Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/of_pci.h>
19#include <linux/pci.h>
20#include <linux/pm.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/spinlock.h>
24#include <linux/string.h>
25#include <linux/log2.h>
26#include <linux/logic_pio.h>
27#include <linux/pm_wakeup.h>
28#include <linux/interrupt.h>
29#include <linux/device.h>
30#include <linux/pm_runtime.h>
31#include <linux/pci_hotplug.h>
32#include <linux/vmalloc.h>
33#include <linux/pci-ats.h>
34#include <asm/setup.h>
35#include <asm/dma.h>
36#include <linux/aer.h>
37#include "pci.h"
38
39DEFINE_MUTEX(pci_slot_mutex);
40
41const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43};
44EXPORT_SYMBOL_GPL(pci_power_names);
45
46int isa_dma_bridge_buggy;
47EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
69 unsigned int delay = dev->d3_delay;
70
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
73
74 if (delay)
75 msleep(delay);
76}
77
78#ifdef CONFIG_PCI_DOMAINS
79int pci_domains_supported = 1;
80#endif
81
82#define DEFAULT_CARDBUS_IO_SIZE (256)
83#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87
88#define DEFAULT_HOTPLUG_IO_SIZE (256)
89#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91/* hpiosize=nn can override this */
92unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
93/*
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
97 */
98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100
101#define DEFAULT_HOTPLUG_BUS_SIZE 1
102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105
106/*
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
111 */
112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113u8 pci_cache_line_size;
114
115/*
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
118 */
119unsigned int pcibios_max_latency = 255;
120
121/* If set, the PCIe ARI capability will not be used. */
122static bool pcie_ari_disabled;
123
124/* If set, the PCIe ATS capability will not be used. */
125static bool pcie_ats_disabled;
126
127/* If set, the PCI config space of each device is printed during boot. */
128bool pci_early_dump;
129
130bool pci_ats_disabled(void)
131{
132 return pcie_ats_disabled;
133}
134EXPORT_SYMBOL_GPL(pci_ats_disabled);
135
136/* Disable bridge_d3 for all PCIe ports */
137static bool pci_bridge_d3_disable;
138/* Force bridge_d3 for all PCIe ports */
139static bool pci_bridge_d3_force;
140
141static int __init pcie_port_pm_setup(char *str)
142{
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
147 return 1;
148}
149__setup("pcie_port_pm=", pcie_port_pm_setup);
150
151/* Time to wait after a reset for device to become responsive */
152#define PCIE_RESET_READY_POLL_MS 60000
153
154/**
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
157 *
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
160 */
161unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162{
163 struct pci_bus *tmp;
164 unsigned char max, n;
165
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
169 if (n > max)
170 max = n;
171 }
172 return max;
173}
174EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175
176/**
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
179 *
180 * Returns error bits set in PCI_STATUS and clears them.
181 */
182int pci_status_get_and_clear_errors(struct pci_dev *pdev)
183{
184 u16 status;
185 int ret;
186
187 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 if (ret != PCIBIOS_SUCCESSFUL)
189 return -EIO;
190
191 status &= PCI_STATUS_ERROR_BITS;
192 if (status)
193 pci_write_config_word(pdev, PCI_STATUS, status);
194
195 return status;
196}
197EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
198
199#ifdef CONFIG_HAS_IOMEM
200void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
201{
202 struct resource *res = &pdev->resource[bar];
203
204 /*
205 * Make sure the BAR is actually a memory resource, not an IO resource
206 */
207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
209 return NULL;
210 }
211 return ioremap(res->start, resource_size(res));
212}
213EXPORT_SYMBOL_GPL(pci_ioremap_bar);
214
215void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
216{
217 /*
218 * Make sure the BAR is actually a memory resource, not an IO resource
219 */
220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
221 WARN_ON(1);
222 return NULL;
223 }
224 return ioremap_wc(pci_resource_start(pdev, bar),
225 pci_resource_len(pdev, bar));
226}
227EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
228#endif
229
230/**
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
235 *
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
238 * be of the form:
239 *
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
241 *
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
245 *
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
248 */
249static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
250 const char **endptr)
251{
252 int ret;
253 int seg, bus, slot, func;
254 char *wpath, *p;
255 char end;
256
257 *endptr = strchrnul(path, ';');
258
259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
260 if (!wpath)
261 return -ENOMEM;
262
263 while (1) {
264 p = strrchr(wpath, '/');
265 if (!p)
266 break;
267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
268 if (ret != 2) {
269 ret = -EINVAL;
270 goto free_and_exit;
271 }
272
273 if (dev->devfn != PCI_DEVFN(slot, func)) {
274 ret = 0;
275 goto free_and_exit;
276 }
277
278 /*
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
282 * and so on.
283 */
284 dev = pci_upstream_bridge(dev);
285 if (!dev) {
286 ret = 0;
287 goto free_and_exit;
288 }
289
290 *p = 0;
291 }
292
293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
294 &func, &end);
295 if (ret != 4) {
296 seg = 0;
297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
298 if (ret != 3) {
299 ret = -EINVAL;
300 goto free_and_exit;
301 }
302 }
303
304 ret = (seg == pci_domain_nr(dev->bus) &&
305 bus == dev->bus->number &&
306 dev->devfn == PCI_DEVFN(slot, func));
307
308free_and_exit:
309 kfree(wpath);
310 return ret;
311}
312
313/**
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
318 *
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
321 *
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
324 *
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
332 *
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
339 *
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
342 */
343static int pci_dev_str_match(struct pci_dev *dev, const char *p,
344 const char **endptr)
345{
346 int ret;
347 int count;
348 unsigned short vendor, device, subsystem_vendor, subsystem_device;
349
350 if (strncmp(p, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
352 p += 4;
353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 &subsystem_vendor, &subsystem_device, &count);
355 if (ret != 4) {
356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
357 if (ret != 2)
358 return -EINVAL;
359
360 subsystem_vendor = 0;
361 subsystem_device = 0;
362 }
363
364 p += count;
365
366 if ((!vendor || vendor == dev->vendor) &&
367 (!device || device == dev->device) &&
368 (!subsystem_vendor ||
369 subsystem_vendor == dev->subsystem_vendor) &&
370 (!subsystem_device ||
371 subsystem_device == dev->subsystem_device))
372 goto found;
373 } else {
374 /*
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
377 */
378 ret = pci_dev_str_match_path(dev, p, &p);
379 if (ret < 0)
380 return ret;
381 else if (ret)
382 goto found;
383 }
384
385 *endptr = p;
386 return 0;
387
388found:
389 *endptr = p;
390 return 1;
391}
392
393static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap, int *ttl)
395{
396 u8 id;
397 u16 ent;
398
399 pci_bus_read_config_byte(bus, devfn, pos, &pos);
400
401 while ((*ttl)--) {
402 if (pos < 0x40)
403 break;
404 pos &= ~3;
405 pci_bus_read_config_word(bus, devfn, pos, &ent);
406
407 id = ent & 0xff;
408 if (id == 0xff)
409 break;
410 if (id == cap)
411 return pos;
412 pos = (ent >> 8);
413 }
414 return 0;
415}
416
417static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
418 u8 pos, int cap)
419{
420 int ttl = PCI_FIND_CAP_TTL;
421
422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
423}
424
425int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
426{
427 return __pci_find_next_cap(dev->bus, dev->devfn,
428 pos + PCI_CAP_LIST_NEXT, cap);
429}
430EXPORT_SYMBOL_GPL(pci_find_next_capability);
431
432static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 unsigned int devfn, u8 hdr_type)
434{
435 u16 status;
436
437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 if (!(status & PCI_STATUS_CAP_LIST))
439 return 0;
440
441 switch (hdr_type) {
442 case PCI_HEADER_TYPE_NORMAL:
443 case PCI_HEADER_TYPE_BRIDGE:
444 return PCI_CAPABILITY_LIST;
445 case PCI_HEADER_TYPE_CARDBUS:
446 return PCI_CB_CAPABILITY_LIST;
447 }
448
449 return 0;
450}
451
452/**
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
456 *
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
461 *
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
470 */
471int pci_find_capability(struct pci_dev *dev, int cap)
472{
473 int pos;
474
475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
476 if (pos)
477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
478
479 return pos;
480}
481EXPORT_SYMBOL(pci_find_capability);
482
483/**
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
488 *
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
491 *
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it.
495 */
496int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
497{
498 int pos;
499 u8 hdr_type;
500
501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
502
503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
504 if (pos)
505 pos = __pci_find_next_cap(bus, devfn, pos, cap);
506
507 return pos;
508}
509EXPORT_SYMBOL(pci_bus_find_capability);
510
511/**
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
516 *
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
521 */
522int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
523{
524 u32 header;
525 int ttl;
526 int pos = PCI_CFG_SPACE_SIZE;
527
528 /* minimum 8 bytes per capability */
529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
530
531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
532 return 0;
533
534 if (start)
535 pos = start;
536
537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
538 return 0;
539
540 /*
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
543 */
544 if (header == 0)
545 return 0;
546
547 while (ttl-- > 0) {
548 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
549 return pos;
550
551 pos = PCI_EXT_CAP_NEXT(header);
552 if (pos < PCI_CFG_SPACE_SIZE)
553 break;
554
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 break;
557 }
558
559 return 0;
560}
561EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
562
563/**
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
567 *
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
571 *
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
576 */
577int pci_find_ext_capability(struct pci_dev *dev, int cap)
578{
579 return pci_find_next_ext_capability(dev, 0, cap);
580}
581EXPORT_SYMBOL_GPL(pci_find_ext_capability);
582
583/**
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
586 *
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
588 * Number.
589 *
590 * Returns the DSN, or zero if the capability does not exist.
591 */
592u64 pci_get_dsn(struct pci_dev *dev)
593{
594 u32 dword;
595 u64 dsn;
596 int pos;
597
598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
599 if (!pos)
600 return 0;
601
602 /*
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
606 */
607 pos += 4;
608 pci_read_config_dword(dev, pos, &dword);
609 dsn = (u64)dword;
610 pci_read_config_dword(dev, pos + 4, &dword);
611 dsn |= ((u64)dword) << 32;
612
613 return dsn;
614}
615EXPORT_SYMBOL_GPL(pci_get_dsn);
616
617static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
618{
619 int rc, ttl = PCI_FIND_CAP_TTL;
620 u8 cap, mask;
621
622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 mask = HT_3BIT_CAP_MASK;
624 else
625 mask = HT_5BIT_CAP_MASK;
626
627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 PCI_CAP_ID_HT, &ttl);
629 while (pos) {
630 rc = pci_read_config_byte(dev, pos + 3, &cap);
631 if (rc != PCIBIOS_SUCCESSFUL)
632 return 0;
633
634 if ((cap & mask) == ht_cap)
635 return pos;
636
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 pos + PCI_CAP_LIST_NEXT,
639 PCI_CAP_ID_HT, &ttl);
640 }
641
642 return 0;
643}
644/**
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
649 *
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
653 *
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
656 */
657int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
658{
659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
660}
661EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
662
663/**
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
667 *
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
673 */
674int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
675{
676 int pos;
677
678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
679 if (pos)
680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
681
682 return pos;
683}
684EXPORT_SYMBOL_GPL(pci_find_ht_capability);
685
686/**
687 * pci_find_parent_resource - return resource region of parent bus of given
688 * region
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
691 *
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
694 */
695struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 struct resource *res)
697{
698 const struct pci_bus *bus = dev->bus;
699 struct resource *r;
700 int i;
701
702 pci_bus_for_each_resource(bus, r, i) {
703 if (!r)
704 continue;
705 if (resource_contains(r, res)) {
706
707 /*
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
710 */
711 if (r->flags & IORESOURCE_PREFETCH &&
712 !(res->flags & IORESOURCE_PREFETCH))
713 return NULL;
714
715 /*
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
721 * first.
722 */
723 return r;
724 }
725 }
726 return NULL;
727}
728EXPORT_SYMBOL(pci_find_parent_resource);
729
730/**
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
734 *
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
738 */
739struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
740{
741 int i;
742
743 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 struct resource *r = &dev->resource[i];
745
746 if (r->start && resource_contains(r, res))
747 return r;
748 }
749
750 return NULL;
751}
752EXPORT_SYMBOL(pci_find_resource);
753
754/**
755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756 * @dev: the PCI device to operate on
757 * @pos: config space offset of status word
758 * @mask: mask of bit(s) to care about in status word
759 *
760 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
761 */
762int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
763{
764 int i;
765
766 /* Wait for Transaction Pending bit clean */
767 for (i = 0; i < 4; i++) {
768 u16 status;
769 if (i)
770 msleep((1 << (i - 1)) * 100);
771
772 pci_read_config_word(dev, pos, &status);
773 if (!(status & mask))
774 return 1;
775 }
776
777 return 0;
778}
779
780static int pci_acs_enable;
781
782/**
783 * pci_request_acs - ask for ACS to be enabled if supported
784 */
785void pci_request_acs(void)
786{
787 pci_acs_enable = 1;
788}
789
790static const char *disable_acs_redir_param;
791
792/**
793 * pci_disable_acs_redir - disable ACS redirect capabilities
794 * @dev: the PCI device
795 *
796 * For only devices specified in the disable_acs_redir parameter.
797 */
798static void pci_disable_acs_redir(struct pci_dev *dev)
799{
800 int ret = 0;
801 const char *p;
802 int pos;
803 u16 ctrl;
804
805 if (!disable_acs_redir_param)
806 return;
807
808 p = disable_acs_redir_param;
809 while (*p) {
810 ret = pci_dev_str_match(dev, p, &p);
811 if (ret < 0) {
812 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
813 disable_acs_redir_param);
814
815 break;
816 } else if (ret == 1) {
817 /* Found a match */
818 break;
819 }
820
821 if (*p != ';' && *p != ',') {
822 /* End of param or invalid format */
823 break;
824 }
825 p++;
826 }
827
828 if (ret != 1)
829 return;
830
831 if (!pci_dev_specific_disable_acs_redir(dev))
832 return;
833
834 pos = dev->acs_cap;
835 if (!pos) {
836 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
837 return;
838 }
839
840 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
841
842 /* P2P Request & Completion Redirect */
843 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
844
845 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
846
847 pci_info(dev, "disabled ACS redirect\n");
848}
849
850/**
851 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
852 * @dev: the PCI device
853 */
854static void pci_std_enable_acs(struct pci_dev *dev)
855{
856 int pos;
857 u16 cap;
858 u16 ctrl;
859
860 pos = dev->acs_cap;
861 if (!pos)
862 return;
863
864 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
865 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
866
867 /* Source Validation */
868 ctrl |= (cap & PCI_ACS_SV);
869
870 /* P2P Request Redirect */
871 ctrl |= (cap & PCI_ACS_RR);
872
873 /* P2P Completion Redirect */
874 ctrl |= (cap & PCI_ACS_CR);
875
876 /* Upstream Forwarding */
877 ctrl |= (cap & PCI_ACS_UF);
878
879 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
880}
881
882/**
883 * pci_enable_acs - enable ACS if hardware support it
884 * @dev: the PCI device
885 */
886static void pci_enable_acs(struct pci_dev *dev)
887{
888 if (!pci_acs_enable)
889 goto disable_acs_redir;
890
891 if (!pci_dev_specific_enable_acs(dev))
892 goto disable_acs_redir;
893
894 pci_std_enable_acs(dev);
895
896disable_acs_redir:
897 /*
898 * Note: pci_disable_acs_redir() must be called even if ACS was not
899 * enabled by the kernel because it may have been enabled by
900 * platform firmware. So if we are told to disable it, we should
901 * always disable it after setting the kernel's default
902 * preferences.
903 */
904 pci_disable_acs_redir(dev);
905}
906
907/**
908 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
909 * @dev: PCI device to have its BARs restored
910 *
911 * Restore the BAR values for a given device, so as to make it
912 * accessible by its driver.
913 */
914static void pci_restore_bars(struct pci_dev *dev)
915{
916 int i;
917
918 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
919 pci_update_resource(dev, i);
920}
921
922static const struct pci_platform_pm_ops *pci_platform_pm;
923
924int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
925{
926 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
927 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
928 return -EINVAL;
929 pci_platform_pm = ops;
930 return 0;
931}
932
933static inline bool platform_pci_power_manageable(struct pci_dev *dev)
934{
935 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
936}
937
938static inline int platform_pci_set_power_state(struct pci_dev *dev,
939 pci_power_t t)
940{
941 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
942}
943
944static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
945{
946 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
947}
948
949static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
950{
951 if (pci_platform_pm && pci_platform_pm->refresh_state)
952 pci_platform_pm->refresh_state(dev);
953}
954
955static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
956{
957 return pci_platform_pm ?
958 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
959}
960
961static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
962{
963 return pci_platform_pm ?
964 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
965}
966
967static inline bool platform_pci_need_resume(struct pci_dev *dev)
968{
969 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
970}
971
972static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
973{
974 if (pci_platform_pm && pci_platform_pm->bridge_d3)
975 return pci_platform_pm->bridge_d3(dev);
976 return false;
977}
978
979/**
980 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
981 * given PCI device
982 * @dev: PCI device to handle.
983 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
984 *
985 * RETURN VALUE:
986 * -EINVAL if the requested state is invalid.
987 * -EIO if device does not support PCI PM or its PM capabilities register has a
988 * wrong version, or device doesn't support the requested state.
989 * 0 if device already is in the requested state.
990 * 0 if device's power state has been successfully changed.
991 */
992static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
993{
994 u16 pmcsr;
995 bool need_restore = false;
996
997 /* Check if we're already there */
998 if (dev->current_state == state)
999 return 0;
1000
1001 if (!dev->pm_cap)
1002 return -EIO;
1003
1004 if (state < PCI_D0 || state > PCI_D3hot)
1005 return -EINVAL;
1006
1007 /*
1008 * Validate transition: We can enter D0 from any state, but if
1009 * we're already in a low-power state, we can only go deeper. E.g.,
1010 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1011 * we'd have to go from D3 to D0, then to D1.
1012 */
1013 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1014 && dev->current_state > state) {
1015 pci_err(dev, "invalid power transition (from %s to %s)\n",
1016 pci_power_name(dev->current_state),
1017 pci_power_name(state));
1018 return -EINVAL;
1019 }
1020
1021 /* Check if this device supports the desired state */
1022 if ((state == PCI_D1 && !dev->d1_support)
1023 || (state == PCI_D2 && !dev->d2_support))
1024 return -EIO;
1025
1026 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1027 if (pmcsr == (u16) ~0) {
1028 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1029 pci_power_name(dev->current_state),
1030 pci_power_name(state));
1031 return -EIO;
1032 }
1033
1034 /*
1035 * If we're (effectively) in D3, force entire word to 0.
1036 * This doesn't affect PME_Status, disables PME_En, and
1037 * sets PowerState to 0.
1038 */
1039 switch (dev->current_state) {
1040 case PCI_D0:
1041 case PCI_D1:
1042 case PCI_D2:
1043 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1044 pmcsr |= state;
1045 break;
1046 case PCI_D3hot:
1047 case PCI_D3cold:
1048 case PCI_UNKNOWN: /* Boot-up */
1049 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1050 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1051 need_restore = true;
1052 fallthrough; /* force to D0 */
1053 default:
1054 pmcsr = 0;
1055 break;
1056 }
1057
1058 /* Enter specified state */
1059 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1060
1061 /*
1062 * Mandatory power management transition delays; see PCI PM 1.1
1063 * 5.6.1 table 18
1064 */
1065 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1066 pci_dev_d3_sleep(dev);
1067 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1068 msleep(PCI_PM_D2_DELAY);
1069
1070 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1072 if (dev->current_state != state)
1073 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1074 pci_power_name(dev->current_state),
1075 pci_power_name(state));
1076
1077 /*
1078 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1079 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1080 * from D3hot to D0 _may_ perform an internal reset, thereby
1081 * going to "D0 Uninitialized" rather than "D0 Initialized".
1082 * For example, at least some versions of the 3c905B and the
1083 * 3c556B exhibit this behaviour.
1084 *
1085 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1086 * devices in a D3hot state at boot. Consequently, we need to
1087 * restore at least the BARs so that the device will be
1088 * accessible to its driver.
1089 */
1090 if (need_restore)
1091 pci_restore_bars(dev);
1092
1093 if (dev->bus->self)
1094 pcie_aspm_pm_state_change(dev->bus->self);
1095
1096 return 0;
1097}
1098
1099/**
1100 * pci_update_current_state - Read power state of given device and cache it
1101 * @dev: PCI device to handle.
1102 * @state: State to cache in case the device doesn't have the PM capability
1103 *
1104 * The power state is read from the PMCSR register, which however is
1105 * inaccessible in D3cold. The platform firmware is therefore queried first
1106 * to detect accessibility of the register. In case the platform firmware
1107 * reports an incorrect state or the device isn't power manageable by the
1108 * platform at all, we try to detect D3cold by testing accessibility of the
1109 * vendor ID in config space.
1110 */
1111void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1112{
1113 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1114 !pci_device_is_present(dev)) {
1115 dev->current_state = PCI_D3cold;
1116 } else if (dev->pm_cap) {
1117 u16 pmcsr;
1118
1119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1121 } else {
1122 dev->current_state = state;
1123 }
1124}
1125
1126/**
1127 * pci_refresh_power_state - Refresh the given device's power state data
1128 * @dev: Target PCI device.
1129 *
1130 * Ask the platform to refresh the devices power state information and invoke
1131 * pci_update_current_state() to update its current PCI power state.
1132 */
1133void pci_refresh_power_state(struct pci_dev *dev)
1134{
1135 if (platform_pci_power_manageable(dev))
1136 platform_pci_refresh_power_state(dev);
1137
1138 pci_update_current_state(dev, dev->current_state);
1139}
1140
1141/**
1142 * pci_platform_power_transition - Use platform to change device power state
1143 * @dev: PCI device to handle.
1144 * @state: State to put the device into.
1145 */
1146int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1147{
1148 int error;
1149
1150 if (platform_pci_power_manageable(dev)) {
1151 error = platform_pci_set_power_state(dev, state);
1152 if (!error)
1153 pci_update_current_state(dev, state);
1154 } else
1155 error = -ENODEV;
1156
1157 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1158 dev->current_state = PCI_D0;
1159
1160 return error;
1161}
1162EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1163
1164/**
1165 * pci_wakeup - Wake up a PCI device
1166 * @pci_dev: Device to handle.
1167 * @ign: ignored parameter
1168 */
1169static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1170{
1171 pci_wakeup_event(pci_dev);
1172 pm_request_resume(&pci_dev->dev);
1173 return 0;
1174}
1175
1176/**
1177 * pci_wakeup_bus - Walk given bus and wake up devices on it
1178 * @bus: Top bus of the subtree to walk.
1179 */
1180void pci_wakeup_bus(struct pci_bus *bus)
1181{
1182 if (bus)
1183 pci_walk_bus(bus, pci_wakeup, NULL);
1184}
1185
1186static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1187{
1188 int delay = 1;
1189 u32 id;
1190
1191 /*
1192 * After reset, the device should not silently discard config
1193 * requests, but it may still indicate that it needs more time by
1194 * responding to them with CRS completions. The Root Port will
1195 * generally synthesize ~0 data to complete the read (except when
1196 * CRS SV is enabled and the read was for the Vendor ID; in that
1197 * case it synthesizes 0x0001 data).
1198 *
1199 * Wait for the device to return a non-CRS completion. Read the
1200 * Command register instead of Vendor ID so we don't have to
1201 * contend with the CRS SV value.
1202 */
1203 pci_read_config_dword(dev, PCI_COMMAND, &id);
1204 while (id == ~0) {
1205 if (delay > timeout) {
1206 pci_warn(dev, "not ready %dms after %s; giving up\n",
1207 delay - 1, reset_type);
1208 return -ENOTTY;
1209 }
1210
1211 if (delay > 1000)
1212 pci_info(dev, "not ready %dms after %s; waiting\n",
1213 delay - 1, reset_type);
1214
1215 msleep(delay);
1216 delay *= 2;
1217 pci_read_config_dword(dev, PCI_COMMAND, &id);
1218 }
1219
1220 if (delay > 1000)
1221 pci_info(dev, "ready %dms after %s\n", delay - 1,
1222 reset_type);
1223
1224 return 0;
1225}
1226
1227/**
1228 * pci_power_up - Put the given device into D0
1229 * @dev: PCI device to power up
1230 */
1231int pci_power_up(struct pci_dev *dev)
1232{
1233 pci_platform_power_transition(dev, PCI_D0);
1234
1235 /*
1236 * Mandatory power management transition delays are handled in
1237 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1238 * corresponding bridge.
1239 */
1240 if (dev->runtime_d3cold) {
1241 /*
1242 * When powering on a bridge from D3cold, the whole hierarchy
1243 * may be powered on into D0uninitialized state, resume them to
1244 * give them a chance to suspend again
1245 */
1246 pci_wakeup_bus(dev->subordinate);
1247 }
1248
1249 return pci_raw_set_power_state(dev, PCI_D0);
1250}
1251
1252/**
1253 * __pci_dev_set_current_state - Set current state of a PCI device
1254 * @dev: Device to handle
1255 * @data: pointer to state to be set
1256 */
1257static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1258{
1259 pci_power_t state = *(pci_power_t *)data;
1260
1261 dev->current_state = state;
1262 return 0;
1263}
1264
1265/**
1266 * pci_bus_set_current_state - Walk given bus and set current state of devices
1267 * @bus: Top bus of the subtree to walk.
1268 * @state: state to be set
1269 */
1270void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1271{
1272 if (bus)
1273 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1274}
1275
1276/**
1277 * pci_set_power_state - Set the power state of a PCI device
1278 * @dev: PCI device to handle.
1279 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1280 *
1281 * Transition a device to a new power state, using the platform firmware and/or
1282 * the device's PCI PM registers.
1283 *
1284 * RETURN VALUE:
1285 * -EINVAL if the requested state is invalid.
1286 * -EIO if device does not support PCI PM or its PM capabilities register has a
1287 * wrong version, or device doesn't support the requested state.
1288 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1289 * 0 if device already is in the requested state.
1290 * 0 if the transition is to D3 but D3 is not supported.
1291 * 0 if device's power state has been successfully changed.
1292 */
1293int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1294{
1295 int error;
1296
1297 /* Bound the state we're entering */
1298 if (state > PCI_D3cold)
1299 state = PCI_D3cold;
1300 else if (state < PCI_D0)
1301 state = PCI_D0;
1302 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1303
1304 /*
1305 * If the device or the parent bridge do not support PCI
1306 * PM, ignore the request if we're doing anything other
1307 * than putting it into D0 (which would only happen on
1308 * boot).
1309 */
1310 return 0;
1311
1312 /* Check if we're already there */
1313 if (dev->current_state == state)
1314 return 0;
1315
1316 if (state == PCI_D0)
1317 return pci_power_up(dev);
1318
1319 /*
1320 * This device is quirked not to be put into D3, so don't put it in
1321 * D3
1322 */
1323 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1324 return 0;
1325
1326 /*
1327 * To put device in D3cold, we put device into D3hot in native
1328 * way, then put device into D3cold with platform ops
1329 */
1330 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1331 PCI_D3hot : state);
1332
1333 if (pci_platform_power_transition(dev, state))
1334 return error;
1335
1336 /* Powering off a bridge may power off the whole hierarchy */
1337 if (state == PCI_D3cold)
1338 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1339
1340 return 0;
1341}
1342EXPORT_SYMBOL(pci_set_power_state);
1343
1344/**
1345 * pci_choose_state - Choose the power state of a PCI device
1346 * @dev: PCI device to be suspended
1347 * @state: target sleep state for the whole system. This is the value
1348 * that is passed to suspend() function.
1349 *
1350 * Returns PCI power state suitable for given device and given system
1351 * message.
1352 */
1353pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1354{
1355 pci_power_t ret;
1356
1357 if (!dev->pm_cap)
1358 return PCI_D0;
1359
1360 ret = platform_pci_choose_state(dev);
1361 if (ret != PCI_POWER_ERROR)
1362 return ret;
1363
1364 switch (state.event) {
1365 case PM_EVENT_ON:
1366 return PCI_D0;
1367 case PM_EVENT_FREEZE:
1368 case PM_EVENT_PRETHAW:
1369 /* REVISIT both freeze and pre-thaw "should" use D0 */
1370 case PM_EVENT_SUSPEND:
1371 case PM_EVENT_HIBERNATE:
1372 return PCI_D3hot;
1373 default:
1374 pci_info(dev, "unrecognized suspend event %d\n",
1375 state.event);
1376 BUG();
1377 }
1378 return PCI_D0;
1379}
1380EXPORT_SYMBOL(pci_choose_state);
1381
1382#define PCI_EXP_SAVE_REGS 7
1383
1384static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1385 u16 cap, bool extended)
1386{
1387 struct pci_cap_saved_state *tmp;
1388
1389 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1390 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1391 return tmp;
1392 }
1393 return NULL;
1394}
1395
1396struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1397{
1398 return _pci_find_saved_cap(dev, cap, false);
1399}
1400
1401struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1402{
1403 return _pci_find_saved_cap(dev, cap, true);
1404}
1405
1406static int pci_save_pcie_state(struct pci_dev *dev)
1407{
1408 int i = 0;
1409 struct pci_cap_saved_state *save_state;
1410 u16 *cap;
1411
1412 if (!pci_is_pcie(dev))
1413 return 0;
1414
1415 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1416 if (!save_state) {
1417 pci_err(dev, "buffer not found in %s\n", __func__);
1418 return -ENOMEM;
1419 }
1420
1421 cap = (u16 *)&save_state->cap.data[0];
1422 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1423 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1424 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1425 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1426 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1427 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1428 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1429
1430 return 0;
1431}
1432
1433static void pci_restore_pcie_state(struct pci_dev *dev)
1434{
1435 int i = 0;
1436 struct pci_cap_saved_state *save_state;
1437 u16 *cap;
1438
1439 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1440 if (!save_state)
1441 return;
1442
1443 cap = (u16 *)&save_state->cap.data[0];
1444 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1445 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1446 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1447 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1448 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1449 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1450 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1451}
1452
1453static int pci_save_pcix_state(struct pci_dev *dev)
1454{
1455 int pos;
1456 struct pci_cap_saved_state *save_state;
1457
1458 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1459 if (!pos)
1460 return 0;
1461
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1463 if (!save_state) {
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1465 return -ENOMEM;
1466 }
1467
1468 pci_read_config_word(dev, pos + PCI_X_CMD,
1469 (u16 *)save_state->cap.data);
1470
1471 return 0;
1472}
1473
1474static void pci_restore_pcix_state(struct pci_dev *dev)
1475{
1476 int i = 0, pos;
1477 struct pci_cap_saved_state *save_state;
1478 u16 *cap;
1479
1480 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1481 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1482 if (!save_state || !pos)
1483 return;
1484 cap = (u16 *)&save_state->cap.data[0];
1485
1486 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1487}
1488
1489static void pci_save_ltr_state(struct pci_dev *dev)
1490{
1491 int ltr;
1492 struct pci_cap_saved_state *save_state;
1493 u16 *cap;
1494
1495 if (!pci_is_pcie(dev))
1496 return;
1497
1498 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1499 if (!ltr)
1500 return;
1501
1502 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1503 if (!save_state) {
1504 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1505 return;
1506 }
1507
1508 cap = (u16 *)&save_state->cap.data[0];
1509 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1510 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1511}
1512
1513static void pci_restore_ltr_state(struct pci_dev *dev)
1514{
1515 struct pci_cap_saved_state *save_state;
1516 int ltr;
1517 u16 *cap;
1518
1519 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1521 if (!save_state || !ltr)
1522 return;
1523
1524 cap = (u16 *)&save_state->cap.data[0];
1525 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1526 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1527}
1528
1529/**
1530 * pci_save_state - save the PCI configuration space of a device before
1531 * suspending
1532 * @dev: PCI device that we're dealing with
1533 */
1534int pci_save_state(struct pci_dev *dev)
1535{
1536 int i;
1537 /* XXX: 100% dword access ok here? */
1538 for (i = 0; i < 16; i++) {
1539 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1540 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1541 i * 4, dev->saved_config_space[i]);
1542 }
1543 dev->state_saved = true;
1544
1545 i = pci_save_pcie_state(dev);
1546 if (i != 0)
1547 return i;
1548
1549 i = pci_save_pcix_state(dev);
1550 if (i != 0)
1551 return i;
1552
1553 pci_save_ltr_state(dev);
1554 pci_save_dpc_state(dev);
1555 pci_save_aer_state(dev);
1556 return pci_save_vc_state(dev);
1557}
1558EXPORT_SYMBOL(pci_save_state);
1559
1560static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1561 u32 saved_val, int retry, bool force)
1562{
1563 u32 val;
1564
1565 pci_read_config_dword(pdev, offset, &val);
1566 if (!force && val == saved_val)
1567 return;
1568
1569 for (;;) {
1570 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1571 offset, val, saved_val);
1572 pci_write_config_dword(pdev, offset, saved_val);
1573 if (retry-- <= 0)
1574 return;
1575
1576 pci_read_config_dword(pdev, offset, &val);
1577 if (val == saved_val)
1578 return;
1579
1580 mdelay(1);
1581 }
1582}
1583
1584static void pci_restore_config_space_range(struct pci_dev *pdev,
1585 int start, int end, int retry,
1586 bool force)
1587{
1588 int index;
1589
1590 for (index = end; index >= start; index--)
1591 pci_restore_config_dword(pdev, 4 * index,
1592 pdev->saved_config_space[index],
1593 retry, force);
1594}
1595
1596static void pci_restore_config_space(struct pci_dev *pdev)
1597{
1598 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1599 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1600 /* Restore BARs before the command register. */
1601 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1602 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1603 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1604 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1605
1606 /*
1607 * Force rewriting of prefetch registers to avoid S3 resume
1608 * issues on Intel PCI bridges that occur when these
1609 * registers are not explicitly written.
