Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/of_pci.h>
  19#include <linux/pci.h>
  20#include <linux/pm.h>
  21#include <linux/slab.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/log2.h>
  26#include <linux/logic_pio.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
 
  37#include "pci.h"
  38
  39DEFINE_MUTEX(pci_slot_mutex);
  40
  41const char *pci_power_names[] = {
  42	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  43};
  44EXPORT_SYMBOL_GPL(pci_power_names);
  45
 
  46int isa_dma_bridge_buggy;
  47EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay = dev->d3_delay;
 
  70
  71	if (delay < pci_pm_d3_delay)
  72		delay = pci_pm_d3_delay;
 
 
 
 
 
  73
  74	if (delay)
  75		msleep(delay);
 
  76}
  77
  78#ifdef CONFIG_PCI_DOMAINS
  79int pci_domains_supported = 1;
  80#endif
  81
  82#define DEFAULT_CARDBUS_IO_SIZE		(256)
  83#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  87
  88#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  89#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  91/* hpiosize=nn can override this */
  92unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  93/*
  94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  96 * pci=hpmemsize=nnM overrides both
  97 */
  98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 100
 101#define DEFAULT_HOTPLUG_BUS_SIZE	1
 102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 103
 
 
 
 
 
 
 
 
 
 
 
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 
 105
 106/*
 107 * The default CLS is used if arch didn't set CLS explicitly and not
 108 * all pci devices agree on the same value.  Arch can override either
 109 * the dfl or actual value as it sees fit.  Don't forget this is
 110 * measured in 32-bit words, not bytes.
 111 */
 112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 113u8 pci_cache_line_size;
 114
 115/*
 116 * If we set up a device for bus mastering, we need to check the latency
 117 * timer as certain BIOSes forget to set it properly.
 118 */
 119unsigned int pcibios_max_latency = 255;
 120
 121/* If set, the PCIe ARI capability will not be used. */
 122static bool pcie_ari_disabled;
 123
 124/* If set, the PCIe ATS capability will not be used. */
 125static bool pcie_ats_disabled;
 126
 127/* If set, the PCI config space of each device is printed during boot. */
 128bool pci_early_dump;
 129
 130bool pci_ats_disabled(void)
 131{
 132	return pcie_ats_disabled;
 133}
 134EXPORT_SYMBOL_GPL(pci_ats_disabled);
 135
 136/* Disable bridge_d3 for all PCIe ports */
 137static bool pci_bridge_d3_disable;
 138/* Force bridge_d3 for all PCIe ports */
 139static bool pci_bridge_d3_force;
 140
 141static int __init pcie_port_pm_setup(char *str)
 142{
 143	if (!strcmp(str, "off"))
 144		pci_bridge_d3_disable = true;
 145	else if (!strcmp(str, "force"))
 146		pci_bridge_d3_force = true;
 147	return 1;
 148}
 149__setup("pcie_port_pm=", pcie_port_pm_setup);
 150
 151/* Time to wait after a reset for device to become responsive */
 152#define PCIE_RESET_READY_POLL_MS 60000
 153
 154/**
 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 156 * @bus: pointer to PCI bus structure to search
 157 *
 158 * Given a PCI bus, returns the highest PCI bus number present in the set
 159 * including the given PCI bus and its list of child PCI buses.
 160 */
 161unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 162{
 163	struct pci_bus *tmp;
 164	unsigned char max, n;
 165
 166	max = bus->busn_res.end;
 167	list_for_each_entry(tmp, &bus->children, node) {
 168		n = pci_bus_max_busnr(tmp);
 169		if (n > max)
 170			max = n;
 171	}
 172	return max;
 173}
 174EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 175
 176/**
 177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 178 * @pdev: the PCI device
 179 *
 180 * Returns error bits set in PCI_STATUS and clears them.
 181 */
 182int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 183{
 184	u16 status;
 185	int ret;
 186
 187	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 188	if (ret != PCIBIOS_SUCCESSFUL)
 189		return -EIO;
 190
 191	status &= PCI_STATUS_ERROR_BITS;
 192	if (status)
 193		pci_write_config_word(pdev, PCI_STATUS, status);
 194
 195	return status;
 196}
 197EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 198
 199#ifdef CONFIG_HAS_IOMEM
 200void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 201{
 202	struct resource *res = &pdev->resource[bar];
 
 
 203
 204	/*
 205	 * Make sure the BAR is actually a memory resource, not an IO resource
 206	 */
 207	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 208		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 209		return NULL;
 210	}
 211	return ioremap(res->start, resource_size(res));
 
 
 
 
 
 
 
 
 
 212}
 213EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 214
 215void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 216{
 217	/*
 218	 * Make sure the BAR is actually a memory resource, not an IO resource
 219	 */
 220	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 221		WARN_ON(1);
 222		return NULL;
 223	}
 224	return ioremap_wc(pci_resource_start(pdev, bar),
 225			  pci_resource_len(pdev, bar));
 226}
 227EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 228#endif
 229
 230/**
 231 * pci_dev_str_match_path - test if a path string matches a device
 232 * @dev: the PCI device to test
 233 * @path: string to match the device against
 234 * @endptr: pointer to the string after the match
 235 *
 236 * Test if a string (typically from a kernel parameter) formatted as a
 237 * path of device/function addresses matches a PCI device. The string must
 238 * be of the form:
 239 *
 240 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 241 *
 242 * A path for a device can be obtained using 'lspci -t'.  Using a path
 243 * is more robust against bus renumbering than using only a single bus,
 244 * device and function address.
 245 *
 246 * Returns 1 if the string matches the device, 0 if it does not and
 247 * a negative error code if it fails to parse the string.
 248 */
 249static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 250				  const char **endptr)
 251{
 252	int ret;
 253	int seg, bus, slot, func;
 254	char *wpath, *p;
 255	char end;
 256
 257	*endptr = strchrnul(path, ';');
 258
 259	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 260	if (!wpath)
 261		return -ENOMEM;
 262
 263	while (1) {
 264		p = strrchr(wpath, '/');
 265		if (!p)
 266			break;
 267		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 268		if (ret != 2) {
 269			ret = -EINVAL;
 270			goto free_and_exit;
 271		}
 272
 273		if (dev->devfn != PCI_DEVFN(slot, func)) {
 274			ret = 0;
 275			goto free_and_exit;
 276		}
 277
 278		/*
 279		 * Note: we don't need to get a reference to the upstream
 280		 * bridge because we hold a reference to the top level
 281		 * device which should hold a reference to the bridge,
 282		 * and so on.
 283		 */
 284		dev = pci_upstream_bridge(dev);
 285		if (!dev) {
 286			ret = 0;
 287			goto free_and_exit;
 288		}
 289
 290		*p = 0;
 291	}
 292
 293	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 294		     &func, &end);
 295	if (ret != 4) {
 296		seg = 0;
 297		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 298		if (ret != 3) {
 299			ret = -EINVAL;
 300			goto free_and_exit;
 301		}
 302	}
 303
 304	ret = (seg == pci_domain_nr(dev->bus) &&
 305	       bus == dev->bus->number &&
 306	       dev->devfn == PCI_DEVFN(slot, func));
 307
 308free_and_exit:
 309	kfree(wpath);
 310	return ret;
 311}
 312
 313/**
 314 * pci_dev_str_match - test if a string matches a device
 315 * @dev: the PCI device to test
 316 * @p: string to match the device against
 317 * @endptr: pointer to the string after the match
 318 *
 319 * Test if a string (typically from a kernel parameter) matches a specified
 320 * PCI device. The string may be of one of the following formats:
 321 *
 322 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 323 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 324 *
 325 * The first format specifies a PCI bus/device/function address which
 326 * may change if new hardware is inserted, if motherboard firmware changes,
 327 * or due to changes caused in kernel parameters. If the domain is
 328 * left unspecified, it is taken to be 0.  In order to be robust against
 329 * bus renumbering issues, a path of PCI device/function numbers may be used
 330 * to address the specific device.  The path for a device can be determined
 331 * through the use of 'lspci -t'.
 332 *
 333 * The second format matches devices using IDs in the configuration
 334 * space which may match multiple devices in the system. A value of 0
 335 * for any field will match all devices. (Note: this differs from
 336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 337 * legacy reasons and convenience so users don't have to specify
 338 * FFFFFFFFs on the command line.)
 339 *
 340 * Returns 1 if the string matches the device, 0 if it does not and
 341 * a negative error code if the string cannot be parsed.
 342 */
 343static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 344			     const char **endptr)
 345{
 346	int ret;
 347	int count;
 348	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 349
 350	if (strncmp(p, "pci:", 4) == 0) {
 351		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 352		p += 4;
 353		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 354			     &subsystem_vendor, &subsystem_device, &count);
 355		if (ret != 4) {
 356			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 357			if (ret != 2)
 358				return -EINVAL;
 359
 360			subsystem_vendor = 0;
 361			subsystem_device = 0;
 362		}
 363
 364		p += count;
 365
 366		if ((!vendor || vendor == dev->vendor) &&
 367		    (!device || device == dev->device) &&
 368		    (!subsystem_vendor ||
 369			    subsystem_vendor == dev->subsystem_vendor) &&
 370		    (!subsystem_device ||
 371			    subsystem_device == dev->subsystem_device))
 372			goto found;
 373	} else {
 374		/*
 375		 * PCI Bus, Device, Function IDs are specified
 376		 * (optionally, may include a path of devfns following it)
 377		 */
 378		ret = pci_dev_str_match_path(dev, p, &p);
 379		if (ret < 0)
 380			return ret;
 381		else if (ret)
 382			goto found;
 383	}
 384
 385	*endptr = p;
 386	return 0;
 387
 388found:
 389	*endptr = p;
 390	return 1;
 391}
 392
 393static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 394				   u8 pos, int cap, int *ttl)
 395{
 396	u8 id;
 397	u16 ent;
 398
 399	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 400
 401	while ((*ttl)--) {
 402		if (pos < 0x40)
 403			break;
 404		pos &= ~3;
 405		pci_bus_read_config_word(bus, devfn, pos, &ent);
 406
 407		id = ent & 0xff;
 408		if (id == 0xff)
 409			break;
 410		if (id == cap)
 411			return pos;
 412		pos = (ent >> 8);
 413	}
 414	return 0;
 415}
 416
 417static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 418			       u8 pos, int cap)
 419{
 420	int ttl = PCI_FIND_CAP_TTL;
 421
 422	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 423}
 424
 425int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 426{
 427	return __pci_find_next_cap(dev->bus, dev->devfn,
 428				   pos + PCI_CAP_LIST_NEXT, cap);
 429}
 430EXPORT_SYMBOL_GPL(pci_find_next_capability);
 431
 432static int __pci_bus_find_cap_start(struct pci_bus *bus,
 433				    unsigned int devfn, u8 hdr_type)
 434{
 435	u16 status;
 436
 437	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 438	if (!(status & PCI_STATUS_CAP_LIST))
 439		return 0;
 440
 441	switch (hdr_type) {
 442	case PCI_HEADER_TYPE_NORMAL:
 443	case PCI_HEADER_TYPE_BRIDGE:
 444		return PCI_CAPABILITY_LIST;
 445	case PCI_HEADER_TYPE_CARDBUS:
 446		return PCI_CB_CAPABILITY_LIST;
 447	}
 448
 449	return 0;
 450}
 451
 452/**
 453 * pci_find_capability - query for devices' capabilities
 454 * @dev: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Tell if a device supports a given PCI capability.
 458 * Returns the address of the requested capability structure within the
 459 * device's PCI configuration space or 0 in case the device does not
 460 * support it.  Possible values for @cap include:
 461 *
 462 *  %PCI_CAP_ID_PM           Power Management
 463 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 464 *  %PCI_CAP_ID_VPD          Vital Product Data
 465 *  %PCI_CAP_ID_SLOTID       Slot Identification
 466 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 467 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 468 *  %PCI_CAP_ID_PCIX         PCI-X
 469 *  %PCI_CAP_ID_EXP          PCI Express
 470 */
 471int pci_find_capability(struct pci_dev *dev, int cap)
 472{
 473	int pos;
 474
 475	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 476	if (pos)
 477		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 478
 479	return pos;
 480}
 481EXPORT_SYMBOL(pci_find_capability);
 482
 483/**
 484 * pci_bus_find_capability - query for devices' capabilities
 485 * @bus: the PCI bus to query
 486 * @devfn: PCI device to query
 487 * @cap: capability code
 488 *
 489 * Like pci_find_capability() but works for PCI devices that do not have a
 490 * pci_dev structure set up yet.
 491 *
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.
 495 */
 496int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 497{
 498	int pos;
 499	u8 hdr_type;
 500
 501	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 502
 503	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 504	if (pos)
 505		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 506
 507	return pos;
 508}
 509EXPORT_SYMBOL(pci_bus_find_capability);
 510
 511/**
 512 * pci_find_next_ext_capability - Find an extended capability
 513 * @dev: PCI device to query
 514 * @start: address at which to start looking (0 to start at beginning of list)
 515 * @cap: capability code
 516 *
 517 * Returns the address of the next matching extended capability structure
 518 * within the device's PCI configuration space or 0 if the device does
 519 * not support it.  Some capabilities can occur several times, e.g., the
 520 * vendor-specific capability, and this provides a way to find them all.
 521 */
 522int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 523{
 524	u32 header;
 525	int ttl;
 526	int pos = PCI_CFG_SPACE_SIZE;
 527
 528	/* minimum 8 bytes per capability */
 529	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 530
 531	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 532		return 0;
 533
 534	if (start)
 535		pos = start;
 536
 537	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 538		return 0;
 539
 540	/*
 541	 * If we have no capabilities, this is indicated by cap ID,
 542	 * cap version and next pointer all being 0.
 543	 */
 544	if (header == 0)
 545		return 0;
 546
 547	while (ttl-- > 0) {
 548		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 549			return pos;
 550
 551		pos = PCI_EXT_CAP_NEXT(header);
 552		if (pos < PCI_CFG_SPACE_SIZE)
 553			break;
 554
 555		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 556			break;
 557	}
 558
 559	return 0;
 560}
 561EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 562
 563/**
 564 * pci_find_ext_capability - Find an extended capability
 565 * @dev: PCI device to query
 566 * @cap: capability code
 567 *
 568 * Returns the address of the requested extended capability structure
 569 * within the device's PCI configuration space or 0 if the device does
 570 * not support it.  Possible values for @cap include:
 571 *
 572 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 573 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 574 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 575 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 576 */
 577int pci_find_ext_capability(struct pci_dev *dev, int cap)
 578{
 579	return pci_find_next_ext_capability(dev, 0, cap);
 580}
 581EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 582
 583/**
 584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 585 * @dev: PCI device to query
 586 *
 587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 588 * Number.
 589 *
 590 * Returns the DSN, or zero if the capability does not exist.
 591 */
 592u64 pci_get_dsn(struct pci_dev *dev)
 593{
 594	u32 dword;
 595	u64 dsn;
 596	int pos;
 597
 598	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 599	if (!pos)
 600		return 0;
 601
 602	/*
 603	 * The Device Serial Number is two dwords offset 4 bytes from the
 604	 * capability position. The specification says that the first dword is
 605	 * the lower half, and the second dword is the upper half.
 606	 */
 607	pos += 4;
 608	pci_read_config_dword(dev, pos, &dword);
 609	dsn = (u64)dword;
 610	pci_read_config_dword(dev, pos + 4, &dword);
 611	dsn |= ((u64)dword) << 32;
 612
 613	return dsn;
 614}
 615EXPORT_SYMBOL_GPL(pci_get_dsn);
 616
 617static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 618{
 619	int rc, ttl = PCI_FIND_CAP_TTL;
 620	u8 cap, mask;
 621
 622	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 623		mask = HT_3BIT_CAP_MASK;
 624	else
 625		mask = HT_5BIT_CAP_MASK;
 626
 627	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 628				      PCI_CAP_ID_HT, &ttl);
 629	while (pos) {
 630		rc = pci_read_config_byte(dev, pos + 3, &cap);
 631		if (rc != PCIBIOS_SUCCESSFUL)
 632			return 0;
 633
 634		if ((cap & mask) == ht_cap)
 635			return pos;
 636
 637		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 638					      pos + PCI_CAP_LIST_NEXT,
 639					      PCI_CAP_ID_HT, &ttl);
 640	}
 641
 642	return 0;
 643}
 
 644/**
 645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 646 * @dev: PCI device to query
 647 * @pos: Position from which to continue searching
 648 * @ht_cap: Hypertransport capability code
 649 *
 650 * To be used in conjunction with pci_find_ht_capability() to search for
 651 * all capabilities matching @ht_cap. @pos should always be a value returned
 652 * from pci_find_ht_capability().
 653 *
 654 * NB. To be 100% safe against broken PCI devices, the caller should take
 655 * steps to avoid an infinite loop.
 656 */
 657int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 658{
 659	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 660}
 661EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 662
 663/**
 664 * pci_find_ht_capability - query a device's Hypertransport capabilities
 665 * @dev: PCI device to query
 666 * @ht_cap: Hypertransport capability code
 667 *
 668 * Tell if a device supports a given Hypertransport capability.
 669 * Returns an address within the device's PCI configuration space
 670 * or 0 in case the device does not support the request capability.
 671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 672 * which has a Hypertransport capability matching @ht_cap.
 673 */
 674int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 675{
 676	int pos;
 677
 678	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 679	if (pos)
 680		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 681
 682	return pos;
 683}
 684EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 685
 686/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687 * pci_find_parent_resource - return resource region of parent bus of given
 688 *			      region
 689 * @dev: PCI device structure contains resources to be searched
 690 * @res: child resource record for which parent is sought
 691 *
 692 * For given resource region of given device, return the resource region of
 693 * parent bus the given region is contained in.
 694 */
 695struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 696					  struct resource *res)
 697{
 698	const struct pci_bus *bus = dev->bus;
 699	struct resource *r;
 700	int i;
 701
 702	pci_bus_for_each_resource(bus, r, i) {
 703		if (!r)
 704			continue;
 705		if (resource_contains(r, res)) {
 706
 707			/*
 708			 * If the window is prefetchable but the BAR is
 709			 * not, the allocator made a mistake.
 710			 */
 711			if (r->flags & IORESOURCE_PREFETCH &&
 712			    !(res->flags & IORESOURCE_PREFETCH))
 713				return NULL;
 714
 715			/*
 716			 * If we're below a transparent bridge, there may
 717			 * be both a positively-decoded aperture and a
 718			 * subtractively-decoded region that contain the BAR.
 719			 * We want the positively-decoded one, so this depends
 720			 * on pci_bus_for_each_resource() giving us those
 721			 * first.
 722			 */
 723			return r;
 724		}
 725	}
 726	return NULL;
 727}
 728EXPORT_SYMBOL(pci_find_parent_resource);
 729
 730/**
 731 * pci_find_resource - Return matching PCI device resource
 732 * @dev: PCI device to query
 733 * @res: Resource to look for
 734 *
 735 * Goes over standard PCI resources (BARs) and checks if the given resource
 736 * is partially or fully contained in any of them. In that case the
 737 * matching resource is returned, %NULL otherwise.
 738 */
 739struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 740{
 741	int i;
 742
 743	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 744		struct resource *r = &dev->resource[i];
 745
 746		if (r->start && resource_contains(r, res))
 747			return r;
 748	}
 749
 750	return NULL;
 751}
 752EXPORT_SYMBOL(pci_find_resource);
 753
 754/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 756 * @dev: the PCI device to operate on
 757 * @pos: config space offset of status word
 758 * @mask: mask of bit(s) to care about in status word
 759 *
 760 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 761 */
 762int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 763{
 764	int i;
 765
 766	/* Wait for Transaction Pending bit clean */
 767	for (i = 0; i < 4; i++) {
 768		u16 status;
 769		if (i)
 770			msleep((1 << (i - 1)) * 100);
 771
 772		pci_read_config_word(dev, pos, &status);
 773		if (!(status & mask))
 774			return 1;
 775	}
 776
 777	return 0;
 778}
 779
 780static int pci_acs_enable;
 781
 782/**
 783 * pci_request_acs - ask for ACS to be enabled if supported
 784 */
 785void pci_request_acs(void)
 786{
 787	pci_acs_enable = 1;
 788}
 789
 790static const char *disable_acs_redir_param;
 791
 792/**
 793 * pci_disable_acs_redir - disable ACS redirect capabilities
 794 * @dev: the PCI device
 795 *
 796 * For only devices specified in the disable_acs_redir parameter.
 797 */
 798static void pci_disable_acs_redir(struct pci_dev *dev)
 799{
 800	int ret = 0;
 801	const char *p;
 802	int pos;
 803	u16 ctrl;
 804
 805	if (!disable_acs_redir_param)
 806		return;
 807
 808	p = disable_acs_redir_param;
 809	while (*p) {
 810		ret = pci_dev_str_match(dev, p, &p);
 811		if (ret < 0) {
 812			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 813				     disable_acs_redir_param);
 814
 815			break;
 816		} else if (ret == 1) {
 817			/* Found a match */
 818			break;
 819		}
 820
 821		if (*p != ';' && *p != ',') {
 822			/* End of param or invalid format */
 823			break;
 824		}
 825		p++;
 826	}
 827
 828	if (ret != 1)
 829		return;
 830
 831	if (!pci_dev_specific_disable_acs_redir(dev))
 832		return;
 833
 834	pos = dev->acs_cap;
 835	if (!pos) {
 836		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 837		return;
 838	}
 839
 840	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 841
 842	/* P2P Request & Completion Redirect */
 843	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 844
 845	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 846
 847	pci_info(dev, "disabled ACS redirect\n");
 848}
 849
 850/**
 851 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 852 * @dev: the PCI device
 853 */
 854static void pci_std_enable_acs(struct pci_dev *dev)
 855{
 856	int pos;
 857	u16 cap;
 858	u16 ctrl;
 859
 860	pos = dev->acs_cap;
 861	if (!pos)
 862		return;
 863
 864	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 865	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 866
 867	/* Source Validation */
 868	ctrl |= (cap & PCI_ACS_SV);
 869
 870	/* P2P Request Redirect */
 871	ctrl |= (cap & PCI_ACS_RR);
 872
 873	/* P2P Completion Redirect */
 874	ctrl |= (cap & PCI_ACS_CR);
 875
 876	/* Upstream Forwarding */
 877	ctrl |= (cap & PCI_ACS_UF);
 878
 
 
 
 
 879	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 880}
 881
 882/**
 883 * pci_enable_acs - enable ACS if hardware support it
 884 * @dev: the PCI device
 885 */
 886static void pci_enable_acs(struct pci_dev *dev)
 887{
 888	if (!pci_acs_enable)
 889		goto disable_acs_redir;
 890
 891	if (!pci_dev_specific_enable_acs(dev))
 892		goto disable_acs_redir;
 893
 894	pci_std_enable_acs(dev);
 895
 896disable_acs_redir:
 897	/*
 898	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 899	 * enabled by the kernel because it may have been enabled by
 900	 * platform firmware.  So if we are told to disable it, we should
 901	 * always disable it after setting the kernel's default
 902	 * preferences.
 903	 */
 904	pci_disable_acs_redir(dev);
 905}
 906
 907/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 909 * @dev: PCI device to have its BARs restored
 910 *
 911 * Restore the BAR values for a given device, so as to make it
 912 * accessible by its driver.
 913 */
 914static void pci_restore_bars(struct pci_dev *dev)
 915{
 916	int i;
 917
 918	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 919		pci_update_resource(dev, i);
 920}
 921
 922static const struct pci_platform_pm_ops *pci_platform_pm;
 923
 924int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 925{
 926	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 927	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 928		return -EINVAL;
 929	pci_platform_pm = ops;
 930	return 0;
 931}
 932
 933static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 934{
 935	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 
 
 
 936}
 937
 938static inline int platform_pci_set_power_state(struct pci_dev *dev,
 939					       pci_power_t t)
 940{
 941	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 
 
 
 942}
 943
 944static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 945{
 946	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 
 
 947}
 948
 949static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 950{
 951	if (pci_platform_pm && pci_platform_pm->refresh_state)
 952		pci_platform_pm->refresh_state(dev);
 953}
 954
 955static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 956{
 957	return pci_platform_pm ?
 958			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
 959}
 960
 961static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 962{
 963	return pci_platform_pm ?
 964			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 
 
 965}
 966
 967static inline bool platform_pci_need_resume(struct pci_dev *dev)
 968{
 969	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 970}
 971
 972static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 973{
 974	if (pci_platform_pm && pci_platform_pm->bridge_d3)
 975		return pci_platform_pm->bridge_d3(dev);
 976	return false;
 977}
 978
 979/**
 980 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 981 *			     given PCI device
 982 * @dev: PCI device to handle.
 983 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 984 *
 985 * RETURN VALUE:
 986 * -EINVAL if the requested state is invalid.
 987 * -EIO if device does not support PCI PM or its PM capabilities register has a
 988 * wrong version, or device doesn't support the requested state.
 989 * 0 if device already is in the requested state.
 990 * 0 if device's power state has been successfully changed.
 991 */
 992static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 993{
 994	u16 pmcsr;
 995	bool need_restore = false;
 996
 997	/* Check if we're already there */
 998	if (dev->current_state == state)
 999		return 0;
1000
1001	if (!dev->pm_cap)
1002		return -EIO;
1003
1004	if (state < PCI_D0 || state > PCI_D3hot)
1005		return -EINVAL;
1006
1007	/*
1008	 * Validate transition: We can enter D0 from any state, but if
1009	 * we're already in a low-power state, we can only go deeper.  E.g.,
1010	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1011	 * we'd have to go from D3 to D0, then to D1.
1012	 */
1013	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1014	    && dev->current_state > state) {
1015		pci_err(dev, "invalid power transition (from %s to %s)\n",
1016			pci_power_name(dev->current_state),
1017			pci_power_name(state));
1018		return -EINVAL;
1019	}
1020
1021	/* Check if this device supports the desired state */
1022	if ((state == PCI_D1 && !dev->d1_support)
1023	   || (state == PCI_D2 && !dev->d2_support))
1024		return -EIO;
1025
1026	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1027	if (pmcsr == (u16) ~0) {
1028		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1029			pci_power_name(dev->current_state),
1030			pci_power_name(state));
1031		return -EIO;
1032	}
1033
1034	/*
1035	 * If we're (effectively) in D3, force entire word to 0.
1036	 * This doesn't affect PME_Status, disables PME_En, and
1037	 * sets PowerState to 0.
1038	 */
1039	switch (dev->current_state) {
1040	case PCI_D0:
1041	case PCI_D1:
1042	case PCI_D2:
1043		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1044		pmcsr |= state;
1045		break;
1046	case PCI_D3hot:
1047	case PCI_D3cold:
1048	case PCI_UNKNOWN: /* Boot-up */
1049		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1050		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1051			need_restore = true;
1052		fallthrough;	/* force to D0 */
1053	default:
1054		pmcsr = 0;
1055		break;
1056	}
1057
1058	/* Enter specified state */
1059	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1060
1061	/*
1062	 * Mandatory power management transition delays; see PCI PM 1.1
1063	 * 5.6.1 table 18
1064	 */
1065	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1066		pci_dev_d3_sleep(dev);
1067	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1068		msleep(PCI_PM_D2_DELAY);
1069
1070	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1072	if (dev->current_state != state)
1073		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1074			 pci_power_name(dev->current_state),
1075			 pci_power_name(state));
1076
1077	/*
1078	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1079	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1080	 * from D3hot to D0 _may_ perform an internal reset, thereby
1081	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1082	 * For example, at least some versions of the 3c905B and the
1083	 * 3c556B exhibit this behaviour.
1084	 *
1085	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1086	 * devices in a D3hot state at boot.  Consequently, we need to
1087	 * restore at least the BARs so that the device will be
1088	 * accessible to its driver.
1089	 */
1090	if (need_restore)
1091		pci_restore_bars(dev);
1092
1093	if (dev->bus->self)
1094		pcie_aspm_pm_state_change(dev->bus->self);
1095
1096	return 0;
1097}
1098
1099/**
1100 * pci_update_current_state - Read power state of given device and cache it
1101 * @dev: PCI device to handle.
1102 * @state: State to cache in case the device doesn't have the PM capability
1103 *
1104 * The power state is read from the PMCSR register, which however is
1105 * inaccessible in D3cold.  The platform firmware is therefore queried first
1106 * to detect accessibility of the register.  In case the platform firmware
1107 * reports an incorrect state or the device isn't power manageable by the
1108 * platform at all, we try to detect D3cold by testing accessibility of the
1109 * vendor ID in config space.
1110 */
1111void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1112{
1113	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1114	    !pci_device_is_present(dev)) {
1115		dev->current_state = PCI_D3cold;
1116	} else if (dev->pm_cap) {
1117		u16 pmcsr;
1118
1119		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
1121	} else {
1122		dev->current_state = state;
1123	}
1124}
1125
1126/**
1127 * pci_refresh_power_state - Refresh the given device's power state data
1128 * @dev: Target PCI device.
1129 *
1130 * Ask the platform to refresh the devices power state information and invoke
1131 * pci_update_current_state() to update its current PCI power state.
1132 */
1133void pci_refresh_power_state(struct pci_dev *dev)
1134{
1135	if (platform_pci_power_manageable(dev))
1136		platform_pci_refresh_power_state(dev);
1137
1138	pci_update_current_state(dev, dev->current_state);
1139}
1140
1141/**
1142 * pci_platform_power_transition - Use platform to change device power state
1143 * @dev: PCI device to handle.
1144 * @state: State to put the device into.
1145 */
1146int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1147{
1148	int error;
1149
1150	if (platform_pci_power_manageable(dev)) {
1151		error = platform_pci_set_power_state(dev, state);
1152		if (!error)
1153			pci_update_current_state(dev, state);
1154	} else
1155		error = -ENODEV;
1156
1157	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1158		dev->current_state = PCI_D0;
1159
1160	return error;
1161}
1162EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1163
1164/**
1165 * pci_wakeup - Wake up a PCI device
1166 * @pci_dev: Device to handle.
1167 * @ign: ignored parameter
1168 */
1169static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1170{
1171	pci_wakeup_event(pci_dev);
1172	pm_request_resume(&pci_dev->dev);
1173	return 0;
1174}
1175
1176/**
1177 * pci_wakeup_bus - Walk given bus and wake up devices on it
1178 * @bus: Top bus of the subtree to walk.
1179 */
1180void pci_wakeup_bus(struct pci_bus *bus)
1181{
1182	if (bus)
1183		pci_walk_bus(bus, pci_wakeup, NULL);
1184}
1185
1186static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1187{
1188	int delay = 1;
1189	u32 id;
 
 
 
 
 
 
 
1190
1191	/*
1192	 * After reset, the device should not silently discard config
1193	 * requests, but it may still indicate that it needs more time by
1194	 * responding to them with CRS completions.  The Root Port will
1195	 * generally synthesize ~0 data to complete the read (except when
1196	 * CRS SV is enabled and the read was for the Vendor ID; in that
1197	 * case it synthesizes 0x0001 data).
1198	 *
1199	 * Wait for the device to return a non-CRS completion.  Read the
1200	 * Command register instead of Vendor ID so we don't have to
1201	 * contend with the CRS SV value.
1202	 */
1203	pci_read_config_dword(dev, PCI_COMMAND, &id);
1204	while (id == ~0) {
 
 
 
 
 
1205		if (delay > timeout) {
1206			pci_warn(dev, "not ready %dms after %s; giving up\n",
1207				 delay - 1, reset_type);
1208			return -ENOTTY;
1209		}
1210
1211		if (delay > 1000)
 
 
 
 
 
 
 
1212			pci_info(dev, "not ready %dms after %s; waiting\n",
1213				 delay - 1, reset_type);
 
1214
1215		msleep(delay);
1216		delay *= 2;
1217		pci_read_config_dword(dev, PCI_COMMAND, &id);
1218	}
1219
1220	if (delay > 1000)
1221		pci_info(dev, "ready %dms after %s\n", delay - 1,
1222			 reset_type);
 
 
 
1223
1224	return 0;
1225}
1226
1227/**
1228 * pci_power_up - Put the given device into D0
1229 * @dev: PCI device to power up
 
 
 
 
 
 
 
1230 */
1231int pci_power_up(struct pci_dev *dev)
1232{
1233	pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234
1235	/*
1236	 * Mandatory power management transition delays are handled in
1237	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1238	 * corresponding bridge.
1239	 */
1240	if (dev->runtime_d3cold) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241		/*
1242		 * When powering on a bridge from D3cold, the whole hierarchy
1243		 * may be powered on into D0uninitialized state, resume them to
1244		 * give them a chance to suspend again
 
 
 
 
 
 
 
 
1245		 */
1246		pci_wakeup_bus(dev->subordinate);
1247	}
1248
1249	return pci_raw_set_power_state(dev, PCI_D0);
 
 
 
1250}
1251
1252/**
1253 * __pci_dev_set_current_state - Set current state of a PCI device
1254 * @dev: Device to handle
1255 * @data: pointer to state to be set
1256 */
1257static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1258{
1259	pci_power_t state = *(pci_power_t *)data;
1260
1261	dev->current_state = state;
1262	return 0;
1263}
1264
1265/**
1266 * pci_bus_set_current_state - Walk given bus and set current state of devices
1267 * @bus: Top bus of the subtree to walk.
1268 * @state: state to be set
1269 */
1270void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1271{
1272	if (bus)
1273		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1274}
1275
 
 
 
 
 
 
 
 
 
 
 
1276/**
1277 * pci_set_power_state - Set the power state of a PCI device
1278 * @dev: PCI device to handle.
1279 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 
1280 *
1281 * Transition a device to a new power state, using the platform firmware and/or
1282 * the device's PCI PM registers.
1283 *
1284 * RETURN VALUE:
1285 * -EINVAL if the requested state is invalid.
1286 * -EIO if device does not support PCI PM or its PM capabilities register has a
1287 * wrong version, or device doesn't support the requested state.
1288 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1289 * 0 if device already is in the requested state.
1290 * 0 if the transition is to D3 but D3 is not supported.
1291 * 0 if device's power state has been successfully changed.
1292 */
1293int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294{
1295	int error;
1296
1297	/* Bound the state we're entering */
1298	if (state > PCI_D3cold)
1299		state = PCI_D3cold;
1300	else if (state < PCI_D0)
1301		state = PCI_D0;
1302	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1303
1304		/*
1305		 * If the device or the parent bridge do not support PCI
1306		 * PM, ignore the request if we're doing anything other
1307		 * than putting it into D0 (which would only happen on
1308		 * boot).
1309		 */
1310		return 0;
1311
1312	/* Check if we're already there */
1313	if (dev->current_state == state)
1314		return 0;
1315
1316	if (state == PCI_D0)
1317		return pci_power_up(dev);
1318
1319	/*
1320	 * This device is quirked not to be put into D3, so don't put it in
1321	 * D3
1322	 */
1323	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1324		return 0;
1325
1326	/*
1327	 * To put device in D3cold, we put device into D3hot in native
1328	 * way, then put device into D3cold with platform ops
1329	 */
1330	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1331					PCI_D3hot : state);
1332
1333	if (pci_platform_power_transition(dev, state))
1334		return error;
1335
1336	/* Powering off a bridge may power off the whole hierarchy */
1337	if (state == PCI_D3cold)
1338		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 
 
 
 
 
 
1339
1340	return 0;
1341}
1342EXPORT_SYMBOL(pci_set_power_state);
1343
1344/**
1345 * pci_choose_state - Choose the power state of a PCI device
1346 * @dev: PCI device to be suspended
1347 * @state: target sleep state for the whole system. This is the value
1348 *	   that is passed to suspend() function.
 
 
1349 *
1350 * Returns PCI power state suitable for given device and given system
1351 * message.
 
 
 
 
 
 
1352 */
1353pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1354{
1355	pci_power_t ret;
1356
1357	if (!dev->pm_cap)
1358		return PCI_D0;
1359
1360	ret = platform_pci_choose_state(dev);
1361	if (ret != PCI_POWER_ERROR)
1362		return ret;
1363
1364	switch (state.event) {
1365	case PM_EVENT_ON:
1366		return PCI_D0;
1367	case PM_EVENT_FREEZE:
1368	case PM_EVENT_PRETHAW:
1369		/* REVISIT both freeze and pre-thaw "should" use D0 */
1370	case PM_EVENT_SUSPEND:
1371	case PM_EVENT_HIBERNATE:
1372		return PCI_D3hot;
1373	default:
1374		pci_info(dev, "unrecognized suspend event %d\n",
1375			 state.event);
1376		BUG();
1377	}
1378	return PCI_D0;
1379}
1380EXPORT_SYMBOL(pci_choose_state);
1381
1382#define PCI_EXP_SAVE_REGS	7
1383
1384static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1385						       u16 cap, bool extended)
1386{
1387	struct pci_cap_saved_state *tmp;
1388
1389	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1390		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1391			return tmp;
1392	}
1393	return NULL;
1394}
1395
1396struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1397{
1398	return _pci_find_saved_cap(dev, cap, false);
1399}
1400
1401struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1402{
1403	return _pci_find_saved_cap(dev, cap, true);
1404}
1405
1406static int pci_save_pcie_state(struct pci_dev *dev)
1407{
1408	int i = 0;
1409	struct pci_cap_saved_state *save_state;
1410	u16 *cap;
1411
1412	if (!pci_is_pcie(dev))
1413		return 0;
1414
1415	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1416	if (!save_state) {
1417		pci_err(dev, "buffer not found in %s\n", __func__);
1418		return -ENOMEM;
1419	}
1420
1421	cap = (u16 *)&save_state->cap.data[0];
1422	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1423	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1424	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1425	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1426	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1427	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1428	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1429
 
 
 
1430	return 0;
1431}
1432
1433static void pci_restore_pcie_state(struct pci_dev *dev)
1434{
1435	int i = 0;
1436	struct pci_cap_saved_state *save_state;
1437	u16 *cap;
1438
 
 
 
 
 
 
 
1439	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1440	if (!save_state)
1441		return;
1442
 
 
 
 
 
 
 
1443	cap = (u16 *)&save_state->cap.data[0];
1444	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1445	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1446	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1447	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1448	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1449	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1450	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1451}
1452
1453static int pci_save_pcix_state(struct pci_dev *dev)
1454{
1455	int pos;
1456	struct pci_cap_saved_state *save_state;
1457
1458	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1459	if (!pos)
1460		return 0;
1461
1462	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1463	if (!save_state) {
1464		pci_err(dev, "buffer not found in %s\n", __func__);
1465		return -ENOMEM;
1466	}
1467
1468	pci_read_config_word(dev, pos + PCI_X_CMD,
1469			     (u16 *)save_state->cap.data);
1470
1471	return 0;
1472}
1473
1474static void pci_restore_pcix_state(struct pci_dev *dev)
1475{
1476	int i = 0, pos;
1477	struct pci_cap_saved_state *save_state;
1478	u16 *cap;
1479
1480	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1481	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1482	if (!save_state || !pos)
1483		return;
1484	cap = (u16 *)&save_state->cap.data[0];
1485
1486	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1487}
1488
1489static void pci_save_ltr_state(struct pci_dev *dev)
1490{
1491	int ltr;
1492	struct pci_cap_saved_state *save_state;
1493	u16 *cap;
1494
1495	if (!pci_is_pcie(dev))
1496		return;
1497
1498	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1499	if (!ltr)
1500		return;
1501
1502	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1503	if (!save_state) {
1504		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1505		return;
1506	}
1507
1508	cap = (u16 *)&save_state->cap.data[0];
1509	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1510	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1511}
1512
1513static void pci_restore_ltr_state(struct pci_dev *dev)
1514{
1515	struct pci_cap_saved_state *save_state;
1516	int ltr;
1517	u16 *cap;
1518
1519	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1521	if (!save_state || !ltr)
1522		return;
1523
1524	cap = (u16 *)&save_state->cap.data[0];
1525	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1526	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1527}
1528
1529/**
1530 * pci_save_state - save the PCI configuration space of a device before
1531 *		    suspending
1532 * @dev: PCI device that we're dealing with
1533 */
1534int pci_save_state(struct pci_dev *dev)
1535{
1536	int i;
1537	/* XXX: 100% dword access ok here? */
1538	for (i = 0; i < 16; i++) {
1539		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1540		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1541			i * 4, dev->saved_config_space[i]);
1542	}
1543	dev->state_saved = true;
1544
1545	i = pci_save_pcie_state(dev);
1546	if (i != 0)
1547		return i;
1548
1549	i = pci_save_pcix_state(dev);
1550	if (i != 0)
1551		return i;
1552
1553	pci_save_ltr_state(dev);
1554	pci_save_dpc_state(dev);
1555	pci_save_aer_state(dev);
 
1556	return pci_save_vc_state(dev);
1557}
1558EXPORT_SYMBOL(pci_save_state);
1559
1560static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1561				     u32 saved_val, int retry, bool force)
1562{
1563	u32 val;
1564
1565	pci_read_config_dword(pdev, offset, &val);
1566	if (!force && val == saved_val)
1567		return;
1568
1569	for (;;) {
1570		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1571			offset, val, saved_val);
1572		pci_write_config_dword(pdev, offset, saved_val);
1573		if (retry-- <= 0)
1574			return;
1575
1576		pci_read_config_dword(pdev, offset, &val);
1577		if (val == saved_val)
1578			return;
1579
1580		mdelay(1);
1581	}
1582}
1583
1584static void pci_restore_config_space_range(struct pci_dev *pdev,
1585					   int start, int end, int retry,
1586					   bool force)
1587{
1588	int index;
1589
1590	for (index = end; index >= start; index--)
1591		pci_restore_config_dword(pdev, 4 * index,
1592					 pdev->saved_config_space[index],
1593					 retry, force);
1594}
1595
1596static void pci_restore_config_space(struct pci_dev *pdev)
1597{
1598	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1599		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1600		/* Restore BARs before the command register. */
1601		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1602		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1603	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1604		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1605
1606		/*
1607		 * Force rewriting of prefetch registers to avoid S3 resume
1608		 * issues on Intel PCI bridges that occur when these
1609		 * registers are not explicitly written.
1610		 */
1611		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1612		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1613	} else {
1614		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1615	}
1616}
1617
1618static void pci_restore_rebar_state(struct pci_dev *pdev)
1619{
1620	unsigned int pos, nbars, i;
1621	u32 ctrl;
1622
1623	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1624	if (!pos)
1625		return;
1626
1627	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1628	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1629		    PCI_REBAR_CTRL_NBAR_SHIFT;
1630
1631	for (i = 0; i < nbars; i++, pos += 8) {
1632		struct resource *res;
1633		int bar_idx, size;
1634
1635		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1637		res = pdev->resource + bar_idx;
1638		size = ilog2(resource_size(res)) - 20;
1639		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1640		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1641		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1642	}
1643}
1644
1645/**
1646 * pci_restore_state - Restore the saved state of a PCI device
1647 * @dev: PCI device that we're dealing with
1648 */
1649void pci_restore_state(struct pci_dev *dev)
1650{
1651	if (!dev->state_saved)
1652		return;
1653
1654	/*
1655	 * Restore max latencies (in the LTR capability) before enabling
1656	 * LTR itself (in the PCIe capability).
1657	 */
1658	pci_restore_ltr_state(dev);
1659
1660	pci_restore_pcie_state(dev);
1661	pci_restore_pasid_state(dev);
1662	pci_restore_pri_state(dev);
1663	pci_restore_ats_state(dev);
1664	pci_restore_vc_state(dev);
1665	pci_restore_rebar_state(dev);
1666	pci_restore_dpc_state(dev);
 
