Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/of_pci.h>
19#include <linux/pci.h>
20#include <linux/pm.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/spinlock.h>
24#include <linux/string.h>
25#include <linux/log2.h>
26#include <linux/logic_pio.h>
27#include <linux/pm_wakeup.h>
28#include <linux/interrupt.h>
29#include <linux/device.h>
30#include <linux/pm_runtime.h>
31#include <linux/pci_hotplug.h>
32#include <linux/vmalloc.h>
33#include <linux/pci-ats.h>
34#include <asm/setup.h>
35#include <asm/dma.h>
36#include <linux/aer.h>
37#include "pci.h"
38
39DEFINE_MUTEX(pci_slot_mutex);
40
41const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43};
44EXPORT_SYMBOL_GPL(pci_power_names);
45
46int isa_dma_bridge_buggy;
47EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
69 unsigned int delay = dev->d3_delay;
70
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
73
74 if (delay)
75 msleep(delay);
76}
77
78#ifdef CONFIG_PCI_DOMAINS
79int pci_domains_supported = 1;
80#endif
81
82#define DEFAULT_CARDBUS_IO_SIZE (256)
83#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87
88#define DEFAULT_HOTPLUG_IO_SIZE (256)
89#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91/* hpiosize=nn can override this */
92unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
93/*
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
97 */
98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100
101#define DEFAULT_HOTPLUG_BUS_SIZE 1
102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105
106/*
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
111 */
112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113u8 pci_cache_line_size;
114
115/*
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
118 */
119unsigned int pcibios_max_latency = 255;
120
121/* If set, the PCIe ARI capability will not be used. */
122static bool pcie_ari_disabled;
123
124/* If set, the PCIe ATS capability will not be used. */
125static bool pcie_ats_disabled;
126
127/* If set, the PCI config space of each device is printed during boot. */
128bool pci_early_dump;
129
130bool pci_ats_disabled(void)
131{
132 return pcie_ats_disabled;
133}
134EXPORT_SYMBOL_GPL(pci_ats_disabled);
135
136/* Disable bridge_d3 for all PCIe ports */
137static bool pci_bridge_d3_disable;
138/* Force bridge_d3 for all PCIe ports */
139static bool pci_bridge_d3_force;
140
141static int __init pcie_port_pm_setup(char *str)
142{
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
147 return 1;
148}
149__setup("pcie_port_pm=", pcie_port_pm_setup);
150
151/* Time to wait after a reset for device to become responsive */
152#define PCIE_RESET_READY_POLL_MS 60000
153
154/**
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
157 *
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
160 */
161unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162{
163 struct pci_bus *tmp;
164 unsigned char max, n;
165
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
169 if (n > max)
170 max = n;
171 }
172 return max;
173}
174EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175
176/**
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
179 *
180 * Returns error bits set in PCI_STATUS and clears them.
181 */
182int pci_status_get_and_clear_errors(struct pci_dev *pdev)
183{
184 u16 status;
185 int ret;
186
187 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 if (ret != PCIBIOS_SUCCESSFUL)
189 return -EIO;
190
191 status &= PCI_STATUS_ERROR_BITS;
192 if (status)
193 pci_write_config_word(pdev, PCI_STATUS, status);
194
195 return status;
196}
197EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
198
199#ifdef CONFIG_HAS_IOMEM
200void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
201{
202 struct resource *res = &pdev->resource[bar];
203
204 /*
205 * Make sure the BAR is actually a memory resource, not an IO resource
206 */
207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
209 return NULL;
210 }
211 return ioremap(res->start, resource_size(res));
212}
213EXPORT_SYMBOL_GPL(pci_ioremap_bar);
214
215void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
216{
217 /*
218 * Make sure the BAR is actually a memory resource, not an IO resource
219 */
220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
221 WARN_ON(1);
222 return NULL;
223 }
224 return ioremap_wc(pci_resource_start(pdev, bar),
225 pci_resource_len(pdev, bar));
226}
227EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
228#endif
229
230/**
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
235 *
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
238 * be of the form:
239 *
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
241 *
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
245 *
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
248 */
249static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
250 const char **endptr)
251{
252 int ret;
253 int seg, bus, slot, func;
254 char *wpath, *p;
255 char end;
256
257 *endptr = strchrnul(path, ';');
258
259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
260 if (!wpath)
261 return -ENOMEM;
262
263 while (1) {
264 p = strrchr(wpath, '/');
265 if (!p)
266 break;
267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
268 if (ret != 2) {
269 ret = -EINVAL;
270 goto free_and_exit;
271 }
272
273 if (dev->devfn != PCI_DEVFN(slot, func)) {
274 ret = 0;
275 goto free_and_exit;
276 }
277
278 /*
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
282 * and so on.
