Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/fsnotify.h>
34#include <linux/security.h>
35#include <linux/gfp.h>
36#include <linux/net.h>
37#include <linux/socket.h>
38#include <linux/sched/signal.h>
39
40#include "internal.h"
41
42/*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
48static noinline void noinline pipe_clear_nowait(struct file *file)
49{
50 fmode_t fmode = READ_ONCE(file->f_mode);
51
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56}
57
58/*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
64static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
66{
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
69
70 folio_lock(folio);
71
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
75
76 /*
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
83 */
84 folio_wait_writeback(folio);
85
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
88
89 /*
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
92 */
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
96 }
97 }
98
99 /*
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
102 */
103out_unlock:
104 folio_unlock(folio);
105 return false;
106}
107
108static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
110{
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
113}
114
115/*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
119static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
121{
122 struct folio *folio = page_folio(buf->page);
123 int err;
124
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
127
128 /*
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
131 */
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
135 }
136
137 /*
138 * Uh oh, read-error from disk.
139 */
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
143 }
144
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
147 }
148
149 return 0;
150error:
151 folio_unlock(folio);
152 return err;
153}
154
155const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
160};
161
162static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
164{
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
167
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
170}
171
172static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
176};
177
178static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179{
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184}
185
186/**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
190 *
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
195 *
196 */
197ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
199{
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 unsigned int mask = pipe->ring_size - 1;
204 ssize_t ret = 0;
205 int page_nr = 0;
206
207 if (!spd_pages)
208 return 0;
209
210 if (unlikely(!pipe->readers)) {
211 send_sig(SIGPIPE, current, 0);
212 ret = -EPIPE;
213 goto out;
214 }
215
216 while (!pipe_full(head, tail, pipe->max_usage)) {
217 struct pipe_buffer *buf = &pipe->bufs[head & mask];
218
219 buf->page = spd->pages[page_nr];
220 buf->offset = spd->partial[page_nr].offset;
221 buf->len = spd->partial[page_nr].len;
222 buf->private = spd->partial[page_nr].private;
223 buf->ops = spd->ops;
224 buf->flags = 0;
225
226 head++;
227 pipe->head = head;
228 page_nr++;
229 ret += buf->len;
230
231 if (!--spd->nr_pages)
232 break;
233 }
234
235 if (!ret)
236 ret = -EAGAIN;
237
238out:
239 while (page_nr < spd_pages)
240 spd->spd_release(spd, page_nr++);
241
242 return ret;
243}
244EXPORT_SYMBOL_GPL(splice_to_pipe);
245
246ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247{
248 unsigned int head = pipe->head;
249 unsigned int tail = pipe->tail;
250 unsigned int mask = pipe->ring_size - 1;
251 int ret;
252
253 if (unlikely(!pipe->readers)) {
254 send_sig(SIGPIPE, current, 0);
255 ret = -EPIPE;
256 } else if (pipe_full(head, tail, pipe->max_usage)) {
257 ret = -EAGAIN;
258 } else {
259 pipe->bufs[head & mask] = *buf;
260 pipe->head = head + 1;
261 return buf->len;
262 }
263 pipe_buf_release(pipe, buf);
264 return ret;
265}
266EXPORT_SYMBOL(add_to_pipe);
267
268/*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273{
274 unsigned int max_usage = READ_ONCE(pipe->max_usage);
275
276 spd->nr_pages_max = max_usage;
277 if (max_usage <= PIPE_DEF_BUFFERS)
278 return 0;
279
280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct splice_pipe_desc *spd)
293{
294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 return;
296
297 kfree(spd->pages);
298 kfree(spd->partial);
299}
300
301/**
302 * copy_splice_read - Copy data from a file and splice the copy into a pipe
303 * @in: The file to read from
304 * @ppos: Pointer to the file position to read from
305 * @pipe: The pipe to splice into
306 * @len: The amount to splice
307 * @flags: The SPLICE_F_* flags
308 *
309 * This function allocates a bunch of pages sufficient to hold the requested
310 * amount of data (but limited by the remaining pipe capacity), passes it to
311 * the file's ->read_iter() to read into and then splices the used pages into
312 * the pipe.
313 *
314 * Return: On success, the number of bytes read will be returned and *@ppos
315 * will be updated if appropriate; 0 will be returned if there is no more data
316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
317 * other negative error code will be returned on error. A short read may occur
318 * if the pipe has insufficient space, we reach the end of the data or we hit a
319 * hole.
320 */
321ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t len, unsigned int flags)
324{
325 struct iov_iter to;
326 struct bio_vec *bv;
327 struct kiocb kiocb;
328 struct page **pages;
329 ssize_t ret;
330 size_t used, npages, chunk, remain, keep = 0;
331 int i;
332
333 /* Work out how much data we can actually add into the pipe */
334 used = pipe_occupancy(pipe->head, pipe->tail);
335 npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 len = min_t(size_t, len, npages * PAGE_SIZE);
337 npages = DIV_ROUND_UP(len, PAGE_SIZE);
338
339 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 if (!bv)
342 return -ENOMEM;
343
344 pages = (struct page **)(bv + npages);
345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 if (!npages) {
347 kfree(bv);
348 return -ENOMEM;
349 }
350
351 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352
353 for (i = 0; i < npages; i++) {
354 chunk = min_t(size_t, PAGE_SIZE, remain);
355 bv[i].bv_page = pages[i];
356 bv[i].bv_offset = 0;
357 bv[i].bv_len = chunk;
358 remain -= chunk;
359 }
360
361 /* Do the I/O */
362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 init_sync_kiocb(&kiocb, in);
364 kiocb.ki_pos = *ppos;
365 ret = in->f_op->read_iter(&kiocb, &to);
366
367 if (ret > 0) {
368 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 *ppos = kiocb.ki_pos;
370 }
371
372 /*
373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 * there", rather than -EFAULT.
375 */
376 if (ret == -EFAULT)
377 ret = -EAGAIN;
378
379 /* Free any pages that didn't get touched at all. */
380 if (keep < npages)
381 release_pages(pages + keep, npages - keep);
382
383 /* Push the remaining pages into the pipe. */
384 remain = ret;
385 for (i = 0; i < keep; i++) {
386 struct pipe_buffer *buf = pipe_head_buf(pipe);
387
388 chunk = min_t(size_t, remain, PAGE_SIZE);
389 *buf = (struct pipe_buffer) {
390 .ops = &default_pipe_buf_ops,
391 .page = bv[i].bv_page,
392 .offset = 0,
393 .len = chunk,
394 };
395 pipe->head++;
396 remain -= chunk;
397 }
398
399 kfree(bv);
400 return ret;
401}
402EXPORT_SYMBOL(copy_splice_read);
403
404const struct pipe_buf_operations default_pipe_buf_ops = {
405 .release = generic_pipe_buf_release,
406 .try_steal = generic_pipe_buf_try_steal,
407 .get = generic_pipe_buf_get,
408};
409
410/* Pipe buffer operations for a socket and similar. */
411const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 .release = generic_pipe_buf_release,
413 .get = generic_pipe_buf_get,
414};
415EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416
417static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418{
419 smp_mb();
420 if (waitqueue_active(&pipe->wr_wait))
421 wake_up_interruptible(&pipe->wr_wait);
422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423}
424
425/**
426 * splice_from_pipe_feed - feed available data from a pipe to a file
427 * @pipe: pipe to splice from
428 * @sd: information to @actor
429 * @actor: handler that splices the data
430 *
431 * Description:
432 * This function loops over the pipe and calls @actor to do the
433 * actual moving of a single struct pipe_buffer to the desired
434 * destination. It returns when there's no more buffers left in
435 * the pipe or if the requested number of bytes (@sd->total_len)
436 * have been copied. It returns a positive number (one) if the
437 * pipe needs to be filled with more data, zero if the required
438 * number of bytes have been copied and -errno on error.
439 *
440 * This, together with splice_from_pipe_{begin,end,next}, may be
441 * used to implement the functionality of __splice_from_pipe() when
442 * locking is required around copying the pipe buffers to the
443 * destination.
444 */
445static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 splice_actor *actor)
447{
448 unsigned int head = pipe->head;
449 unsigned int tail = pipe->tail;
450 unsigned int mask = pipe->ring_size - 1;
451 int ret;
452
453 while (!pipe_empty(head, tail)) {
454 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455
456 sd->len = buf->len;
457 if (sd->len > sd->total_len)
458 sd->len = sd->total_len;
459
460 ret = pipe_buf_confirm(pipe, buf);
461 if (unlikely(ret)) {
462 if (ret == -ENODATA)
463 ret = 0;
464 return ret;
465 }
466
467 ret = actor(pipe, buf, sd);
468 if (ret <= 0)
469 return ret;
470
471 buf->offset += ret;
472 buf->len -= ret;
473
474 sd->num_spliced += ret;
475 sd->len -= ret;
476 sd->pos += ret;
477 sd->total_len -= ret;
478
479 if (!buf->len) {
480 pipe_buf_release(pipe, buf);
481 tail++;
482 pipe->tail = tail;
483 if (pipe->files)
484 sd->need_wakeup = true;
485 }
486
487 if (!sd->total_len)
488 return 0;
489 }
490
491 return 1;
492}
493
494/* We know we have a pipe buffer, but maybe it's empty? */
495static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496{
497 unsigned int tail = pipe->tail;
498 unsigned int mask = pipe->ring_size - 1;
499 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501 if (unlikely(!buf->len)) {
502 pipe_buf_release(pipe, buf);
503 pipe->tail = tail+1;
504 return true;
505 }
506
507 return false;
508}
509
510/**
511 * splice_from_pipe_next - wait for some data to splice from
512 * @pipe: pipe to splice from
513 * @sd: information about the splice operation
514 *
515 * Description:
516 * This function will wait for some data and return a positive
517 * value (one) if pipe buffers are available. It will return zero
518 * or -errno if no more data needs to be spliced.
