Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 42#include <asm/ldt.h>
 43#include <asm/processor.h>
 44#include <asm/fpu/sched.h>
 45#include <asm/desc.h>
 46
 47#include <linux/err.h>
 48
 49#include <asm/tlbflush.h>
 50#include <asm/cpu.h>
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/vm86.h>
 54#include <asm/resctrl.h>
 55#include <asm/proto.h>
 56
 57#include "process.h"
 58
 59void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 60		 const char *log_lvl)
 61{
 62	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 63	unsigned long d0, d1, d2, d3, d6, d7;
 64	unsigned short gs;
 65
 66	savesegment(gs, gs);
 67
 68	show_ip(regs, log_lvl);
 69
 70	printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 71		log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
 72	printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 73		log_lvl, regs->si, regs->di, regs->bp, regs->sp);
 74	printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
 75	       log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
 76
 77	if (mode != SHOW_REGS_ALL)
 78		return;
 79
 80	cr0 = read_cr0();
 81	cr2 = read_cr2();
 82	cr3 = __read_cr3();
 83	cr4 = __read_cr4();
 84	printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 85		log_lvl, cr0, cr2, cr3, cr4);
 86
 87	get_debugreg(d0, 0);
 88	get_debugreg(d1, 1);
 89	get_debugreg(d2, 2);
 90	get_debugreg(d3, 3);
 91	get_debugreg(d6, 6);
 92	get_debugreg(d7, 7);
 93
 94	/* Only print out debug registers if they are in their non-default state. */
 95	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 96	    (d6 == DR6_RESERVED) && (d7 == 0x400))
 97		return;
 98
 99	printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
100		log_lvl, d0, d1, d2, d3);
101	printk("%sDR6: %08lx DR7: %08lx\n",
102		log_lvl, d6, d7);
103}
104
105void release_thread(struct task_struct *dead_task)
106{
107	BUG_ON(dead_task->mm);
108	release_vm86_irqs(dead_task);
109}
110
111void
112start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
113{
114	loadsegment(gs, 0);
115	regs->fs		= 0;
116	regs->ds		= __USER_DS;
117	regs->es		= __USER_DS;
118	regs->ss		= __USER_DS;
119	regs->cs		= __USER_CS;
120	regs->ip		= new_ip;
121	regs->sp		= new_sp;
122	regs->flags		= X86_EFLAGS_IF;
123}
124EXPORT_SYMBOL_GPL(start_thread);
125
126
127/*
128 *	switch_to(x,y) should switch tasks from x to y.
129 *
130 * We fsave/fwait so that an exception goes off at the right time
131 * (as a call from the fsave or fwait in effect) rather than to
132 * the wrong process. Lazy FP saving no longer makes any sense
133 * with modern CPU's, and this simplifies a lot of things (SMP
134 * and UP become the same).
135 *
136 * NOTE! We used to use the x86 hardware context switching. The
137 * reason for not using it any more becomes apparent when you
138 * try to recover gracefully from saved state that is no longer
139 * valid (stale segment register values in particular). With the
140 * hardware task-switch, there is no way to fix up bad state in
141 * a reasonable manner.
142 *
143 * The fact that Intel documents the hardware task-switching to
144 * be slow is a fairly red herring - this code is not noticeably
145 * faster. However, there _is_ some room for improvement here,
146 * so the performance issues may eventually be a valid point.
147 * More important, however, is the fact that this allows us much
148 * more flexibility.
149 *
150 * The return value (in %ax) will be the "prev" task after
151 * the task-switch, and shows up in ret_from_fork in entry.S,
152 * for example.