283 */
284 dev = pci_upstream_bridge(dev);
285 if (!dev) {
286 ret = 0;
287 goto free_and_exit;
288 }
289
290 *p = 0;
291 }
292
293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
294 &func, &end);
295 if (ret != 4) {
296 seg = 0;
297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
298 if (ret != 3) {
299 ret = -EINVAL;
300 goto free_and_exit;
301 }
302 }
303
304 ret = (seg == pci_domain_nr(dev->bus) &&
305 bus == dev->bus->number &&
306 dev->devfn == PCI_DEVFN(slot, func));
307
308free_and_exit:
309 kfree(wpath);
310 return ret;
311}
312
313/**
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
318 *
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
321 *
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
324 *
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
332 *
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
339 *
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
342 */
343static int pci_dev_str_match(struct pci_dev *dev, const char *p,
344 const char **endptr)
345{
346 int ret;
347 int count;
348 unsigned short vendor, device, subsystem_vendor, subsystem_device;
349
350 if (strncmp(p, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
352 p += 4;
353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 &subsystem_vendor, &subsystem_device, &count);
355 if (ret != 4) {
356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
357 if (ret != 2)
358 return -EINVAL;
359
360 subsystem_vendor = 0;
361 subsystem_device = 0;
362 }
363
364 p += count;
365
366 if ((!vendor || vendor == dev->vendor) &&
367 (!device || device == dev->device) &&
368 (!subsystem_vendor ||
369 subsystem_vendor == dev->subsystem_vendor) &&
370 (!subsystem_device ||
371 subsystem_device == dev->subsystem_device))
372 goto found;
373 } else {
374 /*
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
377 */
378 ret = pci_dev_str_match_path(dev, p, &p);
379 if (ret < 0)
380 return ret;
381 else if (ret)
382 goto found;
383 }
384
385 *endptr = p;
386 return 0;
387
388found:
389 *endptr = p;
390 return 1;
391}
392
393static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap, int *ttl)
395{
396 u8 id;
397 u16 ent;
398
399 pci_bus_read_config_byte(bus, devfn, pos, &pos);
400
401 while ((*ttl)--) {
402 if (pos < 0x40)
403 break;
404 pos &= ~3;
405 pci_bus_read_config_word(bus, devfn, pos, &ent);
406
407 id = ent & 0xff;
408 if (id == 0xff)
409 break;
410 if (id == cap)
411 return pos;
412 pos = (ent >> 8);
413 }
414 return 0;
415}
416
417static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
418 u8 pos, int cap)
419{
420 int ttl = PCI_FIND_CAP_TTL;
421
422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
423}
424
425int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
426{
427 return __pci_find_next_cap(dev->bus, dev->devfn,
428 pos + PCI_CAP_LIST_NEXT, cap);
429}
430EXPORT_SYMBOL_GPL(pci_find_next_capability);
431
432static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 unsigned int devfn, u8 hdr_type)
434{
435 u16 status;
436
437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 if (!(status & PCI_STATUS_CAP_LIST))
439 return 0;
440
441 switch (hdr_type) {
442 case PCI_HEADER_TYPE_NORMAL:
443 case PCI_HEADER_TYPE_BRIDGE:
444 return PCI_CAPABILITY_LIST;
445 case PCI_HEADER_TYPE_CARDBUS:
446 return PCI_CB_CAPABILITY_LIST;
447 }
448
449 return 0;
450}
451
452/**
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
456 *
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
461 *
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
470 */
471int pci_find_capability(struct pci_dev *dev, int cap)
472{
473 int pos;
474
475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
476 if (pos)
477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
478
479 return pos;
480}
481EXPORT_SYMBOL(pci_find_capability);
482
483/**
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
488 *
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
491 *
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it.
495 */
496int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
497{
498 int pos;
499 u8 hdr_type;
500
501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
502
503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
504 if (pos)
505 pos = __pci_find_next_cap(bus, devfn, pos, cap);
506
507 return pos;
508}
509EXPORT_SYMBOL(pci_bus_find_capability);
510
511/**
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
516 *
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
521 */
522int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
523{
524 u32 header;
525 int ttl;
526 int pos = PCI_CFG_SPACE_SIZE;
527
528 /* minimum 8 bytes per capability */
529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
530
531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
532 return 0;
533
534 if (start)
535 pos = start;
536
537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
538 return 0;
539
540 /*
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
543 */
544 if (header == 0)
545 return 0;
546
547 while (ttl-- > 0) {
548 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
549 return pos;
550
551 pos = PCI_EXT_CAP_NEXT(header);
552 if (pos < PCI_CFG_SPACE_SIZE)
553 break;
554
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 break;
557 }
558
559 return 0;
560}
561EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
562
563/**
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
567 *
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
571 *
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
576 */
577int pci_find_ext_capability(struct pci_dev *dev, int cap)
578{
579 return pci_find_next_ext_capability(dev, 0, cap);
580}
581EXPORT_SYMBOL_GPL(pci_find_ext_capability);
582
583/**
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
586 *
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
588 * Number.