1610 */
1611 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1612 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1613 } else {
1614 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1615 }
1616}
1617
1618static void pci_restore_rebar_state(struct pci_dev *pdev)
1619{
1620 unsigned int pos, nbars, i;
1621 u32 ctrl;
1622
1623 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1624 if (!pos)
1625 return;
1626
1627 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1628 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1629 PCI_REBAR_CTRL_NBAR_SHIFT;
1630
1631 for (i = 0; i < nbars; i++, pos += 8) {
1632 struct resource *res;
1633 int bar_idx, size;
1634
1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1637 res = pdev->resource + bar_idx;
1638 size = ilog2(resource_size(res)) - 20;
1639 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1640 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1641 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1642 }
1643}
1644
1645/**
1646 * pci_restore_state - Restore the saved state of a PCI device
1647 * @dev: PCI device that we're dealing with
1648 */
1649void pci_restore_state(struct pci_dev *dev)
1650{
1651 if (!dev->state_saved)
1652 return;
1653
1654 /*
1655 * Restore max latencies (in the LTR capability) before enabling
1656 * LTR itself (in the PCIe capability).
1657 */
1658 pci_restore_ltr_state(dev);
1659
1660 pci_restore_pcie_state(dev);
1661 pci_restore_pasid_state(dev);
1662 pci_restore_pri_state(dev);
1663 pci_restore_ats_state(dev);
1664 pci_restore_vc_state(dev);
1665 pci_restore_rebar_state(dev);
1666 pci_restore_dpc_state(dev);
1667
1668 pci_aer_clear_status(dev);
1669 pci_restore_aer_state(dev);
1670
1671 pci_restore_config_space(dev);
1672
1673 pci_restore_pcix_state(dev);
1674 pci_restore_msi_state(dev);
1675
1676 /* Restore ACS and IOV configuration state */
1677 pci_enable_acs(dev);
1678 pci_restore_iov_state(dev);
1679
1680 dev->state_saved = false;
1681}
1682EXPORT_SYMBOL(pci_restore_state);
1683
1684struct pci_saved_state {
1685 u32 config_space[16];
1686 struct pci_cap_saved_data cap[];
1687};
1688
1689/**
1690 * pci_store_saved_state - Allocate and return an opaque struct containing
1691 * the device saved state.
1692 * @dev: PCI device that we're dealing with
1693 *
1694 * Return NULL if no state or error.
1695 */
1696struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1697{
1698 struct pci_saved_state *state;
1699 struct pci_cap_saved_state *tmp;
1700 struct pci_cap_saved_data *cap;
1701 size_t size;
1702
1703 if (!dev->state_saved)
1704 return NULL;
1705
1706 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1707
1708 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1709 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1710
1711 state = kzalloc(size, GFP_KERNEL);
1712 if (!state)
1713 return NULL;
1714
1715 memcpy(state->config_space, dev->saved_config_space,
1716 sizeof(state->config_space));
1717
1718 cap = state->cap;
1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1720 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721 memcpy(cap, &tmp->cap, len);
1722 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1723 }
1724 /* Empty cap_save terminates list */
1725
1726 return state;
1727}
1728EXPORT_SYMBOL_GPL(pci_store_saved_state);
1729
1730/**
1731 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1732 * @dev: PCI device that we're dealing with
1733 * @state: Saved state returned from pci_store_saved_state()
1734 */
1735int pci_load_saved_state(struct pci_dev *dev,
1736 struct pci_saved_state *state)
1737{
1738 struct pci_cap_saved_data *cap;
1739
1740 dev->state_saved = false;
1741
1742 if (!state)
1743 return 0;
1744
1745 memcpy(dev->saved_config_space, state->config_space,
1746 sizeof(state->config_space));
1747
1748 cap = state->cap;
1749 while (cap->size) {
1750 struct pci_cap_saved_state *tmp;
1751
1752 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1753 if (!tmp || tmp->cap.size != cap->size)
1754 return -EINVAL;
1755
1756 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1757 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1758 sizeof(struct pci_cap_saved_data) + cap->size);
1759 }
1760
1761 dev->state_saved = true;
1762 return 0;
1763}
1764EXPORT_SYMBOL_GPL(pci_load_saved_state);
1765
1766/**
1767 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1768 * and free the memory allocated for it.
1769 * @dev: PCI device that we're dealing with
1770 * @state: Pointer to saved state returned from pci_store_saved_state()
1771 */
1772int pci_load_and_free_saved_state(struct pci_dev *dev,
1773 struct pci_saved_state **state)
1774{
1775 int ret = pci_load_saved_state(dev, *state);
1776 kfree(*state);
1777 *state = NULL;
1778 return ret;
1779}
1780EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1781
1782int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1783{
1784 return pci_enable_resources(dev, bars);
1785}
1786
1787static int do_pci_enable_device(struct pci_dev *dev, int bars)
1788{
1789 int err;
1790 struct pci_dev *bridge;
1791 u16 cmd;
1792 u8 pin;
1793
1794 err = pci_set_power_state(dev, PCI_D0);
1795 if (err < 0 && err != -EIO)
1796 return err;
1797
1798 bridge = pci_upstream_bridge(dev);
1799 if (bridge)
1800 pcie_aspm_powersave_config_link(bridge);
1801
1802 err = pcibios_enable_device(dev, bars);
1803 if (err < 0)
1804 return err;
1805 pci_fixup_device(pci_fixup_enable, dev);
1806
1807 if (dev->msi_enabled || dev->msix_enabled)
1808 return 0;
1809
1810 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1811 if (pin) {
1812 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1813 if (cmd & PCI_COMMAND_INTX_DISABLE)
1814 pci_write_config_word(dev, PCI_COMMAND,
1815 cmd & ~PCI_COMMAND_INTX_DISABLE);
1816 }
1817
1818 return 0;
1819}
1820
1821/**
1822 * pci_reenable_device - Resume abandoned device
1823 * @dev: PCI device to be resumed
1824 *
1825 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1826 * to be called by normal code, write proper resume handler and use it instead.
1827 */
1828int pci_reenable_device(struct pci_dev *dev)
1829{
1830 if (pci_is_enabled(dev))
1831 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1832 return 0;
1833}
1834EXPORT_SYMBOL(pci_reenable_device);
1835
1836static void pci_enable_bridge(struct pci_dev *dev)
1837{
1838 struct pci_dev *bridge;
1839 int retval;
1840
1841 bridge = pci_upstream_bridge(dev);
1842 if (bridge)
1843 pci_enable_bridge(bridge);
1844
1845 if (pci_is_enabled(dev)) {
1846 if (!dev->is_busmaster)
1847 pci_set_master(dev);
1848 return;
1849 }
1850
1851 retval = pci_enable_device(dev);
1852 if (retval)
1853 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1854 retval);
1855 pci_set_master(dev);
1856}
1857
1858static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1859{
1860 struct pci_dev *bridge;
1861 int err;
1862 int i, bars = 0;
1863
1864 /*
1865 * Power state could be unknown at this point, either due to a fresh
1866 * boot or a device removal call. So get the current power state
1867 * so that things like MSI message writing will behave as expected
1868 * (e.g. if the device really is in D0 at enable time).
1869 */
1870 if (dev->pm_cap) {
1871 u16 pmcsr;
1872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1873 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1874 }
1875
1876 if (atomic_inc_return(&dev->enable_cnt) > 1)
1877 return 0; /* already enabled */
1878
1879 bridge = pci_upstream_bridge(dev);
1880 if (bridge)
1881 pci_enable_bridge(bridge);
1882
1883 /* only skip sriov related */
1884 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1885 if (dev->resource[i].flags & flags)
1886 bars |= (1 << i);
1887 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1888 if (dev->resource[i].flags & flags)
1889 bars |= (1 << i);
1890
1891 err = do_pci_enable_device(dev, bars);
1892 if (err < 0)
1893 atomic_dec(&dev->enable_cnt);
1894 return err;
1895}
1896
1897/**
1898 * pci_enable_device_io - Initialize a device for use with IO space
1899 * @dev: PCI device to be initialized
1900 *
1901 * Initialize device before it's used by a driver. Ask low-level code
1902 * to enable I/O resources. Wake up the device if it was suspended.
1903 * Beware, this function can fail.
1904 */
1905int pci_enable_device_io(struct pci_dev *dev)
1906{
1907 return pci_enable_device_flags(dev, IORESOURCE_IO);
1908}
1909EXPORT_SYMBOL(pci_enable_device_io);
1910
1911/**
1912 * pci_enable_device_mem - Initialize a device for use with Memory space
1913 * @dev: PCI device to be initialized
1914 *
1915 * Initialize device before it's used by a driver. Ask low-level code
1916 * to enable Memory resources. Wake up the device if it was suspended.
1917 * Beware, this function can fail.
1918 */
1919int pci_enable_device_mem(struct pci_dev *dev)
1920{
1921 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1922}
1923EXPORT_SYMBOL(pci_enable_device_mem);
1924
1925/**
1926 * pci_enable_device - Initialize device before it's used by a driver.
1927 * @dev: PCI device to be initialized
1928 *
1929 * Initialize device before it's used by a driver. Ask low-level code
1930 * to enable I/O and memory. Wake up the device if it was suspended.
1931 * Beware, this function can fail.
1932 *
1933 * Note we don't actually enable the device many times if we call
1934 * this function repeatedly (we just increment the count).
1935 */
1936int pci_enable_device(struct pci_dev *dev)
1937{
1938 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1939}
1940EXPORT_SYMBOL(pci_enable_device);
1941
1942/*
1943 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1944 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1945 * there's no need to track it separately. pci_devres is initialized
1946 * when a device is enabled using managed PCI device enable interface.
1947 */
1948struct pci_devres {
1949 unsigned int enabled:1;
1950 unsigned int pinned:1;
1951 unsigned int orig_intx:1;
1952 unsigned int restore_intx:1;
1953 unsigned int mwi:1;
1954 u32 region_mask;
1955};
1956
1957static void pcim_release(struct device *gendev, void *res)
1958{
1959 struct pci_dev *dev = to_pci_dev(gendev);
1960 struct pci_devres *this = res;
1961 int i;
1962
1963 if (dev->msi_enabled)
1964 pci_disable_msi(dev);
1965 if (dev->msix_enabled)
1966 pci_disable_msix(dev);
1967
1968 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1969 if (this->region_mask & (1 << i))
1970 pci_release_region(dev, i);
1971
1972 if (this->mwi)
1973 pci_clear_mwi(dev);
1974
1975 if (this->restore_intx)
1976 pci_intx(dev, this->orig_intx);
1977
1978 if (this->enabled && !this->pinned)
1979 pci_disable_device(dev);
1980}
1981
1982static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1983{
1984 struct pci_devres *dr, *new_dr;
1985
1986 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1987 if (dr)
1988 return dr;
1989
1990 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1991 if (!new_dr)
1992 return NULL;
1993 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1994}
1995
1996static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1997{
1998 if (pci_is_managed(pdev))
1999 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 return NULL;
2001}
2002
2003/**
2004 * pcim_enable_device - Managed pci_enable_device()
2005 * @pdev: PCI device to be initialized
2006 *
2007 * Managed pci_enable_device().
2008 */
2009int pcim_enable_device(struct pci_dev *pdev)
2010{
2011 struct pci_devres *dr;
2012 int rc;
2013
2014 dr = get_pci_dr(pdev);
2015 if (unlikely(!dr))
2016 return -ENOMEM;
2017 if (dr->enabled)
2018 return 0;
2019
2020 rc = pci_enable_device(pdev);
2021 if (!rc) {
2022 pdev->is_managed = 1;
2023 dr->enabled = 1;
2024 }
2025 return rc;
2026}
2027EXPORT_SYMBOL(pcim_enable_device);
2028
2029/**
2030 * pcim_pin_device - Pin managed PCI device
2031 * @pdev: PCI device to pin
2032 *
2033 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2034 * driver detach. @pdev must have been enabled with
2035 * pcim_enable_device().
2036 */
2037void pcim_pin_device(struct pci_dev *pdev)
2038{
2039 struct pci_devres *dr;
2040
2041 dr = find_pci_dr(pdev);
2042 WARN_ON(!dr || !dr->enabled);
2043 if (dr)
2044 dr->pinned = 1;
2045}
2046EXPORT_SYMBOL(pcim_pin_device);
2047
2048/*
2049 * pcibios_add_device - provide arch specific hooks when adding device dev
2050 * @dev: the PCI device being added
2051 *
2052 * Permits the platform to provide architecture specific functionality when
2053 * devices are added. This is the default implementation. Architecture
2054 * implementations can override this.
2055 */
2056int __weak pcibios_add_device(struct pci_dev *dev)
2057{
2058 return 0;
2059}
2060
2061/**
2062 * pcibios_release_device - provide arch specific hooks when releasing
2063 * device dev
2064 * @dev: the PCI device being released
2065 *
2066 * Permits the platform to provide architecture specific functionality when
2067 * devices are released. This is the default implementation. Architecture
2068 * implementations can override this.
2069 */
2070void __weak pcibios_release_device(struct pci_dev *dev) {}
2071
2072/**
2073 * pcibios_disable_device - disable arch specific PCI resources for device dev
2074 * @dev: the PCI device to disable
2075 *
2076 * Disables architecture specific PCI resources for the device. This
2077 * is the default implementation. Architecture implementations can
2078 * override this.
2079 */
2080void __weak pcibios_disable_device(struct pci_dev *dev) {}
2081
2082/**
2083 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2084 * @irq: ISA IRQ to penalize
2085 * @active: IRQ active or not
2086 *
2087 * Permits the platform to provide architecture-specific functionality when
2088 * penalizing ISA IRQs. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2092
2093static void do_pci_disable_device(struct pci_dev *dev)
2094{
2095 u16 pci_command;
2096
2097 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2098 if (pci_command & PCI_COMMAND_MASTER) {
2099 pci_command &= ~PCI_COMMAND_MASTER;
2100 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2101 }
2102
2103 pcibios_disable_device(dev);
2104}
2105
2106/**
2107 * pci_disable_enabled_device - Disable device without updating enable_cnt
2108 * @dev: PCI device to disable
2109 *
2110 * NOTE: This function is a backend of PCI power management routines and is
2111 * not supposed to be called drivers.
2112 */
2113void pci_disable_enabled_device(struct pci_dev *dev)
2114{
2115 if (pci_is_enabled(dev))
2116 do_pci_disable_device(dev);
2117}
2118
2119/**
2120 * pci_disable_device - Disable PCI device after use
2121 * @dev: PCI device to be disabled
2122 *
2123 * Signal to the system that the PCI device is not in use by the system
2124 * anymore. This only involves disabling PCI bus-mastering, if active.
2125 *
2126 * Note we don't actually disable the device until all callers of
2127 * pci_enable_device() have called pci_disable_device().
2128 */
2129void pci_disable_device(struct pci_dev *dev)
2130{
2131 struct pci_devres *dr;
2132
2133 dr = find_pci_dr(dev);
2134 if (dr)
2135 dr->enabled = 0;
2136
2137 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2138 "disabling already-disabled device");
2139
2140 if (atomic_dec_return(&dev->enable_cnt) != 0)
2141 return;
2142
2143 do_pci_disable_device(dev);
2144
2145 dev->is_busmaster = 0;
2146}
2147EXPORT_SYMBOL(pci_disable_device);
2148
2149/**
2150 * pcibios_set_pcie_reset_state - set reset state for device dev
2151 * @dev: the PCIe device reset
2152 * @state: Reset state to enter into
2153 *
2154 * Set the PCIe reset state for the device. This is the default
2155 * implementation. Architecture implementations can override this.
2156 */
2157int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2158 enum pcie_reset_state state)
2159{
2160 return -EINVAL;
2161}
2162
2163/**
2164 * pci_set_pcie_reset_state - set reset state for device dev
2165 * @dev: the PCIe device reset
2166 * @state: Reset state to enter into
2167 *
2168 * Sets the PCI reset state for the device.
2169 */
2170int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2171{
2172 return pcibios_set_pcie_reset_state(dev, state);
2173}
2174EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2175
2176void pcie_clear_device_status(struct pci_dev *dev)
2177{
2178 u16 sta;
2179
2180 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2181 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2182}
2183
2184/**
2185 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2186 * @dev: PCIe root port or event collector.
2187 */
2188void pcie_clear_root_pme_status(struct pci_dev *dev)
2189{
2190 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2191}
2192
2193/**
2194 * pci_check_pme_status - Check if given device has generated PME.
2195 * @dev: Device to check.
2196 *
2197 * Check the PME status of the device and if set, clear it and clear PME enable
2198 * (if set). Return 'true' if PME status and PME enable were both set or
2199 * 'false' otherwise.
2200 */
2201bool pci_check_pme_status(struct pci_dev *dev)
2202{
2203 int pmcsr_pos;
2204 u16 pmcsr;
2205 bool ret = false;
2206
2207 if (!dev->pm_cap)
2208 return false;
2209
2210 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2211 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2212 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2213 return false;
2214
2215 /* Clear PME status. */
2216 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2217 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2218 /* Disable PME to avoid interrupt flood. */
2219 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2220 ret = true;
2221 }
2222
2223 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2224
2225 return ret;
2226}
2227
2228/**
2229 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2230 * @dev: Device to handle.
2231 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2232 *
2233 * Check if @dev has generated PME and queue a resume request for it in that
2234 * case.
2235 */
2236static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2237{
2238 if (pme_poll_reset && dev->pme_poll)
2239 dev->pme_poll = false;
2240
2241 if (pci_check_pme_status(dev)) {
2242 pci_wakeup_event(dev);
2243 pm_request_resume(&dev->dev);
2244 }
2245 return 0;
2246}
2247
2248/**
2249 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2250 * @bus: Top bus of the subtree to walk.
2251 */
2252void pci_pme_wakeup_bus(struct pci_bus *bus)
2253{
2254 if (bus)
2255 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2256}
2257
2258
2259/**
2260 * pci_pme_capable - check the capability of PCI device to generate PME#
2261 * @dev: PCI device to handle.
2262 * @state: PCI state from which device will issue PME#.
2263 */
2264bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2265{
2266 if (!dev->pm_cap)
2267 return false;
2268
2269 return !!(dev->pme_support & (1 << state));
2270}
2271EXPORT_SYMBOL(pci_pme_capable);
2272
2273static void pci_pme_list_scan(struct work_struct *work)
2274{
2275 struct pci_pme_device *pme_dev, *n;
2276
2277 mutex_lock(&pci_pme_list_mutex);
2278 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2279 if (pme_dev->dev->pme_poll) {
2280 struct pci_dev *bridge;
2281
2282 bridge = pme_dev->dev->bus->self;
2283 /*
2284 * If bridge is in low power state, the
2285 * configuration space of subordinate devices
2286 * may be not accessible
2287 */
2288 if (bridge && bridge->current_state != PCI_D0)
2289 continue;
2290 /*
2291 * If the device is in D3cold it should not be
2292 * polled either.
2293 */
2294 if (pme_dev->dev->current_state == PCI_D3cold)
2295 continue;
2296
2297 pci_pme_wakeup(pme_dev->dev, NULL);
2298 } else {
2299 list_del(&pme_dev->list);
2300 kfree(pme_dev);
2301 }
2302 }
2303 if (!list_empty(&pci_pme_list))
2304 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2305 msecs_to_jiffies(PME_TIMEOUT));
2306 mutex_unlock(&pci_pme_list_mutex);
2307}
2308
2309static void __pci_pme_active(struct pci_dev *dev, bool enable)
2310{
2311 u16 pmcsr;
2312
2313 if (!dev->pme_support)
2314 return;
2315
2316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2317 /* Clear PME_Status by writing 1 to it and enable PME# */
2318 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2319 if (!enable)
2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321
2322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2323}
2324
2325/**
2326 * pci_pme_restore - Restore PME configuration after config space restore.
2327 * @dev: PCI device to update.
2328 */
2329void pci_pme_restore(struct pci_dev *dev)
2330{
2331 u16 pmcsr;
2332
2333 if (!dev->pme_support)
2334 return;
2335
2336 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2337 if (dev->wakeup_prepared) {
2338 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2339 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2340 } else {
2341 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2342 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2343 }
2344 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2345}
2346
2347/**
2348 * pci_pme_active - enable or disable PCI device's PME# function
2349 * @dev: PCI device to handle.
2350 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2351 *
2352 * The caller must verify that the device is capable of generating PME# before
2353 * calling this function with @enable equal to 'true'.
2354 */
2355void pci_pme_active(struct pci_dev *dev, bool enable)
2356{
2357 __pci_pme_active(dev, enable);
2358
2359 /*
2360 * PCI (as opposed to PCIe) PME requires that the device have
2361 * its PME# line hooked up correctly. Not all hardware vendors
2362 * do this, so the PME never gets delivered and the device
2363 * remains asleep. The easiest way around this is to
2364 * periodically walk the list of suspended devices and check
2365 * whether any have their PME flag set. The assumption is that
2366 * we'll wake up often enough anyway that this won't be a huge
2367 * hit, and the power savings from the devices will still be a
2368 * win.
2369 *
2370 * Although PCIe uses in-band PME message instead of PME# line
2371 * to report PME, PME does not work for some PCIe devices in
2372 * reality. For example, there are devices that set their PME
2373 * status bits, but don't really bother to send a PME message;
2374 * there are PCI Express Root Ports that don't bother to
2375 * trigger interrupts when they receive PME messages from the
2376 * devices below. So PME poll is used for PCIe devices too.
2377 */
2378
2379 if (dev->pme_poll) {
2380 struct pci_pme_device *pme_dev;
2381 if (enable) {
2382 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2383 GFP_KERNEL);
2384 if (!pme_dev) {
2385 pci_warn(dev, "can't enable PME#\n");
2386 return;
2387 }
2388 pme_dev->dev = dev;
2389 mutex_lock(&pci_pme_list_mutex);
2390 list_add(&pme_dev->list, &pci_pme_list);
2391 if (list_is_singular(&pci_pme_list))
2392 queue_delayed_work(system_freezable_wq,
2393 &pci_pme_work,
2394 msecs_to_jiffies(PME_TIMEOUT));
2395 mutex_unlock(&pci_pme_list_mutex);
2396 } else {
2397 mutex_lock(&pci_pme_list_mutex);
2398 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2399 if (pme_dev->dev == dev) {
2400 list_del(&pme_dev->list);
2401 kfree(pme_dev);
2402 break;
2403 }
2404 }
2405 mutex_unlock(&pci_pme_list_mutex);
2406 }
2407 }
2408
2409 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2410}
2411EXPORT_SYMBOL(pci_pme_active);
2412
2413/**
2414 * __pci_enable_wake - enable PCI device as wakeup event source
2415 * @dev: PCI device affected
2416 * @state: PCI state from which device will issue wakeup events
2417 * @enable: True to enable event generation; false to disable
2418 *
2419 * This enables the device as a wakeup event source, or disables it.
2420 * When such events involves platform-specific hooks, those hooks are
2421 * called automatically by this routine.
2422 *
2423 * Devices with legacy power management (no standard PCI PM capabilities)
2424 * always require such platform hooks.
2425 *
2426 * RETURN VALUE:
2427 * 0 is returned on success
2428 * -EINVAL is returned if device is not supposed to wake up the system
2429 * Error code depending on the platform is returned if both the platform and
2430 * the native mechanism fail to enable the generation of wake-up events
2431 */
2432static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2433{
2434 int ret = 0;
2435
2436 /*
2437 * Bridges that are not power-manageable directly only signal
2438 * wakeup on behalf of subordinate devices which is set up
2439 * elsewhere, so skip them. However, bridges that are
2440 * power-manageable may signal wakeup for themselves (for example,
2441 * on a hotplug event) and they need to be covered here.
2442 */
2443 if (!pci_power_manageable(dev))
2444 return 0;
2445
2446 /* Don't do the same thing twice in a row for one device. */
2447 if (!!enable == !!dev->wakeup_prepared)
2448 return 0;
2449
2450 /*
2451 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2452 * Anderson we should be doing PME# wake enable followed by ACPI wake
2453 * enable. To disable wake-up we call the platform first, for symmetry.
2454 */
2455
2456 if (enable) {
2457 int error;
2458
2459 if (pci_pme_capable(dev, state))
2460 pci_pme_active(dev, true);
2461 else
2462 ret = 1;
2463 error = platform_pci_set_wakeup(dev, true);
2464 if (ret)
2465 ret = error;
2466 if (!ret)
2467 dev->wakeup_prepared = true;
2468 } else {
2469 platform_pci_set_wakeup(dev, false);
2470 pci_pme_active(dev, false);
2471 dev->wakeup_prepared = false;
2472 }
2473
2474 return ret;
2475}
2476
2477/**
2478 * pci_enable_wake - change wakeup settings for a PCI device
2479 * @pci_dev: Target device
2480 * @state: PCI state from which device will issue wakeup events
2481 * @enable: Whether or not to enable event generation
2482 *
2483 * If @enable is set, check device_may_wakeup() for the device before calling
2484 * __pci_enable_wake() for it.
2485 */
2486int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2487{
2488 if (enable && !device_may_wakeup(&pci_dev->dev))
2489 return -EINVAL;
2490
2491 return __pci_enable_wake(pci_dev, state, enable);
2492}
2493EXPORT_SYMBOL(pci_enable_wake);
2494
2495/**
2496 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2497 * @dev: PCI device to prepare
2498 * @enable: True to enable wake-up event generation; false to disable
2499 *
2500 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2501 * and this function allows them to set that up cleanly - pci_enable_wake()
2502 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2503 * ordering constraints.
2504 *
2505 * This function only returns error code if the device is not allowed to wake
2506 * up the system from sleep or it is not capable of generating PME# from both
2507 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2508 */
2509int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2510{
2511 return pci_pme_capable(dev, PCI_D3cold) ?
2512 pci_enable_wake(dev, PCI_D3cold, enable) :
2513 pci_enable_wake(dev, PCI_D3hot, enable);
2514}
2515EXPORT_SYMBOL(pci_wake_from_d3);
2516
2517/**
2518 * pci_target_state - find an appropriate low power state for a given PCI dev
2519 * @dev: PCI device
2520 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2521 *
2522 * Use underlying platform code to find a supported low power state for @dev.
2523 * If the platform can't manage @dev, return the deepest state from which it
2524 * can generate wake events, based on any available PME info.
2525 */
2526static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2527{
2528 pci_power_t target_state = PCI_D3hot;
2529
2530 if (platform_pci_power_manageable(dev)) {
2531 /*
2532 * Call the platform to find the target state for the device.
2533 */
2534 pci_power_t state = platform_pci_choose_state(dev);
2535
2536 switch (state) {
2537 case PCI_POWER_ERROR:
2538 case PCI_UNKNOWN:
2539 break;
2540 case PCI_D1:
2541 case PCI_D2:
2542 if (pci_no_d1d2(dev))
2543 break;
2544 fallthrough;
2545 default:
2546 target_state = state;
2547 }
2548
2549 return target_state;
2550 }
2551
2552 if (!dev->pm_cap)
2553 target_state = PCI_D0;
2554
2555 /*
2556 * If the device is in D3cold even though it's not power-manageable by
2557 * the platform, it may have been powered down by non-standard means.
2558 * Best to let it slumber.
2559 */
2560 if (dev->current_state == PCI_D3cold)
2561 target_state = PCI_D3cold;
2562
2563 if (wakeup) {
2564 /*
2565 * Find the deepest state from which the device can generate
2566 * PME#.
2567 */
2568 if (dev->pme_support) {
2569 while (target_state
2570 && !(dev->pme_support & (1 << target_state)))
2571 target_state--;
2572 }
2573 }
2574
2575 return target_state;
2576}
2577
2578/**
2579 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2580 * into a sleep state
2581 * @dev: Device to handle.
2582 *
2583 * Choose the power state appropriate for the device depending on whether
2584 * it can wake up the system and/or is power manageable by the platform
2585 * (PCI_D3hot is the default) and put the device into that state.
2586 */
2587int pci_prepare_to_sleep(struct pci_dev *dev)
2588{
2589 bool wakeup = device_may_wakeup(&dev->dev);
2590 pci_power_t target_state = pci_target_state(dev, wakeup);
2591 int error;
2592
2593 if (target_state == PCI_POWER_ERROR)
2594 return -EIO;
2595
2596 pci_enable_wake(dev, target_state, wakeup);
2597
2598 error = pci_set_power_state(dev, target_state);
2599
2600 if (error)
2601 pci_enable_wake(dev, target_state, false);
2602
2603 return error;
2604}
2605EXPORT_SYMBOL(pci_prepare_to_sleep);
2606
2607/**
2608 * pci_back_from_sleep - turn PCI device on during system-wide transition
2609 * into working state
2610 * @dev: Device to handle.
2611 *
2612 * Disable device's system wake-up capability and put it into D0.
2613 */
2614int pci_back_from_sleep(struct pci_dev *dev)
2615{
2616 pci_enable_wake(dev, PCI_D0, false);
2617 return pci_set_power_state(dev, PCI_D0);
2618}
2619EXPORT_SYMBOL(pci_back_from_sleep);
2620
2621/**
2622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2623 * @dev: PCI device being suspended.
2624 *
2625 * Prepare @dev to generate wake-up events at run time and put it into a low
2626 * power state.
2627 */
2628int pci_finish_runtime_suspend(struct pci_dev *dev)
2629{
2630 pci_power_t target_state;
2631 int error;
2632
2633 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2634 if (target_state == PCI_POWER_ERROR)
2635 return -EIO;
2636
2637 dev->runtime_d3cold = target_state == PCI_D3cold;
2638
2639 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2640
2641 error = pci_set_power_state(dev, target_state);
2642
2643 if (error) {
2644 pci_enable_wake(dev, target_state, false);
2645 dev->runtime_d3cold = false;
2646 }
2647
2648 return error;
2649}
2650
2651/**
2652 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2653 * @dev: Device to check.
2654 *
2655 * Return true if the device itself is capable of generating wake-up events
2656 * (through the platform or using the native PCIe PME) or if the device supports
2657 * PME and one of its upstream bridges can generate wake-up events.
2658 */
2659bool pci_dev_run_wake(struct pci_dev *dev)
2660{
2661 struct pci_bus *bus = dev->bus;
2662
2663 if (!dev->pme_support)
2664 return false;
2665
2666 /* PME-capable in principle, but not from the target power state */
2667 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2668 return false;
2669
2670 if (device_can_wakeup(&dev->dev))
2671 return true;
2672
2673 while (bus->parent) {
2674 struct pci_dev *bridge = bus->self;
2675
2676 if (device_can_wakeup(&bridge->dev))
2677 return true;
2678
2679 bus = bus->parent;
2680 }
2681
2682 /* We have reached the root bus. */
2683 if (bus->bridge)
2684 return device_can_wakeup(bus->bridge);
2685
2686 return false;
2687}
2688EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2689
2690/**
2691 * pci_dev_need_resume - Check if it is necessary to resume the device.
2692 * @pci_dev: Device to check.
2693 *
2694 * Return 'true' if the device is not runtime-suspended or it has to be
2695 * reconfigured due to wakeup settings difference between system and runtime
2696 * suspend, or the current power state of it is not suitable for the upcoming
2697 * (system-wide) transition.
2698 */
2699bool pci_dev_need_resume(struct pci_dev *pci_dev)
2700{
2701 struct device *dev = &pci_dev->dev;
2702 pci_power_t target_state;
2703
2704 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2705 return true;
2706
2707 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2708
2709 /*
2710 * If the earlier platform check has not triggered, D3cold is just power
2711 * removal on top of D3hot, so no need to resume the device in that
2712 * case.
2713 */
2714 return target_state != pci_dev->current_state &&
2715 target_state != PCI_D3cold &&
2716 pci_dev->current_state != PCI_D3hot;
2717}
2718
2719/**
2720 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2721 * @pci_dev: Device to check.
2722 *
2723 * If the device is suspended and it is not configured for system wakeup,
2724 * disable PME for it to prevent it from waking up the system unnecessarily.
2725 *
2726 * Note that if the device's power state is D3cold and the platform check in
2727 * pci_dev_need_resume() has not triggered, the device's configuration need not
2728 * be changed.
2729 */
2730void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2731{
2732 struct device *dev = &pci_dev->dev;
2733
2734 spin_lock_irq(&dev->power.lock);
2735
2736 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2737 pci_dev->current_state < PCI_D3cold)
2738 __pci_pme_active(pci_dev, false);
2739
2740 spin_unlock_irq(&dev->power.lock);
2741}
2742
2743/**
2744 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2745 * @pci_dev: Device to handle.
2746 *
2747 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2748 * it might have been disabled during the prepare phase of system suspend if
2749 * the device was not configured for system wakeup.
2750 */
2751void pci_dev_complete_resume(struct pci_dev *pci_dev)
2752{
2753 struct device *dev = &pci_dev->dev;
2754
2755 if (!pci_dev_run_wake(pci_dev))
2756 return;
2757
2758 spin_lock_irq(&dev->power.lock);
2759
2760 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2761 __pci_pme_active(pci_dev, true);
2762
2763 spin_unlock_irq(&dev->power.lock);
2764}
2765
2766void pci_config_pm_runtime_get(struct pci_dev *pdev)
2767{
2768 struct device *dev = &pdev->dev;
2769 struct device *parent = dev->parent;
2770
2771 if (parent)
2772 pm_runtime_get_sync(parent);
2773 pm_runtime_get_noresume(dev);
2774 /*
2775 * pdev->current_state is set to PCI_D3cold during suspending,
2776 * so wait until suspending completes
2777 */
2778 pm_runtime_barrier(dev);
2779 /*
2780 * Only need to resume devices in D3cold, because config
2781 * registers are still accessible for devices suspended but
2782 * not in D3cold.
2783 */
2784 if (pdev->current_state == PCI_D3cold)
2785 pm_runtime_resume(dev);
2786}
2787
2788void pci_config_pm_runtime_put(struct pci_dev *pdev)
2789{
2790 struct device *dev = &pdev->dev;
2791 struct device *parent = dev->parent;
2792
2793 pm_runtime_put(dev);
2794 if (parent)
2795 pm_runtime_put_sync(parent);
2796}
2797
2798static const struct dmi_system_id bridge_d3_blacklist[] = {
2799#ifdef CONFIG_X86
2800 {
2801 /*
2802 * Gigabyte X299 root port is not marked as hotplug capable
2803 * which allows Linux to power manage it. However, this
2804 * confuses the BIOS SMI handler so don't power manage root
2805 * ports on that system.
2806 */
2807 .ident = "X299 DESIGNARE EX-CF",
2808 .matches = {
2809 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2810 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2811 },
2812 },
2813#endif
2814 { }
2815};
2816
2817/**
2818 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2819 * @bridge: Bridge to check
2820 *
2821 * This function checks if it is possible to move the bridge to D3.
