Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 
 
 42#include <asm/ldt.h>
 43#include <asm/processor.h>
 44#include <asm/fpu/sched.h>
 45#include <asm/desc.h>
 
 
 
 46
 47#include <linux/err.h>
 48
 49#include <asm/tlbflush.h>
 50#include <asm/cpu.h>
 
 
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/vm86.h>
 54#include <asm/resctrl.h>
 55#include <asm/proto.h>
 56
 57#include "process.h"
 58
 59void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 60		 const char *log_lvl)
 
 
 61{
 62	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 63	unsigned long d0, d1, d2, d3, d6, d7;
 64	unsigned short gs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65
 66	savesegment(gs, gs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68	show_ip(regs, log_lvl);
 
 
 
 
 
 69
 70	printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 71		log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
 72	printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 73		log_lvl, regs->si, regs->di, regs->bp, regs->sp);
 74	printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
 75	       log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76
 77	if (mode != SHOW_REGS_ALL)
 78		return;
 79
 80	cr0 = read_cr0();
 81	cr2 = read_cr2();
 82	cr3 = __read_cr3();
 83	cr4 = __read_cr4();
 84	printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 85		log_lvl, cr0, cr2, cr3, cr4);
 86
 87	get_debugreg(d0, 0);
 88	get_debugreg(d1, 1);
 89	get_debugreg(d2, 2);
 90	get_debugreg(d3, 3);
 
 
 
 91	get_debugreg(d6, 6);
 92	get_debugreg(d7, 7);
 93
 94	/* Only print out debug registers if they are in their non-default state. */
 95	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 96	    (d6 == DR6_RESERVED) && (d7 == 0x400))
 97		return;
 98
 99	printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
100		log_lvl, d0, d1, d2, d3);
101	printk("%sDR6: %08lx DR7: %08lx\n",
102		log_lvl, d6, d7);
103}
104
105void release_thread(struct task_struct *dead_task)
106{
107	BUG_ON(dead_task->mm);
108	release_vm86_irqs(dead_task);
109}
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111void
112start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
113{
114	loadsegment(gs, 0);
115	regs->fs		= 0;
116	regs->ds		= __USER_DS;
117	regs->es		= __USER_DS;
118	regs->ss		= __USER_DS;
119	regs->cs		= __USER_CS;
120	regs->ip		= new_ip;
121	regs->sp		= new_sp;
122	regs->flags		= X86_EFLAGS_IF;
 
 
 
123}
124EXPORT_SYMBOL_GPL(start_thread);
125
126
127/*
128 *	switch_to(x,y) should switch tasks from x to y.
129 *
130 * We fsave/fwait so that an exception goes off at the right time
131 * (as a call from the fsave or fwait in effect) rather than to
132 * the wrong process. Lazy FP saving no longer makes any sense
133 * with modern CPU's, and this simplifies a lot of things (SMP
134 * and UP become the same).
135 *
136 * NOTE! We used to use the x86 hardware context switching. The
137 * reason for not using it any more becomes apparent when you
138 * try to recover gracefully from saved state that is no longer
139 * valid (stale segment register values in particular). With the
140 * hardware task-switch, there is no way to fix up bad state in
141 * a reasonable manner.
142 *
143 * The fact that Intel documents the hardware task-switching to
144 * be slow is a fairly red herring - this code is not noticeably
145 * faster. However, there _is_ some room for improvement here,
146 * so the performance issues may eventually be a valid point.
147 * More important, however, is the fact that this allows us much
148 * more flexibility.
149 *
150 * The return value (in %ax) will be the "prev" task after
151 * the task-switch, and shows up in ret_from_fork in entry.S,
152 * for example.
153 */
154__visible __notrace_funcgraph struct task_struct *
155__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
156{
157	struct thread_struct *prev = &prev_p->thread,
158			     *next = &next_p->thread;
159	int cpu = smp_processor_id();
 
 
160
161	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
162
163	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
164		switch_fpu_prepare(prev_p, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
166	/*
167	 * Save away %gs. No need to save %fs, as it was saved on the
168	 * stack on entry.  No need to save %es and %ds, as those are
169	 * always kernel segments while inside the kernel.  Doing this
170	 * before setting the new TLS descriptors avoids the situation
171	 * where we temporarily have non-reloadable segments in %fs
172	 * and %gs.  This could be an issue if the NMI handler ever
173	 * used %fs or %gs (it does not today), or if the kernel is
174	 * running inside of a hypervisor layer.
175	 */
176	savesegment(gs, prev->gs);
177
178	/*
179	 * Load the per-thread Thread-Local Storage descriptor.
180	 */
181	load_TLS(next, cpu);
182
183	switch_to_extra(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185	/*
186	 * Leave lazy mode, flushing any hypercalls made here.
187	 * This must be done before restoring TLS segments so
188	 * the GDT and LDT are properly updated.
 