519 */
520static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521{
522 /*
523 * Check for signal early to make process killable when there are
524 * always buffers available
525 */
526 if (signal_pending(current))
527 return -ERESTARTSYS;
528
529repeat:
530 while (pipe_empty(pipe->head, pipe->tail)) {
531 if (!pipe->writers)
532 return 0;
533
534 if (sd->num_spliced)
535 return 0;
536
537 if (sd->flags & SPLICE_F_NONBLOCK)
538 return -EAGAIN;
539
540 if (signal_pending(current))
541 return -ERESTARTSYS;
542
543 if (sd->need_wakeup) {
544 wakeup_pipe_writers(pipe);
545 sd->need_wakeup = false;
546 }
547
548 pipe_wait_readable(pipe);
549 }
550
551 if (eat_empty_buffer(pipe))
552 goto repeat;
553
554 return 1;
555}
556
557/**
558 * splice_from_pipe_begin - start splicing from pipe
559 * @sd: information about the splice operation
560 *
561 * Description:
562 * This function should be called before a loop containing
563 * splice_from_pipe_next() and splice_from_pipe_feed() to
564 * initialize the necessary fields of @sd.
565 */
566static void splice_from_pipe_begin(struct splice_desc *sd)
567{
568 sd->num_spliced = 0;
569 sd->need_wakeup = false;
570}
571
572/**
573 * splice_from_pipe_end - finish splicing from pipe
574 * @pipe: pipe to splice from
575 * @sd: information about the splice operation
576 *
577 * Description:
578 * This function will wake up pipe writers if necessary. It should
579 * be called after a loop containing splice_from_pipe_next() and
580 * splice_from_pipe_feed().
581 */
582static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583{
584 if (sd->need_wakeup)
585 wakeup_pipe_writers(pipe);
586}
587
588/**
589 * __splice_from_pipe - splice data from a pipe to given actor
590 * @pipe: pipe to splice from
591 * @sd: information to @actor
592 * @actor: handler that splices the data
593 *
594 * Description:
595 * This function does little more than loop over the pipe and call
596 * @actor to do the actual moving of a single struct pipe_buffer to
597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598 * pipe_to_user.
599 *
600 */
601ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 splice_actor *actor)
603{
604 int ret;
605
606 splice_from_pipe_begin(sd);
607 do {
608 cond_resched();
609 ret = splice_from_pipe_next(pipe, sd);
610 if (ret > 0)
611 ret = splice_from_pipe_feed(pipe, sd, actor);
612 } while (ret > 0);
613 splice_from_pipe_end(pipe, sd);
614
615 return sd->num_spliced ? sd->num_spliced : ret;
616}
617EXPORT_SYMBOL(__splice_from_pipe);
618
619/**
620 * splice_from_pipe - splice data from a pipe to a file
621 * @pipe: pipe to splice from
622 * @out: file to splice to
623 * @ppos: position in @out
624 * @len: how many bytes to splice
625 * @flags: splice modifier flags
626 * @actor: handler that splices the data
627 *
628 * Description:
629 * See __splice_from_pipe. This function locks the pipe inode,
630 * otherwise it's identical to __splice_from_pipe().
631 *
632 */
633ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 loff_t *ppos, size_t len, unsigned int flags,
635 splice_actor *actor)
636{
637 ssize_t ret;
638 struct splice_desc sd = {
639 .total_len = len,
640 .flags = flags,
641 .pos = *ppos,
642 .u.file = out,
643 };
644
645 pipe_lock(pipe);
646 ret = __splice_from_pipe(pipe, &sd, actor);
647 pipe_unlock(pipe);
648
649 return ret;
650}
651
652/**
653 * iter_file_splice_write - splice data from a pipe to a file
654 * @pipe: pipe info
655 * @out: file to write to
656 * @ppos: position in @out
657 * @len: number of bytes to splice
658 * @flags: splice modifier flags
659 *
660 * Description:
661 * Will either move or copy pages (determined by @flags options) from
662 * the given pipe inode to the given file.
663 * This one is ->write_iter-based.
664 *
665 */
666ssize_t
667iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 loff_t *ppos, size_t len, unsigned int flags)
669{
670 struct splice_desc sd = {
671 .total_len = len,
672 .flags = flags,
673 .pos = *ppos,
674 .u.file = out,
675 };
676 int nbufs = pipe->max_usage;
677 struct bio_vec *array;
678 ssize_t ret;
679
680 if (!out->f_op->write_iter)
681 return -EINVAL;
682
683 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684 if (unlikely(!array))
685 return -ENOMEM;
686
687 pipe_lock(pipe);
688
689 splice_from_pipe_begin(&sd);
690 while (sd.total_len) {
691 struct kiocb kiocb;
692 struct iov_iter from;
693 unsigned int head, tail, mask;
694 size_t left;
695 int n;
696
697 ret = splice_from_pipe_next(pipe, &sd);
698 if (ret <= 0)
699 break;
700
701 if (unlikely(nbufs < pipe->max_usage)) {
702 kfree(array);
703 nbufs = pipe->max_usage;
704 array = kcalloc(nbufs, sizeof(struct bio_vec),
705 GFP_KERNEL);
706 if (!array) {
707 ret = -ENOMEM;
708 break;
709 }
710 }
711
712 head = pipe->head;
713 tail = pipe->tail;
714 mask = pipe->ring_size - 1;
715
716 /* build the vector */
717 left = sd.total_len;
718 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720 size_t this_len = buf->len;
721
722 /* zero-length bvecs are not supported, skip them */
723 if (!this_len)
724 continue;
725 this_len = min(this_len, left);
726
727 ret = pipe_buf_confirm(pipe, buf);
728 if (unlikely(ret)) {
729 if (ret == -ENODATA)
730 ret = 0;
731 goto done;
732 }
733
734 bvec_set_page(&array[n], buf->page, this_len,
735 buf->offset);
736 left -= this_len;
737 n++;
738 }
739
740 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741 init_sync_kiocb(&kiocb, out);
742 kiocb.ki_pos = sd.pos;
743 ret = out->f_op->write_iter(&kiocb, &from);
744 sd.pos = kiocb.ki_pos;
745 if (ret <= 0)
746 break;
747
748 sd.num_spliced += ret;
749 sd.total_len -= ret;
750 *ppos = sd.pos;
751
752 /* dismiss the fully eaten buffers, adjust the partial one */
753 tail = pipe->tail;
754 while (ret) {
755 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756 if (ret >= buf->len) {
757 ret -= buf->len;
758 buf->len = 0;
759 pipe_buf_release(pipe, buf);
760 tail++;
761 pipe->tail = tail;
762 if (pipe->files)
763 sd.need_wakeup = true;
764 } else {
765 buf->offset += ret;
766 buf->len -= ret;
767 ret = 0;
768 }
769 }
770 }
771done:
772 kfree(array);
773 splice_from_pipe_end(pipe, &sd);
774
775 pipe_unlock(pipe);
776
777 if (sd.num_spliced)
778 ret = sd.num_spliced;
779
780 return ret;
781}
782
783EXPORT_SYMBOL(iter_file_splice_write);
784
785#ifdef CONFIG_NET
786/**
787 * splice_to_socket - splice data from a pipe to a socket
788 * @pipe: pipe to splice from
789 * @out: socket to write to
790 * @ppos: position in @out
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will send @len bytes from the pipe to a network socket. No data copying
796 * is involved.
797 *
798 */
799ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800 loff_t *ppos, size_t len, unsigned int flags)
801{
802 struct socket *sock = sock_from_file(out);
803 struct bio_vec bvec[16];
804 struct msghdr msg = {};
805 ssize_t ret = 0;
806 size_t spliced = 0;
807 bool need_wakeup = false;
808
809 pipe_lock(pipe);
810
811 while (len > 0) {
812 unsigned int head, tail, mask, bc = 0;
813 size_t remain = len;
814
815 /*
816 * Check for signal early to make process killable when there
817 * are always buffers available
818 */
819 ret = -ERESTARTSYS;
820 if (signal_pending(current))
821 break;
822
823 while (pipe_empty(pipe->head, pipe->tail)) {
824 ret = 0;
825 if (!pipe->writers)
826 goto out;
827
828 if (spliced)
829 goto out;
830
831 ret = -EAGAIN;
832 if (flags & SPLICE_F_NONBLOCK)
833 goto out;
834
835 ret = -ERESTARTSYS;
836 if (signal_pending(current))
837 goto out;
838
839 if (need_wakeup) {
840 wakeup_pipe_writers(pipe);
841 need_wakeup = false;
842 }
843
844 pipe_wait_readable(pipe);
845 }
846
847 head = pipe->head;
848 tail = pipe->tail;
849 mask = pipe->ring_size - 1;
850
851 while (!pipe_empty(head, tail)) {
852 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853 size_t seg;
854
855 if (!buf->len) {
856 tail++;
857 continue;
858 }
859
860 seg = min_t(size_t, remain, buf->len);
861
862 ret = pipe_buf_confirm(pipe, buf);
863 if (unlikely(ret)) {
864 if (ret == -ENODATA)
865 ret = 0;
866 break;
867 }
868
869 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870 remain -= seg;
871 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872 break;
873 tail++;
874 }
875
876 if (!bc)
877 break;
878
879 msg.msg_flags = MSG_SPLICE_PAGES;
880 if (flags & SPLICE_F_MORE)
881 msg.msg_flags |= MSG_MORE;
882 if (remain && pipe_occupancy(pipe->head, tail) > 0)
883 msg.msg_flags |= MSG_MORE;
884 if (out->f_flags & O_NONBLOCK)
885 msg.msg_flags |= MSG_DONTWAIT;
886
887 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888 len - remain);
889 ret = sock_sendmsg(sock, &msg);
890 if (ret <= 0)
891 break;
892
893 spliced += ret;
894 len -= ret;
895 tail = pipe->tail;
896 while (ret > 0) {
897 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898 size_t seg = min_t(size_t, ret, buf->len);
899
900 buf->offset += seg;
901 buf->len -= seg;
902 ret -= seg;
903
904 if (!buf->len) {
905 pipe_buf_release(pipe, buf);
906 tail++;
907 }
908 }
909
910 if (tail != pipe->tail) {
911 pipe->tail = tail;
912 if (pipe->files)
913 need_wakeup = true;
914 }
915 }
916
917out:
918 pipe_unlock(pipe);
919 if (need_wakeup)
920 wakeup_pipe_writers(pipe);
921 return spliced ?: ret;
922}
923#endif
924
925static int warn_unsupported(struct file *file, const char *op)
926{
927 pr_debug_ratelimited(
928 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929 op, file, current->pid, current->comm);
930 return -EINVAL;
931}
932
933/*
934 * Attempt to initiate a splice from pipe to file.