2822 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2823 */
2824bool pci_bridge_d3_possible(struct pci_dev *bridge)
2825{
2826 if (!pci_is_pcie(bridge))
2827 return false;
2828
2829 switch (pci_pcie_type(bridge)) {
2830 case PCI_EXP_TYPE_ROOT_PORT:
2831 case PCI_EXP_TYPE_UPSTREAM:
2832 case PCI_EXP_TYPE_DOWNSTREAM:
2833 if (pci_bridge_d3_disable)
2834 return false;
2835
2836 /*
2837 * Hotplug ports handled by firmware in System Management Mode
2838 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2839 */
2840 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2841 return false;
2842
2843 if (pci_bridge_d3_force)
2844 return true;
2845
2846 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2847 if (bridge->is_thunderbolt)
2848 return true;
2849
2850 /* Platform might know better if the bridge supports D3 */
2851 if (platform_pci_bridge_d3(bridge))
2852 return true;
2853
2854 /*
2855 * Hotplug ports handled natively by the OS were not validated
2856 * by vendors for runtime D3 at least until 2018 because there
2857 * was no OS support.
2858 */
2859 if (bridge->is_hotplug_bridge)
2860 return false;
2861
2862 if (dmi_check_system(bridge_d3_blacklist))
2863 return false;
2864
2865 /*
2866 * It should be safe to put PCIe ports from 2015 or newer
2867 * to D3.
2868 */
2869 if (dmi_get_bios_year() >= 2015)
2870 return true;
2871 break;
2872 }
2873
2874 return false;
2875}
2876
2877static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2878{
2879 bool *d3cold_ok = data;
2880
2881 if (/* The device needs to be allowed to go D3cold ... */
2882 dev->no_d3cold || !dev->d3cold_allowed ||
2883
2884 /* ... and if it is wakeup capable to do so from D3cold. */
2885 (device_may_wakeup(&dev->dev) &&
2886 !pci_pme_capable(dev, PCI_D3cold)) ||
2887
2888 /* If it is a bridge it must be allowed to go to D3. */
2889 !pci_power_manageable(dev))
2890
2891 *d3cold_ok = false;
2892
2893 return !*d3cold_ok;
2894}
2895
2896/*
2897 * pci_bridge_d3_update - Update bridge D3 capabilities
2898 * @dev: PCI device which is changed
2899 *
2900 * Update upstream bridge PM capabilities accordingly depending on if the
2901 * device PM configuration was changed or the device is being removed. The
2902 * change is also propagated upstream.
2903 */
2904void pci_bridge_d3_update(struct pci_dev *dev)
2905{
2906 bool remove = !device_is_registered(&dev->dev);
2907 struct pci_dev *bridge;
2908 bool d3cold_ok = true;
2909
2910 bridge = pci_upstream_bridge(dev);
2911 if (!bridge || !pci_bridge_d3_possible(bridge))
2912 return;
2913
2914 /*
2915 * If D3 is currently allowed for the bridge, removing one of its
2916 * children won't change that.
2917 */
2918 if (remove && bridge->bridge_d3)
2919 return;
2920
2921 /*
2922 * If D3 is currently allowed for the bridge and a child is added or
2923 * changed, disallowance of D3 can only be caused by that child, so
2924 * we only need to check that single device, not any of its siblings.
2925 *
2926 * If D3 is currently not allowed for the bridge, checking the device
2927 * first may allow us to skip checking its siblings.
2928 */
2929 if (!remove)
2930 pci_dev_check_d3cold(dev, &d3cold_ok);
2931
2932 /*
2933 * If D3 is currently not allowed for the bridge, this may be caused
2934 * either by the device being changed/removed or any of its siblings,
2935 * so we need to go through all children to find out if one of them
2936 * continues to block D3.
2937 */
2938 if (d3cold_ok && !bridge->bridge_d3)
2939 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2940 &d3cold_ok);
2941
2942 if (bridge->bridge_d3 != d3cold_ok) {
2943 bridge->bridge_d3 = d3cold_ok;
2944 /* Propagate change to upstream bridges */
2945 pci_bridge_d3_update(bridge);
2946 }
2947}
2948
2949/**
2950 * pci_d3cold_enable - Enable D3cold for device
2951 * @dev: PCI device to handle
2952 *
2953 * This function can be used in drivers to enable D3cold from the device
2954 * they handle. It also updates upstream PCI bridge PM capabilities
2955 * accordingly.
2956 */
2957void pci_d3cold_enable(struct pci_dev *dev)
2958{
2959 if (dev->no_d3cold) {
2960 dev->no_d3cold = false;
2961 pci_bridge_d3_update(dev);
2962 }
2963}
2964EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2965
2966/**
2967 * pci_d3cold_disable - Disable D3cold for device
2968 * @dev: PCI device to handle
2969 *
2970 * This function can be used in drivers to disable D3cold from the device
2971 * they handle. It also updates upstream PCI bridge PM capabilities
2972 * accordingly.
2973 */
2974void pci_d3cold_disable(struct pci_dev *dev)
2975{
2976 if (!dev->no_d3cold) {
2977 dev->no_d3cold = true;
2978 pci_bridge_d3_update(dev);
2979 }
2980}
2981EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2982
2983/**
2984 * pci_pm_init - Initialize PM functions of given PCI device
2985 * @dev: PCI device to handle.
2986 */
2987void pci_pm_init(struct pci_dev *dev)
2988{
2989 int pm;
2990 u16 status;
2991 u16 pmc;
2992
2993 pm_runtime_forbid(&dev->dev);
2994 pm_runtime_set_active(&dev->dev);
2995 pm_runtime_enable(&dev->dev);
2996 device_enable_async_suspend(&dev->dev);
2997 dev->wakeup_prepared = false;
2998
2999 dev->pm_cap = 0;
3000 dev->pme_support = 0;
3001
3002 /* find PCI PM capability in list */
3003 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3004 if (!pm)
3005 return;
3006 /* Check device's ability to generate PME# */
3007 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3008
3009 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3010 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3011 pmc & PCI_PM_CAP_VER_MASK);
3012 return;
3013 }
3014
3015 dev->pm_cap = pm;
3016 dev->d3_delay = PCI_PM_D3_WAIT;
3017 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3018 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3019 dev->d3cold_allowed = true;
3020
3021 dev->d1_support = false;
3022 dev->d2_support = false;
3023 if (!pci_no_d1d2(dev)) {
3024 if (pmc & PCI_PM_CAP_D1)
3025 dev->d1_support = true;
3026 if (pmc & PCI_PM_CAP_D2)
3027 dev->d2_support = true;
3028
3029 if (dev->d1_support || dev->d2_support)
3030 pci_info(dev, "supports%s%s\n",
3031 dev->d1_support ? " D1" : "",
3032 dev->d2_support ? " D2" : "");
3033 }
3034
3035 pmc &= PCI_PM_CAP_PME_MASK;
3036 if (pmc) {
3037 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3038 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3039 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3040 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3041 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
3042 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3043 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3044 dev->pme_poll = true;
3045 /*
3046 * Make device's PM flags reflect the wake-up capability, but
3047 * let the user space enable it to wake up the system as needed.
3048 */
3049 device_set_wakeup_capable(&dev->dev, true);
3050 /* Disable the PME# generation functionality */
3051 pci_pme_active(dev, false);
3052 }
3053
3054 pci_read_config_word(dev, PCI_STATUS, &status);
3055 if (status & PCI_STATUS_IMM_READY)
3056 dev->imm_ready = 1;
3057}
3058
3059static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3060{
3061 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3062
3063 switch (prop) {
3064 case PCI_EA_P_MEM:
3065 case PCI_EA_P_VF_MEM:
3066 flags |= IORESOURCE_MEM;
3067 break;
3068 case PCI_EA_P_MEM_PREFETCH:
3069 case PCI_EA_P_VF_MEM_PREFETCH:
3070 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3071 break;
3072 case PCI_EA_P_IO:
3073 flags |= IORESOURCE_IO;
3074 break;
3075 default:
3076 return 0;
3077 }
3078
3079 return flags;
3080}
3081
3082static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3083 u8 prop)
3084{
3085 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3086 return &dev->resource[bei];
3087#ifdef CONFIG_PCI_IOV
3088 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3089 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3090 return &dev->resource[PCI_IOV_RESOURCES +
3091 bei - PCI_EA_BEI_VF_BAR0];
3092#endif
3093 else if (bei == PCI_EA_BEI_ROM)
3094 return &dev->resource[PCI_ROM_RESOURCE];
3095 else
3096 return NULL;
3097}
3098
3099/* Read an Enhanced Allocation (EA) entry */
3100static int pci_ea_read(struct pci_dev *dev, int offset)
3101{
3102 struct resource *res;
3103 int ent_size, ent_offset = offset;
3104 resource_size_t start, end;
3105 unsigned long flags;
3106 u32 dw0, bei, base, max_offset;
3107 u8 prop;
3108 bool support_64 = (sizeof(resource_size_t) >= 8);
3109
3110 pci_read_config_dword(dev, ent_offset, &dw0);
3111 ent_offset += 4;
3112
3113 /* Entry size field indicates DWORDs after 1st */
3114 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3115
3116 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3117 goto out;
3118
3119 bei = (dw0 & PCI_EA_BEI) >> 4;
3120 prop = (dw0 & PCI_EA_PP) >> 8;
3121
3122 /*
3123 * If the Property is in the reserved range, try the Secondary
3124 * Property instead.
3125 */
3126 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3127 prop = (dw0 & PCI_EA_SP) >> 16;
3128 if (prop > PCI_EA_P_BRIDGE_IO)
3129 goto out;
3130
3131 res = pci_ea_get_resource(dev, bei, prop);
3132 if (!res) {
3133 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3134 goto out;
3135 }
3136
3137 flags = pci_ea_flags(dev, prop);
3138 if (!flags) {
3139 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3140 goto out;
3141 }
3142
3143 /* Read Base */
3144 pci_read_config_dword(dev, ent_offset, &base);
3145 start = (base & PCI_EA_FIELD_MASK);
3146 ent_offset += 4;
3147
3148 /* Read MaxOffset */
3149 pci_read_config_dword(dev, ent_offset, &max_offset);
3150 ent_offset += 4;
3151
3152 /* Read Base MSBs (if 64-bit entry) */
3153 if (base & PCI_EA_IS_64) {
3154 u32 base_upper;
3155
3156 pci_read_config_dword(dev, ent_offset, &base_upper);
3157 ent_offset += 4;
3158
3159 flags |= IORESOURCE_MEM_64;
3160
3161 /* entry starts above 32-bit boundary, can't use */
3162 if (!support_64 && base_upper)
3163 goto out;
3164
3165 if (support_64)
3166 start |= ((u64)base_upper << 32);
3167 }
3168
3169 end = start + (max_offset | 0x03);
3170
3171 /* Read MaxOffset MSBs (if 64-bit entry) */
3172 if (max_offset & PCI_EA_IS_64) {
3173 u32 max_offset_upper;
3174
3175 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3176 ent_offset += 4;
3177
3178 flags |= IORESOURCE_MEM_64;
3179
3180 /* entry too big, can't use */
3181 if (!support_64 && max_offset_upper)
3182 goto out;
3183
3184 if (support_64)
3185 end += ((u64)max_offset_upper << 32);
3186 }
3187
3188 if (end < start) {
3189 pci_err(dev, "EA Entry crosses address boundary\n");
3190 goto out;
3191 }
3192
3193 if (ent_size != ent_offset - offset) {
3194 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3195 ent_size, ent_offset - offset);
3196 goto out;
3197 }
3198
3199 res->name = pci_name(dev);
3200 res->start = start;
3201 res->end = end;
3202 res->flags = flags;
3203
3204 if (bei <= PCI_EA_BEI_BAR5)
3205 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3206 bei, res, prop);
3207 else if (bei == PCI_EA_BEI_ROM)
3208 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3209 res, prop);
3210 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3211 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3212 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3213 else
3214 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3215 bei, res, prop);
3216
3217out:
3218 return offset + ent_size;
3219}
3220
3221/* Enhanced Allocation Initialization */
3222void pci_ea_init(struct pci_dev *dev)
3223{
3224 int ea;
3225 u8 num_ent;
3226 int offset;
3227 int i;
3228
3229 /* find PCI EA capability in list */
3230 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3231 if (!ea)
3232 return;
3233
3234 /* determine the number of entries */
3235 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3236 &num_ent);
3237 num_ent &= PCI_EA_NUM_ENT_MASK;
3238
3239 offset = ea + PCI_EA_FIRST_ENT;
3240
3241 /* Skip DWORD 2 for type 1 functions */
3242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3243 offset += 4;
3244
3245 /* parse each EA entry */
3246 for (i = 0; i < num_ent; ++i)
3247 offset = pci_ea_read(dev, offset);
3248}
3249
3250static void pci_add_saved_cap(struct pci_dev *pci_dev,
3251 struct pci_cap_saved_state *new_cap)
3252{
3253 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3254}
3255
3256/**
3257 * _pci_add_cap_save_buffer - allocate buffer for saving given
3258 * capability registers
3259 * @dev: the PCI device
3260 * @cap: the capability to allocate the buffer for
3261 * @extended: Standard or Extended capability ID
3262 * @size: requested size of the buffer
3263 */
3264static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3265 bool extended, unsigned int size)
3266{
3267 int pos;
3268 struct pci_cap_saved_state *save_state;
3269
3270 if (extended)
3271 pos = pci_find_ext_capability(dev, cap);
3272 else
3273 pos = pci_find_capability(dev, cap);
3274
3275 if (!pos)
3276 return 0;
3277
3278 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3279 if (!save_state)
3280 return -ENOMEM;
3281
3282 save_state->cap.cap_nr = cap;
3283 save_state->cap.cap_extended = extended;
3284 save_state->cap.size = size;
3285 pci_add_saved_cap(dev, save_state);
3286
3287 return 0;
3288}
3289
3290int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3291{
3292 return _pci_add_cap_save_buffer(dev, cap, false, size);
3293}
3294
3295int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3296{
3297 return _pci_add_cap_save_buffer(dev, cap, true, size);
3298}
3299
3300/**
3301 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3302 * @dev: the PCI device
3303 */
3304void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3305{
3306 int error;
3307
3308 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3309 PCI_EXP_SAVE_REGS * sizeof(u16));
3310 if (error)
3311 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3312
3313 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3314 if (error)
3315 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3316
3317 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3318 2 * sizeof(u16));
3319 if (error)
3320 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3321
3322 pci_allocate_vc_save_buffers(dev);
3323}
3324
3325void pci_free_cap_save_buffers(struct pci_dev *dev)
3326{
3327 struct pci_cap_saved_state *tmp;
3328 struct hlist_node *n;
3329
3330 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3331 kfree(tmp);
3332}
3333
3334/**
3335 * pci_configure_ari - enable or disable ARI forwarding
3336 * @dev: the PCI device
3337 *
3338 * If @dev and its upstream bridge both support ARI, enable ARI in the
3339 * bridge. Otherwise, disable ARI in the bridge.
3340 */
3341void pci_configure_ari(struct pci_dev *dev)
3342{
3343 u32 cap;
3344 struct pci_dev *bridge;
3345
3346 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3347 return;
3348
3349 bridge = dev->bus->self;
3350 if (!bridge)
3351 return;
3352
3353 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3354 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3355 return;
3356
3357 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3358 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3359 PCI_EXP_DEVCTL2_ARI);
3360 bridge->ari_enabled = 1;
3361 } else {
3362 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3363 PCI_EXP_DEVCTL2_ARI);
3364 bridge->ari_enabled = 0;
3365 }
3366}
3367
3368static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3369{
3370 int pos;
3371 u16 cap, ctrl;
3372
3373 pos = pdev->acs_cap;
3374 if (!pos)
3375 return false;
3376
3377 /*
3378 * Except for egress control, capabilities are either required
3379 * or only required if controllable. Features missing from the
3380 * capability field can therefore be assumed as hard-wired enabled.
3381 */
3382 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3383 acs_flags &= (cap | PCI_ACS_EC);
3384
3385 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3386 return (ctrl & acs_flags) == acs_flags;
3387}
3388
3389/**
3390 * pci_acs_enabled - test ACS against required flags for a given device
3391 * @pdev: device to test
3392 * @acs_flags: required PCI ACS flags
3393 *
3394 * Return true if the device supports the provided flags. Automatically
3395 * filters out flags that are not implemented on multifunction devices.
3396 *
3397 * Note that this interface checks the effective ACS capabilities of the
3398 * device rather than the actual capabilities. For instance, most single
3399 * function endpoints are not required to support ACS because they have no
3400 * opportunity for peer-to-peer access. We therefore return 'true'
3401 * regardless of whether the device exposes an ACS capability. This makes
3402 * it much easier for callers of this function to ignore the actual type
3403 * or topology of the device when testing ACS support.
3404 */
3405bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3406{
3407 int ret;
3408
3409 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3410 if (ret >= 0)
3411 return ret > 0;
3412
3413 /*
3414 * Conventional PCI and PCI-X devices never support ACS, either
3415 * effectively or actually. The shared bus topology implies that
3416 * any device on the bus can receive or snoop DMA.
3417 */
3418 if (!pci_is_pcie(pdev))
3419 return false;
3420
3421 switch (pci_pcie_type(pdev)) {
3422 /*
3423 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3424 * but since their primary interface is PCI/X, we conservatively
3425 * handle them as we would a non-PCIe device.
3426 */
3427 case PCI_EXP_TYPE_PCIE_BRIDGE:
3428 /*
3429 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3430 * applicable... must never implement an ACS Extended Capability...".
3431 * This seems arbitrary, but we take a conservative interpretation
3432 * of this statement.
3433 */
3434 case PCI_EXP_TYPE_PCI_BRIDGE:
3435 case PCI_EXP_TYPE_RC_EC:
3436 return false;
3437 /*
3438 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3439 * implement ACS in order to indicate their peer-to-peer capabilities,
3440 * regardless of whether they are single- or multi-function devices.
3441 */
3442 case PCI_EXP_TYPE_DOWNSTREAM:
3443 case PCI_EXP_TYPE_ROOT_PORT:
3444 return pci_acs_flags_enabled(pdev, acs_flags);
3445 /*
3446 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3447 * implemented by the remaining PCIe types to indicate peer-to-peer
3448 * capabilities, but only when they are part of a multifunction
3449 * device. The footnote for section 6.12 indicates the specific
3450 * PCIe types included here.
3451 */
3452 case PCI_EXP_TYPE_ENDPOINT:
3453 case PCI_EXP_TYPE_UPSTREAM:
3454 case PCI_EXP_TYPE_LEG_END:
3455 case PCI_EXP_TYPE_RC_END:
3456 if (!pdev->multifunction)
3457 break;
3458
3459 return pci_acs_flags_enabled(pdev, acs_flags);
3460 }
3461
3462 /*
3463 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3464 * to single function devices with the exception of downstream ports.
3465 */
3466 return true;
3467}
3468
3469/**
3470 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3471 * @start: starting downstream device
3472 * @end: ending upstream device or NULL to search to the root bus
3473 * @acs_flags: required flags
3474 *
3475 * Walk up a device tree from start to end testing PCI ACS support. If
3476 * any step along the way does not support the required flags, return false.
3477 */
3478bool pci_acs_path_enabled(struct pci_dev *start,
3479 struct pci_dev *end, u16 acs_flags)
3480{
3481 struct pci_dev *pdev, *parent = start;
3482
3483 do {
3484 pdev = parent;
3485
3486 if (!pci_acs_enabled(pdev, acs_flags))
3487 return false;
3488
3489 if (pci_is_root_bus(pdev->bus))
3490 return (end == NULL);
3491
3492 parent = pdev->bus->self;
3493 } while (pdev != end);
3494
3495 return true;
3496}
3497
3498/**
3499 * pci_acs_init - Initialize ACS if hardware supports it
3500 * @dev: the PCI device
3501 */
3502void pci_acs_init(struct pci_dev *dev)
3503{
3504 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3505
3506 if (dev->acs_cap)
3507 pci_enable_acs(dev);
3508}
3509
3510/**
3511 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3512 * @pdev: PCI device
3513 * @bar: BAR to find
3514 *
3515 * Helper to find the position of the ctrl register for a BAR.
3516 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3517 * Returns -ENOENT if no ctrl register for the BAR could be found.
3518 */
3519static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3520{
3521 unsigned int pos, nbars, i;
3522 u32 ctrl;
3523
3524 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3525 if (!pos)
3526 return -ENOTSUPP;
3527
3528 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3529 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3530 PCI_REBAR_CTRL_NBAR_SHIFT;
3531
3532 for (i = 0; i < nbars; i++, pos += 8) {
3533 int bar_idx;
3534
3535 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3536 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3537 if (bar_idx == bar)
3538 return pos;
3539 }
3540
3541 return -ENOENT;
3542}
3543
3544/**
3545 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3546 * @pdev: PCI device
3547 * @bar: BAR to query
3548 *
3549 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3550 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3551 */
3552u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3553{
3554 int pos;
3555 u32 cap;
3556
3557 pos = pci_rebar_find_pos(pdev, bar);
3558 if (pos < 0)
3559 return 0;
3560
3561 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3562 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3563}
3564
3565/**
3566 * pci_rebar_get_current_size - get the current size of a BAR
3567 * @pdev: PCI device
3568 * @bar: BAR to set size to
3569 *
3570 * Read the size of a BAR from the resizable BAR config.
3571 * Returns size if found or negative error code.
3572 */
3573int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3574{
3575 int pos;
3576 u32 ctrl;
3577
3578 pos = pci_rebar_find_pos(pdev, bar);
3579 if (pos < 0)
3580 return pos;
3581
3582 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3583 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3584}
3585
3586/**
3587 * pci_rebar_set_size - set a new size for a BAR
3588 * @pdev: PCI device
3589 * @bar: BAR to set size to
3590 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3591 *
3592 * Set the new size of a BAR as defined in the spec.
3593 * Returns zero if resizing was successful, error code otherwise.
3594 */
3595int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3596{
3597 int pos;
3598 u32 ctrl;
3599
3600 pos = pci_rebar_find_pos(pdev, bar);
3601 if (pos < 0)
3602 return pos;
3603
3604 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3605 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3606 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3607 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3608 return 0;
3609}
3610
3611/**
3612 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3613 * @dev: the PCI device
3614 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3615 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3616 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3618 *
3619 * Return 0 if all upstream bridges support AtomicOp routing, egress
3620 * blocking is disabled on all upstream ports, and the root port supports
3621 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3622 * AtomicOp completion), or negative otherwise.
3623 */
3624int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3625{
3626 struct pci_bus *bus = dev->bus;
3627 struct pci_dev *bridge;
3628 u32 cap, ctl2;
3629
3630 if (!pci_is_pcie(dev))
3631 return -EINVAL;
3632
3633 /*
3634 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3635 * AtomicOp requesters. For now, we only support endpoints as
3636 * requesters and root ports as completers. No endpoints as
3637 * completers, and no peer-to-peer.
3638 */
3639
3640 switch (pci_pcie_type(dev)) {
3641 case PCI_EXP_TYPE_ENDPOINT:
3642 case PCI_EXP_TYPE_LEG_END:
3643 case PCI_EXP_TYPE_RC_END:
3644 break;
3645 default:
3646 return -EINVAL;
3647 }
3648
3649 while (bus->parent) {
3650 bridge = bus->self;
3651
3652 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3653
3654 switch (pci_pcie_type(bridge)) {
3655 /* Ensure switch ports support AtomicOp routing */
3656 case PCI_EXP_TYPE_UPSTREAM:
3657 case PCI_EXP_TYPE_DOWNSTREAM:
3658 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3659 return -EINVAL;
3660 break;
3661
3662 /* Ensure root port supports all the sizes we care about */
3663 case PCI_EXP_TYPE_ROOT_PORT:
3664 if ((cap & cap_mask) != cap_mask)
3665 return -EINVAL;
3666 break;
3667 }
3668
3669 /* Ensure upstream ports don't block AtomicOps on egress */
3670 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3671 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3672 &ctl2);
3673 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3674 return -EINVAL;
3675 }
3676
3677 bus = bus->parent;
3678 }
3679
3680 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3681 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3682 return 0;
3683}
3684EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3685
3686/**
3687 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3688 * @dev: the PCI device
3689 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3690 *
3691 * Perform INTx swizzling for a device behind one level of bridge. This is
3692 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3693 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3694 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3695 * the PCI Express Base Specification, Revision 2.1)
3696 */
3697u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3698{
3699 int slot;
3700
3701 if (pci_ari_enabled(dev->bus))
3702 slot = 0;
3703 else
3704 slot = PCI_SLOT(dev->devfn);
3705
3706 return (((pin - 1) + slot) % 4) + 1;
3707}
3708
3709int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3710{
3711 u8 pin;
3712
3713 pin = dev->pin;
3714 if (!pin)
3715 return -1;
3716
3717 while (!pci_is_root_bus(dev->bus)) {
3718 pin = pci_swizzle_interrupt_pin(dev, pin);
3719 dev = dev->bus->self;
3720 }
3721 *bridge = dev;
3722 return pin;
3723}
3724
3725/**
3726 * pci_common_swizzle - swizzle INTx all the way to root bridge
3727 * @dev: the PCI device
3728 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3729 *
3730 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3731 * bridges all the way up to a PCI root bus.
3732 */
3733u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3734{
3735 u8 pin = *pinp;
3736
3737 while (!pci_is_root_bus(dev->bus)) {
3738 pin = pci_swizzle_interrupt_pin(dev, pin);
3739 dev = dev->bus->self;
3740 }
3741 *pinp = pin;
3742 return PCI_SLOT(dev->devfn);
3743}
3744EXPORT_SYMBOL_GPL(pci_common_swizzle);
3745
3746/**
3747 * pci_release_region - Release a PCI bar
3748 * @pdev: PCI device whose resources were previously reserved by
3749 * pci_request_region()
3750 * @bar: BAR to release
3751 *
3752 * Releases the PCI I/O and memory resources previously reserved by a
3753 * successful call to pci_request_region(). Call this function only
3754 * after all use of the PCI regions has ceased.
3755 */
3756void pci_release_region(struct pci_dev *pdev, int bar)
3757{
3758 struct pci_devres *dr;
3759
3760 if (pci_resource_len(pdev, bar) == 0)
3761 return;
3762 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3763 release_region(pci_resource_start(pdev, bar),
3764 pci_resource_len(pdev, bar));
3765 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3766 release_mem_region(pci_resource_start(pdev, bar),
3767 pci_resource_len(pdev, bar));
3768
3769 dr = find_pci_dr(pdev);
3770 if (dr)
3771 dr->region_mask &= ~(1 << bar);
3772}
3773EXPORT_SYMBOL(pci_release_region);
3774
3775/**
3776 * __pci_request_region - Reserved PCI I/O and memory resource
3777 * @pdev: PCI device whose resources are to be reserved
3778 * @bar: BAR to be reserved
3779 * @res_name: Name to be associated with resource.
3780 * @exclusive: whether the region access is exclusive or not
3781 *
3782 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3783 * being reserved by owner @res_name. Do not access any
3784 * address inside the PCI regions unless this call returns
3785 * successfully.
3786 *
3787 * If @exclusive is set, then the region is marked so that userspace
3788 * is explicitly not allowed to map the resource via /dev/mem or
3789 * sysfs MMIO access.
3790 *
3791 * Returns 0 on success, or %EBUSY on error. A warning
3792 * message is also printed on failure.
3793 */
3794static int __pci_request_region(struct pci_dev *pdev, int bar,
3795 const char *res_name, int exclusive)
3796{
3797 struct pci_devres *dr;
3798
3799 if (pci_resource_len(pdev, bar) == 0)
3800 return 0;
3801
3802 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3803 if (!request_region(pci_resource_start(pdev, bar),
3804 pci_resource_len(pdev, bar), res_name))
3805 goto err_out;
3806 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3807 if (!__request_mem_region(pci_resource_start(pdev, bar),
3808 pci_resource_len(pdev, bar), res_name,
3809 exclusive))
3810 goto err_out;
3811 }
3812
3813 dr = find_pci_dr(pdev);
3814 if (dr)
3815 dr->region_mask |= 1 << bar;
3816
3817 return 0;
3818
3819err_out:
3820 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3821 &pdev->resource[bar]);
3822 return -EBUSY;
3823}
3824
3825/**
3826 * pci_request_region - Reserve PCI I/O and memory resource
3827 * @pdev: PCI device whose resources are to be reserved
3828 * @bar: BAR to be reserved
3829 * @res_name: Name to be associated with resource
3830 *
3831 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3832 * being reserved by owner @res_name. Do not access any
3833 * address inside the PCI regions unless this call returns
3834 * successfully.
3835 *
3836 * Returns 0 on success, or %EBUSY on error. A warning
3837 * message is also printed on failure.
3838 */
3839int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3840{
3841 return __pci_request_region(pdev, bar, res_name, 0);
3842}
3843EXPORT_SYMBOL(pci_request_region);
3844
3845/**
3846 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved
3848 * @bars: Bitmask of BARs to be released
3849 *
3850 * Release selected PCI I/O and memory resources previously reserved.
3851 * Call this function only after all use of the PCI regions has ceased.
3852 */
3853void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3854{
3855 int i;
3856
3857 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3858 if (bars & (1 << i))
3859 pci_release_region(pdev, i);
3860}
3861EXPORT_SYMBOL(pci_release_selected_regions);
3862
3863static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3864 const char *res_name, int excl)
3865{
3866 int i;
3867
3868 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3869 if (bars & (1 << i))
3870 if (__pci_request_region(pdev, i, res_name, excl))
3871 goto err_out;
3872 return 0;
3873
3874err_out:
3875 while (--i >= 0)
3876 if (bars & (1 << i))
3877 pci_release_region(pdev, i);
3878
3879 return -EBUSY;
3880}
3881
3882
3883/**
3884 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3885 * @pdev: PCI device whose resources are to be reserved
3886 * @bars: Bitmask of BARs to be requested
3887 * @res_name: Name to be associated with resource
3888 */
3889int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3890 const char *res_name)
3891{
3892 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3893}
3894EXPORT_SYMBOL(pci_request_selected_regions);
3895
3896int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3897 const char *res_name)
3898{
3899 return __pci_request_selected_regions(pdev, bars, res_name,
3900 IORESOURCE_EXCLUSIVE);
3901}
3902EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3903
3904/**
3905 * pci_release_regions - Release reserved PCI I/O and memory resources
3906 * @pdev: PCI device whose resources were previously reserved by
3907 * pci_request_regions()
3908 *
3909 * Releases all PCI I/O and memory resources previously reserved by a
3910 * successful call to pci_request_regions(). Call this function only
3911 * after all use of the PCI regions has ceased.
3912 */
3913
3914void pci_release_regions(struct pci_dev *pdev)
3915{
3916 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3917}
3918EXPORT_SYMBOL(pci_release_regions);
3919
3920/**
3921 * pci_request_regions - Reserve PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @res_name: Name to be associated with resource.
3924 *
3925 * Mark all PCI regions associated with PCI device @pdev as
3926 * being reserved by owner @res_name. Do not access any
3927 * address inside the PCI regions unless this call returns
3928 * successfully.
3929 *
3930 * Returns 0 on success, or %EBUSY on error. A warning
3931 * message is also printed on failure.
3932 */
3933int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3934{
3935 return pci_request_selected_regions(pdev,
3936 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3937}
3938EXPORT_SYMBOL(pci_request_regions);
3939
3940/**
3941 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @res_name: Name to be associated with resource.
3944 *
3945 * Mark all PCI regions associated with PCI device @pdev as being reserved
3946 * by owner @res_name. Do not access any address inside the PCI regions
3947 * unless this call returns successfully.
3948 *
3949 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3950 * and the sysfs MMIO access will not be allowed.
3951 *
3952 * Returns 0 on success, or %EBUSY on error. A warning message is also
3953 * printed on failure.
3954 */
3955int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3956{
3957 return pci_request_selected_regions_exclusive(pdev,
3958 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3959}
3960EXPORT_SYMBOL(pci_request_regions_exclusive);
3961
3962/*
3963 * Record the PCI IO range (expressed as CPU physical address + size).
3964 * Return a negative value if an error has occurred, zero otherwise
3965 */
3966int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3967 resource_size_t size)
3968{
3969 int ret = 0;
3970#ifdef PCI_IOBASE
3971 struct logic_pio_hwaddr *range;
3972
3973 if (!size || addr + size < addr)
3974 return -EINVAL;
3975
3976 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3977 if (!range)
3978 return -ENOMEM;
3979
3980 range->fwnode = fwnode;
3981 range->size = size;
3982 range->hw_start = addr;
3983 range->flags = LOGIC_PIO_CPU_MMIO;
3984
3985 ret = logic_pio_register_range(range);
3986 if (ret)
3987 kfree(range);
3988#endif
3989
3990 return ret;
3991}
3992
3993phys_addr_t pci_pio_to_address(unsigned long pio)
3994{
3995 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3996
3997#ifdef PCI_IOBASE
3998 if (pio >= MMIO_UPPER_LIMIT)
3999 return address;
4000
4001 address = logic_pio_to_hwaddr(pio);
4002#endif
4003
4004 return address;
4005}
4006
4007unsigned long __weak pci_address_to_pio(phys_addr_t address)
4008{
4009#ifdef PCI_IOBASE
4010 return logic_pio_trans_cpuaddr(address);
4011#else
4012 if (address > IO_SPACE_LIMIT)
4013 return (unsigned long)-1;
4014
4015 return (unsigned long) address;
4016#endif
4017}
4018
4019/**
4020 * pci_remap_iospace - Remap the memory mapped I/O space
4021 * @res: Resource describing the I/O space
4022 * @phys_addr: physical address of range to be mapped
4023 *
4024 * Remap the memory mapped I/O space described by the @res and the CPU
4025 * physical address @phys_addr into virtual address space. Only
4026 * architectures that have memory mapped IO functions defined (and the
4027 * PCI_IOBASE value defined) should call this function.