153 */
154__visible __notrace_funcgraph struct task_struct *
155__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
156{
157	struct thread_struct *prev = &prev_p->thread,
158			     *next = &next_p->thread;
 
159	int cpu = smp_processor_id();
160
161	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
162
163	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
164		switch_fpu_prepare(prev_p, cpu);
165
166	/*
167	 * Save away %gs. No need to save %fs, as it was saved on the
168	 * stack on entry.  No need to save %es and %ds, as those are
169	 * always kernel segments while inside the kernel.  Doing this
170	 * before setting the new TLS descriptors avoids the situation
171	 * where we temporarily have non-reloadable segments in %fs
172	 * and %gs.  This could be an issue if the NMI handler ever
173	 * used %fs or %gs (it does not today), or if the kernel is
174	 * running inside of a hypervisor layer.
175	 */
176	savesegment(gs, prev->gs);
177
178	/*
179	 * Load the per-thread Thread-Local Storage descriptor.
180	 */
181	load_TLS(next, cpu);
182
183	switch_to_extra(prev_p, next_p);
184
185	/*
186	 * Leave lazy mode, flushing any hypercalls made here.
187	 * This must be done before restoring TLS segments so
188	 * the GDT and LDT are properly updated.
189	 */
190	arch_end_context_switch(next_p);
191
192	/*
193	 * Reload esp0 and pcpu_hot.top_of_stack.  This changes
194	 * current_thread_info().  Refresh the SYSENTER configuration in
195	 * case prev or next is vm86.
196	 */
197	update_task_stack(next_p);
198	refresh_sysenter_cs(next);
199	this_cpu_write(pcpu_hot.top_of_stack,
200		       (unsigned long)task_stack_page(next_p) +
201		       THREAD_SIZE);
202
203	/*
204	 * Restore %gs if needed (which is common)
205	 */
206	if (prev->gs | next->gs)
207		loadsegment(gs, next->gs);
208
209	raw_cpu_write(pcpu_hot.current_task, next_p);
210
211	switch_fpu_finish(next_p);
212
213	/* Load the Intel cache allocation PQR MSR. */
214	resctrl_sched_in(next_p);
215
216	return prev_p;
217}
218
219SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
220{
221	return do_arch_prctl_common(option, arg2);
222}
v6.2
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 42#include <asm/ldt.h>
 43#include <asm/processor.h>
 44#include <asm/fpu/sched.h>
 45#include <asm/desc.h>
 46
 47#include <linux/err.h>
 48
 49#include <asm/tlbflush.h>
 50#include <asm/cpu.h>
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/vm86.h>
 54#include <asm/resctrl.h>
 55#include <asm/proto.h>
 56
 57#include "process.h"
 58
 59void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 60		 const char *log_lvl)
 61{
 62	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 63	unsigned long d0, d1, d2, d3, d6, d7;
 64	unsigned short gs;
 65
 66	savesegment(gs, gs);
 67
 68	show_ip(regs, log_lvl);
 69
 70	printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 71		log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
 72	printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 73		log_lvl, regs->si, regs->di, regs->bp, regs->sp);
 74	printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
 75	       log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
 76
 77	if (mode != SHOW_REGS_ALL)
 78		return;
 79
 80	cr0 = read_cr0();
 81	cr2 = read_cr2();
 82	cr3 = __read_cr3();
 83	cr4 = __read_cr4();
 84	printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 85		log_lvl, cr0, cr2, cr3, cr4);
 86
 87	get_debugreg(d0, 0);
 88	get_debugreg(d1, 1);
 89	get_debugreg(d2, 2);
 90	get_debugreg(d3, 3);
 91	get_debugreg(d6, 6);
 92	get_debugreg(d7, 7);
 93
 94	/* Only print out debug registers if they are in their non-default state. */
 95	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 96	    (d6 == DR6_RESERVED) && (d7 == 0x400))
 97		return;
 98
 99	printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
100		log_lvl, d0, d1, d2, d3);
101	printk("%sDR6: %08lx DR7: %08lx\n",
102		log_lvl, d6, d7);
103}
104
105void release_thread(struct task_struct *dead_task)
106{
107	BUG_ON(dead_task->mm);
108	release_vm86_irqs(dead_task);
109}
110
111void
112start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
113{
114	loadsegment(gs, 0);
115	regs->fs		= 0;
116	regs->ds		= __USER_DS;
117	regs->es		= __USER_DS;
118	regs->ss		= __USER_DS;
119	regs->cs		= __USER_CS;
120	regs->ip		= new_ip;
121	regs->sp		= new_sp;
122	regs->flags		= X86_EFLAGS_IF;
123}
124EXPORT_SYMBOL_GPL(start_thread);
125
126
127/*
128 *	switch_to(x,y) should switch tasks from x to y.