935 */
936static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937 loff_t *ppos, size_t len, unsigned int flags)
938{
939 if (unlikely(!out->f_op->splice_write))
940 return warn_unsupported(out, "write");
941 return out->f_op->splice_write(pipe, out, ppos, len, flags);
942}
943
944/*
945 * Indicate to the caller that there was a premature EOF when reading from the
946 * source and the caller didn't indicate they would be sending more data after
947 * this.
948 */
949static void do_splice_eof(struct splice_desc *sd)
950{
951 if (sd->splice_eof)
952 sd->splice_eof(sd);
953}
954
955/*
956 * Callers already called rw_verify_area() on the entire range.
957 * No need to call it for sub ranges.
958 */
959static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960 struct pipe_inode_info *pipe, size_t len,
961 unsigned int flags)
962{
963 unsigned int p_space;
964
965 if (unlikely(!(in->f_mode & FMODE_READ)))
966 return -EBADF;
967 if (!len)
968 return 0;
969
970 /* Don't try to read more the pipe has space for. */
971 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972 len = min_t(size_t, len, p_space << PAGE_SHIFT);
973
974 if (unlikely(len > MAX_RW_COUNT))
975 len = MAX_RW_COUNT;
976
977 if (unlikely(!in->f_op->splice_read))
978 return warn_unsupported(in, "read");
979 /*
980 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981 * buffer, copy into it and splice that into the pipe.
982 */
983 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984 return copy_splice_read(in, ppos, pipe, len, flags);
985 return in->f_op->splice_read(in, ppos, pipe, len, flags);
986}
987
988/**
989 * vfs_splice_read - Read data from a file and splice it into a pipe
990 * @in: File to splice from
991 * @ppos: Input file offset
992 * @pipe: Pipe to splice to
993 * @len: Number of bytes to splice
994 * @flags: Splice modifier flags (SPLICE_F_*)
995 *
996 * Splice the requested amount of data from the input file to the pipe. This
997 * is synchronous as the caller must hold the pipe lock across the entire
998 * operation.
999 *
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1002 */
1003ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004 struct pipe_inode_info *pipe, size_t len,
1005 unsigned int flags)
1006{
1007 ssize_t ret;
1008
1009 ret = rw_verify_area(READ, in, ppos, len);
1010 if (unlikely(ret < 0))
1011 return ret;
1012
1013 return do_splice_read(in, ppos, pipe, len, flags);
1014}
1015EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017/**
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in: file to splice from
1020 * @sd: actor information on where to splice to
1021 * @actor: handles the data splicing
1022 *
1023 * Description:
1024 * This is a special case helper to splice directly between two
1025 * points, without requiring an explicit pipe. Internally an allocated
1026 * pipe is cached in the process, and reused during the lifetime of
1027 * that process.
1028 *
1029 */
1030ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031 splice_direct_actor *actor)
1032{
1033 struct pipe_inode_info *pipe;
1034 ssize_t ret, bytes;
1035 size_t len;
1036 int i, flags, more;
1037
1038 /*
1039 * We require the input to be seekable, as we don't want to randomly
1040 * drop data for eg socket -> socket splicing. Use the piped splicing
1041 * for that!
1042 */
1043 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044 return -EINVAL;
1045
1046 /*
1047 * neither in nor out is a pipe, setup an internal pipe attached to
1048 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049 */
1050 pipe = current->splice_pipe;
1051 if (unlikely(!pipe)) {
1052 pipe = alloc_pipe_info();
1053 if (!pipe)
1054 return -ENOMEM;
1055
1056 /*
1057 * We don't have an immediate reader, but we'll read the stuff
1058 * out of the pipe right after the splice_to_pipe(). So set
1059 * PIPE_READERS appropriately.
1060 */
1061 pipe->readers = 1;
1062
1063 current->splice_pipe = pipe;
1064 }
1065
1066 /*
1067 * Do the splice.
1068 */
1069 bytes = 0;
1070 len = sd->total_len;
1071
1072 /* Don't block on output, we have to drain the direct pipe. */
1073 flags = sd->flags;
1074 sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076 /*
1077 * We signal MORE until we've read sufficient data to fulfill the
1078 * request and we keep signalling it if the caller set it.
1079 */
1080 more = sd->flags & SPLICE_F_MORE;
1081 sd->flags |= SPLICE_F_MORE;
1082
1083 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085 while (len) {
1086 size_t read_len;
1087 loff_t pos = sd->pos, prev_pos = pos;
1088
1089 ret = do_splice_read(in, &pos, pipe, len, flags);
1090 if (unlikely(ret <= 0))
1091 goto read_failure;
1092
1093 read_len = ret;
1094 sd->total_len = read_len;
1095
1096 /*
1097 * If we now have sufficient data to fulfill the request then
1098 * we clear SPLICE_F_MORE if it was not set initially.
1099 */
1100 if (read_len >= len && !more)
1101 sd->flags &= ~SPLICE_F_MORE;
1102
1103 /*
1104 * NOTE: nonblocking mode only applies to the input. We
1105 * must not do the output in nonblocking mode as then we
1106 * could get stuck data in the internal pipe:
1107 */
1108 ret = actor(pipe, sd);
1109 if (unlikely(ret <= 0)) {
1110 sd->pos = prev_pos;
1111 goto out_release;
1112 }
1113
1114 bytes += ret;
1115 len -= ret;
1116 sd->pos = pos;
1117
1118 if (ret < read_len) {
1119 sd->pos = prev_pos + ret;
1120 goto out_release;
1121 }
1122 }
1123
1124done:
1125 pipe->tail = pipe->head = 0;
1126 file_accessed(in);
1127 return bytes;
1128
1129read_failure:
1130 /*
1131 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134 * least 1 byte *then* we will also do the ->splice_eof() call.
1135 */
1136 if (ret == 0 && !more && len > 0 && bytes)
1137 do_splice_eof(sd);
1138out_release:
1139 /*
1140 * If we did an incomplete transfer we must release
1141 * the pipe buffers in question:
1142 */
1143 for (i = 0; i < pipe->ring_size; i++) {
1144 struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146 if (buf->ops)
1147 pipe_buf_release(pipe, buf);
1148 }
1149
1150 if (!bytes)
1151 bytes = ret;
1152
1153 goto done;
1154}
1155EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157static int direct_splice_actor(struct pipe_inode_info *pipe,
1158 struct splice_desc *sd)
1159{
1160 struct file *file = sd->u.file;
1161 long ret;
1162
1163 file_start_write(file);
1164 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165 file_end_write(file);
1166 return ret;
1167}
1168
1169static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170 struct splice_desc *sd)
1171{
1172 struct file *file = sd->u.file;
1173
1174 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175}
1176
1177static void direct_file_splice_eof(struct splice_desc *sd)
1178{
1179 struct file *file = sd->u.file;
1180
1181 if (file->f_op->splice_eof)
1182 file->f_op->splice_eof(file);
1183}
1184
1185static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186 struct file *out, loff_t *opos,
1187 size_t len, unsigned int flags,
1188 splice_direct_actor *actor)
1189{
1190 struct splice_desc sd = {
1191 .len = len,
1192 .total_len = len,
1193 .flags = flags,
1194 .pos = *ppos,
1195 .u.file = out,
1196 .splice_eof = direct_file_splice_eof,
1197 .opos = opos,
1198 };
1199 ssize_t ret;
1200
1201 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202 return -EBADF;
1203
1204 if (unlikely(out->f_flags & O_APPEND))
1205 return -EINVAL;
1206
1207 ret = splice_direct_to_actor(in, &sd, actor);
1208 if (ret > 0)
1209 *ppos = sd.pos;
1210
1211 return ret;
1212}
1213/**
1214 * do_splice_direct - splices data directly between two files
1215 * @in: file to splice from
1216 * @ppos: input file offset
1217 * @out: file to splice to
1218 * @opos: output file offset
1219 * @len: number of bytes to splice
1220 * @flags: splice modifier flags
1221 *
1222 * Description:
1223 * For use by do_sendfile(). splice can easily emulate sendfile, but
1224 * doing it in the application would incur an extra system call
1225 * (splice in + splice out, as compared to just sendfile()). So this helper
1226 * can splice directly through a process-private pipe.