1667
1668	pci_aer_clear_status(dev);
1669	pci_restore_aer_state(dev);
1670
1671	pci_restore_config_space(dev);
1672
1673	pci_restore_pcix_state(dev);
1674	pci_restore_msi_state(dev);
1675
1676	/* Restore ACS and IOV configuration state */
1677	pci_enable_acs(dev);
1678	pci_restore_iov_state(dev);
1679
1680	dev->state_saved = false;
1681}
1682EXPORT_SYMBOL(pci_restore_state);
1683
1684struct pci_saved_state {
1685	u32 config_space[16];
1686	struct pci_cap_saved_data cap[];
1687};
1688
1689/**
1690 * pci_store_saved_state - Allocate and return an opaque struct containing
1691 *			   the device saved state.
1692 * @dev: PCI device that we're dealing with
1693 *
1694 * Return NULL if no state or error.
1695 */
1696struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1697{
1698	struct pci_saved_state *state;
1699	struct pci_cap_saved_state *tmp;
1700	struct pci_cap_saved_data *cap;
1701	size_t size;
1702
1703	if (!dev->state_saved)
1704		return NULL;
1705
1706	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1707
1708	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1709		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1710
1711	state = kzalloc(size, GFP_KERNEL);
1712	if (!state)
1713		return NULL;
1714
1715	memcpy(state->config_space, dev->saved_config_space,
1716	       sizeof(state->config_space));
1717
1718	cap = state->cap;
1719	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1720		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721		memcpy(cap, &tmp->cap, len);
1722		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1723	}
1724	/* Empty cap_save terminates list */
1725
1726	return state;
1727}
1728EXPORT_SYMBOL_GPL(pci_store_saved_state);
1729
1730/**
1731 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1732 * @dev: PCI device that we're dealing with
1733 * @state: Saved state returned from pci_store_saved_state()
1734 */
1735int pci_load_saved_state(struct pci_dev *dev,
1736			 struct pci_saved_state *state)
1737{
1738	struct pci_cap_saved_data *cap;
1739
1740	dev->state_saved = false;
1741
1742	if (!state)
1743		return 0;
1744
1745	memcpy(dev->saved_config_space, state->config_space,
1746	       sizeof(state->config_space));
1747
1748	cap = state->cap;
1749	while (cap->size) {
1750		struct pci_cap_saved_state *tmp;
1751
1752		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1753		if (!tmp || tmp->cap.size != cap->size)
1754			return -EINVAL;
1755
1756		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1757		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1758		       sizeof(struct pci_cap_saved_data) + cap->size);
1759	}
1760
1761	dev->state_saved = true;
1762	return 0;
1763}
1764EXPORT_SYMBOL_GPL(pci_load_saved_state);
1765
1766/**
1767 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1768 *				   and free the memory allocated for it.
1769 * @dev: PCI device that we're dealing with
1770 * @state: Pointer to saved state returned from pci_store_saved_state()
1771 */
1772int pci_load_and_free_saved_state(struct pci_dev *dev,
1773				  struct pci_saved_state **state)
1774{
1775	int ret = pci_load_saved_state(dev, *state);
1776	kfree(*state);
1777	*state = NULL;
1778	return ret;
1779}
1780EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1781
1782int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1783{
1784	return pci_enable_resources(dev, bars);
1785}
1786
1787static int do_pci_enable_device(struct pci_dev *dev, int bars)
1788{
1789	int err;
1790	struct pci_dev *bridge;
1791	u16 cmd;
1792	u8 pin;
1793
1794	err = pci_set_power_state(dev, PCI_D0);
1795	if (err < 0 && err != -EIO)
1796		return err;
1797
1798	bridge = pci_upstream_bridge(dev);
1799	if (bridge)
1800		pcie_aspm_powersave_config_link(bridge);
1801
1802	err = pcibios_enable_device(dev, bars);
1803	if (err < 0)
1804		return err;
1805	pci_fixup_device(pci_fixup_enable, dev);
1806
1807	if (dev->msi_enabled || dev->msix_enabled)
1808		return 0;
1809
1810	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1811	if (pin) {
1812		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1813		if (cmd & PCI_COMMAND_INTX_DISABLE)
1814			pci_write_config_word(dev, PCI_COMMAND,
1815					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1816	}
1817
1818	return 0;
1819}
1820
1821/**
1822 * pci_reenable_device - Resume abandoned device
1823 * @dev: PCI device to be resumed
1824 *
1825 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1826 * to be called by normal code, write proper resume handler and use it instead.
1827 */
1828int pci_reenable_device(struct pci_dev *dev)
1829{
1830	if (pci_is_enabled(dev))
1831		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1832	return 0;
1833}
1834EXPORT_SYMBOL(pci_reenable_device);
1835
1836static void pci_enable_bridge(struct pci_dev *dev)
1837{
1838	struct pci_dev *bridge;
1839	int retval;
1840
1841	bridge = pci_upstream_bridge(dev);
1842	if (bridge)
1843		pci_enable_bridge(bridge);
1844
1845	if (pci_is_enabled(dev)) {
1846		if (!dev->is_busmaster)
1847			pci_set_master(dev);
1848		return;
1849	}
1850
1851	retval = pci_enable_device(dev);
1852	if (retval)
1853		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1854			retval);
1855	pci_set_master(dev);
1856}
1857
1858static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1859{
1860	struct pci_dev *bridge;
1861	int err;
1862	int i, bars = 0;
1863
1864	/*
1865	 * Power state could be unknown at this point, either due to a fresh
1866	 * boot or a device removal call.  So get the current power state
1867	 * so that things like MSI message writing will behave as expected
1868	 * (e.g. if the device really is in D0 at enable time).
1869	 */
1870	if (dev->pm_cap) {
1871		u16 pmcsr;
1872		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1873		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1874	}
1875
1876	if (atomic_inc_return(&dev->enable_cnt) > 1)
1877		return 0;		/* already enabled */
1878
1879	bridge = pci_upstream_bridge(dev);
1880	if (bridge)
1881		pci_enable_bridge(bridge);
1882
1883	/* only skip sriov related */
1884	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1885		if (dev->resource[i].flags & flags)
1886			bars |= (1 << i);
1887	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1888		if (dev->resource[i].flags & flags)
1889			bars |= (1 << i);
1890
1891	err = do_pci_enable_device(dev, bars);
1892	if (err < 0)
1893		atomic_dec(&dev->enable_cnt);
1894	return err;
1895}
1896
1897/**
1898 * pci_enable_device_io - Initialize a device for use with IO space
1899 * @dev: PCI device to be initialized
1900 *
1901 * Initialize device before it's used by a driver. Ask low-level code
1902 * to enable I/O resources. Wake up the device if it was suspended.
1903 * Beware, this function can fail.
1904 */
1905int pci_enable_device_io(struct pci_dev *dev)
1906{
1907	return pci_enable_device_flags(dev, IORESOURCE_IO);
1908}
1909EXPORT_SYMBOL(pci_enable_device_io);
1910
1911/**
1912 * pci_enable_device_mem - Initialize a device for use with Memory space
1913 * @dev: PCI device to be initialized
1914 *
1915 * Initialize device before it's used by a driver. Ask low-level code
1916 * to enable Memory resources. Wake up the device if it was suspended.
1917 * Beware, this function can fail.
1918 */
1919int pci_enable_device_mem(struct pci_dev *dev)
1920{
1921	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1922}
1923EXPORT_SYMBOL(pci_enable_device_mem);
1924
1925/**
1926 * pci_enable_device - Initialize device before it's used by a driver.
1927 * @dev: PCI device to be initialized
1928 *
1929 * Initialize device before it's used by a driver. Ask low-level code
1930 * to enable I/O and memory. Wake up the device if it was suspended.
1931 * Beware, this function can fail.
1932 *
1933 * Note we don't actually enable the device many times if we call
1934 * this function repeatedly (we just increment the count).
1935 */
1936int pci_enable_device(struct pci_dev *dev)
1937{
1938	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1939}
1940EXPORT_SYMBOL(pci_enable_device);
1941
1942/*
1943 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1944 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1945 * there's no need to track it separately.  pci_devres is initialized
1946 * when a device is enabled using managed PCI device enable interface.
1947 */
1948struct pci_devres {
1949	unsigned int enabled:1;
1950	unsigned int pinned:1;
1951	unsigned int orig_intx:1;
1952	unsigned int restore_intx:1;
1953	unsigned int mwi:1;
1954	u32 region_mask;
1955};
1956
1957static void pcim_release(struct device *gendev, void *res)
1958{
1959	struct pci_dev *dev = to_pci_dev(gendev);
1960	struct pci_devres *this = res;
1961	int i;
1962
1963	if (dev->msi_enabled)
1964		pci_disable_msi(dev);
1965	if (dev->msix_enabled)
1966		pci_disable_msix(dev);
1967
1968	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1969		if (this->region_mask & (1 << i))
1970			pci_release_region(dev, i);
1971
1972	if (this->mwi)
1973		pci_clear_mwi(dev);
1974
1975	if (this->restore_intx)
1976		pci_intx(dev, this->orig_intx);
1977
1978	if (this->enabled && !this->pinned)
1979		pci_disable_device(dev);
1980}
1981
1982static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1983{
1984	struct pci_devres *dr, *new_dr;
1985
1986	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1987	if (dr)
1988		return dr;
1989
1990	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1991	if (!new_dr)
1992		return NULL;
1993	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1994}
1995
1996static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1997{
1998	if (pci_is_managed(pdev))
1999		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000	return NULL;
2001}
2002
2003/**
2004 * pcim_enable_device - Managed pci_enable_device()
2005 * @pdev: PCI device to be initialized
2006 *
2007 * Managed pci_enable_device().
2008 */
2009int pcim_enable_device(struct pci_dev *pdev)
2010{
2011	struct pci_devres *dr;
2012	int rc;
2013
2014	dr = get_pci_dr(pdev);
2015	if (unlikely(!dr))
2016		return -ENOMEM;
2017	if (dr->enabled)
2018		return 0;
2019
2020	rc = pci_enable_device(pdev);
2021	if (!rc) {
2022		pdev->is_managed = 1;
2023		dr->enabled = 1;
2024	}
2025	return rc;
2026}
2027EXPORT_SYMBOL(pcim_enable_device);
2028
2029/**
2030 * pcim_pin_device - Pin managed PCI device
2031 * @pdev: PCI device to pin
2032 *
2033 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2034 * driver detach.  @pdev must have been enabled with
2035 * pcim_enable_device().
2036 */
2037void pcim_pin_device(struct pci_dev *pdev)
2038{
2039	struct pci_devres *dr;
2040
2041	dr = find_pci_dr(pdev);
2042	WARN_ON(!dr || !dr->enabled);
2043	if (dr)
2044		dr->pinned = 1;
2045}
2046EXPORT_SYMBOL(pcim_pin_device);
2047
2048/*
2049 * pcibios_add_device - provide arch specific hooks when adding device dev
2050 * @dev: the PCI device being added
2051 *
2052 * Permits the platform to provide architecture specific functionality when
2053 * devices are added. This is the default implementation. Architecture
2054 * implementations can override this.
2055 */
2056int __weak pcibios_add_device(struct pci_dev *dev)
2057{
2058	return 0;
2059}
2060
2061/**
2062 * pcibios_release_device - provide arch specific hooks when releasing
2063 *			    device dev
2064 * @dev: the PCI device being released
2065 *
2066 * Permits the platform to provide architecture specific functionality when
2067 * devices are released. This is the default implementation. Architecture
2068 * implementations can override this.
2069 */
2070void __weak pcibios_release_device(struct pci_dev *dev) {}
2071
2072/**
2073 * pcibios_disable_device - disable arch specific PCI resources for device dev
2074 * @dev: the PCI device to disable
2075 *
2076 * Disables architecture specific PCI resources for the device. This
2077 * is the default implementation. Architecture implementations can
2078 * override this.
2079 */
2080void __weak pcibios_disable_device(struct pci_dev *dev) {}
2081
2082/**
2083 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2084 * @irq: ISA IRQ to penalize
2085 * @active: IRQ active or not
2086 *
2087 * Permits the platform to provide architecture-specific functionality when
2088 * penalizing ISA IRQs. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2092
2093static void do_pci_disable_device(struct pci_dev *dev)
2094{
2095	u16 pci_command;
2096
2097	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2098	if (pci_command & PCI_COMMAND_MASTER) {
2099		pci_command &= ~PCI_COMMAND_MASTER;
2100		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2101	}
2102
2103	pcibios_disable_device(dev);
2104}
2105
2106/**
2107 * pci_disable_enabled_device - Disable device without updating enable_cnt
2108 * @dev: PCI device to disable
2109 *
2110 * NOTE: This function is a backend of PCI power management routines and is
2111 * not supposed to be called drivers.
2112 */
2113void pci_disable_enabled_device(struct pci_dev *dev)
2114{
2115	if (pci_is_enabled(dev))
2116		do_pci_disable_device(dev);
2117}
2118
2119/**
2120 * pci_disable_device - Disable PCI device after use
2121 * @dev: PCI device to be disabled
2122 *
2123 * Signal to the system that the PCI device is not in use by the system
2124 * anymore.  This only involves disabling PCI bus-mastering, if active.
2125 *
2126 * Note we don't actually disable the device until all callers of
2127 * pci_enable_device() have called pci_disable_device().
2128 */
2129void pci_disable_device(struct pci_dev *dev)
2130{
2131	struct pci_devres *dr;
2132
2133	dr = find_pci_dr(dev);
2134	if (dr)
2135		dr->enabled = 0;
2136
2137	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2138		      "disabling already-disabled device");
2139
2140	if (atomic_dec_return(&dev->enable_cnt) != 0)
2141		return;
2142
2143	do_pci_disable_device(dev);
2144
2145	dev->is_busmaster = 0;
2146}
2147EXPORT_SYMBOL(pci_disable_device);
2148
2149/**
2150 * pcibios_set_pcie_reset_state - set reset state for device dev
2151 * @dev: the PCIe device reset
2152 * @state: Reset state to enter into
2153 *
2154 * Set the PCIe reset state for the device. This is the default
2155 * implementation. Architecture implementations can override this.
2156 */
2157int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2158					enum pcie_reset_state state)
2159{
2160	return -EINVAL;
2161}
2162
2163/**
2164 * pci_set_pcie_reset_state - set reset state for device dev
2165 * @dev: the PCIe device reset
2166 * @state: Reset state to enter into
2167 *
2168 * Sets the PCI reset state for the device.
2169 */
2170int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2171{
2172	return pcibios_set_pcie_reset_state(dev, state);
2173}
2174EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2175
 
2176void pcie_clear_device_status(struct pci_dev *dev)
2177{
2178	u16 sta;
2179
2180	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2181	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2182}
 
2183
2184/**
2185 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2186 * @dev: PCIe root port or event collector.
2187 */
2188void pcie_clear_root_pme_status(struct pci_dev *dev)
2189{
2190	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2191}
2192
2193/**
2194 * pci_check_pme_status - Check if given device has generated PME.
2195 * @dev: Device to check.
2196 *
2197 * Check the PME status of the device and if set, clear it and clear PME enable
2198 * (if set).  Return 'true' if PME status and PME enable were both set or
2199 * 'false' otherwise.
2200 */
2201bool pci_check_pme_status(struct pci_dev *dev)
2202{
2203	int pmcsr_pos;
2204	u16 pmcsr;
2205	bool ret = false;
2206
2207	if (!dev->pm_cap)
2208		return false;
2209
2210	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2211	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2212	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2213		return false;
2214
2215	/* Clear PME status. */
2216	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2217	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2218		/* Disable PME to avoid interrupt flood. */
2219		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2220		ret = true;
2221	}
2222
2223	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2224
2225	return ret;
2226}
2227
2228/**
2229 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2230 * @dev: Device to handle.
2231 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2232 *
2233 * Check if @dev has generated PME and queue a resume request for it in that
2234 * case.
2235 */
2236static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2237{
2238	if (pme_poll_reset && dev->pme_poll)
2239		dev->pme_poll = false;
2240
2241	if (pci_check_pme_status(dev)) {
2242		pci_wakeup_event(dev);
2243		pm_request_resume(&dev->dev);
2244	}
2245	return 0;
2246}
2247
2248/**
2249 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2250 * @bus: Top bus of the subtree to walk.
2251 */
2252void pci_pme_wakeup_bus(struct pci_bus *bus)
2253{
2254	if (bus)
2255		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2256}
2257
2258
2259/**
2260 * pci_pme_capable - check the capability of PCI device to generate PME#
2261 * @dev: PCI device to handle.
2262 * @state: PCI state from which device will issue PME#.
2263 */
2264bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2265{
2266	if (!dev->pm_cap)
2267		return false;
2268
2269	return !!(dev->pme_support & (1 << state));
2270}
2271EXPORT_SYMBOL(pci_pme_capable);
2272
2273static void pci_pme_list_scan(struct work_struct *work)
2274{
2275	struct pci_pme_device *pme_dev, *n;
2276
2277	mutex_lock(&pci_pme_list_mutex);
2278	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2279		if (pme_dev->dev->pme_poll) {
2280			struct pci_dev *bridge;
 
 
 
 
 
2281
2282			bridge = pme_dev->dev->bus->self;
2283			/*
2284			 * If bridge is in low power state, the
2285			 * configuration space of subordinate devices
2286			 * may be not accessible
 
2287			 */
2288			if (bridge && bridge->current_state != PCI_D0)
2289				continue;
 
 
 
 
 
 
 
2290			/*
2291			 * If the device is in D3cold it should not be
2292			 * polled either.
 
2293			 */
2294			if (pme_dev->dev->current_state == PCI_D3cold)
2295				continue;
2296
2297			pci_pme_wakeup(pme_dev->dev, NULL);
 
 
 
2298		} else {
2299			list_del(&pme_dev->list);
2300			kfree(pme_dev);
2301		}
2302	}
2303	if (!list_empty(&pci_pme_list))
2304		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2305				   msecs_to_jiffies(PME_TIMEOUT));
2306	mutex_unlock(&pci_pme_list_mutex);
2307}
2308
2309static void __pci_pme_active(struct pci_dev *dev, bool enable)
2310{
2311	u16 pmcsr;
2312
2313	if (!dev->pme_support)
2314		return;
2315
2316	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2317	/* Clear PME_Status by writing 1 to it and enable PME# */
2318	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2319	if (!enable)
2320		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321
2322	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2323}
2324
2325/**
2326 * pci_pme_restore - Restore PME configuration after config space restore.
2327 * @dev: PCI device to update.
2328 */
2329void pci_pme_restore(struct pci_dev *dev)
2330{
2331	u16 pmcsr;
2332
2333	if (!dev->pme_support)
2334		return;
2335
2336	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2337	if (dev->wakeup_prepared) {
2338		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2339		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2340	} else {
2341		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2342		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2343	}
2344	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2345}
2346
2347/**
2348 * pci_pme_active - enable or disable PCI device's PME# function
2349 * @dev: PCI device to handle.
2350 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2351 *
2352 * The caller must verify that the device is capable of generating PME# before
2353 * calling this function with @enable equal to 'true'.
2354 */
2355void pci_pme_active(struct pci_dev *dev, bool enable)
2356{
2357	__pci_pme_active(dev, enable);
2358
2359	/*
2360	 * PCI (as opposed to PCIe) PME requires that the device have
2361	 * its PME# line hooked up correctly. Not all hardware vendors
2362	 * do this, so the PME never gets delivered and the device
2363	 * remains asleep. The easiest way around this is to
2364	 * periodically walk the list of suspended devices and check
2365	 * whether any have their PME flag set. The assumption is that
2366	 * we'll wake up often enough anyway that this won't be a huge
2367	 * hit, and the power savings from the devices will still be a
2368	 * win.
2369	 *
2370	 * Although PCIe uses in-band PME message instead of PME# line
2371	 * to report PME, PME does not work for some PCIe devices in
2372	 * reality.  For example, there are devices that set their PME
2373	 * status bits, but don't really bother to send a PME message;
2374	 * there are PCI Express Root Ports that don't bother to
2375	 * trigger interrupts when they receive PME messages from the
2376	 * devices below.  So PME poll is used for PCIe devices too.
2377	 */
2378
2379	if (dev->pme_poll) {
2380		struct pci_pme_device *pme_dev;
2381		if (enable) {
2382			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2383					  GFP_KERNEL);
2384			if (!pme_dev) {
2385				pci_warn(dev, "can't enable PME#\n");
2386				return;
2387			}
2388			pme_dev->dev = dev;
2389			mutex_lock(&pci_pme_list_mutex);
2390			list_add(&pme_dev->list, &pci_pme_list);
2391			if (list_is_singular(&pci_pme_list))
2392				queue_delayed_work(system_freezable_wq,
2393						   &pci_pme_work,
2394						   msecs_to_jiffies(PME_TIMEOUT));
2395			mutex_unlock(&pci_pme_list_mutex);
2396		} else {
2397			mutex_lock(&pci_pme_list_mutex);
2398			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2399				if (pme_dev->dev == dev) {
2400					list_del(&pme_dev->list);
2401					kfree(pme_dev);
2402					break;
2403				}
2404			}
2405			mutex_unlock(&pci_pme_list_mutex);
2406		}
2407	}
2408
2409	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2410}
2411EXPORT_SYMBOL(pci_pme_active);
2412
2413/**
2414 * __pci_enable_wake - enable PCI device as wakeup event source
2415 * @dev: PCI device affected
2416 * @state: PCI state from which device will issue wakeup events
2417 * @enable: True to enable event generation; false to disable
2418 *
2419 * This enables the device as a wakeup event source, or disables it.
2420 * When such events involves platform-specific hooks, those hooks are
2421 * called automatically by this routine.
2422 *
2423 * Devices with legacy power management (no standard PCI PM capabilities)
2424 * always require such platform hooks.
2425 *
2426 * RETURN VALUE:
2427 * 0 is returned on success
2428 * -EINVAL is returned if device is not supposed to wake up the system
2429 * Error code depending on the platform is returned if both the platform and
2430 * the native mechanism fail to enable the generation of wake-up events
2431 */
2432static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2433{
2434	int ret = 0;
2435
2436	/*
2437	 * Bridges that are not power-manageable directly only signal
2438	 * wakeup on behalf of subordinate devices which is set up
2439	 * elsewhere, so skip them. However, bridges that are
2440	 * power-manageable may signal wakeup for themselves (for example,
2441	 * on a hotplug event) and they need to be covered here.
2442	 */
2443	if (!pci_power_manageable(dev))
2444		return 0;
2445
2446	/* Don't do the same thing twice in a row for one device. */
2447	if (!!enable == !!dev->wakeup_prepared)
2448		return 0;
2449
2450	/*
2451	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2452	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2453	 * enable.  To disable wake-up we call the platform first, for symmetry.
2454	 */
2455
2456	if (enable) {
2457		int error;
2458
2459		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
2460			pci_pme_active(dev, true);
2461		else
2462			ret = 1;
2463		error = platform_pci_set_wakeup(dev, true);
2464		if (ret)
2465			ret = error;
2466		if (!ret)
2467			dev->wakeup_prepared = true;
2468	} else {
2469		platform_pci_set_wakeup(dev, false);
2470		pci_pme_active(dev, false);
2471		dev->wakeup_prepared = false;
2472	}
2473
2474	return ret;
2475}
2476
2477/**
2478 * pci_enable_wake - change wakeup settings for a PCI device
2479 * @pci_dev: Target device
2480 * @state: PCI state from which device will issue wakeup events
2481 * @enable: Whether or not to enable event generation
2482 *
2483 * If @enable is set, check device_may_wakeup() for the device before calling
2484 * __pci_enable_wake() for it.
2485 */
2486int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2487{
2488	if (enable && !device_may_wakeup(&pci_dev->dev))
2489		return -EINVAL;
2490
2491	return __pci_enable_wake(pci_dev, state, enable);
2492}
2493EXPORT_SYMBOL(pci_enable_wake);
2494
2495/**
2496 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2497 * @dev: PCI device to prepare
2498 * @enable: True to enable wake-up event generation; false to disable
2499 *
2500 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2501 * and this function allows them to set that up cleanly - pci_enable_wake()
2502 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2503 * ordering constraints.
2504 *
2505 * This function only returns error code if the device is not allowed to wake
2506 * up the system from sleep or it is not capable of generating PME# from both
2507 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2508 */
2509int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2510{
2511	return pci_pme_capable(dev, PCI_D3cold) ?
2512			pci_enable_wake(dev, PCI_D3cold, enable) :
2513			pci_enable_wake(dev, PCI_D3hot, enable);
2514}
2515EXPORT_SYMBOL(pci_wake_from_d3);
2516
2517/**
2518 * pci_target_state - find an appropriate low power state for a given PCI dev
2519 * @dev: PCI device
2520 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2521 *
2522 * Use underlying platform code to find a supported low power state for @dev.
2523 * If the platform can't manage @dev, return the deepest state from which it
2524 * can generate wake events, based on any available PME info.
2525 */
2526static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2527{
2528	pci_power_t target_state = PCI_D3hot;
2529
2530	if (platform_pci_power_manageable(dev)) {
2531		/*
2532		 * Call the platform to find the target state for the device.
2533		 */
2534		pci_power_t state = platform_pci_choose_state(dev);
2535
2536		switch (state) {
2537		case PCI_POWER_ERROR:
2538		case PCI_UNKNOWN:
2539			break;
 
2540		case PCI_D1:
2541		case PCI_D2:
2542			if (pci_no_d1d2(dev))
2543				break;
2544			fallthrough;
2545		default:
2546			target_state = state;
2547		}
2548
2549		return target_state;
2550	}
2551
2552	if (!dev->pm_cap)
2553		target_state = PCI_D0;
2554
2555	/*
2556	 * If the device is in D3cold even though it's not power-manageable by
2557	 * the platform, it may have been powered down by non-standard means.
2558	 * Best to let it slumber.
2559	 */
2560	if (dev->current_state == PCI_D3cold)
2561		target_state = PCI_D3cold;
 
 
 
 
 
2562
2563	if (wakeup) {
2564		/*
2565		 * Find the deepest state from which the device can generate
2566		 * PME#.
2567		 */
2568		if (dev->pme_support) {
2569			while (target_state
2570			      && !(dev->pme_support & (1 << target_state)))
2571				target_state--;
2572		}
 
 
2573	}
2574
2575	return target_state;
2576}
2577
2578/**
2579 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2580 *			  into a sleep state
2581 * @dev: Device to handle.
2582 *
2583 * Choose the power state appropriate for the device depending on whether
2584 * it can wake up the system and/or is power manageable by the platform
2585 * (PCI_D3hot is the default) and put the device into that state.
2586 */
2587int pci_prepare_to_sleep(struct pci_dev *dev)
2588{
2589	bool wakeup = device_may_wakeup(&dev->dev);
2590	pci_power_t target_state = pci_target_state(dev, wakeup);
2591	int error;
2592
2593	if (target_state == PCI_POWER_ERROR)
2594		return -EIO;
2595
2596	pci_enable_wake(dev, target_state, wakeup);
2597
2598	error = pci_set_power_state(dev, target_state);
2599
2600	if (error)
2601		pci_enable_wake(dev, target_state, false);
2602
2603	return error;
2604}
2605EXPORT_SYMBOL(pci_prepare_to_sleep);
2606
2607/**
2608 * pci_back_from_sleep - turn PCI device on during system-wide transition
2609 *			 into working state
2610 * @dev: Device to handle.
2611 *
2612 * Disable device's system wake-up capability and put it into D0.
2613 */
2614int pci_back_from_sleep(struct pci_dev *dev)
2615{
 
 
 
 
 
2616	pci_enable_wake(dev, PCI_D0, false);
2617	return pci_set_power_state(dev, PCI_D0);
2618}
2619EXPORT_SYMBOL(pci_back_from_sleep);
2620
2621/**
2622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2623 * @dev: PCI device being suspended.
2624 *
2625 * Prepare @dev to generate wake-up events at run time and put it into a low
2626 * power state.
2627 */
2628int pci_finish_runtime_suspend(struct pci_dev *dev)
2629{
2630	pci_power_t target_state;
2631	int error;
2632
2633	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2634	if (target_state == PCI_POWER_ERROR)
2635		return -EIO;
2636
2637	dev->runtime_d3cold = target_state == PCI_D3cold;
2638
2639	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2640
2641	error = pci_set_power_state(dev, target_state);
2642
2643	if (error) {
2644		pci_enable_wake(dev, target_state, false);
2645		dev->runtime_d3cold = false;
2646	}
2647
2648	return error;
2649}
2650
2651/**
2652 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2653 * @dev: Device to check.
2654 *
2655 * Return true if the device itself is capable of generating wake-up events
2656 * (through the platform or using the native PCIe PME) or if the device supports
2657 * PME and one of its upstream bridges can generate wake-up events.
2658 */
2659bool pci_dev_run_wake(struct pci_dev *dev)
2660{
2661	struct pci_bus *bus = dev->bus;
2662
2663	if (!dev->pme_support)
2664		return false;
2665
2666	/* PME-capable in principle, but not from the target power state */
2667	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2668		return false;
2669
2670	if (device_can_wakeup(&dev->dev))
2671		return true;
2672
2673	while (bus->parent) {
2674		struct pci_dev *bridge = bus->self;
2675
2676		if (device_can_wakeup(&bridge->dev))
2677			return true;
2678
2679		bus = bus->parent;
2680	}
2681
2682	/* We have reached the root bus. */
2683	if (bus->bridge)
2684		return device_can_wakeup(bus->bridge);
2685
2686	return false;
2687}
2688EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2689
2690/**
2691 * pci_dev_need_resume - Check if it is necessary to resume the device.
2692 * @pci_dev: Device to check.
2693 *
2694 * Return 'true' if the device is not runtime-suspended or it has to be
2695 * reconfigured due to wakeup settings difference between system and runtime
2696 * suspend, or the current power state of it is not suitable for the upcoming
2697 * (system-wide) transition.
2698 */
2699bool pci_dev_need_resume(struct pci_dev *pci_dev)
2700{
2701	struct device *dev = &pci_dev->dev;
2702	pci_power_t target_state;
2703
2704	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2705		return true;
2706
2707	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2708
2709	/*
2710	 * If the earlier platform check has not triggered, D3cold is just power
2711	 * removal on top of D3hot, so no need to resume the device in that
2712	 * case.
2713	 */
2714	return target_state != pci_dev->current_state &&
2715		target_state != PCI_D3cold &&
2716		pci_dev->current_state != PCI_D3hot;
2717}
2718
2719/**
2720 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2721 * @pci_dev: Device to check.
2722 *
2723 * If the device is suspended and it is not configured for system wakeup,
2724 * disable PME for it to prevent it from waking up the system unnecessarily.
2725 *
2726 * Note that if the device's power state is D3cold and the platform check in
2727 * pci_dev_need_resume() has not triggered, the device's configuration need not
2728 * be changed.
2729 */
2730void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2731{
2732	struct device *dev = &pci_dev->dev;
2733
2734	spin_lock_irq(&dev->power.lock);
2735
2736	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2737	    pci_dev->current_state < PCI_D3cold)
2738		__pci_pme_active(pci_dev, false);
2739
2740	spin_unlock_irq(&dev->power.lock);
2741}
2742
2743/**
2744 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2745 * @pci_dev: Device to handle.
2746 *
2747 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2748 * it might have been disabled during the prepare phase of system suspend if
2749 * the device was not configured for system wakeup.
2750 */
2751void pci_dev_complete_resume(struct pci_dev *pci_dev)
2752{
2753	struct device *dev = &pci_dev->dev;
2754
2755	if (!pci_dev_run_wake(pci_dev))
2756		return;
2757
2758	spin_lock_irq(&dev->power.lock);
2759
2760	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2761		__pci_pme_active(pci_dev, true);
2762
2763	spin_unlock_irq(&dev->power.lock);
2764}
2765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766void pci_config_pm_runtime_get(struct pci_dev *pdev)
2767{
2768	struct device *dev = &pdev->dev;
2769	struct device *parent = dev->parent;
2770
2771	if (parent)
2772		pm_runtime_get_sync(parent);
2773	pm_runtime_get_noresume(dev);
2774	/*
2775	 * pdev->current_state is set to PCI_D3cold during suspending,
2776	 * so wait until suspending completes
2777	 */
2778	pm_runtime_barrier(dev);
2779	/*
2780	 * Only need to resume devices in D3cold, because config
2781	 * registers are still accessible for devices suspended but
2782	 * not in D3cold.
2783	 */
2784	if (pdev->current_state == PCI_D3cold)
2785		pm_runtime_resume(dev);
2786}
2787
2788void pci_config_pm_runtime_put(struct pci_dev *pdev)
2789{
2790	struct device *dev = &pdev->dev;
2791	struct device *parent = dev->parent;
2792
2793	pm_runtime_put(dev);
2794	if (parent)
2795		pm_runtime_put_sync(parent);
2796}
2797
2798static const struct dmi_system_id bridge_d3_blacklist[] = {
2799#ifdef CONFIG_X86
2800	{
2801		/*
2802		 * Gigabyte X299 root port is not marked as hotplug capable
2803		 * which allows Linux to power manage it.  However, this
2804		 * confuses the BIOS SMI handler so don't power manage root
2805		 * ports on that system.
2806		 */
2807		.ident = "X299 DESIGNARE EX-CF",
2808		.matches = {
2809			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2810			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2811		},
2812	},
 
 
 
 
 
 
 
 
 
 
 
 
2813#endif
2814	{ }
2815};
2816
2817/**
2818 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2819 * @bridge: Bridge to check
2820 *
2821 * This function checks if it is possible to move the bridge to D3.
2822 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2823 */
2824bool pci_bridge_d3_possible(struct pci_dev *bridge)
2825{
2826	if (!pci_is_pcie(bridge))
2827		return false;
2828
2829	switch (pci_pcie_type(bridge)) {
2830	case PCI_EXP_TYPE_ROOT_PORT:
2831	case PCI_EXP_TYPE_UPSTREAM:
2832	case PCI_EXP_TYPE_DOWNSTREAM:
2833		if (pci_bridge_d3_disable)
2834			return false;
2835
2836		/*
2837		 * Hotplug ports handled by firmware in System Management Mode
2838		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2839		 */
2840		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2841			return false;
2842
2843		if (pci_bridge_d3_force)
2844			return true;
2845
2846		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2847		if (bridge->is_thunderbolt)
2848			return true;
2849
2850		/* Platform might know better if the bridge supports D3 */
2851		if (platform_pci_bridge_d3(bridge))
2852			return true;
2853
2854		/*
2855		 * Hotplug ports handled natively by the OS were not validated
2856		 * by vendors for runtime D3 at least until 2018 because there
2857		 * was no OS support.
2858		 */
2859		if (bridge->is_hotplug_bridge)
2860			return false;
2861
2862		if (dmi_check_system(bridge_d3_blacklist))
2863			return false;
2864
2865		/*
2866		 * It should be safe to put PCIe ports from 2015 or newer
2867		 * to D3.
2868		 */
2869		if (dmi_get_bios_year() >= 2015)
2870			return true;
2871		break;
2872	}
2873
2874	return false;
2875}
2876
2877static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2878{
2879	bool *d3cold_ok = data;
2880
2881	if (/* The device needs to be allowed to go D3cold ... */
2882	    dev->no_d3cold || !dev->d3cold_allowed ||
2883
2884	    /* ... and if it is wakeup capable to do so from D3cold. */
2885	    (device_may_wakeup(&dev->dev) &&
2886	     !pci_pme_capable(dev, PCI_D3cold)) ||
2887
2888	    /* If it is a bridge it must be allowed to go to D3. */
2889	    !pci_power_manageable(dev))
2890
2891		*d3cold_ok = false;
2892
2893	return !*d3cold_ok;
2894}
2895
2896/*
2897 * pci_bridge_d3_update - Update bridge D3 capabilities
2898 * @dev: PCI device which is changed
2899 *
2900 * Update upstream bridge PM capabilities accordingly depending on if the
2901 * device PM configuration was changed or the device is being removed.  The
2902 * change is also propagated upstream.
2903 */
2904void pci_bridge_d3_update(struct pci_dev *dev)
2905{
2906	bool remove = !device_is_registered(&dev->dev);
2907	struct pci_dev *bridge;
2908	bool d3cold_ok = true;
2909
2910	bridge = pci_upstream_bridge(dev);
2911	if (!bridge || !pci_bridge_d3_possible(bridge))
2912		return;
2913
2914	/*
2915	 * If D3 is currently allowed for the bridge, removing one of its
2916	 * children won't change that.
2917	 */
2918	if (remove && bridge->bridge_d3)
2919		return;
2920
2921	/*
2922	 * If D3 is currently allowed for the bridge and a child is added or
2923	 * changed, disallowance of D3 can only be caused by that child, so
2924	 * we only need to check that single device, not any of its siblings.
2925	 *
2926	 * If D3 is currently not allowed for the bridge, checking the device
2927	 * first may allow us to skip checking its siblings.
2928	 */
2929	if (!remove)
2930		pci_dev_check_d3cold(dev, &d3cold_ok);
2931
2932	/*
2933	 * If D3 is currently not allowed for the bridge, this may be caused
2934	 * either by the device being changed/removed or any of its siblings,
2935	 * so we need to go through all children to find out if one of them
2936	 * continues to block D3.
2937	 */
2938	if (d3cold_ok && !bridge->bridge_d3)
2939		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2940			     &d3cold_ok);
2941
2942	if (bridge->bridge_d3 != d3cold_ok) {
2943		bridge->bridge_d3 = d3cold_ok;
2944		/* Propagate change to upstream bridges */
2945		pci_bridge_d3_update(bridge);
2946	}
2947}
2948
2949/**
2950 * pci_d3cold_enable - Enable D3cold for device
2951 * @dev: PCI device to handle
2952 *
2953 * This function can be used in drivers to enable D3cold from the device
2954 * they handle.  It also updates upstream PCI bridge PM capabilities
2955 * accordingly.
2956 */
2957void pci_d3cold_enable(struct pci_dev *dev)
2958{
2959	if (dev->no_d3cold) {
2960		dev->no_d3cold = false;
2961		pci_bridge_d3_update(dev);
2962	}
2963}
2964EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2965
2966/**
2967 * pci_d3cold_disable - Disable D3cold for device
2968 * @dev: PCI device to handle
2969 *
2970 * This function can be used in drivers to disable D3cold from the device
2971 * they handle.  It also updates upstream PCI bridge PM capabilities
2972 * accordingly.
2973 */
2974void pci_d3cold_disable(struct pci_dev *dev)
2975{
2976	if (!dev->no_d3cold) {
2977		dev->no_d3cold = true;
2978		pci_bridge_d3_update(dev);
2979	}
2980}
2981EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2982
2983/**
2984 * pci_pm_init - Initialize PM functions of given PCI device
2985 * @dev: PCI device to handle.
2986 */
2987void pci_pm_init(struct pci_dev *dev)
2988{
2989	int pm;
2990	u16 status;
2991	u16 pmc;
2992
2993	pm_runtime_forbid(&dev->dev);
2994	pm_runtime_set_active(&dev->dev);
2995	pm_runtime_enable(&dev->dev);
2996	device_enable_async_suspend(&dev->dev);
2997	dev->wakeup_prepared = false;
2998
2999	dev->pm_cap = 0;
3000	dev->pme_support = 0;
3001
3002	/* find PCI PM capability in list */
3003	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3004	if (!pm)
3005		return;
3006	/* Check device's ability to generate PME# */
3007	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3008
3009	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3010		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3011			pmc & PCI_PM_CAP_VER_MASK);
3012		return;
3013	}
3014
3015	dev->pm_cap = pm;
3016	dev->d3_delay = PCI_PM_D3_WAIT;
3017	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3018	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3019	dev->d3cold_allowed = true;
3020
3021	dev->d1_support = false;
3022	dev->d2_support = false;
3023	if (!pci_no_d1d2(dev)) {
3024		if (pmc & PCI_PM_CAP_D1)
3025			dev->d1_support = true;
3026		if (pmc & PCI_PM_CAP_D2)
3027			dev->d2_support = true;
3028
3029		if (dev->d1_support || dev->d2_support)
3030			pci_info(dev, "supports%s%s\n",
3031				   dev->d1_support ? " D1" : "",
3032				   dev->d2_support ? " D2" : "");
3033	}
3034
3035	pmc &= PCI_PM_CAP_PME_MASK;
3036	if (pmc) {
3037		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3038			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3039			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3040			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3041			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
3042			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3043		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3044		dev->pme_poll = true;
3045		/*
3046		 * Make device's PM flags reflect the wake-up capability, but
3047		 * let the user space enable it to wake up the system as needed.
3048		 */
3049		device_set_wakeup_capable(&dev->dev, true);
3050		/* Disable the PME# generation functionality */
3051		pci_pme_active(dev, false);
3052	}
3053
3054	pci_read_config_word(dev, PCI_STATUS, &status);
3055	if (status & PCI_STATUS_IMM_READY)
3056		dev->imm_ready = 1;
3057}
3058
3059static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3060{
3061	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3062
3063	switch (prop) {
3064	case PCI_EA_P_MEM:
3065	case PCI_EA_P_VF_MEM:
3066		flags |= IORESOURCE_MEM;
3067		break;
3068	case PCI_EA_P_MEM_PREFETCH:
3069	case PCI_EA_P_VF_MEM_PREFETCH:
3070		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3071		break;
3072	case PCI_EA_P_IO:
3073		flags |= IORESOURCE_IO;
3074		break;
3075	default:
3076		return 0;
3077	}
3078
3079	return flags;
3080}
3081
3082static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3083					    u8 prop)
3084{
3085	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3086		return &dev->resource[bei];
3087#ifdef CONFIG_PCI_IOV
3088	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3089		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3090		return &dev->resource[PCI_IOV_RESOURCES +
3091				      bei - PCI_EA_BEI_VF_BAR0];
3092#endif
3093	else if (bei == PCI_EA_BEI_ROM)
3094		return &dev->resource[PCI_ROM_RESOURCE];
3095	else
3096		return NULL;
3097}
3098
3099/* Read an Enhanced Allocation (EA) entry */
3100static int pci_ea_read(struct pci_dev *dev, int offset)
3101{
3102	struct resource *res;
 
3103	int ent_size, ent_offset = offset;
3104	resource_size_t start, end;
3105	unsigned long flags;
3106	u32 dw0, bei, base, max_offset;
3107	u8 prop;
3108	bool support_64 = (sizeof(resource_size_t) >= 8);
3109
3110	pci_read_config_dword(dev, ent_offset, &dw0);
3111	ent_offset += 4;
3112
3113	/* Entry size field indicates DWORDs after 1st */
3114	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3115
3116	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3117		goto out;
3118
3119	bei = (dw0 & PCI_EA_BEI) >> 4;
3120	prop = (dw0 & PCI_EA_PP) >> 8;
3121
3122	/*
3123	 * If the Property is in the reserved range, try the Secondary
3124	 * Property instead.
3125	 */
3126	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3127		prop = (dw0 & PCI_EA_SP) >> 16;
3128	if (prop > PCI_EA_P_BRIDGE_IO)
3129		goto out;
3130
3131	res = pci_ea_get_resource(dev, bei, prop);
 
3132	if (!res) {
3133		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3134		goto out;
3135	}
3136
3137	flags = pci_ea_flags(dev, prop);
3138	if (!flags) {
3139		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3140		goto out;
3141	}
3142
3143	/* Read Base */
3144	pci_read_config_dword(dev, ent_offset, &base);
3145	start = (base & PCI_EA_FIELD_MASK);
3146	ent_offset += 4;
3147
3148	/* Read MaxOffset */
3149	pci_read_config_dword(dev, ent_offset, &max_offset);
3150	ent_offset += 4;
3151
3152	/* Read Base MSBs (if 64-bit entry) */
3153	if (base & PCI_EA_IS_64) {
3154		u32 base_upper;
3155
3156		pci_read_config_dword(dev, ent_offset, &base_upper);
3157		ent_offset += 4;
3158
3159		flags |= IORESOURCE_MEM_64;
3160
3161		/* entry starts above 32-bit boundary, can't use */
3162		if (!support_64 && base_upper)
3163			goto out;
3164
3165		if (support_64)
3166			start |= ((u64)base_upper << 32);
3167	}
3168
3169	end = start + (max_offset | 0x03);
3170
3171	/* Read MaxOffset MSBs (if 64-bit entry) */
3172	if (max_offset & PCI_EA_IS_64) {
3173		u32 max_offset_upper;
3174
3175		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3176		ent_offset += 4;
3177
3178		flags |= IORESOURCE_MEM_64;
3179
3180		/* entry too big, can't use */
3181		if (!support_64 && max_offset_upper)
3182			goto out;
3183
3184		if (support_64)
3185			end += ((u64)max_offset_upper << 32);
3186	}
3187
3188	if (end < start) {
3189		pci_err(dev, "EA Entry crosses address boundary\n");
3190		goto out;
3191	}
3192
3193	if (ent_size != ent_offset - offset) {
3194		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3195			ent_size, ent_offset - offset);
3196		goto out;
3197	}
3198
3199	res->name = pci_name(dev);
3200	res->start = start;
3201	res->end = end;
3202	res->flags = flags;
3203
3204	if (bei <= PCI_EA_BEI_BAR5)
3205		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3206			   bei, res, prop);
3207	else if (bei == PCI_EA_BEI_ROM)
3208		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3209			   res, prop);
3210	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3211		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3212			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3213	else
3214		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3215			   bei, res, prop);
3216
3217out:
3218	return offset + ent_size;
3219}
3220
3221/* Enhanced Allocation Initialization */
3222void pci_ea_init(struct pci_dev *dev)
3223{
3224	int ea;
3225	u8 num_ent;
3226	int offset;
3227	int i;
3228
3229	/* find PCI EA capability in list */
3230	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3231	if (!ea)
3232		return;
3233
3234	/* determine the number of entries */
3235	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3236					&num_ent);
3237	num_ent &= PCI_EA_NUM_ENT_MASK;
3238
3239	offset = ea + PCI_EA_FIRST_ENT;
3240
3241	/* Skip DWORD 2 for type 1 functions */
3242	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3243		offset += 4;
3244
3245	/* parse each EA entry */
3246	for (i = 0; i < num_ent; ++i)
3247		offset = pci_ea_read(dev, offset);
3248}
3249
3250static void pci_add_saved_cap(struct pci_dev *pci_dev,
3251	struct pci_cap_saved_state *new_cap)
3252{
3253	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3254}
3255
3256/**
3257 * _pci_add_cap_save_buffer - allocate buffer for saving given
3258 *			      capability registers
3259 * @dev: the PCI device
3260 * @cap: the capability to allocate the buffer for
3261 * @extended: Standard or Extended capability ID
3262 * @size: requested size of the buffer
3263 */
3264static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3265				    bool extended, unsigned int size)
3266{
3267	int pos;
3268	struct pci_cap_saved_state *save_state;
3269
3270	if (extended)
3271		pos = pci_find_ext_capability(dev, cap);
3272	else
3273		pos = pci_find_capability(dev, cap);
3274
3275	if (!pos)
3276		return 0;
3277
3278	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3279	if (!save_state)
3280		return -ENOMEM;
3281
3282	save_state->cap.cap_nr = cap;
3283	save_state->cap.cap_extended = extended;
3284	save_state->cap.size = size;
3285	pci_add_saved_cap(dev, save_state);
3286
3287	return 0;
3288}
3289
3290int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3291{
3292	return _pci_add_cap_save_buffer(dev, cap, false, size);
3293}
3294
3295int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3296{
3297	return _pci_add_cap_save_buffer(dev, cap, true, size);
3298}
3299
3300/**
3301 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3302 * @dev: the PCI device
3303 */
3304void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3305{
3306	int error;
3307
3308	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3309					PCI_EXP_SAVE_REGS * sizeof(u16));
3310	if (error)
3311		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3312
3313	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3314	if (error)
3315		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3316
3317	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3318					    2 * sizeof(u16));
3319	if (error)
3320		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3321
3322	pci_allocate_vc_save_buffers(dev);
3323}
3324
3325void pci_free_cap_save_buffers(struct pci_dev *dev)
3326{
3327	struct pci_cap_saved_state *tmp;
3328	struct hlist_node *n;
3329
3330	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3331		kfree(tmp);
3332}
3333
3334/**
3335 * pci_configure_ari - enable or disable ARI forwarding
3336 * @dev: the PCI device
3337 *
3338 * If @dev and its upstream bridge both support ARI, enable ARI in the
3339 * bridge.  Otherwise, disable ARI in the bridge.
3340 */
3341void pci_configure_ari(struct pci_dev *dev)
3342{
3343	u32 cap;
3344	struct pci_dev *bridge;
3345
3346	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3347		return;
3348
3349	bridge = dev->bus->self;
3350	if (!bridge)
3351		return;
3352
3353	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3354	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3355		return;
3356
3357	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3358		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3359					 PCI_EXP_DEVCTL2_ARI);
3360		bridge->ari_enabled = 1;
3361	} else {
3362		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3363					   PCI_EXP_DEVCTL2_ARI);
3364		bridge->ari_enabled = 0;
3365	}
3366}
3367
3368static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3369{
3370	int pos;
3371	u16 cap, ctrl;
3372
3373	pos = pdev->acs_cap;
3374	if (!pos)
3375		return false;
3376
3377	/*
3378	 * Except for egress control, capabilities are either required
3379	 * or only required if controllable.  Features missing from the
3380	 * capability field can therefore be assumed as hard-wired enabled.
3381	 */
3382	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3383	acs_flags &= (cap | PCI_ACS_EC);
3384
3385	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3386	return (ctrl & acs_flags) == acs_flags;
3387}
3388
3389/**
3390 * pci_acs_enabled - test ACS against required flags for a given device
3391 * @pdev: device to test
3392 * @acs_flags: required PCI ACS flags
3393 *
3394 * Return true if the device supports the provided flags.  Automatically
3395 * filters out flags that are not implemented on multifunction devices.
3396 *
3397 * Note that this interface checks the effective ACS capabilities of the
3398 * device rather than the actual capabilities.  For instance, most single
3399 * function endpoints are not required to support ACS because they have no
3400 * opportunity for peer-to-peer access.  We therefore return 'true'
3401 * regardless of whether the device exposes an ACS capability.  This makes
3402 * it much easier for callers of this function to ignore the actual type
3403 * or topology of the device when testing ACS support.
3404 */
3405bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3406{
3407	int ret;
3408
3409	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3410	if (ret >= 0)
3411		return ret > 0;
3412
3413	/*
3414	 * Conventional PCI and PCI-X devices never support ACS, either
3415	 * effectively or actually.  The shared bus topology implies that
3416	 * any device on the bus can receive or snoop DMA.
3417	 */
3418	if (!pci_is_pcie(pdev))
3419		return false;
3420
3421	switch (pci_pcie_type(pdev)) {
3422	/*
3423	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3424	 * but since their primary interface is PCI/X, we conservatively
3425	 * handle them as we would a non-PCIe device.
3426	 */
3427	case PCI_EXP_TYPE_PCIE_BRIDGE:
3428	/*
3429	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3430	 * applicable... must never implement an ACS Extended Capability...".
3431	 * This seems arbitrary, but we take a conservative interpretation
3432	 * of this statement.
3433	 */
3434	case PCI_EXP_TYPE_PCI_BRIDGE:
3435	case PCI_EXP_TYPE_RC_EC:
3436		return false;
3437	/*
3438	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3439	 * implement ACS in order to indicate their peer-to-peer capabilities,
3440	 * regardless of whether they are single- or multi-function devices.
3441	 */
3442	case PCI_EXP_TYPE_DOWNSTREAM:
3443	case PCI_EXP_TYPE_ROOT_PORT:
3444		return pci_acs_flags_enabled(pdev, acs_flags);
3445	/*
3446	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3447	 * implemented by the remaining PCIe types to indicate peer-to-peer
3448	 * capabilities, but only when they are part of a multifunction
3449	 * device.  The footnote for section 6.12 indicates the specific
3450	 * PCIe types included here.
3451	 */
3452	case PCI_EXP_TYPE_ENDPOINT:
3453	case PCI_EXP_TYPE_UPSTREAM:
3454	case PCI_EXP_TYPE_LEG_END:
3455	case PCI_EXP_TYPE_RC_END:
3456		if (!pdev->multifunction)
3457			break;
3458
3459		return pci_acs_flags_enabled(pdev, acs_flags);
3460	}
3461
3462	/*
3463	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3464	 * to single function devices with the exception of downstream ports.
3465	 */
3466	return true;
3467}
3468
3469/**
3470 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3471 * @start: starting downstream device
3472 * @end: ending upstream device or NULL to search to the root bus
3473 * @acs_flags: required flags
3474 *
3475 * Walk up a device tree from start to end testing PCI ACS support.  If
3476 * any step along the way does not support the required flags, return false.
3477 */
3478bool pci_acs_path_enabled(struct pci_dev *start,
3479			  struct pci_dev *end, u16 acs_flags)
3480{
3481	struct pci_dev *pdev, *parent = start;
3482
3483	do {
3484		pdev = parent;
3485
3486		if (!pci_acs_enabled(pdev, acs_flags))
3487			return false;
3488
3489		if (pci_is_root_bus(pdev->bus))
3490			return (end == NULL);
3491
3492		parent = pdev->bus->self;
3493	} while (pdev != end);
3494
3495	return true;
3496}
3497
3498/**
3499 * pci_acs_init - Initialize ACS if hardware supports it
3500 * @dev: the PCI device
3501 */
3502void pci_acs_init(struct pci_dev *dev)
3503{
3504	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3505
3506	if (dev->acs_cap)
3507		pci_enable_acs(dev);
 
