Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <linux/cpu.h>
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/fs.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/elfcore.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/user.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/reboot.h>
29#include <linux/mc146818rtc.h>
30#include <linux/export.h>
31#include <linux/kallsyms.h>
32#include <linux/ptrace.h>
33#include <linux/personality.h>
34#include <linux/percpu.h>
35#include <linux/prctl.h>
36#include <linux/ftrace.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/kdebug.h>
40#include <linux/syscalls.h>
41
42#include <asm/ldt.h>
43#include <asm/processor.h>
44#include <asm/fpu/sched.h>
45#include <asm/desc.h>
46
47#include <linux/err.h>
48
49#include <asm/tlbflush.h>
50#include <asm/cpu.h>
51#include <asm/debugreg.h>
52#include <asm/switch_to.h>
53#include <asm/vm86.h>
54#include <asm/resctrl.h>
55#include <asm/proto.h>
56
57#include "process.h"
58
59void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
60 const char *log_lvl)
61{
62 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
63 unsigned long d0, d1, d2, d3, d6, d7;
64 unsigned short gs;
65
66 savesegment(gs, gs);
67
68 show_ip(regs, log_lvl);
69
70 printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
71 log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
72 printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
73 log_lvl, regs->si, regs->di, regs->bp, regs->sp);
74 printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
75 log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
76
77 if (mode != SHOW_REGS_ALL)
78 return;
79
80 cr0 = read_cr0();
81 cr2 = read_cr2();
82 cr3 = __read_cr3();
83 cr4 = __read_cr4();
84 printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
85 log_lvl, cr0, cr2, cr3, cr4);
86
87 get_debugreg(d0, 0);
88 get_debugreg(d1, 1);
89 get_debugreg(d2, 2);
90 get_debugreg(d3, 3);
91 get_debugreg(d6, 6);
92 get_debugreg(d7, 7);
93
94 /* Only print out debug registers if they are in their non-default state. */
95 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
96 (d6 == DR6_RESERVED) && (d7 == 0x400))
97 return;
98
99 printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
100 log_lvl, d0, d1, d2, d3);
101 printk("%sDR6: %08lx DR7: %08lx\n",
102 log_lvl, d6, d7);
103}
104
105void release_thread(struct task_struct *dead_task)
106{
107 BUG_ON(dead_task->mm);
108 release_vm86_irqs(dead_task);
109}
110
111void
112start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
113{
114 loadsegment(gs, 0);
115 regs->fs = 0;
116 regs->ds = __USER_DS;
117 regs->es = __USER_DS;
118 regs->ss = __USER_DS;
119 regs->cs = __USER_CS;
120 regs->ip = new_ip;
121 regs->sp = new_sp;
122 regs->flags = X86_EFLAGS_IF;
123}
124EXPORT_SYMBOL_GPL(start_thread);
125
126
127/*
128 * switch_to(x,y) should switch tasks from x to y.
129 *
130 * We fsave/fwait so that an exception goes off at the right time
131 * (as a call from the fsave or fwait in effect) rather than to
132 * the wrong process. Lazy FP saving no longer makes any sense
133 * with modern CPU's, and this simplifies a lot of things (SMP
134 * and UP become the same).
135 *
136 * NOTE! We used to use the x86 hardware context switching. The
137 * reason for not using it any more becomes apparent when you
138 * try to recover gracefully from saved state that is no longer
139 * valid (stale segment register values in particular). With the
140 * hardware task-switch, there is no way to fix up bad state in
141 * a reasonable manner.
142 *
143 * The fact that Intel documents the hardware task-switching to
144 * be slow is a fairly red herring - this code is not noticeably
145 * faster. However, there _is_ some room for improvement here,
146 * so the performance issues may eventually be a valid point.
147 * More important, however, is the fact that this allows us much
148 * more flexibility.
149 *
150 * The return value (in %ax) will be the "prev" task after
151 * the task-switch, and shows up in ret_from_fork in entry.S,
152 * for example.
153 */
154__visible __notrace_funcgraph struct task_struct *
155__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
156{
157 struct thread_struct *prev = &prev_p->thread,
158 *next = &next_p->thread;
159 int cpu = smp_processor_id();
160
161 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
162
163 if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
164 switch_fpu_prepare(prev_p, cpu);
165
166 /*
167 * Save away %gs. No need to save %fs, as it was saved on the
168 * stack on entry. No need to save %es and %ds, as those are
169 * always kernel segments while inside the kernel. Doing this
170 * before setting the new TLS descriptors avoids the situation
171 * where we temporarily have non-reloadable segments in %fs
172 * and %gs. This could be an issue if the NMI handler ever
173 * used %fs or %gs (it does not today), or if the kernel is
174 * running inside of a hypervisor layer.
175 */
176 savesegment(gs, prev->gs);
177
178 /*
179 * Load the per-thread Thread-Local Storage descriptor.
180 */
181 load_TLS(next, cpu);
182
183 switch_to_extra(prev_p, next_p);
184
185 /*
186 * Leave lazy mode, flushing any hypercalls made here.