1227 *
1228 * Callers already called rw_verify_area() on the entire range.
1229 */
1230ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231 loff_t *opos, size_t len, unsigned int flags)
1232{
1233 return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234 direct_splice_actor);
1235}
1236EXPORT_SYMBOL(do_splice_direct);
1237
1238/**
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in: file to splice from
1241 * @ppos: input file offset
1242 * @out: file to splice to
1243 * @opos: output file offset
1244 * @len: number of bytes to splice
1245 *
1246 * Description:
1247 * For use by ->copy_file_range() methods.
1248 * Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 * start_file_write() on @out file.
1250 *
1251 * Callers already called rw_verify_area() on the entire range.
1252 */
1253ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254 loff_t *opos, size_t len)
1255{
1256 lockdep_assert(file_write_started(out));
1257
1258 return do_splice_direct_actor(in, ppos, out, opos,
1259 min_t(size_t, len, MAX_RW_COUNT),
1260 0, splice_file_range_actor);
1261}
1262EXPORT_SYMBOL(splice_file_range);
1263
1264static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265{
1266 for (;;) {
1267 if (unlikely(!pipe->readers)) {
1268 send_sig(SIGPIPE, current, 0);
1269 return -EPIPE;
1270 }
1271 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272 return 0;
1273 if (flags & SPLICE_F_NONBLOCK)
1274 return -EAGAIN;
1275 if (signal_pending(current))
1276 return -ERESTARTSYS;
1277 pipe_wait_writable(pipe);
1278 }
1279}
1280
1281static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282 struct pipe_inode_info *opipe,
1283 size_t len, unsigned int flags);
1284
1285ssize_t splice_file_to_pipe(struct file *in,
1286 struct pipe_inode_info *opipe,
1287 loff_t *offset,
1288 size_t len, unsigned int flags)
1289{
1290 ssize_t ret;
1291
1292 pipe_lock(opipe);
1293 ret = wait_for_space(opipe, flags);
1294 if (!ret)
1295 ret = do_splice_read(in, offset, opipe, len, flags);
1296 pipe_unlock(opipe);
1297 if (ret > 0)
1298 wakeup_pipe_readers(opipe);
1299 return ret;
1300}
1301
1302/*
1303 * Determine where to splice to/from.
1304 */
1305ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306 loff_t *off_out, size_t len, unsigned int flags)
1307{
1308 struct pipe_inode_info *ipipe;
1309 struct pipe_inode_info *opipe;
1310 loff_t offset;
1311 ssize_t ret;
1312
1313 if (unlikely(!(in->f_mode & FMODE_READ) ||
1314 !(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1316
1317 ipipe = get_pipe_info(in, true);
1318 opipe = get_pipe_info(out, true);
1319
1320 if (ipipe && opipe) {
1321 if (off_in || off_out)
1322 return -ESPIPE;
1323
1324 /* Splicing to self would be fun, but... */
1325 if (ipipe == opipe)
1326 return -EINVAL;
1327
1328 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329 flags |= SPLICE_F_NONBLOCK;
1330
1331 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332 } else if (ipipe) {
1333 if (off_in)
1334 return -ESPIPE;
1335 if (off_out) {
1336 if (!(out->f_mode & FMODE_PWRITE))
1337 return -EINVAL;
1338 offset = *off_out;
1339 } else {
1340 offset = out->f_pos;
1341 }
1342
1343 if (unlikely(out->f_flags & O_APPEND))
1344 return -EINVAL;
1345
1346 ret = rw_verify_area(WRITE, out, &offset, len);
1347 if (unlikely(ret < 0))
1348 return ret;
1349
1350 if (in->f_flags & O_NONBLOCK)
1351 flags |= SPLICE_F_NONBLOCK;
1352
1353 file_start_write(out);
1354 ret = do_splice_from(ipipe, out, &offset, len, flags);
1355 file_end_write(out);
1356
1357 if (!off_out)
1358 out->f_pos = offset;
1359 else
1360 *off_out = offset;
1361 } else if (opipe) {
1362 if (off_out)
1363 return -ESPIPE;
1364 if (off_in) {
1365 if (!(in->f_mode & FMODE_PREAD))
1366 return -EINVAL;
1367 offset = *off_in;
1368 } else {
1369 offset = in->f_pos;
1370 }
1371
1372 ret = rw_verify_area(READ, in, &offset, len);
1373 if (unlikely(ret < 0))
1374 return ret;
1375
1376 if (out->f_flags & O_NONBLOCK)
1377 flags |= SPLICE_F_NONBLOCK;
1378
1379 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381 if (!off_in)
1382 in->f_pos = offset;
1383 else
1384 *off_in = offset;
1385 } else {
1386 ret = -EINVAL;
1387 }
1388
1389 if (ret > 0) {
1390 /*
1391 * Generate modify out before access in:
1392 * do_splice_from() may've already sent modify out,
1393 * and this ensures the events get merged.
1394 */
1395 fsnotify_modify(out);
1396 fsnotify_access(in);
1397 }
1398
1399 return ret;
1400}
1401
1402static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403 struct file *out, loff_t __user *off_out,
1404 size_t len, unsigned int flags)
1405{
1406 struct pipe_inode_info *ipipe;
1407 struct pipe_inode_info *opipe;
1408 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409 ssize_t ret;
1410
1411 ipipe = get_pipe_info(in, true);
1412 opipe = get_pipe_info(out, true);
1413
1414 if (ipipe) {
1415 if (off_in)
1416 return -ESPIPE;
1417 pipe_clear_nowait(in);
1418 }
1419 if (opipe) {
1420 if (off_out)
1421 return -ESPIPE;
1422 pipe_clear_nowait(out);
1423 }
1424
1425 if (off_out) {
1426 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427 return -EFAULT;
1428 __off_out = &offset;
1429 }
1430 if (off_in) {
1431 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432 return -EFAULT;
1433 __off_in = &offset;
1434 }
1435
1436 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437 if (ret < 0)
1438 return ret;
1439
1440 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441 return -EFAULT;
1442 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443 return -EFAULT;
1444
1445 return ret;
1446}
1447
1448static ssize_t iter_to_pipe(struct iov_iter *from,
1449 struct pipe_inode_info *pipe,
1450 unsigned int flags)
1451{
1452 struct pipe_buffer buf = {
1453 .ops = &user_page_pipe_buf_ops,
1454 .flags = flags
1455 };
1456 size_t total = 0;
1457 ssize_t ret = 0;
1458
1459 while (iov_iter_count(from)) {
1460 struct page *pages[16];
1461 ssize_t left;
1462 size_t start;
1463 int i, n;
1464
1465 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466 if (left <= 0) {
1467 ret = left;
1468 break;
1469 }
1470
1471 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472 for (i = 0; i < n; i++) {
1473 int size = min_t(int, left, PAGE_SIZE - start);
1474
1475 buf.page = pages[i];
1476 buf.offset = start;
1477 buf.len = size;
1478 ret = add_to_pipe(pipe, &buf);
1479 if (unlikely(ret < 0)) {
1480 iov_iter_revert(from, left);
1481 // this one got dropped by add_to_pipe()
1482 while (++i < n)
1483 put_page(pages[i]);
1484 goto out;
1485 }
1486 total += ret;
1487 left -= size;
1488 start = 0;
1489 }
1490 }
1491out:
1492 return total ? total : ret;
1493}
1494
1495static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 struct splice_desc *sd)
1497{
1498 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499 return n == sd->len ? n : -EFAULT;
1500}
1501
1502/*
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1505 */
1506static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507 unsigned int flags)
1508{
1509 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510 struct splice_desc sd = {
1511 .total_len = iov_iter_count(iter),
1512 .flags = flags,
1513 .u.data = iter
1514 };
1515 ssize_t ret = 0;
1516
1517 if (!pipe)
1518 return -EBADF;
1519
1520 pipe_clear_nowait(file);
1521
1522 if (sd.total_len) {
1523 pipe_lock(pipe);
1524 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525 pipe_unlock(pipe);
1526 }
1527
1528 if (ret > 0)
1529 fsnotify_access(file);
1530
1531 return ret;
1532}
1533
1534/*
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1538 */
1539static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540 unsigned int flags)
1541{
1542 struct pipe_inode_info *pipe;
1543 ssize_t ret = 0;
1544 unsigned buf_flag = 0;
1545
1546 if (flags & SPLICE_F_GIFT)
1547 buf_flag = PIPE_BUF_FLAG_GIFT;
1548
1549 pipe = get_pipe_info(file, true);
1550 if (!pipe)
1551 return -EBADF;
1552
1553 pipe_clear_nowait(file);
1554
1555 pipe_lock(pipe);
1556 ret = wait_for_space(pipe, flags);
1557 if (!ret)
1558 ret = iter_to_pipe(iter, pipe, buf_flag);
1559 pipe_unlock(pipe);
1560 if (ret > 0) {
1561 wakeup_pipe_readers(pipe);
1562 fsnotify_modify(file);
1563 }
1564 return ret;
1565}
1566
1567/*
1568 * Note that vmsplice only really supports true splicing _from_ user memory
1569 * to a pipe, not the other way around. Splicing from user memory is a simple
1570 * operation that can be supported without any funky alignment restrictions
1571 * or nasty vm tricks. We simply map in the user memory and fill them into
1572 * a pipe. The reverse isn't quite as easy, though. There are two possible
1573 * solutions for that:
1574 *
1575 * - memcpy() the data internally, at which point we might as well just
1576 * do a regular read() on the buffer anyway.