4028 */
4029int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4030{
4031#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4032 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4033
4034 if (!(res->flags & IORESOURCE_IO))
4035 return -EINVAL;
4036
4037 if (res->end > IO_SPACE_LIMIT)
4038 return -EINVAL;
4039
4040 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4041 pgprot_device(PAGE_KERNEL));
4042#else
4043 /*
4044 * This architecture does not have memory mapped I/O space,
4045 * so this function should never be called
4046 */
4047 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4048 return -ENODEV;
4049#endif
4050}
4051EXPORT_SYMBOL(pci_remap_iospace);
4052
4053/**
4054 * pci_unmap_iospace - Unmap the memory mapped I/O space
4055 * @res: resource to be unmapped
4056 *
4057 * Unmap the CPU virtual address @res from virtual address space. Only
4058 * architectures that have memory mapped IO functions defined (and the
4059 * PCI_IOBASE value defined) should call this function.
4060 */
4061void pci_unmap_iospace(struct resource *res)
4062{
4063#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4064 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4065
4066 unmap_kernel_range(vaddr, resource_size(res));
4067#endif
4068}
4069EXPORT_SYMBOL(pci_unmap_iospace);
4070
4071static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4072{
4073 struct resource **res = ptr;
4074
4075 pci_unmap_iospace(*res);
4076}
4077
4078/**
4079 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4080 * @dev: Generic device to remap IO address for
4081 * @res: Resource describing the I/O space
4082 * @phys_addr: physical address of range to be mapped
4083 *
4084 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4085 * detach.
4086 */
4087int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4088 phys_addr_t phys_addr)
4089{
4090 const struct resource **ptr;
4091 int error;
4092
4093 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4094 if (!ptr)
4095 return -ENOMEM;
4096
4097 error = pci_remap_iospace(res, phys_addr);
4098 if (error) {
4099 devres_free(ptr);
4100 } else {
4101 *ptr = res;
4102 devres_add(dev, ptr);
4103 }
4104
4105 return error;
4106}
4107EXPORT_SYMBOL(devm_pci_remap_iospace);
4108
4109/**
4110 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4111 * @dev: Generic device to remap IO address for
4112 * @offset: Resource address to map
4113 * @size: Size of map
4114 *
4115 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4116 * detach.
4117 */
4118void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4119 resource_size_t offset,
4120 resource_size_t size)
4121{
4122 void __iomem **ptr, *addr;
4123
4124 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4125 if (!ptr)
4126 return NULL;
4127
4128 addr = pci_remap_cfgspace(offset, size);
4129 if (addr) {
4130 *ptr = addr;
4131 devres_add(dev, ptr);
4132 } else
4133 devres_free(ptr);
4134
4135 return addr;
4136}
4137EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4138
4139/**
4140 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4141 * @dev: generic device to handle the resource for
4142 * @res: configuration space resource to be handled
4143 *
4144 * Checks that a resource is a valid memory region, requests the memory
4145 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4146 * proper PCI configuration space memory attributes are guaranteed.
4147 *
4148 * All operations are managed and will be undone on driver detach.
4149 *
4150 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4151 * on failure. Usage example::
4152 *
4153 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4154 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4155 * if (IS_ERR(base))
4156 * return PTR_ERR(base);
4157 */
4158void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4159 struct resource *res)
4160{
4161 resource_size_t size;
4162 const char *name;
4163 void __iomem *dest_ptr;
4164
4165 BUG_ON(!dev);
4166
4167 if (!res || resource_type(res) != IORESOURCE_MEM) {
4168 dev_err(dev, "invalid resource\n");
4169 return IOMEM_ERR_PTR(-EINVAL);
4170 }
4171
4172 size = resource_size(res);
4173 name = res->name ?: dev_name(dev);
4174
4175 if (!devm_request_mem_region(dev, res->start, size, name)) {
4176 dev_err(dev, "can't request region for resource %pR\n", res);
4177 return IOMEM_ERR_PTR(-EBUSY);
4178 }
4179
4180 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4181 if (!dest_ptr) {
4182 dev_err(dev, "ioremap failed for resource %pR\n", res);
4183 devm_release_mem_region(dev, res->start, size);
4184 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4185 }
4186
4187 return dest_ptr;
4188}
4189EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4190
4191static void __pci_set_master(struct pci_dev *dev, bool enable)
4192{
4193 u16 old_cmd, cmd;
4194
4195 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4196 if (enable)
4197 cmd = old_cmd | PCI_COMMAND_MASTER;
4198 else
4199 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200 if (cmd != old_cmd) {
4201 pci_dbg(dev, "%s bus mastering\n",
4202 enable ? "enabling" : "disabling");
4203 pci_write_config_word(dev, PCI_COMMAND, cmd);
4204 }
4205 dev->is_busmaster = enable;
4206}
4207
4208/**
4209 * pcibios_setup - process "pci=" kernel boot arguments
4210 * @str: string used to pass in "pci=" kernel boot arguments
4211 *
4212 * Process kernel boot arguments. This is the default implementation.
4213 * Architecture specific implementations can override this as necessary.
4214 */
4215char * __weak __init pcibios_setup(char *str)
4216{
4217 return str;
4218}
4219
4220/**
4221 * pcibios_set_master - enable PCI bus-mastering for device dev
4222 * @dev: the PCI device to enable
4223 *
4224 * Enables PCI bus-mastering for the device. This is the default
4225 * implementation. Architecture specific implementations can override
4226 * this if necessary.
4227 */
4228void __weak pcibios_set_master(struct pci_dev *dev)
4229{
4230 u8 lat;
4231
4232 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233 if (pci_is_pcie(dev))
4234 return;
4235
4236 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4237 if (lat < 16)
4238 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239 else if (lat > pcibios_max_latency)
4240 lat = pcibios_max_latency;
4241 else
4242 return;
4243
4244 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4245}
4246
4247/**
4248 * pci_set_master - enables bus-mastering for device dev
4249 * @dev: the PCI device to enable
4250 *
4251 * Enables bus-mastering on the device and calls pcibios_set_master()
4252 * to do the needed arch specific settings.
4253 */
4254void pci_set_master(struct pci_dev *dev)
4255{
4256 __pci_set_master(dev, true);
4257 pcibios_set_master(dev);
4258}
4259EXPORT_SYMBOL(pci_set_master);
4260
4261/**
4262 * pci_clear_master - disables bus-mastering for device dev
4263 * @dev: the PCI device to disable
4264 */
4265void pci_clear_master(struct pci_dev *dev)
4266{
4267 __pci_set_master(dev, false);
4268}
4269EXPORT_SYMBOL(pci_clear_master);
4270
4271/**
4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273 * @dev: the PCI device for which MWI is to be enabled
4274 *
4275 * Helper function for pci_set_mwi.
4276 * Originally copied from drivers/net/acenic.c.
4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_set_cacheline_size(struct pci_dev *dev)
4282{
4283 u8 cacheline_size;
4284
4285 if (!pci_cache_line_size)
4286 return -EINVAL;
4287
4288 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289 equal to or multiple of the right value. */
4290 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291 if (cacheline_size >= pci_cache_line_size &&
4292 (cacheline_size % pci_cache_line_size) == 0)
4293 return 0;
4294
4295 /* Write the correct value. */
4296 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4297 /* Read it back. */
4298 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299 if (cacheline_size == pci_cache_line_size)
4300 return 0;
4301
4302 pci_info(dev, "cache line size of %d is not supported\n",
4303 pci_cache_line_size << 2);
4304
4305 return -EINVAL;
4306}
4307EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4308
4309/**
4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311 * @dev: the PCI device for which MWI is enabled
4312 *
4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4314 *
4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4316 */
4317int pci_set_mwi(struct pci_dev *dev)
4318{
4319#ifdef PCI_DISABLE_MWI
4320 return 0;
4321#else
4322 int rc;
4323 u16 cmd;
4324
4325 rc = pci_set_cacheline_size(dev);
4326 if (rc)
4327 return rc;
4328
4329 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332 cmd |= PCI_COMMAND_INVALIDATE;
4333 pci_write_config_word(dev, PCI_COMMAND, cmd);
4334 }
4335 return 0;
4336#endif
4337}
4338EXPORT_SYMBOL(pci_set_mwi);
4339
4340/**
4341 * pcim_set_mwi - a device-managed pci_set_mwi()
4342 * @dev: the PCI device for which MWI is enabled
4343 *
4344 * Managed pci_set_mwi().
4345 *
4346 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4347 */
4348int pcim_set_mwi(struct pci_dev *dev)
4349{
4350 struct pci_devres *dr;
4351
4352 dr = find_pci_dr(dev);
4353 if (!dr)
4354 return -ENOMEM;
4355
4356 dr->mwi = 1;
4357 return pci_set_mwi(dev);
4358}
4359EXPORT_SYMBOL(pcim_set_mwi);
4360
4361/**
4362 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4363 * @dev: the PCI device for which MWI is enabled
4364 *
4365 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * Callers are not required to check the return value.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_try_set_mwi(struct pci_dev *dev)
4371{
4372#ifdef PCI_DISABLE_MWI
4373 return 0;
4374#else
4375 return pci_set_mwi(dev);
4376#endif
4377}
4378EXPORT_SYMBOL(pci_try_set_mwi);
4379
4380/**
4381 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4382 * @dev: the PCI device to disable
4383 *
4384 * Disables PCI Memory-Write-Invalidate transaction on the device
4385 */
4386void pci_clear_mwi(struct pci_dev *dev)
4387{
4388#ifndef PCI_DISABLE_MWI
4389 u16 cmd;
4390
4391 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4392 if (cmd & PCI_COMMAND_INVALIDATE) {
4393 cmd &= ~PCI_COMMAND_INVALIDATE;
4394 pci_write_config_word(dev, PCI_COMMAND, cmd);
4395 }
4396#endif
4397}
4398EXPORT_SYMBOL(pci_clear_mwi);
4399
4400/**
4401 * pci_intx - enables/disables PCI INTx for device dev
4402 * @pdev: the PCI device to operate on
4403 * @enable: boolean: whether to enable or disable PCI INTx
4404 *
4405 * Enables/disables PCI INTx for device @pdev
4406 */
4407void pci_intx(struct pci_dev *pdev, int enable)
4408{
4409 u16 pci_command, new;
4410
4411 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4412
4413 if (enable)
4414 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4415 else
4416 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4417
4418 if (new != pci_command) {
4419 struct pci_devres *dr;
4420
4421 pci_write_config_word(pdev, PCI_COMMAND, new);
4422
4423 dr = find_pci_dr(pdev);
4424 if (dr && !dr->restore_intx) {
4425 dr->restore_intx = 1;
4426 dr->orig_intx = !enable;
4427 }
4428 }
4429}
4430EXPORT_SYMBOL_GPL(pci_intx);
4431
4432static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4433{
4434 struct pci_bus *bus = dev->bus;
4435 bool mask_updated = true;
4436 u32 cmd_status_dword;
4437 u16 origcmd, newcmd;
4438 unsigned long flags;
4439 bool irq_pending;
4440
4441 /*
4442 * We do a single dword read to retrieve both command and status.
4443 * Document assumptions that make this possible.
4444 */
4445 BUILD_BUG_ON(PCI_COMMAND % 4);
4446 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4447
4448 raw_spin_lock_irqsave(&pci_lock, flags);
4449
4450 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4451
4452 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4453
4454 /*
4455 * Check interrupt status register to see whether our device
4456 * triggered the interrupt (when masking) or the next IRQ is
4457 * already pending (when unmasking).
4458 */
4459 if (mask != irq_pending) {
4460 mask_updated = false;
4461 goto done;
4462 }
4463
4464 origcmd = cmd_status_dword;
4465 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4466 if (mask)
4467 newcmd |= PCI_COMMAND_INTX_DISABLE;
4468 if (newcmd != origcmd)
4469 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4470
4471done:
4472 raw_spin_unlock_irqrestore(&pci_lock, flags);
4473
4474 return mask_updated;
4475}
4476
4477/**
4478 * pci_check_and_mask_intx - mask INTx on pending interrupt
4479 * @dev: the PCI device to operate on
4480 *
4481 * Check if the device dev has its INTx line asserted, mask it and return
4482 * true in that case. False is returned if no interrupt was pending.
4483 */
4484bool pci_check_and_mask_intx(struct pci_dev *dev)
4485{
4486 return pci_check_and_set_intx_mask(dev, true);
4487}
4488EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4489
4490/**
4491 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4492 * @dev: the PCI device to operate on
4493 *
4494 * Check if the device dev has its INTx line asserted, unmask it if not and
4495 * return true. False is returned and the mask remains active if there was
4496 * still an interrupt pending.
4497 */
4498bool pci_check_and_unmask_intx(struct pci_dev *dev)
4499{
4500 return pci_check_and_set_intx_mask(dev, false);
4501}
4502EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4503
4504/**
4505 * pci_wait_for_pending_transaction - wait for pending transaction
4506 * @dev: the PCI device to operate on
4507 *
4508 * Return 0 if transaction is pending 1 otherwise.
4509 */
4510int pci_wait_for_pending_transaction(struct pci_dev *dev)
4511{
4512 if (!pci_is_pcie(dev))
4513 return 1;
4514
4515 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4516 PCI_EXP_DEVSTA_TRPND);
4517}
4518EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4519
4520/**
4521 * pcie_has_flr - check if a device supports function level resets
4522 * @dev: device to check
4523 *
4524 * Returns true if the device advertises support for PCIe function level
4525 * resets.
4526 */
4527bool pcie_has_flr(struct pci_dev *dev)
4528{
4529 u32 cap;
4530
4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532 return false;
4533
4534 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4535 return cap & PCI_EXP_DEVCAP_FLR;
4536}
4537EXPORT_SYMBOL_GPL(pcie_has_flr);
4538
4539/**
4540 * pcie_flr - initiate a PCIe function level reset
4541 * @dev: device to reset
4542 *
4543 * Initiate a function level reset on @dev. The caller should ensure the
4544 * device supports FLR before calling this function, e.g. by using the
4545 * pcie_has_flr() helper.
4546 */
4547int pcie_flr(struct pci_dev *dev)
4548{
4549 if (!pci_wait_for_pending_transaction(dev))
4550 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4551
4552 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4553
4554 if (dev->imm_ready)
4555 return 0;
4556
4557 /*
4558 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4559 * 100ms, but may silently discard requests while the FLR is in
4560 * progress. Wait 100ms before trying to access the device.
4561 */
4562 msleep(100);
4563
4564 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4565}
4566EXPORT_SYMBOL_GPL(pcie_flr);
4567
4568static int pci_af_flr(struct pci_dev *dev, int probe)
4569{
4570 int pos;
4571 u8 cap;
4572
4573 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4574 if (!pos)
4575 return -ENOTTY;
4576
4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578 return -ENOTTY;
4579
4580 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4581 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4582 return -ENOTTY;
4583
4584 if (probe)
4585 return 0;
4586
4587 /*
4588 * Wait for Transaction Pending bit to clear. A word-aligned test
4589 * is used, so we use the control offset rather than status and shift
4590 * the test bit to match.
4591 */
4592 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4593 PCI_AF_STATUS_TP << 8))
4594 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4595
4596 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4597
4598 if (dev->imm_ready)
4599 return 0;
4600
4601 /*
4602 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4603 * updated 27 July 2006; a device must complete an FLR within
4604 * 100ms, but may silently discard requests while the FLR is in
4605 * progress. Wait 100ms before trying to access the device.
4606 */
4607 msleep(100);
4608
4609 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4610}
4611
4612/**
4613 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4614 * @dev: Device to reset.
4615 * @probe: If set, only check if the device can be reset this way.
4616 *
4617 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4618 * unset, it will be reinitialized internally when going from PCI_D3hot to
4619 * PCI_D0. If that's the case and the device is not in a low-power state
4620 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4621 *
4622 * NOTE: This causes the caller to sleep for twice the device power transition
4623 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4624 * by default (i.e. unless the @dev's d3_delay field has a different value).
4625 * Moreover, only devices in D0 can be reset by this function.
4626 */
4627static int pci_pm_reset(struct pci_dev *dev, int probe)
4628{
4629 u16 csr;
4630
4631 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4632 return -ENOTTY;
4633
4634 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4635 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4636 return -ENOTTY;
4637
4638 if (probe)
4639 return 0;
4640
4641 if (dev->current_state != PCI_D0)
4642 return -EINVAL;
4643
4644 csr &= ~PCI_PM_CTRL_STATE_MASK;
4645 csr |= PCI_D3hot;
4646 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4647 pci_dev_d3_sleep(dev);
4648
4649 csr &= ~PCI_PM_CTRL_STATE_MASK;
4650 csr |= PCI_D0;
4651 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4652 pci_dev_d3_sleep(dev);
4653
4654 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4655}
4656
4657/**
4658 * pcie_wait_for_link_delay - Wait until link is active or inactive
4659 * @pdev: Bridge device
4660 * @active: waiting for active or inactive?
4661 * @delay: Delay to wait after link has become active (in ms)
4662 *
4663 * Use this to wait till link becomes active or inactive.
4664 */
4665static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4666 int delay)
4667{
4668 int timeout = 1000;
4669 bool ret;
4670 u16 lnk_status;
4671
4672 /*
4673 * Some controllers might not implement link active reporting. In this
4674 * case, we wait for 1000 ms + any delay requested by the caller.
4675 */
4676 if (!pdev->link_active_reporting) {
4677 msleep(timeout + delay);
4678 return true;
4679 }
4680
4681 /*
4682 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4683 * after which we should expect an link active if the reset was
4684 * successful. If so, software must wait a minimum 100ms before sending
4685 * configuration requests to devices downstream this port.
4686 *
4687 * If the link fails to activate, either the device was physically
4688 * removed or the link is permanently failed.
4689 */
4690 if (active)
4691 msleep(20);
4692 for (;;) {
4693 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4694 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4695 if (ret == active)
4696 break;
4697 if (timeout <= 0)
4698 break;
4699 msleep(10);
4700 timeout -= 10;
4701 }
4702 if (active && ret)
4703 msleep(delay);
4704 else if (ret != active)
4705 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4706 active ? "set" : "cleared");
4707 return ret == active;
4708}
4709
4710/**
4711 * pcie_wait_for_link - Wait until link is active or inactive
4712 * @pdev: Bridge device
4713 * @active: waiting for active or inactive?
4714 *
4715 * Use this to wait till link becomes active or inactive.
4716 */
4717bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4718{
4719 return pcie_wait_for_link_delay(pdev, active, 100);
4720}
4721
4722/*
4723 * Find maximum D3cold delay required by all the devices on the bus. The
4724 * spec says 100 ms, but firmware can lower it and we allow drivers to
4725 * increase it as well.
4726 *
4727 * Called with @pci_bus_sem locked for reading.
4728 */
4729static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4730{
4731 const struct pci_dev *pdev;
4732 int min_delay = 100;
4733 int max_delay = 0;
4734
4735 list_for_each_entry(pdev, &bus->devices, bus_list) {
4736 if (pdev->d3cold_delay < min_delay)
4737 min_delay = pdev->d3cold_delay;
4738 if (pdev->d3cold_delay > max_delay)
4739 max_delay = pdev->d3cold_delay;
4740 }
4741
4742 return max(min_delay, max_delay);
4743}
4744
4745/**
4746 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4747 * @dev: PCI bridge
4748 *
4749 * Handle necessary delays before access to the devices on the secondary
4750 * side of the bridge are permitted after D3cold to D0 transition.
4751 *
4752 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4753 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4754 * 4.3.2.
4755 */
4756void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4757{
4758 struct pci_dev *child;
4759 int delay;
4760
4761 if (pci_dev_is_disconnected(dev))
4762 return;
4763
4764 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4765 return;
4766
4767 down_read(&pci_bus_sem);
4768
4769 /*
4770 * We only deal with devices that are present currently on the bus.
4771 * For any hot-added devices the access delay is handled in pciehp
4772 * board_added(). In case of ACPI hotplug the firmware is expected
4773 * to configure the devices before OS is notified.
4774 */
4775 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4776 up_read(&pci_bus_sem);
4777 return;
4778 }
4779
4780 /* Take d3cold_delay requirements into account */
4781 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4782 if (!delay) {
4783 up_read(&pci_bus_sem);
4784 return;
4785 }
4786
4787 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4788 bus_list);
4789 up_read(&pci_bus_sem);
4790
4791 /*
4792 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4793 * accessing the device after reset (that is 1000 ms + 100 ms). In
4794 * practice this should not be needed because we don't do power
4795 * management for them (see pci_bridge_d3_possible()).
4796 */
4797 if (!pci_is_pcie(dev)) {
4798 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4799 msleep(1000 + delay);
4800 return;
4801 }
4802
4803 /*
4804 * For PCIe downstream and root ports that do not support speeds
4805 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4806 * speeds (gen3) we need to wait first for the data link layer to
4807 * become active.
4808 *
4809 * However, 100 ms is the minimum and the PCIe spec says the
4810 * software must allow at least 1s before it can determine that the
4811 * device that did not respond is a broken device. There is
4812 * evidence that 100 ms is not always enough, for example certain
4813 * Titan Ridge xHCI controller does not always respond to
4814 * configuration requests if we only wait for 100 ms (see
4815 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4816 *
4817 * Therefore we wait for 100 ms and check for the device presence.
4818 * If it is still not present give it an additional 100 ms.
4819 */
4820 if (!pcie_downstream_port(dev))
4821 return;
4822
4823 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4824 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4825 msleep(delay);
4826 } else {
4827 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4828 delay);
4829 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4830 /* Did not train, no need to wait any further */
4831 return;
4832 }
4833 }
4834
4835 if (!pci_device_is_present(child)) {
4836 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4837 msleep(delay);
4838 }
4839}
4840
4841void pci_reset_secondary_bus(struct pci_dev *dev)
4842{
4843 u16 ctrl;
4844
4845 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4846 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4847 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4848
4849 /*
4850 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4851 * this to 2ms to ensure that we meet the minimum requirement.
4852 */
4853 msleep(2);
4854
4855 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858 /*
4859 * Trhfa for conventional PCI is 2^25 clock cycles.
4860 * Assuming a minimum 33MHz clock this results in a 1s
4861 * delay before we can consider subordinate devices to
4862 * be re-initialized. PCIe has some ways to shorten this,
4863 * but we don't make use of them yet.
4864 */
4865 ssleep(1);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870 pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882 pcibios_reset_secondary_bus(dev);
4883
4884 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4889{
4890 struct pci_dev *pdev;
4891
4892 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 return -ENOTTY;
4895
4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 if (pdev != dev)
4898 return -ENOTTY;
4899
4900 if (probe)
4901 return 0;
4902
4903 return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4907{
4908 int rc = -ENOTTY;
4909
4910 if (!hotplug || !try_module_get(hotplug->owner))
4911 return rc;
4912
4913 if (hotplug->ops->reset_slot)
4914 rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916 module_put(hotplug->owner);
4917
4918 return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4922{
4923 struct pci_dev *pdev;
4924
4925 if (dev->subordinate || !dev->slot ||
4926 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4927 return -ENOTTY;
4928
4929 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4930 if (pdev != dev && pdev->slot == dev->slot)
4931 return -ENOTTY;
4932
4933 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4934}
4935
4936static void pci_dev_lock(struct pci_dev *dev)
4937{
4938 pci_cfg_access_lock(dev);
4939 /* block PM suspend, driver probe, etc. */
4940 device_lock(&dev->dev);
4941}
4942
4943/* Return 1 on successful lock, 0 on contention */
4944static int pci_dev_trylock(struct pci_dev *dev)
4945{
4946 if (pci_cfg_access_trylock(dev)) {
4947 if (device_trylock(&dev->dev))
4948 return 1;
4949 pci_cfg_access_unlock(dev);
4950 }
4951
4952 return 0;
4953}
4954
4955static void pci_dev_unlock(struct pci_dev *dev)
4956{
4957 device_unlock(&dev->dev);
4958 pci_cfg_access_unlock(dev);
4959}
4960
4961static void pci_dev_save_and_disable(struct pci_dev *dev)
4962{
4963 const struct pci_error_handlers *err_handler =
4964 dev->driver ? dev->driver->err_handler : NULL;
4965
4966 /*
4967 * dev->driver->err_handler->reset_prepare() is protected against
4968 * races with ->remove() by the device lock, which must be held by
4969 * the caller.
4970 */
4971 if (err_handler && err_handler->reset_prepare)
4972 err_handler->reset_prepare(dev);
4973
4974 /*
4975 * Wake-up device prior to save. PM registers default to D0 after
4976 * reset and a simple register restore doesn't reliably return
4977 * to a non-D0 state anyway.
4978 */
4979 pci_set_power_state(dev, PCI_D0);
4980
4981 pci_save_state(dev);
4982 /*
4983 * Disable the device by clearing the Command register, except for
4984 * INTx-disable which is set. This not only disables MMIO and I/O port
4985 * BARs, but also prevents the device from being Bus Master, preventing
4986 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4987 * compliant devices, INTx-disable prevents legacy interrupts.
4988 */
4989 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4990}
4991
4992static void pci_dev_restore(struct pci_dev *dev)
4993{
4994 const struct pci_error_handlers *err_handler =
4995 dev->driver ? dev->driver->err_handler : NULL;
4996
4997 pci_restore_state(dev);
4998
4999 /*
5000 * dev->driver->err_handler->reset_done() is protected against
5001 * races with ->remove() by the device lock, which must be held by
5002 * the caller.
5003 */
5004 if (err_handler && err_handler->reset_done)
5005 err_handler->reset_done(dev);
5006}
5007
5008/**
5009 * __pci_reset_function_locked - reset a PCI device function while holding
5010 * the @dev mutex lock.
5011 * @dev: PCI device to reset
5012 *
5013 * Some devices allow an individual function to be reset without affecting
5014 * other functions in the same device. The PCI device must be responsive
5015 * to PCI config space in order to use this function.
5016 *
5017 * The device function is presumed to be unused and the caller is holding
5018 * the device mutex lock when this function is called.
5019 *
5020 * Resetting the device will make the contents of PCI configuration space
5021 * random, so any caller of this must be prepared to reinitialise the
5022 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5023 * etc.
5024 *
5025 * Returns 0 if the device function was successfully reset or negative if the
5026 * device doesn't support resetting a single function.
5027 */
5028int __pci_reset_function_locked(struct pci_dev *dev)
5029{
5030 int rc;
5031
5032 might_sleep();
5033
5034 /*
5035 * A reset method returns -ENOTTY if it doesn't support this device
5036 * and we should try the next method.
5037 *
5038 * If it returns 0 (success), we're finished. If it returns any
5039 * other error, we're also finished: this indicates that further
5040 * reset mechanisms might be broken on the device.
5041 */
5042 rc = pci_dev_specific_reset(dev, 0);
5043 if (rc != -ENOTTY)
5044 return rc;
5045 if (pcie_has_flr(dev)) {
5046 rc = pcie_flr(dev);
5047 if (rc != -ENOTTY)
5048 return rc;
5049 }
5050 rc = pci_af_flr(dev, 0);
5051 if (rc != -ENOTTY)
5052 return rc;
5053 rc = pci_pm_reset(dev, 0);
5054 if (rc != -ENOTTY)
5055 return rc;
5056 rc = pci_dev_reset_slot_function(dev, 0);
5057 if (rc != -ENOTTY)
5058 return rc;
5059 return pci_parent_bus_reset(dev, 0);
5060}
5061EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5062
5063/**
5064 * pci_probe_reset_function - check whether the device can be safely reset
5065 * @dev: PCI device to reset
5066 *
5067 * Some devices allow an individual function to be reset without affecting
5068 * other functions in the same device. The PCI device must be responsive
5069 * to PCI config space in order to use this function.
5070 *
5071 * Returns 0 if the device function can be reset or negative if the
5072 * device doesn't support resetting a single function.
5073 */
5074int pci_probe_reset_function(struct pci_dev *dev)
5075{
5076 int rc;
5077
5078 might_sleep();
5079
5080 rc = pci_dev_specific_reset(dev, 1);
5081 if (rc != -ENOTTY)
5082 return rc;
5083 if (pcie_has_flr(dev))
5084 return 0;
5085 rc = pci_af_flr(dev, 1);
5086 if (rc != -ENOTTY)
5087 return rc;
5088 rc = pci_pm_reset(dev, 1);
5089 if (rc != -ENOTTY)
5090 return rc;
5091 rc = pci_dev_reset_slot_function(dev, 1);
5092 if (rc != -ENOTTY)
5093 return rc;
5094
5095 return pci_parent_bus_reset(dev, 1);
5096}
5097
5098/**
5099 * pci_reset_function - quiesce and reset a PCI device function
5100 * @dev: PCI device to reset
5101 *
5102 * Some devices allow an individual function to be reset without affecting
5103 * other functions in the same device. The PCI device must be responsive
5104 * to PCI config space in order to use this function.
5105 *
5106 * This function does not just reset the PCI portion of a device, but
5107 * clears all the state associated with the device. This function differs
5108 * from __pci_reset_function_locked() in that it saves and restores device state
5109 * over the reset and takes the PCI device lock.
5110 *
5111 * Returns 0 if the device function was successfully reset or negative if the
5112 * device doesn't support resetting a single function.
5113 */
5114int pci_reset_function(struct pci_dev *dev)
5115{
5116 int rc;
5117
5118 if (!dev->reset_fn)
5119 return -ENOTTY;
5120
5121 pci_dev_lock(dev);
5122 pci_dev_save_and_disable(dev);
5123
5124 rc = __pci_reset_function_locked(dev);
5125
5126 pci_dev_restore(dev);
5127 pci_dev_unlock(dev);
5128
5129 return rc;
5130}
5131EXPORT_SYMBOL_GPL(pci_reset_function);
5132
5133/**
5134 * pci_reset_function_locked - quiesce and reset a PCI device function
5135 * @dev: PCI device to reset
5136 *
5137 * Some devices allow an individual function to be reset without affecting
5138 * other functions in the same device. The PCI device must be responsive
5139 * to PCI config space in order to use this function.
5140 *
5141 * This function does not just reset the PCI portion of a device, but
5142 * clears all the state associated with the device. This function differs
5143 * from __pci_reset_function_locked() in that it saves and restores device state
5144 * over the reset. It also differs from pci_reset_function() in that it
5145 * requires the PCI device lock to be held.
5146 *
5147 * Returns 0 if the device function was successfully reset or negative if the
5148 * device doesn't support resetting a single function.
5149 */
5150int pci_reset_function_locked(struct pci_dev *dev)
5151{
5152 int rc;
5153
5154 if (!dev->reset_fn)
5155 return -ENOTTY;
5156
5157 pci_dev_save_and_disable(dev);
5158
5159 rc = __pci_reset_function_locked(dev);
5160
5161 pci_dev_restore(dev);
5162
5163 return rc;
5164}
5165EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5166
5167/**
5168 * pci_try_reset_function - quiesce and reset a PCI device function
5169 * @dev: PCI device to reset
5170 *
5171 * Same as above, except return -EAGAIN if unable to lock device.
5172 */
5173int pci_try_reset_function(struct pci_dev *dev)
5174{
5175 int rc;
5176
5177 if (!dev->reset_fn)
5178 return -ENOTTY;
5179
5180 if (!pci_dev_trylock(dev))
5181 return -EAGAIN;
5182
5183 pci_dev_save_and_disable(dev);
5184 rc = __pci_reset_function_locked(dev);
5185 pci_dev_restore(dev);
5186 pci_dev_unlock(dev);
5187
5188 return rc;
5189}
5190EXPORT_SYMBOL_GPL(pci_try_reset_function);
5191
5192/* Do any devices on or below this bus prevent a bus reset? */
5193static bool pci_bus_resetable(struct pci_bus *bus)
5194{
5195 struct pci_dev *dev;
5196
5197
5198 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5199 return false;
5200
5201 list_for_each_entry(dev, &bus->devices, bus_list) {
5202 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5203 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5204 return false;
5205 }
5206
5207 return true;
5208}
5209
5210/* Lock devices from the top of the tree down */
5211static void pci_bus_lock(struct pci_bus *bus)
5212{
5213 struct pci_dev *dev;
5214
5215 list_for_each_entry(dev, &bus->devices, bus_list) {
5216 pci_dev_lock(dev);
5217 if (dev->subordinate)
5218 pci_bus_lock(dev->subordinate);
5219 }
5220}
5221
5222/* Unlock devices from the bottom of the tree up */
5223static void pci_bus_unlock(struct pci_bus *bus)
5224{
5225 struct pci_dev *dev;
5226
5227 list_for_each_entry(dev, &bus->devices, bus_list) {
5228 if (dev->subordinate)
5229 pci_bus_unlock(dev->subordinate);
5230 pci_dev_unlock(dev);
5231 }
5232}
5233
5234/* Return 1 on successful lock, 0 on contention */
5235static int pci_bus_trylock(struct pci_bus *bus)
5236{
5237 struct pci_dev *dev;
5238
5239 list_for_each_entry(dev, &bus->devices, bus_list) {
5240 if (!pci_dev_trylock(dev))
5241 goto unlock;
5242 if (dev->subordinate) {
5243 if (!pci_bus_trylock(dev->subordinate)) {
5244 pci_dev_unlock(dev);
5245 goto unlock;
5246 }
5247 }
5248 }
5249 return 1;
5250
5251unlock:
5252 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5253 if (dev->subordinate)
5254 pci_bus_unlock(dev->subordinate);
5255 pci_dev_unlock(dev);
5256 }
5257 return 0;
5258}
5259
5260/* Do any devices on or below this slot prevent a bus reset? */
5261static bool pci_slot_resetable(struct pci_slot *slot)
5262{
5263 struct pci_dev *dev;
5264
5265 if (slot->bus->self &&
5266 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5267 return false;
5268
5269 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270 if (!dev->slot || dev->slot != slot)
5271 continue;
5272 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5273 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5274 return false;
5275 }
5276
5277 return true;
5278}
5279
5280/* Lock devices from the top of the tree down */
5281static void pci_slot_lock(struct pci_slot *slot)
5282{
5283 struct pci_dev *dev;
5284
5285 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5286 if (!dev->slot || dev->slot != slot)
5287 continue;
5288 pci_dev_lock(dev);
5289 if (dev->subordinate)
5290 pci_bus_lock(dev->subordinate);
5291 }
5292}
5293
5294/* Unlock devices from the bottom of the tree up */
5295static void pci_slot_unlock(struct pci_slot *slot)
5296{
5297 struct pci_dev *dev;
5298
5299 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 if (!dev->slot || dev->slot != slot)
5301 continue;
5302 if (dev->subordinate)
5303 pci_bus_unlock(dev->subordinate);
5304 pci_dev_unlock(dev);
5305 }
5306}
5307
5308/* Return 1 on successful lock, 0 on contention */
5309static int pci_slot_trylock(struct pci_slot *slot)
5310{
5311 struct pci_dev *dev;
5312
5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 if (!dev->slot || dev->slot != slot)
5315 continue;
5316 if (!pci_dev_trylock(dev))
5317 goto unlock;
5318 if (dev->subordinate) {
5319 if (!pci_bus_trylock(dev->subordinate)) {
5320 pci_dev_unlock(dev);
5321 goto unlock;
5322 }
5323 }
5324 }
5325 return 1;
5326
5327unlock:
5328 list_for_each_entry_continue_reverse(dev,
5329 &slot->bus->devices, bus_list) {
5330 if (!dev->slot || dev->slot != slot)
5331 continue;
5332 if (dev->subordinate)
5333 pci_bus_unlock(dev->subordinate);
5334 pci_dev_unlock(dev);
5335 }
5336 return 0;
5337}
5338
5339/*
5340 * Save and disable devices from the top of the tree down while holding
5341 * the @dev mutex lock for the entire tree.