589 *
590 * Returns the DSN, or zero if the capability does not exist.
591 */
592u64 pci_get_dsn(struct pci_dev *dev)
593{
594 u32 dword;
595 u64 dsn;
596 int pos;
597
598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
599 if (!pos)
600 return 0;
601
602 /*
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
606 */
607 pos += 4;
608 pci_read_config_dword(dev, pos, &dword);
609 dsn = (u64)dword;
610 pci_read_config_dword(dev, pos + 4, &dword);
611 dsn |= ((u64)dword) << 32;
612
613 return dsn;
614}
615EXPORT_SYMBOL_GPL(pci_get_dsn);
616
617static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
618{
619 int rc, ttl = PCI_FIND_CAP_TTL;
620 u8 cap, mask;
621
622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 mask = HT_3BIT_CAP_MASK;
624 else
625 mask = HT_5BIT_CAP_MASK;
626
627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 PCI_CAP_ID_HT, &ttl);
629 while (pos) {
630 rc = pci_read_config_byte(dev, pos + 3, &cap);
631 if (rc != PCIBIOS_SUCCESSFUL)
632 return 0;
633
634 if ((cap & mask) == ht_cap)
635 return pos;
636
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 pos + PCI_CAP_LIST_NEXT,
639 PCI_CAP_ID_HT, &ttl);
640 }
641
642 return 0;
643}
644/**
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
649 *
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
653 *
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
656 */
657int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
658{
659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
660}
661EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
662
663/**
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
667 *
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
673 */
674int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
675{
676 int pos;
677
678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
679 if (pos)
680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
681
682 return pos;
683}
684EXPORT_SYMBOL_GPL(pci_find_ht_capability);
685
686/**
687 * pci_find_parent_resource - return resource region of parent bus of given
688 * region
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
691 *
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
694 */
695struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 struct resource *res)
697{
698 const struct pci_bus *bus = dev->bus;
699 struct resource *r;
700 int i;
701
702 pci_bus_for_each_resource(bus, r, i) {
703 if (!r)
704 continue;
705 if (resource_contains(r, res)) {
706
707 /*
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
710 */
711 if (r->flags & IORESOURCE_PREFETCH &&
712 !(res->flags & IORESOURCE_PREFETCH))
713 return NULL;
714
715 /*
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
721 * first.
722 */
723 return r;
724 }
725 }
726 return NULL;
727}
728EXPORT_SYMBOL(pci_find_parent_resource);
729
730/**
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
734 *
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
738 */
739struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
740{
741 int i;
742
743 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 struct resource *r = &dev->resource[i];
745
746 if (r->start && resource_contains(r, res))
747 return r;
748 }
749
750 return NULL;
751}
752EXPORT_SYMBOL(pci_find_resource);
753
754/**
755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756 * @dev: the PCI device to operate on
757 * @pos: config space offset of status word
758 * @mask: mask of bit(s) to care about in status word
759 *
760 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
761 */
762int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
763{
764 int i;
765
766 /* Wait for Transaction Pending bit clean */
767 for (i = 0; i < 4; i++) {
768 u16 status;
769 if (i)
770 msleep((1 << (i - 1)) * 100);
771
772 pci_read_config_word(dev, pos, &status);
773 if (!(status & mask))
774 return 1;
775 }
776
777 return 0;
778}
779
780static int pci_acs_enable;
781
782/**
783 * pci_request_acs - ask for ACS to be enabled if supported
784 */
785void pci_request_acs(void)
786{
787 pci_acs_enable = 1;
788}
789
790static const char *disable_acs_redir_param;
791
792/**
793 * pci_disable_acs_redir - disable ACS redirect capabilities
794 * @dev: the PCI device
795 *
796 * For only devices specified in the disable_acs_redir parameter.