 
 
 
 
3508}
3509
3510/**
3511 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3512 * @pdev: PCI device
3513 * @bar: BAR to find
3514 *
3515 * Helper to find the position of the ctrl register for a BAR.
3516 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3517 * Returns -ENOENT if no ctrl register for the BAR could be found.
3518 */
3519static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3520{
3521	unsigned int pos, nbars, i;
3522	u32 ctrl;
3523
3524	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3525	if (!pos)
3526		return -ENOTSUPP;
3527
3528	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3529	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3530		    PCI_REBAR_CTRL_NBAR_SHIFT;
3531
3532	for (i = 0; i < nbars; i++, pos += 8) {
3533		int bar_idx;
3534
3535		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3536		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3537		if (bar_idx == bar)
3538			return pos;
3539	}
3540
3541	return -ENOENT;
3542}
3543
3544/**
3545 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3546 * @pdev: PCI device
3547 * @bar: BAR to query
3548 *
3549 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3550 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3551 */
3552u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3553{
3554	int pos;
3555	u32 cap;
3556
3557	pos = pci_rebar_find_pos(pdev, bar);
3558	if (pos < 0)
3559		return 0;
3560
3561	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3562	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
 
 
 
 
 
 
 
3563}
 
3564
3565/**
3566 * pci_rebar_get_current_size - get the current size of a BAR
3567 * @pdev: PCI device
3568 * @bar: BAR to set size to
3569 *
3570 * Read the size of a BAR from the resizable BAR config.
3571 * Returns size if found or negative error code.
3572 */
3573int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3574{
3575	int pos;
3576	u32 ctrl;
3577
3578	pos = pci_rebar_find_pos(pdev, bar);
3579	if (pos < 0)
3580		return pos;
3581
3582	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3583	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3584}
3585
3586/**
3587 * pci_rebar_set_size - set a new size for a BAR
3588 * @pdev: PCI device
3589 * @bar: BAR to set size to
3590 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3591 *
3592 * Set the new size of a BAR as defined in the spec.
3593 * Returns zero if resizing was successful, error code otherwise.
3594 */
3595int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3596{
3597	int pos;
3598	u32 ctrl;
3599
3600	pos = pci_rebar_find_pos(pdev, bar);
3601	if (pos < 0)
3602		return pos;
3603
3604	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3605	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3606	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3607	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3608	return 0;
3609}
3610
3611/**
3612 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3613 * @dev: the PCI device
3614 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3615 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3616 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3617 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3618 *
3619 * Return 0 if all upstream bridges support AtomicOp routing, egress
3620 * blocking is disabled on all upstream ports, and the root port supports
3621 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3622 * AtomicOp completion), or negative otherwise.
3623 */
3624int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3625{
3626	struct pci_bus *bus = dev->bus;
3627	struct pci_dev *bridge;
3628	u32 cap, ctl2;
3629
 
 
 
 
 
 
 
 
3630	if (!pci_is_pcie(dev))
3631		return -EINVAL;
3632
3633	/*
3634	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3635	 * AtomicOp requesters.  For now, we only support endpoints as
3636	 * requesters and root ports as completers.  No endpoints as
3637	 * completers, and no peer-to-peer.
3638	 */
3639
3640	switch (pci_pcie_type(dev)) {
3641	case PCI_EXP_TYPE_ENDPOINT:
3642	case PCI_EXP_TYPE_LEG_END:
3643	case PCI_EXP_TYPE_RC_END:
3644		break;
3645	default:
3646		return -EINVAL;
3647	}
3648
3649	while (bus->parent) {
3650		bridge = bus->self;
3651
3652		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3653
3654		switch (pci_pcie_type(bridge)) {
3655		/* Ensure switch ports support AtomicOp routing */
3656		case PCI_EXP_TYPE_UPSTREAM:
3657		case PCI_EXP_TYPE_DOWNSTREAM:
3658			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3659				return -EINVAL;
3660			break;
3661
3662		/* Ensure root port supports all the sizes we care about */
3663		case PCI_EXP_TYPE_ROOT_PORT:
3664			if ((cap & cap_mask) != cap_mask)
3665				return -EINVAL;
3666			break;
3667		}
3668
3669		/* Ensure upstream ports don't block AtomicOps on egress */
3670		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3671			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3672						   &ctl2);
3673			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3674				return -EINVAL;
3675		}
3676
3677		bus = bus->parent;
3678	}
3679
3680	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3681				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3682	return 0;
3683}
3684EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3685
3686/**
3687 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3688 * @dev: the PCI device
3689 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3690 *
3691 * Perform INTx swizzling for a device behind one level of bridge.  This is
3692 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3693 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3694 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3695 * the PCI Express Base Specification, Revision 2.1)
3696 */
3697u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3698{
3699	int slot;
3700
3701	if (pci_ari_enabled(dev->bus))
3702		slot = 0;
3703	else
3704		slot = PCI_SLOT(dev->devfn);
3705
3706	return (((pin - 1) + slot) % 4) + 1;
3707}
3708
3709int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3710{
3711	u8 pin;
3712
3713	pin = dev->pin;
3714	if (!pin)
3715		return -1;
3716
3717	while (!pci_is_root_bus(dev->bus)) {
3718		pin = pci_swizzle_interrupt_pin(dev, pin);
3719		dev = dev->bus->self;
3720	}
3721	*bridge = dev;
3722	return pin;
3723}
3724
3725/**
3726 * pci_common_swizzle - swizzle INTx all the way to root bridge
3727 * @dev: the PCI device
3728 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3729 *
3730 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3731 * bridges all the way up to a PCI root bus.
3732 */
3733u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3734{
3735	u8 pin = *pinp;
3736
3737	while (!pci_is_root_bus(dev->bus)) {
3738		pin = pci_swizzle_interrupt_pin(dev, pin);
3739		dev = dev->bus->self;
3740	}
3741	*pinp = pin;
3742	return PCI_SLOT(dev->devfn);
3743}
3744EXPORT_SYMBOL_GPL(pci_common_swizzle);
3745
3746/**
3747 * pci_release_region - Release a PCI bar
3748 * @pdev: PCI device whose resources were previously reserved by
3749 *	  pci_request_region()
3750 * @bar: BAR to release
3751 *
3752 * Releases the PCI I/O and memory resources previously reserved by a
3753 * successful call to pci_request_region().  Call this function only
3754 * after all use of the PCI regions has ceased.
3755 */
3756void pci_release_region(struct pci_dev *pdev, int bar)
3757{
3758	struct pci_devres *dr;
3759
3760	if (pci_resource_len(pdev, bar) == 0)
3761		return;
3762	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3763		release_region(pci_resource_start(pdev, bar),
3764				pci_resource_len(pdev, bar));
3765	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3766		release_mem_region(pci_resource_start(pdev, bar),
3767				pci_resource_len(pdev, bar));
3768
3769	dr = find_pci_dr(pdev);
3770	if (dr)
3771		dr->region_mask &= ~(1 << bar);
3772}
3773EXPORT_SYMBOL(pci_release_region);
3774
3775/**
3776 * __pci_request_region - Reserved PCI I/O and memory resource
3777 * @pdev: PCI device whose resources are to be reserved
3778 * @bar: BAR to be reserved
3779 * @res_name: Name to be associated with resource.
3780 * @exclusive: whether the region access is exclusive or not
3781 *
3782 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3783 * being reserved by owner @res_name.  Do not access any
3784 * address inside the PCI regions unless this call returns
3785 * successfully.
3786 *
3787 * If @exclusive is set, then the region is marked so that userspace
3788 * is explicitly not allowed to map the resource via /dev/mem or
3789 * sysfs MMIO access.
3790 *
3791 * Returns 0 on success, or %EBUSY on error.  A warning
3792 * message is also printed on failure.
3793 */
3794static int __pci_request_region(struct pci_dev *pdev, int bar,
3795				const char *res_name, int exclusive)
3796{
3797	struct pci_devres *dr;
3798
3799	if (pci_resource_len(pdev, bar) == 0)
3800		return 0;
3801
3802	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3803		if (!request_region(pci_resource_start(pdev, bar),
3804			    pci_resource_len(pdev, bar), res_name))
3805			goto err_out;
3806	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3807		if (!__request_mem_region(pci_resource_start(pdev, bar),
3808					pci_resource_len(pdev, bar), res_name,
3809					exclusive))
3810			goto err_out;
3811	}
3812
3813	dr = find_pci_dr(pdev);
3814	if (dr)
3815		dr->region_mask |= 1 << bar;
3816
3817	return 0;
3818
3819err_out:
3820	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3821		 &pdev->resource[bar]);
3822	return -EBUSY;
3823}
3824
3825/**
3826 * pci_request_region - Reserve PCI I/O and memory resource
3827 * @pdev: PCI device whose resources are to be reserved
3828 * @bar: BAR to be reserved
3829 * @res_name: Name to be associated with resource
3830 *
3831 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3832 * being reserved by owner @res_name.  Do not access any
3833 * address inside the PCI regions unless this call returns
3834 * successfully.
3835 *
3836 * Returns 0 on success, or %EBUSY on error.  A warning
3837 * message is also printed on failure.
3838 */
3839int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3840{
3841	return __pci_request_region(pdev, bar, res_name, 0);
3842}
3843EXPORT_SYMBOL(pci_request_region);
3844
3845/**
3846 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved
3848 * @bars: Bitmask of BARs to be released
3849 *
3850 * Release selected PCI I/O and memory resources previously reserved.
3851 * Call this function only after all use of the PCI regions has ceased.
3852 */
3853void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3854{
3855	int i;
3856
3857	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3858		if (bars & (1 << i))
3859			pci_release_region(pdev, i);
3860}
3861EXPORT_SYMBOL(pci_release_selected_regions);
3862
3863static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3864					  const char *res_name, int excl)
3865{
3866	int i;
3867
3868	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3869		if (bars & (1 << i))
3870			if (__pci_request_region(pdev, i, res_name, excl))
3871				goto err_out;
3872	return 0;
3873
3874err_out:
3875	while (--i >= 0)
3876		if (bars & (1 << i))
3877			pci_release_region(pdev, i);
3878
3879	return -EBUSY;
3880}
3881
3882
3883/**
3884 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3885 * @pdev: PCI device whose resources are to be reserved
3886 * @bars: Bitmask of BARs to be requested
3887 * @res_name: Name to be associated with resource
3888 */
3889int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3890				 const char *res_name)
3891{
3892	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3893}
3894EXPORT_SYMBOL(pci_request_selected_regions);
3895
3896int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3897					   const char *res_name)
3898{
3899	return __pci_request_selected_regions(pdev, bars, res_name,
3900			IORESOURCE_EXCLUSIVE);
3901}
3902EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3903
3904/**
3905 * pci_release_regions - Release reserved PCI I/O and memory resources
3906 * @pdev: PCI device whose resources were previously reserved by
3907 *	  pci_request_regions()
3908 *
3909 * Releases all PCI I/O and memory resources previously reserved by a
3910 * successful call to pci_request_regions().  Call this function only
3911 * after all use of the PCI regions has ceased.
3912 */
3913
3914void pci_release_regions(struct pci_dev *pdev)
3915{
3916	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3917}
3918EXPORT_SYMBOL(pci_release_regions);
3919
3920/**
3921 * pci_request_regions - Reserve PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @res_name: Name to be associated with resource.
3924 *
3925 * Mark all PCI regions associated with PCI device @pdev as
3926 * being reserved by owner @res_name.  Do not access any
3927 * address inside the PCI regions unless this call returns
3928 * successfully.
3929 *
3930 * Returns 0 on success, or %EBUSY on error.  A warning
3931 * message is also printed on failure.
3932 */
3933int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3934{
3935	return pci_request_selected_regions(pdev,
3936			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3937}
3938EXPORT_SYMBOL(pci_request_regions);
3939
3940/**
3941 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @res_name: Name to be associated with resource.
3944 *
3945 * Mark all PCI regions associated with PCI device @pdev as being reserved
3946 * by owner @res_name.  Do not access any address inside the PCI regions
3947 * unless this call returns successfully.
3948 *
3949 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3950 * and the sysfs MMIO access will not be allowed.
3951 *
3952 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3953 * printed on failure.
3954 */
3955int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3956{
3957	return pci_request_selected_regions_exclusive(pdev,
3958				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3959}
3960EXPORT_SYMBOL(pci_request_regions_exclusive);
3961
3962/*
3963 * Record the PCI IO range (expressed as CPU physical address + size).
3964 * Return a negative value if an error has occurred, zero otherwise
3965 */
3966int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3967			resource_size_t	size)
3968{
3969	int ret = 0;
3970#ifdef PCI_IOBASE
3971	struct logic_pio_hwaddr *range;
3972
3973	if (!size || addr + size < addr)
3974		return -EINVAL;
3975
3976	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3977	if (!range)
3978		return -ENOMEM;
3979
3980	range->fwnode = fwnode;
3981	range->size = size;
3982	range->hw_start = addr;
3983	range->flags = LOGIC_PIO_CPU_MMIO;
3984
3985	ret = logic_pio_register_range(range);
3986	if (ret)
3987		kfree(range);
 
 
 
 
3988#endif
3989
3990	return ret;
3991}
3992
3993phys_addr_t pci_pio_to_address(unsigned long pio)
3994{
3995	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3996
3997#ifdef PCI_IOBASE
3998	if (pio >= MMIO_UPPER_LIMIT)
3999		return address;
4000
4001	address = logic_pio_to_hwaddr(pio);
4002#endif
4003
4004	return address;
4005}
 
4006
4007unsigned long __weak pci_address_to_pio(phys_addr_t address)
4008{
4009#ifdef PCI_IOBASE
4010	return logic_pio_trans_cpuaddr(address);
4011#else
4012	if (address > IO_SPACE_LIMIT)
4013		return (unsigned long)-1;
4014
4015	return (unsigned long) address;
4016#endif
4017}
4018
4019/**
4020 * pci_remap_iospace - Remap the memory mapped I/O space
4021 * @res: Resource describing the I/O space
4022 * @phys_addr: physical address of range to be mapped
4023 *
4024 * Remap the memory mapped I/O space described by the @res and the CPU
4025 * physical address @phys_addr into virtual address space.  Only
4026 * architectures that have memory mapped IO functions defined (and the
4027 * PCI_IOBASE value defined) should call this function.
4028 */
 
4029int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4030{
4031#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4032	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4033
4034	if (!(res->flags & IORESOURCE_IO))
4035		return -EINVAL;
4036
4037	if (res->end > IO_SPACE_LIMIT)
4038		return -EINVAL;
4039
4040	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4041				  pgprot_device(PAGE_KERNEL));
4042#else
4043	/*
4044	 * This architecture does not have memory mapped I/O space,
4045	 * so this function should never be called
4046	 */
4047	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4048	return -ENODEV;
4049#endif
4050}
4051EXPORT_SYMBOL(pci_remap_iospace);
 
4052
4053/**
4054 * pci_unmap_iospace - Unmap the memory mapped I/O space
4055 * @res: resource to be unmapped
4056 *
4057 * Unmap the CPU virtual address @res from virtual address space.  Only
4058 * architectures that have memory mapped IO functions defined (and the
4059 * PCI_IOBASE value defined) should call this function.
4060 */
4061void pci_unmap_iospace(struct resource *res)
4062{
4063#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4064	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4065
4066	unmap_kernel_range(vaddr, resource_size(res));
4067#endif
4068}
4069EXPORT_SYMBOL(pci_unmap_iospace);
4070
4071static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4072{
4073	struct resource **res = ptr;
4074
4075	pci_unmap_iospace(*res);
4076}
4077
4078/**
4079 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4080 * @dev: Generic device to remap IO address for
4081 * @res: Resource describing the I/O space
4082 * @phys_addr: physical address of range to be mapped
4083 *
4084 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4085 * detach.
4086 */
4087int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4088			   phys_addr_t phys_addr)
4089{
4090	const struct resource **ptr;
4091	int error;
4092
4093	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4094	if (!ptr)
4095		return -ENOMEM;
4096
4097	error = pci_remap_iospace(res, phys_addr);
4098	if (error) {
4099		devres_free(ptr);
4100	} else	{
4101		*ptr = res;
4102		devres_add(dev, ptr);
4103	}
4104
4105	return error;
4106}
4107EXPORT_SYMBOL(devm_pci_remap_iospace);
4108
4109/**
4110 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4111 * @dev: Generic device to remap IO address for
4112 * @offset: Resource address to map
4113 * @size: Size of map
4114 *
4115 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4116 * detach.
4117 */
4118void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4119				      resource_size_t offset,
4120				      resource_size_t size)
4121{
4122	void __iomem **ptr, *addr;
4123
4124	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4125	if (!ptr)
4126		return NULL;
4127
4128	addr = pci_remap_cfgspace(offset, size);
4129	if (addr) {
4130		*ptr = addr;
4131		devres_add(dev, ptr);
4132	} else
4133		devres_free(ptr);
4134
4135	return addr;
4136}
4137EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4138
4139/**
4140 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4141 * @dev: generic device to handle the resource for
4142 * @res: configuration space resource to be handled
4143 *
4144 * Checks that a resource is a valid memory region, requests the memory
4145 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4146 * proper PCI configuration space memory attributes are guaranteed.
4147 *
4148 * All operations are managed and will be undone on driver detach.
4149 *
4150 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4151 * on failure. Usage example::
4152 *
4153 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4154 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4155 *	if (IS_ERR(base))
4156 *		return PTR_ERR(base);
4157 */
4158void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4159					  struct resource *res)
4160{
4161	resource_size_t size;
4162	const char *name;
4163	void __iomem *dest_ptr;
4164
4165	BUG_ON(!dev);
4166
4167	if (!res || resource_type(res) != IORESOURCE_MEM) {
4168		dev_err(dev, "invalid resource\n");
4169		return IOMEM_ERR_PTR(-EINVAL);
4170	}
4171
4172	size = resource_size(res);
4173	name = res->name ?: dev_name(dev);
4174
4175	if (!devm_request_mem_region(dev, res->start, size, name)) {
4176		dev_err(dev, "can't request region for resource %pR\n", res);
4177		return IOMEM_ERR_PTR(-EBUSY);
4178	}
4179
4180	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4181	if (!dest_ptr) {
4182		dev_err(dev, "ioremap failed for resource %pR\n", res);
4183		devm_release_mem_region(dev, res->start, size);
4184		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4185	}
4186
4187	return dest_ptr;
4188}
4189EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4190
4191static void __pci_set_master(struct pci_dev *dev, bool enable)
4192{
4193	u16 old_cmd, cmd;
4194
4195	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4196	if (enable)
4197		cmd = old_cmd | PCI_COMMAND_MASTER;
4198	else
4199		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200	if (cmd != old_cmd) {
4201		pci_dbg(dev, "%s bus mastering\n",
4202			enable ? "enabling" : "disabling");
4203		pci_write_config_word(dev, PCI_COMMAND, cmd);
4204	}
4205	dev->is_busmaster = enable;
4206}
4207
4208/**
4209 * pcibios_setup - process "pci=" kernel boot arguments
4210 * @str: string used to pass in "pci=" kernel boot arguments
4211 *
4212 * Process kernel boot arguments.  This is the default implementation.
4213 * Architecture specific implementations can override this as necessary.
4214 */
4215char * __weak __init pcibios_setup(char *str)
4216{
4217	return str;
4218}
4219
4220/**
4221 * pcibios_set_master - enable PCI bus-mastering for device dev
4222 * @dev: the PCI device to enable
4223 *
4224 * Enables PCI bus-mastering for the device.  This is the default
4225 * implementation.  Architecture specific implementations can override
4226 * this if necessary.
4227 */
4228void __weak pcibios_set_master(struct pci_dev *dev)
4229{
4230	u8 lat;
4231
4232	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233	if (pci_is_pcie(dev))
4234		return;
4235
4236	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4237	if (lat < 16)
4238		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239	else if (lat > pcibios_max_latency)
4240		lat = pcibios_max_latency;
4241	else
4242		return;
4243
4244	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4245}
4246
4247/**
4248 * pci_set_master - enables bus-mastering for device dev
4249 * @dev: the PCI device to enable
4250 *
4251 * Enables bus-mastering on the device and calls pcibios_set_master()
4252 * to do the needed arch specific settings.
4253 */
4254void pci_set_master(struct pci_dev *dev)
4255{
4256	__pci_set_master(dev, true);
4257	pcibios_set_master(dev);
4258}
4259EXPORT_SYMBOL(pci_set_master);
4260
4261/**
4262 * pci_clear_master - disables bus-mastering for device dev
4263 * @dev: the PCI device to disable
4264 */
4265void pci_clear_master(struct pci_dev *dev)
4266{
4267	__pci_set_master(dev, false);
4268}
4269EXPORT_SYMBOL(pci_clear_master);
4270
4271/**
4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273 * @dev: the PCI device for which MWI is to be enabled
4274 *
4275 * Helper function for pci_set_mwi.
4276 * Originally copied from drivers/net/acenic.c.
4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_set_cacheline_size(struct pci_dev *dev)
4282{
4283	u8 cacheline_size;
4284
4285	if (!pci_cache_line_size)
4286		return -EINVAL;
4287
4288	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289	   equal to or multiple of the right value. */
4290	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291	if (cacheline_size >= pci_cache_line_size &&
4292	    (cacheline_size % pci_cache_line_size) == 0)
4293		return 0;
4294
4295	/* Write the correct value. */
4296	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4297	/* Read it back. */
4298	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299	if (cacheline_size == pci_cache_line_size)
4300		return 0;
4301
4302	pci_info(dev, "cache line size of %d is not supported\n",
4303		   pci_cache_line_size << 2);
4304
4305	return -EINVAL;
4306}
4307EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4308
4309/**
4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311 * @dev: the PCI device for which MWI is enabled
4312 *
4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4314 *
4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4316 */
4317int pci_set_mwi(struct pci_dev *dev)
4318{
4319#ifdef PCI_DISABLE_MWI
4320	return 0;
4321#else
4322	int rc;
4323	u16 cmd;
4324
4325	rc = pci_set_cacheline_size(dev);
4326	if (rc)
4327		return rc;
4328
4329	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332		cmd |= PCI_COMMAND_INVALIDATE;
4333		pci_write_config_word(dev, PCI_COMMAND, cmd);
4334	}
4335	return 0;
4336#endif
4337}
4338EXPORT_SYMBOL(pci_set_mwi);
4339
4340/**
4341 * pcim_set_mwi - a device-managed pci_set_mwi()
4342 * @dev: the PCI device for which MWI is enabled
4343 *
4344 * Managed pci_set_mwi().
4345 *
4346 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4347 */
4348int pcim_set_mwi(struct pci_dev *dev)
4349{
4350	struct pci_devres *dr;
4351
4352	dr = find_pci_dr(dev);
4353	if (!dr)
4354		return -ENOMEM;
4355
4356	dr->mwi = 1;
4357	return pci_set_mwi(dev);
4358}
4359EXPORT_SYMBOL(pcim_set_mwi);
4360
4361/**
4362 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4363 * @dev: the PCI device for which MWI is enabled
4364 *
4365 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * Callers are not required to check the return value.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_try_set_mwi(struct pci_dev *dev)
4371{
4372#ifdef PCI_DISABLE_MWI
4373	return 0;
4374#else
4375	return pci_set_mwi(dev);
4376#endif
4377}
4378EXPORT_SYMBOL(pci_try_set_mwi);
4379
4380/**
4381 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4382 * @dev: the PCI device to disable
4383 *
4384 * Disables PCI Memory-Write-Invalidate transaction on the device
4385 */
4386void pci_clear_mwi(struct pci_dev *dev)
4387{
4388#ifndef PCI_DISABLE_MWI
4389	u16 cmd;
4390
4391	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4392	if (cmd & PCI_COMMAND_INVALIDATE) {
4393		cmd &= ~PCI_COMMAND_INVALIDATE;
4394		pci_write_config_word(dev, PCI_COMMAND, cmd);
4395	}
4396#endif
4397}
4398EXPORT_SYMBOL(pci_clear_mwi);
4399
4400/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401 * pci_intx - enables/disables PCI INTx for device dev
4402 * @pdev: the PCI device to operate on
4403 * @enable: boolean: whether to enable or disable PCI INTx
4404 *
4405 * Enables/disables PCI INTx for device @pdev
4406 */
4407void pci_intx(struct pci_dev *pdev, int enable)
4408{
4409	u16 pci_command, new;
4410
4411	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4412
4413	if (enable)
4414		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4415	else
4416		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4417
4418	if (new != pci_command) {
4419		struct pci_devres *dr;
4420
4421		pci_write_config_word(pdev, PCI_COMMAND, new);
4422
4423		dr = find_pci_dr(pdev);
4424		if (dr && !dr->restore_intx) {
4425			dr->restore_intx = 1;
4426			dr->orig_intx = !enable;
4427		}
4428	}
4429}
4430EXPORT_SYMBOL_GPL(pci_intx);
4431
4432static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4433{
4434	struct pci_bus *bus = dev->bus;
4435	bool mask_updated = true;
4436	u32 cmd_status_dword;
4437	u16 origcmd, newcmd;
4438	unsigned long flags;
4439	bool irq_pending;
4440
4441	/*
4442	 * We do a single dword read to retrieve both command and status.
4443	 * Document assumptions that make this possible.
4444	 */
4445	BUILD_BUG_ON(PCI_COMMAND % 4);
4446	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4447
4448	raw_spin_lock_irqsave(&pci_lock, flags);
4449
4450	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4451
4452	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4453
4454	/*
4455	 * Check interrupt status register to see whether our device
4456	 * triggered the interrupt (when masking) or the next IRQ is
4457	 * already pending (when unmasking).
4458	 */
4459	if (mask != irq_pending) {
4460		mask_updated = false;
4461		goto done;
4462	}
4463
4464	origcmd = cmd_status_dword;
4465	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4466	if (mask)
4467		newcmd |= PCI_COMMAND_INTX_DISABLE;
4468	if (newcmd != origcmd)
4469		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4470
4471done:
4472	raw_spin_unlock_irqrestore(&pci_lock, flags);
4473
4474	return mask_updated;
4475}
4476
4477/**
4478 * pci_check_and_mask_intx - mask INTx on pending interrupt
4479 * @dev: the PCI device to operate on
4480 *
4481 * Check if the device dev has its INTx line asserted, mask it and return
4482 * true in that case. False is returned if no interrupt was pending.
4483 */
4484bool pci_check_and_mask_intx(struct pci_dev *dev)
4485{
4486	return pci_check_and_set_intx_mask(dev, true);
4487}
4488EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4489
4490/**
4491 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4492 * @dev: the PCI device to operate on
4493 *
4494 * Check if the device dev has its INTx line asserted, unmask it if not and
4495 * return true. False is returned and the mask remains active if there was
4496 * still an interrupt pending.
4497 */
4498bool pci_check_and_unmask_intx(struct pci_dev *dev)
4499{
4500	return pci_check_and_set_intx_mask(dev, false);
4501}
4502EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4503
4504/**
4505 * pci_wait_for_pending_transaction - wait for pending transaction
4506 * @dev: the PCI device to operate on
4507 *
4508 * Return 0 if transaction is pending 1 otherwise.
4509 */
4510int pci_wait_for_pending_transaction(struct pci_dev *dev)
4511{
4512	if (!pci_is_pcie(dev))
4513		return 1;
4514
4515	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4516				    PCI_EXP_DEVSTA_TRPND);
4517}
4518EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4519
4520/**
4521 * pcie_has_flr - check if a device supports function level resets
4522 * @dev: device to check
4523 *
4524 * Returns true if the device advertises support for PCIe function level
4525 * resets.
4526 */
4527bool pcie_has_flr(struct pci_dev *dev)
4528{
4529	u32 cap;
4530
4531	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532		return false;
4533
4534	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4535	return cap & PCI_EXP_DEVCAP_FLR;
4536}
4537EXPORT_SYMBOL_GPL(pcie_has_flr);
4538
4539/**
4540 * pcie_flr - initiate a PCIe function level reset
4541 * @dev: device to reset
4542 *
4543 * Initiate a function level reset on @dev.  The caller should ensure the
4544 * device supports FLR before calling this function, e.g. by using the
4545 * pcie_has_flr() helper.
4546 */
4547int pcie_flr(struct pci_dev *dev)
4548{
4549	if (!pci_wait_for_pending_transaction(dev))
4550		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4551
4552	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4553
4554	if (dev->imm_ready)
4555		return 0;
4556
4557	/*
4558	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4559	 * 100ms, but may silently discard requests while the FLR is in
4560	 * progress.  Wait 100ms before trying to access the device.
4561	 */
4562	msleep(100);
4563
4564	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4565}
4566EXPORT_SYMBOL_GPL(pcie_flr);
4567
4568static int pci_af_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4569{
4570	int pos;
4571	u8 cap;
4572
4573	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4574	if (!pos)
4575		return -ENOTTY;
4576
4577	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578		return -ENOTTY;
4579
4580	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4581	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4582		return -ENOTTY;
4583
4584	if (probe)
4585		return 0;
4586
4587	/*
4588	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4589	 * is used, so we use the control offset rather than status and shift
4590	 * the test bit to match.
4591	 */
4592	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4593				 PCI_AF_STATUS_TP << 8))
4594		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4595
4596	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4597
4598	if (dev->imm_ready)
4599		return 0;
4600
4601	/*
4602	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4603	 * updated 27 July 2006; a device must complete an FLR within
4604	 * 100ms, but may silently discard requests while the FLR is in
4605	 * progress.  Wait 100ms before trying to access the device.
4606	 */
4607	msleep(100);
4608
4609	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4610}
4611
4612/**
4613 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4614 * @dev: Device to reset.
4615 * @probe: If set, only check if the device can be reset this way.
4616 *
4617 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4618 * unset, it will be reinitialized internally when going from PCI_D3hot to
4619 * PCI_D0.  If that's the case and the device is not in a low-power state
4620 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4621 *
4622 * NOTE: This causes the caller to sleep for twice the device power transition
4623 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4624 * by default (i.e. unless the @dev's d3_delay field has a different value).
4625 * Moreover, only devices in D0 can be reset by this function.
4626 */
4627static int pci_pm_reset(struct pci_dev *dev, int probe)
4628{
4629	u16 csr;
4630
4631	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4632		return -ENOTTY;
4633
4634	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4635	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4636		return -ENOTTY;
4637
4638	if (probe)
4639		return 0;
4640
4641	if (dev->current_state != PCI_D0)
4642		return -EINVAL;
4643
4644	csr &= ~PCI_PM_CTRL_STATE_MASK;
4645	csr |= PCI_D3hot;
4646	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4647	pci_dev_d3_sleep(dev);
4648
4649	csr &= ~PCI_PM_CTRL_STATE_MASK;
4650	csr |= PCI_D0;
4651	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4652	pci_dev_d3_sleep(dev);
4653
4654	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4655}
4656
4657/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4658 * pcie_wait_for_link_delay - Wait until link is active or inactive
4659 * @pdev: Bridge device
4660 * @active: waiting for active or inactive?
4661 * @delay: Delay to wait after link has become active (in ms)
4662 *
4663 * Use this to wait till link becomes active or inactive.
4664 */
4665static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4666				     int delay)
4667{
4668	int timeout = 1000;
4669	bool ret;
4670	u16 lnk_status;
4671
4672	/*
4673	 * Some controllers might not implement link active reporting. In this
4674	 * case, we wait for 1000 ms + any delay requested by the caller.
4675	 */
4676	if (!pdev->link_active_reporting) {
4677		msleep(timeout + delay);
4678		return true;
4679	}
4680
4681	/*
4682	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4683	 * after which we should expect an link active if the reset was
4684	 * successful. If so, software must wait a minimum 100ms before sending
4685	 * configuration requests to devices downstream this port.
4686	 *
4687	 * If the link fails to activate, either the device was physically
4688	 * removed or the link is permanently failed.
4689	 */
4690	if (active)
4691		msleep(20);
4692	for (;;) {
4693		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4694		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4695		if (ret == active)
4696			break;
4697		if (timeout <= 0)
4698			break;
4699		msleep(10);
4700		timeout -= 10;
4701	}
4702	if (active && ret)
4703		msleep(delay);
4704	else if (ret != active)
4705		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4706			active ? "set" : "cleared");
4707	return ret == active;
 
 
 
4708}
4709
4710/**
4711 * pcie_wait_for_link - Wait until link is active or inactive
4712 * @pdev: Bridge device
4713 * @active: waiting for active or inactive?
4714 *
4715 * Use this to wait till link becomes active or inactive.
4716 */
4717bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4718{
4719	return pcie_wait_for_link_delay(pdev, active, 100);
4720}
4721
4722/*
4723 * Find maximum D3cold delay required by all the devices on the bus.  The
4724 * spec says 100 ms, but firmware can lower it and we allow drivers to
4725 * increase it as well.
4726 *
4727 * Called with @pci_bus_sem locked for reading.
4728 */
4729static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4730{
4731	const struct pci_dev *pdev;
4732	int min_delay = 100;
4733	int max_delay = 0;
4734
4735	list_for_each_entry(pdev, &bus->devices, bus_list) {
4736		if (pdev->d3cold_delay < min_delay)
4737			min_delay = pdev->d3cold_delay;
4738		if (pdev->d3cold_delay > max_delay)
4739			max_delay = pdev->d3cold_delay;
4740	}
4741
4742	return max(min_delay, max_delay);
4743}
4744
4745/**
4746 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4747 * @dev: PCI bridge
 
4748 *
4749 * Handle necessary delays before access to the devices on the secondary
4750 * side of the bridge are permitted after D3cold to D0 transition.
 
4751 *
4752 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4753 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4754 * 4.3.2.
 
 
 
4755 */
4756void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4757{
4758	struct pci_dev *child;
4759	int delay;
4760
4761	if (pci_dev_is_disconnected(dev))
4762		return;
4763
4764	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4765		return;
4766
4767	down_read(&pci_bus_sem);
4768
4769	/*
4770	 * We only deal with devices that are present currently on the bus.
4771	 * For any hot-added devices the access delay is handled in pciehp
4772	 * board_added(). In case of ACPI hotplug the firmware is expected
4773	 * to configure the devices before OS is notified.
4774	 */
4775	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4776		up_read(&pci_bus_sem);
4777		return;
4778	}
4779
4780	/* Take d3cold_delay requirements into account */
4781	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4782	if (!delay) {
4783		up_read(&pci_bus_sem);
4784		return;
4785	}
4786
4787	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4788				 bus_list);
4789	up_read(&pci_bus_sem);
4790
4791	/*
4792	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4793	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4794	 * practice this should not be needed because we don't do power
4795	 * management for them (see pci_bridge_d3_possible()).
4796	 */
4797	if (!pci_is_pcie(dev)) {
4798		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4799		msleep(1000 + delay);
4800		return;
4801	}
4802
4803	/*
4804	 * For PCIe downstream and root ports that do not support speeds
4805	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4806	 * speeds (gen3) we need to wait first for the data link layer to
4807	 * become active.
4808	 *
4809	 * However, 100 ms is the minimum and the PCIe spec says the
4810	 * software must allow at least 1s before it can determine that the
4811	 * device that did not respond is a broken device. There is
4812	 * evidence that 100 ms is not always enough, for example certain
4813	 * Titan Ridge xHCI controller does not always respond to
4814	 * configuration requests if we only wait for 100 ms (see
4815	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4816	 *
4817	 * Therefore we wait for 100 ms and check for the device presence.
4818	 * If it is still not present give it an additional 100 ms.
4819	 */
4820	if (!pcie_downstream_port(dev))
4821		return;
4822
4823	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
 
 
4824		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4825		msleep(delay);
4826	} else {
4827		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4828			delay);
4829		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4830			/* Did not train, no need to wait any further */
4831			return;
4832		}
 
 
 
 
 
 
 
 
 
 
 
4833	}
4834
4835	if (!pci_device_is_present(child)) {
4836		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4837		msleep(delay);
 
 
 
4838	}
 
 
 
4839}
4840
4841void pci_reset_secondary_bus(struct pci_dev *dev)
4842{
4843	u16 ctrl;
4844
4845	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4846	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4847	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4848
4849	/*
4850	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4851	 * this to 2ms to ensure that we meet the minimum requirement.
4852	 */
4853	msleep(2);
4854
4855	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4856	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858	/*
4859	 * Trhfa for conventional PCI is 2^25 clock cycles.
4860	 * Assuming a minimum 33MHz clock this results in a 1s
4861	 * delay before we can consider subordinate devices to
4862	 * be re-initialized.  PCIe has some ways to shorten this,
4863	 * but we don't make use of them yet.
4864	 */
4865	ssleep(1);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870	pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882	pcibios_reset_secondary_bus(dev);
4883
4884	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4889{
4890	struct pci_dev *pdev;
4891
4892	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894		return -ENOTTY;
4895
4896	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897		if (pdev != dev)
4898			return -ENOTTY;
4899
4900	if (probe)
4901		return 0;
4902
4903	return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4907{
4908	int rc = -ENOTTY;
4909
4910	if (!hotplug || !try_module_get(hotplug->owner))
4911		return rc;
4912
4913	if (hotplug->ops->reset_slot)
4914		rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916	module_put(hotplug->owner);
4917
4918	return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4922{
4923	struct pci_dev *pdev;
4924
4925	if (dev->subordinate || !dev->slot ||
4926	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4927		return -ENOTTY;
4928
4929	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4930		if (pdev != dev && pdev->slot == dev->slot)
4931			return -ENOTTY;
4932
4933	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4934}
4935
4936static void pci_dev_lock(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
4937{
4938	pci_cfg_access_lock(dev);
4939	/* block PM suspend, driver probe, etc. */
4940	device_lock(&dev->dev);
 
4941}
 
4942
4943/* Return 1 on successful lock, 0 on contention */
4944static int pci_dev_trylock(struct pci_dev *dev)
4945{
4946	if (pci_cfg_access_trylock(dev)) {
4947		if (device_trylock(&dev->dev))
4948			return 1;
4949		pci_cfg_access_unlock(dev);
4950	}
4951
4952	return 0;
4953}
 
4954
4955static void pci_dev_unlock(struct pci_dev *dev)
4956{
4957	device_unlock(&dev->dev);
4958	pci_cfg_access_unlock(dev);
 
4959}
 
4960
4961static void pci_dev_save_and_disable(struct pci_dev *dev)
4962{
4963	const struct pci_error_handlers *err_handler =
4964			dev->driver ? dev->driver->err_handler : NULL;
4965
4966	/*
4967	 * dev->driver->err_handler->reset_prepare() is protected against
4968	 * races with ->remove() by the device lock, which must be held by
4969	 * the caller.
4970	 */
4971	if (err_handler && err_handler->reset_prepare)
4972		err_handler->reset_prepare(dev);
4973
4974	/*
4975	 * Wake-up device prior to save.  PM registers default to D0 after
4976	 * reset and a simple register restore doesn't reliably return
4977	 * to a non-D0 state anyway.
4978	 */
4979	pci_set_power_state(dev, PCI_D0);
4980
4981	pci_save_state(dev);
4982	/*
4983	 * Disable the device by clearing the Command register, except for
4984	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4985	 * BARs, but also prevents the device from being Bus Master, preventing
4986	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4987	 * compliant devices, INTx-disable prevents legacy interrupts.
4988	 */
4989	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4990}
4991
4992static void pci_dev_restore(struct pci_dev *dev)
4993{
4994	const struct pci_error_handlers *err_handler =
4995			dev->driver ? dev->driver->err_handler : NULL;
4996
4997	pci_restore_state(dev);
4998
4999	/*
5000	 * dev->driver->err_handler->reset_done() is protected against
5001	 * races with ->remove() by the device lock, which must be held by
5002	 * the caller.
5003	 */
5004	if (err_handler && err_handler->reset_done)
5005		err_handler->reset_done(dev);
5006}
5007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5008/**
5009 * __pci_reset_function_locked - reset a PCI device function while holding
5010 * the @dev mutex lock.
5011 * @dev: PCI device to reset
5012 *
5013 * Some devices allow an individual function to be reset without affecting
5014 * other functions in the same device.  The PCI device must be responsive
5015 * to PCI config space in order to use this function.
5016 *
5017 * The device function is presumed to be unused and the caller is holding
5018 * the device mutex lock when this function is called.
5019 *
5020 * Resetting the device will make the contents of PCI configuration space
5021 * random, so any caller of this must be prepared to reinitialise the
5022 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5023 * etc.
5024 *
5025 * Returns 0 if the device function was successfully reset or negative if the
5026 * device doesn't support resetting a single function.
5027 */
5028int __pci_reset_function_locked(struct pci_dev *dev)
5029{
5030	int rc;
5031
5032	might_sleep();
5033
5034	/*
5035	 * A reset method returns -ENOTTY if it doesn't support this device
5036	 * and we should try the next method.
5037	 *
5038	 * If it returns 0 (success), we're finished.  If it returns any
5039	 * other error, we're also finished: this indicates that further
5040	 * reset mechanisms might be broken on the device.
5041	 */
5042	rc = pci_dev_specific_reset(dev, 0);
5043	if (rc != -ENOTTY)
5044		return rc;
5045	if (pcie_has_flr(dev)) {
5046		rc = pcie_flr(dev);
 
 
 