 
189	 */
190	arch_end_context_switch(next_p);
191
192	/*
193	 * Reload esp0 and pcpu_hot.top_of_stack.  This changes
194	 * current_thread_info().  Refresh the SYSENTER configuration in
195	 * case prev or next is vm86.
196	 */
197	update_task_stack(next_p);
198	refresh_sysenter_cs(next);
199	this_cpu_write(pcpu_hot.top_of_stack,
200		       (unsigned long)task_stack_page(next_p) +
201		       THREAD_SIZE);
202
203	/*
204	 * Restore %gs if needed (which is common)
205	 */
206	if (prev->gs | next->gs)
207		loadsegment(gs, next->gs);
208
209	raw_cpu_write(pcpu_hot.current_task, next_p);
210
211	switch_fpu_finish(next_p);
212
213	/* Load the Intel cache allocation PQR MSR. */
214	resctrl_sched_in(next_p);
215
216	return prev_p;
217}
218
219SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 
 
 
220{
221	return do_arch_prctl_common(option, arg2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222}
v3.1
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/stackprotector.h>
 13#include <linux/cpu.h>
 14#include <linux/errno.h>
 15#include <linux/sched.h>
 
 
 16#include <linux/fs.h>
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/elfcore.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/slab.h>
 23#include <linux/vmalloc.h>
 24#include <linux/user.h>
 25#include <linux/interrupt.h>
 26#include <linux/delay.h>
 27#include <linux/reboot.h>
 28#include <linux/init.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/module.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/tick.h>
 35#include <linux/percpu.h>
 36#include <linux/prctl.h>
 37#include <linux/ftrace.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/kdebug.h>
 41#include <linux/cpuidle.h>
 42
 43#include <asm/pgtable.h>
 44#include <asm/system.h>
 45#include <asm/ldt.h>
 46#include <asm/processor.h>
 47#include <asm/i387.h>
 48#include <asm/desc.h>
 49#ifdef CONFIG_MATH_EMULATION
 50#include <asm/math_emu.h>
 51#endif
 52
 53#include <linux/err.h>
 54
 55#include <asm/tlbflush.h>
 56#include <asm/cpu.h>
 57#include <asm/idle.h>
 58#include <asm/syscalls.h>
 59#include <asm/debugreg.h>
 
 
 
 
 60
 61asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
 62
 63/*
 64 * Return saved PC of a blocked thread.
 65 */
 66unsigned long thread_saved_pc(struct task_struct *tsk)
 67{
 68	return ((unsigned long *)tsk->thread.sp)[3];
 69}
 70
 71#ifndef CONFIG_SMP
 72static inline void play_dead(void)
 73{
 74	BUG();
 75}
 76#endif
 77
 78/*
 79 * The idle thread. There's no useful work to be
 80 * done, so just try to conserve power and have a
 81 * low exit latency (ie sit in a loop waiting for
 82 * somebody to say that they'd like to reschedule)
 83 */
 84void cpu_idle(void)
 85{
 86	int cpu = smp_processor_id();
 87
 88	/*
 89	 * If we're the non-boot CPU, nothing set the stack canary up
 90	 * for us.  CPU0 already has it initialized but no harm in
 91	 * doing it again.  This is a good place for updating it, as
 92	 * we wont ever return from this function (so the invalid
 93	 * canaries already on the stack wont ever trigger).
 94	 */
 95	boot_init_stack_canary();
 96
 97	current_thread_info()->status |= TS_POLLING;
 98
 99	/* endless idle loop with no priority at all */
100	while (1) {
101		tick_nohz_stop_sched_tick(1);
102		while (!need_resched()) {
103
104			check_pgt_cache();
105			rmb();
106
107			if (cpu_is_offline(cpu))
108				play_dead();
109
110			local_irq_disable();
111			/* Don't trace irqs off for idle */
112			stop_critical_timings();
113			if (cpuidle_idle_call())
114				pm_idle();
115			start_critical_timings();
116		}
117		tick_nohz_restart_sched_tick();
118		preempt_enable_no_resched();
119		schedule();
120		preempt_disable();
121	}
122}
123
124void __show_regs(struct pt_regs *regs, int all)
125{
126	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
127	unsigned long d0, d1, d2, d3, d6, d7;
128	unsigned long sp;
129	unsigned short ss, gs;
130
131	if (user_mode_vm(regs)) {
132		sp = regs->sp;
133		ss = regs->ss & 0xffff;
134		gs = get_user_gs(regs);
135	} else {
136		sp = kernel_stack_pointer(regs);
137		savesegment(ss, ss);
138		savesegment(gs, gs);
139	}
140
141	show_regs_common();
142
143	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
144			(u16)regs->cs, regs->ip, regs->flags,
145			smp_processor_id());
146	print_symbol("EIP is at %s\n", regs->ip);
147
148	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
149		regs->ax, regs->bx, regs->cx, regs->dx);
150	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
151		regs->si, regs->di, regs->bp, sp);
152	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
153	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
154
155	if (!all)
156		return;
157
158	cr0 = read_cr0();
159	cr2 = read_cr2();
160	cr3 = read_cr3();
161	cr4 = read_cr4_safe();
162	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
163			cr0, cr2, cr3, cr4);
164
165	get_debugreg(d0, 0);
166	get_debugreg(d1, 1);
167	get_debugreg(d2, 2);
168	get_debugreg(d3, 3);
169	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
170			d0, d1, d2, d3);
171
172	get_debugreg(d6, 6);
173	get_debugreg(d7, 7);
174	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
175			d6, d7);
 