1577 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1578 * has restriction limitations on both ends of the pipe).
1579 *
1580 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1581 *
1582 */
1583SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1584 unsigned long, nr_segs, unsigned int, flags)
1585{
1586 struct iovec iovstack[UIO_FASTIOV];
1587 struct iovec *iov = iovstack;
1588 struct iov_iter iter;
1589 ssize_t error;
1590 int type;
1591
1592 if (unlikely(flags & ~SPLICE_F_ALL))
1593 return -EINVAL;
1594
1595 CLASS(fd, f)(fd);
1596 if (fd_empty(f))
1597 return -EBADF;
1598 if (fd_file(f)->f_mode & FMODE_WRITE)
1599 type = ITER_SOURCE;
1600 else if (fd_file(f)->f_mode & FMODE_READ)
1601 type = ITER_DEST;
1602 else
1603 return -EBADF;
1604
1605 error = import_iovec(type, uiov, nr_segs,
1606 ARRAY_SIZE(iovstack), &iov, &iter);
1607 if (error < 0)
1608 return error;
1609
1610 if (!iov_iter_count(&iter))
1611 error = 0;
1612 else if (type == ITER_SOURCE)
1613 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1614 else
1615 error = vmsplice_to_user(fd_file(f), &iter, flags);
1616
1617 kfree(iov);
1618 return error;
1619}
1620
1621SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1622 int, fd_out, loff_t __user *, off_out,
1623 size_t, len, unsigned int, flags)
1624{
1625 if (unlikely(!len))
1626 return 0;
1627
1628 if (unlikely(flags & ~SPLICE_F_ALL))
1629 return -EINVAL;
1630
1631 CLASS(fd, in)(fd_in);
1632 if (fd_empty(in))
1633 return -EBADF;
1634
1635 CLASS(fd, out)(fd_out);
1636 if (fd_empty(out))
1637 return -EBADF;
1638
1639 return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1640 len, flags);
1641}
1642
1643/*
1644 * Make sure there's data to read. Wait for input if we can, otherwise
1645 * return an appropriate error.
1646 */
1647static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1648{
1649 int ret;
1650
1651 /*
1652 * Check the pipe occupancy without the inode lock first. This function
1653 * is speculative anyways, so missing one is ok.
1654 */
1655 if (!pipe_empty(pipe->head, pipe->tail))
1656 return 0;
1657
1658 ret = 0;
1659 pipe_lock(pipe);
1660
1661 while (pipe_empty(pipe->head, pipe->tail)) {
1662 if (signal_pending(current)) {
1663 ret = -ERESTARTSYS;
1664 break;
1665 }
1666 if (!pipe->writers)
1667 break;
1668 if (flags & SPLICE_F_NONBLOCK) {
1669 ret = -EAGAIN;
1670 break;
1671 }
1672 pipe_wait_readable(pipe);
1673 }
1674
1675 pipe_unlock(pipe);
1676 return ret;
1677}
1678
1679/*
1680 * Make sure there's writeable room. Wait for room if we can, otherwise
1681 * return an appropriate error.
1682 */
1683static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1684{
1685 int ret;
1686
1687 /*
1688 * Check pipe occupancy without the inode lock first. This function
1689 * is speculative anyways, so missing one is ok.
1690 */
1691 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1692 return 0;
1693
1694 ret = 0;
1695 pipe_lock(pipe);
1696
1697 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1698 if (!pipe->readers) {
1699 send_sig(SIGPIPE, current, 0);
1700 ret = -EPIPE;
1701 break;
1702 }
1703 if (flags & SPLICE_F_NONBLOCK) {
1704 ret = -EAGAIN;
1705 break;
1706 }
1707 if (signal_pending(current)) {
1708 ret = -ERESTARTSYS;
1709 break;
1710 }
1711 pipe_wait_writable(pipe);
1712 }
1713
1714 pipe_unlock(pipe);
1715 return ret;
1716}
1717
1718/*
1719 * Splice contents of ipipe to opipe.
1720 */
1721static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1722 struct pipe_inode_info *opipe,
1723 size_t len, unsigned int flags)
1724{
1725 struct pipe_buffer *ibuf, *obuf;
1726 unsigned int i_head, o_head;
1727 unsigned int i_tail, o_tail;
1728 unsigned int i_mask, o_mask;
1729 int ret = 0;
1730 bool input_wakeup = false;
1731
1732
1733retry:
1734 ret = ipipe_prep(ipipe, flags);
1735 if (ret)
1736 return ret;
1737
1738 ret = opipe_prep(opipe, flags);
1739 if (ret)
1740 return ret;
1741
1742 /*
1743 * Potential ABBA deadlock, work around it by ordering lock
1744 * grabbing by pipe info address. Otherwise two different processes
1745 * could deadlock (one doing tee from A -> B, the other from B -> A).
1746 */
1747 pipe_double_lock(ipipe, opipe);
1748
1749 i_tail = ipipe->tail;
1750 i_mask = ipipe->ring_size - 1;
1751 o_head = opipe->head;
1752 o_mask = opipe->ring_size - 1;
1753
1754 do {
1755 size_t o_len;
1756
1757 if (!opipe->readers) {
1758 send_sig(SIGPIPE, current, 0);
1759 if (!ret)
1760 ret = -EPIPE;
1761 break;
1762 }
1763
1764 i_head = ipipe->head;
1765 o_tail = opipe->tail;
1766
1767 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1768 break;
1769
1770 /*
1771 * Cannot make any progress, because either the input
1772 * pipe is empty or the output pipe is full.
1773 */
1774 if (pipe_empty(i_head, i_tail) ||
1775 pipe_full(o_head, o_tail, opipe->max_usage)) {
1776 /* Already processed some buffers, break */
1777 if (ret)
1778 break;
1779
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784
1785 /*
1786 * We raced with another reader/writer and haven't
1787 * managed to process any buffers. A zero return
1788 * value means EOF, so retry instead.
1789 */
1790 pipe_unlock(ipipe);
1791 pipe_unlock(opipe);
1792 goto retry;
1793 }
1794
1795 ibuf = &ipipe->bufs[i_tail & i_mask];
1796 obuf = &opipe->bufs[o_head & o_mask];
1797
1798 if (len >= ibuf->len) {
1799 /*
1800 * Simply move the whole buffer from ipipe to opipe
1801 */
1802 *obuf = *ibuf;
1803 ibuf->ops = NULL;
1804 i_tail++;
1805 ipipe->tail = i_tail;
1806 input_wakeup = true;
1807 o_len = obuf->len;
1808 o_head++;
1809 opipe->head = o_head;
1810 } else {
1811 /*
1812 * Get a reference to this pipe buffer,
1813 * so we can copy the contents over.
1814 */
1815 if (!pipe_buf_get(ipipe, ibuf)) {
1816 if (ret == 0)
1817 ret = -EFAULT;
1818 break;
1819 }
1820 *obuf = *ibuf;
1821
1822 /*
1823 * Don't inherit the gift and merge flags, we need to
1824 * prevent multiple steals of this page.
1825 */
1826 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1827 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1828
1829 obuf->len = len;
1830 ibuf->offset += len;
1831 ibuf->len -= len;
1832 o_len = len;
1833 o_head++;
1834 opipe->head = o_head;
1835 }
1836 ret += o_len;
1837 len -= o_len;
1838 } while (len);
1839
1840 pipe_unlock(ipipe);
1841 pipe_unlock(opipe);
1842
1843 /*
1844 * If we put data in the output pipe, wakeup any potential readers.
1845 */
1846 if (ret > 0)
1847 wakeup_pipe_readers(opipe);
1848
1849 if (input_wakeup)
1850 wakeup_pipe_writers(ipipe);
1851
1852 return ret;
1853}
1854
1855/*
1856 * Link contents of ipipe to opipe.
1857 */
1858static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1859 struct pipe_inode_info *opipe,
1860 size_t len, unsigned int flags)
1861{
1862 struct pipe_buffer *ibuf, *obuf;
1863 unsigned int i_head, o_head;
1864 unsigned int i_tail, o_tail;
1865 unsigned int i_mask, o_mask;
1866 ssize_t ret = 0;
1867
1868 /*
1869 * Potential ABBA deadlock, work around it by ordering lock
1870 * grabbing by pipe info address. Otherwise two different processes
1871 * could deadlock (one doing tee from A -> B, the other from B -> A).
1872 */
1873 pipe_double_lock(ipipe, opipe);
1874
1875 i_tail = ipipe->tail;
1876 i_mask = ipipe->ring_size - 1;
1877 o_head = opipe->head;
1878 o_mask = opipe->ring_size - 1;
1879
1880 do {
1881 if (!opipe->readers) {
1882 send_sig(SIGPIPE, current, 0);
1883 if (!ret)
1884 ret = -EPIPE;
1885 break;
1886 }
1887
1888 i_head = ipipe->head;
1889 o_tail = opipe->tail;
1890
1891 /*
1892 * If we have iterated all input buffers or run out of
1893 * output room, break.
1894 */
1895 if (pipe_empty(i_head, i_tail) ||
1896 pipe_full(o_head, o_tail, opipe->max_usage))
1897 break;
1898
1899 ibuf = &ipipe->bufs[i_tail & i_mask];
1900 obuf = &opipe->bufs[o_head & o_mask];
1901
1902 /*
1903 * Get a reference to this pipe buffer,
1904 * so we can copy the contents over.