5047		if (rc != -ENOTTY)
5048			return rc;
5049	}
5050	rc = pci_af_flr(dev, 0);
5051	if (rc != -ENOTTY)
5052		return rc;
5053	rc = pci_pm_reset(dev, 0);
5054	if (rc != -ENOTTY)
5055		return rc;
5056	rc = pci_dev_reset_slot_function(dev, 0);
5057	if (rc != -ENOTTY)
5058		return rc;
5059	return pci_parent_bus_reset(dev, 0);
5060}
5061EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5062
5063/**
5064 * pci_probe_reset_function - check whether the device can be safely reset
5065 * @dev: PCI device to reset
 
5066 *
5067 * Some devices allow an individual function to be reset without affecting
5068 * other functions in the same device.  The PCI device must be responsive
5069 * to PCI config space in order to use this function.
5070 *
5071 * Returns 0 if the device function can be reset or negative if the
5072 * device doesn't support resetting a single function.
5073 */
5074int pci_probe_reset_function(struct pci_dev *dev)
5075{
5076	int rc;
 
 
5077
5078	might_sleep();
5079
5080	rc = pci_dev_specific_reset(dev, 1);
5081	if (rc != -ENOTTY)
5082		return rc;
5083	if (pcie_has_flr(dev))
5084		return 0;
5085	rc = pci_af_flr(dev, 1);
5086	if (rc != -ENOTTY)
5087		return rc;
5088	rc = pci_pm_reset(dev, 1);
5089	if (rc != -ENOTTY)
5090		return rc;
5091	rc = pci_dev_reset_slot_function(dev, 1);
5092	if (rc != -ENOTTY)
5093		return rc;
5094
5095	return pci_parent_bus_reset(dev, 1);
5096}
5097
5098/**
5099 * pci_reset_function - quiesce and reset a PCI device function
5100 * @dev: PCI device to reset
5101 *
5102 * Some devices allow an individual function to be reset without affecting
5103 * other functions in the same device.  The PCI device must be responsive
5104 * to PCI config space in order to use this function.
5105 *
5106 * This function does not just reset the PCI portion of a device, but
5107 * clears all the state associated with the device.  This function differs
5108 * from __pci_reset_function_locked() in that it saves and restores device state
5109 * over the reset and takes the PCI device lock.
5110 *
5111 * Returns 0 if the device function was successfully reset or negative if the
5112 * device doesn't support resetting a single function.
5113 */
5114int pci_reset_function(struct pci_dev *dev)
5115{
5116	int rc;
5117
5118	if (!dev->reset_fn)
5119		return -ENOTTY;
5120
5121	pci_dev_lock(dev);
5122	pci_dev_save_and_disable(dev);
5123
5124	rc = __pci_reset_function_locked(dev);
5125
5126	pci_dev_restore(dev);
5127	pci_dev_unlock(dev);
5128
5129	return rc;
5130}
5131EXPORT_SYMBOL_GPL(pci_reset_function);
5132
5133/**
5134 * pci_reset_function_locked - quiesce and reset a PCI device function
5135 * @dev: PCI device to reset
5136 *
5137 * Some devices allow an individual function to be reset without affecting
5138 * other functions in the same device.  The PCI device must be responsive
5139 * to PCI config space in order to use this function.
5140 *
5141 * This function does not just reset the PCI portion of a device, but
5142 * clears all the state associated with the device.  This function differs
5143 * from __pci_reset_function_locked() in that it saves and restores device state
5144 * over the reset.  It also differs from pci_reset_function() in that it
5145 * requires the PCI device lock to be held.
5146 *
5147 * Returns 0 if the device function was successfully reset or negative if the
5148 * device doesn't support resetting a single function.
5149 */
5150int pci_reset_function_locked(struct pci_dev *dev)
5151{
5152	int rc;
5153
5154	if (!dev->reset_fn)
5155		return -ENOTTY;
5156
5157	pci_dev_save_and_disable(dev);
5158
5159	rc = __pci_reset_function_locked(dev);
5160
5161	pci_dev_restore(dev);
5162
5163	return rc;
5164}
5165EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5166
5167/**
5168 * pci_try_reset_function - quiesce and reset a PCI device function
5169 * @dev: PCI device to reset
5170 *
5171 * Same as above, except return -EAGAIN if unable to lock device.
5172 */
5173int pci_try_reset_function(struct pci_dev *dev)
5174{
5175	int rc;
5176
5177	if (!dev->reset_fn)
5178		return -ENOTTY;
5179
5180	if (!pci_dev_trylock(dev))
5181		return -EAGAIN;
5182
5183	pci_dev_save_and_disable(dev);
5184	rc = __pci_reset_function_locked(dev);
5185	pci_dev_restore(dev);
5186	pci_dev_unlock(dev);
5187
5188	return rc;
5189}
5190EXPORT_SYMBOL_GPL(pci_try_reset_function);
5191
5192/* Do any devices on or below this bus prevent a bus reset? */
5193static bool pci_bus_resetable(struct pci_bus *bus)
5194{
5195	struct pci_dev *dev;
5196
5197
5198	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5199		return false;
5200
5201	list_for_each_entry(dev, &bus->devices, bus_list) {
5202		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5203		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5204			return false;
5205	}
5206
5207	return true;
5208}
5209
5210/* Lock devices from the top of the tree down */
5211static void pci_bus_lock(struct pci_bus *bus)
5212{
5213	struct pci_dev *dev;
5214
5215	list_for_each_entry(dev, &bus->devices, bus_list) {
5216		pci_dev_lock(dev);
5217		if (dev->subordinate)
5218			pci_bus_lock(dev->subordinate);
5219	}
5220}
5221
5222/* Unlock devices from the bottom of the tree up */
5223static void pci_bus_unlock(struct pci_bus *bus)
5224{
5225	struct pci_dev *dev;
5226
5227	list_for_each_entry(dev, &bus->devices, bus_list) {
5228		if (dev->subordinate)
5229			pci_bus_unlock(dev->subordinate);
5230		pci_dev_unlock(dev);
5231	}
5232}
5233
5234/* Return 1 on successful lock, 0 on contention */
5235static int pci_bus_trylock(struct pci_bus *bus)
5236{
5237	struct pci_dev *dev;
5238
5239	list_for_each_entry(dev, &bus->devices, bus_list) {
5240		if (!pci_dev_trylock(dev))
5241			goto unlock;
5242		if (dev->subordinate) {
5243			if (!pci_bus_trylock(dev->subordinate)) {
5244				pci_dev_unlock(dev);
5245				goto unlock;
5246			}
5247		}
5248	}
5249	return 1;
5250
5251unlock:
5252	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5253		if (dev->subordinate)
5254			pci_bus_unlock(dev->subordinate);
5255		pci_dev_unlock(dev);
5256	}
5257	return 0;
5258}
5259
5260/* Do any devices on or below this slot prevent a bus reset? */
5261static bool pci_slot_resetable(struct pci_slot *slot)
5262{
5263	struct pci_dev *dev;
5264
5265	if (slot->bus->self &&
5266	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5267		return false;
5268
5269	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270		if (!dev->slot || dev->slot != slot)
5271			continue;
5272		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5273		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5274			return false;
5275	}
5276
5277	return true;
5278}
5279
5280/* Lock devices from the top of the tree down */
5281static void pci_slot_lock(struct pci_slot *slot)
5282{
5283	struct pci_dev *dev;
5284
5285	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5286		if (!dev->slot || dev->slot != slot)
5287			continue;
5288		pci_dev_lock(dev);
5289		if (dev->subordinate)
5290			pci_bus_lock(dev->subordinate);
5291	}
5292}
5293
5294/* Unlock devices from the bottom of the tree up */
5295static void pci_slot_unlock(struct pci_slot *slot)
5296{
5297	struct pci_dev *dev;
5298
5299	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300		if (!dev->slot || dev->slot != slot)
5301			continue;
5302		if (dev->subordinate)
5303			pci_bus_unlock(dev->subordinate);
5304		pci_dev_unlock(dev);
5305	}
5306}
5307
5308/* Return 1 on successful lock, 0 on contention */
5309static int pci_slot_trylock(struct pci_slot *slot)
5310{
5311	struct pci_dev *dev;
5312
5313	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314		if (!dev->slot || dev->slot != slot)
5315			continue;
5316		if (!pci_dev_trylock(dev))
5317			goto unlock;
5318		if (dev->subordinate) {
5319			if (!pci_bus_trylock(dev->subordinate)) {
5320				pci_dev_unlock(dev);
5321				goto unlock;
5322			}
5323		}
5324	}
5325	return 1;
5326
5327unlock:
5328	list_for_each_entry_continue_reverse(dev,
5329					     &slot->bus->devices, bus_list) {
5330		if (!dev->slot || dev->slot != slot)
5331			continue;
5332		if (dev->subordinate)
5333			pci_bus_unlock(dev->subordinate);
5334		pci_dev_unlock(dev);
5335	}
5336	return 0;
5337}
5338
5339/*
5340 * Save and disable devices from the top of the tree down while holding
5341 * the @dev mutex lock for the entire tree.
5342 */
5343static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5344{
5345	struct pci_dev *dev;
5346
5347	list_for_each_entry(dev, &bus->devices, bus_list) {
5348		pci_dev_save_and_disable(dev);
5349		if (dev->subordinate)
5350			pci_bus_save_and_disable_locked(dev->subordinate);
5351	}
5352}
5353
5354/*
5355 * Restore devices from top of the tree down while holding @dev mutex lock
5356 * for the entire tree.  Parent bridges need to be restored before we can
5357 * get to subordinate devices.
5358 */
5359static void pci_bus_restore_locked(struct pci_bus *bus)
5360{
5361	struct pci_dev *dev;
5362
5363	list_for_each_entry(dev, &bus->devices, bus_list) {
5364		pci_dev_restore(dev);
5365		if (dev->subordinate)
5366			pci_bus_restore_locked(dev->subordinate);
5367	}
5368}
5369
5370/*
5371 * Save and disable devices from the top of the tree down while holding
5372 * the @dev mutex lock for the entire tree.
5373 */
5374static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5375{
5376	struct pci_dev *dev;
5377
5378	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5379		if (!dev->slot || dev->slot != slot)
5380			continue;
5381		pci_dev_save_and_disable(dev);
5382		if (dev->subordinate)
5383			pci_bus_save_and_disable_locked(dev->subordinate);
5384	}
5385}
5386
5387/*
5388 * Restore devices from top of the tree down while holding @dev mutex lock
5389 * for the entire tree.  Parent bridges need to be restored before we can
5390 * get to subordinate devices.
5391 */
5392static void pci_slot_restore_locked(struct pci_slot *slot)
5393{
5394	struct pci_dev *dev;
5395
5396	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397		if (!dev->slot || dev->slot != slot)
5398			continue;
5399		pci_dev_restore(dev);
5400		if (dev->subordinate)
5401			pci_bus_restore_locked(dev->subordinate);
5402	}
5403}
5404
5405static int pci_slot_reset(struct pci_slot *slot, int probe)
5406{
5407	int rc;
5408
5409	if (!slot || !pci_slot_resetable(slot))
5410		return -ENOTTY;
5411
5412	if (!probe)
5413		pci_slot_lock(slot);
5414
5415	might_sleep();
5416
5417	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5418
5419	if (!probe)
5420		pci_slot_unlock(slot);
5421
5422	return rc;
5423}
5424
5425/**
5426 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5427 * @slot: PCI slot to probe
5428 *
5429 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5430 */
5431int pci_probe_reset_slot(struct pci_slot *slot)
5432{
5433	return pci_slot_reset(slot, 1);
5434}
5435EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5436
5437/**
5438 * __pci_reset_slot - Try to reset a PCI slot
5439 * @slot: PCI slot to reset
5440 *
5441 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5442 * independent of other slots.  For instance, some slots may support slot power
5443 * control.  In the case of a 1:1 bus to slot architecture, this function may
5444 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5445 * Generally a slot reset should be attempted before a bus reset.  All of the
5446 * function of the slot and any subordinate buses behind the slot are reset
5447 * through this function.  PCI config space of all devices in the slot and
5448 * behind the slot is saved before and restored after reset.
5449 *
5450 * Same as above except return -EAGAIN if the slot cannot be locked
5451 */
5452static int __pci_reset_slot(struct pci_slot *slot)
5453{
5454	int rc;
5455
5456	rc = pci_slot_reset(slot, 1);
5457	if (rc)
5458		return rc;
5459
5460	if (pci_slot_trylock(slot)) {
5461		pci_slot_save_and_disable_locked(slot);
5462		might_sleep();
5463		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5464		pci_slot_restore_locked(slot);
5465		pci_slot_unlock(slot);
5466	} else
5467		rc = -EAGAIN;
5468
5469	return rc;
5470}
5471
5472static int pci_bus_reset(struct pci_bus *bus, int probe)
5473{
5474	int ret;
5475
5476	if (!bus->self || !pci_bus_resetable(bus))
5477		return -ENOTTY;
5478
5479	if (probe)
5480		return 0;
5481
5482	pci_bus_lock(bus);
5483
5484	might_sleep();
5485
5486	ret = pci_bridge_secondary_bus_reset(bus->self);
5487
5488	pci_bus_unlock(bus);
5489
5490	return ret;
5491}
5492
5493/**
5494 * pci_bus_error_reset - reset the bridge's subordinate bus
5495 * @bridge: The parent device that connects to the bus to reset
5496 *
5497 * This function will first try to reset the slots on this bus if the method is
5498 * available. If slot reset fails or is not available, this will fall back to a
5499 * secondary bus reset.
5500 */
5501int pci_bus_error_reset(struct pci_dev *bridge)
5502{
5503	struct pci_bus *bus = bridge->subordinate;
5504	struct pci_slot *slot;
5505
5506	if (!bus)
5507		return -ENOTTY;
5508
5509	mutex_lock(&pci_slot_mutex);
5510	if (list_empty(&bus->slots))
5511		goto bus_reset;
5512
5513	list_for_each_entry(slot, &bus->slots, list)
5514		if (pci_probe_reset_slot(slot))
5515			goto bus_reset;
5516
5517	list_for_each_entry(slot, &bus->slots, list)
5518		if (pci_slot_reset(slot, 0))
5519			goto bus_reset;
5520
5521	mutex_unlock(&pci_slot_mutex);
5522	return 0;
5523bus_reset:
5524	mutex_unlock(&pci_slot_mutex);
5525	return pci_bus_reset(bridge->subordinate, 0);
5526}
5527
5528/**
5529 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5530 * @bus: PCI bus to probe
5531 *
5532 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5533 */
5534int pci_probe_reset_bus(struct pci_bus *bus)
5535{
5536	return pci_bus_reset(bus, 1);
5537}
5538EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5539
5540/**
5541 * __pci_reset_bus - Try to reset a PCI bus
5542 * @bus: top level PCI bus to reset
5543 *
5544 * Same as above except return -EAGAIN if the bus cannot be locked
5545 */
5546static int __pci_reset_bus(struct pci_bus *bus)
5547{
5548	int rc;
5549
5550	rc = pci_bus_reset(bus, 1);
5551	if (rc)
5552		return rc;
5553
5554	if (pci_bus_trylock(bus)) {
5555		pci_bus_save_and_disable_locked(bus);
5556		might_sleep();
5557		rc = pci_bridge_secondary_bus_reset(bus->self);
5558		pci_bus_restore_locked(bus);
5559		pci_bus_unlock(bus);
5560	} else
5561		rc = -EAGAIN;
5562
5563	return rc;
5564}
5565
5566/**
5567 * pci_reset_bus - Try to reset a PCI bus
5568 * @pdev: top level PCI device to reset via slot/bus
5569 *
5570 * Same as above except return -EAGAIN if the bus cannot be locked
5571 */
5572int pci_reset_bus(struct pci_dev *pdev)
5573{
5574	return (!pci_probe_reset_slot(pdev->slot)) ?
5575	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5576}
5577EXPORT_SYMBOL_GPL(pci_reset_bus);
5578
5579/**
5580 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5581 * @dev: PCI device to query
5582 *
5583 * Returns mmrbc: maximum designed memory read count in bytes or
5584 * appropriate error value.
5585 */
5586int pcix_get_max_mmrbc(struct pci_dev *dev)
5587{
5588	int cap;
5589	u32 stat;
5590
5591	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5592	if (!cap)
5593		return -EINVAL;
5594
5595	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5596		return -EINVAL;
5597
5598	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5599}
5600EXPORT_SYMBOL(pcix_get_max_mmrbc);
5601
5602/**
5603 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5604 * @dev: PCI device to query
5605 *
5606 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5607 * value.
5608 */
5609int pcix_get_mmrbc(struct pci_dev *dev)
5610{
5611	int cap;
5612	u16 cmd;
5613
5614	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5615	if (!cap)
5616		return -EINVAL;
5617
5618	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5619		return -EINVAL;
5620
5621	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5622}
5623EXPORT_SYMBOL(pcix_get_mmrbc);
5624
5625/**
5626 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5627 * @dev: PCI device to query
5628 * @mmrbc: maximum memory read count in bytes
5629 *    valid values are 512, 1024, 2048, 4096
5630 *
5631 * If possible sets maximum memory read byte count, some bridges have errata
5632 * that prevent this.
5633 */
5634int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5635{
5636	int cap;
5637	u32 stat, v, o;
5638	u16 cmd;
5639
5640	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5641		return -EINVAL;
5642
5643	v = ffs(mmrbc) - 10;
5644
5645	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5646	if (!cap)
5647		return -EINVAL;
5648
5649	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5650		return -EINVAL;
5651
5652	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5653		return -E2BIG;
5654
5655	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656		return -EINVAL;
5657
5658	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5659	if (o != v) {
5660		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5661			return -EIO;
5662
5663		cmd &= ~PCI_X_CMD_MAX_READ;
5664		cmd |= v << 2;
5665		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5666			return -EIO;
5667	}
5668	return 0;
5669}
5670EXPORT_SYMBOL(pcix_set_mmrbc);
5671
5672/**
5673 * pcie_get_readrq - get PCI Express read request size
5674 * @dev: PCI device to query
5675 *
5676 * Returns maximum memory read request in bytes or appropriate error value.
5677 */
5678int pcie_get_readrq(struct pci_dev *dev)
5679{
5680	u16 ctl;
5681
5682	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5683
5684	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5685}
5686EXPORT_SYMBOL(pcie_get_readrq);
5687
5688/**
5689 * pcie_set_readrq - set PCI Express maximum memory read request
5690 * @dev: PCI device to query
5691 * @rq: maximum memory read count in bytes
5692 *    valid values are 128, 256, 512, 1024, 2048, 4096
5693 *
5694 * If possible sets maximum memory read request in bytes
5695 */
5696int pcie_set_readrq(struct pci_dev *dev, int rq)
5697{
5698	u16 v;
5699	int ret;
 
5700
5701	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5702		return -EINVAL;
5703
5704	/*
5705	 * If using the "performance" PCIe config, we clamp the read rq
5706	 * size to the max packet size to keep the host bridge from
5707	 * generating requests larger than we can cope with.
5708	 */
5709	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5710		int mps = pcie_get_mps(dev);
5711
5712		if (mps < rq)
5713			rq = mps;
5714	}
5715
5716	v = (ffs(rq) - 8) << 12;
 
 
 
 
 
 
 
 
 
5717
5718	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5719						  PCI_EXP_DEVCTL_READRQ, v);
5720
5721	return pcibios_err_to_errno(ret);
5722}
5723EXPORT_SYMBOL(pcie_set_readrq);
5724
5725/**
5726 * pcie_get_mps - get PCI Express maximum payload size
5727 * @dev: PCI device to query
5728 *
5729 * Returns maximum payload size in bytes
5730 */
5731int pcie_get_mps(struct pci_dev *dev)
5732{
5733	u16 ctl;
5734
5735	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5736
5737	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5738}
5739EXPORT_SYMBOL(pcie_get_mps);
5740
5741/**
5742 * pcie_set_mps - set PCI Express maximum payload size
5743 * @dev: PCI device to query
5744 * @mps: maximum payload size in bytes
5745 *    valid values are 128, 256, 512, 1024, 2048, 4096
5746 *
5747 * If possible sets maximum payload size
5748 */
5749int pcie_set_mps(struct pci_dev *dev, int mps)
5750{
5751	u16 v;
5752	int ret;
5753
5754	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5755		return -EINVAL;
5756
5757	v = ffs(mps) - 8;
5758	if (v > dev->pcie_mpss)
5759		return -EINVAL;
5760	v <<= 5;
5761
5762	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763						  PCI_EXP_DEVCTL_PAYLOAD, v);
5764
5765	return pcibios_err_to_errno(ret);
5766}
5767EXPORT_SYMBOL(pcie_set_mps);
5768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5769/**
5770 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5771 *			      device and its bandwidth limitation
5772 * @dev: PCI device to query
5773 * @limiting_dev: storage for device causing the bandwidth limitation
5774 * @speed: storage for speed of limiting device
5775 * @width: storage for width of limiting device
5776 *
5777 * Walk up the PCI device chain and find the point where the minimum
5778 * bandwidth is available.  Return the bandwidth available there and (if
5779 * limiting_dev, speed, and width pointers are supplied) information about
5780 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5781 * raw bandwidth.
5782 */
5783u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5784			     enum pci_bus_speed *speed,
5785			     enum pcie_link_width *width)
5786{
5787	u16 lnksta;
5788	enum pci_bus_speed next_speed;
5789	enum pcie_link_width next_width;
5790	u32 bw, next_bw;
5791
5792	if (speed)
5793		*speed = PCI_SPEED_UNKNOWN;
5794	if (width)
5795		*width = PCIE_LNK_WIDTH_UNKNOWN;
5796
5797	bw = 0;
5798
5799	while (dev) {
5800		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5801
5802		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5803		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5804			PCI_EXP_LNKSTA_NLW_SHIFT;
5805
5806		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5807
5808		/* Check if current device limits the total bandwidth */
5809		if (!bw || next_bw <= bw) {
5810			bw = next_bw;
5811
5812			if (limiting_dev)
5813				*limiting_dev = dev;
5814			if (speed)
5815				*speed = next_speed;
5816			if (width)
5817				*width = next_width;
5818		}
5819
5820		dev = pci_upstream_bridge(dev);
5821	}
5822
5823	return bw;
5824}
5825EXPORT_SYMBOL(pcie_bandwidth_available);
5826
5827/**
5828 * pcie_get_speed_cap - query for the PCI device's link speed capability
5829 * @dev: PCI device to query
5830 *
5831 * Query the PCI device speed capability.  Return the maximum link speed
5832 * supported by the device.
5833 */
5834enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5835{
5836	u32 lnkcap2, lnkcap;
5837
5838	/*
5839	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5840	 * implementation note there recommends using the Supported Link
5841	 * Speeds Vector in Link Capabilities 2 when supported.
5842	 *
5843	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5844	 * should use the Supported Link Speeds field in Link Capabilities,
5845	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5846	 */
5847	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5848
5849	/* PCIe r3.0-compliant */
5850	if (lnkcap2)
5851		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5852
5853	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5854	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5855		return PCIE_SPEED_5_0GT;
5856	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5857		return PCIE_SPEED_2_5GT;
5858
5859	return PCI_SPEED_UNKNOWN;
5860}
5861EXPORT_SYMBOL(pcie_get_speed_cap);
5862
5863/**
5864 * pcie_get_width_cap - query for the PCI device's link width capability
5865 * @dev: PCI device to query
5866 *
5867 * Query the PCI device width capability.  Return the maximum link width
5868 * supported by the device.
5869 */
5870enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5871{
5872	u32 lnkcap;
5873
5874	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5875	if (lnkcap)
5876		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5877
5878	return PCIE_LNK_WIDTH_UNKNOWN;
5879}
5880EXPORT_SYMBOL(pcie_get_width_cap);
5881
5882/**
5883 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5884 * @dev: PCI device
5885 * @speed: storage for link speed
5886 * @width: storage for link width
5887 *
5888 * Calculate a PCI device's link bandwidth by querying for its link speed
5889 * and width, multiplying them, and applying encoding overhead.  The result
5890 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5891 */
5892u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5893			   enum pcie_link_width *width)
5894{
5895	*speed = pcie_get_speed_cap(dev);
5896	*width = pcie_get_width_cap(dev);
5897
5898	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5899		return 0;
5900
5901	return *width * PCIE_SPEED2MBS_ENC(*speed);
5902}
5903
5904/**
5905 * __pcie_print_link_status - Report the PCI device's link speed and width
5906 * @dev: PCI device to query
5907 * @verbose: Print info even when enough bandwidth is available
5908 *
5909 * If the available bandwidth at the device is less than the device is
5910 * capable of, report the device's maximum possible bandwidth and the
5911 * upstream link that limits its performance.  If @verbose, always print
5912 * the available bandwidth, even if the device isn't constrained.
5913 */
5914void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5915{
5916	enum pcie_link_width width, width_cap;
5917	enum pci_bus_speed speed, speed_cap;
5918	struct pci_dev *limiting_dev = NULL;
5919	u32 bw_avail, bw_cap;
5920
5921	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5922	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5923
5924	if (bw_avail >= bw_cap && verbose)
5925		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5926			 bw_cap / 1000, bw_cap % 1000,
5927			 pci_speed_string(speed_cap), width_cap);
5928	else if (bw_avail < bw_cap)
5929		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5930			 bw_avail / 1000, bw_avail % 1000,
5931			 pci_speed_string(speed), width,
5932			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5933			 bw_cap / 1000, bw_cap % 1000,
5934			 pci_speed_string(speed_cap), width_cap);
5935}
5936
5937/**
5938 * pcie_print_link_status - Report the PCI device's link speed and width
5939 * @dev: PCI device to query
5940 *
5941 * Report the available bandwidth at the device.
5942 */
5943void pcie_print_link_status(struct pci_dev *dev)
5944{
5945	__pcie_print_link_status(dev, true);
5946}
5947EXPORT_SYMBOL(pcie_print_link_status);
5948
5949/**
5950 * pci_select_bars - Make BAR mask from the type of resource
5951 * @dev: the PCI device for which BAR mask is made
5952 * @flags: resource type mask to be selected
5953 *
5954 * This helper routine makes bar mask from the type of resource.
5955 */
5956int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5957{
5958	int i, bars = 0;
5959	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5960		if (pci_resource_flags(dev, i) & flags)
5961			bars |= (1 << i);
5962	return bars;
5963}
5964EXPORT_SYMBOL(pci_select_bars);
5965
5966/* Some architectures require additional programming to enable VGA */
5967static arch_set_vga_state_t arch_set_vga_state;
5968
5969void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5970{
5971	arch_set_vga_state = func;	/* NULL disables */
5972}
5973
5974static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5975				  unsigned int command_bits, u32 flags)
5976{
5977	if (arch_set_vga_state)
5978		return arch_set_vga_state(dev, decode, command_bits,
5979						flags);
5980	return 0;
5981}
5982
5983/**
5984 * pci_set_vga_state - set VGA decode state on device and parents if requested
5985 * @dev: the PCI device
5986 * @decode: true = enable decoding, false = disable decoding
5987 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5988 * @flags: traverse ancestors and change bridges
5989 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5990 */
5991int pci_set_vga_state(struct pci_dev *dev, bool decode,
5992		      unsigned int command_bits, u32 flags)
5993{
5994	struct pci_bus *bus;
5995	struct pci_dev *bridge;
5996	u16 cmd;
5997	int rc;
5998
5999	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6000
6001	/* ARCH specific VGA enables */
6002	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6003	if (rc)
6004		return rc;
6005
6006	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6007		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6008		if (decode == true)
6009			cmd |= command_bits;
6010		else
6011			cmd &= ~command_bits;
6012		pci_write_config_word(dev, PCI_COMMAND, cmd);
6013	}
6014
6015	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6016		return 0;
6017
6018	bus = dev->bus;
6019	while (bus) {
6020		bridge = bus->self;
6021		if (bridge) {
6022			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6023					     &cmd);
6024			if (decode == true)
6025				cmd |= PCI_BRIDGE_CTL_VGA;
6026			else
6027				cmd &= ~PCI_BRIDGE_CTL_VGA;
6028			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6029					      cmd);
6030		}
6031		bus = bus->parent;
6032	}
6033	return 0;
6034}
6035
6036#ifdef CONFIG_ACPI
6037bool pci_pr3_present(struct pci_dev *pdev)
6038{
6039	struct acpi_device *adev;
6040
6041	if (acpi_disabled)
6042		return false;
6043
6044	adev = ACPI_COMPANION(&pdev->dev);
6045	if (!adev)
6046		return false;
6047
6048	return adev->power.flags.power_resources &&
6049		acpi_has_method(adev->handle, "_PR3");
6050}
6051EXPORT_SYMBOL_GPL(pci_pr3_present);
6052#endif
6053
6054/**
6055 * pci_add_dma_alias - Add a DMA devfn alias for a device
6056 * @dev: the PCI device for which alias is added
6057 * @devfn_from: alias slot and function
6058 * @nr_devfns: number of subsequent devfns to alias
6059 *
6060 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6061 * which is used to program permissible bus-devfn source addresses for DMA
6062 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6063 * and are useful for devices generating DMA requests beyond or different
6064 * from their logical bus-devfn.  Examples include device quirks where the
6065 * device simply uses the wrong devfn, as well as non-transparent bridges
6066 * where the alias may be a proxy for devices in another domain.
6067 *
6068 * IOMMU group creation is performed during device discovery or addition,
6069 * prior to any potential DMA mapping and therefore prior to driver probing
6070 * (especially for userspace assigned devices where IOMMU group definition
6071 * cannot be left as a userspace activity).  DMA aliases should therefore
6072 * be configured via quirks, such as the PCI fixup header quirk.
6073 */
6074void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
 
6075{
6076	int devfn_to;
6077
6078	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6079	devfn_to = devfn_from + nr_devfns - 1;
6080
6081	if (!dev->dma_alias_mask)
6082		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6083	if (!dev->dma_alias_mask) {
6084		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6085		return;
6086	}
6087
6088	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6089
6090	if (nr_devfns == 1)
6091		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6092				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6093	else if (nr_devfns > 1)
6094		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6095				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6096				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6097}
6098
6099bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6100{
6101	return (dev1->dma_alias_mask &&
6102		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6103	       (dev2->dma_alias_mask &&
6104		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6105	       pci_real_dma_dev(dev1) == dev2 ||
6106	       pci_real_dma_dev(dev2) == dev1;
6107}
6108
6109bool pci_device_is_present(struct pci_dev *pdev)
6110{
6111	u32 v;
6112
 
 
6113	if (pci_dev_is_disconnected(pdev))
6114		return false;
6115	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6116}
6117EXPORT_SYMBOL_GPL(pci_device_is_present);
6118
6119void pci_ignore_hotplug(struct pci_dev *dev)
6120{
6121	struct pci_dev *bridge = dev->bus->self;
6122
6123	dev->ignore_hotplug = 1;
6124	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6125	if (bridge)
6126		bridge->ignore_hotplug = 1;
6127}
6128EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6129
6130/**
6131 * pci_real_dma_dev - Get PCI DMA device for PCI device
6132 * @dev: the PCI device that may have a PCI DMA alias
6133 *
6134 * Permits the platform to provide architecture-specific functionality to
6135 * devices needing to alias DMA to another PCI device on another PCI bus. If
6136 * the PCI device is on the same bus, it is recommended to use
6137 * pci_add_dma_alias(). This is the default implementation. Architecture
6138 * implementations can override this.
6139 */
6140struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6141{
6142	return dev;
6143}
6144
6145resource_size_t __weak pcibios_default_alignment(void)
6146{
6147	return 0;
6148}
6149
6150/*
6151 * Arches that don't want to expose struct resource to userland as-is in
6152 * sysfs and /proc can implement their own pci_resource_to_user().
6153 */
6154void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6155				 const struct resource *rsrc,
6156				 resource_size_t *start, resource_size_t *end)
6157{
6158	*start = rsrc->start;
6159	*end = rsrc->end;
6160}
6161
6162static char *resource_alignment_param;
6163static DEFINE_SPINLOCK(resource_alignment_lock);
6164
6165/**
6166 * pci_specified_resource_alignment - get resource alignment specified by user.
6167 * @dev: the PCI device to get
6168 * @resize: whether or not to change resources' size when reassigning alignment
6169 *
6170 * RETURNS: Resource alignment if it is specified.
6171 *          Zero if it is not specified.
6172 */
6173static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6174							bool *resize)
6175{
6176	int align_order, count;
6177	resource_size_t align = pcibios_default_alignment();
6178	const char *p;
6179	int ret;
6180
6181	spin_lock(&resource_alignment_lock);
6182	p = resource_alignment_param;
6183	if (!p || !*p)
6184		goto out;
6185	if (pci_has_flag(PCI_PROBE_ONLY)) {
6186		align = 0;
6187		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6188		goto out;
6189	}
6190
6191	while (*p) {
6192		count = 0;
6193		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6194							p[count] == '@') {
6195			p += count + 1;
 
 
 
 
 
6196		} else {
6197			align_order = -1;
6198		}
6199
6200		ret = pci_dev_str_match(dev, p, &p);
6201		if (ret == 1) {
6202			*resize = true;
6203			if (align_order == -1)
6204				align = PAGE_SIZE;
6205			else
6206				align = 1 << align_order;
6207			break;
6208		} else if (ret < 0) {
6209			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6210			       p);
6211			break;
6212		}
6213
6214		if (*p != ';' && *p != ',') {
6215			/* End of param or invalid format */
6216			break;
6217		}
6218		p++;
6219	}
6220out:
6221	spin_unlock(&resource_alignment_lock);
6222	return align;
6223}
6224
6225static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6226					   resource_size_t align, bool resize)
6227{
6228	struct resource *r = &dev->resource[bar];
 
6229	resource_size_t size;
6230
6231	if (!(r->flags & IORESOURCE_MEM))
6232		return;
6233
6234	if (r->flags & IORESOURCE_PCI_FIXED) {
6235		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6236			 bar, r, (unsigned long long)align);
6237		return;
6238	}
6239
6240	size = resource_size(r);
6241	if (size >= align)
6242		return;
6243
6244	/*
6245	 * Increase the alignment of the resource.  There are two ways we
6246	 * can do this:
6247	 *
6248	 * 1) Increase the size of the resource.  BARs are aligned on their
6249	 *    size, so when we reallocate space for this resource, we'll
6250	 *    allocate it with the larger alignment.  This also prevents
6251	 *    assignment of any other BARs inside the alignment region, so
6252	 *    if we're requesting page alignment, this means no other BARs
6253	 *    will share the page.
6254	 *
6255	 *    The disadvantage is that this makes the resource larger than
6256	 *    the hardware BAR, which may break drivers that compute things
6257	 *    based on the resource size, e.g., to find registers at a
6258	 *    fixed offset before the end of the BAR.
6259	 *
6260	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6261	 *    set r->start to the desired alignment.  By itself this
6262	 *    doesn't prevent other BARs being put inside the alignment
6263	 *    region, but if we realign *every* resource of every device in
6264	 *    the system, none of them will share an alignment region.
6265	 *
6266	 * When the user has requested alignment for only some devices via
6267	 * the "pci=resource_alignment" argument, "resize" is true and we
6268	 * use the first method.  Otherwise we assume we're aligning all
6269	 * devices and we use the second.
6270	 */
6271
6272	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6273		 bar, r, (unsigned long long)align);
6274
6275	if (resize) {
6276		r->start = 0;
6277		r->end = align - 1;
6278	} else {
6279		r->flags &= ~IORESOURCE_SIZEALIGN;
6280		r->flags |= IORESOURCE_STARTALIGN;
6281		r->start = align;
6282		r->end = r->start + size - 1;
6283	}
6284	r->flags |= IORESOURCE_UNSET;
6285}
6286
6287/*
6288 * This function disables memory decoding and releases memory resources
6289 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6290 * It also rounds up size to specified alignment.
6291 * Later on, the kernel will assign page-aligned memory resource back
6292 * to the device.
6293 */
6294void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6295{
6296	int i;
6297	struct resource *r;
6298	resource_size_t align;
6299	u16 command;
6300	bool resize = false;
6301
6302	/*
6303	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6304	 * 3.4.1.11.  Their resources are allocated from the space
6305	 * described by the VF BARx register in the PF's SR-IOV capability.
6306	 * We can't influence their alignment here.
6307	 */
6308	if (dev->is_virtfn)
6309		return;
6310
6311	/* check if specified PCI is target device to reassign */
6312	align = pci_specified_resource_alignment(dev, &resize);
6313	if (!align)
6314		return;
6315
6316	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6317	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6318		pci_warn(dev, "Can't reassign resources to host bridge\n");
6319		return;
6320	}
6321
6322	pci_read_config_word(dev, PCI_COMMAND, &command);
6323	command &= ~PCI_COMMAND_MEMORY;
6324	pci_write_config_word(dev, PCI_COMMAND, command);
6325
6326	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6327		pci_request_resource_alignment(dev, i, align, resize);
6328
6329	/*
6330	 * Need to disable bridge's resource window,
6331	 * to enable the kernel to reassign new resource
6332	 * window later on.
6333	 */
6334	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6335		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6336			r = &dev->resource[i];
6337			if (!(r->flags & IORESOURCE_MEM))
6338				continue;
6339			r->flags |= IORESOURCE_UNSET;
6340			r->end = resource_size(r) - 1;
6341			r->start = 0;
6342		}
6343		pci_disable_bridge_window(dev);
6344	}
6345}
6346
6347static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6348{
6349	size_t count = 0;
6350
6351	spin_lock(&resource_alignment_lock);
6352	if (resource_alignment_param)
6353		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6354	spin_unlock(&resource_alignment_lock);
6355
6356	/*
6357	 * When set by the command line, resource_alignment_param will not
6358	 * have a trailing line feed, which is ugly. So conditionally add
6359	 * it here.
6360	 */
6361	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6362		buf[count - 1] = '\n';
6363		buf[count++] = 0;
6364	}
6365
6366	return count;
6367}
6368
6369static ssize_t resource_alignment_store(struct bus_type *bus,
6370					const char *buf, size_t count)
6371{
6372	char *param = kstrndup(buf, count, GFP_KERNEL);
6373
 
 
 
 
6374	if (!param)
6375		return -ENOMEM;
6376
 
 
 
 
6377	spin_lock(&resource_alignment_lock);
6378	kfree(resource_alignment_param);
6379	resource_alignment_param = param;
 
 
 
 
 
6380	spin_unlock(&resource_alignment_lock);
 
 
 
6381	return count;
6382}
6383
6384static BUS_ATTR_RW(resource_alignment);
6385
6386static int __init pci_resource_alignment_sysfs_init(void)
6387{
6388	return bus_create_file(&pci_bus_type,
6389					&bus_attr_resource_alignment);
6390}
6391late_initcall(pci_resource_alignment_sysfs_init);
6392
6393static void pci_no_domains(void)
6394{
6395#ifdef CONFIG_PCI_DOMAINS
6396	pci_domains_supported = 0;
6397#endif
6398}
6399
6400#ifdef CONFIG_PCI_DOMAINS_GENERIC
6401static atomic_t __domain_nr = ATOMIC_INIT(-1);
 
6402
6403static int pci_get_new_domain_nr(void)
6404{
6405	return atomic_inc_return(&__domain_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
6406}
6407
6408static int of_pci_bus_find_domain_nr(struct device *parent)
6409{
6410	static int use_dt_domains = -1;
6411	int domain = -1;
6412
6413	if (parent)
6414		domain = of_get_pci_domain_nr(parent->of_node);
 
 
 
6415
6416	/*
6417	 * Check DT domain and use_dt_domains values.
6418	 *
6419	 * If DT domain property is valid (domain >= 0) and
6420	 * use_dt_domains != 0, the DT assignment is valid since this means
6421	 * we have not previously allocated a domain number by using
6422	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6423	 * 1, to indicate that we have just assigned a domain number from
6424	 * DT.
6425	 *
6426	 * If DT domain property value is not valid (ie domain < 0), and we
6427	 * have not previously assigned a domain number from DT
6428	 * (use_dt_domains != 1) we should assign a domain number by
6429	 * using the:
6430	 *
6431	 * pci_get_new_domain_nr()
6432	 *
6433	 * API and update the use_dt_domains value to keep track of method we
6434	 * are using to assign domain numbers (use_dt_domains = 0).
6435	 *
6436	 * All other combinations imply we have a platform that is trying
6437	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6438	 * which is a recipe for domain mishandling and it is prevented by
6439	 * invalidating the domain value (domain = -1) and printing a
6440	 * corresponding error.
6441	 */
6442	if (domain >= 0 && use_dt_domains) {
6443		use_dt_domains = 1;
6444	} else if (domain < 0 && use_dt_domains != 1) {
6445		use_dt_domains = 0;
6446		domain = pci_get_new_domain_nr();
6447	} else {
6448		if (parent)
6449			pr_err("Node %pOF has ", parent->of_node);
6450		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6451		domain = -1;
6452	}
6453
6454	return domain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6455}
6456
6457int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6458{
6459	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6460			       acpi_pci_bus_find_domain_nr(bus);
 
 
 
 
 
 
 
6461}
6462#endif
6463
6464/**
6465 * pci_ext_cfg_avail - can we access extended PCI config space?
6466 *
6467 * Returns 1 if we can access PCI extended config space (offsets
6468 * greater than 0xff). This is the default implementation. Architecture
6469 * implementations can override this.
6470 */
6471int __weak pci_ext_cfg_avail(void)
6472{
6473	return 1;
6474}
6475
6476void __weak pci_fixup_cardbus(struct pci_bus *bus)
6477{
6478}
6479EXPORT_SYMBOL(pci_fixup_cardbus);
6480
6481static int __init pci_setup(char *str)
6482{
6483	while (str) {
6484		char *k = strchr(str, ',');
6485		if (k)
6486			*k++ = 0;
6487		if (*str && (str = pcibios_setup(str)) && *str) {
6488			if (!strcmp(str, "nomsi")) {
6489				pci_no_msi();
6490			} else if (!strncmp(str, "noats", 5)) {
6491				pr_info("PCIe: ATS is disabled\n");
6492				pcie_ats_disabled = true;
6493			} else if (!strcmp(str, "noaer")) {
6494				pci_no_aer();
6495			} else if (!strcmp(str, "earlydump")) {
6496				pci_early_dump = true;
6497			} else if (!strncmp(str, "realloc=", 8)) {
6498				pci_realloc_get_opt(str + 8);
6499			} else if (!strncmp(str, "realloc", 7)) {
6500				pci_realloc_get_opt("on");
6501			} else if (!strcmp(str, "nodomains")) {
6502				pci_no_domains();
6503			} else if (!strncmp(str, "noari", 5)) {
6504				pcie_ari_disabled = true;
6505			} else if (!strncmp(str, "cbiosize=", 9)) {
6506				pci_cardbus_io_size = memparse(str + 9, &str);
6507			} else if (!strncmp(str, "cbmemsize=", 10)) {
6508				pci_cardbus_mem_size = memparse(str + 10, &str);
6509			} else if (!strncmp(str, "resource_alignment=", 19)) {
6510				resource_alignment_param = str + 19;
6511			} else if (!strncmp(str, "ecrc=", 5)) {
6512				pcie_ecrc_get_policy(str + 5);
6513			} else if (!strncmp(str, "hpiosize=", 9)) {
6514				pci_hotplug_io_size = memparse(str + 9, &str);
6515			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6516				pci_hotplug_mmio_size = memparse(str + 11, &str);
6517			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6518				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6519			} else if (!strncmp(str, "hpmemsize=", 10)) {
6520				pci_hotplug_mmio_size = memparse(str + 10, &str);
6521				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6522			} else if (!strncmp(str, "hpbussize=", 10)) {
6523				pci_hotplug_bus_size =
6524					simple_strtoul(str + 10, &str, 0);
6525				if (pci_hotplug_bus_size > 0xff)
6526					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6527			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6528				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6529			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6530				pcie_bus_config = PCIE_BUS_SAFE;
6531			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6532				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6533			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6534				pcie_bus_config = PCIE_BUS_PEER2PEER;
6535			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6536				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6537			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6538				disable_acs_redir_param = str + 18;
6539			} else {
6540				pr_err("PCI: Unknown option `%s'\n", str);
6541			}
6542		}
6543		str = k;
6544	}
6545	return 0;
6546}
6547early_param("pci", pci_setup);
6548
6549/*
6550 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6551 * in pci_setup(), above, to point to data in the __initdata section which
6552 * will be freed after the init sequence is complete. We can't allocate memory
6553 * in pci_setup() because some architectures do not have any memory allocation
6554 * service available during an early_param() call. So we allocate memory and
6555 * copy the variable here before the init section is freed.
6556 *
6557 */
6558static int __init pci_realloc_setup_params(void)
6559{
6560	resource_alignment_param = kstrdup(resource_alignment_param,
6561					   GFP_KERNEL);
6562	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6563
6564	return 0;
6565}
6566pure_initcall(pci_realloc_setup_params);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
 