5342 */
5343static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5344{
5345 struct pci_dev *dev;
5346
5347 list_for_each_entry(dev, &bus->devices, bus_list) {
5348 pci_dev_save_and_disable(dev);
5349 if (dev->subordinate)
5350 pci_bus_save_and_disable_locked(dev->subordinate);
5351 }
5352}
5353
5354/*
5355 * Restore devices from top of the tree down while holding @dev mutex lock
5356 * for the entire tree. Parent bridges need to be restored before we can
5357 * get to subordinate devices.
5358 */
5359static void pci_bus_restore_locked(struct pci_bus *bus)
5360{
5361 struct pci_dev *dev;
5362
5363 list_for_each_entry(dev, &bus->devices, bus_list) {
5364 pci_dev_restore(dev);
5365 if (dev->subordinate)
5366 pci_bus_restore_locked(dev->subordinate);
5367 }
5368}
5369
5370/*
5371 * Save and disable devices from the top of the tree down while holding
5372 * the @dev mutex lock for the entire tree.
5373 */
5374static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5375{
5376 struct pci_dev *dev;
5377
5378 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5379 if (!dev->slot || dev->slot != slot)
5380 continue;
5381 pci_dev_save_and_disable(dev);
5382 if (dev->subordinate)
5383 pci_bus_save_and_disable_locked(dev->subordinate);
5384 }
5385}
5386
5387/*
5388 * Restore devices from top of the tree down while holding @dev mutex lock
5389 * for the entire tree. Parent bridges need to be restored before we can
5390 * get to subordinate devices.
5391 */
5392static void pci_slot_restore_locked(struct pci_slot *slot)
5393{
5394 struct pci_dev *dev;
5395
5396 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397 if (!dev->slot || dev->slot != slot)
5398 continue;
5399 pci_dev_restore(dev);
5400 if (dev->subordinate)
5401 pci_bus_restore_locked(dev->subordinate);
5402 }
5403}
5404
5405static int pci_slot_reset(struct pci_slot *slot, int probe)
5406{
5407 int rc;
5408
5409 if (!slot || !pci_slot_resetable(slot))
5410 return -ENOTTY;
5411
5412 if (!probe)
5413 pci_slot_lock(slot);
5414
5415 might_sleep();
5416
5417 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5418
5419 if (!probe)
5420 pci_slot_unlock(slot);
5421
5422 return rc;
5423}
5424
5425/**
5426 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5427 * @slot: PCI slot to probe
5428 *
5429 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5430 */
5431int pci_probe_reset_slot(struct pci_slot *slot)
5432{
5433 return pci_slot_reset(slot, 1);
5434}
5435EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5436
5437/**
5438 * __pci_reset_slot - Try to reset a PCI slot
5439 * @slot: PCI slot to reset
5440 *
5441 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5442 * independent of other slots. For instance, some slots may support slot power
5443 * control. In the case of a 1:1 bus to slot architecture, this function may
5444 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5445 * Generally a slot reset should be attempted before a bus reset. All of the
5446 * function of the slot and any subordinate buses behind the slot are reset
5447 * through this function. PCI config space of all devices in the slot and
5448 * behind the slot is saved before and restored after reset.
5449 *
5450 * Same as above except return -EAGAIN if the slot cannot be locked
5451 */
5452static int __pci_reset_slot(struct pci_slot *slot)
5453{
5454 int rc;
5455
5456 rc = pci_slot_reset(slot, 1);
5457 if (rc)
5458 return rc;
5459
5460 if (pci_slot_trylock(slot)) {
5461 pci_slot_save_and_disable_locked(slot);
5462 might_sleep();
5463 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5464 pci_slot_restore_locked(slot);
5465 pci_slot_unlock(slot);
5466 } else
5467 rc = -EAGAIN;
5468
5469 return rc;
5470}
5471
5472static int pci_bus_reset(struct pci_bus *bus, int probe)
5473{
5474 int ret;
5475
5476 if (!bus->self || !pci_bus_resetable(bus))
5477 return -ENOTTY;
5478
5479 if (probe)
5480 return 0;
5481
5482 pci_bus_lock(bus);
5483
5484 might_sleep();
5485
5486 ret = pci_bridge_secondary_bus_reset(bus->self);
5487
5488 pci_bus_unlock(bus);
5489
5490 return ret;
5491}
5492
5493/**
5494 * pci_bus_error_reset - reset the bridge's subordinate bus
5495 * @bridge: The parent device that connects to the bus to reset
5496 *
5497 * This function will first try to reset the slots on this bus if the method is
5498 * available. If slot reset fails or is not available, this will fall back to a
5499 * secondary bus reset.
5500 */
5501int pci_bus_error_reset(struct pci_dev *bridge)
5502{
5503 struct pci_bus *bus = bridge->subordinate;
5504 struct pci_slot *slot;
5505
5506 if (!bus)
5507 return -ENOTTY;
5508
5509 mutex_lock(&pci_slot_mutex);
5510 if (list_empty(&bus->slots))
5511 goto bus_reset;
5512
5513 list_for_each_entry(slot, &bus->slots, list)
5514 if (pci_probe_reset_slot(slot))
5515 goto bus_reset;
5516
5517 list_for_each_entry(slot, &bus->slots, list)
5518 if (pci_slot_reset(slot, 0))
5519 goto bus_reset;
5520
5521 mutex_unlock(&pci_slot_mutex);
5522 return 0;
5523bus_reset:
5524 mutex_unlock(&pci_slot_mutex);
5525 return pci_bus_reset(bridge->subordinate, 0);
5526}
5527
5528/**
5529 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5530 * @bus: PCI bus to probe
5531 *
5532 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5533 */
5534int pci_probe_reset_bus(struct pci_bus *bus)
5535{
5536 return pci_bus_reset(bus, 1);
5537}
5538EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5539
5540/**
5541 * __pci_reset_bus - Try to reset a PCI bus
5542 * @bus: top level PCI bus to reset
5543 *
5544 * Same as above except return -EAGAIN if the bus cannot be locked
5545 */
5546static int __pci_reset_bus(struct pci_bus *bus)
5547{
5548 int rc;
5549
5550 rc = pci_bus_reset(bus, 1);
5551 if (rc)
5552 return rc;
5553
5554 if (pci_bus_trylock(bus)) {
5555 pci_bus_save_and_disable_locked(bus);
5556 might_sleep();
5557 rc = pci_bridge_secondary_bus_reset(bus->self);
5558 pci_bus_restore_locked(bus);
5559 pci_bus_unlock(bus);
5560 } else
5561 rc = -EAGAIN;
5562
5563 return rc;
5564}
5565
5566/**
5567 * pci_reset_bus - Try to reset a PCI bus
5568 * @pdev: top level PCI device to reset via slot/bus
5569 *
5570 * Same as above except return -EAGAIN if the bus cannot be locked
5571 */
5572int pci_reset_bus(struct pci_dev *pdev)
5573{
5574 return (!pci_probe_reset_slot(pdev->slot)) ?
5575 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5576}
5577EXPORT_SYMBOL_GPL(pci_reset_bus);
5578
5579/**
5580 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5581 * @dev: PCI device to query
5582 *
5583 * Returns mmrbc: maximum designed memory read count in bytes or
5584 * appropriate error value.
5585 */
5586int pcix_get_max_mmrbc(struct pci_dev *dev)
5587{
5588 int cap;
5589 u32 stat;
5590
5591 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5592 if (!cap)
5593 return -EINVAL;
5594
5595 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5596 return -EINVAL;
5597
5598 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5599}
5600EXPORT_SYMBOL(pcix_get_max_mmrbc);
5601
5602/**
5603 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5604 * @dev: PCI device to query
5605 *
5606 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5607 * value.
5608 */
5609int pcix_get_mmrbc(struct pci_dev *dev)
5610{
5611 int cap;
5612 u16 cmd;
5613
5614 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5615 if (!cap)
5616 return -EINVAL;
5617
5618 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5619 return -EINVAL;
5620
5621 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5622}
5623EXPORT_SYMBOL(pcix_get_mmrbc);
5624
5625/**
5626 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5627 * @dev: PCI device to query
5628 * @mmrbc: maximum memory read count in bytes
5629 * valid values are 512, 1024, 2048, 4096
5630 *
5631 * If possible sets maximum memory read byte count, some bridges have errata
5632 * that prevent this.
5633 */
5634int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5635{
5636 int cap;
5637 u32 stat, v, o;
5638 u16 cmd;
5639
5640 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5641 return -EINVAL;
5642
5643 v = ffs(mmrbc) - 10;
5644
5645 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5646 if (!cap)
5647 return -EINVAL;
5648
5649 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5650 return -EINVAL;
5651
5652 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5653 return -E2BIG;
5654
5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656 return -EINVAL;
5657
5658 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5659 if (o != v) {
5660 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5661 return -EIO;
5662
5663 cmd &= ~PCI_X_CMD_MAX_READ;
5664 cmd |= v << 2;
5665 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5666 return -EIO;
5667 }
5668 return 0;
5669}
5670EXPORT_SYMBOL(pcix_set_mmrbc);
5671
5672/**
5673 * pcie_get_readrq - get PCI Express read request size
5674 * @dev: PCI device to query
5675 *
5676 * Returns maximum memory read request in bytes or appropriate error value.
5677 */
5678int pcie_get_readrq(struct pci_dev *dev)
5679{
5680 u16 ctl;
5681
5682 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5683
5684 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5685}
5686EXPORT_SYMBOL(pcie_get_readrq);
5687
5688/**
5689 * pcie_set_readrq - set PCI Express maximum memory read request
5690 * @dev: PCI device to query
5691 * @rq: maximum memory read count in bytes
5692 * valid values are 128, 256, 512, 1024, 2048, 4096
5693 *
5694 * If possible sets maximum memory read request in bytes
5695 */
5696int pcie_set_readrq(struct pci_dev *dev, int rq)
5697{
5698 u16 v;
5699 int ret;
5700
5701 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5702 return -EINVAL;
5703
5704 /*
5705 * If using the "performance" PCIe config, we clamp the read rq
5706 * size to the max packet size to keep the host bridge from
5707 * generating requests larger than we can cope with.
5708 */
5709 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5710 int mps = pcie_get_mps(dev);
5711
5712 if (mps < rq)
5713 rq = mps;
5714 }
5715
5716 v = (ffs(rq) - 8) << 12;
5717
5718 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5719 PCI_EXP_DEVCTL_READRQ, v);
5720
5721 return pcibios_err_to_errno(ret);
5722}
5723EXPORT_SYMBOL(pcie_set_readrq);
5724
5725/**
5726 * pcie_get_mps - get PCI Express maximum payload size
5727 * @dev: PCI device to query
5728 *
5729 * Returns maximum payload size in bytes
5730 */
5731int pcie_get_mps(struct pci_dev *dev)
5732{
5733 u16 ctl;
5734
5735 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5736
5737 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5738}
5739EXPORT_SYMBOL(pcie_get_mps);
5740
5741/**
5742 * pcie_set_mps - set PCI Express maximum payload size
5743 * @dev: PCI device to query
5744 * @mps: maximum payload size in bytes
5745 * valid values are 128, 256, 512, 1024, 2048, 4096
5746 *
5747 * If possible sets maximum payload size
5748 */
5749int pcie_set_mps(struct pci_dev *dev, int mps)
5750{
5751 u16 v;
5752 int ret;
5753
5754 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5755 return -EINVAL;
5756
5757 v = ffs(mps) - 8;
5758 if (v > dev->pcie_mpss)
5759 return -EINVAL;
5760 v <<= 5;
5761
5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 PCI_EXP_DEVCTL_PAYLOAD, v);
5764
5765 return pcibios_err_to_errno(ret);
5766}
5767EXPORT_SYMBOL(pcie_set_mps);
5768
5769/**
5770 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5771 * device and its bandwidth limitation
5772 * @dev: PCI device to query
5773 * @limiting_dev: storage for device causing the bandwidth limitation
5774 * @speed: storage for speed of limiting device
5775 * @width: storage for width of limiting device
5776 *
5777 * Walk up the PCI device chain and find the point where the minimum
5778 * bandwidth is available. Return the bandwidth available there and (if
5779 * limiting_dev, speed, and width pointers are supplied) information about
5780 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5781 * raw bandwidth.
5782 */
5783u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5784 enum pci_bus_speed *speed,
5785 enum pcie_link_width *width)
5786{
5787 u16 lnksta;
5788 enum pci_bus_speed next_speed;
5789 enum pcie_link_width next_width;
5790 u32 bw, next_bw;
5791
5792 if (speed)
5793 *speed = PCI_SPEED_UNKNOWN;
5794 if (width)
5795 *width = PCIE_LNK_WIDTH_UNKNOWN;
5796
5797 bw = 0;
5798
5799 while (dev) {
5800 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5801
5802 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5803 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5804 PCI_EXP_LNKSTA_NLW_SHIFT;
5805
5806 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5807
5808 /* Check if current device limits the total bandwidth */
5809 if (!bw || next_bw <= bw) {
5810 bw = next_bw;
5811
5812 if (limiting_dev)
5813 *limiting_dev = dev;
5814 if (speed)
5815 *speed = next_speed;
5816 if (width)
5817 *width = next_width;
5818 }
5819
5820 dev = pci_upstream_bridge(dev);
5821 }
5822
5823 return bw;
5824}
5825EXPORT_SYMBOL(pcie_bandwidth_available);
5826
5827/**
5828 * pcie_get_speed_cap - query for the PCI device's link speed capability
5829 * @dev: PCI device to query
5830 *
5831 * Query the PCI device speed capability. Return the maximum link speed
5832 * supported by the device.
5833 */
5834enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5835{
5836 u32 lnkcap2, lnkcap;
5837
5838 /*
5839 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5840 * implementation note there recommends using the Supported Link
5841 * Speeds Vector in Link Capabilities 2 when supported.
5842 *
5843 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5844 * should use the Supported Link Speeds field in Link Capabilities,
5845 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5846 */
5847 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5848
5849 /* PCIe r3.0-compliant */
5850 if (lnkcap2)
5851 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5852
5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5854 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5855 return PCIE_SPEED_5_0GT;
5856 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5857 return PCIE_SPEED_2_5GT;
5858
5859 return PCI_SPEED_UNKNOWN;
5860}
5861EXPORT_SYMBOL(pcie_get_speed_cap);
5862
5863/**
5864 * pcie_get_width_cap - query for the PCI device's link width capability
5865 * @dev: PCI device to query
5866 *
5867 * Query the PCI device width capability. Return the maximum link width
5868 * supported by the device.
5869 */
5870enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5871{
5872 u32 lnkcap;
5873
5874 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5875 if (lnkcap)
5876 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5877
5878 return PCIE_LNK_WIDTH_UNKNOWN;
5879}
5880EXPORT_SYMBOL(pcie_get_width_cap);
5881
5882/**
5883 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5884 * @dev: PCI device
5885 * @speed: storage for link speed
5886 * @width: storage for link width
5887 *
5888 * Calculate a PCI device's link bandwidth by querying for its link speed
5889 * and width, multiplying them, and applying encoding overhead. The result
5890 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5891 */
5892u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5893 enum pcie_link_width *width)
5894{
5895 *speed = pcie_get_speed_cap(dev);
5896 *width = pcie_get_width_cap(dev);
5897
5898 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5899 return 0;
5900
5901 return *width * PCIE_SPEED2MBS_ENC(*speed);
5902}
5903
5904/**
5905 * __pcie_print_link_status - Report the PCI device's link speed and width
5906 * @dev: PCI device to query
5907 * @verbose: Print info even when enough bandwidth is available
5908 *
5909 * If the available bandwidth at the device is less than the device is
5910 * capable of, report the device's maximum possible bandwidth and the
5911 * upstream link that limits its performance. If @verbose, always print
5912 * the available bandwidth, even if the device isn't constrained.
5913 */
5914void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5915{
5916 enum pcie_link_width width, width_cap;
5917 enum pci_bus_speed speed, speed_cap;
5918 struct pci_dev *limiting_dev = NULL;
5919 u32 bw_avail, bw_cap;
5920
5921 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5922 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5923
5924 if (bw_avail >= bw_cap && verbose)
5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5926 bw_cap / 1000, bw_cap % 1000,
5927 pci_speed_string(speed_cap), width_cap);
5928 else if (bw_avail < bw_cap)
5929 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5930 bw_avail / 1000, bw_avail % 1000,
5931 pci_speed_string(speed), width,
5932 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5933 bw_cap / 1000, bw_cap % 1000,
5934 pci_speed_string(speed_cap), width_cap);
5935}
5936
5937/**
5938 * pcie_print_link_status - Report the PCI device's link speed and width
5939 * @dev: PCI device to query
5940 *
5941 * Report the available bandwidth at the device.
5942 */
5943void pcie_print_link_status(struct pci_dev *dev)
5944{
5945 __pcie_print_link_status(dev, true);
5946}
5947EXPORT_SYMBOL(pcie_print_link_status);
5948
5949/**
5950 * pci_select_bars - Make BAR mask from the type of resource
5951 * @dev: the PCI device for which BAR mask is made
5952 * @flags: resource type mask to be selected
5953 *
5954 * This helper routine makes bar mask from the type of resource.
5955 */
5956int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5957{
5958 int i, bars = 0;
5959 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5960 if (pci_resource_flags(dev, i) & flags)
5961 bars |= (1 << i);
5962 return bars;
5963}
5964EXPORT_SYMBOL(pci_select_bars);
5965
5966/* Some architectures require additional programming to enable VGA */
5967static arch_set_vga_state_t arch_set_vga_state;
5968
5969void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5970{
5971 arch_set_vga_state = func; /* NULL disables */
5972}
5973
5974static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5975 unsigned int command_bits, u32 flags)
5976{
5977 if (arch_set_vga_state)
5978 return arch_set_vga_state(dev, decode, command_bits,
5979 flags);
5980 return 0;
5981}
5982
5983/**
5984 * pci_set_vga_state - set VGA decode state on device and parents if requested
5985 * @dev: the PCI device
5986 * @decode: true = enable decoding, false = disable decoding
5987 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5988 * @flags: traverse ancestors and change bridges
5989 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5990 */
5991int pci_set_vga_state(struct pci_dev *dev, bool decode,
5992 unsigned int command_bits, u32 flags)
5993{
5994 struct pci_bus *bus;
5995 struct pci_dev *bridge;
5996 u16 cmd;
5997 int rc;
5998
5999 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6000
6001 /* ARCH specific VGA enables */
6002 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6003 if (rc)
6004 return rc;
6005
6006 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6007 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6008 if (decode == true)
6009 cmd |= command_bits;
6010 else
6011 cmd &= ~command_bits;
6012 pci_write_config_word(dev, PCI_COMMAND, cmd);
6013 }
6014
6015 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6016 return 0;
6017
6018 bus = dev->bus;
6019 while (bus) {
6020 bridge = bus->self;
6021 if (bridge) {
6022 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6023 &cmd);
6024 if (decode == true)
6025 cmd |= PCI_BRIDGE_CTL_VGA;
6026 else
6027 cmd &= ~PCI_BRIDGE_CTL_VGA;
6028 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6029 cmd);
6030 }
6031 bus = bus->parent;
6032 }
6033 return 0;
6034}
6035
6036#ifdef CONFIG_ACPI
6037bool pci_pr3_present(struct pci_dev *pdev)
6038{
6039 struct acpi_device *adev;
6040
6041 if (acpi_disabled)
6042 return false;
6043
6044 adev = ACPI_COMPANION(&pdev->dev);
6045 if (!adev)
6046 return false;
6047
6048 return adev->power.flags.power_resources &&
6049 acpi_has_method(adev->handle, "_PR3");
6050}
6051EXPORT_SYMBOL_GPL(pci_pr3_present);
6052#endif
6053
6054/**
6055 * pci_add_dma_alias - Add a DMA devfn alias for a device
6056 * @dev: the PCI device for which alias is added
6057 * @devfn_from: alias slot and function
6058 * @nr_devfns: number of subsequent devfns to alias
6059 *
6060 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6061 * which is used to program permissible bus-devfn source addresses for DMA
6062 * requests in an IOMMU. These aliases factor into IOMMU group creation
6063 * and are useful for devices generating DMA requests beyond or different
6064 * from their logical bus-devfn. Examples include device quirks where the
6065 * device simply uses the wrong devfn, as well as non-transparent bridges
6066 * where the alias may be a proxy for devices in another domain.
6067 *
6068 * IOMMU group creation is performed during device discovery or addition,
6069 * prior to any potential DMA mapping and therefore prior to driver probing
6070 * (especially for userspace assigned devices where IOMMU group definition
6071 * cannot be left as a userspace activity). DMA aliases should therefore
6072 * be configured via quirks, such as the PCI fixup header quirk.
6073 */
6074void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6075{
6076 int devfn_to;
6077
6078 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6079 devfn_to = devfn_from + nr_devfns - 1;
6080
6081 if (!dev->dma_alias_mask)
6082 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6083 if (!dev->dma_alias_mask) {
6084 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6085 return;
6086 }
6087
6088 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6089
6090 if (nr_devfns == 1)
6091 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6092 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6093 else if (nr_devfns > 1)
6094 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6095 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6096 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6097}
6098
6099bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6100{
6101 return (dev1->dma_alias_mask &&
6102 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6103 (dev2->dma_alias_mask &&
6104 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6105 pci_real_dma_dev(dev1) == dev2 ||
6106 pci_real_dma_dev(dev2) == dev1;
6107}
6108
6109bool pci_device_is_present(struct pci_dev *pdev)
6110{
6111 u32 v;
6112
6113 if (pci_dev_is_disconnected(pdev))
6114 return false;
6115 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6116}
6117EXPORT_SYMBOL_GPL(pci_device_is_present);
6118
6119void pci_ignore_hotplug(struct pci_dev *dev)
6120{
6121 struct pci_dev *bridge = dev->bus->self;
6122
6123 dev->ignore_hotplug = 1;
6124 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6125 if (bridge)
6126 bridge->ignore_hotplug = 1;
6127}
6128EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6129
6130/**
6131 * pci_real_dma_dev - Get PCI DMA device for PCI device
6132 * @dev: the PCI device that may have a PCI DMA alias
6133 *
6134 * Permits the platform to provide architecture-specific functionality to
6135 * devices needing to alias DMA to another PCI device on another PCI bus. If
6136 * the PCI device is on the same bus, it is recommended to use
6137 * pci_add_dma_alias(). This is the default implementation. Architecture
6138 * implementations can override this.
6139 */
6140struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6141{
6142 return dev;
6143}
6144
6145resource_size_t __weak pcibios_default_alignment(void)
6146{
6147 return 0;
6148}
6149
6150/*
6151 * Arches that don't want to expose struct resource to userland as-is in
6152 * sysfs and /proc can implement their own pci_resource_to_user().
6153 */
6154void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6155 const struct resource *rsrc,
6156 resource_size_t *start, resource_size_t *end)
6157{
6158 *start = rsrc->start;
6159 *end = rsrc->end;
6160}
6161
6162static char *resource_alignment_param;
6163static DEFINE_SPINLOCK(resource_alignment_lock);
6164
6165/**
6166 * pci_specified_resource_alignment - get resource alignment specified by user.
6167 * @dev: the PCI device to get
6168 * @resize: whether or not to change resources' size when reassigning alignment
6169 *
6170 * RETURNS: Resource alignment if it is specified.
6171 * Zero if it is not specified.
6172 */
6173static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6174 bool *resize)
6175{
6176 int align_order, count;
6177 resource_size_t align = pcibios_default_alignment();
6178 const char *p;
6179 int ret;
6180
6181 spin_lock(&resource_alignment_lock);
6182 p = resource_alignment_param;
6183 if (!p || !*p)
6184 goto out;
6185 if (pci_has_flag(PCI_PROBE_ONLY)) {
6186 align = 0;
6187 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6188 goto out;
6189 }
6190
6191 while (*p) {
6192 count = 0;
6193 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6194 p[count] == '@') {
6195 p += count + 1;
6196 } else {
6197 align_order = -1;
6198 }
6199
6200 ret = pci_dev_str_match(dev, p, &p);
6201 if (ret == 1) {
6202 *resize = true;
6203 if (align_order == -1)
6204 align = PAGE_SIZE;
6205 else
6206 align = 1 << align_order;
6207 break;
6208 } else if (ret < 0) {
6209 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6210 p);
6211 break;
6212 }
6213
6214 if (*p != ';' && *p != ',') {
6215 /* End of param or invalid format */
6216 break;
6217 }
6218 p++;
6219 }
6220out:
6221 spin_unlock(&resource_alignment_lock);
6222 return align;
6223}
6224
6225static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6226 resource_size_t align, bool resize)
6227{
6228 struct resource *r = &dev->resource[bar];
6229 resource_size_t size;
6230
6231 if (!(r->flags & IORESOURCE_MEM))
6232 return;
6233
6234 if (r->flags & IORESOURCE_PCI_FIXED) {
6235 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6236 bar, r, (unsigned long long)align);
6237 return;
6238 }
6239
6240 size = resource_size(r);
6241 if (size >= align)
6242 return;
6243
6244 /*
6245 * Increase the alignment of the resource. There are two ways we
6246 * can do this:
6247 *
6248 * 1) Increase the size of the resource. BARs are aligned on their
6249 * size, so when we reallocate space for this resource, we'll
6250 * allocate it with the larger alignment. This also prevents
6251 * assignment of any other BARs inside the alignment region, so
6252 * if we're requesting page alignment, this means no other BARs
6253 * will share the page.
6254 *
6255 * The disadvantage is that this makes the resource larger than
6256 * the hardware BAR, which may break drivers that compute things
6257 * based on the resource size, e.g., to find registers at a
6258 * fixed offset before the end of the BAR.
6259 *
6260 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6261 * set r->start to the desired alignment. By itself this
6262 * doesn't prevent other BARs being put inside the alignment
6263 * region, but if we realign *every* resource of every device in
6264 * the system, none of them will share an alignment region.
6265 *
6266 * When the user has requested alignment for only some devices via
6267 * the "pci=resource_alignment" argument, "resize" is true and we
6268 * use the first method. Otherwise we assume we're aligning all
6269 * devices and we use the second.
6270 */
6271
6272 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6273 bar, r, (unsigned long long)align);
6274
6275 if (resize) {
6276 r->start = 0;
6277 r->end = align - 1;
6278 } else {
6279 r->flags &= ~IORESOURCE_SIZEALIGN;
6280 r->flags |= IORESOURCE_STARTALIGN;
6281 r->start = align;
6282 r->end = r->start + size - 1;
6283 }
6284 r->flags |= IORESOURCE_UNSET;
6285}
6286
6287/*
6288 * This function disables memory decoding and releases memory resources
6289 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6290 * It also rounds up size to specified alignment.
6291 * Later on, the kernel will assign page-aligned memory resource back
6292 * to the device.
6293 */
6294void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6295{
6296 int i;
6297 struct resource *r;
6298 resource_size_t align;
6299 u16 command;
6300 bool resize = false;
6301
6302 /*
6303 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6304 * 3.4.1.11. Their resources are allocated from the space
6305 * described by the VF BARx register in the PF's SR-IOV capability.
6306 * We can't influence their alignment here.
6307 */
6308 if (dev->is_virtfn)
6309 return;
6310
6311 /* check if specified PCI is target device to reassign */
6312 align = pci_specified_resource_alignment(dev, &resize);
6313 if (!align)
6314 return;
6315
6316 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6317 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6318 pci_warn(dev, "Can't reassign resources to host bridge\n");
6319 return;
6320 }
6321
6322 pci_read_config_word(dev, PCI_COMMAND, &command);
6323 command &= ~PCI_COMMAND_MEMORY;
6324 pci_write_config_word(dev, PCI_COMMAND, command);
6325
6326 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6327 pci_request_resource_alignment(dev, i, align, resize);
6328
6329 /*
6330 * Need to disable bridge's resource window,
6331 * to enable the kernel to reassign new resource
6332 * window later on.
6333 */
6334 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6335 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6336 r = &dev->resource[i];
6337 if (!(r->flags & IORESOURCE_MEM))
6338 continue;
6339 r->flags |= IORESOURCE_UNSET;
6340 r->end = resource_size(r) - 1;
6341 r->start = 0;
6342 }
6343 pci_disable_bridge_window(dev);
6344 }
6345}
6346
6347static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6348{
6349 size_t count = 0;
6350
6351 spin_lock(&resource_alignment_lock);
6352 if (resource_alignment_param)
6353 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6354 spin_unlock(&resource_alignment_lock);
6355
6356 /*
6357 * When set by the command line, resource_alignment_param will not
6358 * have a trailing line feed, which is ugly. So conditionally add
6359 * it here.
6360 */
6361 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6362 buf[count - 1] = '\n';
6363 buf[count++] = 0;
6364 }
6365
6366 return count;
6367}
6368
6369static ssize_t resource_alignment_store(struct bus_type *bus,
6370 const char *buf, size_t count)
6371{
6372 char *param = kstrndup(buf, count, GFP_KERNEL);
6373
6374 if (!param)
6375 return -ENOMEM;
6376
6377 spin_lock(&resource_alignment_lock);
6378 kfree(resource_alignment_param);
6379 resource_alignment_param = param;
6380 spin_unlock(&resource_alignment_lock);
6381 return count;
6382}
6383
6384static BUS_ATTR_RW(resource_alignment);
6385
6386static int __init pci_resource_alignment_sysfs_init(void)
6387{
6388 return bus_create_file(&pci_bus_type,
6389 &bus_attr_resource_alignment);
6390}
6391late_initcall(pci_resource_alignment_sysfs_init);
6392
6393static void pci_no_domains(void)
6394{
6395#ifdef CONFIG_PCI_DOMAINS
6396 pci_domains_supported = 0;
6397#endif
6398}
6399
6400#ifdef CONFIG_PCI_DOMAINS_GENERIC
6401static atomic_t __domain_nr = ATOMIC_INIT(-1);
6402
6403static int pci_get_new_domain_nr(void)
6404{
6405 return atomic_inc_return(&__domain_nr);
6406}
6407
6408static int of_pci_bus_find_domain_nr(struct device *parent)
6409{
6410 static int use_dt_domains = -1;
6411 int domain = -1;
6412
6413 if (parent)
6414 domain = of_get_pci_domain_nr(parent->of_node);
6415
6416 /*
6417 * Check DT domain and use_dt_domains values.
6418 *
6419 * If DT domain property is valid (domain >= 0) and
6420 * use_dt_domains != 0, the DT assignment is valid since this means
6421 * we have not previously allocated a domain number by using
6422 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6423 * 1, to indicate that we have just assigned a domain number from
6424 * DT.
6425 *
6426 * If DT domain property value is not valid (ie domain < 0), and we
6427 * have not previously assigned a domain number from DT
6428 * (use_dt_domains != 1) we should assign a domain number by
6429 * using the:
6430 *
6431 * pci_get_new_domain_nr()
6432 *
6433 * API and update the use_dt_domains value to keep track of method we
6434 * are using to assign domain numbers (use_dt_domains = 0).
6435 *
6436 * All other combinations imply we have a platform that is trying
6437 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6438 * which is a recipe for domain mishandling and it is prevented by
6439 * invalidating the domain value (domain = -1) and printing a
6440 * corresponding error.
6441 */
6442 if (domain >= 0 && use_dt_domains) {
6443 use_dt_domains = 1;
6444 } else if (domain < 0 && use_dt_domains != 1) {
6445 use_dt_domains = 0;
6446 domain = pci_get_new_domain_nr();
6447 } else {
6448 if (parent)
6449 pr_err("Node %pOF has ", parent->of_node);
6450 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6451 domain = -1;
6452 }
6453
6454 return domain;
6455}
6456
6457int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6458{
6459 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6460 acpi_pci_bus_find_domain_nr(bus);
6461}
6462#endif
6463
6464/**
6465 * pci_ext_cfg_avail - can we access extended PCI config space?
6466 *
6467 * Returns 1 if we can access PCI extended config space (offsets
6468 * greater than 0xff). This is the default implementation. Architecture
6469 * implementations can override this.