187 * This must be done before restoring TLS segments so
188 * the GDT and LDT are properly updated.
189 */
190 arch_end_context_switch(next_p);
191
192 /*
193 * Reload esp0 and pcpu_hot.top_of_stack. This changes
194 * current_thread_info(). Refresh the SYSENTER configuration in
195 * case prev or next is vm86.
196 */
197 update_task_stack(next_p);
198 refresh_sysenter_cs(next);
199 this_cpu_write(pcpu_hot.top_of_stack,
200 (unsigned long)task_stack_page(next_p) +
201 THREAD_SIZE);
202
203 /*
204 * Restore %gs if needed (which is common)
205 */
206 if (prev->gs | next->gs)
207 loadsegment(gs, next->gs);
208
209 raw_cpu_write(pcpu_hot.current_task, next_p);
210
211 switch_fpu_finish(next_p);
212
213 /* Load the Intel cache allocation PQR MSR. */
214 resctrl_sched_in(next_p);
215
216 return prev_p;
217}
218
219SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
220{
221 return do_arch_prctl_common(option, arg2);
222}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <linux/cpu.h>
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/fs.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/elfcore.h>
19#include <linux/smp.h>
20#include <linux/stddef.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/user.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/reboot.h>
27#include <linux/mc146818rtc.h>
28#include <linux/export.h>
29#include <linux/kallsyms.h>
30#include <linux/ptrace.h>
31#include <linux/personality.h>
32#include <linux/percpu.h>
33#include <linux/prctl.h>
34#include <linux/ftrace.h>
35#include <linux/uaccess.h>
36#include <linux/io.h>
37#include <linux/kdebug.h>
38
39#include <asm/pgtable.h>
40#include <asm/ldt.h>
41#include <asm/processor.h>
42#include <asm/fpu/internal.h>
43#include <asm/desc.h>
44#ifdef CONFIG_MATH_EMULATION
45#include <asm/math_emu.h>
46#endif
47
48#include <linux/err.h>
49
50#include <asm/tlbflush.h>
51#include <asm/cpu.h>
52#include <asm/syscalls.h>
53#include <asm/debugreg.h>
54#include <asm/switch_to.h>
55#include <asm/vm86.h>
56#include <asm/intel_rdt.h>
57
58void __show_regs(struct pt_regs *regs, int all)
59{
60 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
61 unsigned long d0, d1, d2, d3, d6, d7;
62 unsigned long sp;
63 unsigned short ss, gs;
64
65 if (user_mode(regs)) {
66 sp = regs->sp;
67 ss = regs->ss & 0xffff;
68 gs = get_user_gs(regs);
69 } else {
70 sp = kernel_stack_pointer(regs);
71 savesegment(ss, ss);
72 savesegment(gs, gs);
73 }
74
75 printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
76 printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
77 smp_processor_id());
78
79 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
80 regs->ax, regs->bx, regs->cx, regs->dx);
81 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
82 regs->si, regs->di, regs->bp, sp);
83 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
84 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
85
86 if (!all)
87 return;
88
89 cr0 = read_cr0();
90 cr2 = read_cr2();
91 cr3 = read_cr3();
92 cr4 = __read_cr4();
93 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
94 cr0, cr2, cr3, cr4);
95
96 get_debugreg(d0, 0);
97 get_debugreg(d1, 1);
98 get_debugreg(d2, 2);
99 get_debugreg(d3, 3);
100 get_debugreg(d6, 6);
101 get_debugreg(d7, 7);
102
103 /* Only print out debug registers if they are in their non-default state. */
104 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
105 (d6 == DR6_RESERVED) && (d7 == 0x400))
106 return;
107
108 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
109 d0, d1, d2, d3);
110 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
111 d6, d7);
112}
113
114void release_thread(struct task_struct *dead_task)
115{
116 BUG_ON(dead_task->mm);
117 release_vm86_irqs(dead_task);
118}
119
120int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
121 unsigned long arg, struct task_struct *p, unsigned long tls)
122{
123 struct pt_regs *childregs = task_pt_regs(p);
124 struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
125 struct inactive_task_frame *frame = &fork_frame->frame;
126 struct task_struct *tsk;
127 int err;
128
129 frame->bp = 0;
130 frame->ret_addr = (unsigned long) ret_from_fork;
131 p->thread.sp = (unsigned long) fork_frame;
132 p->thread.sp0 = (unsigned long) (childregs+1);
133 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
134
135 if (unlikely(p->flags & PF_KTHREAD)) {
136 /* kernel thread */
137 memset(childregs, 0, sizeof(struct pt_regs));
138 frame->bx = sp; /* function */
139 frame->di = arg;
140 p->thread.io_bitmap_ptr = NULL;
141 return 0;
142 }
143 frame->bx = 0;
144 *childregs = *current_pt_regs();
145 childregs->ax = 0;
146 if (sp)
147 childregs->sp = sp;
148
149 task_user_gs(p) = get_user_gs(current_pt_regs());
150
151 p->thread.io_bitmap_ptr = NULL;
152 tsk = current;
153 err = -ENOMEM;
154
155 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
156 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
157 IO_BITMAP_BYTES, GFP_KERNEL);
158 if (!p->thread.io_bitmap_ptr) {
159 p->thread.io_bitmap_max = 0;
160 return -ENOMEM;
161 }
162 set_tsk_thread_flag(p, TIF_IO_BITMAP);
163 }
164
165 err = 0;
166
167 /*
168 * Set a new TLS for the child thread?