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
 
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
 
 
  31#include <asm/dma.h>
  32#include <linux/aer.h>
  33#include <linux/bitfield.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43#ifdef CONFIG_X86_32
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46#endif
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3hot_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66/*
  67 * Following exit from Conventional Reset, devices must be ready within 1 sec
  68 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  69 * Reset (PCIe r6.0 sec 5.8).
  70 */
  71#define PCI_RESET_WAIT 1000 /* msec */
  72
  73/*
  74 * Devices may extend the 1 sec period through Request Retry Status
  75 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  76 * limit, but 60 sec ought to be enough for any device to become
  77 * responsive.
  78 */
  79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  80
  81static void pci_dev_d3_sleep(struct pci_dev *dev)
  82{
  83	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  84	unsigned int upper;
  85
  86	if (delay_ms) {
  87		/* Use a 20% upper bound, 1ms minimum */
  88		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  89		usleep_range(delay_ms * USEC_PER_MSEC,
  90			     (delay_ms + upper) * USEC_PER_MSEC);
  91	}
  92}
  93
  94bool pci_reset_supported(struct pci_dev *dev)
  95{
  96	return dev->reset_methods[0] != 0;
  97}
  98
  99#ifdef CONFIG_PCI_DOMAINS
 100int pci_domains_supported = 1;
 101#endif
 102
 103#define DEFAULT_CARDBUS_IO_SIZE		(256)
 104#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 108
 109#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 110#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 112/* hpiosize=nn can override this */
 113unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 114/*
 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 117 * pci=hpmemsize=nnM overrides both
 118 */
 119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 121
 122#define DEFAULT_HOTPLUG_BUS_SIZE	1
 123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 124
 125
 126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 129#elif defined CONFIG_PCIE_BUS_SAFE
 130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 133#elif defined CONFIG_PCIE_BUS_PEER2PEER
 134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 135#else
 136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 137#endif
 138
 139/*
 140 * The default CLS is used if arch didn't set CLS explicitly and not
 141 * all pci devices agree on the same value.  Arch can override either
 142 * the dfl or actual value as it sees fit.  Don't forget this is
 143 * measured in 32-bit words, not bytes.
 144 */
 145u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 146u8 pci_cache_line_size;
 147
 148/*
 149 * If we set up a device for bus mastering, we need to check the latency
 150 * timer as certain BIOSes forget to set it properly.
 151 */
 152unsigned int pcibios_max_latency = 255;
 153
 154/* If set, the PCIe ARI capability will not be used. */
 155static bool pcie_ari_disabled;
 156
 157/* If set, the PCIe ATS capability will not be used. */
 158static bool pcie_ats_disabled;
 159
 160/* If set, the PCI config space of each device is printed during boot. */
 161bool pci_early_dump;
 162
 163bool pci_ats_disabled(void)
 164{
 165	return pcie_ats_disabled;
 166}
 167EXPORT_SYMBOL_GPL(pci_ats_disabled);
 168
 169/* Disable bridge_d3 for all PCIe ports */
 170static bool pci_bridge_d3_disable;
 171/* Force bridge_d3 for all PCIe ports */
 172static bool pci_bridge_d3_force;
 173
 174static int __init pcie_port_pm_setup(char *str)
 175{
 176	if (!strcmp(str, "off"))
 177		pci_bridge_d3_disable = true;
 178	else if (!strcmp(str, "force"))
 179		pci_bridge_d3_force = true;
 180	return 1;
 181}
 182__setup("pcie_port_pm=", pcie_port_pm_setup);
 183
 
 
 
 184/**
 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 186 * @bus: pointer to PCI bus structure to search
 187 *
 188 * Given a PCI bus, returns the highest PCI bus number present in the set
 189 * including the given PCI bus and its list of child PCI buses.
 190 */
 191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 192{
 193	struct pci_bus *tmp;
 194	unsigned char max, n;
 195
 196	max = bus->busn_res.end;
 197	list_for_each_entry(tmp, &bus->children, node) {
 198		n = pci_bus_max_busnr(tmp);
 199		if (n > max)
 200			max = n;
 201	}
 202	return max;
 203}
 204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 205
 206/**
 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 208 * @pdev: the PCI device
 209 *
 210 * Returns error bits set in PCI_STATUS and clears them.
 211 */
 212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 213{
 214	u16 status;
 215	int ret;
 216
 217	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 218	if (ret != PCIBIOS_SUCCESSFUL)
 219		return -EIO;
 220
 221	status &= PCI_STATUS_ERROR_BITS;
 222	if (status)
 223		pci_write_config_word(pdev, PCI_STATUS, status);
 224
 225	return status;
 226}
 227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 228
 229#ifdef CONFIG_HAS_IOMEM
 230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 231					    bool write_combine)
 232{
 233	struct resource *res = &pdev->resource[bar];
 234	resource_size_t start = res->start;
 235	resource_size_t size = resource_size(res);
 236
 237	/*
 238	 * Make sure the BAR is actually a memory resource, not an IO resource
 239	 */
 240	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 241		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 242		return NULL;
 243	}
 244
 245	if (write_combine)
 246		return ioremap_wc(start, size);
 247
 248	return ioremap(start, size);
 249}
 250
 251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 252{
 253	return __pci_ioremap_resource(pdev, bar, false);
 254}
 255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 256
 257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 258{
 259	return __pci_ioremap_resource(pdev, bar, true);
 
 
 
 
 
 
 
 
 260}
 261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 262#endif
 263
 264/**
 265 * pci_dev_str_match_path - test if a path string matches a device
 266 * @dev: the PCI device to test
 267 * @path: string to match the device against
 268 * @endptr: pointer to the string after the match
 269 *
 270 * Test if a string (typically from a kernel parameter) formatted as a
 271 * path of device/function addresses matches a PCI device. The string must
 272 * be of the form:
 273 *
 274 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 275 *
 276 * A path for a device can be obtained using 'lspci -t'.  Using a path
 277 * is more robust against bus renumbering than using only a single bus,
 278 * device and function address.
 279 *
 280 * Returns 1 if the string matches the device, 0 if it does not and
 281 * a negative error code if it fails to parse the string.
 282 */
 283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 284				  const char **endptr)
 285{
 286	int ret;
 287	unsigned int seg, bus, slot, func;
 288	char *wpath, *p;
 289	char end;
 290
 291	*endptr = strchrnul(path, ';');
 292
 293	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 294	if (!wpath)
 295		return -ENOMEM;
 296
 297	while (1) {
 298		p = strrchr(wpath, '/');
 299		if (!p)
 300			break;
 301		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 302		if (ret != 2) {
 303			ret = -EINVAL;
 304			goto free_and_exit;
 305		}
 306
 307		if (dev->devfn != PCI_DEVFN(slot, func)) {
 308			ret = 0;
 309			goto free_and_exit;
 310		}
 311
 312		/*
 313		 * Note: we don't need to get a reference to the upstream
 314		 * bridge because we hold a reference to the top level
 315		 * device which should hold a reference to the bridge,
 316		 * and so on.
 317		 */
 318		dev = pci_upstream_bridge(dev);
 319		if (!dev) {
 320			ret = 0;
 321			goto free_and_exit;
 322		}
 323
 324		*p = 0;
 325	}
 326
 327	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 328		     &func, &end);
 329	if (ret != 4) {
 330		seg = 0;
 331		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 332		if (ret != 3) {
 333			ret = -EINVAL;
 334			goto free_and_exit;
 335		}
 336	}
 337
 338	ret = (seg == pci_domain_nr(dev->bus) &&
 339	       bus == dev->bus->number &&
 340	       dev->devfn == PCI_DEVFN(slot, func));
 341
 342free_and_exit:
 343	kfree(wpath);
 344	return ret;
 345}
 346
 347/**
 348 * pci_dev_str_match - test if a string matches a device
 349 * @dev: the PCI device to test
 350 * @p: string to match the device against
 351 * @endptr: pointer to the string after the match
 352 *
 353 * Test if a string (typically from a kernel parameter) matches a specified
 354 * PCI device. The string may be of one of the following formats:
 355 *
 356 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 357 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 358 *
 359 * The first format specifies a PCI bus/device/function address which
 360 * may change if new hardware is inserted, if motherboard firmware changes,
 361 * or due to changes caused in kernel parameters. If the domain is
 362 * left unspecified, it is taken to be 0.  In order to be robust against
 363 * bus renumbering issues, a path of PCI device/function numbers may be used
 364 * to address the specific device.  The path for a device can be determined
 365 * through the use of 'lspci -t'.
 366 *
 367 * The second format matches devices using IDs in the configuration
 368 * space which may match multiple devices in the system. A value of 0
 369 * for any field will match all devices. (Note: this differs from
 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 371 * legacy reasons and convenience so users don't have to specify
 372 * FFFFFFFFs on the command line.)
 373 *
 374 * Returns 1 if the string matches the device, 0 if it does not and
 375 * a negative error code if the string cannot be parsed.
 376 */
 377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 378			     const char **endptr)
 379{
 380	int ret;
 381	int count;
 382	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 383
 384	if (strncmp(p, "pci:", 4) == 0) {
 385		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 386		p += 4;
 387		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 388			     &subsystem_vendor, &subsystem_device, &count);
 389		if (ret != 4) {
 390			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 391			if (ret != 2)
 392				return -EINVAL;
 393
 394			subsystem_vendor = 0;
 395			subsystem_device = 0;
 396		}
 397
 398		p += count;
 399
 400		if ((!vendor || vendor == dev->vendor) &&
 401		    (!device || device == dev->device) &&
 402		    (!subsystem_vendor ||
 403			    subsystem_vendor == dev->subsystem_vendor) &&
 404		    (!subsystem_device ||
 405			    subsystem_device == dev->subsystem_device))
 406			goto found;
 407	} else {
 408		/*
 409		 * PCI Bus, Device, Function IDs are specified
 410		 * (optionally, may include a path of devfns following it)
 411		 */
 412		ret = pci_dev_str_match_path(dev, p, &p);
 413		if (ret < 0)
 414			return ret;
 415		else if (ret)
 416			goto found;
 417	}
 418
 419	*endptr = p;
 420	return 0;
 421
 422found:
 423	*endptr = p;
 424	return 1;
 425}
 426
 427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 428				  u8 pos, int cap, int *ttl)
 429{
 430	u8 id;
 431	u16 ent;
 432
 433	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 434
 435	while ((*ttl)--) {
 436		if (pos < 0x40)
 437			break;
 438		pos &= ~3;
 439		pci_bus_read_config_word(bus, devfn, pos, &ent);
 440
 441		id = ent & 0xff;
 442		if (id == 0xff)
 443			break;
 444		if (id == cap)
 445			return pos;
 446		pos = (ent >> 8);
 447	}
 448	return 0;
 449}
 450
 451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 452			      u8 pos, int cap)
 453{
 454	int ttl = PCI_FIND_CAP_TTL;
 455
 456	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 457}
 458
 459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 460{
 461	return __pci_find_next_cap(dev->bus, dev->devfn,
 462				   pos + PCI_CAP_LIST_NEXT, cap);
 463}
 464EXPORT_SYMBOL_GPL(pci_find_next_capability);
 465
 466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 467				    unsigned int devfn, u8 hdr_type)
 468{
 469	u16 status;
 470
 471	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 472	if (!(status & PCI_STATUS_CAP_LIST))
 473		return 0;
 474
 475	switch (hdr_type) {
 476	case PCI_HEADER_TYPE_NORMAL:
 477	case PCI_HEADER_TYPE_BRIDGE:
 478		return PCI_CAPABILITY_LIST;
 479	case PCI_HEADER_TYPE_CARDBUS:
 480		return PCI_CB_CAPABILITY_LIST;
 481	}
 482
 483	return 0;
 484}
 485
 486/**
 487 * pci_find_capability - query for devices' capabilities
 488 * @dev: PCI device to query
 489 * @cap: capability code
 490 *
 491 * Tell if a device supports a given PCI capability.
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.  Possible values for @cap include:
 495 *
 496 *  %PCI_CAP_ID_PM           Power Management
 497 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 498 *  %PCI_CAP_ID_VPD          Vital Product Data
 499 *  %PCI_CAP_ID_SLOTID       Slot Identification
 500 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 501 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 502 *  %PCI_CAP_ID_PCIX         PCI-X
 503 *  %PCI_CAP_ID_EXP          PCI Express
 504 */
 505u8 pci_find_capability(struct pci_dev *dev, int cap)
 506{
 507	u8 pos;
 508
 509	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 510	if (pos)
 511		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 512
 513	return pos;
 514}
 515EXPORT_SYMBOL(pci_find_capability);
 516
 517/**
 518 * pci_bus_find_capability - query for devices' capabilities
 519 * @bus: the PCI bus to query
 520 * @devfn: PCI device to query
 521 * @cap: capability code
 522 *
 523 * Like pci_find_capability() but works for PCI devices that do not have a
 524 * pci_dev structure set up yet.
 525 *
 526 * Returns the address of the requested capability structure within the
 527 * device's PCI configuration space or 0 in case the device does not
 528 * support it.
 529 */
 530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 531{
 532	u8 hdr_type, pos;
 
 533
 534	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 535
 536	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 537	if (pos)
 538		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 539
 540	return pos;
 541}
 542EXPORT_SYMBOL(pci_bus_find_capability);
 543
 544/**
 545 * pci_find_next_ext_capability - Find an extended capability
 546 * @dev: PCI device to query
 547 * @start: address at which to start looking (0 to start at beginning of list)
 548 * @cap: capability code
 549 *
 550 * Returns the address of the next matching extended capability structure
 551 * within the device's PCI configuration space or 0 if the device does
 552 * not support it.  Some capabilities can occur several times, e.g., the
 553 * vendor-specific capability, and this provides a way to find them all.
 554 */
 555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 556{
 557	u32 header;
 558	int ttl;
 559	u16 pos = PCI_CFG_SPACE_SIZE;
 560
 561	/* minimum 8 bytes per capability */
 562	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 563
 564	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 565		return 0;
 566
 567	if (start)
 568		pos = start;
 569
 570	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 571		return 0;
 572
 573	/*
 574	 * If we have no capabilities, this is indicated by cap ID,
 575	 * cap version and next pointer all being 0.
 576	 */
 577	if (header == 0)
 578		return 0;
 579
 580	while (ttl-- > 0) {
 581		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 582			return pos;
 583
 584		pos = PCI_EXT_CAP_NEXT(header);
 585		if (pos < PCI_CFG_SPACE_SIZE)
 586			break;
 587
 588		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 589			break;
 590	}
 591
 592	return 0;
 593}
 594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 595
 596/**
 597 * pci_find_ext_capability - Find an extended capability
 598 * @dev: PCI device to query
 599 * @cap: capability code
 600 *
 601 * Returns the address of the requested extended capability structure
 602 * within the device's PCI configuration space or 0 if the device does
 603 * not support it.  Possible values for @cap include:
 604 *
 605 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 606 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 607 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 608 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 609 */
 610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 611{
 612	return pci_find_next_ext_capability(dev, 0, cap);
 613}
 614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 615
 616/**
 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 618 * @dev: PCI device to query
 619 *
 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 621 * Number.
 622 *
 623 * Returns the DSN, or zero if the capability does not exist.
 624 */
 625u64 pci_get_dsn(struct pci_dev *dev)
 626{
 627	u32 dword;
 628	u64 dsn;
 629	int pos;
 630
 631	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 632	if (!pos)
 633		return 0;
 634
 635	/*
 636	 * The Device Serial Number is two dwords offset 4 bytes from the
 637	 * capability position. The specification says that the first dword is
 638	 * the lower half, and the second dword is the upper half.
 639	 */
 640	pos += 4;
 641	pci_read_config_dword(dev, pos, &dword);
 642	dsn = (u64)dword;
 643	pci_read_config_dword(dev, pos + 4, &dword);
 644	dsn |= ((u64)dword) << 32;
 645
 646	return dsn;
 647}
 648EXPORT_SYMBOL_GPL(pci_get_dsn);
 649
 650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 651{
 652	int rc, ttl = PCI_FIND_CAP_TTL;
 653	u8 cap, mask;
 654
 655	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 656		mask = HT_3BIT_CAP_MASK;
 657	else
 658		mask = HT_5BIT_CAP_MASK;
 659
 660	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 661				      PCI_CAP_ID_HT, &ttl);
 662	while (pos) {
 663		rc = pci_read_config_byte(dev, pos + 3, &cap);
 664		if (rc != PCIBIOS_SUCCESSFUL)
 665			return 0;
 666
 667		if ((cap & mask) == ht_cap)
 668			return pos;
 669
 670		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 671					      pos + PCI_CAP_LIST_NEXT,
 672					      PCI_CAP_ID_HT, &ttl);
 673	}
 674
 675	return 0;
 676}
 677
 678/**
 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 680 * @dev: PCI device to query
 681 * @pos: Position from which to continue searching
 682 * @ht_cap: HyperTransport capability code
 683 *
 684 * To be used in conjunction with pci_find_ht_capability() to search for
 685 * all capabilities matching @ht_cap. @pos should always be a value returned
 686 * from pci_find_ht_capability().
 687 *
 688 * NB. To be 100% safe against broken PCI devices, the caller should take
 689 * steps to avoid an infinite loop.
 690 */
 691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 692{
 693	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 694}
 695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 696
 697/**
 698 * pci_find_ht_capability - query a device's HyperTransport capabilities
 699 * @dev: PCI device to query
 700 * @ht_cap: HyperTransport capability code
 701 *
 702 * Tell if a device supports a given HyperTransport capability.
 703 * Returns an address within the device's PCI configuration space
 704 * or 0 in case the device does not support the request capability.
 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 706 * which has a HyperTransport capability matching @ht_cap.
 707 */
 708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 709{
 710	u8 pos;
 711
 712	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 713	if (pos)
 714		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 715
 716	return pos;
 717}
 718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 719
 720/**
 721 * pci_find_vsec_capability - Find a vendor-specific extended capability
 722 * @dev: PCI device to query
 723 * @vendor: Vendor ID for which capability is defined
 724 * @cap: Vendor-specific capability ID
 725 *
 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 727 * VSEC ID @cap. If found, return the capability offset in
 728 * config space; otherwise return 0.
 729 */
 730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 731{
 732	u16 vsec = 0;
 733	u32 header;
 734	int ret;
 735
 736	if (vendor != dev->vendor)
 737		return 0;
 738
 739	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 740						     PCI_EXT_CAP_ID_VNDR))) {
 741		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 742		if (ret != PCIBIOS_SUCCESSFUL)
 743			continue;
 744
 745		if (PCI_VNDR_HEADER_ID(header) == cap)
 746			return vsec;
 747	}
 748
 749	return 0;
 750}
 751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 752
 753/**
 754 * pci_find_dvsec_capability - Find DVSEC for vendor
 755 * @dev: PCI device to query
 756 * @vendor: Vendor ID to match for the DVSEC
 757 * @dvsec: Designated Vendor-specific capability ID
 758 *
 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 760 * offset in config space; otherwise return 0.
 761 */
 762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 763{
 764	int pos;
 765
 766	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 767	if (!pos)
 768		return 0;
 769
 770	while (pos) {
 771		u16 v, id;
 772
 773		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 775		if (vendor == v && dvsec == id)
 776			return pos;
 777
 778		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 779	}
 780
 781	return 0;
 782}
 783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 784
 785/**
 786 * pci_find_parent_resource - return resource region of parent bus of given
 787 *			      region
 788 * @dev: PCI device structure contains resources to be searched
 789 * @res: child resource record for which parent is sought
 790 *
 791 * For given resource region of given device, return the resource region of
 792 * parent bus the given region is contained in.
 793 */
 794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 795					  struct resource *res)
 796{
 797	const struct pci_bus *bus = dev->bus;
 798	struct resource *r;
 
 799
 800	pci_bus_for_each_resource(bus, r) {
 801		if (!r)
 802			continue;
 803		if (resource_contains(r, res)) {
 804
 805			/*
 806			 * If the window is prefetchable but the BAR is
 807			 * not, the allocator made a mistake.
 808			 */
 809			if (r->flags & IORESOURCE_PREFETCH &&
 810			    !(res->flags & IORESOURCE_PREFETCH))
 811				return NULL;
 812
 813			/*
 814			 * If we're below a transparent bridge, there may
 815			 * be both a positively-decoded aperture and a
 816			 * subtractively-decoded region that contain the BAR.
 817			 * We want the positively-decoded one, so this depends
 818			 * on pci_bus_for_each_resource() giving us those
 819			 * first.
 820			 */
 821			return r;
 822		}
 823	}
 824	return NULL;
 825}
 826EXPORT_SYMBOL(pci_find_parent_resource);
 827
 828/**
 829 * pci_find_resource - Return matching PCI device resource
 830 * @dev: PCI device to query
 831 * @res: Resource to look for
 832 *
 833 * Goes over standard PCI resources (BARs) and checks if the given resource
 834 * is partially or fully contained in any of them. In that case the
 835 * matching resource is returned, %NULL otherwise.
 836 */
 837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 838{
 839	int i;
 840
 841	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 842		struct resource *r = &dev->resource[i];
 843
 844		if (r->start && resource_contains(r, res))
 845			return r;
 846	}
 847
 848	return NULL;
 849}
 850EXPORT_SYMBOL(pci_find_resource);
 851
 852/**
 853 * pci_resource_name - Return the name of the PCI resource
 854 * @dev: PCI device to query
 855 * @i: index of the resource
 856 *
 857 * Return the standard PCI resource (BAR) name according to their index.
 858 */
 859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 860{
 861	static const char * const bar_name[] = {
 862		"BAR 0",
 863		"BAR 1",
 864		"BAR 2",
 865		"BAR 3",
 866		"BAR 4",
 867		"BAR 5",
 868		"ROM",
 869#ifdef CONFIG_PCI_IOV
 870		"VF BAR 0",
 871		"VF BAR 1",
 872		"VF BAR 2",
 873		"VF BAR 3",
 874		"VF BAR 4",
 875		"VF BAR 5",
 876#endif
 877		"bridge window",	/* "io" included in %pR */
 878		"bridge window",	/* "mem" included in %pR */
 879		"bridge window",	/* "mem pref" included in %pR */
 880	};
 881	static const char * const cardbus_name[] = {
 882		"BAR 1",
 883		"unknown",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888#ifdef CONFIG_PCI_IOV
 889		"unknown",
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895#endif
 896		"CardBus bridge window 0",	/* I/O */
 897		"CardBus bridge window 1",	/* I/O */
 898		"CardBus bridge window 0",	/* mem */
 899		"CardBus bridge window 1",	/* mem */
 900	};
 901
 902	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 903	    i < ARRAY_SIZE(cardbus_name))
 904		return cardbus_name[i];
 905
 906	if (i < ARRAY_SIZE(bar_name))
 907		return bar_name[i];
 908
 909	return "unknown";
 910}
 911
 912/**
 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 914 * @dev: the PCI device to operate on
 915 * @pos: config space offset of status word
 916 * @mask: mask of bit(s) to care about in status word
 917 *
 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 919 */
 920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 921{
 922	int i;
 923
 924	/* Wait for Transaction Pending bit clean */
 925	for (i = 0; i < 4; i++) {
 926		u16 status;
 927		if (i)
 928			msleep((1 << (i - 1)) * 100);
 929
 930		pci_read_config_word(dev, pos, &status);
 931		if (!(status & mask))
 932			return 1;
 933	}
 934
 935	return 0;
 936}
 937
 938static int pci_acs_enable;
 939
 940/**
 941 * pci_request_acs - ask for ACS to be enabled if supported
 942 */
 943void pci_request_acs(void)
 944{
 945	pci_acs_enable = 1;
 946}
 947
 948static const char *disable_acs_redir_param;
 949
 950/**
 951 * pci_disable_acs_redir - disable ACS redirect capabilities
 952 * @dev: the PCI device
 953 *
 954 * For only devices specified in the disable_acs_redir parameter.
 955 */
 956static void pci_disable_acs_redir(struct pci_dev *dev)
 957{
 958	int ret = 0;
 959	const char *p;
 960	int pos;
 961	u16 ctrl;
 962
 963	if (!disable_acs_redir_param)
 964		return;
 965
 966	p = disable_acs_redir_param;
 967	while (*p) {
 968		ret = pci_dev_str_match(dev, p, &p);
 969		if (ret < 0) {
 970			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 971				     disable_acs_redir_param);
 972
 973			break;
 974		} else if (ret == 1) {
 975			/* Found a match */
 976			break;
 977		}
 978
 979		if (*p != ';' && *p != ',') {
 980			/* End of param or invalid format */
 981			break;
 982		}
 983		p++;
 984	}
 985
 986	if (ret != 1)
 987		return;
 988
 989	if (!pci_dev_specific_disable_acs_redir(dev))
 990		return;
 991
 992	pos = dev->acs_cap;
 993	if (!pos) {
 994		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 995		return;
 996	}
 997
 998	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 999
1000	/* P2P Request & Completion Redirect */
1001	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002
1003	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1004
1005	pci_info(dev, "disabled ACS redirect\n");
1006}
1007
1008/**
1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010 * @dev: the PCI device
1011 */
1012static void pci_std_enable_acs(struct pci_dev *dev)
1013{
1014	int pos;
1015	u16 cap;
1016	u16 ctrl;
1017
1018	pos = dev->acs_cap;
1019	if (!pos)
1020		return;
1021
1022	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1023	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1024
1025	/* Source Validation */
1026	ctrl |= (cap & PCI_ACS_SV);
1027
1028	/* P2P Request Redirect */
1029	ctrl |= (cap & PCI_ACS_RR);
1030
1031	/* P2P Completion Redirect */
1032	ctrl |= (cap & PCI_ACS_CR);
1033
1034	/* Upstream Forwarding */
1035	ctrl |= (cap & PCI_ACS_UF);
1036
1037	/* Enable Translation Blocking for external devices and noats */
1038	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039		ctrl |= (cap & PCI_ACS_TB);
1040
1041	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1042}
1043
1044/**
1045 * pci_enable_acs - enable ACS if hardware support it
1046 * @dev: the PCI device
1047 */
1048static void pci_enable_acs(struct pci_dev *dev)
1049{
1050	if (!pci_acs_enable)
1051		goto disable_acs_redir;
1052
1053	if (!pci_dev_specific_enable_acs(dev))
1054		goto disable_acs_redir;
1055
1056	pci_std_enable_acs(dev);
1057
1058disable_acs_redir:
1059	/*
1060	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061	 * enabled by the kernel because it may have been enabled by
1062	 * platform firmware.  So if we are told to disable it, we should
1063	 * always disable it after setting the kernel's default
1064	 * preferences.
1065	 */
1066	pci_disable_acs_redir(dev);
1067}
1068
1069/**
1070 * pcie_read_tlp_log - read TLP Header Log
1071 * @dev: PCIe device
1072 * @where: PCI Config offset of TLP Header Log
1073 * @tlp_log: TLP Log structure to fill
1074 *
1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076 *
1077 * Return: 0 on success and filled TLP Log structure, <0 on error.
1078 */
1079int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080		      struct pcie_tlp_log *tlp_log)
1081{
1082	int i, ret;
1083
1084	memset(tlp_log, 0, sizeof(*tlp_log));
1085
1086	for (i = 0; i < 4; i++) {
1087		ret = pci_read_config_dword(dev, where + i * 4,
1088					    &tlp_log->dw[i]);
1089		if (ret)
1090			return pcibios_err_to_errno(ret);
1091	}
1092
1093	return 0;
1094}
1095EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096
1097/**
1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099 * @dev: PCI device to have its BARs restored
1100 *
1101 * Restore the BAR values for a given device, so as to make it
1102 * accessible by its driver.
1103 */
1104static void pci_restore_bars(struct pci_dev *dev)
1105{
1106	int i;
1107
1108	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109		pci_update_resource(dev, i);
1110}
1111
 
 
 
 
 
 
 
 
 
 
 
1112static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113{
1114	if (pci_use_mid_pm())
1115		return true;
1116
1117	return acpi_pci_power_manageable(dev);
1118}
1119
1120static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121					       pci_power_t t)
1122{
1123	if (pci_use_mid_pm())
1124		return mid_pci_set_power_state(dev, t);
1125
1126	return acpi_pci_set_power_state(dev, t);
1127}
1128
1129static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130{
1131	if (pci_use_mid_pm())
1132		return mid_pci_get_power_state(dev);
1133
1134	return acpi_pci_get_power_state(dev);
1135}
1136
1137static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138{
1139	if (!pci_use_mid_pm())
1140		acpi_pci_refresh_power_state(dev);
1141}
1142
1143static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144{
1145	if (pci_use_mid_pm())
1146		return PCI_POWER_ERROR;
1147
1148	return acpi_pci_choose_state(dev);
1149}
1150
1151static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152{
1153	if (pci_use_mid_pm())
1154		return PCI_POWER_ERROR;
1155
1156	return acpi_pci_wakeup(dev, enable);
1157}
1158
1159static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160{
1161	if (pci_use_mid_pm())
1162		return false;
1163
1164	return acpi_pci_need_resume(dev);
 
 
 
 
1165}
1166
1167static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
1168{
1169	if (pci_use_mid_pm())
1170		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	return acpi_pci_bridge_d3(dev);
1173}
1174
1175/**
1176 * pci_update_current_state - Read power state of given device and cache it
1177 * @dev: PCI device to handle.
1178 * @state: State to cache in case the device doesn't have the PM capability
1179 *
1180 * The power state is read from the PMCSR register, which however is
1181 * inaccessible in D3cold.  The platform firmware is therefore queried first
1182 * to detect accessibility of the register.  In case the platform firmware
1183 * reports an incorrect state or the device isn't power manageable by the
1184 * platform at all, we try to detect D3cold by testing accessibility of the
1185 * vendor ID in config space.
1186 */
1187void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188{
1189	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
 
1190		dev->current_state = PCI_D3cold;
1191	} else if (dev->pm_cap) {
1192		u16 pmcsr;
1193
1194		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1195		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196			dev->current_state = PCI_D3cold;
1197			return;
1198		}
1199		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200	} else {
1201		dev->current_state = state;
1202	}
1203}
1204
1205/**
1206 * pci_refresh_power_state - Refresh the given device's power state data
1207 * @dev: Target PCI device.
1208 *
1209 * Ask the platform to refresh the devices power state information and invoke
1210 * pci_update_current_state() to update its current PCI power state.
1211 */
1212void pci_refresh_power_state(struct pci_dev *dev)
1213{
1214	platform_pci_refresh_power_state(dev);
 
 
1215	pci_update_current_state(dev, dev->current_state);
1216}
1217
1218/**
1219 * pci_platform_power_transition - Use platform to change device power state
1220 * @dev: PCI device to handle.
1221 * @state: State to put the device into.
1222 */
1223int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224{
1225	int error;
1226
1227	error = platform_pci_set_power_state(dev, state);
1228	if (!error)
1229		pci_update_current_state(dev, state);
1230	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
 
 
 
 
1231		dev->current_state = PCI_D0;
1232
1233	return error;
1234}
1235EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236
1237static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
 
 
 
 
 
1238{
 
1239	pm_request_resume(&pci_dev->dev);
1240	return 0;
1241}
1242
1243/**
1244 * pci_resume_bus - Walk given bus and runtime resume devices on it
1245 * @bus: Top bus of the subtree to walk.
1246 */
1247void pci_resume_bus(struct pci_bus *bus)
1248{
1249	if (bus)
1250		pci_walk_bus(bus, pci_resume_one, NULL);
1251}
1252
1253static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254{
1255	int delay = 1;
1256	bool retrain = false;
1257	struct pci_dev *bridge;
1258
1259	if (pci_is_pcie(dev)) {
1260		bridge = pci_upstream_bridge(dev);
1261		if (bridge)
1262			retrain = true;
1263	}
1264
1265	/*
1266	 * After reset, the device should not silently discard config
1267	 * requests, but it may still indicate that it needs more time by
1268	 * responding to them with CRS completions.  The Root Port will
1269	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270	 * the read (except when CRS SV is enabled and the read was for the
1271	 * Vendor ID; in that case it synthesizes 0x0001 data).
1272	 *
1273	 * Wait for the device to return a non-CRS completion.  Read the
1274	 * Command register instead of Vendor ID so we don't have to
1275	 * contend with the CRS SV value.
1276	 */
1277	for (;;) {
1278		u32 id;
1279
1280		pci_read_config_dword(dev, PCI_COMMAND, &id);
1281		if (!PCI_POSSIBLE_ERROR(id))
1282			break;
1283
1284		if (delay > timeout) {
1285			pci_warn(dev, "not ready %dms after %s; giving up\n",
1286				 delay - 1, reset_type);
1287			return -ENOTTY;
1288		}
1289
1290		if (delay > PCI_RESET_WAIT) {
1291			if (retrain) {
1292				retrain = false;
1293				if (pcie_failed_link_retrain(bridge)) {
1294					delay = 1;
1295					continue;
1296				}
1297			}
1298			pci_info(dev, "not ready %dms after %s; waiting\n",
1299				 delay - 1, reset_type);
1300		}
1301
1302		msleep(delay);
1303		delay *= 2;
 
1304	}
1305
1306	if (delay > PCI_RESET_WAIT)
1307		pci_info(dev, "ready %dms after %s\n", delay - 1,
1308			 reset_type);
1309	else
1310		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1311			reset_type);
1312
1313	return 0;
1314}
1315
1316/**
1317 * pci_power_up - Put the given device into D0
1318 * @dev: PCI device to power up
1319 *
1320 * On success, return 0 or 1, depending on whether or not it is necessary to
1321 * restore the device's BARs subsequently (1 is returned in that case).
1322 *
1323 * On failure, return a negative error code.  Always return failure if @dev
1324 * lacks a Power Management Capability, even if the platform was able to
1325 * put the device in D0 via non-PCI means.
1326 */
1327int pci_power_up(struct pci_dev *dev)
1328{
1329	bool need_restore;
1330	pci_power_t state;
1331	u16 pmcsr;
1332
1333	platform_pci_set_power_state(dev, PCI_D0);
1334
1335	if (!dev->pm_cap) {
1336		state = platform_pci_get_power_state(dev);
1337		if (state == PCI_UNKNOWN)
1338			dev->current_state = PCI_D0;
1339		else
1340			dev->current_state = state;
1341
1342		return -EIO;
1343	}
1344
1345	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1346	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1347		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1348			pci_power_name(dev->current_state));
1349		dev->current_state = PCI_D3cold;
1350		return -EIO;
1351	}
1352
1353	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1354
1355	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1356			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1357
1358	if (state == PCI_D0)
1359		goto end;
1360
1361	/*
1362	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1363	 * PME_En, and sets PowerState to 0.
 
1364	 */
1365	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1366
1367	/* Mandatory transition delays; see PCI PM 1.2. */
1368	if (state == PCI_D3hot)
1369		pci_dev_d3_sleep(dev);
1370	else if (state == PCI_D2)
1371		udelay(PCI_PM_D2_DELAY);
1372
1373end:
1374	dev->current_state = PCI_D0;
1375	if (need_restore)
1376		return 1;
1377
1378	return 0;
1379}
1380
1381/**
1382 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1383 * @dev: PCI device to power up
1384 * @locked: whether pci_bus_sem is held
1385 *
1386 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1387 * to confirm the state change, restore its BARs if they might be lost and
1388 * reconfigure ASPM in accordance with the new power state.
1389 *
1390 * If pci_restore_state() is going to be called right after a power state change
1391 * to D0, it is more efficient to use pci_power_up() directly instead of this
1392 * function.
1393 */
1394static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1395{
1396	u16 pmcsr;
1397	int ret;
1398
1399	ret = pci_power_up(dev);
1400	if (ret < 0) {
1401		if (dev->current_state == PCI_D0)
1402			return 0;
1403
1404		return ret;
1405	}
1406
1407	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1409	if (dev->current_state != PCI_D0) {
1410		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1411				     pci_power_name(dev->current_state));
1412	} else if (ret > 0) {
1413		/*
1414		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1415		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1416		 * from D3hot to D0 _may_ perform an internal reset, thereby
1417		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1418		 * For example, at least some versions of the 3c905B and the
1419		 * 3c556B exhibit this behaviour.
1420		 *
1421		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1422		 * devices in a D3hot state at boot.  Consequently, we need to
1423		 * restore at least the BARs so that the device will be
1424		 * accessible to its driver.
1425		 */
1426		pci_restore_bars(dev);
1427	}
1428
1429	if (dev->bus->self)
1430		pcie_aspm_pm_state_change(dev->bus->self, locked);
1431
1432	return 0;
1433}
1434
1435/**
1436 * __pci_dev_set_current_state - Set current state of a PCI device
1437 * @dev: Device to handle
1438 * @data: pointer to state to be set
1439 */
1440static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1441{
1442	pci_power_t state = *(pci_power_t *)data;
1443
1444	dev->current_state = state;
1445	return 0;
1446}
1447
1448/**
1449 * pci_bus_set_current_state - Walk given bus and set current state of devices
1450 * @bus: Top bus of the subtree to walk.
1451 * @state: state to be set
1452 */
1453void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1454{
1455	if (bus)
1456		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1457}
1458
1459static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1460{
1461	if (!bus)
1462		return;
1463
1464	if (locked)
1465		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1466	else
1467		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1468}
1469
1470/**
1471 * pci_set_low_power_state - Put a PCI device into a low-power state.
1472 * @dev: PCI device to handle.
1473 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1474 * @locked: whether pci_bus_sem is held
1475 *
1476 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
 
1477 *
1478 * RETURN VALUE:
1479 * -EINVAL if the requested state is invalid.
1480 * -EIO if device does not support PCI PM or its PM capabilities register has a
1481 * wrong version, or device doesn't support the requested state.
 
1482 * 0 if device already is in the requested state.
 
1483 * 0 if device's power state has been successfully changed.
1484 */
1485static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1486{
1487	u16 pmcsr;
1488
1489	if (!dev->pm_cap)
1490		return -EIO;
1491
1492	/*
1493	 * Validate transition: We can enter D0 from any state, but if
1494	 * we're already in a low-power state, we can only go deeper.  E.g.,
1495	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1496	 * we'd have to go from D3 to D0, then to D1.
1497	 */
1498	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1499		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1500			pci_power_name(dev->current_state),
1501			pci_power_name(state));
1502		return -EINVAL;
1503	}
1504
1505	/* Check if this device supports the desired state */
1506	if ((state == PCI_D1 && !dev->d1_support)
1507	   || (state == PCI_D2 && !dev->d2_support))
1508		return -EIO;
1509
1510	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1511	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1512		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1513			pci_power_name(dev->current_state),
1514			pci_power_name(state));
1515		dev->current_state = PCI_D3cold;
1516		return -EIO;
1517	}
1518
1519	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1520	pmcsr |= state;
1521
1522	/* Enter specified state */
1523	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1524
1525	/* Mandatory power management transition delays; see PCI PM 1.2. */
1526	if (state == PCI_D3hot)
1527		pci_dev_d3_sleep(dev);
1528	else if (state == PCI_D2)
1529		udelay(PCI_PM_D2_DELAY);
1530
1531	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1532	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1533	if (dev->current_state != state)
1534		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1535				     pci_power_name(dev->current_state),
1536				     pci_power_name(state));
1537
1538	if (dev->bus->self)
1539		pcie_aspm_pm_state_change(dev->bus->self, locked);
1540
1541	return 0;
1542}
1543
1544static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1545{
1546	int error;
1547
1548	/* Bound the state we're entering */
1549	if (state > PCI_D3cold)
1550		state = PCI_D3cold;
1551	else if (state < PCI_D0)
1552		state = PCI_D0;
1553	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1554
1555		/*
1556		 * If the device or the parent bridge do not support PCI
1557		 * PM, ignore the request if we're doing anything other
1558		 * than putting it into D0 (which would only happen on
1559		 * boot).
1560		 */
1561		return 0;
1562
1563	/* Check if we're already there */
1564	if (dev->current_state == state)
1565		return 0;
1566
1567	if (state == PCI_D0)
1568		return pci_set_full_power_state(dev, locked);
1569
1570	/*
1571	 * This device is quirked not to be put into D3, so don't put it in
1572	 * D3
1573	 */
1574	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1575		return 0;
1576
1577	if (state == PCI_D3cold) {
1578		/*
1579		 * To put the device in D3cold, put it into D3hot in the native
1580		 * way, then put it into D3cold using platform ops.
1581		 */
1582		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1583
1584		if (pci_platform_power_transition(dev, PCI_D3cold))
1585			return error;
1586
1587		/* Powering off a bridge may power off the whole hierarchy */
1588		if (dev->current_state == PCI_D3cold)
1589			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1590	} else {
1591		error = pci_set_low_power_state(dev, state, locked);
1592
1593		if (pci_platform_power_transition(dev, state))
1594			return error;
1595	}
1596
1597	return 0;
1598}
 
1599
1600/**
1601 * pci_set_power_state - Set the power state of a PCI device
1602 * @dev: PCI device to handle.
1603 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1604 *
1605 * Transition a device to a new power state, using the platform firmware and/or
1606 * the device's PCI PM registers.
1607 *
1608 * RETURN VALUE:
1609 * -EINVAL if the requested state is invalid.
1610 * -EIO if device does not support PCI PM or its PM capabilities register has a
1611 * wrong version, or device doesn't support the requested state.
1612 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1613 * 0 if device already is in the requested state.
1614 * 0 if the transition is to D3 but D3 is not supported.
1615 * 0 if device's power state has been successfully changed.
1616 */
1617int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1618{
1619	return __pci_set_power_state(dev, state, false);
1620}
1621EXPORT_SYMBOL(pci_set_power_state);
 
1622
1623int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1624{
1625	lockdep_assert_held(&pci_bus_sem);
1626
1627	return __pci_set_power_state(dev, state, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628}
1629EXPORT_SYMBOL(pci_set_power_state_locked);
1630
1631#define PCI_EXP_SAVE_REGS	7
1632
1633static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1634						       u16 cap, bool extended)
1635{
1636	struct pci_cap_saved_state *tmp;
1637
1638	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1639		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1640			return tmp;
1641	}
1642	return NULL;
1643}
1644
1645struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1646{
1647	return _pci_find_saved_cap(dev, cap, false);
1648}
1649
1650struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1651{
1652	return _pci_find_saved_cap(dev, cap, true);
1653}
1654
1655static int pci_save_pcie_state(struct pci_dev *dev)
1656{
1657	int i = 0;
1658	struct pci_cap_saved_state *save_state;
1659	u16 *cap;
1660
1661	if (!pci_is_pcie(dev))
1662		return 0;
1663
1664	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1665	if (!save_state) {
1666		pci_err(dev, "buffer not found in %s\n", __func__);
1667		return -ENOMEM;
1668	}
1669
1670	cap = (u16 *)&save_state->cap.data[0];
1671	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1672	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1673	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1674	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1675	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1676	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1677	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1678
1679	pci_save_aspm_l1ss_state(dev);
1680	pci_save_ltr_state(dev);
1681
1682	return 0;
1683}
1684
1685static void pci_restore_pcie_state(struct pci_dev *dev)
1686{
1687	int i = 0;
1688	struct pci_cap_saved_state *save_state;
1689	u16 *cap;
1690
1691	/*
1692	 * Restore max latencies (in the LTR capability) before enabling
1693	 * LTR itself in PCI_EXP_DEVCTL2.
1694	 */
1695	pci_restore_ltr_state(dev);
1696	pci_restore_aspm_l1ss_state(dev);
1697
1698	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1699	if (!save_state)
1700		return;
1701
1702	/*
1703	 * Downstream ports reset the LTR enable bit when link goes down.
1704	 * Check and re-configure the bit here before restoring device.
1705	 * PCIe r5.0, sec 7.5.3.16.
1706	 */
1707	pci_bridge_reconfigure_ltr(dev);
1708
1709	cap = (u16 *)&save_state->cap.data[0];
1710	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1711	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1712	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1713	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1714	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1715	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1716	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1717}
1718
1719static int pci_save_pcix_state(struct pci_dev *dev)
1720{
1721	int pos;
1722	struct pci_cap_saved_state *save_state;
1723
1724	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1725	if (!pos)
1726		return 0;
1727
1728	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1729	if (!save_state) {
1730		pci_err(dev, "buffer not found in %s\n", __func__);
1731		return -ENOMEM;
1732	}
1733
1734	pci_read_config_word(dev, pos + PCI_X_CMD,
1735			     (u16 *)save_state->cap.data);
1736
1737	return 0;
1738}
1739
1740static void pci_restore_pcix_state(struct pci_dev *dev)
1741{
1742	int i = 0, pos;
1743	struct pci_cap_saved_state *save_state;
1744	u16 *cap;
1745
1746	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1747	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1748	if (!save_state || !pos)
1749		return;
1750	cap = (u16 *)&save_state->cap.data[0];
1751
1752	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1753}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755/**
1756 * pci_save_state - save the PCI configuration space of a device before
1757 *		    suspending
1758 * @dev: PCI device that we're dealing with
1759 */
1760int pci_save_state(struct pci_dev *dev)
1761{
1762	int i;
1763	/* XXX: 100% dword access ok here? */
1764	for (i = 0; i < 16; i++) {
1765		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1766		pci_dbg(dev, "save config %#04x: %#010x\n",
1767			i * 4, dev->saved_config_space[i]);
1768	}
1769	dev->state_saved = true;
1770
1771	i = pci_save_pcie_state(dev);
1772	if (i != 0)
1773		return i;
1774
1775	i = pci_save_pcix_state(dev);
1776	if (i != 0)
1777		return i;
1778
 
1779	pci_save_dpc_state(dev);
1780	pci_save_aer_state(dev);
1781	pci_save_ptm_state(dev);
1782	return pci_save_vc_state(dev);
1783}
1784EXPORT_SYMBOL(pci_save_state);
1785
1786static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1787				     u32 saved_val, int retry, bool force)
1788{
1789	u32 val;
1790
1791	pci_read_config_dword(pdev, offset, &val);
1792	if (!force && val == saved_val)
1793		return;
1794
1795	for (;;) {
1796		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1797			offset, val, saved_val);
1798		pci_write_config_dword(pdev, offset, saved_val);
1799		if (retry-- <= 0)
1800			return;
1801
1802		pci_read_config_dword(pdev, offset, &val);
1803		if (val == saved_val)
1804			return;
1805
1806		mdelay(1);
1807	}
1808}
1809
1810static void pci_restore_config_space_range(struct pci_dev *pdev,
1811					   int start, int end, int retry,
1812					   bool force)
1813{
1814	int index;
1815
1816	for (index = end; index >= start; index--)
1817		pci_restore_config_dword(pdev, 4 * index,
1818					 pdev->saved_config_space[index],
1819					 retry, force);
1820}
1821
1822static void pci_restore_config_space(struct pci_dev *pdev)
1823{
1824	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1825		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1826		/* Restore BARs before the command register. */
1827		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1828		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1829	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1830		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1831
1832		/*
1833		 * Force rewriting of prefetch registers to avoid S3 resume
1834		 * issues on Intel PCI bridges that occur when these
1835		 * registers are not explicitly written.
1836		 */
1837		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1838		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1839	} else {
1840		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1841	}
1842}
1843
1844static void pci_restore_rebar_state(struct pci_dev *pdev)
1845{
1846	unsigned int pos, nbars, i;
1847	u32 ctrl;
1848
1849	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1850	if (!pos)
1851		return;
1852
1853	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1854	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
1855
1856	for (i = 0; i < nbars; i++, pos += 8) {
1857		struct resource *res;
1858		int bar_idx, size;
1859
1860		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1861		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1862		res = pdev->resource + bar_idx;
1863		size = pci_rebar_bytes_to_size(resource_size(res));
1864		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1865		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1866		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1867	}
1868}
1869
1870/**
1871 * pci_restore_state - Restore the saved state of a PCI device
1872 * @dev: PCI device that we're dealing with
1873 */
1874void pci_restore_state(struct pci_dev *dev)
1875{
1876	if (!dev->state_saved)
1877		return;
1878
 