 
 
 
 
 
 
 
176}
177
178void release_thread(struct task_struct *dead_task)
179{
180	BUG_ON(dead_task->mm);
181	release_vm86_irqs(dead_task);
182}
183
184/*
185 * This gets called before we allocate a new thread and copy
186 * the current task into it.
187 */
188void prepare_to_copy(struct task_struct *tsk)
189{
190	unlazy_fpu(tsk);
191}
192
193int copy_thread(unsigned long clone_flags, unsigned long sp,
194	unsigned long unused,
195	struct task_struct *p, struct pt_regs *regs)
196{
197	struct pt_regs *childregs;
198	struct task_struct *tsk;
199	int err;
200
201	childregs = task_pt_regs(p);
202	*childregs = *regs;
203	childregs->ax = 0;
204	childregs->sp = sp;
205
206	p->thread.sp = (unsigned long) childregs;
207	p->thread.sp0 = (unsigned long) (childregs+1);
208
209	p->thread.ip = (unsigned long) ret_from_fork;
210
211	task_user_gs(p) = get_user_gs(regs);
212
213	p->thread.io_bitmap_ptr = NULL;
214	tsk = current;
215	err = -ENOMEM;
216
217	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
218
219	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
220		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
221						IO_BITMAP_BYTES, GFP_KERNEL);
222		if (!p->thread.io_bitmap_ptr) {
223			p->thread.io_bitmap_max = 0;
224			return -ENOMEM;
225		}
226		set_tsk_thread_flag(p, TIF_IO_BITMAP);
227	}
228
229	err = 0;
230
231	/*
232	 * Set a new TLS for the child thread?
233	 */
234	if (clone_flags & CLONE_SETTLS)
235		err = do_set_thread_area(p, -1,
236			(struct user_desc __user *)childregs->si, 0);
237
238	if (err && p->thread.io_bitmap_ptr) {
239		kfree(p->thread.io_bitmap_ptr);
240		p->thread.io_bitmap_max = 0;
241	}
242	return err;
243}
244
245void
246start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
247{
248	set_user_gs(regs, 0);
249	regs->fs		= 0;
250	regs->ds		= __USER_DS;
251	regs->es		= __USER_DS;
252	regs->ss		= __USER_DS;
253	regs->cs		= __USER_CS;
254	regs->ip		= new_ip;
255	regs->sp		= new_sp;
256	/*
257	 * Free the old FP and other extended state
258	 */
259	free_thread_xstate(current);
260}
261EXPORT_SYMBOL_GPL(start_thread);
262
263
264/*
265 *	switch_to(x,yn) should switch tasks from x to y.
266 *
267 * We fsave/fwait so that an exception goes off at the right time
268 * (as a call from the fsave or fwait in effect) rather than to
269 * the wrong process. Lazy FP saving no longer makes any sense
270 * with modern CPU's, and this simplifies a lot of things (SMP
271 * and UP become the same).
272 *
273 * NOTE! We used to use the x86 hardware context switching. The
274 * reason for not using it any more becomes apparent when you
275 * try to recover gracefully from saved state that is no longer
276 * valid (stale segment register values in particular). With the
277 * hardware task-switch, there is no way to fix up bad state in
278 * a reasonable manner.
279 *
280 * The fact that Intel documents the hardware task-switching to
281 * be slow is a fairly red herring - this code is not noticeably
282 * faster. However, there _is_ some room for improvement here,
283 * so the performance issues may eventually be a valid point.
284 * More important, however, is the fact that this allows us much
285 * more flexibility.
286 *
287 * The return value (in %ax) will be the "prev" task after
288 * the task-switch, and shows up in ret_from_fork in entry.S,
289 * for example.
290 */
291__notrace_funcgraph struct task_struct *
292__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
293{
294	struct thread_struct *prev = &prev_p->thread,