1905 */
1906 if (!pipe_buf_get(ipipe, ibuf)) {
1907 if (ret == 0)
1908 ret = -EFAULT;
1909 break;
1910 }
1911
1912 *obuf = *ibuf;
1913
1914 /*
1915 * Don't inherit the gift and merge flag, we need to prevent
1916 * multiple steals of this page.
1917 */
1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1919 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1920
1921 if (obuf->len > len)
1922 obuf->len = len;
1923 ret += obuf->len;
1924 len -= obuf->len;
1925
1926 o_head++;
1927 opipe->head = o_head;
1928 i_tail++;
1929 } while (len);
1930
1931 pipe_unlock(ipipe);
1932 pipe_unlock(opipe);
1933
1934 /*
1935 * If we put data in the output pipe, wakeup any potential readers.
1936 */
1937 if (ret > 0)
1938 wakeup_pipe_readers(opipe);
1939
1940 return ret;
1941}
1942
1943/*
1944 * This is a tee(1) implementation that works on pipes. It doesn't copy
1945 * any data, it simply references the 'in' pages on the 'out' pipe.
1946 * The 'flags' used are the SPLICE_F_* variants, currently the only
1947 * applicable one is SPLICE_F_NONBLOCK.
1948 */
1949ssize_t do_tee(struct file *in, struct file *out, size_t len,
1950 unsigned int flags)
1951{
1952 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1953 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1954 ssize_t ret = -EINVAL;
1955
1956 if (unlikely(!(in->f_mode & FMODE_READ) ||
1957 !(out->f_mode & FMODE_WRITE)))
1958 return -EBADF;
1959
1960 /*
1961 * Duplicate the contents of ipipe to opipe without actually
1962 * copying the data.
1963 */
1964 if (ipipe && opipe && ipipe != opipe) {
1965 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1966 flags |= SPLICE_F_NONBLOCK;
1967
1968 /*
1969 * Keep going, unless we encounter an error. The ipipe/opipe
1970 * ordering doesn't really matter.
1971 */
1972 ret = ipipe_prep(ipipe, flags);
1973 if (!ret) {
1974 ret = opipe_prep(opipe, flags);
1975 if (!ret)
1976 ret = link_pipe(ipipe, opipe, len, flags);
1977 }
1978 }
1979
1980 if (ret > 0) {
1981 fsnotify_access(in);
1982 fsnotify_modify(out);
1983 }
1984
1985 return ret;
1986}
1987
1988SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1989{
1990 if (unlikely(flags & ~SPLICE_F_ALL))
1991 return -EINVAL;
1992
1993 if (unlikely(!len))
1994 return 0;
1995
1996 CLASS(fd, in)(fdin);
1997 if (fd_empty(in))
1998 return -EBADF;
1999
2000 CLASS(fd, out)(fdout);
2001 if (fd_empty(out))
2002 return -EBADF;
2003
2004 return do_tee(fd_file(in), fd_file(out), len, flags);
2005}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266}
267EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270{
271 put_page(spd->pages[i]);
272}
273
274/*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279{
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295}
296
297void splice_shrink_spd(struct splice_pipe_desc *spd)
298{
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304}
305
306static int
307__generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310{
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * Re-lookup the page
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
534
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
538
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
543 }
544
545 return ret;
546}
547EXPORT_SYMBOL(generic_file_splice_read);
548
549static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555};
556
557static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
559{
560 return 1;
561}
562
563/* Pipe buffer operations for a socket and similar. */
564const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
570};
571EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
575{
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
579
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
585
586 return res;
587}
588
589ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
591{
592 mm_segment_t old_fs;
593 ssize_t res;
594
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
600
601 return res;
602}
603EXPORT_SYMBOL(kernel_write);
604
605ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
608{
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
626 };
627
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
630
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
637 }
638
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
644
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
649
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
657 }
658
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
663 }
664
665 error = 0;
666 if (!res)
667 goto err;
668
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
678 }
679 res -= this_len;
680 }
681 spd.nr_pages -= nr_freed;
682
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
686
687shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
692
693err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
696
697 res = error;
698 goto shrink_ret;
699}
700EXPORT_SYMBOL(default_file_splice_read);
701
702/*
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
705 */
706static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
708{
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
712
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
715
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
720
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
723}
724
725static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726{
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731}
732
733/**
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
738 *
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
747 *
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
752 */
753static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
755{
756 int ret;
757
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
761
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
765
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
771 }
772
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
776
777 buf->offset += ret;
778 buf->len -= ret;
779
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
784
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
792 }
793
794 if (!sd->total_len)
795 return 0;
796 }
797
798 return 1;
799}
800
801/**
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
805 *
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
810 */
811static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812{
813 /*
814 * Check for signal early to make process killable when there are
815 * always buffers available
816 */
817 if (signal_pending(current))
818 return -ERESTARTSYS;
819
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
823
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
826
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
829
830 if (signal_pending(current))
831 return -ERESTARTSYS;
832
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
836 }
837
838 pipe_wait(pipe);
839 }
840
841 return 1;
842}
843
844/**
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
852 */
853static void splice_from_pipe_begin(struct splice_desc *sd)
854{
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
857}
858
859/**
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
863 *
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
868 */
869static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870{
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
873}
874
875/**
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
880 *
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
886 *
887 */
888ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
890{
891 int ret;
892
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
901
902 return sd->num_spliced ? sd->num_spliced : ret;
903}
904EXPORT_SYMBOL(__splice_from_pipe);
905
906/**
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
918 *
919 */
920ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
923{
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
930 };
931
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
935
936 return ret;
937}
938
939/**
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
946 *
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
951 *
952 */
953ssize_t
954iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
956{
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 };
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
967
968 if (unlikely(!array))
969 return -ENOMEM;
970
971 pipe_lock(pipe);
972
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
978
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
982
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
991 }
992 }
993
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
999
1000 if (this_len > left)
1001 this_len = left;
1002
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1011 }
1012
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1017 }
1018
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059}
1060
1061EXPORT_SYMBOL(iter_file_splice_write);
1062
1063static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065{
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075}
1076
1077static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080{
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088}
1089
1090/**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105{
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107}
1108
1109EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111/*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116{
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126}
1127
1128/*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134{
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (unlikely(len > MAX_RW_COUNT))
1147 len = MAX_RW_COUNT;
1148
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1153
1154 return splice_read(in, ppos, pipe, len, flags);
1155}
1156
1157/**
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1162 *
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1168 *
1169 */
1170ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1172{
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags, more;
1178
1179 /*
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1183 */
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1187
1188 /*
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 */
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1197
1198 /*
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1202 */
1203 pipe->readers = 1;
1204
1205 current->splice_pipe = pipe;
1206 }
1207
1208 /*
1209 * Do the splice.
1210 */
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1215
1216 /*
1217 * Don't block on output, we have to drain the direct pipe.
1218 */
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1220 more = sd->flags & SPLICE_F_MORE;
1221
1222 while (len) {
1223 size_t read_len;
1224 loff_t pos = sd->pos, prev_pos = pos;
1225
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1228 goto out_release;
1229
1230 read_len = ret;
1231 sd->total_len = read_len;
1232
1233 /*
1234 * If more data is pending, set SPLICE_F_MORE
1235 * If this is the last data and SPLICE_F_MORE was not set
1236 * initially, clears it.
1237 */
1238 if (read_len < len)
1239 sd->flags |= SPLICE_F_MORE;
1240 else if (!more)
1241 sd->flags &= ~SPLICE_F_MORE;
1242 /*
1243 * NOTE: nonblocking mode only applies to the input. We
1244 * must not do the output in nonblocking mode as then we
1245 * could get stuck data in the internal pipe:
1246 */
1247 ret = actor(pipe, sd);
1248 if (unlikely(ret <= 0)) {
1249 sd->pos = prev_pos;
1250 goto out_release;
1251 }
1252
1253 bytes += ret;
1254 len -= ret;
1255 sd->pos = pos;
1256
1257 if (ret < read_len) {
1258 sd->pos = prev_pos + ret;
1259 goto out_release;
1260 }
1261 }
1262
1263done:
1264 pipe->nrbufs = pipe->curbuf = 0;
1265 file_accessed(in);
1266 return bytes;
1267
1268out_release:
1269 /*
1270 * If we did an incomplete transfer we must release
1271 * the pipe buffers in question:
1272 */
1273 for (i = 0; i < pipe->buffers; i++) {
1274 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276 if (buf->ops) {
1277 buf->ops->release(pipe, buf);
1278 buf->ops = NULL;
1279 }
1280 }
1281
1282 if (!bytes)
1283 bytes = ret;
1284
1285 goto done;
1286}
1287EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289static int direct_splice_actor(struct pipe_inode_info *pipe,
1290 struct splice_desc *sd)
1291{
1292 struct file *file = sd->u.file;
1293
1294 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295 sd->flags);
1296}
1297
1298/**
1299 * do_splice_direct - splices data directly between two files
1300 * @in: file to splice from
1301 * @ppos: input file offset
1302 * @out: file to splice to
1303 * @opos: output file offset
1304 * @len: number of bytes to splice
1305 * @flags: splice modifier flags
1306 *
1307 * Description:
1308 * For use by do_sendfile(). splice can easily emulate sendfile, but
1309 * doing it in the application would incur an extra system call
1310 * (splice in + splice out, as compared to just sendfile()). So this helper
1311 * can splice directly through a process-private pipe.