6470 */
6471int __weak pci_ext_cfg_avail(void)
6472{
6473 return 1;
6474}
6475
6476void __weak pci_fixup_cardbus(struct pci_bus *bus)
6477{
6478}
6479EXPORT_SYMBOL(pci_fixup_cardbus);
6480
6481static int __init pci_setup(char *str)
6482{
6483 while (str) {
6484 char *k = strchr(str, ',');
6485 if (k)
6486 *k++ = 0;
6487 if (*str && (str = pcibios_setup(str)) && *str) {
6488 if (!strcmp(str, "nomsi")) {
6489 pci_no_msi();
6490 } else if (!strncmp(str, "noats", 5)) {
6491 pr_info("PCIe: ATS is disabled\n");
6492 pcie_ats_disabled = true;
6493 } else if (!strcmp(str, "noaer")) {
6494 pci_no_aer();
6495 } else if (!strcmp(str, "earlydump")) {
6496 pci_early_dump = true;
6497 } else if (!strncmp(str, "realloc=", 8)) {
6498 pci_realloc_get_opt(str + 8);
6499 } else if (!strncmp(str, "realloc", 7)) {
6500 pci_realloc_get_opt("on");
6501 } else if (!strcmp(str, "nodomains")) {
6502 pci_no_domains();
6503 } else if (!strncmp(str, "noari", 5)) {
6504 pcie_ari_disabled = true;
6505 } else if (!strncmp(str, "cbiosize=", 9)) {
6506 pci_cardbus_io_size = memparse(str + 9, &str);
6507 } else if (!strncmp(str, "cbmemsize=", 10)) {
6508 pci_cardbus_mem_size = memparse(str + 10, &str);
6509 } else if (!strncmp(str, "resource_alignment=", 19)) {
6510 resource_alignment_param = str + 19;
6511 } else if (!strncmp(str, "ecrc=", 5)) {
6512 pcie_ecrc_get_policy(str + 5);
6513 } else if (!strncmp(str, "hpiosize=", 9)) {
6514 pci_hotplug_io_size = memparse(str + 9, &str);
6515 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6516 pci_hotplug_mmio_size = memparse(str + 11, &str);
6517 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6518 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6519 } else if (!strncmp(str, "hpmemsize=", 10)) {
6520 pci_hotplug_mmio_size = memparse(str + 10, &str);
6521 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6522 } else if (!strncmp(str, "hpbussize=", 10)) {
6523 pci_hotplug_bus_size =
6524 simple_strtoul(str + 10, &str, 0);
6525 if (pci_hotplug_bus_size > 0xff)
6526 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6527 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6528 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6529 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6530 pcie_bus_config = PCIE_BUS_SAFE;
6531 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6532 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6533 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6534 pcie_bus_config = PCIE_BUS_PEER2PEER;
6535 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6536 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6537 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6538 disable_acs_redir_param = str + 18;
6539 } else {
6540 pr_err("PCI: Unknown option `%s'\n", str);
6541 }
6542 }
6543 str = k;
6544 }
6545 return 0;
6546}
6547early_param("pci", pci_setup);
6548
6549/*
6550 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6551 * in pci_setup(), above, to point to data in the __initdata section which
6552 * will be freed after the init sequence is complete. We can't allocate memory
6553 * in pci_setup() because some architectures do not have any memory allocation
6554 * service available during an early_param() call. So we allocate memory and
6555 * copy the variable here before the init section is freed.
6556 *
6557 */
6558static int __init pci_realloc_setup_params(void)
6559{
6560 resource_alignment_param = kstrdup(resource_alignment_param,
6561 GFP_KERNEL);
6562 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6563
6564 return 0;
6565}
6566pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/of.h>
17#include <linux/of_pci.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <linux/pci-ats.h>
33#include <asm/setup.h>
34#include <asm/dma.h>
35#include <linux/aer.h>
36#include "pci.h"
37
38DEFINE_MUTEX(pci_slot_mutex);
39
40const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42};
43EXPORT_SYMBOL_GPL(pci_power_names);
44
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66static void pci_dev_d3_sleep(struct pci_dev *dev)
67{
68 unsigned int delay = dev->d3_delay;
69
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
72
73 if (delay)
74 msleep(delay);
75}
76
77#ifdef CONFIG_PCI_DOMAINS
78int pci_domains_supported = 1;
79#endif
80
81#define DEFAULT_CARDBUS_IO_SIZE (256)
82#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86
87#define DEFAULT_HOTPLUG_IO_SIZE (256)
88#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
90unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92
93#define DEFAULT_HOTPLUG_BUS_SIZE 1
94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95
96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97
98/*
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
103 */
104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105u8 pci_cache_line_size;
106
107/*
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
110 */
111unsigned int pcibios_max_latency = 255;
112
113/* If set, the PCIe ARI capability will not be used. */
114static bool pcie_ari_disabled;
115
116/* If set, the PCIe ATS capability will not be used. */
117static bool pcie_ats_disabled;
118
119/* If set, the PCI config space of each device is printed during boot. */
120bool pci_early_dump;
121
122bool pci_ats_disabled(void)
123{
124 return pcie_ats_disabled;
125}
126
127/* Disable bridge_d3 for all PCIe ports */
128static bool pci_bridge_d3_disable;
129/* Force bridge_d3 for all PCIe ports */
130static bool pci_bridge_d3_force;
131
132static int __init pcie_port_pm_setup(char *str)
133{
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
139}
140__setup("pcie_port_pm=", pcie_port_pm_setup);
141
142/* Time to wait after a reset for device to become responsive */
143#define PCIE_RESET_READY_POLL_MS 60000
144
145/**
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
148 *
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
151 */
152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153{
154 struct pci_bus *tmp;
155 unsigned char max, n;
156
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
162 }
163 return max;
164}
165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166
167#ifdef CONFIG_HAS_IOMEM
168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169{
170 struct resource *res = &pdev->resource[bar];
171
172 /*
173 * Make sure the BAR is actually a memory resource, not an IO resource
174 */
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
178 }
179 return ioremap_nocache(res->start, resource_size(res));
180}
181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182
183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184{
185 /*
186 * Make sure the BAR is actually a memory resource, not an IO resource
187 */
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
191 }
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
194}
195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196#endif
197
198/**
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
203 *
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
207 *
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209 *
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
213 *
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
216 */
217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
219{
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
224
225 *endptr = strchrnul(path, ';');
226
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
230
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
239 }
240
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
244 }
245
246 /*
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
251 */
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
256 }
257
258 *p = 0;
259 }
260
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
269 }
270 }
271
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
275
276free_and_exit:
277 kfree(wpath);
278 return ret;
279}
280
281/**
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
286 *
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
289 *
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292 *
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
300 *
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
307 *
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
310 */
311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
313{
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
317
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
327
328 subsystem_vendor = 0;
329 subsystem_device = 0;
330 }
331
332 p += count;
333
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
342 /*
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
345 */
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
351 }
352
353 *endptr = p;
354 return 0;
355
356found:
357 *endptr = p;
358 return 1;
359}
360
361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
363{
364 u8 id;
365 u16 ent;
366
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
368
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
374
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
381 }
382 return 0;
383}
384
385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
387{
388 int ttl = PCI_FIND_CAP_TTL;
389
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391}
392
393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394{
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
397}
398EXPORT_SYMBOL_GPL(pci_find_next_capability);
399
400static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
402{
403 u16 status;
404
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
408
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
415 }
416
417 return 0;
418}
419
420/**
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
424 *
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap include:
429 *
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
438 */
439int pci_find_capability(struct pci_dev *dev, int cap)
440{
441 int pos;
442
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446
447 return pos;
448}
449EXPORT_SYMBOL(pci_find_capability);
450
451/**
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
456 *
457 * Like pci_find_capability() but works for PCI devices that do not have a
458 * pci_dev structure set up yet.
459 *
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
463 */
464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465{
466 int pos;
467 u8 hdr_type;
468
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
474
475 return pos;
476}
477EXPORT_SYMBOL(pci_bus_find_capability);
478
479/**
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
484 *
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
489 */
490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491{
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
495
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
501
502 if (start)
503 pos = start;
504
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
507
508 /*
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
511 */
512 if (header == 0)
513 return 0;
514
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
518
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
522
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
525 }
526
527 return 0;
528}
529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530
531/**
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
535 *
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap include:
539 *
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
544 */
545int pci_find_ext_capability(struct pci_dev *dev, int cap)
546{
547 return pci_find_next_ext_capability(dev, 0, cap);
548}
549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550
551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552{
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
555
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
560
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
567
568 if ((cap & mask) == ht_cap)
569 return pos;
570
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
574 }
575
576 return 0;
577}
578/**
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
583 *
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
587 *
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
590 */
591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592{
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596
597/**
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
601 *
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
607 */
608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609{
610 int pos;
611
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615
616 return pos;
617}
618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619
620/**
621 * pci_find_parent_resource - return resource region of parent bus of given
622 * region
623 * @dev: PCI device structure contains resources to be searched
624 * @res: child resource record for which parent is sought
625 *
626 * For given resource region of given device, return the resource region of
627 * parent bus the given region is contained in.
628 */
629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 struct resource *res)
631{
632 const struct pci_bus *bus = dev->bus;
633 struct resource *r;
634 int i;
635
636 pci_bus_for_each_resource(bus, r, i) {
637 if (!r)
638 continue;
639 if (resource_contains(r, res)) {
640
641 /*
642 * If the window is prefetchable but the BAR is
643 * not, the allocator made a mistake.
644 */
645 if (r->flags & IORESOURCE_PREFETCH &&
646 !(res->flags & IORESOURCE_PREFETCH))
647 return NULL;
648
649 /*
650 * If we're below a transparent bridge, there may
651 * be both a positively-decoded aperture and a
652 * subtractively-decoded region that contain the BAR.
653 * We want the positively-decoded one, so this depends
654 * on pci_bus_for_each_resource() giving us those
655 * first.
656 */
657 return r;
658 }
659 }
660 return NULL;
661}
662EXPORT_SYMBOL(pci_find_parent_resource);
663
664/**
665 * pci_find_resource - Return matching PCI device resource
666 * @dev: PCI device to query
667 * @res: Resource to look for
668 *
669 * Goes over standard PCI resources (BARs) and checks if the given resource
670 * is partially or fully contained in any of them. In that case the
671 * matching resource is returned, %NULL otherwise.
672 */
673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674{
675 int i;
676
677 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 struct resource *r = &dev->resource[i];
679
680 if (r->start && resource_contains(r, res))
681 return r;
682 }
683
684 return NULL;
685}
686EXPORT_SYMBOL(pci_find_resource);
687
688/**
689 * pci_find_pcie_root_port - return PCIe Root Port
690 * @dev: PCI device to query
691 *
692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
693 * for a given PCI Device.
694 */
695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696{
697 struct pci_dev *bridge, *highest_pcie_bridge = dev;
698
699 bridge = pci_upstream_bridge(dev);
700 while (bridge && pci_is_pcie(bridge)) {
701 highest_pcie_bridge = bridge;
702 bridge = pci_upstream_bridge(bridge);
703 }
704
705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 return NULL;
707
708 return highest_pcie_bridge;
709}
710EXPORT_SYMBOL(pci_find_pcie_root_port);
711
712/**
713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714 * @dev: the PCI device to operate on
715 * @pos: config space offset of status word
716 * @mask: mask of bit(s) to care about in status word
717 *
718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 */
720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721{
722 int i;
723
724 /* Wait for Transaction Pending bit clean */
725 for (i = 0; i < 4; i++) {
726 u16 status;
727 if (i)
728 msleep((1 << (i - 1)) * 100);
729
730 pci_read_config_word(dev, pos, &status);
731 if (!(status & mask))
732 return 1;
733 }
734
735 return 0;
736}
737
738/**
739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740 * @dev: PCI device to have its BARs restored
741 *
742 * Restore the BAR values for a given device, so as to make it
743 * accessible by its driver.
744 */
745static void pci_restore_bars(struct pci_dev *dev)
746{
747 int i;
748
749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 pci_update_resource(dev, i);
751}
752
753static const struct pci_platform_pm_ops *pci_platform_pm;
754
755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756{
757 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
759 return -EINVAL;
760 pci_platform_pm = ops;
761 return 0;
762}
763
764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765{
766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767}
768
769static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 pci_power_t t)
771{
772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773}
774
775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776{
777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778}
779
780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781{
782 if (pci_platform_pm && pci_platform_pm->refresh_state)
783 pci_platform_pm->refresh_state(dev);
784}
785
786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787{
788 return pci_platform_pm ?
789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790}
791
792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793{
794 return pci_platform_pm ?
795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796}
797
798static inline bool platform_pci_need_resume(struct pci_dev *dev)
799{
800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801}
802
803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804{
805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
806}
807
808/**
809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810 * given PCI device
811 * @dev: PCI device to handle.
812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
813 *
814 * RETURN VALUE:
815 * -EINVAL if the requested state is invalid.
816 * -EIO if device does not support PCI PM or its PM capabilities register has a
817 * wrong version, or device doesn't support the requested state.
818 * 0 if device already is in the requested state.
819 * 0 if device's power state has been successfully changed.
820 */
821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
822{
823 u16 pmcsr;
824 bool need_restore = false;
825
826 /* Check if we're already there */
827 if (dev->current_state == state)
828 return 0;
829
830 if (!dev->pm_cap)
831 return -EIO;
832
833 if (state < PCI_D0 || state > PCI_D3hot)
834 return -EINVAL;
835
836 /*
837 * Validate current state:
838 * Can enter D0 from any state, but if we can only go deeper
839 * to sleep if we're already in a low power state
840 */
841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 && dev->current_state > state) {
843 pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 dev->current_state, state);
845 return -EINVAL;
846 }
847
848 /* Check if this device supports the desired state */
849 if ((state == PCI_D1 && !dev->d1_support)
850 || (state == PCI_D2 && !dev->d2_support))
851 return -EIO;
852
853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
854
855 /*
856 * If we're (effectively) in D3, force entire word to 0.
857 * This doesn't affect PME_Status, disables PME_En, and
858 * sets PowerState to 0.
859 */
860 switch (dev->current_state) {
861 case PCI_D0:
862 case PCI_D1:
863 case PCI_D2:
864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 pmcsr |= state;
866 break;
867 case PCI_D3hot:
868 case PCI_D3cold:
869 case PCI_UNKNOWN: /* Boot-up */
870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 need_restore = true;
873 /* Fall-through - force to D0 */
874 default:
875 pmcsr = 0;
876 break;
877 }
878
879 /* Enter specified state */
880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
881
882 /*
883 * Mandatory power management transition delays; see PCI PM 1.1
884 * 5.6.1 table 18
885 */
886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 pci_dev_d3_sleep(dev);
888 else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 udelay(PCI_PM_D2_DELAY);
890
891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 if (dev->current_state != state)
894 pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
895 dev->current_state);
896
897 /*
898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 * from D3hot to D0 _may_ perform an internal reset, thereby
901 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 * For example, at least some versions of the 3c905B and the
903 * 3c556B exhibit this behaviour.
904 *
905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 * devices in a D3hot state at boot. Consequently, we need to
907 * restore at least the BARs so that the device will be
908 * accessible to its driver.
909 */
910 if (need_restore)
911 pci_restore_bars(dev);
912
913 if (dev->bus->self)
914 pcie_aspm_pm_state_change(dev->bus->self);
915
916 return 0;
917}
918
919/**
920 * pci_update_current_state - Read power state of given device and cache it
921 * @dev: PCI device to handle.
922 * @state: State to cache in case the device doesn't have the PM capability
923 *
924 * The power state is read from the PMCSR register, which however is
925 * inaccessible in D3cold. The platform firmware is therefore queried first
926 * to detect accessibility of the register. In case the platform firmware
927 * reports an incorrect state or the device isn't power manageable by the
928 * platform at all, we try to detect D3cold by testing accessibility of the
929 * vendor ID in config space.
930 */
931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
932{
933 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 !pci_device_is_present(dev)) {
935 dev->current_state = PCI_D3cold;
936 } else if (dev->pm_cap) {
937 u16 pmcsr;
938
939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 } else {
942 dev->current_state = state;
943 }
944}
945
946/**
947 * pci_refresh_power_state - Refresh the given device's power state data
948 * @dev: Target PCI device.
949 *
950 * Ask the platform to refresh the devices power state information and invoke
951 * pci_update_current_state() to update its current PCI power state.
952 */
953void pci_refresh_power_state(struct pci_dev *dev)
954{
955 if (platform_pci_power_manageable(dev))
956 platform_pci_refresh_power_state(dev);
957
958 pci_update_current_state(dev, dev->current_state);
959}
960
961/**
962 * pci_platform_power_transition - Use platform to change device power state
963 * @dev: PCI device to handle.
964 * @state: State to put the device into.
965 */
966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
967{
968 int error;
969
970 if (platform_pci_power_manageable(dev)) {
971 error = platform_pci_set_power_state(dev, state);
972 if (!error)
973 pci_update_current_state(dev, state);
974 } else
975 error = -ENODEV;
976
977 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
978 dev->current_state = PCI_D0;
979
980 return error;
981}
982
983/**
984 * pci_wakeup - Wake up a PCI device
985 * @pci_dev: Device to handle.
986 * @ign: ignored parameter
987 */
988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
989{
990 pci_wakeup_event(pci_dev);
991 pm_request_resume(&pci_dev->dev);
992 return 0;
993}
994
995/**
996 * pci_wakeup_bus - Walk given bus and wake up devices on it
997 * @bus: Top bus of the subtree to walk.
998 */
999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001 if (bus)
1002 pci_walk_bus(bus, pci_wakeup, NULL);
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012 if (state == PCI_D0) {
1013 pci_platform_power_transition(dev, PCI_D0);
1014 /*
1015 * Mandatory power management transition delays, see
1016 * PCI Express Base Specification Revision 2.0 Section
1017 * 6.6.1: Conventional Reset. Do not delay for
1018 * devices powered on/off by corresponding bridge,
1019 * because have already delayed for the bridge.
1020 */
1021 if (dev->runtime_d3cold) {
1022 if (dev->d3cold_delay && !dev->imm_ready)
1023 msleep(dev->d3cold_delay);
1024 /*
1025 * When powering on a bridge from D3cold, the
1026 * whole hierarchy may be powered on into
1027 * D0uninitialized state, resume them to give
1028 * them a chance to suspend again
1029 */
1030 pci_wakeup_bus(dev->subordinate);
1031 }
1032 }
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042 pci_power_t state = *(pci_power_t *)data;
1043
1044 dev->current_state = state;
1045 return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055 if (bus)
1056 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068 int ret;
1069
1070 if (state <= PCI_D0)
1071 return -EINVAL;
1072 ret = pci_platform_power_transition(dev, state);
1073 /* Power off the bridge may power off the whole hierarchy */
1074 if (!ret && state == PCI_D3cold)
1075 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076 return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099 int error;
1100
1101 /* Bound the state we're entering */
1102 if (state > PCI_D3cold)
1103 state = PCI_D3cold;
1104 else if (state < PCI_D0)
1105 state = PCI_D0;
1106 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108 /*
1109 * If the device or the parent bridge do not support PCI
1110 * PM, ignore the request if we're doing anything other
1111 * than putting it into D0 (which would only happen on
1112 * boot).
1113 */
1114 return 0;
1115
1116 /* Check if we're already there */
1117 if (dev->current_state == state)
1118 return 0;
1119
1120 __pci_start_power_transition(dev, state);
1121
1122 /*
1123 * This device is quirked not to be put into D3, so don't put it in
1124 * D3
1125 */
1126 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127 return 0;
1128
1129 /*
1130 * To put device in D3cold, we put device into D3hot in native
1131 * way, then put device into D3cold with platform ops
1132 */
1133 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134 PCI_D3hot : state);
1135
1136 if (!__pci_complete_power_transition(dev, state))
1137 error = 0;
1138
1139 return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149 __pci_start_power_transition(dev, PCI_D0);
1150 pci_raw_set_power_state(dev, PCI_D0);
1151 pci_update_current_state(dev, PCI_D0);
1152}
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 * that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165 pci_power_t ret;
1166
1167 if (!dev->pm_cap)
1168 return PCI_D0;
1169
1170 ret = platform_pci_choose_state(dev);
1171 if (ret != PCI_POWER_ERROR)
1172 return ret;
1173
1174 switch (state.event) {
1175 case PM_EVENT_ON:
1176 return PCI_D0;
1177 case PM_EVENT_FREEZE:
1178 case PM_EVENT_PRETHAW:
1179 /* REVISIT both freeze and pre-thaw "should" use D0 */
1180 case PM_EVENT_SUSPEND:
1181 case PM_EVENT_HIBERNATE:
1182 return PCI_D3hot;
1183 default:
1184 pci_info(dev, "unrecognized suspend event %d\n",
1185 state.event);
1186 BUG();
1187 }
1188 return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS 7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195 u16 cap, bool extended)
1196{
1197 struct pci_cap_saved_state *tmp;
1198
1199 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201 return tmp;
1202 }
1203 return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208 return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213 return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218 int i = 0;
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1221
1222 if (!pci_is_pcie(dev))
1223 return 0;
1224
1225 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226 if (!save_state) {
1227 pci_err(dev, "buffer not found in %s\n", __func__);
1228 return -ENOMEM;
1229 }
1230
1231 cap = (u16 *)&save_state->cap.data[0];
1232 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1236 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240 return 0;
1241}
1242
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245 int i = 0;
1246 struct pci_cap_saved_state *save_state;
1247 u16 *cap;
1248
1249 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250 if (!save_state)
1251 return;
1252
1253 cap = (u16 *)&save_state->cap.data[0];
1254 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265 int pos;
1266 struct pci_cap_saved_state *save_state;
1267
1268 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269 if (!pos)
1270 return 0;
1271
1272 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273 if (!save_state) {
1274 pci_err(dev, "buffer not found in %s\n", __func__);
1275 return -ENOMEM;
1276 }
1277
1278 pci_read_config_word(dev, pos + PCI_X_CMD,
1279 (u16 *)save_state->cap.data);
1280
1281 return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286 int i = 0, pos;
1287 struct pci_cap_saved_state *save_state;
1288 u16 *cap;
1289
1290 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292 if (!save_state || !pos)
1293 return;
1294 cap = (u16 *)&save_state->cap.data[0];
1295
1296 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301 int ltr;
1302 struct pci_cap_saved_state *save_state;
1303 u16 *cap;
1304
1305 if (!pci_is_pcie(dev))
1306 return;
1307
1308 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309 if (!ltr)
1310 return;
1311
1312 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313 if (!save_state) {
1314 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315 return;
1316 }
1317
1318 cap = (u16 *)&save_state->cap.data[0];
1319 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325 struct pci_cap_saved_state *save_state;
1326 int ltr;
1327 u16 *cap;
1328
1329 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331 if (!save_state || !ltr)
1332 return;
1333
1334 cap = (u16 *)&save_state->cap.data[0];
1335 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 * suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346 int i;
1347 /* XXX: 100% dword access ok here? */
1348 for (i = 0; i < 16; i++)
1349 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1350 dev->state_saved = true;
1351
1352 i = pci_save_pcie_state(dev);
1353 if (i != 0)
1354 return i;
1355
1356 i = pci_save_pcix_state(dev);
1357 if (i != 0)
1358 return i;
1359
1360 pci_save_ltr_state(dev);
1361 pci_save_dpc_state(dev);
1362 return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367 u32 saved_val, int retry, bool force)
1368{
1369 u32 val;
1370
1371 pci_read_config_dword(pdev, offset, &val);
1372 if (!force && val == saved_val)
1373 return;
1374
1375 for (;;) {
1376 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377 offset, val, saved_val);
1378 pci_write_config_dword(pdev, offset, saved_val);
1379 if (retry-- <= 0)
1380 return;
1381
1382 pci_read_config_dword(pdev, offset, &val);
1383 if (val == saved_val)
1384 return;
1385
1386 mdelay(1);
1387 }
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391 int start, int end, int retry,
1392 bool force)
1393{
1394 int index;
1395
1396 for (index = end; index >= start; index--)
1397 pci_restore_config_dword(pdev, 4 * index,
1398 pdev->saved_config_space[index],
1399 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406 /* Restore BARs before the command register. */
1407 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412 /*
1413 * Force rewriting of prefetch registers to avoid S3 resume
1414 * issues on Intel PCI bridges that occur when these
1415 * registers are not explicitly written.
1416 */
1417 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419 } else {
1420 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421 }
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426 unsigned int pos, nbars, i;
1427 u32 ctrl;
1428
1429 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430 if (!pos)
1431 return;
1432
1433 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435 PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437 for (i = 0; i < nbars; i++, pos += 8) {
1438 struct resource *res;
1439 int bar_idx, size;
1440
1441 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443 res = pdev->resource + bar_idx;
1444 size = ilog2(resource_size(res)) - 20;
1445 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448 }
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457 if (!dev->state_saved)
1458 return;
1459
1460 /*
1461 * Restore max latencies (in the LTR capability) before enabling
1462 * LTR itself (in the PCIe capability).
1463 */
1464 pci_restore_ltr_state(dev);
1465
1466 pci_restore_pcie_state(dev);
1467 pci_restore_pasid_state(dev);
1468 pci_restore_pri_state(dev);
1469 pci_restore_ats_state(dev);
1470 pci_restore_vc_state(dev);
1471 pci_restore_rebar_state(dev);
1472 pci_restore_dpc_state(dev);
1473
1474 pci_cleanup_aer_error_status_regs(dev);
1475
1476 pci_restore_config_space(dev);
1477
1478 pci_restore_pcix_state(dev);
1479 pci_restore_msi_state(dev);
1480
1481 /* Restore ACS and IOV configuration state */
1482 pci_enable_acs(dev);
1483 pci_restore_iov_state(dev);
1484
1485 dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490 u32 config_space[16];
1491 struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 * the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503 struct pci_saved_state *state;
1504 struct pci_cap_saved_state *tmp;
1505 struct pci_cap_saved_data *cap;
1506 size_t size;
1507
1508 if (!dev->state_saved)
1509 return NULL;
1510
1511 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516 state = kzalloc(size, GFP_KERNEL);
1517 if (!state)
1518 return NULL;
1519
1520 memcpy(state->config_space, dev->saved_config_space,
1521 sizeof(state->config_space));
1522
1523 cap = state->cap;
1524 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526 memcpy(cap, &tmp->cap, len);
1527 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528 }
1529 /* Empty cap_save terminates list */
1530
1531 return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541 struct pci_saved_state *state)
1542{
1543 struct pci_cap_saved_data *cap;
1544
1545 dev->state_saved = false;
1546
1547 if (!state)
1548 return 0;
1549
1550 memcpy(dev->saved_config_space, state->config_space,
1551 sizeof(state->config_space));
1552
1553 cap = state->cap;
1554 while (cap->size) {
1555 struct pci_cap_saved_state *tmp;
1556
1557 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558 if (!tmp || tmp->cap.size != cap->size)
1559 return -EINVAL;
1560
1561 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563 sizeof(struct pci_cap_saved_data) + cap->size);
1564 }
1565
1566 dev->state_saved = true;
1567 return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 * and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578 struct pci_saved_state **state)
1579{
1580 int ret = pci_load_saved_state(dev, *state);
1581 kfree(*state);
1582 *state = NULL;
1583 return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589 return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594 int err;
1595 struct pci_dev *bridge;
1596 u16 cmd;
1597 u8 pin;
1598
1599 err = pci_set_power_state(dev, PCI_D0);
1600 if (err < 0 && err != -EIO)
1601 return err;
1602
1603 bridge = pci_upstream_bridge(dev);
1604 if (bridge)
1605 pcie_aspm_powersave_config_link(bridge);
1606
1607 err = pcibios_enable_device(dev, bars);
1608 if (err < 0)
1609 return err;
1610 pci_fixup_device(pci_fixup_enable, dev);
1611
1612 if (dev->msi_enabled || dev->msix_enabled)
1613 return 0;
1614
1615 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616 if (pin) {
1617 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618 if (cmd & PCI_COMMAND_INTX_DISABLE)
1619 pci_write_config_word(dev, PCI_COMMAND,
1620 cmd & ~PCI_COMMAND_INTX_DISABLE);
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635 if (pci_is_enabled(dev))
1636 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637 return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643 struct pci_dev *bridge;
1644 int retval;
1645
1646 bridge = pci_upstream_bridge(dev);
1647 if (bridge)
1648 pci_enable_bridge(bridge);
1649
1650 if (pci_is_enabled(dev)) {
1651 if (!dev->is_busmaster)
1652 pci_set_master(dev);
1653 return;
1654 }
1655
1656 retval = pci_enable_device(dev);
1657 if (retval)
1658 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659 retval);
1660 pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665 struct pci_dev *bridge;
1666 int err;
1667 int i, bars = 0;
1668
1669 /*
1670 * Power state could be unknown at this point, either due to a fresh
1671 * boot or a device removal call. So get the current power state
1672 * so that things like MSI message writing will behave as expected
1673 * (e.g. if the device really is in D0 at enable time).
1674 */
1675 if (dev->pm_cap) {
1676 u16 pmcsr;
1677 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679 }
1680
1681 if (atomic_inc_return(&dev->enable_cnt) > 1)
1682 return 0; /* already enabled */
1683
1684 bridge = pci_upstream_bridge(dev);
1685 if (bridge)
1686 pci_enable_bridge(bridge);
1687
1688 /* only skip sriov related */
1689 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690 if (dev->resource[i].flags & flags)
1691 bars |= (1 << i);
1692 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693 if (dev->resource[i].flags & flags)
1694 bars |= (1 << i);
1695
1696 err = do_pci_enable_device(dev, bars);
1697 if (err < 0)
1698 atomic_dec(&dev->enable_cnt);
1699 return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712 return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately. pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754 unsigned int enabled:1;
1755 unsigned int pinned:1;
1756 unsigned int orig_intx:1;
1757 unsigned int restore_intx:1;
1758 unsigned int mwi:1;
1759 u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764 struct pci_dev *dev = to_pci_dev(gendev);
1765 struct pci_devres *this = res;
1766 int i;
1767
1768 if (dev->msi_enabled)
1769 pci_disable_msi(dev);
1770 if (dev->msix_enabled)
1771 pci_disable_msix(dev);
1772
1773 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774 if (this->region_mask & (1 << i))
1775 pci_release_region(dev, i);
1776
1777 if (this->mwi)
1778 pci_clear_mwi(dev);
1779
1780 if (this->restore_intx)
1781 pci_intx(dev, this->orig_intx);
1782
1783 if (this->enabled && !this->pinned)
1784 pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789 struct pci_devres *dr, *new_dr;
1790
1791 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792 if (dr)
1793 return dr;
1794
1795 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796 if (!new_dr)
1797 return NULL;
1798 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803 if (pci_is_managed(pdev))
1804 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805 return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816 struct pci_devres *dr;
1817 int rc;
1818
1819 dr = get_pci_dr(pdev);
1820 if (unlikely(!dr))
1821 return -ENOMEM;
1822 if (dr->enabled)
1823 return 0;
1824
1825 rc = pci_enable_device(pdev);
1826 if (!rc) {
1827 pdev->is_managed = 1;
1828 dr->enabled = 1;
1829 }
1830 return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1839 * driver detach. @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844 struct pci_devres *dr;
1845
1846 dr = find_pci_dr(pdev);
1847 WARN_ON(!dr || !dr->enabled);
1848 if (dr)
1849 dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863 return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 * device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900 u16 pci_command;
1901
1902 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903 if (pci_command & PCI_COMMAND_MASTER) {
1904 pci_command &= ~PCI_COMMAND_MASTER;
1905 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906 }
1907
1908 pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920 if (pci_is_enabled(dev))
1921 do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore. This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936 struct pci_devres *dr;
1937
1938 dr = find_pci_dr(dev);
1939 if (dr)
1940 dr->enabled = 0;
1941
1942 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943 "disabling already-disabled device");
1944
1945 if (atomic_dec_return(&dev->enable_cnt) != 0)
1946 return;
1947
1948 do_pci_disable_device(dev);
1949
1950 dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963 enum pcie_reset_state state)
1964{
1965 return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977 return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set). Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000 int pmcsr_pos;
2001 u16 pmcsr;
2002 bool ret = false;
2003
2004 if (!dev->pm_cap)
2005 return false;
2006
2007 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010 return false;
2011
2012 /* Clear PME status. */
2013 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015 /* Disable PME to avoid interrupt flood. */
2016 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017 ret = true;
2018 }
2019
2020 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022 return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035 if (pme_poll_reset && dev->pme_poll)
2036 dev->pme_poll = false;
2037
2038 if (pci_check_pme_status(dev)) {
2039 pci_wakeup_event(dev);
2040 pm_request_resume(&dev->dev);
2041 }
2042 return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051 if (bus)
2052 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063 if (!dev->pm_cap)
2064 return false;
2065
2066 return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072 struct pci_pme_device *pme_dev, *n;
2073
2074 mutex_lock(&pci_pme_list_mutex);
2075 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076 if (pme_dev->dev->pme_poll) {
2077 struct pci_dev *bridge;
2078
2079 bridge = pme_dev->dev->bus->self;
2080 /*
2081 * If bridge is in low power state, the
2082 * configuration space of subordinate devices
2083 * may be not accessible
2084 */
2085 if (bridge && bridge->current_state != PCI_D0)
2086 continue;
2087 /*
2088 * If the device is in D3cold it should not be
2089 * polled either.
2090 */
2091 if (pme_dev->dev->current_state == PCI_D3cold)
2092 continue;
2093
2094 pci_pme_wakeup(pme_dev->dev, NULL);
2095 } else {
2096 list_del(&pme_dev->list);
2097 kfree(pme_dev);
2098 }
2099 }
2100 if (!list_empty(&pci_pme_list))
2101 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102 msecs_to_jiffies(PME_TIMEOUT));
2103 mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108 u16 pmcsr;
2109
2110 if (!dev->pme_support)
2111 return;
2112
2113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114 /* Clear PME_Status by writing 1 to it and enable PME# */
2115 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116 if (!enable)
2117 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128 u16 pmcsr;
2129
2130 if (!dev->pme_support)
2131 return;
2132
2133 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134 if (dev->wakeup_prepared) {
2135 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137 } else {
2138 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140 }
2141 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154 __pci_pme_active(dev, enable);
2155
2156 /*
2157 * PCI (as opposed to PCIe) PME requires that the device have
2158 * its PME# line hooked up correctly. Not all hardware vendors
2159 * do this, so the PME never gets delivered and the device
2160 * remains asleep. The easiest way around this is to
2161 * periodically walk the list of suspended devices and check
2162 * whether any have their PME flag set. The assumption is that
2163 * we'll wake up often enough anyway that this won't be a huge
2164 * hit, and the power savings from the devices will still be a
2165 * win.
2166 *
2167 * Although PCIe uses in-band PME message instead of PME# line
2168 * to report PME, PME does not work for some PCIe devices in
2169 * reality. For example, there are devices that set their PME
2170 * status bits, but don't really bother to send a PME message;
2171 * there are PCI Express Root Ports that don't bother to
2172 * trigger interrupts when they receive PME messages from the
2173 * devices below. So PME poll is used for PCIe devices too.