295				 *next = &next_p->thread;
296	int cpu = smp_processor_id();
297	struct tss_struct *tss = &per_cpu(init_tss, cpu);
298	bool preload_fpu;
299
300	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
301
302	/*
303	 * If the task has used fpu the last 5 timeslices, just do a full
304	 * restore of the math state immediately to avoid the trap; the
305	 * chances of needing FPU soon are obviously high now
306	 */
307	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
308
309	__unlazy_fpu(prev_p);
310
311	/* we're going to use this soon, after a few expensive things */
312	if (preload_fpu)
313		prefetch(next->fpu.state);
314
315	/*
316	 * Reload esp0.
317	 */
318	load_sp0(tss, next);
319
320	/*
321	 * Save away %gs. No need to save %fs, as it was saved on the
322	 * stack on entry.  No need to save %es and %ds, as those are
323	 * always kernel segments while inside the kernel.  Doing this
324	 * before setting the new TLS descriptors avoids the situation
325	 * where we temporarily have non-reloadable segments in %fs
326	 * and %gs.  This could be an issue if the NMI handler ever
327	 * used %fs or %gs (it does not today), or if the kernel is
328	 * running inside of a hypervisor layer.
329	 */
330	lazy_save_gs(prev->gs);
331
332	/*
333	 * Load the per-thread Thread-Local Storage descriptor.
334	 */
335	load_TLS(next, cpu);
336
337	/*
338	 * Restore IOPL if needed.  In normal use, the flags restore
339	 * in the switch assembly will handle this.  But if the kernel
340	 * is running virtualized at a non-zero CPL, the popf will
341	 * not restore flags, so it must be done in a separate step.
342	 */
343	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
344		set_iopl_mask(next->iopl);
345
346	/*
347	 * Now maybe handle debug registers and/or IO bitmaps
348	 */
349	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
350		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
351		__switch_to_xtra(prev_p, next_p, tss);
352
353	/* If we're going to preload the fpu context, make sure clts
354	   is run while we're batching the cpu state updates. */
355	if (preload_fpu)
356		clts();
357
358	/*
359	 * Leave lazy mode, flushing any hypercalls made here.
360	 * This must be done before restoring TLS segments so
361	 * the GDT and LDT are properly updated, and must be
362	 * done before math_state_restore, so the TS bit is up
363	 * to date.
364	 */
365	arch_end_context_switch(next_p);
366
367	if (preload_fpu)
368		__math_state_restore();
 
 
 
 
 
 
 
 
369
370	/*
371	 * Restore %gs if needed (which is common)
372	 */
373	if (prev->gs | next->gs)
374		lazy_load_gs(next->gs);
 
 
375
376	percpu_write(current_task, next_p);
 
 
 
377
378	return prev_p;
379}
380
381#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
382#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
383
384unsigned long get_wchan(struct task_struct *p)
385{
386	unsigned long bp, sp, ip;
387	unsigned long stack_page;
388	int count = 0;
389	if (!p || p == current || p->state == TASK_RUNNING)
390		return 0;
391	stack_page = (unsigned long)task_stack_page(p);
392	sp = p->thread.sp;
393	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
394		return 0;
395	/* include/asm-i386/system.h:switch_to() pushes bp last. */
396	bp = *(unsigned long *) sp;
397	do {
398		if (bp < stack_page || bp > top_ebp+stack_page)
399			return 0;
400		ip = *(unsigned long *) (bp+4);
401		if (!in_sched_functions(ip))
402			return ip;
403		bp = *(unsigned long *) bp;
404	} while (count++ < 16);
405	return 0;
406}
407