 
 
 
 
 
1879	pci_restore_pcie_state(dev);
1880	pci_restore_pasid_state(dev);
1881	pci_restore_pri_state(dev);
1882	pci_restore_ats_state(dev);
1883	pci_restore_vc_state(dev);
1884	pci_restore_rebar_state(dev);
1885	pci_restore_dpc_state(dev);
1886	pci_restore_ptm_state(dev);
1887
1888	pci_aer_clear_status(dev);
1889	pci_restore_aer_state(dev);
1890
1891	pci_restore_config_space(dev);
1892
1893	pci_restore_pcix_state(dev);
1894	pci_restore_msi_state(dev);
1895
1896	/* Restore ACS and IOV configuration state */
1897	pci_enable_acs(dev);
1898	pci_restore_iov_state(dev);
1899
1900	dev->state_saved = false;
1901}
1902EXPORT_SYMBOL(pci_restore_state);
1903
1904struct pci_saved_state {
1905	u32 config_space[16];
1906	struct pci_cap_saved_data cap[];
1907};
1908
1909/**
1910 * pci_store_saved_state - Allocate and return an opaque struct containing
1911 *			   the device saved state.
1912 * @dev: PCI device that we're dealing with
1913 *
1914 * Return NULL if no state or error.
1915 */
1916struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1917{
1918	struct pci_saved_state *state;
1919	struct pci_cap_saved_state *tmp;
1920	struct pci_cap_saved_data *cap;
1921	size_t size;
1922
1923	if (!dev->state_saved)
1924		return NULL;
1925
1926	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1927
1928	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1929		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1930
1931	state = kzalloc(size, GFP_KERNEL);
1932	if (!state)
1933		return NULL;
1934
1935	memcpy(state->config_space, dev->saved_config_space,
1936	       sizeof(state->config_space));
1937
1938	cap = state->cap;
1939	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1940		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1941		memcpy(cap, &tmp->cap, len);
1942		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1943	}
1944	/* Empty cap_save terminates list */
1945
1946	return state;
1947}
1948EXPORT_SYMBOL_GPL(pci_store_saved_state);
1949
1950/**
1951 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1952 * @dev: PCI device that we're dealing with
1953 * @state: Saved state returned from pci_store_saved_state()
1954 */
1955int pci_load_saved_state(struct pci_dev *dev,
1956			 struct pci_saved_state *state)
1957{
1958	struct pci_cap_saved_data *cap;
1959
1960	dev->state_saved = false;
1961
1962	if (!state)
1963		return 0;
1964
1965	memcpy(dev->saved_config_space, state->config_space,
1966	       sizeof(state->config_space));
1967
1968	cap = state->cap;
1969	while (cap->size) {
1970		struct pci_cap_saved_state *tmp;
1971
1972		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1973		if (!tmp || tmp->cap.size != cap->size)
1974			return -EINVAL;
1975
1976		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1977		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1978		       sizeof(struct pci_cap_saved_data) + cap->size);
1979	}
1980
1981	dev->state_saved = true;
1982	return 0;
1983}
1984EXPORT_SYMBOL_GPL(pci_load_saved_state);
1985
1986/**
1987 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1988 *				   and free the memory allocated for it.
1989 * @dev: PCI device that we're dealing with
1990 * @state: Pointer to saved state returned from pci_store_saved_state()
1991 */
1992int pci_load_and_free_saved_state(struct pci_dev *dev,
1993				  struct pci_saved_state **state)
1994{
1995	int ret = pci_load_saved_state(dev, *state);
1996	kfree(*state);
1997	*state = NULL;
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2001
2002int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2003{
2004	return pci_enable_resources(dev, bars);
2005}
2006
2007static int do_pci_enable_device(struct pci_dev *dev, int bars)
2008{
2009	int err;
2010	struct pci_dev *bridge;
2011	u16 cmd;
2012	u8 pin;
2013
2014	err = pci_set_power_state(dev, PCI_D0);
2015	if (err < 0 && err != -EIO)
2016		return err;
2017
2018	bridge = pci_upstream_bridge(dev);
2019	if (bridge)
2020		pcie_aspm_powersave_config_link(bridge);
2021
2022	err = pcibios_enable_device(dev, bars);
2023	if (err < 0)
2024		return err;
2025	pci_fixup_device(pci_fixup_enable, dev);
2026
2027	if (dev->msi_enabled || dev->msix_enabled)
2028		return 0;
2029
2030	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2031	if (pin) {
2032		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2033		if (cmd & PCI_COMMAND_INTX_DISABLE)
2034			pci_write_config_word(dev, PCI_COMMAND,
2035					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2036	}
2037
2038	return 0;
2039}
2040
2041/**
2042 * pci_reenable_device - Resume abandoned device
2043 * @dev: PCI device to be resumed
2044 *
2045 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2046 * to be called by normal code, write proper resume handler and use it instead.
2047 */
2048int pci_reenable_device(struct pci_dev *dev)
2049{
2050	if (pci_is_enabled(dev))
2051		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2052	return 0;
2053}
2054EXPORT_SYMBOL(pci_reenable_device);
2055
2056static void pci_enable_bridge(struct pci_dev *dev)
2057{
2058	struct pci_dev *bridge;
2059	int retval;
2060
2061	bridge = pci_upstream_bridge(dev);
2062	if (bridge)
2063		pci_enable_bridge(bridge);
2064
2065	if (pci_is_enabled(dev)) {
2066		if (!dev->is_busmaster)
2067			pci_set_master(dev);
2068		return;
2069	}
2070
2071	retval = pci_enable_device(dev);
2072	if (retval)
2073		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2074			retval);
2075	pci_set_master(dev);
2076}
2077
2078static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2079{
2080	struct pci_dev *bridge;
2081	int err;
2082	int i, bars = 0;
2083
2084	/*
2085	 * Power state could be unknown at this point, either due to a fresh
2086	 * boot or a device removal call.  So get the current power state
2087	 * so that things like MSI message writing will behave as expected
2088	 * (e.g. if the device really is in D0 at enable time).
2089	 */
2090	pci_update_current_state(dev, dev->current_state);
 
 
 
 
2091
2092	if (atomic_inc_return(&dev->enable_cnt) > 1)
2093		return 0;		/* already enabled */
2094
2095	bridge = pci_upstream_bridge(dev);
2096	if (bridge)
2097		pci_enable_bridge(bridge);
2098
2099	/* only skip sriov related */
2100	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2101		if (dev->resource[i].flags & flags)
2102			bars |= (1 << i);
2103	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2104		if (dev->resource[i].flags & flags)
2105			bars |= (1 << i);
2106
2107	err = do_pci_enable_device(dev, bars);
2108	if (err < 0)
2109		atomic_dec(&dev->enable_cnt);
2110	return err;
2111}
2112
2113/**
2114 * pci_enable_device_io - Initialize a device for use with IO space
2115 * @dev: PCI device to be initialized
2116 *
2117 * Initialize device before it's used by a driver. Ask low-level code
2118 * to enable I/O resources. Wake up the device if it was suspended.
2119 * Beware, this function can fail.
2120 */
2121int pci_enable_device_io(struct pci_dev *dev)
2122{
2123	return pci_enable_device_flags(dev, IORESOURCE_IO);
2124}
2125EXPORT_SYMBOL(pci_enable_device_io);
2126
2127/**
2128 * pci_enable_device_mem - Initialize a device for use with Memory space
2129 * @dev: PCI device to be initialized
2130 *
2131 * Initialize device before it's used by a driver. Ask low-level code
2132 * to enable Memory resources. Wake up the device if it was suspended.
2133 * Beware, this function can fail.
2134 */
2135int pci_enable_device_mem(struct pci_dev *dev)
2136{
2137	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2138}
2139EXPORT_SYMBOL(pci_enable_device_mem);
2140
2141/**
2142 * pci_enable_device - Initialize device before it's used by a driver.
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O and memory. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 *
2149 * Note we don't actually enable the device many times if we call
2150 * this function repeatedly (we just increment the count).
2151 */
2152int pci_enable_device(struct pci_dev *dev)
2153{
2154	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2155}
2156EXPORT_SYMBOL(pci_enable_device);
2157
2158/*
2159 * pcibios_device_add - provide arch specific hooks when adding device dev
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160 * @dev: the PCI device being added
2161 *
2162 * Permits the platform to provide architecture specific functionality when
2163 * devices are added. This is the default implementation. Architecture
2164 * implementations can override this.
2165 */
2166int __weak pcibios_device_add(struct pci_dev *dev)
2167{
2168	return 0;
2169}
2170
2171/**
2172 * pcibios_release_device - provide arch specific hooks when releasing
2173 *			    device dev
2174 * @dev: the PCI device being released
2175 *
2176 * Permits the platform to provide architecture specific functionality when
2177 * devices are released. This is the default implementation. Architecture
2178 * implementations can override this.
2179 */
2180void __weak pcibios_release_device(struct pci_dev *dev) {}
2181
2182/**
2183 * pcibios_disable_device - disable arch specific PCI resources for device dev
2184 * @dev: the PCI device to disable
2185 *
2186 * Disables architecture specific PCI resources for the device. This
2187 * is the default implementation. Architecture implementations can
2188 * override this.
2189 */
2190void __weak pcibios_disable_device(struct pci_dev *dev) {}
2191
 
 
 
 
 
 
 
 
 
 
 
2192static void do_pci_disable_device(struct pci_dev *dev)
2193{
2194	u16 pci_command;
2195
2196	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2197	if (pci_command & PCI_COMMAND_MASTER) {
2198		pci_command &= ~PCI_COMMAND_MASTER;
2199		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2200	}
2201
2202	pcibios_disable_device(dev);
2203}
2204
2205/**
2206 * pci_disable_enabled_device - Disable device without updating enable_cnt
2207 * @dev: PCI device to disable
2208 *
2209 * NOTE: This function is a backend of PCI power management routines and is
2210 * not supposed to be called drivers.
2211 */
2212void pci_disable_enabled_device(struct pci_dev *dev)
2213{
2214	if (pci_is_enabled(dev))
2215		do_pci_disable_device(dev);
2216}
2217
2218/**
2219 * pci_disable_device - Disable PCI device after use
2220 * @dev: PCI device to be disabled
2221 *
2222 * Signal to the system that the PCI device is not in use by the system
2223 * anymore.  This only involves disabling PCI bus-mastering, if active.
2224 *
2225 * Note we don't actually disable the device until all callers of
2226 * pci_enable_device() have called pci_disable_device().
2227 */
2228void pci_disable_device(struct pci_dev *dev)
2229{
2230	struct pci_devres *dr;
2231
2232	dr = find_pci_dr(dev);
2233	if (dr)
2234		dr->enabled = 0;
2235
2236	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2237		      "disabling already-disabled device");
2238
2239	if (atomic_dec_return(&dev->enable_cnt) != 0)
2240		return;
2241
2242	do_pci_disable_device(dev);
2243
2244	dev->is_busmaster = 0;
2245}
2246EXPORT_SYMBOL(pci_disable_device);
2247
2248/**
2249 * pcibios_set_pcie_reset_state - set reset state for device dev
2250 * @dev: the PCIe device reset
2251 * @state: Reset state to enter into
2252 *
2253 * Set the PCIe reset state for the device. This is the default
2254 * implementation. Architecture implementations can override this.
2255 */
2256int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2257					enum pcie_reset_state state)
2258{
2259	return -EINVAL;
2260}
2261
2262/**
2263 * pci_set_pcie_reset_state - set reset state for device dev
2264 * @dev: the PCIe device reset
2265 * @state: Reset state to enter into
2266 *
2267 * Sets the PCI reset state for the device.
2268 */
2269int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2270{
2271	return pcibios_set_pcie_reset_state(dev, state);
2272}
2273EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2274
2275#ifdef CONFIG_PCIEAER
2276void pcie_clear_device_status(struct pci_dev *dev)
2277{
2278	u16 sta;
2279
2280	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2281	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2282}
2283#endif
2284
2285/**
2286 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2287 * @dev: PCIe root port or event collector.
2288 */
2289void pcie_clear_root_pme_status(struct pci_dev *dev)
2290{
2291	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2292}
2293
2294/**
2295 * pci_check_pme_status - Check if given device has generated PME.
2296 * @dev: Device to check.
2297 *
2298 * Check the PME status of the device and if set, clear it and clear PME enable
2299 * (if set).  Return 'true' if PME status and PME enable were both set or
2300 * 'false' otherwise.
2301 */
2302bool pci_check_pme_status(struct pci_dev *dev)
2303{
2304	int pmcsr_pos;
2305	u16 pmcsr;
2306	bool ret = false;
2307
2308	if (!dev->pm_cap)
2309		return false;
2310
2311	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2312	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2313	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2314		return false;
2315
2316	/* Clear PME status. */
2317	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2318	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2319		/* Disable PME to avoid interrupt flood. */
2320		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321		ret = true;
2322	}
2323
2324	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2325
2326	return ret;
2327}
2328
2329/**
2330 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2331 * @dev: Device to handle.
2332 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2333 *
2334 * Check if @dev has generated PME and queue a resume request for it in that
2335 * case.
2336 */
2337static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2338{
2339	if (pme_poll_reset && dev->pme_poll)
2340		dev->pme_poll = false;
2341
2342	if (pci_check_pme_status(dev)) {
2343		pci_wakeup_event(dev);
2344		pm_request_resume(&dev->dev);
2345	}
2346	return 0;
2347}
2348
2349/**
2350 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2351 * @bus: Top bus of the subtree to walk.
2352 */
2353void pci_pme_wakeup_bus(struct pci_bus *bus)
2354{
2355	if (bus)
2356		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2357}
2358
2359
2360/**
2361 * pci_pme_capable - check the capability of PCI device to generate PME#
2362 * @dev: PCI device to handle.
2363 * @state: PCI state from which device will issue PME#.
2364 */
2365bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2366{
2367	if (!dev->pm_cap)
2368		return false;
2369
2370	return !!(dev->pme_support & (1 << state));
2371}
2372EXPORT_SYMBOL(pci_pme_capable);
2373
2374static void pci_pme_list_scan(struct work_struct *work)
2375{
2376	struct pci_pme_device *pme_dev, *n;
2377
2378	mutex_lock(&pci_pme_list_mutex);
2379	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2380		struct pci_dev *pdev = pme_dev->dev;
2381
2382		if (pdev->pme_poll) {
2383			struct pci_dev *bridge = pdev->bus->self;
2384			struct device *dev = &pdev->dev;
2385			struct device *bdev = bridge ? &bridge->dev : NULL;
2386			int bref = 0;
2387
 
2388			/*
2389			 * If we have a bridge, it should be in an active/D0
2390			 * state or the configuration space of subordinate
2391			 * devices may not be accessible or stable over the
2392			 * course of the call.
2393			 */
2394			if (bdev) {
2395				bref = pm_runtime_get_if_active(bdev);
2396				if (!bref)
2397					continue;
2398
2399				if (bridge->current_state != PCI_D0)
2400					goto put_bridge;
2401			}
2402
2403			/*
2404			 * The device itself should be suspended but config
2405			 * space must be accessible, therefore it cannot be in
2406			 * D3cold.
2407			 */
2408			if (pm_runtime_suspended(dev) &&
2409			    pdev->current_state != PCI_D3cold)
2410				pci_pme_wakeup(pdev, NULL);
2411
2412put_bridge:
2413			if (bref > 0)
2414				pm_runtime_put(bdev);
2415		} else {
2416			list_del(&pme_dev->list);
2417			kfree(pme_dev);
2418		}
2419	}
2420	if (!list_empty(&pci_pme_list))
2421		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2422				   msecs_to_jiffies(PME_TIMEOUT));
2423	mutex_unlock(&pci_pme_list_mutex);
2424}
2425
2426static void __pci_pme_active(struct pci_dev *dev, bool enable)
2427{
2428	u16 pmcsr;
2429
2430	if (!dev->pme_support)
2431		return;
2432
2433	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2434	/* Clear PME_Status by writing 1 to it and enable PME# */
2435	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2436	if (!enable)
2437		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2438
2439	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2440}
2441
2442/**
2443 * pci_pme_restore - Restore PME configuration after config space restore.
2444 * @dev: PCI device to update.
2445 */
2446void pci_pme_restore(struct pci_dev *dev)
2447{
2448	u16 pmcsr;
2449
2450	if (!dev->pme_support)
2451		return;
2452
2453	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2454	if (dev->wakeup_prepared) {
2455		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2456		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2457	} else {
2458		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2459		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2460	}
2461	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462}
2463
2464/**
2465 * pci_pme_active - enable or disable PCI device's PME# function
2466 * @dev: PCI device to handle.
2467 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2468 *
2469 * The caller must verify that the device is capable of generating PME# before
2470 * calling this function with @enable equal to 'true'.
2471 */
2472void pci_pme_active(struct pci_dev *dev, bool enable)
2473{
2474	__pci_pme_active(dev, enable);
2475
2476	/*
2477	 * PCI (as opposed to PCIe) PME requires that the device have
2478	 * its PME# line hooked up correctly. Not all hardware vendors
2479	 * do this, so the PME never gets delivered and the device
2480	 * remains asleep. The easiest way around this is to
2481	 * periodically walk the list of suspended devices and check
2482	 * whether any have their PME flag set. The assumption is that
2483	 * we'll wake up often enough anyway that this won't be a huge
2484	 * hit, and the power savings from the devices will still be a
2485	 * win.
2486	 *
2487	 * Although PCIe uses in-band PME message instead of PME# line
2488	 * to report PME, PME does not work for some PCIe devices in
2489	 * reality.  For example, there are devices that set their PME
2490	 * status bits, but don't really bother to send a PME message;
2491	 * there are PCI Express Root Ports that don't bother to
2492	 * trigger interrupts when they receive PME messages from the
2493	 * devices below.  So PME poll is used for PCIe devices too.
2494	 */
2495
2496	if (dev->pme_poll) {
2497		struct pci_pme_device *pme_dev;
2498		if (enable) {
2499			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2500					  GFP_KERNEL);
2501			if (!pme_dev) {
2502				pci_warn(dev, "can't enable PME#\n");
2503				return;
2504			}
2505			pme_dev->dev = dev;
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_add(&pme_dev->list, &pci_pme_list);
2508			if (list_is_singular(&pci_pme_list))
2509				queue_delayed_work(system_freezable_wq,
2510						   &pci_pme_work,
2511						   msecs_to_jiffies(PME_TIMEOUT));
2512			mutex_unlock(&pci_pme_list_mutex);
2513		} else {
2514			mutex_lock(&pci_pme_list_mutex);
2515			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2516				if (pme_dev->dev == dev) {
2517					list_del(&pme_dev->list);
2518					kfree(pme_dev);
2519					break;
2520				}
2521			}
2522			mutex_unlock(&pci_pme_list_mutex);
2523		}
2524	}
2525
2526	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2527}
2528EXPORT_SYMBOL(pci_pme_active);
2529
2530/**
2531 * __pci_enable_wake - enable PCI device as wakeup event source
2532 * @dev: PCI device affected
2533 * @state: PCI state from which device will issue wakeup events
2534 * @enable: True to enable event generation; false to disable
2535 *
2536 * This enables the device as a wakeup event source, or disables it.
2537 * When such events involves platform-specific hooks, those hooks are
2538 * called automatically by this routine.
2539 *
2540 * Devices with legacy power management (no standard PCI PM capabilities)
2541 * always require such platform hooks.
2542 *
2543 * RETURN VALUE:
2544 * 0 is returned on success
2545 * -EINVAL is returned if device is not supposed to wake up the system
2546 * Error code depending on the platform is returned if both the platform and
2547 * the native mechanism fail to enable the generation of wake-up events
2548 */
2549static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2550{
2551	int ret = 0;
2552
2553	/*
2554	 * Bridges that are not power-manageable directly only signal
2555	 * wakeup on behalf of subordinate devices which is set up
2556	 * elsewhere, so skip them. However, bridges that are
2557	 * power-manageable may signal wakeup for themselves (for example,
2558	 * on a hotplug event) and they need to be covered here.
2559	 */
2560	if (!pci_power_manageable(dev))
2561		return 0;
2562
2563	/* Don't do the same thing twice in a row for one device. */
2564	if (!!enable == !!dev->wakeup_prepared)
2565		return 0;
2566
2567	/*
2568	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2569	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2570	 * enable.  To disable wake-up we call the platform first, for symmetry.
2571	 */
2572
2573	if (enable) {
2574		int error;
2575
2576		/*
2577		 * Enable PME signaling if the device can signal PME from
2578		 * D3cold regardless of whether or not it can signal PME from
2579		 * the current target state, because that will allow it to
2580		 * signal PME when the hierarchy above it goes into D3cold and
2581		 * the device itself ends up in D3cold as a result of that.
2582		 */
2583		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2584			pci_pme_active(dev, true);
2585		else
2586			ret = 1;
2587		error = platform_pci_set_wakeup(dev, true);
2588		if (ret)
2589			ret = error;
2590		if (!ret)
2591			dev->wakeup_prepared = true;
2592	} else {
2593		platform_pci_set_wakeup(dev, false);
2594		pci_pme_active(dev, false);
2595		dev->wakeup_prepared = false;
2596	}
2597
2598	return ret;
2599}
2600
2601/**
2602 * pci_enable_wake - change wakeup settings for a PCI device
2603 * @pci_dev: Target device
2604 * @state: PCI state from which device will issue wakeup events
2605 * @enable: Whether or not to enable event generation
2606 *
2607 * If @enable is set, check device_may_wakeup() for the device before calling
2608 * __pci_enable_wake() for it.
2609 */
2610int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2611{
2612	if (enable && !device_may_wakeup(&pci_dev->dev))
2613		return -EINVAL;
2614
2615	return __pci_enable_wake(pci_dev, state, enable);
2616}
2617EXPORT_SYMBOL(pci_enable_wake);
2618
2619/**
2620 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2621 * @dev: PCI device to prepare
2622 * @enable: True to enable wake-up event generation; false to disable
2623 *
2624 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2625 * and this function allows them to set that up cleanly - pci_enable_wake()
2626 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2627 * ordering constraints.
2628 *
2629 * This function only returns error code if the device is not allowed to wake
2630 * up the system from sleep or it is not capable of generating PME# from both
2631 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2632 */
2633int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2634{
2635	return pci_pme_capable(dev, PCI_D3cold) ?
2636			pci_enable_wake(dev, PCI_D3cold, enable) :
2637			pci_enable_wake(dev, PCI_D3hot, enable);
2638}
2639EXPORT_SYMBOL(pci_wake_from_d3);
2640
2641/**
2642 * pci_target_state - find an appropriate low power state for a given PCI dev
2643 * @dev: PCI device
2644 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2645 *
2646 * Use underlying platform code to find a supported low power state for @dev.
2647 * If the platform can't manage @dev, return the deepest state from which it
2648 * can generate wake events, based on any available PME info.
2649 */
2650static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2651{
 
 
2652	if (platform_pci_power_manageable(dev)) {
2653		/*
2654		 * Call the platform to find the target state for the device.
2655		 */
2656		pci_power_t state = platform_pci_choose_state(dev);
2657
2658		switch (state) {
2659		case PCI_POWER_ERROR:
2660		case PCI_UNKNOWN:
2661			return PCI_D3hot;
2662
2663		case PCI_D1:
2664		case PCI_D2:
2665			if (pci_no_d1d2(dev))
2666				return PCI_D3hot;
 
 
 
2667		}
2668
2669		return state;
2670	}
2671
 
 
 
2672	/*
2673	 * If the device is in D3cold even though it's not power-manageable by
2674	 * the platform, it may have been powered down by non-standard means.
2675	 * Best to let it slumber.
2676	 */
2677	if (dev->current_state == PCI_D3cold)
2678		return PCI_D3cold;
2679	else if (!dev->pm_cap)
2680		return PCI_D0;
2681
2682	if (wakeup && dev->pme_support) {
2683		pci_power_t state = PCI_D3hot;
2684
 
2685		/*
2686		 * Find the deepest state from which the device can generate
2687		 * PME#.
2688		 */
2689		while (state && !(dev->pme_support & (1 << state)))
2690			state--;
2691
2692		if (state)
2693			return state;
2694		else if (dev->pme_support & 1)
2695			return PCI_D0;
2696	}
2697
2698	return PCI_D3hot;
2699}
2700
2701/**
2702 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2703 *			  into a sleep state
2704 * @dev: Device to handle.
2705 *
2706 * Choose the power state appropriate for the device depending on whether
2707 * it can wake up the system and/or is power manageable by the platform
2708 * (PCI_D3hot is the default) and put the device into that state.
2709 */
2710int pci_prepare_to_sleep(struct pci_dev *dev)
2711{
2712	bool wakeup = device_may_wakeup(&dev->dev);
2713	pci_power_t target_state = pci_target_state(dev, wakeup);
2714	int error;
2715
2716	if (target_state == PCI_POWER_ERROR)
2717		return -EIO;
2718
2719	pci_enable_wake(dev, target_state, wakeup);
2720
2721	error = pci_set_power_state(dev, target_state);
2722
2723	if (error)
2724		pci_enable_wake(dev, target_state, false);
2725
2726	return error;
2727}
2728EXPORT_SYMBOL(pci_prepare_to_sleep);
2729
2730/**
2731 * pci_back_from_sleep - turn PCI device on during system-wide transition
2732 *			 into working state
2733 * @dev: Device to handle.
2734 *
2735 * Disable device's system wake-up capability and put it into D0.
2736 */
2737int pci_back_from_sleep(struct pci_dev *dev)
2738{
2739	int ret = pci_set_power_state(dev, PCI_D0);
2740
2741	if (ret)
2742		return ret;
2743
2744	pci_enable_wake(dev, PCI_D0, false);
2745	return 0;
2746}
2747EXPORT_SYMBOL(pci_back_from_sleep);
2748
2749/**
2750 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2751 * @dev: PCI device being suspended.
2752 *
2753 * Prepare @dev to generate wake-up events at run time and put it into a low
2754 * power state.
2755 */
2756int pci_finish_runtime_suspend(struct pci_dev *dev)
2757{
2758	pci_power_t target_state;
2759	int error;
2760
2761	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2762	if (target_state == PCI_POWER_ERROR)
2763		return -EIO;
2764
 
 
2765	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2766
2767	error = pci_set_power_state(dev, target_state);
2768
2769	if (error)
2770		pci_enable_wake(dev, target_state, false);
 
 
2771
2772	return error;
2773}
2774
2775/**
2776 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2777 * @dev: Device to check.
2778 *
2779 * Return true if the device itself is capable of generating wake-up events
2780 * (through the platform or using the native PCIe PME) or if the device supports
2781 * PME and one of its upstream bridges can generate wake-up events.
2782 */
2783bool pci_dev_run_wake(struct pci_dev *dev)
2784{
2785	struct pci_bus *bus = dev->bus;
2786
2787	if (!dev->pme_support)
2788		return false;
2789
2790	/* PME-capable in principle, but not from the target power state */
2791	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2792		return false;
2793
2794	if (device_can_wakeup(&dev->dev))
2795		return true;
2796
2797	while (bus->parent) {
2798		struct pci_dev *bridge = bus->self;
2799
2800		if (device_can_wakeup(&bridge->dev))
2801			return true;
2802
2803		bus = bus->parent;
2804	}
2805
2806	/* We have reached the root bus. */
2807	if (bus->bridge)
2808		return device_can_wakeup(bus->bridge);
2809
2810	return false;
2811}
2812EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2813
2814/**
2815 * pci_dev_need_resume - Check if it is necessary to resume the device.
2816 * @pci_dev: Device to check.
2817 *
2818 * Return 'true' if the device is not runtime-suspended or it has to be
2819 * reconfigured due to wakeup settings difference between system and runtime
2820 * suspend, or the current power state of it is not suitable for the upcoming
2821 * (system-wide) transition.
2822 */
2823bool pci_dev_need_resume(struct pci_dev *pci_dev)
2824{
2825	struct device *dev = &pci_dev->dev;
2826	pci_power_t target_state;
2827
2828	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2829		return true;
2830
2831	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2832
2833	/*
2834	 * If the earlier platform check has not triggered, D3cold is just power
2835	 * removal on top of D3hot, so no need to resume the device in that
2836	 * case.
2837	 */
2838	return target_state != pci_dev->current_state &&
2839		target_state != PCI_D3cold &&
2840		pci_dev->current_state != PCI_D3hot;
2841}
2842
2843/**
2844 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2845 * @pci_dev: Device to check.
2846 *
2847 * If the device is suspended and it is not configured for system wakeup,
2848 * disable PME for it to prevent it from waking up the system unnecessarily.
2849 *
2850 * Note that if the device's power state is D3cold and the platform check in
2851 * pci_dev_need_resume() has not triggered, the device's configuration need not
2852 * be changed.
2853 */
2854void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2855{
2856	struct device *dev = &pci_dev->dev;
2857
2858	spin_lock_irq(&dev->power.lock);
2859
2860	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2861	    pci_dev->current_state < PCI_D3cold)
2862		__pci_pme_active(pci_dev, false);
2863
2864	spin_unlock_irq(&dev->power.lock);
2865}
2866
2867/**
2868 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2869 * @pci_dev: Device to handle.
2870 *
2871 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2872 * it might have been disabled during the prepare phase of system suspend if
2873 * the device was not configured for system wakeup.
2874 */
2875void pci_dev_complete_resume(struct pci_dev *pci_dev)
2876{
2877	struct device *dev = &pci_dev->dev;
2878
2879	if (!pci_dev_run_wake(pci_dev))
2880		return;
2881
2882	spin_lock_irq(&dev->power.lock);
2883
2884	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2885		__pci_pme_active(pci_dev, true);
2886
2887	spin_unlock_irq(&dev->power.lock);
2888}
2889
2890/**
2891 * pci_choose_state - Choose the power state of a PCI device.
2892 * @dev: Target PCI device.
2893 * @state: Target state for the whole system.
2894 *
2895 * Returns PCI power state suitable for @dev and @state.
2896 */
2897pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2898{
2899	if (state.event == PM_EVENT_ON)
2900		return PCI_D0;
2901
2902	return pci_target_state(dev, false);
2903}
2904EXPORT_SYMBOL(pci_choose_state);
2905
2906void pci_config_pm_runtime_get(struct pci_dev *pdev)
2907{
2908	struct device *dev = &pdev->dev;
2909	struct device *parent = dev->parent;
2910
2911	if (parent)
2912		pm_runtime_get_sync(parent);
2913	pm_runtime_get_noresume(dev);
2914	/*
2915	 * pdev->current_state is set to PCI_D3cold during suspending,
2916	 * so wait until suspending completes
2917	 */
2918	pm_runtime_barrier(dev);
2919	/*
2920	 * Only need to resume devices in D3cold, because config
2921	 * registers are still accessible for devices suspended but
2922	 * not in D3cold.
2923	 */
2924	if (pdev->current_state == PCI_D3cold)
2925		pm_runtime_resume(dev);
2926}
2927
2928void pci_config_pm_runtime_put(struct pci_dev *pdev)
2929{
2930	struct device *dev = &pdev->dev;
2931	struct device *parent = dev->parent;
2932
2933	pm_runtime_put(dev);
2934	if (parent)
2935		pm_runtime_put_sync(parent);
2936}
2937
2938static const struct dmi_system_id bridge_d3_blacklist[] = {
2939#ifdef CONFIG_X86
2940	{
2941		/*
2942		 * Gigabyte X299 root port is not marked as hotplug capable
2943		 * which allows Linux to power manage it.  However, this
2944		 * confuses the BIOS SMI handler so don't power manage root
2945		 * ports on that system.
2946		 */
2947		.ident = "X299 DESIGNARE EX-CF",
2948		.matches = {
2949			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2950			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951		},
2952	},
2953	{
2954		/*
2955		 * Downstream device is not accessible after putting a root port
2956		 * into D3cold and back into D0 on Elo Continental Z2 board
2957		 */
2958		.ident = "Elo Continental Z2",
2959		.matches = {
2960			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2961			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2962			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2963		},
2964	},
2965#endif
2966	{ }
2967};
2968
2969/**
2970 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2971 * @bridge: Bridge to check
2972 *
2973 * This function checks if it is possible to move the bridge to D3.
2974 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2975 */
2976bool pci_bridge_d3_possible(struct pci_dev *bridge)
2977{
2978	if (!pci_is_pcie(bridge))
2979		return false;
2980
2981	switch (pci_pcie_type(bridge)) {
2982	case PCI_EXP_TYPE_ROOT_PORT:
2983	case PCI_EXP_TYPE_UPSTREAM:
2984	case PCI_EXP_TYPE_DOWNSTREAM:
2985		if (pci_bridge_d3_disable)
2986			return false;
2987
2988		/*
2989		 * Hotplug ports handled by firmware in System Management Mode
2990		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2991		 */
2992		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2993			return false;
2994
2995		if (pci_bridge_d3_force)
2996			return true;
2997
2998		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2999		if (bridge->is_thunderbolt)
3000			return true;
3001
3002		/* Platform might know better if the bridge supports D3 */
3003		if (platform_pci_bridge_d3(bridge))
3004			return true;
3005
3006		/*
3007		 * Hotplug ports handled natively by the OS were not validated
3008		 * by vendors for runtime D3 at least until 2018 because there
3009		 * was no OS support.
3010		 */
3011		if (bridge->is_hotplug_bridge)
3012			return false;
3013
3014		if (dmi_check_system(bridge_d3_blacklist))
3015			return false;
3016
3017		/*
3018		 * It should be safe to put PCIe ports from 2015 or newer
3019		 * to D3.
3020		 */
3021		if (dmi_get_bios_year() >= 2015)
3022			return true;
3023		break;
3024	}
3025
3026	return false;
3027}
3028
3029static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3030{
3031	bool *d3cold_ok = data;
3032
3033	if (/* The device needs to be allowed to go D3cold ... */
3034	    dev->no_d3cold || !dev->d3cold_allowed ||
3035
3036	    /* ... and if it is wakeup capable to do so from D3cold. */
3037	    (device_may_wakeup(&dev->dev) &&
3038	     !pci_pme_capable(dev, PCI_D3cold)) ||
3039
3040	    /* If it is a bridge it must be allowed to go to D3. */
3041	    !pci_power_manageable(dev))
3042
3043		*d3cold_ok = false;
3044
3045	return !*d3cold_ok;
3046}
3047
3048/*
3049 * pci_bridge_d3_update - Update bridge D3 capabilities
3050 * @dev: PCI device which is changed
3051 *
3052 * Update upstream bridge PM capabilities accordingly depending on if the
3053 * device PM configuration was changed or the device is being removed.  The
3054 * change is also propagated upstream.
3055 */
3056void pci_bridge_d3_update(struct pci_dev *dev)
3057{
3058	bool remove = !device_is_registered(&dev->dev);
3059	struct pci_dev *bridge;
3060	bool d3cold_ok = true;
3061
3062	bridge = pci_upstream_bridge(dev);
3063	if (!bridge || !pci_bridge_d3_possible(bridge))
3064		return;
3065
3066	/*
3067	 * If D3 is currently allowed for the bridge, removing one of its
3068	 * children won't change that.
3069	 */
3070	if (remove && bridge->bridge_d3)
3071		return;
3072
3073	/*
3074	 * If D3 is currently allowed for the bridge and a child is added or
3075	 * changed, disallowance of D3 can only be caused by that child, so
3076	 * we only need to check that single device, not any of its siblings.
3077	 *
3078	 * If D3 is currently not allowed for the bridge, checking the device
3079	 * first may allow us to skip checking its siblings.
3080	 */
3081	if (!remove)
3082		pci_dev_check_d3cold(dev, &d3cold_ok);
3083
3084	/*
3085	 * If D3 is currently not allowed for the bridge, this may be caused
3086	 * either by the device being changed/removed or any of its siblings,
3087	 * so we need to go through all children to find out if one of them
3088	 * continues to block D3.
3089	 */
3090	if (d3cold_ok && !bridge->bridge_d3)
3091		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3092			     &d3cold_ok);
3093
3094	if (bridge->bridge_d3 != d3cold_ok) {
3095		bridge->bridge_d3 = d3cold_ok;
3096		/* Propagate change to upstream bridges */
3097		pci_bridge_d3_update(bridge);
3098	}
3099}
3100
3101/**
3102 * pci_d3cold_enable - Enable D3cold for device
3103 * @dev: PCI device to handle
3104 *
3105 * This function can be used in drivers to enable D3cold from the device
3106 * they handle.  It also updates upstream PCI bridge PM capabilities
3107 * accordingly.
3108 */
3109void pci_d3cold_enable(struct pci_dev *dev)
3110{
3111	if (dev->no_d3cold) {
3112		dev->no_d3cold = false;
3113		pci_bridge_d3_update(dev);
3114	}
3115}
3116EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3117
3118/**
3119 * pci_d3cold_disable - Disable D3cold for device
3120 * @dev: PCI device to handle
3121 *
3122 * This function can be used in drivers to disable D3cold from the device
3123 * they handle.  It also updates upstream PCI bridge PM capabilities
3124 * accordingly.
3125 */
3126void pci_d3cold_disable(struct pci_dev *dev)
3127{
3128	if (!dev->no_d3cold) {
3129		dev->no_d3cold = true;
3130		pci_bridge_d3_update(dev);
3131	}
3132}
3133EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3134
3135/**
3136 * pci_pm_init - Initialize PM functions of given PCI device
3137 * @dev: PCI device to handle.
3138 */
3139void pci_pm_init(struct pci_dev *dev)
3140{
3141	int pm;
3142	u16 status;
3143	u16 pmc;
3144
3145	pm_runtime_forbid(&dev->dev);
3146	pm_runtime_set_active(&dev->dev);
3147	pm_runtime_enable(&dev->dev);
3148	device_enable_async_suspend(&dev->dev);
3149	dev->wakeup_prepared = false;
3150
3151	dev->pm_cap = 0;
3152	dev->pme_support = 0;
3153
3154	/* find PCI PM capability in list */
3155	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3156	if (!pm)
3157		return;
3158	/* Check device's ability to generate PME# */
3159	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3160
3161	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3162		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3163			pmc & PCI_PM_CAP_VER_MASK);
3164		return;
3165	}
3166
3167	dev->pm_cap = pm;
3168	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3169	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3170	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3171	dev->d3cold_allowed = true;
3172
3173	dev->d1_support = false;
3174	dev->d2_support = false;
3175	if (!pci_no_d1d2(dev)) {
3176		if (pmc & PCI_PM_CAP_D1)
3177			dev->d1_support = true;
3178		if (pmc & PCI_PM_CAP_D2)
3179			dev->d2_support = true;
3180
3181		if (dev->d1_support || dev->d2_support)
3182			pci_info(dev, "supports%s%s\n",
3183				   dev->d1_support ? " D1" : "",
3184				   dev->d2_support ? " D2" : "");
3185	}
3186
3187	pmc &= PCI_PM_CAP_PME_MASK;
3188	if (pmc) {
3189		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3190			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3191			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3192			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3193			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3194			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3195		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3196		dev->pme_poll = true;
3197		/*
3198		 * Make device's PM flags reflect the wake-up capability, but
3199		 * let the user space enable it to wake up the system as needed.
3200		 */
3201		device_set_wakeup_capable(&dev->dev, true);
3202		/* Disable the PME# generation functionality */
3203		pci_pme_active(dev, false);
3204	}
3205
3206	pci_read_config_word(dev, PCI_STATUS, &status);
3207	if (status & PCI_STATUS_IMM_READY)
3208		dev->imm_ready = 1;
3209}
3210
3211static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3212{
3213	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3214
3215	switch (prop) {
3216	case PCI_EA_P_MEM:
3217	case PCI_EA_P_VF_MEM:
3218		flags |= IORESOURCE_MEM;
3219		break;
3220	case PCI_EA_P_MEM_PREFETCH:
3221	case PCI_EA_P_VF_MEM_PREFETCH:
3222		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3223		break;
3224	case PCI_EA_P_IO:
3225		flags |= IORESOURCE_IO;
3226		break;
3227	default:
3228		return 0;
3229	}
3230
3231	return flags;
3232}
3233
3234static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3235					    u8 prop)
3236{
3237	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3238		return &dev->resource[bei];
3239#ifdef CONFIG_PCI_IOV
3240	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3241		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3242		return &dev->resource[PCI_IOV_RESOURCES +
3243				      bei - PCI_EA_BEI_VF_BAR0];
3244#endif
3245	else if (bei == PCI_EA_BEI_ROM)
3246		return &dev->resource[PCI_ROM_RESOURCE];
3247	else
3248		return NULL;
3249}
3250
3251/* Read an Enhanced Allocation (EA) entry */
3252static int pci_ea_read(struct pci_dev *dev, int offset)
3253{
3254	struct resource *res;
3255	const char *res_name;
3256	int ent_size, ent_offset = offset;
3257	resource_size_t start, end;
3258	unsigned long flags;
3259	u32 dw0, bei, base, max_offset;
3260	u8 prop;
3261	bool support_64 = (sizeof(resource_size_t) >= 8);
3262
3263	pci_read_config_dword(dev, ent_offset, &dw0);
3264	ent_offset += 4;
3265
3266	/* Entry size field indicates DWORDs after 1st */
3267	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3268
3269	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3270		goto out;
3271
3272	bei = FIELD_GET(PCI_EA_BEI, dw0);
3273	prop = FIELD_GET(PCI_EA_PP, dw0);
3274
3275	/*
3276	 * If the Property is in the reserved range, try the Secondary
3277	 * Property instead.
3278	 */
3279	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3280		prop = FIELD_GET(PCI_EA_SP, dw0);
3281	if (prop > PCI_EA_P_BRIDGE_IO)
3282		goto out;
3283
3284	res = pci_ea_get_resource(dev, bei, prop);
3285	res_name = pci_resource_name(dev, bei);
3286	if (!res) {
3287		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3288		goto out;
3289	}
3290
3291	flags = pci_ea_flags(dev, prop);
3292	if (!flags) {
3293		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3294		goto out;
3295	}
3296
3297	/* Read Base */
3298	pci_read_config_dword(dev, ent_offset, &base);
3299	start = (base & PCI_EA_FIELD_MASK);
3300	ent_offset += 4;
3301
3302	/* Read MaxOffset */
3303	pci_read_config_dword(dev, ent_offset, &max_offset);
3304	ent_offset += 4;
3305
3306	/* Read Base MSBs (if 64-bit entry) */
3307	if (base & PCI_EA_IS_64) {
3308		u32 base_upper;
3309
3310		pci_read_config_dword(dev, ent_offset, &base_upper);
3311		ent_offset += 4;
3312
3313		flags |= IORESOURCE_MEM_64;
3314
3315		/* entry starts above 32-bit boundary, can't use */
3316		if (!support_64 && base_upper)
3317			goto out;
3318
3319		if (support_64)
3320			start |= ((u64)base_upper << 32);
3321	}
3322
3323	end = start + (max_offset | 0x03);
3324
3325	/* Read MaxOffset MSBs (if 64-bit entry) */
3326	if (max_offset & PCI_EA_IS_64) {
3327		u32 max_offset_upper;
3328
3329		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3330		ent_offset += 4;
3331
3332		flags |= IORESOURCE_MEM_64;
3333
3334		/* entry too big, can't use */
3335		if (!support_64 && max_offset_upper)
3336			goto out;
3337
3338		if (support_64)
3339			end += ((u64)max_offset_upper << 32);
3340	}
3341
3342	if (end < start) {
3343		pci_err(dev, "EA Entry crosses address boundary\n");
3344		goto out;
3345	}
3346
3347	if (ent_size != ent_offset - offset) {
3348		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3349			ent_size, ent_offset - offset);
3350		goto out;
3351	}
3352
3353	res->name = pci_name(dev);
3354	res->start = start;
3355	res->end = end;
3356	res->flags = flags;
3357
3358	if (bei <= PCI_EA_BEI_BAR5)
3359		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3360			 res_name, res, prop);
3361	else if (bei == PCI_EA_BEI_ROM)
3362		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363			 res_name, res, prop);
3364	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3365		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366			 res_name, res, prop);
3367	else
3368		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3369			   bei, res, prop);
3370
3371out:
3372	return offset + ent_size;
3373}
3374
3375/* Enhanced Allocation Initialization */
3376void pci_ea_init(struct pci_dev *dev)
3377{
3378	int ea;
3379	u8 num_ent;
3380	int offset;
3381	int i;
3382
3383	/* find PCI EA capability in list */
3384	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3385	if (!ea)
3386		return;
3387
3388	/* determine the number of entries */
3389	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3390					&num_ent);
3391	num_ent &= PCI_EA_NUM_ENT_MASK;
3392
3393	offset = ea + PCI_EA_FIRST_ENT;
3394
3395	/* Skip DWORD 2 for type 1 functions */
3396	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3397		offset += 4;
3398
3399	/* parse each EA entry */
3400	for (i = 0; i < num_ent; ++i)
3401		offset = pci_ea_read(dev, offset);
3402}
3403
3404static void pci_add_saved_cap(struct pci_dev *pci_dev,
3405	struct pci_cap_saved_state *new_cap)
3406{
3407	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3408}
3409
3410/**
3411 * _pci_add_cap_save_buffer - allocate buffer for saving given
3412 *			      capability registers
3413 * @dev: the PCI device
3414 * @cap: the capability to allocate the buffer for
3415 * @extended: Standard or Extended capability ID
3416 * @size: requested size of the buffer
3417 */
3418static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3419				    bool extended, unsigned int size)
3420{
3421	int pos;
3422	struct pci_cap_saved_state *save_state;
3423
3424	if (extended)
3425		pos = pci_find_ext_capability(dev, cap);
3426	else
3427		pos = pci_find_capability(dev, cap);
3428
3429	if (!pos)
3430		return 0;
3431
3432	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3433	if (!save_state)
3434		return -ENOMEM;
3435
3436	save_state->cap.cap_nr = cap;
3437	save_state->cap.cap_extended = extended;
3438	save_state->cap.size = size;
3439	pci_add_saved_cap(dev, save_state);
3440
3441	return 0;
3442}
3443
3444int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3445{
3446	return _pci_add_cap_save_buffer(dev, cap, false, size);
3447}
3448
3449int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3450{
3451	return _pci_add_cap_save_buffer(dev, cap, true, size);
3452}
3453
3454/**
3455 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3456 * @dev: the PCI device
3457 */
3458void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3459{
3460	int error;
3461
3462	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3463					PCI_EXP_SAVE_REGS * sizeof(u16));
3464	if (error)
3465		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3466
3467	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3468	if (error)
3469		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3470
3471	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3472					    2 * sizeof(u16));
3473	if (error)
3474		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3475
3476	pci_allocate_vc_save_buffers(dev);
3477}
3478
3479void pci_free_cap_save_buffers(struct pci_dev *dev)
3480{
3481	struct pci_cap_saved_state *tmp;
3482	struct hlist_node *n;
3483
3484	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3485		kfree(tmp);
3486}
3487
3488/**
3489 * pci_configure_ari - enable or disable ARI forwarding
3490 * @dev: the PCI device
3491 *
3492 * If @dev and its upstream bridge both support ARI, enable ARI in the
3493 * bridge.  Otherwise, disable ARI in the bridge.
3494 */
3495void pci_configure_ari(struct pci_dev *dev)
3496{
3497	u32 cap;
3498	struct pci_dev *bridge;
3499
3500	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3501		return;
3502
3503	bridge = dev->bus->self;
3504	if (!bridge)
3505		return;
3506
3507	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3508	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3509		return;
3510
3511	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3512		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3513					 PCI_EXP_DEVCTL2_ARI);
3514		bridge->ari_enabled = 1;
3515	} else {
3516		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3517					   PCI_EXP_DEVCTL2_ARI);
3518		bridge->ari_enabled = 0;
3519	}
3520}
3521
3522static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3523{
3524	int pos;
3525	u16 cap, ctrl;
3526
3527	pos = pdev->acs_cap;
3528	if (!pos)
3529		return false;
3530
3531	/*
3532	 * Except for egress control, capabilities are either required
3533	 * or only required if controllable.  Features missing from the
3534	 * capability field can therefore be assumed as hard-wired enabled.
3535	 */
3536	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3537	acs_flags &= (cap | PCI_ACS_EC);
3538
3539	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3540	return (ctrl & acs_flags) == acs_flags;
3541}
3542
3543/**
3544 * pci_acs_enabled - test ACS against required flags for a given device
3545 * @pdev: device to test
3546 * @acs_flags: required PCI ACS flags
3547 *
3548 * Return true if the device supports the provided flags.  Automatically
3549 * filters out flags that are not implemented on multifunction devices.
3550 *
3551 * Note that this interface checks the effective ACS capabilities of the
3552 * device rather than the actual capabilities.  For instance, most single
3553 * function endpoints are not required to support ACS because they have no
3554 * opportunity for peer-to-peer access.  We therefore return 'true'
3555 * regardless of whether the device exposes an ACS capability.  This makes
3556 * it much easier for callers of this function to ignore the actual type
3557 * or topology of the device when testing ACS support.
3558 */
3559bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3560{
3561	int ret;
3562
3563	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3564	if (ret >= 0)
3565		return ret > 0;
3566
3567	/*
3568	 * Conventional PCI and PCI-X devices never support ACS, either
3569	 * effectively or actually.  The shared bus topology implies that
3570	 * any device on the bus can receive or snoop DMA.
3571	 */
3572	if (!pci_is_pcie(pdev))
3573		return false;
3574
3575	switch (pci_pcie_type(pdev)) {
3576	/*
3577	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3578	 * but since their primary interface is PCI/X, we conservatively
3579	 * handle them as we would a non-PCIe device.
3580	 */
3581	case PCI_EXP_TYPE_PCIE_BRIDGE:
3582	/*
3583	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3584	 * applicable... must never implement an ACS Extended Capability...".
3585	 * This seems arbitrary, but we take a conservative interpretation
3586	 * of this statement.
3587	 */
3588	case PCI_EXP_TYPE_PCI_BRIDGE:
3589	case PCI_EXP_TYPE_RC_EC:
3590		return false;
3591	/*
3592	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3593	 * implement ACS in order to indicate their peer-to-peer capabilities,
3594	 * regardless of whether they are single- or multi-function devices.
3595	 */
3596	case PCI_EXP_TYPE_DOWNSTREAM:
3597	case PCI_EXP_TYPE_ROOT_PORT:
3598		return pci_acs_flags_enabled(pdev, acs_flags);
3599	/*
3600	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3601	 * implemented by the remaining PCIe types to indicate peer-to-peer
3602	 * capabilities, but only when they are part of a multifunction
3603	 * device.  The footnote for section 6.12 indicates the specific
3604	 * PCIe types included here.
3605	 */
3606	case PCI_EXP_TYPE_ENDPOINT:
3607	case PCI_EXP_TYPE_UPSTREAM:
3608	case PCI_EXP_TYPE_LEG_END:
3609	case PCI_EXP_TYPE_RC_END:
3610		if (!pdev->multifunction)
3611			break;
3612
3613		return pci_acs_flags_enabled(pdev, acs_flags);
3614	}
3615
3616	/*
3617	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3618	 * to single function devices with the exception of downstream ports.
3619	 */
3620	return true;
3621}
3622
3623/**
3624 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3625 * @start: starting downstream device
3626 * @end: ending upstream device or NULL to search to the root bus
3627 * @acs_flags: required flags
3628 *
3629 * Walk up a device tree from start to end testing PCI ACS support.  If
3630 * any step along the way does not support the required flags, return false.
3631 */
3632bool pci_acs_path_enabled(struct pci_dev *start,
3633			  struct pci_dev *end, u16 acs_flags)
3634{
3635	struct pci_dev *pdev, *parent = start;
3636
3637	do {
3638		pdev = parent;
3639
3640		if (!pci_acs_enabled(pdev, acs_flags))
3641			return false;
3642
3643		if (pci_is_root_bus(pdev->bus))
3644			return (end == NULL);
3645
3646		parent = pdev->bus->self;
3647	} while (pdev != end);
3648
3649	return true;
3650}
3651
3652/**
3653 * pci_acs_init - Initialize ACS if hardware supports it
3654 * @dev: the PCI device
3655 */
3656void pci_acs_init(struct pci_dev *dev)
3657{
3658	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3659
3660	/*
3661	 * Attempt to enable ACS regardless of capability because some Root
3662	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3663	 * the standard ACS capability but still support ACS via those
3664	 * quirks.
3665	 */
3666	pci_enable_acs(dev);
3667}
3668
3669/**
3670 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3671 * @pdev: PCI device
3672 * @bar: BAR to find
3673 *
3674 * Helper to find the position of the ctrl register for a BAR.
3675 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3676 * Returns -ENOENT if no ctrl register for the BAR could be found.
3677 */
3678static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3679{
3680	unsigned int pos, nbars, i;
3681	u32 ctrl;
3682
3683	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3684	if (!pos)
3685		return -ENOTSUPP;
3686
3687	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3688	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
3689
3690	for (i = 0; i < nbars; i++, pos += 8) {
3691		int bar_idx;
3692
3693		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3694		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3695		if (bar_idx == bar)
3696			return pos;
3697	}
3698
3699	return -ENOENT;
3700}
3701
3702/**
3703 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3704 * @pdev: PCI device
3705 * @bar: BAR to query
3706 *
3707 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3708 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3709 */
3710u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3711{
3712	int pos;
3713	u32 cap;
3714
3715	pos = pci_rebar_find_pos(pdev, bar);
3716	if (pos < 0)
3717		return 0;
3718
3719	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3720	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3721
3722	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3723	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3724	    bar == 0 && cap == 0x700)
3725		return 0x3f00;
3726
3727	return cap;
3728}
3729EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3730
3731/**
3732 * pci_rebar_get_current_size - get the current size of a BAR
3733 * @pdev: PCI device
3734 * @bar: BAR to set size to
3735 *
3736 * Read the size of a BAR from the resizable BAR config.
3737 * Returns size if found or negative error code.
3738 */
3739int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3740{
3741	int pos;
3742	u32 ctrl;
3743
3744	pos = pci_rebar_find_pos(pdev, bar);
3745	if (pos < 0)
3746		return pos;
3747
3748	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3749	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3750}
3751
3752/**
3753 * pci_rebar_set_size - set a new size for a BAR
3754 * @pdev: PCI device
3755 * @bar: BAR to set size to
3756 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3757 *
3758 * Set the new size of a BAR as defined in the spec.
3759 * Returns zero if resizing was successful, error code otherwise.
3760 */
3761int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3762{
3763	int pos;
3764	u32 ctrl;
3765
3766	pos = pci_rebar_find_pos(pdev, bar);
3767	if (pos < 0)
3768		return pos;
3769
3770	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3771	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3772	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3773	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3774	return 0;
3775}
3776
3777/**
3778 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3779 * @dev: the PCI device
3780 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3781 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3782 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3783 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3784 *
3785 * Return 0 if all upstream bridges support AtomicOp routing, egress
3786 * blocking is disabled on all upstream ports, and the root port supports
3787 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3788 * AtomicOp completion), or negative otherwise.
3789 */
3790int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3791{
3792	struct pci_bus *bus = dev->bus;
3793	struct pci_dev *bridge;
3794	u32 cap, ctl2;
3795
3796	/*
3797	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3798	 * in Device Control 2 is reserved in VFs and the PF value applies
3799	 * to all associated VFs.
3800	 */
3801	if (dev->is_virtfn)
3802		return -EINVAL;
3803
3804	if (!pci_is_pcie(dev))
3805		return -EINVAL;
3806
3807	/*
3808	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3809	 * AtomicOp requesters.  For now, we only support endpoints as
3810	 * requesters and root ports as completers.  No endpoints as
3811	 * completers, and no peer-to-peer.
3812	 */
3813
3814	switch (pci_pcie_type(dev)) {
3815	case PCI_EXP_TYPE_ENDPOINT:
3816	case PCI_EXP_TYPE_LEG_END:
3817	case PCI_EXP_TYPE_RC_END:
3818		break;
3819	default:
3820		return -EINVAL;
3821	}
3822
3823	while (bus->parent) {
3824		bridge = bus->self;
3825
3826		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3827
3828		switch (pci_pcie_type(bridge)) {
3829		/* Ensure switch ports support AtomicOp routing */
3830		case PCI_EXP_TYPE_UPSTREAM:
3831		case PCI_EXP_TYPE_DOWNSTREAM:
3832			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3833				return -EINVAL;
3834			break;
3835
3836		/* Ensure root port supports all the sizes we care about */
3837		case PCI_EXP_TYPE_ROOT_PORT:
3838			if ((cap & cap_mask) != cap_mask)
3839				return -EINVAL;
3840			break;
3841		}
3842
3843		/* Ensure upstream ports don't block AtomicOps on egress */
3844		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3845			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3846						   &ctl2);
3847			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3848				return -EINVAL;
3849		}
3850
3851		bus = bus->parent;
3852	}
3853
3854	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3855				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3856	return 0;
3857}
3858EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3859
3860/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3861 * pci_release_region - Release a PCI bar
3862 * @pdev: PCI device whose resources were previously reserved by
3863 *	  pci_request_region()
3864 * @bar: BAR to release
3865 *
3866 * Releases the PCI I/O and memory resources previously reserved by a
3867 * successful call to pci_request_region().  Call this function only
3868 * after all use of the PCI regions has ceased.
3869 */
3870void pci_release_region(struct pci_dev *pdev, int bar)
3871{
3872	struct pci_devres *dr;
3873
3874	if (pci_resource_len(pdev, bar) == 0)
3875		return;
3876	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877		release_region(pci_resource_start(pdev, bar),
3878				pci_resource_len(pdev, bar));
3879	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880		release_mem_region(pci_resource_start(pdev, bar),
3881				pci_resource_len(pdev, bar));
3882
3883	dr = find_pci_dr(pdev);
3884	if (dr)
3885		dr->region_mask &= ~(1 << bar);
3886}
3887EXPORT_SYMBOL(pci_release_region);
3888
3889/**
3890 * __pci_request_region - Reserved PCI I/O and memory resource
3891 * @pdev: PCI device whose resources are to be reserved
3892 * @bar: BAR to be reserved
3893 * @res_name: Name to be associated with resource.
3894 * @exclusive: whether the region access is exclusive or not
3895 *
3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897 * being reserved by owner @res_name.  Do not access any
3898 * address inside the PCI regions unless this call returns
3899 * successfully.
3900 *
3901 * If @exclusive is set, then the region is marked so that userspace
3902 * is explicitly not allowed to map the resource via /dev/mem or
3903 * sysfs MMIO access.
3904 *
3905 * Returns 0 on success, or %EBUSY on error.  A warning
3906 * message is also printed on failure.
3907 */
3908static int __pci_request_region(struct pci_dev *pdev, int bar,
3909				const char *res_name, int exclusive)
3910{
3911	struct pci_devres *dr;
3912
3913	if (pci_resource_len(pdev, bar) == 0)
3914		return 0;
3915
3916	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917		if (!request_region(pci_resource_start(pdev, bar),
3918			    pci_resource_len(pdev, bar), res_name))
3919			goto err_out;
3920	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3921		if (!__request_mem_region(pci_resource_start(pdev, bar),
3922					pci_resource_len(pdev, bar), res_name,
3923					exclusive))
3924			goto err_out;
3925	}
3926
3927	dr = find_pci_dr(pdev);
3928	if (dr)
3929		dr->region_mask |= 1 << bar;
3930
3931	return 0;
3932
3933err_out:
3934	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935		 &pdev->resource[bar]);
3936	return -EBUSY;
3937}
3938
3939/**
3940 * pci_request_region - Reserve PCI I/O and memory resource
3941 * @pdev: PCI device whose resources are to be reserved
3942 * @bar: BAR to be reserved
3943 * @res_name: Name to be associated with resource
3944 *
3945 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946 * being reserved by owner @res_name.  Do not access any
3947 * address inside the PCI regions unless this call returns
3948 * successfully.
3949 *
3950 * Returns 0 on success, or %EBUSY on error.  A warning
3951 * message is also printed on failure.
3952 */
3953int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954{
3955	return __pci_request_region(pdev, bar, res_name, 0);
3956}
3957EXPORT_SYMBOL(pci_request_region);
3958
3959/**
3960 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961 * @pdev: PCI device whose resources were previously reserved
3962 * @bars: Bitmask of BARs to be released
3963 *
3964 * Release selected PCI I/O and memory resources previously reserved.
3965 * Call this function only after all use of the PCI regions has ceased.
3966 */
3967void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968{
3969	int i;
3970
3971	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972		if (bars & (1 << i))
3973			pci_release_region(pdev, i);
3974}
3975EXPORT_SYMBOL(pci_release_selected_regions);
3976
3977static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978					  const char *res_name, int excl)
3979{
3980	int i;
3981
3982	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983		if (bars & (1 << i))
3984			if (__pci_request_region(pdev, i, res_name, excl))
3985				goto err_out;
3986	return 0;
3987
3988err_out:
3989	while (--i >= 0)
3990		if (bars & (1 << i))
3991			pci_release_region(pdev, i);
3992
3993	return -EBUSY;
3994}
3995
3996
3997/**
3998 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999 * @pdev: PCI device whose resources are to be reserved
4000 * @bars: Bitmask of BARs to be requested
4001 * @res_name: Name to be associated with resource
4002 */
4003int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004				 const char *res_name)
4005{
4006	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_selected_regions);
4009
4010int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011					   const char *res_name)
4012{
4013	return __pci_request_selected_regions(pdev, bars, res_name,
4014			IORESOURCE_EXCLUSIVE);
4015}
4016EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017
4018/**
4019 * pci_release_regions - Release reserved PCI I/O and memory resources
4020 * @pdev: PCI device whose resources were previously reserved by
4021 *	  pci_request_regions()
4022 *
4023 * Releases all PCI I/O and memory resources previously reserved by a
4024 * successful call to pci_request_regions().  Call this function only
4025 * after all use of the PCI regions has ceased.
4026 */
4027
4028void pci_release_regions(struct pci_dev *pdev)
4029{
4030	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031}
4032EXPORT_SYMBOL(pci_release_regions);
4033
4034/**
4035 * pci_request_regions - Reserve PCI I/O and memory resources
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @res_name: Name to be associated with resource.
4038 *
4039 * Mark all PCI regions associated with PCI device @pdev as
4040 * being reserved by owner @res_name.  Do not access any
4041 * address inside the PCI regions unless this call returns
4042 * successfully.
4043 *
4044 * Returns 0 on success, or %EBUSY on error.  A warning
4045 * message is also printed on failure.
4046 */
4047int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048{
4049	return pci_request_selected_regions(pdev,
4050			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051}
4052EXPORT_SYMBOL(pci_request_regions);
4053
4054/**
4055 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056 * @pdev: PCI device whose resources are to be reserved
4057 * @res_name: Name to be associated with resource.
4058 *
4059 * Mark all PCI regions associated with PCI device @pdev as being reserved
4060 * by owner @res_name.  Do not access any address inside the PCI regions
4061 * unless this call returns successfully.
4062 *
4063 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064 * and the sysfs MMIO access will not be allowed.
4065 *
4066 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4067 * printed on failure.
4068 */
4069int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070{
4071	return pci_request_selected_regions_exclusive(pdev,
4072				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073}
4074EXPORT_SYMBOL(pci_request_regions_exclusive);
4075
4076/*
4077 * Record the PCI IO range (expressed as CPU physical address + size).
4078 * Return a negative value if an error has occurred, zero otherwise
4079 */
4080int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081			resource_size_t	size)
4082{
4083	int ret = 0;
4084#ifdef PCI_IOBASE
4085	struct logic_pio_hwaddr *range;
4086
4087	if (!size || addr + size < addr)
4088		return -EINVAL;
4089
4090	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091	if (!range)
4092		return -ENOMEM;
4093
4094	range->fwnode = fwnode;
4095	range->size = size;
4096	range->hw_start = addr;
4097	range->flags = LOGIC_PIO_CPU_MMIO;
4098
4099	ret = logic_pio_register_range(range);
4100	if (ret)
4101		kfree(range);
4102
4103	/* Ignore duplicates due to deferred probing */
4104	if (ret == -EEXIST)
4105		ret = 0;
4106#endif
4107
4108	return ret;
4109}
4110
4111phys_addr_t pci_pio_to_address(unsigned long pio)
4112{
 