2174 */
2175
2176 if (dev->pme_poll) {
2177 struct pci_pme_device *pme_dev;
2178 if (enable) {
2179 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180 GFP_KERNEL);
2181 if (!pme_dev) {
2182 pci_warn(dev, "can't enable PME#\n");
2183 return;
2184 }
2185 pme_dev->dev = dev;
2186 mutex_lock(&pci_pme_list_mutex);
2187 list_add(&pme_dev->list, &pci_pme_list);
2188 if (list_is_singular(&pci_pme_list))
2189 queue_delayed_work(system_freezable_wq,
2190 &pci_pme_work,
2191 msecs_to_jiffies(PME_TIMEOUT));
2192 mutex_unlock(&pci_pme_list_mutex);
2193 } else {
2194 mutex_lock(&pci_pme_list_mutex);
2195 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196 if (pme_dev->dev == dev) {
2197 list_del(&pme_dev->list);
2198 kfree(pme_dev);
2199 break;
2200 }
2201 }
2202 mutex_unlock(&pci_pme_list_mutex);
2203 }
2204 }
2205
2206 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231 int ret = 0;
2232
2233 /*
2234 * Bridges that are not power-manageable directly only signal
2235 * wakeup on behalf of subordinate devices which is set up
2236 * elsewhere, so skip them. However, bridges that are
2237 * power-manageable may signal wakeup for themselves (for example,
2238 * on a hotplug event) and they need to be covered here.
2239 */
2240 if (!pci_power_manageable(dev))
2241 return 0;
2242
2243 /* Don't do the same thing twice in a row for one device. */
2244 if (!!enable == !!dev->wakeup_prepared)
2245 return 0;
2246
2247 /*
2248 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250 * enable. To disable wake-up we call the platform first, for symmetry.
2251 */
2252
2253 if (enable) {
2254 int error;
2255
2256 if (pci_pme_capable(dev, state))
2257 pci_pme_active(dev, true);
2258 else
2259 ret = 1;
2260 error = platform_pci_set_wakeup(dev, true);
2261 if (ret)
2262 ret = error;
2263 if (!ret)
2264 dev->wakeup_prepared = true;
2265 } else {
2266 platform_pci_set_wakeup(dev, false);
2267 pci_pme_active(dev, false);
2268 dev->wakeup_prepared = false;
2269 }
2270
2271 return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285 if (enable && !device_may_wakeup(&pci_dev->dev))
2286 return -EINVAL;
2287
2288 return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308 return pci_pme_capable(dev, PCI_D3cold) ?
2309 pci_enable_wake(dev, PCI_D3cold, enable) :
2310 pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325 pci_power_t target_state = PCI_D3hot;
2326
2327 if (platform_pci_power_manageable(dev)) {
2328 /*
2329 * Call the platform to find the target state for the device.
2330 */
2331 pci_power_t state = platform_pci_choose_state(dev);
2332
2333 switch (state) {
2334 case PCI_POWER_ERROR:
2335 case PCI_UNKNOWN:
2336 break;
2337 case PCI_D1:
2338 case PCI_D2:
2339 if (pci_no_d1d2(dev))
2340 break;
2341 /* else, fall through */
2342 default:
2343 target_state = state;
2344 }
2345
2346 return target_state;
2347 }
2348
2349 if (!dev->pm_cap)
2350 target_state = PCI_D0;
2351
2352 /*
2353 * If the device is in D3cold even though it's not power-manageable by
2354 * the platform, it may have been powered down by non-standard means.
2355 * Best to let it slumber.
2356 */
2357 if (dev->current_state == PCI_D3cold)
2358 target_state = PCI_D3cold;
2359
2360 if (wakeup) {
2361 /*
2362 * Find the deepest state from which the device can generate
2363 * PME#.
2364 */
2365 if (dev->pme_support) {
2366 while (target_state
2367 && !(dev->pme_support & (1 << target_state)))
2368 target_state--;
2369 }
2370 }
2371
2372 return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 * into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386 bool wakeup = device_may_wakeup(&dev->dev);
2387 pci_power_t target_state = pci_target_state(dev, wakeup);
2388 int error;
2389
2390 if (target_state == PCI_POWER_ERROR)
2391 return -EIO;
2392
2393 pci_enable_wake(dev, target_state, wakeup);
2394
2395 error = pci_set_power_state(dev, target_state);
2396
2397 if (error)
2398 pci_enable_wake(dev, target_state, false);
2399
2400 return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 * into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
2413 pci_enable_wake(dev, PCI_D0, false);
2414 return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427 pci_power_t target_state;
2428 int error;
2429
2430 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431 if (target_state == PCI_POWER_ERROR)
2432 return -EIO;
2433
2434 dev->runtime_d3cold = target_state == PCI_D3cold;
2435
2436 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438 error = pci_set_power_state(dev, target_state);
2439
2440 if (error) {
2441 pci_enable_wake(dev, target_state, false);
2442 dev->runtime_d3cold = false;
2443 }
2444
2445 return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458 struct pci_bus *bus = dev->bus;
2459
2460 if (!dev->pme_support)
2461 return false;
2462
2463 /* PME-capable in principle, but not from the target power state */
2464 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465 return false;
2466
2467 if (device_can_wakeup(&dev->dev))
2468 return true;
2469
2470 while (bus->parent) {
2471 struct pci_dev *bridge = bus->self;
2472
2473 if (device_can_wakeup(&bridge->dev))
2474 return true;
2475
2476 bus = bus->parent;
2477 }
2478
2479 /* We have reached the root bus. */
2480 if (bus->bridge)
2481 return device_can_wakeup(bus->bridge);
2482
2483 return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498 struct device *dev = &pci_dev->dev;
2499 pci_power_t target_state;
2500
2501 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502 return true;
2503
2504 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506 /*
2507 * If the earlier platform check has not triggered, D3cold is just power
2508 * removal on top of D3hot, so no need to resume the device in that
2509 * case.
2510 */
2511 return target_state != pci_dev->current_state &&
2512 target_state != PCI_D3cold &&
2513 pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529 struct device *dev = &pci_dev->dev;
2530
2531 spin_lock_irq(&dev->power.lock);
2532
2533 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534 pci_dev->current_state < PCI_D3cold)
2535 __pci_pme_active(pci_dev, false);
2536
2537 spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550 struct device *dev = &pci_dev->dev;
2551
2552 if (!pci_dev_run_wake(pci_dev))
2553 return;
2554
2555 spin_lock_irq(&dev->power.lock);
2556
2557 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558 __pci_pme_active(pci_dev, true);
2559
2560 spin_unlock_irq(&dev->power.lock);
2561}
2562
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565 struct device *dev = &pdev->dev;
2566 struct device *parent = dev->parent;
2567
2568 if (parent)
2569 pm_runtime_get_sync(parent);
2570 pm_runtime_get_noresume(dev);
2571 /*
2572 * pdev->current_state is set to PCI_D3cold during suspending,
2573 * so wait until suspending completes
2574 */
2575 pm_runtime_barrier(dev);
2576 /*
2577 * Only need to resume devices in D3cold, because config
2578 * registers are still accessible for devices suspended but
2579 * not in D3cold.
2580 */
2581 if (pdev->current_state == PCI_D3cold)
2582 pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587 struct device *dev = &pdev->dev;
2588 struct device *parent = dev->parent;
2589
2590 pm_runtime_put(dev);
2591 if (parent)
2592 pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597 {
2598 /*
2599 * Gigabyte X299 root port is not marked as hotplug capable
2600 * which allows Linux to power manage it. However, this
2601 * confuses the BIOS SMI handler so don't power manage root
2602 * ports on that system.
2603 */
2604 .ident = "X299 DESIGNARE EX-CF",
2605 .matches = {
2606 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608 },
2609 },
2610#endif
2611 { }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623 if (!pci_is_pcie(bridge))
2624 return false;
2625
2626 switch (pci_pcie_type(bridge)) {
2627 case PCI_EXP_TYPE_ROOT_PORT:
2628 case PCI_EXP_TYPE_UPSTREAM:
2629 case PCI_EXP_TYPE_DOWNSTREAM:
2630 if (pci_bridge_d3_disable)
2631 return false;
2632
2633 /*
2634 * Hotplug ports handled by firmware in System Management Mode
2635 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636 */
2637 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638 return false;
2639
2640 if (pci_bridge_d3_force)
2641 return true;
2642
2643 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2644 if (bridge->is_thunderbolt)
2645 return true;
2646
2647 /* Platform might know better if the bridge supports D3 */
2648 if (platform_pci_bridge_d3(bridge))
2649 return true;
2650
2651 /*
2652 * Hotplug ports handled natively by the OS were not validated
2653 * by vendors for runtime D3 at least until 2018 because there
2654 * was no OS support.
2655 */
2656 if (bridge->is_hotplug_bridge)
2657 return false;
2658
2659 if (dmi_check_system(bridge_d3_blacklist))
2660 return false;
2661
2662 /*
2663 * It should be safe to put PCIe ports from 2015 or newer
2664 * to D3.
2665 */
2666 if (dmi_get_bios_year() >= 2015)
2667 return true;
2668 break;
2669 }
2670
2671 return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676 bool *d3cold_ok = data;
2677
2678 if (/* The device needs to be allowed to go D3cold ... */
2679 dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681 /* ... and if it is wakeup capable to do so from D3cold. */
2682 (device_may_wakeup(&dev->dev) &&
2683 !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685 /* If it is a bridge it must be allowed to go to D3. */
2686 !pci_power_manageable(dev))
2687
2688 *d3cold_ok = false;
2689
2690 return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed. The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703 bool remove = !device_is_registered(&dev->dev);
2704 struct pci_dev *bridge;
2705 bool d3cold_ok = true;
2706
2707 bridge = pci_upstream_bridge(dev);
2708 if (!bridge || !pci_bridge_d3_possible(bridge))
2709 return;
2710
2711 /*
2712 * If D3 is currently allowed for the bridge, removing one of its
2713 * children won't change that.
2714 */
2715 if (remove && bridge->bridge_d3)
2716 return;
2717
2718 /*
2719 * If D3 is currently allowed for the bridge and a child is added or
2720 * changed, disallowance of D3 can only be caused by that child, so
2721 * we only need to check that single device, not any of its siblings.
2722 *
2723 * If D3 is currently not allowed for the bridge, checking the device
2724 * first may allow us to skip checking its siblings.
2725 */
2726 if (!remove)
2727 pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729 /*
2730 * If D3 is currently not allowed for the bridge, this may be caused
2731 * either by the device being changed/removed or any of its siblings,
2732 * so we need to go through all children to find out if one of them
2733 * continues to block D3.
2734 */
2735 if (d3cold_ok && !bridge->bridge_d3)
2736 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737 &d3cold_ok);
2738
2739 if (bridge->bridge_d3 != d3cold_ok) {
2740 bridge->bridge_d3 = d3cold_ok;
2741 /* Propagate change to upstream bridges */
2742 pci_bridge_d3_update(bridge);
2743 }
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle. It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756 if (dev->no_d3cold) {
2757 dev->no_d3cold = false;
2758 pci_bridge_d3_update(dev);
2759 }
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle. It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773 if (!dev->no_d3cold) {
2774 dev->no_d3cold = true;
2775 pci_bridge_d3_update(dev);
2776 }
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786 int pm;
2787 u16 status;
2788 u16 pmc;
2789
2790 pm_runtime_forbid(&dev->dev);
2791 pm_runtime_set_active(&dev->dev);
2792 pm_runtime_enable(&dev->dev);
2793 device_enable_async_suspend(&dev->dev);
2794 dev->wakeup_prepared = false;
2795
2796 dev->pm_cap = 0;
2797 dev->pme_support = 0;
2798
2799 /* find PCI PM capability in list */
2800 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801 if (!pm)
2802 return;
2803 /* Check device's ability to generate PME# */
2804 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808 pmc & PCI_PM_CAP_VER_MASK);
2809 return;
2810 }
2811
2812 dev->pm_cap = pm;
2813 dev->d3_delay = PCI_PM_D3_WAIT;
2814 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816 dev->d3cold_allowed = true;
2817
2818 dev->d1_support = false;
2819 dev->d2_support = false;
2820 if (!pci_no_d1d2(dev)) {
2821 if (pmc & PCI_PM_CAP_D1)
2822 dev->d1_support = true;
2823 if (pmc & PCI_PM_CAP_D2)
2824 dev->d2_support = true;
2825
2826 if (dev->d1_support || dev->d2_support)
2827 pci_info(dev, "supports%s%s\n",
2828 dev->d1_support ? " D1" : "",
2829 dev->d2_support ? " D2" : "");
2830 }
2831
2832 pmc &= PCI_PM_CAP_PME_MASK;
2833 if (pmc) {
2834 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841 dev->pme_poll = true;
2842 /*
2843 * Make device's PM flags reflect the wake-up capability, but
2844 * let the user space enable it to wake up the system as needed.
2845 */
2846 device_set_wakeup_capable(&dev->dev, true);
2847 /* Disable the PME# generation functionality */
2848 pci_pme_active(dev, false);
2849 }
2850
2851 pci_read_config_word(dev, PCI_STATUS, &status);
2852 if (status & PCI_STATUS_IMM_READY)
2853 dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860 switch (prop) {
2861 case PCI_EA_P_MEM:
2862 case PCI_EA_P_VF_MEM:
2863 flags |= IORESOURCE_MEM;
2864 break;
2865 case PCI_EA_P_MEM_PREFETCH:
2866 case PCI_EA_P_VF_MEM_PREFETCH:
2867 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868 break;
2869 case PCI_EA_P_IO:
2870 flags |= IORESOURCE_IO;
2871 break;
2872 default:
2873 return 0;
2874 }
2875
2876 return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880 u8 prop)
2881{
2882 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883 return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887 return &dev->resource[PCI_IOV_RESOURCES +
2888 bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890 else if (bei == PCI_EA_BEI_ROM)
2891 return &dev->resource[PCI_ROM_RESOURCE];
2892 else
2893 return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899 struct resource *res;
2900 int ent_size, ent_offset = offset;
2901 resource_size_t start, end;
2902 unsigned long flags;
2903 u32 dw0, bei, base, max_offset;
2904 u8 prop;
2905 bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907 pci_read_config_dword(dev, ent_offset, &dw0);
2908 ent_offset += 4;
2909
2910 /* Entry size field indicates DWORDs after 1st */
2911 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914 goto out;
2915
2916 bei = (dw0 & PCI_EA_BEI) >> 4;
2917 prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919 /*
2920 * If the Property is in the reserved range, try the Secondary
2921 * Property instead.
2922 */
2923 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924 prop = (dw0 & PCI_EA_SP) >> 16;
2925 if (prop > PCI_EA_P_BRIDGE_IO)
2926 goto out;
2927
2928 res = pci_ea_get_resource(dev, bei, prop);
2929 if (!res) {
2930 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931 goto out;
2932 }
2933
2934 flags = pci_ea_flags(dev, prop);
2935 if (!flags) {
2936 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937 goto out;
2938 }
2939
2940 /* Read Base */
2941 pci_read_config_dword(dev, ent_offset, &base);
2942 start = (base & PCI_EA_FIELD_MASK);
2943 ent_offset += 4;
2944
2945 /* Read MaxOffset */
2946 pci_read_config_dword(dev, ent_offset, &max_offset);
2947 ent_offset += 4;
2948
2949 /* Read Base MSBs (if 64-bit entry) */
2950 if (base & PCI_EA_IS_64) {
2951 u32 base_upper;
2952
2953 pci_read_config_dword(dev, ent_offset, &base_upper);
2954 ent_offset += 4;
2955
2956 flags |= IORESOURCE_MEM_64;
2957
2958 /* entry starts above 32-bit boundary, can't use */
2959 if (!support_64 && base_upper)
2960 goto out;
2961
2962 if (support_64)
2963 start |= ((u64)base_upper << 32);
2964 }
2965
2966 end = start + (max_offset | 0x03);
2967
2968 /* Read MaxOffset MSBs (if 64-bit entry) */
2969 if (max_offset & PCI_EA_IS_64) {
2970 u32 max_offset_upper;
2971
2972 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973 ent_offset += 4;
2974
2975 flags |= IORESOURCE_MEM_64;
2976
2977 /* entry too big, can't use */
2978 if (!support_64 && max_offset_upper)
2979 goto out;
2980
2981 if (support_64)
2982 end += ((u64)max_offset_upper << 32);
2983 }
2984
2985 if (end < start) {
2986 pci_err(dev, "EA Entry crosses address boundary\n");
2987 goto out;
2988 }
2989
2990 if (ent_size != ent_offset - offset) {
2991 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992 ent_size, ent_offset - offset);
2993 goto out;
2994 }
2995
2996 res->name = pci_name(dev);
2997 res->start = start;
2998 res->end = end;
2999 res->flags = flags;
3000
3001 if (bei <= PCI_EA_BEI_BAR5)
3002 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003 bei, res, prop);
3004 else if (bei == PCI_EA_BEI_ROM)
3005 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 res, prop);
3007 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010 else
3011 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012 bei, res, prop);
3013
3014out:
3015 return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021 int ea;
3022 u8 num_ent;
3023 int offset;
3024 int i;
3025
3026 /* find PCI EA capability in list */
3027 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028 if (!ea)
3029 return;
3030
3031 /* determine the number of entries */
3032 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033 &num_ent);
3034 num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036 offset = ea + PCI_EA_FIRST_ENT;
3037
3038 /* Skip DWORD 2 for type 1 functions */
3039 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040 offset += 4;
3041
3042 /* parse each EA entry */
3043 for (i = 0; i < num_ent; ++i)
3044 offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048 struct pci_cap_saved_state *new_cap)
3049{
3050 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 * capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062 bool extended, unsigned int size)
3063{
3064 int pos;
3065 struct pci_cap_saved_state *save_state;
3066
3067 if (extended)
3068 pos = pci_find_ext_capability(dev, cap);
3069 else
3070 pos = pci_find_capability(dev, cap);
3071
3072 if (!pos)
3073 return 0;
3074
3075 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076 if (!save_state)
3077 return -ENOMEM;
3078
3079 save_state->cap.cap_nr = cap;
3080 save_state->cap.cap_extended = extended;
3081 save_state->cap.size = size;
3082 pci_add_saved_cap(dev, save_state);
3083
3084 return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089 return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094 return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103 int error;
3104
3105 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106 PCI_EXP_SAVE_REGS * sizeof(u16));
3107 if (error)
3108 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111 if (error)
3112 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115 2 * sizeof(u16));
3116 if (error)
3117 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119 pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124 struct pci_cap_saved_state *tmp;
3125 struct hlist_node *n;
3126
3127 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128 kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge. Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140 u32 cap;
3141 struct pci_dev *bridge;
3142
3143 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144 return;
3145
3146 bridge = dev->bus->self;
3147 if (!bridge)
3148 return;
3149
3150 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152 return;
3153
3154 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156 PCI_EXP_DEVCTL2_ARI);
3157 bridge->ari_enabled = 1;
3158 } else {
3159 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160 PCI_EXP_DEVCTL2_ARI);
3161 bridge->ari_enabled = 0;
3162 }
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172 pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185 int ret = 0;
3186 const char *p;
3187 int pos;
3188 u16 ctrl;
3189
3190 if (!disable_acs_redir_param)
3191 return;
3192
3193 p = disable_acs_redir_param;
3194 while (*p) {
3195 ret = pci_dev_str_match(dev, p, &p);
3196 if (ret < 0) {
3197 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198 disable_acs_redir_param);
3199
3200 break;
3201 } else if (ret == 1) {
3202 /* Found a match */
3203 break;
3204 }
3205
3206 if (*p != ';' && *p != ',') {
3207 /* End of param or invalid format */
3208 break;
3209 }
3210 p++;
3211 }
3212
3213 if (ret != 1)
3214 return;
3215
3216 if (!pci_dev_specific_disable_acs_redir(dev))
3217 return;
3218
3219 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220 if (!pos) {
3221 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222 return;
3223 }
3224
3225 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227 /* P2P Request & Completion Redirect */
3228 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232 pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241 int pos;
3242 u16 cap;
3243 u16 ctrl;
3244
3245 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246 if (!pos)
3247 return;
3248
3249 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252 /* Source Validation */
3253 ctrl |= (cap & PCI_ACS_SV);
3254
3255 /* P2P Request Redirect */
3256 ctrl |= (cap & PCI_ACS_RR);
3257
3258 /* P2P Completion Redirect */
3259 ctrl |= (cap & PCI_ACS_CR);
3260
3261 /* Upstream Forwarding */
3262 ctrl |= (cap & PCI_ACS_UF);
3263
3264 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273 if (!pci_acs_enable)
3274 goto disable_acs_redir;
3275
3276 if (!pci_dev_specific_enable_acs(dev))
3277 goto disable_acs_redir;
3278
3279 pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282 /*
3283 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284 * enabled by the kernel because it may have been enabled by
3285 * platform firmware. So if we are told to disable it, we should
3286 * always disable it after setting the kernel's default
3287 * preferences.
3288 */
3289 pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294 int pos;
3295 u16 cap, ctrl;
3296
3297 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298 if (!pos)
3299 return false;
3300
3301 /*
3302 * Except for egress control, capabilities are either required
3303 * or only required if controllable. Features missing from the
3304 * capability field can therefore be assumed as hard-wired enabled.
3305 */
3306 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307 acs_flags &= (cap | PCI_ACS_EC);
3308
3309 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310 return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags. Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities. For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access. We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability. This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331 int ret;
3332
3333 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334 if (ret >= 0)
3335 return ret > 0;
3336
3337 /*
3338 * Conventional PCI and PCI-X devices never support ACS, either
3339 * effectively or actually. The shared bus topology implies that
3340 * any device on the bus can receive or snoop DMA.
3341 */
3342 if (!pci_is_pcie(pdev))
3343 return false;
3344
3345 switch (pci_pcie_type(pdev)) {
3346 /*
3347 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348 * but since their primary interface is PCI/X, we conservatively
3349 * handle them as we would a non-PCIe device.
3350 */
3351 case PCI_EXP_TYPE_PCIE_BRIDGE:
3352 /*
3353 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3354 * applicable... must never implement an ACS Extended Capability...".
3355 * This seems arbitrary, but we take a conservative interpretation
3356 * of this statement.
3357 */
3358 case PCI_EXP_TYPE_PCI_BRIDGE:
3359 case PCI_EXP_TYPE_RC_EC:
3360 return false;
3361 /*
3362 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363 * implement ACS in order to indicate their peer-to-peer capabilities,
3364 * regardless of whether they are single- or multi-function devices.
3365 */
3366 case PCI_EXP_TYPE_DOWNSTREAM:
3367 case PCI_EXP_TYPE_ROOT_PORT:
3368 return pci_acs_flags_enabled(pdev, acs_flags);
3369 /*
3370 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371 * implemented by the remaining PCIe types to indicate peer-to-peer
3372 * capabilities, but only when they are part of a multifunction
3373 * device. The footnote for section 6.12 indicates the specific
3374 * PCIe types included here.
3375 */
3376 case PCI_EXP_TYPE_ENDPOINT:
3377 case PCI_EXP_TYPE_UPSTREAM:
3378 case PCI_EXP_TYPE_LEG_END:
3379 case PCI_EXP_TYPE_RC_END:
3380 if (!pdev->multifunction)
3381 break;
3382
3383 return pci_acs_flags_enabled(pdev, acs_flags);
3384 }
3385
3386 /*
3387 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388 * to single function devices with the exception of downstream ports.
3389 */
3390 return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support. If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403 struct pci_dev *end, u16 acs_flags)
3404{
3405 struct pci_dev *pdev, *parent = start;
3406
3407 do {
3408 pdev = parent;
3409
3410 if (!pci_acs_enabled(pdev, acs_flags))
3411 return false;
3412
3413 if (pci_is_root_bus(pdev->bus))
3414 return (end == NULL);
3415
3416 parent = pdev->bus->self;
3417 } while (pdev != end);
3418
3419 return true;
3420}
3421
3422/**
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433 unsigned int pos, nbars, i;
3434 u32 ctrl;
3435
3436 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437 if (!pos)
3438 return -ENOTSUPP;
3439
3440 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442 PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444 for (i = 0; i < nbars; i++, pos += 8) {
3445 int bar_idx;
3446
3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449 if (bar_idx == bar)
3450 return pos;
3451 }
3452
3453 return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466 int pos;
3467 u32 cap;
3468
3469 pos = pci_rebar_find_pos(pdev, bar);
3470 if (pos < 0)
3471 return 0;
3472
3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3475}
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487 int pos;
3488 u32 ctrl;
3489
3490 pos = pci_rebar_find_pos(pdev, bar);
3491 if (pos < 0)
3492 return pos;
3493
3494 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509 int pos;
3510 u32 ctrl;
3511
3512 pos = pci_rebar_find_pos(pdev, bar);
3513 if (pos < 0)
3514 return pos;
3515
3516 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520 return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538 struct pci_bus *bus = dev->bus;
3539 struct pci_dev *bridge;
3540 u32 cap, ctl2;
3541
3542 if (!pci_is_pcie(dev))
3543 return -EINVAL;
3544
3545 /*
3546 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547 * AtomicOp requesters. For now, we only support endpoints as
3548 * requesters and root ports as completers. No endpoints as
3549 * completers, and no peer-to-peer.
3550 */
3551
3552 switch (pci_pcie_type(dev)) {
3553 case PCI_EXP_TYPE_ENDPOINT:
3554 case PCI_EXP_TYPE_LEG_END:
3555 case PCI_EXP_TYPE_RC_END:
3556 break;
3557 default:
3558 return -EINVAL;
3559 }
3560
3561 while (bus->parent) {
3562 bridge = bus->self;
3563
3564 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566 switch (pci_pcie_type(bridge)) {
3567 /* Ensure switch ports support AtomicOp routing */
3568 case PCI_EXP_TYPE_UPSTREAM:
3569 case PCI_EXP_TYPE_DOWNSTREAM:
3570 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571 return -EINVAL;
3572 break;
3573
3574 /* Ensure root port supports all the sizes we care about */
3575 case PCI_EXP_TYPE_ROOT_PORT:
3576 if ((cap & cap_mask) != cap_mask)
3577 return -EINVAL;
3578 break;
3579 }
3580
3581 /* Ensure upstream ports don't block AtomicOps on egress */
3582 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584 &ctl2);
3585 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586 return -EINVAL;
3587 }
3588
3589 bus = bus->parent;
3590 }
3591
3592 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594 return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge. This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611 int slot;
3612
3613 if (pci_ari_enabled(dev->bus))
3614 slot = 0;
3615 else
3616 slot = PCI_SLOT(dev->devfn);
3617
3618 return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623 u8 pin;
3624
3625 pin = dev->pin;
3626 if (!pin)
3627 return -1;
3628
3629 while (!pci_is_root_bus(dev->bus)) {
3630 pin = pci_swizzle_interrupt_pin(dev, pin);
3631 dev = dev->bus->self;
3632 }
3633 *bridge = dev;
3634 return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647 u8 pin = *pinp;
3648
3649 while (!pci_is_root_bus(dev->bus)) {
3650 pin = pci_swizzle_interrupt_pin(dev, pin);
3651 dev = dev->bus->self;
3652 }
3653 *pinp = pin;
3654 return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 * pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region(). Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670 struct pci_devres *dr;
3671
3672 if (pci_resource_len(pdev, bar) == 0)
3673 return;
3674 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675 release_region(pci_resource_start(pdev, bar),
3676 pci_resource_len(pdev, bar));
3677 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678 release_mem_region(pci_resource_start(pdev, bar),
3679 pci_resource_len(pdev, bar));
3680
3681 dr = find_pci_dr(pdev);
3682 if (dr)
3683 dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name. Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error. A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707 const char *res_name, int exclusive)
3708{
3709 struct pci_devres *dr;
3710
3711 if (pci_resource_len(pdev, bar) == 0)
3712 return 0;
3713
3714 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715 if (!request_region(pci_resource_start(pdev, bar),
3716 pci_resource_len(pdev, bar), res_name))
3717 goto err_out;
3718 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719 if (!__request_mem_region(pci_resource_start(pdev, bar),
3720 pci_resource_len(pdev, bar), res_name,
3721 exclusive))
3722 goto err_out;
3723 }
3724
3725 dr = find_pci_dr(pdev);
3726 if (dr)
3727 dr->region_mask |= 1 << bar;
3728
3729 return 0;
3730
3731err_out:
3732 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733 &pdev->resource[bar]);
3734 return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name. Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error. A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753 return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767 int i;
3768
3769 for (i = 0; i < 6; i++)
3770 if (bars & (1 << i))
3771 pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776 const char *res_name, int excl)
3777{
3778 int i;
3779
3780 for (i = 0; i < 6; i++)
3781 if (bars & (1 << i))
3782 if (__pci_request_region(pdev, i, res_name, excl))
3783 goto err_out;
3784 return 0;
3785
3786err_out:
3787 while (--i >= 0)
3788 if (bars & (1 << i))
3789 pci_release_region(pdev, i);
3790
3791 return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802 const char *res_name)
3803{
3804 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809 const char *res_name)
3810{
3811 return __pci_request_selected_regions(pdev, bars, res_name,
3812 IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 * pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions(). Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828 pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name. Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error. A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name. Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error. A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868 return pci_request_selected_regions_exclusive(pdev,
3869 ((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878 resource_size_t size)
3879{
3880 int ret = 0;
3881#ifdef PCI_IOBASE
3882 struct logic_pio_hwaddr *range;
3883
3884 if (!size || addr + size < addr)
3885 return -EINVAL;
3886
3887 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888 if (!range)
3889 return -ENOMEM;
3890
3891 range->fwnode = fwnode;
3892 range->size = size;
3893 range->hw_start = addr;
3894 range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896 ret = logic_pio_register_range(range);
3897 if (ret)
3898 kfree(range);
3899#endif
3900
3901 return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909 if (pio >= MMIO_UPPER_LIMIT)
3910 return address;
3911
3912 address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915 return address;
3916}
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921 return logic_pio_trans_cpuaddr(address);
3922#else
3923 if (address > IO_SPACE_LIMIT)
3924 return (unsigned long)-1;
3925
3926 return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space. Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945 if (!(res->flags & IORESOURCE_IO))
3946 return -EINVAL;
3947
3948 if (res->end > IO_SPACE_LIMIT)
3949 return -EINVAL;
3950
3951 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952 pgprot_device(PAGE_KERNEL));
3953#else
3954 /*
3955 * This architecture does not have memory mapped I/O space,
3956 * so this function should never be called
3957 */
3958 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959 return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space. Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977 unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984 struct resource **res = ptr;
3985
3986 pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999 phys_addr_t phys_addr)
4000{
4001 const struct resource **ptr;
4002 int error;
4003
4004 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005 if (!ptr)
4006 return -ENOMEM;
4007
4008 error = pci_remap_iospace(res, phys_addr);
4009 if (error) {
4010 devres_free(ptr);
4011 } else {
4012 *ptr = res;
4013 devres_add(dev, ptr);
4014 }
4015
4016 return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030 resource_size_t offset,
4031 resource_size_t size)
4032{
4033 void __iomem **ptr, *addr;
4034
4035 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036 if (!ptr)
4037 return NULL;
4038
4039 addr = pci_remap_cfgspace(offset, size);
4040 if (addr) {
4041 *ptr = addr;
4042 devres_add(dev, ptr);
4043 } else
4044 devres_free(ptr);
4045
4046 return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 * if (IS_ERR(base))
4067 * return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070 struct resource *res)
4071{
4072 resource_size_t size;
4073 const char *name;
4074 void __iomem *dest_ptr;
4075
4076 BUG_ON(!dev);
4077
4078 if (!res || resource_type(res) != IORESOURCE_MEM) {
4079 dev_err(dev, "invalid resource\n");
4080 return IOMEM_ERR_PTR(-EINVAL);
4081 }
4082
4083 size = resource_size(res);
4084 name = res->name ?: dev_name(dev);
4085
4086 if (!devm_request_mem_region(dev, res->start, size, name)) {
4087 dev_err(dev, "can't request region for resource %pR\n", res);
4088 return IOMEM_ERR_PTR(-EBUSY);
4089 }
4090
4091 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092 if (!dest_ptr) {
4093 dev_err(dev, "ioremap failed for resource %pR\n", res);
4094 devm_release_mem_region(dev, res->start, size);
4095 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096 }
4097
4098 return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104 u16 old_cmd, cmd;
4105
4106 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107 if (enable)
4108 cmd = old_cmd | PCI_COMMAND_MASTER;
4109 else
4110 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111 if (cmd != old_cmd) {
4112 pci_dbg(dev, "%s bus mastering\n",
4113 enable ? "enabling" : "disabling");
4114 pci_write_config_word(dev, PCI_COMMAND, cmd);
4115 }
4116 dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments. This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128 return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device. This is the default
4136 * implementation. Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141 u8 lat;
4142
4143 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144 if (pci_is_pcie(dev))
4145 return;
4146
4147 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148 if (lat < 16)
4149 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150 else if (lat > pcibios_max_latency)
4151 lat = pcibios_max_latency;
4152 else
4153 return;
4154
4155 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167 __pci_set_master(dev, true);
4168 pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178 __pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194 u8 cacheline_size;
4195
4196 if (!pci_cache_line_size)
4197 return -EINVAL;
4198
4199 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200 equal to or multiple of the right value. */
4201 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202 if (cacheline_size >= pci_cache_line_size &&
4203 (cacheline_size % pci_cache_line_size) == 0)
4204 return 0;
4205
4206 /* Write the correct value. */
4207 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208 /* Read it back. */
4209 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210 if (cacheline_size == pci_cache_line_size)
4211 return 0;
4212
4213 pci_info(dev, "cache line size of %d is not supported\n",
4214 pci_cache_line_size << 2);
4215
4216 return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231 return 0;
4232#else
4233 int rc;
4234 u16 cmd;
4235
4236 rc = pci_set_cacheline_size(dev);
4237 if (rc)
4238 return rc;
4239
4240 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243 cmd |= PCI_COMMAND_INVALIDATE;
4244 pci_write_config_word(dev, PCI_COMMAND, cmd);
4245 }
4246 return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261 struct pci_devres *dr;
4262
4263 dr = find_pci_dr(dev);
4264 if (!dr)
4265 return -ENOMEM;
4266
4267 dr->mwi = 1;
4268 return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284 return 0;
4285#else
4286 return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300 u16 cmd;
4301
4302 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303 if (cmd & PCI_COMMAND_INVALIDATE) {
4304 cmd &= ~PCI_COMMAND_INVALIDATE;
4305 pci_write_config_word(dev, PCI_COMMAND, cmd);
4306 }
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320 u16 pci_command, new;
4321
4322 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324 if (enable)
4325 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326 else
4327 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329 if (new != pci_command) {
4330 struct pci_devres *dr;
4331
4332 pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334 dr = find_pci_dr(pdev);
4335 if (dr && !dr->restore_intx) {
4336 dr->restore_intx = 1;
4337 dr->orig_intx = !enable;
4338 }
4339 }
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345 struct pci_bus *bus = dev->bus;
4346 bool mask_updated = true;
4347 u32 cmd_status_dword;
4348 u16 origcmd, newcmd;
4349 unsigned long flags;
4350 bool irq_pending;
4351
4352 /*
4353 * We do a single dword read to retrieve both command and status.