1312 *
1313 */
1314long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315 loff_t *opos, size_t len, unsigned int flags)
1316{
1317 struct splice_desc sd = {
1318 .len = len,
1319 .total_len = len,
1320 .flags = flags,
1321 .pos = *ppos,
1322 .u.file = out,
1323 .opos = opos,
1324 };
1325 long ret;
1326
1327 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328 return -EBADF;
1329
1330 if (unlikely(out->f_flags & O_APPEND))
1331 return -EINVAL;
1332
1333 ret = rw_verify_area(WRITE, out, opos, len);
1334 if (unlikely(ret < 0))
1335 return ret;
1336
1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338 if (ret > 0)
1339 *ppos = sd.pos;
1340
1341 return ret;
1342}
1343EXPORT_SYMBOL(do_splice_direct);
1344
1345static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346 struct pipe_inode_info *opipe,
1347 size_t len, unsigned int flags);
1348
1349/*
1350 * Determine where to splice to/from.
1351 */
1352static long do_splice(struct file *in, loff_t __user *off_in,
1353 struct file *out, loff_t __user *off_out,
1354 size_t len, unsigned int flags)
1355{
1356 struct pipe_inode_info *ipipe;
1357 struct pipe_inode_info *opipe;
1358 loff_t offset;
1359 long ret;
1360
1361 ipipe = get_pipe_info(in);
1362 opipe = get_pipe_info(out);
1363
1364 if (ipipe && opipe) {
1365 if (off_in || off_out)
1366 return -ESPIPE;
1367
1368 if (!(in->f_mode & FMODE_READ))
1369 return -EBADF;
1370
1371 if (!(out->f_mode & FMODE_WRITE))
1372 return -EBADF;
1373
1374 /* Splicing to self would be fun, but... */
1375 if (ipipe == opipe)
1376 return -EINVAL;
1377
1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379 }
1380
1381 if (ipipe) {
1382 if (off_in)
1383 return -ESPIPE;
1384 if (off_out) {
1385 if (!(out->f_mode & FMODE_PWRITE))
1386 return -EINVAL;
1387 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388 return -EFAULT;
1389 } else {
1390 offset = out->f_pos;
1391 }
1392
1393 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394 return -EBADF;
1395
1396 if (unlikely(out->f_flags & O_APPEND))
1397 return -EINVAL;
1398
1399 ret = rw_verify_area(WRITE, out, &offset, len);
1400 if (unlikely(ret < 0))
1401 return ret;
1402
1403 file_start_write(out);
1404 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405 file_end_write(out);
1406
1407 if (!off_out)
1408 out->f_pos = offset;
1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 if (opipe) {
1416 if (off_out)
1417 return -ESPIPE;
1418 if (off_in) {
1419 if (!(in->f_mode & FMODE_PREAD))
1420 return -EINVAL;
1421 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422 return -EFAULT;
1423 } else {
1424 offset = in->f_pos;
1425 }
1426
1427 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429 if (!off_in)
1430 in->f_pos = offset;
1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435 }
1436
1437 return -EINVAL;
1438}
1439
1440/*
1441 * Map an iov into an array of pages and offset/length tupples. With the
1442 * partial_page structure, we can map several non-contiguous ranges into
1443 * our ones pages[] map instead of splitting that operation into pieces.
1444 * Could easily be exported as a generic helper for other users, in which
1445 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 */
1447static int get_iovec_page_array(const struct iovec __user *iov,
1448 unsigned int nr_vecs, struct page **pages,
1449 struct partial_page *partial, bool aligned,
1450 unsigned int pipe_buffers)
1451{
1452 int buffers = 0, error = 0;
1453
1454 while (nr_vecs) {
1455 unsigned long off, npages;
1456 struct iovec entry;
1457 void __user *base;
1458 size_t len;
1459 int i;
1460
1461 error = -EFAULT;
1462 if (copy_from_user(&entry, iov, sizeof(entry)))
1463 break;
1464
1465 base = entry.iov_base;
1466 len = entry.iov_len;
1467
1468 /*
1469 * Sanity check this iovec. 0 read succeeds.
1470 */
1471 error = 0;
1472 if (unlikely(!len))
1473 break;
1474 error = -EFAULT;
1475 if (!access_ok(VERIFY_READ, base, len))
1476 break;
1477
1478 /*
1479 * Get this base offset and number of pages, then map
1480 * in the user pages.
1481 */
1482 off = (unsigned long) base & ~PAGE_MASK;
1483
1484 /*
1485 * If asked for alignment, the offset must be zero and the
1486 * length a multiple of the PAGE_SIZE.
1487 */
1488 error = -EINVAL;
1489 if (aligned && (off || len & ~PAGE_MASK))
1490 break;
1491
1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 if (npages > pipe_buffers - buffers)
1494 npages = pipe_buffers - buffers;
1495
1496 error = get_user_pages_fast((unsigned long)base, npages,
1497 0, &pages[buffers]);
1498
1499 if (unlikely(error <= 0))
1500 break;
1501
1502 /*
1503 * Fill this contiguous range into the partial page map.
1504 */
1505 for (i = 0; i < error; i++) {
1506 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508 partial[buffers].offset = off;
1509 partial[buffers].len = plen;
1510
1511 off = 0;
1512 len -= plen;
1513 buffers++;
1514 }
1515
1516 /*
1517 * We didn't complete this iov, stop here since it probably
1518 * means we have to move some of this into a pipe to
1519 * be able to continue.
1520 */
1521 if (len)
1522 break;
1523
1524 /*
1525 * Don't continue if we mapped fewer pages than we asked for,
1526 * or if we mapped the max number of pages that we have
1527 * room for.
1528 */
1529 if (error < npages || buffers == pipe_buffers)
1530 break;
1531
1532 nr_vecs--;
1533 iov++;
1534 }
1535
1536 if (buffers)
1537 return buffers;
1538
1539 return error;
1540}
1541
1542static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543 struct splice_desc *sd)
1544{
1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546 return n == sd->len ? n : -EFAULT;
1547}
1548
1549/*
1550 * For lack of a better implementation, implement vmsplice() to userspace
1551 * as a simple copy of the pipes pages to the user iov.
1552 */
1553static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554 unsigned long nr_segs, unsigned int flags)
1555{
1556 struct pipe_inode_info *pipe;
1557 struct splice_desc sd;
1558 long ret;
1559 struct iovec iovstack[UIO_FASTIOV];
1560 struct iovec *iov = iovstack;
1561 struct iov_iter iter;
1562
1563 pipe = get_pipe_info(file);
1564 if (!pipe)
1565 return -EBADF;
1566
1567 ret = import_iovec(READ, uiov, nr_segs,
1568 ARRAY_SIZE(iovstack), &iov, &iter);
1569 if (ret < 0)
1570 return ret;
1571
1572 sd.total_len = iov_iter_count(&iter);
1573 sd.len = 0;
1574 sd.flags = flags;
1575 sd.u.data = &iter;
1576 sd.pos = 0;
1577
1578 if (sd.total_len) {
1579 pipe_lock(pipe);
1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 pipe_unlock(pipe);
1582 }
1583
1584 kfree(iov);
1585 return ret;
1586}
1587
1588/*
1589 * vmsplice splices a user address range into a pipe. It can be thought of
1590 * as splice-from-memory, where the regular splice is splice-from-file (or
1591 * to file). In both cases the output is a pipe, naturally.
1592 */
1593static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594 unsigned long nr_segs, unsigned int flags)
1595{
1596 struct pipe_inode_info *pipe;
1597 struct page *pages[PIPE_DEF_BUFFERS];
1598 struct partial_page partial[PIPE_DEF_BUFFERS];
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
1602 .nr_pages_max = PIPE_DEF_BUFFERS,
1603 .flags = flags,
1604 .ops = &user_page_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607 long ret;
1608
1609 pipe = get_pipe_info(file);
1610 if (!pipe)
1611 return -EBADF;
1612
1613 if (splice_grow_spd(pipe, &spd))
1614 return -ENOMEM;
1615
1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617 spd.partial, false,
1618 spd.nr_pages_max);
1619 if (spd.nr_pages <= 0)
1620 ret = spd.nr_pages;
1621 else
1622 ret = splice_to_pipe(pipe, &spd);
1623
1624 splice_shrink_spd(&spd);
1625 return ret;
1626}
1627
1628/*
1629 * Note that vmsplice only really supports true splicing _from_ user memory
1630 * to a pipe, not the other way around. Splicing from user memory is a simple
1631 * operation that can be supported without any funky alignment restrictions
1632 * or nasty vm tricks. We simply map in the user memory and fill them into
1633 * a pipe. The reverse isn't quite as easy, though. There are two possible
1634 * solutions for that:
1635 *
1636 * - memcpy() the data internally, at which point we might as well just
1637 * do a regular read() on the buffer anyway.
1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639 * has restriction limitations on both ends of the pipe).