 
4113#ifdef PCI_IOBASE
4114	if (pio < MMIO_UPPER_LIMIT)
4115		return logic_pio_to_hwaddr(pio);
 
 
4116#endif
4117
4118	return (phys_addr_t) OF_BAD_ADDR;
4119}
4120EXPORT_SYMBOL_GPL(pci_pio_to_address);
4121
4122unsigned long __weak pci_address_to_pio(phys_addr_t address)
4123{
4124#ifdef PCI_IOBASE
4125	return logic_pio_trans_cpuaddr(address);
4126#else
4127	if (address > IO_SPACE_LIMIT)
4128		return (unsigned long)-1;
4129
4130	return (unsigned long) address;
4131#endif
4132}
4133
4134/**
4135 * pci_remap_iospace - Remap the memory mapped I/O space
4136 * @res: Resource describing the I/O space
4137 * @phys_addr: physical address of range to be mapped
4138 *
4139 * Remap the memory mapped I/O space described by the @res and the CPU
4140 * physical address @phys_addr into virtual address space.  Only
4141 * architectures that have memory mapped IO functions defined (and the
4142 * PCI_IOBASE value defined) should call this function.
4143 */
4144#ifndef pci_remap_iospace
4145int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4146{
4147#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4148	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4149
4150	if (!(res->flags & IORESOURCE_IO))
4151		return -EINVAL;
4152
4153	if (res->end > IO_SPACE_LIMIT)
4154		return -EINVAL;
4155
4156	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4157			       pgprot_device(PAGE_KERNEL));
4158#else
4159	/*
4160	 * This architecture does not have memory mapped I/O space,
4161	 * so this function should never be called
4162	 */
4163	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4164	return -ENODEV;
4165#endif
4166}
4167EXPORT_SYMBOL(pci_remap_iospace);
4168#endif
4169
4170/**
4171 * pci_unmap_iospace - Unmap the memory mapped I/O space
4172 * @res: resource to be unmapped
4173 *
4174 * Unmap the CPU virtual address @res from virtual address space.  Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
4178void pci_unmap_iospace(struct resource *res)
4179{
4180#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183	vunmap_range(vaddr, vaddr + resource_size(res));
4184#endif
4185}
4186EXPORT_SYMBOL(pci_unmap_iospace);
4187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4188static void __pci_set_master(struct pci_dev *dev, bool enable)
4189{
4190	u16 old_cmd, cmd;
4191
4192	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4193	if (enable)
4194		cmd = old_cmd | PCI_COMMAND_MASTER;
4195	else
4196		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4197	if (cmd != old_cmd) {
4198		pci_dbg(dev, "%s bus mastering\n",
4199			enable ? "enabling" : "disabling");
4200		pci_write_config_word(dev, PCI_COMMAND, cmd);
4201	}
4202	dev->is_busmaster = enable;
4203}
4204
4205/**
4206 * pcibios_setup - process "pci=" kernel boot arguments
4207 * @str: string used to pass in "pci=" kernel boot arguments
4208 *
4209 * Process kernel boot arguments.  This is the default implementation.
4210 * Architecture specific implementations can override this as necessary.
4211 */
4212char * __weak __init pcibios_setup(char *str)
4213{
4214	return str;
4215}
4216
4217/**
4218 * pcibios_set_master - enable PCI bus-mastering for device dev
4219 * @dev: the PCI device to enable
4220 *
4221 * Enables PCI bus-mastering for the device.  This is the default
4222 * implementation.  Architecture specific implementations can override
4223 * this if necessary.
4224 */
4225void __weak pcibios_set_master(struct pci_dev *dev)
4226{
4227	u8 lat;
4228
4229	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4230	if (pci_is_pcie(dev))
4231		return;
4232
4233	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4234	if (lat < 16)
4235		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4236	else if (lat > pcibios_max_latency)
4237		lat = pcibios_max_latency;
4238	else
4239		return;
4240
4241	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4242}
4243
4244/**
4245 * pci_set_master - enables bus-mastering for device dev
4246 * @dev: the PCI device to enable
4247 *
4248 * Enables bus-mastering on the device and calls pcibios_set_master()
4249 * to do the needed arch specific settings.
4250 */
4251void pci_set_master(struct pci_dev *dev)
4252{
4253	__pci_set_master(dev, true);
4254	pcibios_set_master(dev);
4255}
4256EXPORT_SYMBOL(pci_set_master);
4257
4258/**
4259 * pci_clear_master - disables bus-mastering for device dev
4260 * @dev: the PCI device to disable
4261 */
4262void pci_clear_master(struct pci_dev *dev)
4263{
4264	__pci_set_master(dev, false);
4265}
4266EXPORT_SYMBOL(pci_clear_master);
4267
4268/**
4269 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4270 * @dev: the PCI device for which MWI is to be enabled
4271 *
4272 * Helper function for pci_set_mwi.
4273 * Originally copied from drivers/net/acenic.c.
4274 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4275 *
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277 */
4278int pci_set_cacheline_size(struct pci_dev *dev)
4279{
4280	u8 cacheline_size;
4281
4282	if (!pci_cache_line_size)
4283		return -EINVAL;
4284
4285	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4286	   equal to or multiple of the right value. */
4287	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4288	if (cacheline_size >= pci_cache_line_size &&
4289	    (cacheline_size % pci_cache_line_size) == 0)
4290		return 0;
4291
4292	/* Write the correct value. */
4293	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4294	/* Read it back. */
4295	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4296	if (cacheline_size == pci_cache_line_size)
4297		return 0;
4298
4299	pci_dbg(dev, "cache line size of %d is not supported\n",
4300		   pci_cache_line_size << 2);
4301
4302	return -EINVAL;
4303}
4304EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4305
4306/**
4307 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 *
4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313 */
4314int pci_set_mwi(struct pci_dev *dev)
4315{
4316#ifdef PCI_DISABLE_MWI
4317	return 0;
4318#else
4319	int rc;
4320	u16 cmd;
4321
4322	rc = pci_set_cacheline_size(dev);
4323	if (rc)
4324		return rc;
4325
4326	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4327	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4328		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4329		cmd |= PCI_COMMAND_INVALIDATE;
4330		pci_write_config_word(dev, PCI_COMMAND, cmd);
4331	}
4332	return 0;
4333#endif
4334}
4335EXPORT_SYMBOL(pci_set_mwi);
4336
4337/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4338 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4339 * @dev: the PCI device for which MWI is enabled
4340 *
4341 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4342 * Callers are not required to check the return value.
4343 *
4344 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4345 */
4346int pci_try_set_mwi(struct pci_dev *dev)
4347{
4348#ifdef PCI_DISABLE_MWI
4349	return 0;
4350#else
4351	return pci_set_mwi(dev);
4352#endif
4353}
4354EXPORT_SYMBOL(pci_try_set_mwi);
4355
4356/**
4357 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4358 * @dev: the PCI device to disable
4359 *
4360 * Disables PCI Memory-Write-Invalidate transaction on the device
4361 */
4362void pci_clear_mwi(struct pci_dev *dev)
4363{
4364#ifndef PCI_DISABLE_MWI
4365	u16 cmd;
4366
4367	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4368	if (cmd & PCI_COMMAND_INVALIDATE) {
4369		cmd &= ~PCI_COMMAND_INVALIDATE;
4370		pci_write_config_word(dev, PCI_COMMAND, cmd);
4371	}
4372#endif
4373}
4374EXPORT_SYMBOL(pci_clear_mwi);
4375
4376/**
4377 * pci_disable_parity - disable parity checking for device
4378 * @dev: the PCI device to operate on
4379 *
4380 * Disable parity checking for device @dev
4381 */
4382void pci_disable_parity(struct pci_dev *dev)
4383{
4384	u16 cmd;
4385
4386	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4387	if (cmd & PCI_COMMAND_PARITY) {
4388		cmd &= ~PCI_COMMAND_PARITY;
4389		pci_write_config_word(dev, PCI_COMMAND, cmd);
4390	}
4391}
4392
4393/**
4394 * pci_intx - enables/disables PCI INTx for device dev
4395 * @pdev: the PCI device to operate on
4396 * @enable: boolean: whether to enable or disable PCI INTx
4397 *
4398 * Enables/disables PCI INTx for device @pdev
4399 */
4400void pci_intx(struct pci_dev *pdev, int enable)
4401{
4402	u16 pci_command, new;
4403
4404	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4405
4406	if (enable)
4407		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4408	else
4409		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4410
4411	if (new != pci_command) {
4412		struct pci_devres *dr;
4413
4414		pci_write_config_word(pdev, PCI_COMMAND, new);
4415
4416		dr = find_pci_dr(pdev);
4417		if (dr && !dr->restore_intx) {
4418			dr->restore_intx = 1;
4419			dr->orig_intx = !enable;
4420		}
4421	}
4422}
4423EXPORT_SYMBOL_GPL(pci_intx);
4424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425/**
4426 * pci_wait_for_pending_transaction - wait for pending transaction
4427 * @dev: the PCI device to operate on
4428 *
4429 * Return 0 if transaction is pending 1 otherwise.
4430 */
4431int pci_wait_for_pending_transaction(struct pci_dev *dev)
4432{
4433	if (!pci_is_pcie(dev))
4434		return 1;
4435
4436	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4437				    PCI_EXP_DEVSTA_TRPND);
4438}
4439EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4440
4441/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442 * pcie_flr - initiate a PCIe function level reset
4443 * @dev: device to reset
4444 *
4445 * Initiate a function level reset unconditionally on @dev without
4446 * checking any flags and DEVCAP
 
4447 */
4448int pcie_flr(struct pci_dev *dev)
4449{
4450	if (!pci_wait_for_pending_transaction(dev))
4451		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4452
4453	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4454
4455	if (dev->imm_ready)
4456		return 0;
4457
4458	/*
4459	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4460	 * 100ms, but may silently discard requests while the FLR is in
4461	 * progress.  Wait 100ms before trying to access the device.
4462	 */
4463	msleep(100);
4464
4465	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4466}
4467EXPORT_SYMBOL_GPL(pcie_flr);
4468
4469/**
4470 * pcie_reset_flr - initiate a PCIe function level reset
4471 * @dev: device to reset
4472 * @probe: if true, return 0 if device can be reset this way
4473 *
4474 * Initiate a function level reset on @dev.
4475 */
4476int pcie_reset_flr(struct pci_dev *dev, bool probe)
4477{
4478	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4479		return -ENOTTY;
4480
4481	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4482		return -ENOTTY;
4483
4484	if (probe)
4485		return 0;
4486
4487	return pcie_flr(dev);
4488}
4489EXPORT_SYMBOL_GPL(pcie_reset_flr);
4490
4491static int pci_af_flr(struct pci_dev *dev, bool probe)
4492{
4493	int pos;
4494	u8 cap;
4495
4496	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4497	if (!pos)
4498		return -ENOTTY;
4499
4500	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4501		return -ENOTTY;
4502
4503	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4504	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4505		return -ENOTTY;
4506
4507	if (probe)
4508		return 0;
4509
4510	/*
4511	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4512	 * is used, so we use the control offset rather than status and shift
4513	 * the test bit to match.
4514	 */
4515	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4516				 PCI_AF_STATUS_TP << 8))
4517		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4518
4519	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4520
4521	if (dev->imm_ready)
4522		return 0;
4523
4524	/*
4525	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4526	 * updated 27 July 2006; a device must complete an FLR within
4527	 * 100ms, but may silently discard requests while the FLR is in
4528	 * progress.  Wait 100ms before trying to access the device.
4529	 */
4530	msleep(100);
4531
4532	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4533}
4534
4535/**
4536 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4537 * @dev: Device to reset.
4538 * @probe: if true, return 0 if the device can be reset this way.
4539 *
4540 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4541 * unset, it will be reinitialized internally when going from PCI_D3hot to
4542 * PCI_D0.  If that's the case and the device is not in a low-power state
4543 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4544 *
4545 * NOTE: This causes the caller to sleep for twice the device power transition
4546 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4547 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4548 * Moreover, only devices in D0 can be reset by this function.
4549 */
4550static int pci_pm_reset(struct pci_dev *dev, bool probe)
4551{
4552	u16 csr;
4553
4554	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4555		return -ENOTTY;
4556
4557	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4558	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4559		return -ENOTTY;
4560
4561	if (probe)
4562		return 0;
4563
4564	if (dev->current_state != PCI_D0)
4565		return -EINVAL;
4566
4567	csr &= ~PCI_PM_CTRL_STATE_MASK;
4568	csr |= PCI_D3hot;
4569	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4570	pci_dev_d3_sleep(dev);
4571
4572	csr &= ~PCI_PM_CTRL_STATE_MASK;
4573	csr |= PCI_D0;
4574	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575	pci_dev_d3_sleep(dev);
4576
4577	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4578}
4579
4580/**
4581 * pcie_wait_for_link_status - Wait for link status change
4582 * @pdev: Device whose link to wait for.
4583 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4584 * @active: Waiting for active or inactive?
4585 *
4586 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4587 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4588 */
4589static int pcie_wait_for_link_status(struct pci_dev *pdev,
4590				     bool use_lt, bool active)
4591{
4592	u16 lnksta_mask, lnksta_match;
4593	unsigned long end_jiffies;
4594	u16 lnksta;
4595
4596	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4597	lnksta_match = active ? lnksta_mask : 0;
4598
4599	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4600	do {
4601		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4602		if ((lnksta & lnksta_mask) == lnksta_match)
4603			return 0;
4604		msleep(1);
4605	} while (time_before(jiffies, end_jiffies));
4606
4607	return -ETIMEDOUT;
4608}
4609
4610/**
4611 * pcie_retrain_link - Request a link retrain and wait for it to complete
4612 * @pdev: Device whose link to retrain.
4613 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4614 *
4615 * Retrain completion status is retrieved from the Link Status Register
4616 * according to @use_lt.  It is not verified whether the use of the DLLLA
4617 * bit is valid.
4618 *
4619 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4620 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4621 */
4622int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4623{
4624	int rc;
4625
4626	/*
4627	 * Ensure the updated LNKCTL parameters are used during link
4628	 * training by checking that there is no ongoing link training to
4629	 * avoid LTSSM race as recommended in Implementation Note at the
4630	 * end of PCIe r6.0.1 sec 7.5.3.7.
4631	 */
4632	rc = pcie_wait_for_link_status(pdev, true, false);
4633	if (rc)
4634		return rc;
4635
4636	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4637	if (pdev->clear_retrain_link) {
4638		/*
4639		 * Due to an erratum in some devices the Retrain Link bit
4640		 * needs to be cleared again manually to allow the link
4641		 * training to succeed.
4642		 */
4643		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4644	}
4645
4646	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4647}
4648
4649/**
4650 * pcie_wait_for_link_delay - Wait until link is active or inactive
4651 * @pdev: Bridge device
4652 * @active: waiting for active or inactive?
4653 * @delay: Delay to wait after link has become active (in ms)
4654 *
4655 * Use this to wait till link becomes active or inactive.
4656 */
4657static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4658				     int delay)
4659{
4660	int rc;
 
 
4661
4662	/*
4663	 * Some controllers might not implement link active reporting. In this
4664	 * case, we wait for 1000 ms + any delay requested by the caller.
4665	 */
4666	if (!pdev->link_active_reporting) {
4667		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4668		return true;
4669	}
4670
4671	/*
4672	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4673	 * after which we should expect an link active if the reset was
4674	 * successful. If so, software must wait a minimum 100ms before sending
4675	 * configuration requests to devices downstream this port.
4676	 *
4677	 * If the link fails to activate, either the device was physically
4678	 * removed or the link is permanently failed.
4679	 */
4680	if (active)
4681		msleep(20);
4682	rc = pcie_wait_for_link_status(pdev, false, active);
4683	if (active) {
4684		if (rc)
4685			rc = pcie_failed_link_retrain(pdev);
4686		if (rc)
4687			return false;
4688
 
 
 
 
4689		msleep(delay);
4690		return true;
4691	}
4692
4693	if (rc)
4694		return false;
4695
4696	return true;
4697}
4698
4699/**
4700 * pcie_wait_for_link - Wait until link is active or inactive
4701 * @pdev: Bridge device
4702 * @active: waiting for active or inactive?
4703 *
4704 * Use this to wait till link becomes active or inactive.
4705 */
4706bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4707{
4708	return pcie_wait_for_link_delay(pdev, active, 100);
4709}
4710
4711/*
4712 * Find maximum D3cold delay required by all the devices on the bus.  The
4713 * spec says 100 ms, but firmware can lower it and we allow drivers to
4714 * increase it as well.
4715 *
4716 * Called with @pci_bus_sem locked for reading.
4717 */
4718static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4719{
4720	const struct pci_dev *pdev;
4721	int min_delay = 100;
4722	int max_delay = 0;
4723
4724	list_for_each_entry(pdev, &bus->devices, bus_list) {
4725		if (pdev->d3cold_delay < min_delay)
4726			min_delay = pdev->d3cold_delay;
4727		if (pdev->d3cold_delay > max_delay)
4728			max_delay = pdev->d3cold_delay;
4729	}
4730
4731	return max(min_delay, max_delay);
4732}
4733
4734/**
4735 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4736 * @dev: PCI bridge
4737 * @reset_type: reset type in human-readable form
4738 *
4739 * Handle necessary delays before access to the devices on the secondary
4740 * side of the bridge are permitted after D3cold to D0 transition
4741 * or Conventional Reset.
4742 *
4743 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4744 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4745 * 4.3.2.
4746 *
4747 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4748 * failed to become accessible.
4749 */
4750int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4751{
4752	struct pci_dev *child;
4753	int delay;
4754
4755	if (pci_dev_is_disconnected(dev))
4756		return 0;
4757
4758	if (!pci_is_bridge(dev))
4759		return 0;
4760
4761	down_read(&pci_bus_sem);
4762
4763	/*
4764	 * We only deal with devices that are present currently on the bus.
4765	 * For any hot-added devices the access delay is handled in pciehp
4766	 * board_added(). In case of ACPI hotplug the firmware is expected
4767	 * to configure the devices before OS is notified.
4768	 */
4769	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4770		up_read(&pci_bus_sem);
4771		return 0;
4772	}
4773
4774	/* Take d3cold_delay requirements into account */
4775	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4776	if (!delay) {
4777		up_read(&pci_bus_sem);
4778		return 0;
4779	}
4780
4781	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4782				 bus_list);
4783	up_read(&pci_bus_sem);
4784
4785	/*
4786	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4787	 * accessing the device after reset (that is 1000 ms + 100 ms).
 
 
4788	 */
4789	if (!pci_is_pcie(dev)) {
4790		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4791		msleep(1000 + delay);
4792		return 0;
4793	}
4794
4795	/*
4796	 * For PCIe downstream and root ports that do not support speeds
4797	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4798	 * speeds (gen3) we need to wait first for the data link layer to
4799	 * become active.
4800	 *
4801	 * However, 100 ms is the minimum and the PCIe spec says the
4802	 * software must allow at least 1s before it can determine that the
4803	 * device that did not respond is a broken device. Also device can
4804	 * take longer than that to respond if it indicates so through Request
4805	 * Retry Status completions.
 
 
4806	 *
4807	 * Therefore we wait for 100 ms and check for the device presence
4808	 * until the timeout expires.
4809	 */
4810	if (!pcie_downstream_port(dev))
4811		return 0;
4812
4813	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4814		u16 status;
4815
4816		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4817		msleep(delay);
4818
4819		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4820			return 0;
4821
4822		/*
4823		 * If the port supports active link reporting we now check
4824		 * whether the link is active and if not bail out early with
4825		 * the assumption that the device is not present anymore.
4826		 */
4827		if (!dev->link_active_reporting)
4828			return -ENOTTY;
4829
4830		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4831		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4832			return -ENOTTY;
4833
4834		return pci_dev_wait(child, reset_type,
4835				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4836	}
4837
4838	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839		delay);
4840	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841		/* Did not train, no need to wait any further */
4842		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843		return -ENOTTY;
4844	}
4845
4846	return pci_dev_wait(child, reset_type,
4847			    PCIE_RESET_READY_POLL_MS - delay);
4848}
4849
4850void pci_reset_secondary_bus(struct pci_dev *dev)
4851{
4852	u16 ctrl;
4853
4854	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4855	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4856	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858	/*
4859	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4860	 * this to 2ms to ensure that we meet the minimum requirement.
4861	 */
4862	msleep(2);
4863
4864	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4865	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
 
 
 
 
 
 
 
 
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870	pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882	pcibios_reset_secondary_bus(dev);
4883
4884	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4889{
4890	struct pci_dev *pdev;
4891
4892	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894		return -ENOTTY;
4895
4896	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897		if (pdev != dev)
4898			return -ENOTTY;
4899
4900	if (probe)
4901		return 0;
4902
4903	return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4907{
4908	int rc = -ENOTTY;
4909
4910	if (!hotplug || !try_module_get(hotplug->owner))
4911		return rc;
4912
4913	if (hotplug->ops->reset_slot)
4914		rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916	module_put(hotplug->owner);
4917
4918	return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4922{
4923	if (dev->multifunction || dev->subordinate || !dev->slot ||
 
 
4924	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4925		return -ENOTTY;
4926
 
 
 
 
4927	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4928}
4929
4930static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4931{
4932	int rc;
4933
4934	rc = pci_dev_reset_slot_function(dev, probe);
4935	if (rc != -ENOTTY)
4936		return rc;
4937	return pci_parent_bus_reset(dev, probe);
4938}
4939
4940void pci_dev_lock(struct pci_dev *dev)
4941{
 
4942	/* block PM suspend, driver probe, etc. */
4943	device_lock(&dev->dev);
4944	pci_cfg_access_lock(dev);
4945}
4946EXPORT_SYMBOL_GPL(pci_dev_lock);
4947
4948/* Return 1 on successful lock, 0 on contention */
4949int pci_dev_trylock(struct pci_dev *dev)
4950{
4951	if (device_trylock(&dev->dev)) {
4952		if (pci_cfg_access_trylock(dev))
4953			return 1;
4954		device_unlock(&dev->dev);
4955	}
4956
4957	return 0;
4958}
4959EXPORT_SYMBOL_GPL(pci_dev_trylock);
4960
4961void pci_dev_unlock(struct pci_dev *dev)
4962{
 
4963	pci_cfg_access_unlock(dev);
4964	device_unlock(&dev->dev);
4965}
4966EXPORT_SYMBOL_GPL(pci_dev_unlock);
4967
4968static void pci_dev_save_and_disable(struct pci_dev *dev)
4969{
4970	const struct pci_error_handlers *err_handler =
4971			dev->driver ? dev->driver->err_handler : NULL;
4972
4973	/*
4974	 * dev->driver->err_handler->reset_prepare() is protected against
4975	 * races with ->remove() by the device lock, which must be held by
4976	 * the caller.
4977	 */
4978	if (err_handler && err_handler->reset_prepare)
4979		err_handler->reset_prepare(dev);
4980
4981	/*
4982	 * Wake-up device prior to save.  PM registers default to D0 after
4983	 * reset and a simple register restore doesn't reliably return
4984	 * to a non-D0 state anyway.
4985	 */
4986	pci_set_power_state(dev, PCI_D0);
4987
4988	pci_save_state(dev);
4989	/*
4990	 * Disable the device by clearing the Command register, except for
4991	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4992	 * BARs, but also prevents the device from being Bus Master, preventing
4993	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4994	 * compliant devices, INTx-disable prevents legacy interrupts.
4995	 */
4996	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4997}
4998
4999static void pci_dev_restore(struct pci_dev *dev)
5000{
5001	const struct pci_error_handlers *err_handler =
5002			dev->driver ? dev->driver->err_handler : NULL;
5003
5004	pci_restore_state(dev);
5005
5006	/*
5007	 * dev->driver->err_handler->reset_done() is protected against
5008	 * races with ->remove() by the device lock, which must be held by
5009	 * the caller.
5010	 */
5011	if (err_handler && err_handler->reset_done)
5012		err_handler->reset_done(dev);
5013}
5014
5015/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5016static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5017	{ },
5018	{ pci_dev_specific_reset, .name = "device_specific" },
5019	{ pci_dev_acpi_reset, .name = "acpi" },
5020	{ pcie_reset_flr, .name = "flr" },
5021	{ pci_af_flr, .name = "af_flr" },
5022	{ pci_pm_reset, .name = "pm" },
5023	{ pci_reset_bus_function, .name = "bus" },
5024};
5025
5026static ssize_t reset_method_show(struct device *dev,
5027				 struct device_attribute *attr, char *buf)
5028{
5029	struct pci_dev *pdev = to_pci_dev(dev);
5030	ssize_t len = 0;
5031	int i, m;
5032
5033	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5034		m = pdev->reset_methods[i];
5035		if (!m)
5036			break;
5037
5038		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5039				     pci_reset_fn_methods[m].name);
5040	}
5041
5042	if (len)
5043		len += sysfs_emit_at(buf, len, "\n");
5044
5045	return len;
5046}
5047
5048static int reset_method_lookup(const char *name)
5049{
5050	int m;
5051
5052	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5053		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5054			return m;
5055	}
5056
5057	return 0;	/* not found */
5058}
5059
5060static ssize_t reset_method_store(struct device *dev,
5061				  struct device_attribute *attr,
5062				  const char *buf, size_t count)
5063{
5064	struct pci_dev *pdev = to_pci_dev(dev);
5065	char *options, *name;
5066	int m, n;
5067	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5068
5069	if (sysfs_streq(buf, "")) {
5070		pdev->reset_methods[0] = 0;
5071		pci_warn(pdev, "All device reset methods disabled by user");
5072		return count;
5073	}
5074
5075	if (sysfs_streq(buf, "default")) {
5076		pci_init_reset_methods(pdev);
5077		return count;
5078	}
5079
5080	options = kstrndup(buf, count, GFP_KERNEL);
5081	if (!options)
5082		return -ENOMEM;
5083
5084	n = 0;
5085	while ((name = strsep(&options, " ")) != NULL) {
5086		if (sysfs_streq(name, ""))
5087			continue;
5088
5089		name = strim(name);
5090
5091		m = reset_method_lookup(name);
5092		if (!m) {
5093			pci_err(pdev, "Invalid reset method '%s'", name);
5094			goto error;
5095		}
5096
5097		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5098			pci_err(pdev, "Unsupported reset method '%s'", name);
5099			goto error;
5100		}
5101
5102		if (n == PCI_NUM_RESET_METHODS - 1) {
5103			pci_err(pdev, "Too many reset methods\n");
5104			goto error;
5105		}
5106
5107		reset_methods[n++] = m;
5108	}
5109
5110	reset_methods[n] = 0;
5111
5112	/* Warn if dev-specific supported but not highest priority */
5113	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5114	    reset_methods[0] != 1)
5115		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5116	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5117	kfree(options);
5118	return count;
5119
5120error:
5121	/* Leave previous methods unchanged */
5122	kfree(options);
5123	return -EINVAL;
5124}
5125static DEVICE_ATTR_RW(reset_method);
5126
5127static struct attribute *pci_dev_reset_method_attrs[] = {
5128	&dev_attr_reset_method.attr,
5129	NULL,
5130};
5131
5132static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5133						    struct attribute *a, int n)
5134{
5135	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5136
5137	if (!pci_reset_supported(pdev))
5138		return 0;
5139
5140	return a->mode;
5141}
5142
5143const struct attribute_group pci_dev_reset_method_attr_group = {
5144	.attrs = pci_dev_reset_method_attrs,
5145	.is_visible = pci_dev_reset_method_attr_is_visible,
5146};
5147
5148/**
5149 * __pci_reset_function_locked - reset a PCI device function while holding
5150 * the @dev mutex lock.
5151 * @dev: PCI device to reset
5152 *
5153 * Some devices allow an individual function to be reset without affecting
5154 * other functions in the same device.  The PCI device must be responsive
5155 * to PCI config space in order to use this function.
5156 *
5157 * The device function is presumed to be unused and the caller is holding
5158 * the device mutex lock when this function is called.
5159 *
5160 * Resetting the device will make the contents of PCI configuration space
5161 * random, so any caller of this must be prepared to reinitialise the
5162 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5163 * etc.
5164 *
5165 * Returns 0 if the device function was successfully reset or negative if the
5166 * device doesn't support resetting a single function.
5167 */
5168int __pci_reset_function_locked(struct pci_dev *dev)
5169{
5170	int i, m, rc;
5171
5172	might_sleep();
5173
5174	/*
5175	 * A reset method returns -ENOTTY if it doesn't support this device and
5176	 * we should try the next method.
5177	 *
5178	 * If it returns 0 (success), we're finished.  If it returns any other
5179	 * error, we're also finished: this indicates that further reset
5180	 * mechanisms might be broken on the device.
5181	 */
5182	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5183		m = dev->reset_methods[i];
5184		if (!m)
5185			return -ENOTTY;
5186
5187		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5188		if (!rc)
5189			return 0;
5190		if (rc != -ENOTTY)
5191			return rc;
5192	}
5193
5194	return -ENOTTY;
 