129 *
130 * We fsave/fwait so that an exception goes off at the right time
131 * (as a call from the fsave or fwait in effect) rather than to
132 * the wrong process. Lazy FP saving no longer makes any sense
133 * with modern CPU's, and this simplifies a lot of things (SMP
134 * and UP become the same).
135 *
136 * NOTE! We used to use the x86 hardware context switching. The
137 * reason for not using it any more becomes apparent when you
138 * try to recover gracefully from saved state that is no longer
139 * valid (stale segment register values in particular). With the
140 * hardware task-switch, there is no way to fix up bad state in
141 * a reasonable manner.
142 *
143 * The fact that Intel documents the hardware task-switching to
144 * be slow is a fairly red herring - this code is not noticeably
145 * faster. However, there _is_ some room for improvement here,
146 * so the performance issues may eventually be a valid point.
147 * More important, however, is the fact that this allows us much
148 * more flexibility.
149 *
150 * The return value (in %ax) will be the "prev" task after
151 * the task-switch, and shows up in ret_from_fork in entry.S,
152 * for example.
153 */
154__visible __notrace_funcgraph struct task_struct *
155__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
156{
157	struct thread_struct *prev = &prev_p->thread,
158			     *next = &next_p->thread;
159	struct fpu *prev_fpu = &prev->fpu;
160	int cpu = smp_processor_id();
161
162	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
163
164	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
165		switch_fpu_prepare(prev_fpu, cpu);
166
167	/*
168	 * Save away %gs. No need to save %fs, as it was saved on the
169	 * stack on entry.  No need to save %es and %ds, as those are
170	 * always kernel segments while inside the kernel.  Doing this
171	 * before setting the new TLS descriptors avoids the situation
172	 * where we temporarily have non-reloadable segments in %fs
173	 * and %gs.  This could be an issue if the NMI handler ever
174	 * used %fs or %gs (it does not today), or if the kernel is
175	 * running inside of a hypervisor layer.
176	 */
177	savesegment(gs, prev->gs);
178
179	/*
180	 * Load the per-thread Thread-Local Storage descriptor.
181	 */
182	load_TLS(next, cpu);
183
184	switch_to_extra(prev_p, next_p);
185
186	/*
187	 * Leave lazy mode, flushing any hypercalls made here.
188	 * This must be done before restoring TLS segments so
189	 * the GDT and LDT are properly updated.
190	 */
191	arch_end_context_switch(next_p);
192
193	/*
194	 * Reload esp0 and pcpu_hot.top_of_stack.  This changes
195	 * current_thread_info().  Refresh the SYSENTER configuration in
196	 * case prev or next is vm86.
197	 */
198	update_task_stack(next_p);
199	refresh_sysenter_cs(next);
200	this_cpu_write(pcpu_hot.top_of_stack,
201		       (unsigned long)task_stack_page(next_p) +
202		       THREAD_SIZE);
203
204	/*
205	 * Restore %gs if needed (which is common)
206	 */
207	if (prev->gs | next->gs)
208		loadsegment(gs, next->gs);
209
210	raw_cpu_write(pcpu_hot.current_task, next_p);
211
212	switch_fpu_finish();
213
214	/* Load the Intel cache allocation PQR MSR. */
215	resctrl_sched_in();
216
217	return prev_p;
218}
219
220SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
221{
222	return do_arch_prctl_common(option, arg2);
223}