169 */
170 if (clone_flags & CLONE_SETTLS)
171 err = do_set_thread_area(p, -1,
172 (struct user_desc __user *)tls, 0);
173
174 if (err && p->thread.io_bitmap_ptr) {
175 kfree(p->thread.io_bitmap_ptr);
176 p->thread.io_bitmap_max = 0;
177 }
178 return err;
179}
180
181void
182start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
183{
184 set_user_gs(regs, 0);
185 regs->fs = 0;
186 regs->ds = __USER_DS;
187 regs->es = __USER_DS;
188 regs->ss = __USER_DS;
189 regs->cs = __USER_CS;
190 regs->ip = new_ip;
191 regs->sp = new_sp;
192 regs->flags = X86_EFLAGS_IF;
193 force_iret();
194}
195EXPORT_SYMBOL_GPL(start_thread);
196
197
198/*
199 * switch_to(x,y) should switch tasks from x to y.
200 *
201 * We fsave/fwait so that an exception goes off at the right time
202 * (as a call from the fsave or fwait in effect) rather than to
203 * the wrong process. Lazy FP saving no longer makes any sense
204 * with modern CPU's, and this simplifies a lot of things (SMP
205 * and UP become the same).
206 *
207 * NOTE! We used to use the x86 hardware context switching. The
208 * reason for not using it any more becomes apparent when you
209 * try to recover gracefully from saved state that is no longer
210 * valid (stale segment register values in particular). With the
211 * hardware task-switch, there is no way to fix up bad state in
212 * a reasonable manner.
213 *
214 * The fact that Intel documents the hardware task-switching to
215 * be slow is a fairly red herring - this code is not noticeably
216 * faster. However, there _is_ some room for improvement here,
217 * so the performance issues may eventually be a valid point.
218 * More important, however, is the fact that this allows us much
219 * more flexibility.
220 *
221 * The return value (in %ax) will be the "prev" task after
222 * the task-switch, and shows up in ret_from_fork in entry.S,
223 * for example.
224 */
225__visible __notrace_funcgraph struct task_struct *
226__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
227{
228 struct thread_struct *prev = &prev_p->thread,
229 *next = &next_p->thread;
230 struct fpu *prev_fpu = &prev->fpu;
231 struct fpu *next_fpu = &next->fpu;
232 int cpu = smp_processor_id();
233 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
234
235 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
236
237 switch_fpu_prepare(prev_fpu, cpu);
238
239 /*
240 * Save away %gs. No need to save %fs, as it was saved on the
241 * stack on entry. No need to save %es and %ds, as those are
242 * always kernel segments while inside the kernel. Doing this
243 * before setting the new TLS descriptors avoids the situation
244 * where we temporarily have non-reloadable segments in %fs
245 * and %gs. This could be an issue if the NMI handler ever
246 * used %fs or %gs (it does not today), or if the kernel is
247 * running inside of a hypervisor layer.
248 */
249 lazy_save_gs(prev->gs);
250
251 /*
252 * Load the per-thread Thread-Local Storage descriptor.
253 */
254 load_TLS(next, cpu);
255
256 /*
257 * Restore IOPL if needed. In normal use, the flags restore
258 * in the switch assembly will handle this. But if the kernel
259 * is running virtualized at a non-zero CPL, the popf will
260 * not restore flags, so it must be done in a separate step.
261 */
262 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
263 set_iopl_mask(next->iopl);
264
265 /*
266 * Now maybe handle debug registers and/or IO bitmaps
267 */
268 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
269 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
270 __switch_to_xtra(prev_p, next_p, tss);
271
272 /*
273 * Leave lazy mode, flushing any hypercalls made here.
274 * This must be done before restoring TLS segments so
275 * the GDT and LDT are properly updated, and must be
276 * done before fpu__restore(), so the TS bit is up
277 * to date.
278 */
279 arch_end_context_switch(next_p);
280
281 /*
282 * Reload esp0 and cpu_current_top_of_stack. This changes
283 * current_thread_info().
284 */
285 load_sp0(tss, next);
286 this_cpu_write(cpu_current_top_of_stack,
287 (unsigned long)task_stack_page(next_p) +
288 THREAD_SIZE);
289
290 /*
291 * Restore %gs if needed (which is common)
292 */
293 if (prev->gs | next->gs)
294 lazy_load_gs(next->gs);
295
296 switch_fpu_finish(next_fpu, cpu);
297
298 this_cpu_write(current_task, next_p);
299
300 /* Load the Intel cache allocation PQR MSR. */
301 intel_rdt_sched_in();
302
303 return prev_p;
304}