1640 *
1641 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 *
1643 */
1644SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645 unsigned long, nr_segs, unsigned int, flags)
1646{
1647 struct fd f;
1648 long error;
1649
1650 if (unlikely(nr_segs > UIO_MAXIOV))
1651 return -EINVAL;
1652 else if (unlikely(!nr_segs))
1653 return 0;
1654
1655 error = -EBADF;
1656 f = fdget(fd);
1657 if (f.file) {
1658 if (f.file->f_mode & FMODE_WRITE)
1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660 else if (f.file->f_mode & FMODE_READ)
1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663 fdput(f);
1664 }
1665
1666 return error;
1667}
1668
1669#ifdef CONFIG_COMPAT
1670COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671 unsigned int, nr_segs, unsigned int, flags)
1672{
1673 unsigned i;
1674 struct iovec __user *iov;
1675 if (nr_segs > UIO_MAXIOV)
1676 return -EINVAL;
1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678 for (i = 0; i < nr_segs; i++) {
1679 struct compat_iovec v;
1680 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681 get_user(v.iov_len, &iov32[i].iov_len) ||
1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683 put_user(v.iov_len, &iov[i].iov_len))
1684 return -EFAULT;
1685 }
1686 return sys_vmsplice(fd, iov, nr_segs, flags);
1687}
1688#endif
1689
1690SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 int, fd_out, loff_t __user *, off_out,
1692 size_t, len, unsigned int, flags)
1693{
1694 struct fd in, out;
1695 long error;
1696
1697 if (unlikely(!len))
1698 return 0;
1699
1700 error = -EBADF;
1701 in = fdget(fd_in);
1702 if (in.file) {
1703 if (in.file->f_mode & FMODE_READ) {
1704 out = fdget(fd_out);
1705 if (out.file) {
1706 if (out.file->f_mode & FMODE_WRITE)
1707 error = do_splice(in.file, off_in,
1708 out.file, off_out,
1709 len, flags);
1710 fdput(out);
1711 }
1712 }
1713 fdput(in);
1714 }
1715 return error;
1716}
1717
1718/*
1719 * Make sure there's data to read. Wait for input if we can, otherwise
1720 * return an appropriate error.
1721 */
1722static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723{
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (!pipe->nrbufs) {
1737 if (signal_pending(current)) {
1738 ret = -ERESTARTSYS;
1739 break;
1740 }
1741 if (!pipe->writers)
1742 break;
1743 if (!pipe->waiting_writers) {
1744 if (flags & SPLICE_F_NONBLOCK) {
1745 ret = -EAGAIN;
1746 break;
1747 }
1748 }
1749 pipe_wait(pipe);
1750 }
1751
1752 pipe_unlock(pipe);
1753 return ret;
1754}
1755
1756/*
1757 * Make sure there's writeable room. Wait for room if we can, otherwise
1758 * return an appropriate error.
1759 */
1760static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761{
1762 int ret;
1763
1764 /*
1765 * Check ->nrbufs without the inode lock first. This function
1766 * is speculative anyways, so missing one is ok.
1767 */
1768 if (pipe->nrbufs < pipe->buffers)
1769 return 0;
1770
1771 ret = 0;
1772 pipe_lock(pipe);
1773
1774 while (pipe->nrbufs >= pipe->buffers) {
1775 if (!pipe->readers) {
1776 send_sig(SIGPIPE, current, 0);
1777 ret = -EPIPE;
1778 break;
1779 }
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784 if (signal_pending(current)) {
1785 ret = -ERESTARTSYS;
1786 break;
1787 }
1788 pipe->waiting_writers++;
1789 pipe_wait(pipe);
1790 pipe->waiting_writers--;
1791 }
1792
1793 pipe_unlock(pipe);
1794 return ret;
1795}
1796
1797/*
1798 * Splice contents of ipipe to opipe.
1799 */
1800static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 struct pipe_inode_info *opipe,
1802 size_t len, unsigned int flags)
1803{
1804 struct pipe_buffer *ibuf, *obuf;
1805 int ret = 0, nbuf;
1806 bool input_wakeup = false;
1807
1808
1809retry:
1810 ret = ipipe_prep(ipipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 ret = opipe_prep(opipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 /*
1819 * Potential ABBA deadlock, work around it by ordering lock
1820 * grabbing by pipe info address. Otherwise two different processes
1821 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 */
1823 pipe_double_lock(ipipe, opipe);
1824
1825 do {
1826 if (!opipe->readers) {
1827 send_sig(SIGPIPE, current, 0);
1828 if (!ret)
1829 ret = -EPIPE;
1830 break;
1831 }
1832
1833 if (!ipipe->nrbufs && !ipipe->writers)
1834 break;
1835
1836 /*
1837 * Cannot make any progress, because either the input
1838 * pipe is empty or the output pipe is full.
1839 */
1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 /* Already processed some buffers, break */
1842 if (ret)
1843 break;
1844
1845 if (flags & SPLICE_F_NONBLOCK) {
1846 ret = -EAGAIN;
1847 break;
1848 }
1849
1850 /*
1851 * We raced with another reader/writer and haven't
1852 * managed to process any buffers. A zero return
1853 * value means EOF, so retry instead.
1854 */
1855 pipe_unlock(ipipe);
1856 pipe_unlock(opipe);
1857 goto retry;
1858 }
1859
1860 ibuf = ipipe->bufs + ipipe->curbuf;
1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 obuf = opipe->bufs + nbuf;
1863
1864 if (len >= ibuf->len) {
1865 /*
1866 * Simply move the whole buffer from ipipe to opipe
1867 */
1868 *obuf = *ibuf;
1869 ibuf->ops = NULL;
1870 opipe->nrbufs++;
1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 ipipe->nrbufs--;
1873 input_wakeup = true;
1874 } else {
1875 /*
1876 * Get a reference to this pipe buffer,
1877 * so we can copy the contents over.
1878 */
1879 ibuf->ops->get(ipipe, ibuf);
1880 *obuf = *ibuf;
1881
1882 /*
1883 * Don't inherit the gift flag, we need to
1884 * prevent multiple steals of this page.
1885 */
1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888 obuf->len = len;
1889 opipe->nrbufs++;
1890 ibuf->offset += obuf->len;
1891 ibuf->len -= obuf->len;
1892 }
1893 ret += obuf->len;
1894 len -= obuf->len;
1895 } while (len);
1896
1897 pipe_unlock(ipipe);
1898 pipe_unlock(opipe);
1899
1900 /*
1901 * If we put data in the output pipe, wakeup any potential readers.
1902 */
1903 if (ret > 0)
1904 wakeup_pipe_readers(opipe);
1905
1906 if (input_wakeup)
1907 wakeup_pipe_writers(ipipe);
1908
1909 return ret;
1910}
1911
1912/*
1913 * Link contents of ipipe to opipe.
1914 */
1915static int link_pipe(struct pipe_inode_info *ipipe,
1916 struct pipe_inode_info *opipe,
1917 size_t len, unsigned int flags)
1918{
1919 struct pipe_buffer *ibuf, *obuf;
1920 int ret = 0, i = 0, nbuf;
1921
1922 /*
1923 * Potential ABBA deadlock, work around it by ordering lock
1924 * grabbing by pipe info address. Otherwise two different processes
1925 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 */
1927 pipe_double_lock(ipipe, opipe);
1928
1929 do {
1930 if (!opipe->readers) {
1931 send_sig(SIGPIPE, current, 0);
1932 if (!ret)
1933 ret = -EPIPE;
1934 break;
1935 }
1936
1937 /*
1938 * If we have iterated all input buffers or ran out of
1939 * output room, break.
1940 */
1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 break;
1943
1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947 /*
1948 * Get a reference to this pipe buffer,
1949 * so we can copy the contents over.
1950 */
1951 ibuf->ops->get(ipipe, ibuf);
1952
1953 obuf = opipe->bufs + nbuf;
1954 *obuf = *ibuf;
1955
1956 /*
1957 * Don't inherit the gift flag, we need to
1958 * prevent multiple steals of this page.
1959 */
1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962 if (obuf->len > len)
1963 obuf->len = len;
1964
1965 opipe->nrbufs++;
1966 ret += obuf->len;
1967 len -= obuf->len;
1968 i++;
1969 } while (len);
1970
1971 /*
1972 * return EAGAIN if we have the potential of some data in the
1973 * future, otherwise just return 0
1974 */
1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 ret = -EAGAIN;
1977
1978 pipe_unlock(ipipe);
1979 pipe_unlock(opipe);
1980
1981 /*
1982 * If we put data in the output pipe, wakeup any potential readers.
1983 */
1984 if (ret > 0)
1985 wakeup_pipe_readers(opipe);
1986
1987 return ret;
1988}
1989
1990/*
1991 * This is a tee(1) implementation that works on pipes. It doesn't copy
1992 * any data, it simply references the 'in' pages on the 'out' pipe.
1993 * The 'flags' used are the SPLICE_F_* variants, currently the only
1994 * applicable one is SPLICE_F_NONBLOCK.
1995 */
1996static long do_tee(struct file *in, struct file *out, size_t len,
1997 unsigned int flags)
1998{
1999 struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 int ret = -EINVAL;
2002
2003 /*
2004 * Duplicate the contents of ipipe to opipe without actually
2005 * copying the data.
2006 */
2007 if (ipipe && opipe && ipipe != opipe) {
2008 /*
2009 * Keep going, unless we encounter an error. The ipipe/opipe
2010 * ordering doesn't really matter.
2011 */
2012 ret = ipipe_prep(ipipe, flags);
2013 if (!ret) {
2014 ret = opipe_prep(opipe, flags);
2015 if (!ret)
2016 ret = link_pipe(ipipe, opipe, len, flags);
2017 }
2018 }
2019
2020 return ret;
2021}
2022
2023SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024{
2025 struct fd in;
2026 int error;
2027
2028 if (unlikely(!len))
2029 return 0;
2030
2031 error = -EBADF;
2032 in = fdget(fdin);
2033 if (in.file) {
2034 if (in.file->f_mode & FMODE_READ) {
2035 struct fd out = fdget(fdout);
2036 if (out.file) {
2037 if (out.file->f_mode & FMODE_WRITE)
2038 error = do_tee(in.file, out.file,
2039 len, flags);
2040 fdput(out);
2041 }
2042 }
2043 fdput(in);
2044 }
2045
2046 return error;
2047}