 
 
 
 
 
 
 
5195}
5196EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5197
5198/**
5199 * pci_init_reset_methods - check whether device can be safely reset
5200 * and store supported reset mechanisms.
5201 * @dev: PCI device to check for reset mechanisms
5202 *
5203 * Some devices allow an individual function to be reset without affecting
5204 * other functions in the same device.  The PCI device must be in D0-D3hot
5205 * state.
5206 *
5207 * Stores reset mechanisms supported by device in reset_methods byte array
5208 * which is a member of struct pci_dev.
5209 */
5210void pci_init_reset_methods(struct pci_dev *dev)
5211{
5212	int m, i, rc;
5213
5214	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5215
5216	might_sleep();
5217
5218	i = 0;
5219	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5220		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5221		if (!rc)
5222			dev->reset_methods[i++] = m;
5223		else if (rc != -ENOTTY)
5224			break;
5225	}
 
 
 
 
 
 
5226
5227	dev->reset_methods[i] = 0;
5228}
5229
5230/**
5231 * pci_reset_function - quiesce and reset a PCI device function
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device.  The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * This function does not just reset the PCI portion of a device, but
5239 * clears all the state associated with the device.  This function differs
5240 * from __pci_reset_function_locked() in that it saves and restores device state
5241 * over the reset and takes the PCI device lock.
5242 *
5243 * Returns 0 if the device function was successfully reset or negative if the
5244 * device doesn't support resetting a single function.
5245 */
5246int pci_reset_function(struct pci_dev *dev)
5247{
5248	int rc;
5249
5250	if (!pci_reset_supported(dev))
5251		return -ENOTTY;
5252
5253	pci_dev_lock(dev);
5254	pci_dev_save_and_disable(dev);
5255
5256	rc = __pci_reset_function_locked(dev);
5257
5258	pci_dev_restore(dev);
5259	pci_dev_unlock(dev);
5260
5261	return rc;
5262}
5263EXPORT_SYMBOL_GPL(pci_reset_function);
5264
5265/**
5266 * pci_reset_function_locked - quiesce and reset a PCI device function
5267 * @dev: PCI device to reset
5268 *
5269 * Some devices allow an individual function to be reset without affecting
5270 * other functions in the same device.  The PCI device must be responsive
5271 * to PCI config space in order to use this function.
5272 *
5273 * This function does not just reset the PCI portion of a device, but
5274 * clears all the state associated with the device.  This function differs
5275 * from __pci_reset_function_locked() in that it saves and restores device state
5276 * over the reset.  It also differs from pci_reset_function() in that it
5277 * requires the PCI device lock to be held.
5278 *
5279 * Returns 0 if the device function was successfully reset or negative if the
5280 * device doesn't support resetting a single function.
5281 */
5282int pci_reset_function_locked(struct pci_dev *dev)
5283{
5284	int rc;
5285
5286	if (!pci_reset_supported(dev))
5287		return -ENOTTY;
5288
5289	pci_dev_save_and_disable(dev);
5290
5291	rc = __pci_reset_function_locked(dev);
5292
5293	pci_dev_restore(dev);
5294
5295	return rc;
5296}
5297EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5298
5299/**
5300 * pci_try_reset_function - quiesce and reset a PCI device function
5301 * @dev: PCI device to reset
5302 *
5303 * Same as above, except return -EAGAIN if unable to lock device.
5304 */
5305int pci_try_reset_function(struct pci_dev *dev)
5306{
5307	int rc;
5308
5309	if (!pci_reset_supported(dev))
5310		return -ENOTTY;
5311
5312	if (!pci_dev_trylock(dev))
5313		return -EAGAIN;
5314
5315	pci_dev_save_and_disable(dev);
5316	rc = __pci_reset_function_locked(dev);
5317	pci_dev_restore(dev);
5318	pci_dev_unlock(dev);
5319
5320	return rc;
5321}
5322EXPORT_SYMBOL_GPL(pci_try_reset_function);
5323
5324/* Do any devices on or below this bus prevent a bus reset? */
5325static bool pci_bus_resettable(struct pci_bus *bus)
5326{
5327	struct pci_dev *dev;
5328
5329
5330	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5331		return false;
5332
5333	list_for_each_entry(dev, &bus->devices, bus_list) {
5334		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5335		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5336			return false;
5337	}
5338
5339	return true;
5340}
5341
5342/* Lock devices from the top of the tree down */
5343static void pci_bus_lock(struct pci_bus *bus)
5344{
5345	struct pci_dev *dev;
5346
5347	list_for_each_entry(dev, &bus->devices, bus_list) {
5348		pci_dev_lock(dev);
5349		if (dev->subordinate)
5350			pci_bus_lock(dev->subordinate);
5351	}
5352}
5353
5354/* Unlock devices from the bottom of the tree up */
5355static void pci_bus_unlock(struct pci_bus *bus)
5356{
5357	struct pci_dev *dev;
5358
5359	list_for_each_entry(dev, &bus->devices, bus_list) {
5360		if (dev->subordinate)
5361			pci_bus_unlock(dev->subordinate);
5362		pci_dev_unlock(dev);
5363	}
5364}
5365
5366/* Return 1 on successful lock, 0 on contention */
5367static int pci_bus_trylock(struct pci_bus *bus)
5368{
5369	struct pci_dev *dev;
5370
5371	list_for_each_entry(dev, &bus->devices, bus_list) {
5372		if (!pci_dev_trylock(dev))
5373			goto unlock;
5374		if (dev->subordinate) {
5375			if (!pci_bus_trylock(dev->subordinate)) {
5376				pci_dev_unlock(dev);
5377				goto unlock;
5378			}
5379		}
5380	}
5381	return 1;
5382
5383unlock:
5384	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5385		if (dev->subordinate)
5386			pci_bus_unlock(dev->subordinate);
5387		pci_dev_unlock(dev);
5388	}
5389	return 0;
5390}
5391
5392/* Do any devices on or below this slot prevent a bus reset? */
5393static bool pci_slot_resettable(struct pci_slot *slot)
5394{
5395	struct pci_dev *dev;
5396
5397	if (slot->bus->self &&
5398	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5399		return false;
5400
5401	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5402		if (!dev->slot || dev->slot != slot)
5403			continue;
5404		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5405		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5406			return false;
5407	}
5408
5409	return true;
5410}
5411
5412/* Lock devices from the top of the tree down */
5413static void pci_slot_lock(struct pci_slot *slot)
5414{
5415	struct pci_dev *dev;
5416
5417	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418		if (!dev->slot || dev->slot != slot)
5419			continue;
5420		pci_dev_lock(dev);
5421		if (dev->subordinate)
5422			pci_bus_lock(dev->subordinate);
5423	}
5424}
5425
5426/* Unlock devices from the bottom of the tree up */
5427static void pci_slot_unlock(struct pci_slot *slot)
5428{
5429	struct pci_dev *dev;
5430
5431	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5432		if (!dev->slot || dev->slot != slot)
5433			continue;
5434		if (dev->subordinate)
5435			pci_bus_unlock(dev->subordinate);
5436		pci_dev_unlock(dev);
5437	}
5438}
5439
5440/* Return 1 on successful lock, 0 on contention */
5441static int pci_slot_trylock(struct pci_slot *slot)
5442{
5443	struct pci_dev *dev;
5444
5445	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5446		if (!dev->slot || dev->slot != slot)
5447			continue;
5448		if (!pci_dev_trylock(dev))
5449			goto unlock;
5450		if (dev->subordinate) {
5451			if (!pci_bus_trylock(dev->subordinate)) {
5452				pci_dev_unlock(dev);
5453				goto unlock;
5454			}
5455		}
5456	}
5457	return 1;
5458
5459unlock:
5460	list_for_each_entry_continue_reverse(dev,
5461					     &slot->bus->devices, bus_list) {
5462		if (!dev->slot || dev->slot != slot)
5463			continue;
5464		if (dev->subordinate)
5465			pci_bus_unlock(dev->subordinate);
5466		pci_dev_unlock(dev);
5467	}
5468	return 0;
5469}
5470
5471/*
5472 * Save and disable devices from the top of the tree down while holding
5473 * the @dev mutex lock for the entire tree.
5474 */
5475static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5476{
5477	struct pci_dev *dev;
5478
5479	list_for_each_entry(dev, &bus->devices, bus_list) {
5480		pci_dev_save_and_disable(dev);
5481		if (dev->subordinate)
5482			pci_bus_save_and_disable_locked(dev->subordinate);
5483	}
5484}
5485
5486/*
5487 * Restore devices from top of the tree down while holding @dev mutex lock
5488 * for the entire tree.  Parent bridges need to be restored before we can
5489 * get to subordinate devices.
5490 */
5491static void pci_bus_restore_locked(struct pci_bus *bus)
5492{
5493	struct pci_dev *dev;
5494
5495	list_for_each_entry(dev, &bus->devices, bus_list) {
5496		pci_dev_restore(dev);
5497		if (dev->subordinate)
5498			pci_bus_restore_locked(dev->subordinate);
5499	}
5500}
5501
5502/*
5503 * Save and disable devices from the top of the tree down while holding
5504 * the @dev mutex lock for the entire tree.
5505 */
5506static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5507{
5508	struct pci_dev *dev;
5509
5510	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5511		if (!dev->slot || dev->slot != slot)
5512			continue;
5513		pci_dev_save_and_disable(dev);
5514		if (dev->subordinate)
5515			pci_bus_save_and_disable_locked(dev->subordinate);
5516	}
5517}
5518
5519/*
5520 * Restore devices from top of the tree down while holding @dev mutex lock
5521 * for the entire tree.  Parent bridges need to be restored before we can
5522 * get to subordinate devices.
5523 */
5524static void pci_slot_restore_locked(struct pci_slot *slot)
5525{
5526	struct pci_dev *dev;
5527
5528	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5529		if (!dev->slot || dev->slot != slot)
5530			continue;
5531		pci_dev_restore(dev);
5532		if (dev->subordinate)
5533			pci_bus_restore_locked(dev->subordinate);
5534	}
5535}
5536
5537static int pci_slot_reset(struct pci_slot *slot, bool probe)
5538{
5539	int rc;
5540
5541	if (!slot || !pci_slot_resettable(slot))
5542		return -ENOTTY;
5543
5544	if (!probe)
5545		pci_slot_lock(slot);
5546
5547	might_sleep();
5548
5549	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5550
5551	if (!probe)
5552		pci_slot_unlock(slot);
5553
5554	return rc;
5555}
5556
5557/**
5558 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5559 * @slot: PCI slot to probe
5560 *
5561 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5562 */
5563int pci_probe_reset_slot(struct pci_slot *slot)
5564{
5565	return pci_slot_reset(slot, PCI_RESET_PROBE);
5566}
5567EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5568
5569/**
5570 * __pci_reset_slot - Try to reset a PCI slot
5571 * @slot: PCI slot to reset
5572 *
5573 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5574 * independent of other slots.  For instance, some slots may support slot power
5575 * control.  In the case of a 1:1 bus to slot architecture, this function may
5576 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5577 * Generally a slot reset should be attempted before a bus reset.  All of the
5578 * function of the slot and any subordinate buses behind the slot are reset
5579 * through this function.  PCI config space of all devices in the slot and
5580 * behind the slot is saved before and restored after reset.
5581 *
5582 * Same as above except return -EAGAIN if the slot cannot be locked
5583 */
5584static int __pci_reset_slot(struct pci_slot *slot)
5585{
5586	int rc;
5587
5588	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5589	if (rc)
5590		return rc;
5591
5592	if (pci_slot_trylock(slot)) {
5593		pci_slot_save_and_disable_locked(slot);
5594		might_sleep();
5595		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5596		pci_slot_restore_locked(slot);
5597		pci_slot_unlock(slot);
5598	} else
5599		rc = -EAGAIN;
5600
5601	return rc;
5602}
5603
5604static int pci_bus_reset(struct pci_bus *bus, bool probe)
5605{
5606	int ret;
5607
5608	if (!bus->self || !pci_bus_resettable(bus))
5609		return -ENOTTY;
5610
5611	if (probe)
5612		return 0;
5613
5614	pci_bus_lock(bus);
5615
5616	might_sleep();
5617
5618	ret = pci_bridge_secondary_bus_reset(bus->self);
5619
5620	pci_bus_unlock(bus);
5621
5622	return ret;
5623}
5624
5625/**
5626 * pci_bus_error_reset - reset the bridge's subordinate bus
5627 * @bridge: The parent device that connects to the bus to reset
5628 *
5629 * This function will first try to reset the slots on this bus if the method is
5630 * available. If slot reset fails or is not available, this will fall back to a
5631 * secondary bus reset.
5632 */
5633int pci_bus_error_reset(struct pci_dev *bridge)
5634{
5635	struct pci_bus *bus = bridge->subordinate;
5636	struct pci_slot *slot;
5637
5638	if (!bus)
5639		return -ENOTTY;
5640
5641	mutex_lock(&pci_slot_mutex);
5642	if (list_empty(&bus->slots))
5643		goto bus_reset;
5644
5645	list_for_each_entry(slot, &bus->slots, list)
5646		if (pci_probe_reset_slot(slot))
5647			goto bus_reset;
5648
5649	list_for_each_entry(slot, &bus->slots, list)
5650		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5651			goto bus_reset;
5652
5653	mutex_unlock(&pci_slot_mutex);
5654	return 0;
5655bus_reset:
5656	mutex_unlock(&pci_slot_mutex);
5657	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5658}
5659
5660/**
5661 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5662 * @bus: PCI bus to probe
5663 *
5664 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5665 */
5666int pci_probe_reset_bus(struct pci_bus *bus)
5667{
5668	return pci_bus_reset(bus, PCI_RESET_PROBE);
5669}
5670EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5671
5672/**
5673 * __pci_reset_bus - Try to reset a PCI bus
5674 * @bus: top level PCI bus to reset
5675 *
5676 * Same as above except return -EAGAIN if the bus cannot be locked
5677 */
5678static int __pci_reset_bus(struct pci_bus *bus)
5679{
5680	int rc;
5681
5682	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5683	if (rc)
5684		return rc;
5685
5686	if (pci_bus_trylock(bus)) {
5687		pci_bus_save_and_disable_locked(bus);
5688		might_sleep();
5689		rc = pci_bridge_secondary_bus_reset(bus->self);
5690		pci_bus_restore_locked(bus);
5691		pci_bus_unlock(bus);
5692	} else
5693		rc = -EAGAIN;
5694
5695	return rc;
5696}
5697
5698/**
5699 * pci_reset_bus - Try to reset a PCI bus
5700 * @pdev: top level PCI device to reset via slot/bus
5701 *
5702 * Same as above except return -EAGAIN if the bus cannot be locked
5703 */
5704int pci_reset_bus(struct pci_dev *pdev)
5705{
5706	return (!pci_probe_reset_slot(pdev->slot)) ?
5707	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5708}
5709EXPORT_SYMBOL_GPL(pci_reset_bus);
5710
5711/**
5712 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5713 * @dev: PCI device to query
5714 *
5715 * Returns mmrbc: maximum designed memory read count in bytes or
5716 * appropriate error value.
5717 */
5718int pcix_get_max_mmrbc(struct pci_dev *dev)
5719{
5720	int cap;
5721	u32 stat;
5722
5723	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5724	if (!cap)
5725		return -EINVAL;
5726
5727	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5728		return -EINVAL;
5729
5730	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5731}
5732EXPORT_SYMBOL(pcix_get_max_mmrbc);
5733
5734/**
5735 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5736 * @dev: PCI device to query
5737 *
5738 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5739 * value.
5740 */
5741int pcix_get_mmrbc(struct pci_dev *dev)
5742{
5743	int cap;
5744	u16 cmd;
5745
5746	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5747	if (!cap)
5748		return -EINVAL;
5749
5750	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5751		return -EINVAL;
5752
5753	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5754}
5755EXPORT_SYMBOL(pcix_get_mmrbc);
5756
5757/**
5758 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5759 * @dev: PCI device to query
5760 * @mmrbc: maximum memory read count in bytes
5761 *    valid values are 512, 1024, 2048, 4096
5762 *
5763 * If possible sets maximum memory read byte count, some bridges have errata
5764 * that prevent this.
5765 */
5766int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5767{
5768	int cap;
5769	u32 stat, v, o;
5770	u16 cmd;
5771
5772	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5773		return -EINVAL;
5774
5775	v = ffs(mmrbc) - 10;
5776
5777	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5778	if (!cap)
5779		return -EINVAL;
5780
5781	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5782		return -EINVAL;
5783
5784	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5785		return -E2BIG;
5786
5787	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5788		return -EINVAL;
5789
5790	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5791	if (o != v) {
5792		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5793			return -EIO;
5794
5795		cmd &= ~PCI_X_CMD_MAX_READ;
5796		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5797		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5798			return -EIO;
5799	}
5800	return 0;
5801}
5802EXPORT_SYMBOL(pcix_set_mmrbc);
5803
5804/**
5805 * pcie_get_readrq - get PCI Express read request size
5806 * @dev: PCI device to query
5807 *
5808 * Returns maximum memory read request in bytes or appropriate error value.
5809 */
5810int pcie_get_readrq(struct pci_dev *dev)
5811{
5812	u16 ctl;
5813
5814	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5815
5816	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5817}
5818EXPORT_SYMBOL(pcie_get_readrq);
5819
5820/**
5821 * pcie_set_readrq - set PCI Express maximum memory read request
5822 * @dev: PCI device to query
5823 * @rq: maximum memory read count in bytes
5824 *    valid values are 128, 256, 512, 1024, 2048, 4096
5825 *
5826 * If possible sets maximum memory read request in bytes
5827 */
5828int pcie_set_readrq(struct pci_dev *dev, int rq)
5829{
5830	u16 v;
5831	int ret;
5832	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5833
5834	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5835		return -EINVAL;
5836
5837	/*
5838	 * If using the "performance" PCIe config, we clamp the read rq
5839	 * size to the max packet size to keep the host bridge from
5840	 * generating requests larger than we can cope with.
5841	 */
5842	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5843		int mps = pcie_get_mps(dev);
5844
5845		if (mps < rq)
5846			rq = mps;
5847	}
5848
5849	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5850
5851	if (bridge->no_inc_mrrs) {
5852		int max_mrrs = pcie_get_readrq(dev);
5853
5854		if (rq > max_mrrs) {
5855			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5856			return -EINVAL;
5857		}
5858	}
5859
5860	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5861						  PCI_EXP_DEVCTL_READRQ, v);
5862
5863	return pcibios_err_to_errno(ret);
5864}
5865EXPORT_SYMBOL(pcie_set_readrq);
5866
5867/**
5868 * pcie_get_mps - get PCI Express maximum payload size
5869 * @dev: PCI device to query
5870 *
5871 * Returns maximum payload size in bytes
5872 */
5873int pcie_get_mps(struct pci_dev *dev)
5874{
5875	u16 ctl;
5876
5877	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5878
5879	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5880}
5881EXPORT_SYMBOL(pcie_get_mps);
5882
5883/**
5884 * pcie_set_mps - set PCI Express maximum payload size
5885 * @dev: PCI device to query
5886 * @mps: maximum payload size in bytes
5887 *    valid values are 128, 256, 512, 1024, 2048, 4096
5888 *
5889 * If possible sets maximum payload size
5890 */
5891int pcie_set_mps(struct pci_dev *dev, int mps)
5892{
5893	u16 v;
5894	int ret;
5895
5896	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5897		return -EINVAL;
5898
5899	v = ffs(mps) - 8;
5900	if (v > dev->pcie_mpss)
5901		return -EINVAL;
5902	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5903
5904	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5905						  PCI_EXP_DEVCTL_PAYLOAD, v);
5906
5907	return pcibios_err_to_errno(ret);
5908}
5909EXPORT_SYMBOL(pcie_set_mps);
5910
5911static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5912{
5913	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5914}
5915
5916int pcie_link_speed_mbps(struct pci_dev *pdev)
5917{
5918	u16 lnksta;
5919	int err;
5920
5921	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5922	if (err)
5923		return err;
5924
5925	switch (to_pcie_link_speed(lnksta)) {
5926	case PCIE_SPEED_2_5GT:
5927		return 2500;
5928	case PCIE_SPEED_5_0GT:
5929		return 5000;
5930	case PCIE_SPEED_8_0GT:
5931		return 8000;
5932	case PCIE_SPEED_16_0GT:
5933		return 16000;
5934	case PCIE_SPEED_32_0GT:
5935		return 32000;
5936	case PCIE_SPEED_64_0GT:
5937		return 64000;
5938	default:
5939		break;
5940	}
5941
5942	return -EINVAL;
5943}
5944EXPORT_SYMBOL(pcie_link_speed_mbps);
5945
5946/**
5947 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5948 *			      device and its bandwidth limitation
5949 * @dev: PCI device to query
5950 * @limiting_dev: storage for device causing the bandwidth limitation
5951 * @speed: storage for speed of limiting device
5952 * @width: storage for width of limiting device
5953 *
5954 * Walk up the PCI device chain and find the point where the minimum
5955 * bandwidth is available.  Return the bandwidth available there and (if
5956 * limiting_dev, speed, and width pointers are supplied) information about
5957 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5958 * raw bandwidth.
5959 */
5960u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5961			     enum pci_bus_speed *speed,
5962			     enum pcie_link_width *width)
5963{
5964	u16 lnksta;
5965	enum pci_bus_speed next_speed;
5966	enum pcie_link_width next_width;
5967	u32 bw, next_bw;
5968
5969	if (speed)
5970		*speed = PCI_SPEED_UNKNOWN;
5971	if (width)
5972		*width = PCIE_LNK_WIDTH_UNKNOWN;
5973
5974	bw = 0;
5975
5976	while (dev) {
5977		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5978
5979		next_speed = to_pcie_link_speed(lnksta);
5980		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
 
5981
5982		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5983
5984		/* Check if current device limits the total bandwidth */
5985		if (!bw || next_bw <= bw) {
5986			bw = next_bw;
5987
5988			if (limiting_dev)
5989				*limiting_dev = dev;
5990			if (speed)
5991				*speed = next_speed;
5992			if (width)
5993				*width = next_width;
5994		}
5995
5996		dev = pci_upstream_bridge(dev);
5997	}
5998
5999	return bw;
6000}
6001EXPORT_SYMBOL(pcie_bandwidth_available);
6002
6003/**
6004 * pcie_get_speed_cap - query for the PCI device's link speed capability
6005 * @dev: PCI device to query
6006 *
6007 * Query the PCI device speed capability.  Return the maximum link speed
6008 * supported by the device.
6009 */
6010enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6011{
6012	u32 lnkcap2, lnkcap;
6013
6014	/*
6015	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6016	 * implementation note there recommends using the Supported Link
6017	 * Speeds Vector in Link Capabilities 2 when supported.
6018	 *
6019	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6020	 * should use the Supported Link Speeds field in Link Capabilities,
6021	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6022	 */
6023	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6024
6025	/* PCIe r3.0-compliant */
6026	if (lnkcap2)
6027		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6028
6029	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6030	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6031		return PCIE_SPEED_5_0GT;
6032	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6033		return PCIE_SPEED_2_5GT;
6034
6035	return PCI_SPEED_UNKNOWN;
6036}
6037EXPORT_SYMBOL(pcie_get_speed_cap);
6038
6039/**
6040 * pcie_get_width_cap - query for the PCI device's link width capability
6041 * @dev: PCI device to query
6042 *
6043 * Query the PCI device width capability.  Return the maximum link width
6044 * supported by the device.
6045 */
6046enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6047{
6048	u32 lnkcap;
6049
6050	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6051	if (lnkcap)
6052		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6053
6054	return PCIE_LNK_WIDTH_UNKNOWN;
6055}
6056EXPORT_SYMBOL(pcie_get_width_cap);
6057
6058/**
6059 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6060 * @dev: PCI device
6061 * @speed: storage for link speed
6062 * @width: storage for link width
6063 *
6064 * Calculate a PCI device's link bandwidth by querying for its link speed
6065 * and width, multiplying them, and applying encoding overhead.  The result
6066 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6067 */
6068u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6069			   enum pcie_link_width *width)
6070{
6071	*speed = pcie_get_speed_cap(dev);
6072	*width = pcie_get_width_cap(dev);
6073
6074	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6075		return 0;
6076
6077	return *width * PCIE_SPEED2MBS_ENC(*speed);
6078}
6079
6080/**
6081 * __pcie_print_link_status - Report the PCI device's link speed and width
6082 * @dev: PCI device to query
6083 * @verbose: Print info even when enough bandwidth is available
6084 *
6085 * If the available bandwidth at the device is less than the device is
6086 * capable of, report the device's maximum possible bandwidth and the
6087 * upstream link that limits its performance.  If @verbose, always print
6088 * the available bandwidth, even if the device isn't constrained.
6089 */
6090void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6091{
6092	enum pcie_link_width width, width_cap;
6093	enum pci_bus_speed speed, speed_cap;
6094	struct pci_dev *limiting_dev = NULL;
6095	u32 bw_avail, bw_cap;
6096
6097	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6098	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6099
6100	if (bw_avail >= bw_cap && verbose)
6101		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6102			 bw_cap / 1000, bw_cap % 1000,
6103			 pci_speed_string(speed_cap), width_cap);
6104	else if (bw_avail < bw_cap)
6105		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6106			 bw_avail / 1000, bw_avail % 1000,
6107			 pci_speed_string(speed), width,
6108			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6109			 bw_cap / 1000, bw_cap % 1000,
6110			 pci_speed_string(speed_cap), width_cap);
6111}
6112
6113/**
6114 * pcie_print_link_status - Report the PCI device's link speed and width
6115 * @dev: PCI device to query
6116 *
6117 * Report the available bandwidth at the device.
6118 */
6119void pcie_print_link_status(struct pci_dev *dev)
6120{
6121	__pcie_print_link_status(dev, true);
6122}
6123EXPORT_SYMBOL(pcie_print_link_status);
6124
6125/**
6126 * pci_select_bars - Make BAR mask from the type of resource
6127 * @dev: the PCI device for which BAR mask is made
6128 * @flags: resource type mask to be selected
6129 *
6130 * This helper routine makes bar mask from the type of resource.
6131 */
6132int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6133{
6134	int i, bars = 0;
6135	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6136		if (pci_resource_flags(dev, i) & flags)
6137			bars |= (1 << i);
6138	return bars;
6139}
6140EXPORT_SYMBOL(pci_select_bars);
6141
6142/* Some architectures require additional programming to enable VGA */
6143static arch_set_vga_state_t arch_set_vga_state;
6144
6145void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6146{
6147	arch_set_vga_state = func;	/* NULL disables */
6148}
6149
6150static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6151				  unsigned int command_bits, u32 flags)
6152{
6153	if (arch_set_vga_state)
6154		return arch_set_vga_state(dev, decode, command_bits,
6155						flags);
6156	return 0;
6157}
6158
6159/**
6160 * pci_set_vga_state - set VGA decode state on device and parents if requested
6161 * @dev: the PCI device
6162 * @decode: true = enable decoding, false = disable decoding
6163 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6164 * @flags: traverse ancestors and change bridges
6165 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6166 */
6167int pci_set_vga_state(struct pci_dev *dev, bool decode,
6168		      unsigned int command_bits, u32 flags)
6169{
6170	struct pci_bus *bus;
6171	struct pci_dev *bridge;
6172	u16 cmd;
6173	int rc;
6174
6175	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6176
6177	/* ARCH specific VGA enables */
6178	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6179	if (rc)
6180		return rc;
6181
6182	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6183		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6184		if (decode)
6185			cmd |= command_bits;
6186		else
6187			cmd &= ~command_bits;
6188		pci_write_config_word(dev, PCI_COMMAND, cmd);
6189	}
6190
6191	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6192		return 0;
6193
6194	bus = dev->bus;
6195	while (bus) {
6196		bridge = bus->self;
6197		if (bridge) {
6198			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6199					     &cmd);
6200			if (decode)
6201				cmd |= PCI_BRIDGE_CTL_VGA;
6202			else
6203				cmd &= ~PCI_BRIDGE_CTL_VGA;
6204			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6205					      cmd);
6206		}
6207		bus = bus->parent;
6208	}
6209	return 0;
6210}
6211
6212#ifdef CONFIG_ACPI
6213bool pci_pr3_present(struct pci_dev *pdev)
6214{
6215	struct acpi_device *adev;
6216
6217	if (acpi_disabled)
6218		return false;
6219
6220	adev = ACPI_COMPANION(&pdev->dev);
6221	if (!adev)
6222		return false;
6223
6224	return adev->power.flags.power_resources &&
6225		acpi_has_method(adev->handle, "_PR3");
6226}
6227EXPORT_SYMBOL_GPL(pci_pr3_present);
6228#endif
6229
6230/**
6231 * pci_add_dma_alias - Add a DMA devfn alias for a device
6232 * @dev: the PCI device for which alias is added
6233 * @devfn_from: alias slot and function
6234 * @nr_devfns: number of subsequent devfns to alias
6235 *
6236 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6237 * which is used to program permissible bus-devfn source addresses for DMA
6238 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6239 * and are useful for devices generating DMA requests beyond or different
6240 * from their logical bus-devfn.  Examples include device quirks where the
6241 * device simply uses the wrong devfn, as well as non-transparent bridges
6242 * where the alias may be a proxy for devices in another domain.
6243 *
6244 * IOMMU group creation is performed during device discovery or addition,
6245 * prior to any potential DMA mapping and therefore prior to driver probing
6246 * (especially for userspace assigned devices where IOMMU group definition
6247 * cannot be left as a userspace activity).  DMA aliases should therefore
6248 * be configured via quirks, such as the PCI fixup header quirk.
6249 */
6250void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6251		       unsigned int nr_devfns)
6252{
6253	int devfn_to;
6254
6255	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6256	devfn_to = devfn_from + nr_devfns - 1;
6257
6258	if (!dev->dma_alias_mask)
6259		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6260	if (!dev->dma_alias_mask) {
6261		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6262		return;
6263	}
6264
6265	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6266
6267	if (nr_devfns == 1)
6268		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6269				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6270	else if (nr_devfns > 1)
6271		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6272				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6273				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6274}
6275
6276bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6277{
6278	return (dev1->dma_alias_mask &&
6279		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6280	       (dev2->dma_alias_mask &&
6281		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6282	       pci_real_dma_dev(dev1) == dev2 ||
6283	       pci_real_dma_dev(dev2) == dev1;
6284}
6285
6286bool pci_device_is_present(struct pci_dev *pdev)
6287{
6288	u32 v;
6289
6290	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6291	pdev = pci_physfn(pdev);
6292	if (pci_dev_is_disconnected(pdev))
6293		return false;
6294	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6295}
6296EXPORT_SYMBOL_GPL(pci_device_is_present);
6297
6298void pci_ignore_hotplug(struct pci_dev *dev)
6299{
6300	struct pci_dev *bridge = dev->bus->self;
6301
6302	dev->ignore_hotplug = 1;
6303	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6304	if (bridge)
6305		bridge->ignore_hotplug = 1;
6306}
6307EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6308
6309/**
6310 * pci_real_dma_dev - Get PCI DMA device for PCI device
6311 * @dev: the PCI device that may have a PCI DMA alias
6312 *
6313 * Permits the platform to provide architecture-specific functionality to
6314 * devices needing to alias DMA to another PCI device on another PCI bus. If
6315 * the PCI device is on the same bus, it is recommended to use
6316 * pci_add_dma_alias(). This is the default implementation. Architecture
6317 * implementations can override this.
6318 */
6319struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6320{
6321	return dev;
6322}
6323
6324resource_size_t __weak pcibios_default_alignment(void)
6325{
6326	return 0;
6327}
6328
6329/*
6330 * Arches that don't want to expose struct resource to userland as-is in
6331 * sysfs and /proc can implement their own pci_resource_to_user().
6332 */
6333void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6334				 const struct resource *rsrc,
6335				 resource_size_t *start, resource_size_t *end)
6336{
6337	*start = rsrc->start;
6338	*end = rsrc->end;
6339}
6340
6341static char *resource_alignment_param;
6342static DEFINE_SPINLOCK(resource_alignment_lock);
6343
6344/**
6345 * pci_specified_resource_alignment - get resource alignment specified by user.
6346 * @dev: the PCI device to get
6347 * @resize: whether or not to change resources' size when reassigning alignment
6348 *
6349 * RETURNS: Resource alignment if it is specified.
6350 *          Zero if it is not specified.
6351 */
6352static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6353							bool *resize)
6354{
6355	int align_order, count;
6356	resource_size_t align = pcibios_default_alignment();
6357	const char *p;
6358	int ret;
6359
6360	spin_lock(&resource_alignment_lock);
6361	p = resource_alignment_param;
6362	if (!p || !*p)
6363		goto out;
6364	if (pci_has_flag(PCI_PROBE_ONLY)) {
6365		align = 0;
6366		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6367		goto out;
6368	}
6369
6370	while (*p) {
6371		count = 0;
6372		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6373		    p[count] == '@') {
6374			p += count + 1;
6375			if (align_order > 63) {
6376				pr_err("PCI: Invalid requested alignment (order %d)\n",
6377				       align_order);
6378				align_order = PAGE_SHIFT;
6379			}
6380		} else {
6381			align_order = PAGE_SHIFT;
6382		}
6383
6384		ret = pci_dev_str_match(dev, p, &p);
6385		if (ret == 1) {
6386			*resize = true;
6387			align = 1ULL << align_order;
 
 
 
6388			break;
6389		} else if (ret < 0) {
6390			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6391			       p);
6392			break;
6393		}
6394
6395		if (*p != ';' && *p != ',') {
6396			/* End of param or invalid format */
6397			break;
6398		}
6399		p++;
6400	}
6401out:
6402	spin_unlock(&resource_alignment_lock);
6403	return align;
6404}
6405
6406static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6407					   resource_size_t align, bool resize)
6408{
6409	struct resource *r = &dev->resource[bar];
6410	const char *r_name = pci_resource_name(dev, bar);
6411	resource_size_t size;
6412
6413	if (!(r->flags & IORESOURCE_MEM))
6414		return;
6415
6416	if (r->flags & IORESOURCE_PCI_FIXED) {
6417		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6418			 r_name, r, (unsigned long long)align);
6419		return;
6420	}
6421
6422	size = resource_size(r);
6423	if (size >= align)
6424		return;
6425
6426	/*
6427	 * Increase the alignment of the resource.  There are two ways we
6428	 * can do this:
6429	 *
6430	 * 1) Increase the size of the resource.  BARs are aligned on their
6431	 *    size, so when we reallocate space for this resource, we'll
6432	 *    allocate it with the larger alignment.  This also prevents
6433	 *    assignment of any other BARs inside the alignment region, so
6434	 *    if we're requesting page alignment, this means no other BARs
6435	 *    will share the page.
6436	 *
6437	 *    The disadvantage is that this makes the resource larger than
6438	 *    the hardware BAR, which may break drivers that compute things
6439	 *    based on the resource size, e.g., to find registers at a
6440	 *    fixed offset before the end of the BAR.
6441	 *
6442	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6443	 *    set r->start to the desired alignment.  By itself this
6444	 *    doesn't prevent other BARs being put inside the alignment
6445	 *    region, but if we realign *every* resource of every device in
6446	 *    the system, none of them will share an alignment region.
6447	 *
6448	 * When the user has requested alignment for only some devices via
6449	 * the "pci=resource_alignment" argument, "resize" is true and we
6450	 * use the first method.  Otherwise we assume we're aligning all
6451	 * devices and we use the second.
6452	 */
6453
6454	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6455		 r_name, r, (unsigned long long)align);
6456
6457	if (resize) {
6458		r->start = 0;
6459		r->end = align - 1;
6460	} else {
6461		r->flags &= ~IORESOURCE_SIZEALIGN;
6462		r->flags |= IORESOURCE_STARTALIGN;
6463		r->start = align;
6464		r->end = r->start + size - 1;
6465	}
6466	r->flags |= IORESOURCE_UNSET;
6467}
6468
6469/*
6470 * This function disables memory decoding and releases memory resources
6471 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6472 * It also rounds up size to specified alignment.
6473 * Later on, the kernel will assign page-aligned memory resource back
6474 * to the device.
6475 */
6476void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6477{
6478	int i;
6479	struct resource *r;
6480	resource_size_t align;
6481	u16 command;
6482	bool resize = false;
6483
6484	/*
6485	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6486	 * 3.4.1.11.  Their resources are allocated from the space
6487	 * described by the VF BARx register in the PF's SR-IOV capability.
6488	 * We can't influence their alignment here.
6489	 */
6490	if (dev->is_virtfn)
6491		return;
6492
6493	/* check if specified PCI is target device to reassign */
6494	align = pci_specified_resource_alignment(dev, &resize);
6495	if (!align)
6496		return;
6497
6498	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6499	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6500		pci_warn(dev, "Can't reassign resources to host bridge\n");
6501		return;
6502	}
6503
6504	pci_read_config_word(dev, PCI_COMMAND, &command);
6505	command &= ~PCI_COMMAND_MEMORY;
6506	pci_write_config_word(dev, PCI_COMMAND, command);
6507
6508	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6509		pci_request_resource_alignment(dev, i, align, resize);
6510
6511	/*
6512	 * Need to disable bridge's resource window,
6513	 * to enable the kernel to reassign new resource
6514	 * window later on.
6515	 */
6516	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6517		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6518			r = &dev->resource[i];
6519			if (!(r->flags & IORESOURCE_MEM))
6520				continue;
6521			r->flags |= IORESOURCE_UNSET;
6522			r->end = resource_size(r) - 1;
6523			r->start = 0;
6524		}
6525		pci_disable_bridge_window(dev);
6526	}
6527}
6528
6529static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6530{
6531	size_t count = 0;
6532
6533	spin_lock(&resource_alignment_lock);
6534	if (resource_alignment_param)
6535		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6536	spin_unlock(&resource_alignment_lock);
6537
 
 
 
 
 
 
 
 
 
 
6538	return count;
6539}
6540
6541static ssize_t resource_alignment_store(const struct bus_type *bus,
6542					const char *buf, size_t count)
6543{
6544	char *param, *old, *end;
6545
6546	if (count >= (PAGE_SIZE - 1))
6547		return -EINVAL;
6548
6549	param = kstrndup(buf, count, GFP_KERNEL);
6550	if (!param)
6551		return -ENOMEM;
6552
6553	end = strchr(param, '\n');
6554	if (end)
6555		*end = '\0';
6556
6557	spin_lock(&resource_alignment_lock);
6558	old = resource_alignment_param;
6559	if (strlen(param)) {
6560		resource_alignment_param = param;
6561	} else {
6562		kfree(param);
6563		resource_alignment_param = NULL;
6564	}
6565	spin_unlock(&resource_alignment_lock);
6566
6567	kfree(old);
6568
6569	return count;
6570}
6571
6572static BUS_ATTR_RW(resource_alignment);
6573
6574static int __init pci_resource_alignment_sysfs_init(void)
6575{
6576	return bus_create_file(&pci_bus_type,
6577					&bus_attr_resource_alignment);
6578}
6579late_initcall(pci_resource_alignment_sysfs_init);
6580
6581static void pci_no_domains(void)
6582{
6583#ifdef CONFIG_PCI_DOMAINS
6584	pci_domains_supported = 0;
6585#endif
6586}
6587
6588#ifdef CONFIG_PCI_DOMAINS_GENERIC
6589static DEFINE_IDA(pci_domain_nr_static_ida);
6590static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6591
6592static void of_pci_reserve_static_domain_nr(void)
6593{
6594	struct device_node *np;
6595	int domain_nr;
6596
6597	for_each_node_by_type(np, "pci") {
6598		domain_nr = of_get_pci_domain_nr(np);
6599		if (domain_nr < 0)
6600			continue;
6601		/*
6602		 * Permanently allocate domain_nr in dynamic_ida
6603		 * to prevent it from dynamic allocation.
6604		 */
6605		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6606				domain_nr, domain_nr, GFP_KERNEL);
6607	}
6608}
6609
6610static int of_pci_bus_find_domain_nr(struct device *parent)
6611{
6612	static bool static_domains_reserved = false;
6613	int domain_nr;
6614
6615	/* On the first call scan device tree for static allocations. */
6616	if (!static_domains_reserved) {
6617		of_pci_reserve_static_domain_nr();
6618		static_domains_reserved = true;
6619	}
6620
6621	if (parent) {
6622		/*
6623		 * If domain is in DT, allocate it in static IDA.  This
6624		 * prevents duplicate static allocations in case of errors
6625		 * in DT.
6626		 */
6627		domain_nr = of_get_pci_domain_nr(parent->of_node);
6628		if (domain_nr >= 0)
6629			return ida_alloc_range(&pci_domain_nr_static_ida,
6630					       domain_nr, domain_nr,
6631					       GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6632	}
6633
6634	/*
6635	 * If domain was not specified in DT, choose a free ID from dynamic
6636	 * allocations. All domain numbers from DT are permanently in
6637	 * dynamic allocations to prevent assigning them to other DT nodes
6638	 * without static domain.
6639	 */
6640	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6641}
6642
6643static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6644{
6645	if (bus->domain_nr < 0)
6646		return;
6647
6648	/* Release domain from IDA where it was allocated. */
6649	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6650		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6651	else
6652		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6653}
6654
6655int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6656{
6657	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6658			       acpi_pci_bus_find_domain_nr(bus);
6659}
6660
6661void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6662{
6663	if (!acpi_disabled)
6664		return;
6665	of_pci_bus_release_domain_nr(bus, parent);
6666}
6667#endif
6668
6669/**
6670 * pci_ext_cfg_avail - can we access extended PCI config space?
6671 *
6672 * Returns 1 if we can access PCI extended config space (offsets
6673 * greater than 0xff). This is the default implementation. Architecture
6674 * implementations can override this.
6675 */
6676int __weak pci_ext_cfg_avail(void)
6677{
6678	return 1;
6679}
6680
6681void __weak pci_fixup_cardbus(struct pci_bus *bus)
6682{
6683}
6684EXPORT_SYMBOL(pci_fixup_cardbus);
6685
6686static int __init pci_setup(char *str)
6687{
6688	while (str) {
6689		char *k = strchr(str, ',');
6690		if (k)
6691			*k++ = 0;
6692		if (*str && (str = pcibios_setup(str)) && *str) {
6693			if (!strcmp(str, "nomsi")) {
6694				pci_no_msi();
6695			} else if (!strncmp(str, "noats", 5)) {
6696				pr_info("PCIe: ATS is disabled\n");
6697				pcie_ats_disabled = true;
6698			} else if (!strcmp(str, "noaer")) {
6699				pci_no_aer();
6700			} else if (!strcmp(str, "earlydump")) {
6701				pci_early_dump = true;
6702			} else if (!strncmp(str, "realloc=", 8)) {
6703				pci_realloc_get_opt(str + 8);
6704			} else if (!strncmp(str, "realloc", 7)) {
6705				pci_realloc_get_opt("on");
6706			} else if (!strcmp(str, "nodomains")) {
6707				pci_no_domains();
6708			} else if (!strncmp(str, "noari", 5)) {
6709				pcie_ari_disabled = true;
6710			} else if (!strncmp(str, "cbiosize=", 9)) {
6711				pci_cardbus_io_size = memparse(str + 9, &str);
6712			} else if (!strncmp(str, "cbmemsize=", 10)) {
6713				pci_cardbus_mem_size = memparse(str + 10, &str);
6714			} else if (!strncmp(str, "resource_alignment=", 19)) {
6715				resource_alignment_param = str + 19;
6716			} else if (!strncmp(str, "ecrc=", 5)) {
6717				pcie_ecrc_get_policy(str + 5);
6718			} else if (!strncmp(str, "hpiosize=", 9)) {
6719				pci_hotplug_io_size = memparse(str + 9, &str);
6720			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6721				pci_hotplug_mmio_size = memparse(str + 11, &str);
6722			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6723				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6724			} else if (!strncmp(str, "hpmemsize=", 10)) {
6725				pci_hotplug_mmio_size = memparse(str + 10, &str);
6726				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6727			} else if (!strncmp(str, "hpbussize=", 10)) {
6728				pci_hotplug_bus_size =
6729					simple_strtoul(str + 10, &str, 0);
6730				if (pci_hotplug_bus_size > 0xff)
6731					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6732			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6733				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6734			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6735				pcie_bus_config = PCIE_BUS_SAFE;
6736			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6737				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6738			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6739				pcie_bus_config = PCIE_BUS_PEER2PEER;
6740			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6741				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6742			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6743				disable_acs_redir_param = str + 18;
6744			} else {
6745				pr_err("PCI: Unknown option `%s'\n", str);
6746			}
6747		}
6748		str = k;
6749	}
6750	return 0;
6751}
6752early_param("pci", pci_setup);
6753
6754/*
6755 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6756 * in pci_setup(), above, to point to data in the __initdata section which
6757 * will be freed after the init sequence is complete. We can't allocate memory
6758 * in pci_setup() because some architectures do not have any memory allocation
6759 * service available during an early_param() call. So we allocate memory and
6760 * copy the variable here before the init section is freed.
6761 *
6762 */
6763static int __init pci_realloc_setup_params(void)
6764{
6765	resource_alignment_param = kstrdup(resource_alignment_param,
6766					   GFP_KERNEL);
6767	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6768
6769	return 0;
6770}
6771pure_initcall(pci_realloc_setup_params);