4354 * Document assumptions that make this possible.
4355 */
4356 BUILD_BUG_ON(PCI_COMMAND % 4);
4357 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359 raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365 /*
4366 * Check interrupt status register to see whether our device
4367 * triggered the interrupt (when masking) or the next IRQ is
4368 * already pending (when unmasking).
4369 */
4370 if (mask != irq_pending) {
4371 mask_updated = false;
4372 goto done;
4373 }
4374
4375 origcmd = cmd_status_dword;
4376 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377 if (mask)
4378 newcmd |= PCI_COMMAND_INTX_DISABLE;
4379 if (newcmd != origcmd)
4380 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383 raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385 return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397 return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411 return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423 if (!pci_is_pcie(dev))
4424 return 1;
4425
4426 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427 PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433 int delay = 1;
4434 u32 id;
4435
4436 /*
4437 * After reset, the device should not silently discard config
4438 * requests, but it may still indicate that it needs more time by
4439 * responding to them with CRS completions. The Root Port will
4440 * generally synthesize ~0 data to complete the read (except when
4441 * CRS SV is enabled and the read was for the Vendor ID; in that
4442 * case it synthesizes 0x0001 data).
4443 *
4444 * Wait for the device to return a non-CRS completion. Read the
4445 * Command register instead of Vendor ID so we don't have to
4446 * contend with the CRS SV value.
4447 */
4448 pci_read_config_dword(dev, PCI_COMMAND, &id);
4449 while (id == ~0) {
4450 if (delay > timeout) {
4451 pci_warn(dev, "not ready %dms after %s; giving up\n",
4452 delay - 1, reset_type);
4453 return -ENOTTY;
4454 }
4455
4456 if (delay > 1000)
4457 pci_info(dev, "not ready %dms after %s; waiting\n",
4458 delay - 1, reset_type);
4459
4460 msleep(delay);
4461 delay *= 2;
4462 pci_read_config_dword(dev, PCI_COMMAND, &id);
4463 }
4464
4465 if (delay > 1000)
4466 pci_info(dev, "ready %dms after %s\n", delay - 1,
4467 reset_type);
4468
4469 return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481 u32 cap;
4482
4483 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484 return false;
4485
4486 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487 return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev. The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501 if (!pci_wait_for_pending_transaction(dev))
4502 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506 if (dev->imm_ready)
4507 return 0;
4508
4509 /*
4510 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511 * 100ms, but may silently discard requests while the FLR is in
4512 * progress. Wait 100ms before trying to access the device.
4513 */
4514 msleep(100);
4515
4516 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
4521{
4522 int pos;
4523 u8 cap;
4524
4525 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526 if (!pos)
4527 return -ENOTTY;
4528
4529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530 return -ENOTTY;
4531
4532 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534 return -ENOTTY;
4535
4536 if (probe)
4537 return 0;
4538
4539 /*
4540 * Wait for Transaction Pending bit to clear. A word-aligned test
4541 * is used, so we use the control offset rather than status and shift
4542 * the test bit to match.
4543 */
4544 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545 PCI_AF_STATUS_TP << 8))
4546 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550 if (dev->imm_ready)
4551 return 0;
4552
4553 /*
4554 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555 * updated 27 July 2006; a device must complete an FLR within
4556 * 100ms, but may silently discard requests while the FLR is in
4557 * progress. Wait 100ms before trying to access the device.
4558 */
4559 msleep(100);
4560
4561 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0. If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581 u16 csr;
4582
4583 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584 return -ENOTTY;
4585
4586 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588 return -ENOTTY;
4589
4590 if (probe)
4591 return 0;
4592
4593 if (dev->current_state != PCI_D0)
4594 return -EINVAL;
4595
4596 csr &= ~PCI_PM_CTRL_STATE_MASK;
4597 csr |= PCI_D3hot;
4598 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599 pci_dev_d3_sleep(dev);
4600
4601 csr &= ~PCI_PM_CTRL_STATE_MASK;
4602 csr |= PCI_D0;
4603 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604 pci_dev_d3_sleep(dev);
4605
4606 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607}
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4616{
4617 int timeout = 1000;
4618 bool ret;
4619 u16 lnk_status;
4620
4621 /*
4622 * Some controllers might not implement link active reporting. In this
4623 * case, we wait for 1000 + 100 ms.
4624 */
4625 if (!pdev->link_active_reporting) {
4626 msleep(1100);
4627 return true;
4628 }
4629
4630 /*
4631 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632 * after which we should expect an link active if the reset was
4633 * successful. If so, software must wait a minimum 100ms before sending
4634 * configuration requests to devices downstream this port.
4635 *
4636 * If the link fails to activate, either the device was physically
4637 * removed or the link is permanently failed.
4638 */
4639 if (active)
4640 msleep(20);
4641 for (;;) {
4642 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644 if (ret == active)
4645 break;
4646 if (timeout <= 0)
4647 break;
4648 msleep(10);
4649 timeout -= 10;
4650 }
4651 if (active && ret)
4652 msleep(100);
4653 else if (ret != active)
4654 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655 active ? "set" : "cleared");
4656 return ret == active;
4657}
4658
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661 u16 ctrl;
4662
4663 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667 /*
4668 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4669 * this to 2ms to ensure that we meet the minimum requirement.
4670 */
4671 msleep(2);
4672
4673 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676 /*
4677 * Trhfa for conventional PCI is 2^25 clock cycles.
4678 * Assuming a minimum 33MHz clock this results in a 1s
4679 * delay before we can consider subordinate devices to
4680 * be re-initialized. PCIe has some ways to shorten this,
4681 * but we don't make use of them yet.
4682 */
4683 ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688 pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700 pcibios_reset_secondary_bus(dev);
4701
4702 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708 struct pci_dev *pdev;
4709
4710 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712 return -ENOTTY;
4713
4714 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715 if (pdev != dev)
4716 return -ENOTTY;
4717
4718 if (probe)
4719 return 0;
4720
4721 return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726 int rc = -ENOTTY;
4727
4728 if (!hotplug || !try_module_get(hotplug->owner))
4729 return rc;
4730
4731 if (hotplug->ops->reset_slot)
4732 rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734 module_put(hotplug->owner);
4735
4736 return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741 struct pci_dev *pdev;
4742
4743 if (dev->subordinate || !dev->slot ||
4744 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745 return -ENOTTY;
4746
4747 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748 if (pdev != dev && pdev->slot == dev->slot)
4749 return -ENOTTY;
4750
4751 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752}
4753
4754static void pci_dev_lock(struct pci_dev *dev)
4755{
4756 pci_cfg_access_lock(dev);
4757 /* block PM suspend, driver probe, etc. */
4758 device_lock(&dev->dev);
4759}
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764 if (pci_cfg_access_trylock(dev)) {
4765 if (device_trylock(&dev->dev))
4766 return 1;
4767 pci_cfg_access_unlock(dev);
4768 }
4769
4770 return 0;
4771}
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
4775 device_unlock(&dev->dev);
4776 pci_cfg_access_unlock(dev);
4777}
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781 const struct pci_error_handlers *err_handler =
4782 dev->driver ? dev->driver->err_handler : NULL;
4783
4784 /*
4785 * dev->driver->err_handler->reset_prepare() is protected against
4786 * races with ->remove() by the device lock, which must be held by
4787 * the caller.
4788 */
4789 if (err_handler && err_handler->reset_prepare)
4790 err_handler->reset_prepare(dev);
4791
4792 /*
4793 * Wake-up device prior to save. PM registers default to D0 after
4794 * reset and a simple register restore doesn't reliably return
4795 * to a non-D0 state anyway.
4796 */
4797 pci_set_power_state(dev, PCI_D0);
4798
4799 pci_save_state(dev);
4800 /*
4801 * Disable the device by clearing the Command register, except for
4802 * INTx-disable which is set. This not only disables MMIO and I/O port
4803 * BARs, but also prevents the device from being Bus Master, preventing
4804 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4805 * compliant devices, INTx-disable prevents legacy interrupts.
4806 */
4807 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812 const struct pci_error_handlers *err_handler =
4813 dev->driver ? dev->driver->err_handler : NULL;
4814
4815 pci_restore_state(dev);
4816
4817 /*
4818 * dev->driver->err_handler->reset_done() is protected against
4819 * races with ->remove() by the device lock, which must be held by
4820 * the caller.
4821 */
4822 if (err_handler && err_handler->reset_done)
4823 err_handler->reset_done(dev);
4824}
4825
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device. The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848 int rc;
4849
4850 might_sleep();
4851
4852 /*
4853 * A reset method returns -ENOTTY if it doesn't support this device
4854 * and we should try the next method.
4855 *
4856 * If it returns 0 (success), we're finished. If it returns any
4857 * other error, we're also finished: this indicates that further
4858 * reset mechanisms might be broken on the device.
4859 */
4860 rc = pci_dev_specific_reset(dev, 0);
4861 if (rc != -ENOTTY)
4862 return rc;
4863 if (pcie_has_flr(dev)) {
4864 rc = pcie_flr(dev);
4865 if (rc != -ENOTTY)
4866 return rc;
4867 }
4868 rc = pci_af_flr(dev, 0);
4869 if (rc != -ENOTTY)
4870 return rc;
4871 rc = pci_pm_reset(dev, 0);
4872 if (rc != -ENOTTY)
4873 return rc;
4874 rc = pci_dev_reset_slot_function(dev, 0);
4875 if (rc != -ENOTTY)
4876 return rc;
4877 return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device. The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894 int rc;
4895
4896 might_sleep();
4897
4898 rc = pci_dev_specific_reset(dev, 1);
4899 if (rc != -ENOTTY)
4900 return rc;
4901 if (pcie_has_flr(dev))
4902 return 0;
4903 rc = pci_af_flr(dev, 1);
4904 if (rc != -ENOTTY)
4905 return rc;
4906 rc = pci_pm_reset(dev, 1);
4907 if (rc != -ENOTTY)
4908 return rc;
4909 rc = pci_dev_reset_slot_function(dev, 1);
4910 if (rc != -ENOTTY)
4911 return rc;
4912
4913 return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device. The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device. This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934 int rc;
4935
4936 if (!dev->reset_fn)
4937 return -ENOTTY;
4938
4939 pci_dev_lock(dev);
4940 pci_dev_save_and_disable(dev);
4941
4942 rc = __pci_reset_function_locked(dev);
4943
4944 pci_dev_restore(dev);
4945 pci_dev_unlock(dev);
4946
4947 return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device. The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device. This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset. It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970 int rc;
4971
4972 if (!dev->reset_fn)
4973 return -ENOTTY;
4974
4975 pci_dev_save_and_disable(dev);
4976
4977 rc = __pci_reset_function_locked(dev);
4978
4979 pci_dev_restore(dev);
4980
4981 return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993 int rc;
4994
4995 if (!dev->reset_fn)
4996 return -ENOTTY;
4997
4998 if (!pci_dev_trylock(dev))
4999 return -EAGAIN;
5000
5001 pci_dev_save_and_disable(dev);
5002 rc = __pci_reset_function_locked(dev);
5003 pci_dev_restore(dev);
5004 pci_dev_unlock(dev);
5005
5006 return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013 struct pci_dev *dev;
5014
5015
5016 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017 return false;
5018
5019 list_for_each_entry(dev, &bus->devices, bus_list) {
5020 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022 return false;
5023 }
5024
5025 return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031 struct pci_dev *dev;
5032
5033 list_for_each_entry(dev, &bus->devices, bus_list) {
5034 pci_dev_lock(dev);
5035 if (dev->subordinate)
5036 pci_bus_lock(dev->subordinate);
5037 }
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043 struct pci_dev *dev;
5044
5045 list_for_each_entry(dev, &bus->devices, bus_list) {
5046 if (dev->subordinate)
5047 pci_bus_unlock(dev->subordinate);
5048 pci_dev_unlock(dev);
5049 }
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055 struct pci_dev *dev;
5056
5057 list_for_each_entry(dev, &bus->devices, bus_list) {
5058 if (!pci_dev_trylock(dev))
5059 goto unlock;
5060 if (dev->subordinate) {
5061 if (!pci_bus_trylock(dev->subordinate)) {
5062 pci_dev_unlock(dev);
5063 goto unlock;
5064 }
5065 }
5066 }
5067 return 1;
5068
5069unlock:
5070 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071 if (dev->subordinate)
5072 pci_bus_unlock(dev->subordinate);
5073 pci_dev_unlock(dev);
5074 }
5075 return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081 struct pci_dev *dev;
5082
5083 if (slot->bus->self &&
5084 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085 return false;
5086
5087 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088 if (!dev->slot || dev->slot != slot)
5089 continue;
5090 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092 return false;
5093 }
5094
5095 return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101 struct pci_dev *dev;
5102
5103 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104 if (!dev->slot || dev->slot != slot)
5105 continue;
5106 pci_dev_lock(dev);
5107 if (dev->subordinate)
5108 pci_bus_lock(dev->subordinate);
5109 }
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115 struct pci_dev *dev;
5116
5117 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118 if (!dev->slot || dev->slot != slot)
5119 continue;
5120 if (dev->subordinate)
5121 pci_bus_unlock(dev->subordinate);
5122 pci_dev_unlock(dev);
5123 }
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129 struct pci_dev *dev;
5130
5131 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132 if (!dev->slot || dev->slot != slot)
5133 continue;
5134 if (!pci_dev_trylock(dev))
5135 goto unlock;
5136 if (dev->subordinate) {
5137 if (!pci_bus_trylock(dev->subordinate)) {
5138 pci_dev_unlock(dev);
5139 goto unlock;
5140 }
5141 }
5142 }
5143 return 1;
5144
5145unlock:
5146 list_for_each_entry_continue_reverse(dev,
5147 &slot->bus->devices, bus_list) {
5148 if (!dev->slot || dev->slot != slot)
5149 continue;
5150 if (dev->subordinate)
5151 pci_bus_unlock(dev->subordinate);
5152 pci_dev_unlock(dev);
5153 }
5154 return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163 struct pci_dev *dev;
5164
5165 list_for_each_entry(dev, &bus->devices, bus_list) {
5166 pci_dev_save_and_disable(dev);
5167 if (dev->subordinate)
5168 pci_bus_save_and_disable_locked(dev->subordinate);
5169 }
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree. Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179 struct pci_dev *dev;
5180
5181 list_for_each_entry(dev, &bus->devices, bus_list) {
5182 pci_dev_restore(dev);
5183 if (dev->subordinate)
5184 pci_bus_restore_locked(dev->subordinate);
5185 }
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194 struct pci_dev *dev;
5195
5196 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197 if (!dev->slot || dev->slot != slot)
5198 continue;
5199 pci_dev_save_and_disable(dev);
5200 if (dev->subordinate)
5201 pci_bus_save_and_disable_locked(dev->subordinate);
5202 }
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree. Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212 struct pci_dev *dev;
5213
5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 if (!dev->slot || dev->slot != slot)
5216 continue;
5217 pci_dev_restore(dev);
5218 if (dev->subordinate)
5219 pci_bus_restore_locked(dev->subordinate);
5220 }
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225 int rc;
5226
5227 if (!slot || !pci_slot_resetable(slot))
5228 return -ENOTTY;
5229
5230 if (!probe)
5231 pci_slot_lock(slot);
5232
5233 might_sleep();
5234
5235 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237 if (!probe)
5238 pci_slot_unlock(slot);
5239
5240 return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251 return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots. For instance, some slots may support slot power
5261 * control. In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset. All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function. PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272 int rc;
5273
5274 rc = pci_slot_reset(slot, 1);
5275 if (rc)
5276 return rc;
5277
5278 if (pci_slot_trylock(slot)) {
5279 pci_slot_save_and_disable_locked(slot);
5280 might_sleep();
5281 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282 pci_slot_restore_locked(slot);
5283 pci_slot_unlock(slot);
5284 } else
5285 rc = -EAGAIN;
5286
5287 return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292 int ret;
5293
5294 if (!bus->self || !pci_bus_resetable(bus))
5295 return -ENOTTY;
5296
5297 if (probe)
5298 return 0;
5299
5300 pci_bus_lock(bus);
5301
5302 might_sleep();
5303
5304 ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306 pci_bus_unlock(bus);
5307
5308 return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321 struct pci_bus *bus = bridge->subordinate;
5322 struct pci_slot *slot;
5323
5324 if (!bus)
5325 return -ENOTTY;
5326
5327 mutex_lock(&pci_slot_mutex);
5328 if (list_empty(&bus->slots))
5329 goto bus_reset;
5330
5331 list_for_each_entry(slot, &bus->slots, list)
5332 if (pci_probe_reset_slot(slot))
5333 goto bus_reset;
5334
5335 list_for_each_entry(slot, &bus->slots, list)
5336 if (pci_slot_reset(slot, 0))
5337 goto bus_reset;
5338
5339 mutex_unlock(&pci_slot_mutex);
5340 return 0;
5341bus_reset:
5342 mutex_unlock(&pci_slot_mutex);
5343 return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354 return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366 int rc;
5367
5368 rc = pci_bus_reset(bus, 1);
5369 if (rc)
5370 return rc;
5371
5372 if (pci_bus_trylock(bus)) {
5373 pci_bus_save_and_disable_locked(bus);
5374 might_sleep();
5375 rc = pci_bridge_secondary_bus_reset(bus->self);
5376 pci_bus_restore_locked(bus);
5377 pci_bus_unlock(bus);
5378 } else
5379 rc = -EAGAIN;
5380
5381 return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392 return (!pci_probe_reset_slot(pdev->slot)) ?
5393 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406 int cap;
5407 u32 stat;
5408
5409 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410 if (!cap)
5411 return -EINVAL;
5412
5413 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414 return -EINVAL;
5415
5416 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429 int cap;
5430 u16 cmd;
5431
5432 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433 if (!cap)
5434 return -EINVAL;
5435
5436 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437 return -EINVAL;
5438
5439 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 * valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454 int cap;
5455 u32 stat, v, o;
5456 u16 cmd;
5457
5458 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459 return -EINVAL;
5460
5461 v = ffs(mmrbc) - 10;
5462
5463 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464 if (!cap)
5465 return -EINVAL;
5466
5467 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468 return -EINVAL;
5469
5470 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471 return -E2BIG;
5472
5473 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474 return -EINVAL;
5475
5476 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477 if (o != v) {
5478 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479 return -EIO;
5480
5481 cmd &= ~PCI_X_CMD_MAX_READ;
5482 cmd |= v << 2;
5483 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484 return -EIO;
5485 }
5486 return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498 u16 ctl;
5499
5500 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 * valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516 u16 v;
5517
5518 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519 return -EINVAL;
5520
5521 /*
5522 * If using the "performance" PCIe config, we clamp the read rq
5523 * size to the max packet size to keep the host bridge from
5524 * generating requests larger than we can cope with.
5525 */
5526 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527 int mps = pcie_get_mps(dev);
5528
5529 if (mps < rq)
5530 rq = mps;
5531 }
5532
5533 v = (ffs(rq) - 8) << 12;
5534
5535 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536 PCI_EXP_DEVCTL_READRQ, v);
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548 u16 ctl;
5549
5550 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 * valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566 u16 v;
5567
5568 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569 return -EINVAL;
5570
5571 v = ffs(mps) - 8;
5572 if (v > dev->pcie_mpss)
5573 return -EINVAL;
5574 v <<= 5;
5575
5576 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577 PCI_EXP_DEVCTL_PAYLOAD, v);
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 * device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available. Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596 enum pci_bus_speed *speed,
5597 enum pcie_link_width *width)
5598{
5599 u16 lnksta;
5600 enum pci_bus_speed next_speed;
5601 enum pcie_link_width next_width;
5602 u32 bw, next_bw;
5603
5604 if (speed)
5605 *speed = PCI_SPEED_UNKNOWN;
5606 if (width)
5607 *width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609 bw = 0;
5610
5611 while (dev) {
5612 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616 PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620 /* Check if current device limits the total bandwidth */
5621 if (!bw || next_bw <= bw) {
5622 bw = next_bw;
5623
5624 if (limiting_dev)
5625 *limiting_dev = dev;
5626 if (speed)
5627 *speed = next_speed;
5628 if (width)
5629 *width = next_width;
5630 }
5631
5632 dev = pci_upstream_bridge(dev);
5633 }
5634
5635 return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability. Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648 u32 lnkcap2, lnkcap;
5649
5650 /*
5651 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5652 * implementation note there recommends using the Supported Link
5653 * Speeds Vector in Link Capabilities 2 when supported.
5654 *
5655 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656 * should use the Supported Link Speeds field in Link Capabilities,
5657 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658 */
5659 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660 if (lnkcap2) { /* PCIe r3.0-compliant */
5661 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662 return PCIE_SPEED_32_0GT;
5663 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664 return PCIE_SPEED_16_0GT;
5665 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666 return PCIE_SPEED_8_0GT;
5667 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668 return PCIE_SPEED_5_0GT;
5669 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670 return PCIE_SPEED_2_5GT;
5671 return PCI_SPEED_UNKNOWN;
5672 }
5673
5674 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676 return PCIE_SPEED_5_0GT;
5677 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678 return PCIE_SPEED_2_5GT;
5679
5680 return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability. Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693 u32 lnkcap;
5694
5695 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696 if (lnkcap)
5697 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699 return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead. The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714 enum pcie_link_width *width)
5715{
5716 *speed = pcie_get_speed_cap(dev);
5717 *width = pcie_get_width_cap(dev);
5718
5719 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720 return 0;
5721
5722 return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance. If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737 enum pcie_link_width width, width_cap;
5738 enum pci_bus_speed speed, speed_cap;
5739 struct pci_dev *limiting_dev = NULL;
5740 u32 bw_avail, bw_cap;
5741
5742 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745 if (bw_avail >= bw_cap && verbose)
5746 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747 bw_cap / 1000, bw_cap % 1000,
5748 PCIE_SPEED2STR(speed_cap), width_cap);
5749 else if (bw_avail < bw_cap)
5750 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751 bw_avail / 1000, bw_avail % 1000,
5752 PCIE_SPEED2STR(speed), width,
5753 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754 bw_cap / 1000, bw_cap % 1000,
5755 PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766 __pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779 int i, bars = 0;
5780 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781 if (pci_resource_flags(dev, i) & flags)
5782 bars |= (1 << i);
5783 return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792 arch_set_vga_state = func; /* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796 unsigned int command_bits, u32 flags)
5797{
5798 if (arch_set_vga_state)
5799 return arch_set_vga_state(dev, decode, command_bits,
5800 flags);
5801 return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813 unsigned int command_bits, u32 flags)
5814{
5815 struct pci_bus *bus;
5816 struct pci_dev *bridge;
5817 u16 cmd;
5818 int rc;
5819
5820 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822 /* ARCH specific VGA enables */
5823 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824 if (rc)
5825 return rc;
5826
5827 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829 if (decode == true)
5830 cmd |= command_bits;
5831 else
5832 cmd &= ~command_bits;
5833 pci_write_config_word(dev, PCI_COMMAND, cmd);
5834 }
5835
5836 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837 return 0;
5838
5839 bus = dev->bus;
5840 while (bus) {
5841 bridge = bus->self;
5842 if (bridge) {
5843 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844 &cmd);
5845 if (decode == true)
5846 cmd |= PCI_BRIDGE_CTL_VGA;
5847 else
5848 cmd &= ~PCI_BRIDGE_CTL_VGA;
5849 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850 cmd);
5851 }
5852 bus = bus->parent;
5853 }
5854 return 0;
5855}
5856
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU. These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn. Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity). DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5877{
5878 if (!dev->dma_alias_mask)
5879 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880 if (!dev->dma_alias_mask) {
5881 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882 return;
5883 }
5884
5885 set_bit(devfn, dev->dma_alias_mask);
5886 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887 PCI_SLOT(devfn), PCI_FUNC(devfn));
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892 return (dev1->dma_alias_mask &&
5893 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894 (dev2->dma_alias_mask &&
5895 test_bit(dev1->devfn, dev2->dma_alias_mask));
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900 u32 v;
5901
5902 if (pci_dev_is_disconnected(pdev))
5903 return false;
5904 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910 struct pci_dev *bridge = dev->bus->self;
5911
5912 dev->ignore_hotplug = 1;
5913 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5914 if (bridge)
5915 bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921 return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929 const struct resource *rsrc,
5930 resource_size_t *start, resource_size_t *end)
5931{
5932 *start = rsrc->start;
5933 *end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 * Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948 bool *resize)
5949{
5950 int align_order, count;
5951 resource_size_t align = pcibios_default_alignment();
5952 const char *p;
5953 int ret;
5954
5955 spin_lock(&resource_alignment_lock);
5956 p = resource_alignment_param;
5957 if (!p || !*p)
5958 goto out;
5959 if (pci_has_flag(PCI_PROBE_ONLY)) {
5960 align = 0;
5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962 goto out;
5963 }
5964
5965 while (*p) {
5966 count = 0;
5967 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968 p[count] == '@') {
5969 p += count + 1;
5970 } else {
5971 align_order = -1;
5972 }
5973
5974 ret = pci_dev_str_match(dev, p, &p);
5975 if (ret == 1) {
5976 *resize = true;
5977 if (align_order == -1)
5978 align = PAGE_SIZE;
5979 else
5980 align = 1 << align_order;
5981 break;
5982 } else if (ret < 0) {
5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984 p);
5985 break;
5986 }
5987
5988 if (*p != ';' && *p != ',') {
5989 /* End of param or invalid format */
5990 break;
5991 }
5992 p++;
5993 }
5994out:
5995 spin_unlock(&resource_alignment_lock);
5996 return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000 resource_size_t align, bool resize)
6001{
6002 struct resource *r = &dev->resource[bar];
6003 resource_size_t size;
6004
6005 if (!(r->flags & IORESOURCE_MEM))
6006 return;
6007
6008 if (r->flags & IORESOURCE_PCI_FIXED) {
6009 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010 bar, r, (unsigned long long)align);
6011 return;
6012 }
6013
6014 size = resource_size(r);
6015 if (size >= align)
6016 return;
6017
6018 /*
6019 * Increase the alignment of the resource. There are two ways we
6020 * can do this:
6021 *
6022 * 1) Increase the size of the resource. BARs are aligned on their
6023 * size, so when we reallocate space for this resource, we'll
6024 * allocate it with the larger alignment. This also prevents
6025 * assignment of any other BARs inside the alignment region, so
6026 * if we're requesting page alignment, this means no other BARs
6027 * will share the page.
6028 *
6029 * The disadvantage is that this makes the resource larger than
6030 * the hardware BAR, which may break drivers that compute things
6031 * based on the resource size, e.g., to find registers at a
6032 * fixed offset before the end of the BAR.
6033 *
6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035 * set r->start to the desired alignment. By itself this
6036 * doesn't prevent other BARs being put inside the alignment
6037 * region, but if we realign *every* resource of every device in
6038 * the system, none of them will share an alignment region.
6039 *
6040 * When the user has requested alignment for only some devices via
6041 * the "pci=resource_alignment" argument, "resize" is true and we
6042 * use the first method. Otherwise we assume we're aligning all
6043 * devices and we use the second.
6044 */
6045
6046 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047 bar, r, (unsigned long long)align);
6048
6049 if (resize) {
6050 r->start = 0;
6051 r->end = align - 1;
6052 } else {
6053 r->flags &= ~IORESOURCE_SIZEALIGN;
6054 r->flags |= IORESOURCE_STARTALIGN;
6055 r->start = align;
6056 r->end = r->start + size - 1;
6057 }
6058 r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070 int i;
6071 struct resource *r;
6072 resource_size_t align;
6073 u16 command;
6074 bool resize = false;
6075
6076 /*
6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078 * 3.4.1.11. Their resources are allocated from the space
6079 * described by the VF BARx register in the PF's SR-IOV capability.
6080 * We can't influence their alignment here.
6081 */
6082 if (dev->is_virtfn)
6083 return;
6084
6085 /* check if specified PCI is target device to reassign */
6086 align = pci_specified_resource_alignment(dev, &resize);
6087 if (!align)
6088 return;
6089
6090 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092 pci_warn(dev, "Can't reassign resources to host bridge\n");
6093 return;
6094 }
6095
6096 pci_read_config_word(dev, PCI_COMMAND, &command);
6097 command &= ~PCI_COMMAND_MEMORY;
6098 pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101 pci_request_resource_alignment(dev, i, align, resize);
6102
6103 /*
6104 * Need to disable bridge's resource window,
6105 * to enable the kernel to reassign new resource
6106 * window later on.
6107 */
6108 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110 r = &dev->resource[i];
6111 if (!(r->flags & IORESOURCE_MEM))
6112 continue;
6113 r->flags |= IORESOURCE_UNSET;
6114 r->end = resource_size(r) - 1;
6115 r->start = 0;
6116 }
6117 pci_disable_bridge_window(dev);
6118 }
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123 size_t count = 0;
6124
6125 spin_lock(&resource_alignment_lock);
6126 if (resource_alignment_param)
6127 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128 spin_unlock(&resource_alignment_lock);
6129
6130 /*
6131 * When set by the command line, resource_alignment_param will not
6132 * have a trailing line feed, which is ugly. So conditionally add
6133 * it here.
6134 */
6135 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136 buf[count - 1] = '\n';
6137 buf[count++] = 0;
6138 }
6139
6140 return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144 const char *buf, size_t count)
6145{
6146 char *param = kstrndup(buf, count, GFP_KERNEL);
6147
6148 if (!param)
6149 return -ENOMEM;
6150
6151 spin_lock(&resource_alignment_lock);
6152 kfree(resource_alignment_param);
6153 resource_alignment_param = param;
6154 spin_unlock(&resource_alignment_lock);
6155 return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162 return bus_create_file(&pci_bus_type,
6163 &bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170 pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179 return atomic_inc_return(&__domain_nr);
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184 static int use_dt_domains = -1;
6185 int domain = -1;
6186
6187 if (parent)
6188 domain = of_get_pci_domain_nr(parent->of_node);
6189
6190 /*
6191 * Check DT domain and use_dt_domains values.
6192 *
6193 * If DT domain property is valid (domain >= 0) and
6194 * use_dt_domains != 0, the DT assignment is valid since this means
6195 * we have not previously allocated a domain number by using
6196 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197 * 1, to indicate that we have just assigned a domain number from
6198 * DT.
6199 *
6200 * If DT domain property value is not valid (ie domain < 0), and we
6201 * have not previously assigned a domain number from DT
6202 * (use_dt_domains != 1) we should assign a domain number by
6203 * using the:
6204 *
6205 * pci_get_new_domain_nr()
6206 *
6207 * API and update the use_dt_domains value to keep track of method we
6208 * are using to assign domain numbers (use_dt_domains = 0).
6209 *
6210 * All other combinations imply we have a platform that is trying
6211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212 * which is a recipe for domain mishandling and it is prevented by
6213 * invalidating the domain value (domain = -1) and printing a
6214 * corresponding error.
6215 */
6216 if (domain >= 0 && use_dt_domains) {
6217 use_dt_domains = 1;
6218 } else if (domain < 0 && use_dt_domains != 1) {
6219 use_dt_domains = 0;
6220 domain = pci_get_new_domain_nr();
6221 } else {
6222 if (parent)
6223 pr_err("Node %pOF has ", parent->of_node);
6224 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225 domain = -1;
6226 }
6227
6228 return domain;
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234 acpi_pci_bus_find_domain_nr(bus);
6235}
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247 return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257 while (str) {
6258 char *k = strchr(str, ',');
6259 if (k)
6260 *k++ = 0;
6261 if (*str && (str = pcibios_setup(str)) && *str) {
6262 if (!strcmp(str, "nomsi")) {
6263 pci_no_msi();
6264 } else if (!strncmp(str, "noats", 5)) {
6265 pr_info("PCIe: ATS is disabled\n");
6266 pcie_ats_disabled = true;
6267 } else if (!strcmp(str, "noaer")) {
6268 pci_no_aer();
6269 } else if (!strcmp(str, "earlydump")) {
6270 pci_early_dump = true;
6271 } else if (!strncmp(str, "realloc=", 8)) {
6272 pci_realloc_get_opt(str + 8);
6273 } else if (!strncmp(str, "realloc", 7)) {
6274 pci_realloc_get_opt("on");
6275 } else if (!strcmp(str, "nodomains")) {
6276 pci_no_domains();
6277 } else if (!strncmp(str, "noari", 5)) {
6278 pcie_ari_disabled = true;
6279 } else if (!strncmp(str, "cbiosize=", 9)) {
6280 pci_cardbus_io_size = memparse(str + 9, &str);
6281 } else if (!strncmp(str, "cbmemsize=", 10)) {
6282 pci_cardbus_mem_size = memparse(str + 10, &str);
6283 } else if (!strncmp(str, "resource_alignment=", 19)) {
6284 resource_alignment_param = str + 19;
6285 } else if (!strncmp(str, "ecrc=", 5)) {
6286 pcie_ecrc_get_policy(str + 5);
6287 } else if (!strncmp(str, "hpiosize=", 9)) {
6288 pci_hotplug_io_size = memparse(str + 9, &str);
6289 } else if (!strncmp(str, "hpmemsize=", 10)) {
6290 pci_hotplug_mem_size = memparse(str + 10, &str);
6291 } else if (!strncmp(str, "hpbussize=", 10)) {
6292 pci_hotplug_bus_size =
6293 simple_strtoul(str + 10, &str, 0);
6294 if (pci_hotplug_bus_size > 0xff)
6295 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299 pcie_bus_config = PCIE_BUS_SAFE;
6300 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303 pcie_bus_config = PCIE_BUS_PEER2PEER;
6304 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6305 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307 disable_acs_redir_param = str + 18;
6308 } else {
6309 pr_err("PCI: Unknown option `%s'\n", str);
6310 }
6311 }
6312 str = k;
6313 }
6314 return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329 resource_alignment_param = kstrdup(resource_alignment_param,
6330 GFP_KERNEL);
6331 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333 return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);