contents of ipipe to opipe.
1897 */
1898static int link_pipe(struct pipe_inode_info *ipipe,
1899		     struct pipe_inode_info *opipe,
1900		     size_t len, unsigned int flags)
1901{
1902	struct pipe_buffer *ibuf, *obuf;
1903	int ret = 0, i = 0, nbuf;
 
 
 
1904
1905	/*
1906	 * Potential ABBA deadlock, work around it by ordering lock
1907	 * grabbing by pipe info address. Otherwise two different processes
1908	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1909	 */
1910	pipe_double_lock(ipipe, opipe);
1911
 
 
 
 
 
1912	do {
1913		if (!opipe->readers) {
1914			send_sig(SIGPIPE, current, 0);
1915			if (!ret)
1916				ret = -EPIPE;
1917			break;
1918		}
1919
 
 
 
1920		/*
1921		 * If we have iterated all input buffers or ran out of
1922		 * output room, break.
1923		 */
1924		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
 
1925			break;
1926
1927		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1928		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1929
1930		/*
1931		 * Get a reference to this pipe buffer,
1932		 * so we can copy the contents over.
1933		 */
1934		ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1935
1936		obuf = opipe->bufs + nbuf;
1937		*obuf = *ibuf;
1938
1939		/*
1940		 * Don't inherit the gift flag, we need to
1941		 * prevent multiple steals of this page.
1942		 */
1943		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1944
1945		if (obuf->len > len)
1946			obuf->len = len;
1947
1948		opipe->nrbufs++;
1949		ret += obuf->len;
1950		len -= obuf->len;
1951		i++;
 
 
 
1952	} while (len);
1953
1954	/*
1955	 * return EAGAIN if we have the potential of some data in the
1956	 * future, otherwise just return 0
1957	 */
1958	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1959		ret = -EAGAIN;
1960
1961	pipe_unlock(ipipe);
1962	pipe_unlock(opipe);
1963
1964	/*
1965	 * If we put data in the output pipe, wakeup any potential readers.
1966	 */
1967	if (ret > 0)
1968		wakeup_pipe_readers(opipe);
1969
1970	return ret;
1971}
1972
1973/*
1974 * This is a tee(1) implementation that works on pipes. It doesn't copy
1975 * any data, it simply references the 'in' pages on the 'out' pipe.
1976 * The 'flags' used are the SPLICE_F_* variants, currently the only
1977 * applicable one is SPLICE_F_NONBLOCK.
1978 */
1979static long do_tee(struct file *in, struct file *out, size_t len,
1980		   unsigned int flags)
1981{
1982	struct pipe_inode_info *ipipe = get_pipe_info(in);
1983	struct pipe_inode_info *opipe = get_pipe_info(out);
1984	int ret = -EINVAL;
 
 
 
 
1985
1986	/*
1987	 * Duplicate the contents of ipipe to opipe without actually
1988	 * copying the data.
1989	 */
1990	if (ipipe && opipe && ipipe != opipe) {
 
 
 
1991		/*
1992		 * Keep going, unless we encounter an error. The ipipe/opipe
1993		 * ordering doesn't really matter.
1994		 */
1995		ret = ipipe_prep(ipipe, flags);
1996		if (!ret) {
1997			ret = opipe_prep(opipe, flags);
1998			if (!ret)
1999				ret = link_pipe(ipipe, opipe, len, flags);
2000		}
2001	}
2002
 
 
 
 
 
2003	return ret;
2004}
2005
2006SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2007{
2008	struct fd in;
2009	int error;
2010
2011	if (unlikely(!len))
2012		return 0;
2013
2014	error = -EBADF;
2015	in = fdget(fdin);
2016	if (in.file) {
2017		if (in.file->f_mode & FMODE_READ) {
2018			struct fd out = fdget(fdout);
2019			if (out.file) {
2020				if (out.file->f_mode & FMODE_WRITE)
2021					error = do_tee(in.file, out.file,
2022							len, flags);
2023				fdput(out);
2024			}
2025		}
2026 		fdput(in);
2027 	}
2028
2029	return error;
2030}