797 */
798static void pci_disable_acs_redir(struct pci_dev *dev)
799{
800 int ret = 0;
801 const char *p;
802 int pos;
803 u16 ctrl;
804
805 if (!disable_acs_redir_param)
806 return;
807
808 p = disable_acs_redir_param;
809 while (*p) {
810 ret = pci_dev_str_match(dev, p, &p);
811 if (ret < 0) {
812 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
813 disable_acs_redir_param);
814
815 break;
816 } else if (ret == 1) {
817 /* Found a match */
818 break;
819 }
820
821 if (*p != ';' && *p != ',') {
822 /* End of param or invalid format */
823 break;
824 }
825 p++;
826 }
827
828 if (ret != 1)
829 return;
830
831 if (!pci_dev_specific_disable_acs_redir(dev))
832 return;
833
834 pos = dev->acs_cap;
835 if (!pos) {
836 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
837 return;
838 }
839
840 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
841
842 /* P2P Request & Completion Redirect */
843 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
844
845 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
846
847 pci_info(dev, "disabled ACS redirect\n");
848}
849
850/**
851 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
852 * @dev: the PCI device
853 */
854static void pci_std_enable_acs(struct pci_dev *dev)
855{
856 int pos;
857 u16 cap;
858 u16 ctrl;
859
860 pos = dev->acs_cap;
861 if (!pos)
862 return;
863
864 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
865 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
866
867 /* Source Validation */
868 ctrl |= (cap & PCI_ACS_SV);
869
870 /* P2P Request Redirect */
871 ctrl |= (cap & PCI_ACS_RR);
872
873 /* P2P Completion Redirect */
874 ctrl |= (cap & PCI_ACS_CR);
875
876 /* Upstream Forwarding */
877 ctrl |= (cap & PCI_ACS_UF);
878
879 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
880}
881
882/**
883 * pci_enable_acs - enable ACS if hardware support it
884 * @dev: the PCI device
885 */
886static void pci_enable_acs(struct pci_dev *dev)
887{
888 if (!pci_acs_enable)
889 goto disable_acs_redir;
890
891 if (!pci_dev_specific_enable_acs(dev))
892 goto disable_acs_redir;
893
894 pci_std_enable_acs(dev);
895
896disable_acs_redir:
897 /*
898 * Note: pci_disable_acs_redir() must be called even if ACS was not
899 * enabled by the kernel because it may have been enabled by
900 * platform firmware. So if we are told to disable it, we should
901 * always disable it after setting the kernel's default
902 * preferences.
903 */
904 pci_disable_acs_redir(dev);
905}
906
907/**
908 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
909 * @dev: PCI device to have its BARs restored
910 *
911 * Restore the BAR values for a given device, so as to make it
912 * accessible by its driver.
913 */
914static void pci_restore_bars(struct pci_dev *dev)
915{
916 int i;
917
918 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
919 pci_update_resource(dev, i);
920}
921
922static const struct pci_platform_pm_ops *pci_platform_pm;
923
924int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
925{
926 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
927 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
928 return -EINVAL;
929 pci_platform_pm = ops;
930 return 0;
931}
932
933static inline bool platform_pci_power_manageable(struct pci_dev *dev)
934{
935 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
936}
937
938static inline int platform_pci_set_power_state(struct pci_dev *dev,
939 pci_power_t t)
940{
941 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
942}
943
944static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
945{
946 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
947}
948
949static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
950{
951 if (pci_platform_pm && pci_platform_pm->refresh_state)
952 pci_platform_pm->refresh_state(dev);
953}
954
955static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
956{
957 return pci_platform_pm ?
958 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
959}
960
961static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
962{
963 return pci_platform_pm ?
964 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
965}
966
967static inline bool platform_pci_need_resume(struct pci_dev *dev)
968{
969 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
970}
971
972static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
973{
974 if (pci_platform_pm && pci_platform_pm->bridge_d3)
975 return pci_platform_pm->bridge_d3(dev);
976 return false;
977}
978
979/**
980 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
981 * given PCI device
982 * @dev: PCI device to handle.
983 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
984 *
985 * RETURN VALUE:
986 * -EINVAL if the requested state is invalid.
987 * -EIO if device does not support PCI PM or its PM capabilities register has a
988 * wrong version, or device doesn't support the requested state.
989 * 0 if device already is in the requested state.
990 * 0 if device's power state has been successfully changed.
991 */
992static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
993{
994 u16 pmcsr;
995 bool need_restore = false;
996
997 /* Check if we're already there */
998 if (dev->current_state == state)
999 return 0;
1000
1001 if (!dev->pm_cap)
1002 return -EIO;
1003
1004 if (state < PCI_D0 || state > PCI_D3hot)
1005 return -EINVAL;
1006
1007 /*
1008 * Validate transition: We can enter D0 from any state, but if
1009 * we're already in a low-power state, we can only go deeper. E.g.,
1010 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1011 * we'd have to go from D3 to D0, then to D1.
1012 */
1013 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1014 && dev->current_state > state) {
1015 pci_err(dev, "invalid power transition (from %s to %s)\n",
1016 pci_power_name(dev->current_state),
1017 pci_power_name(state));
1018 return -EINVAL;
1019 }
1020
1021 /* Check if this device supports the desired state */
1022 if ((state == PCI_D1 && !dev->d1_support)
1023 || (state == PCI_D2 && !dev->d2_support))
1024 return -EIO;
1025
1026 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1027 if (pmcsr == (u16) ~0) {
1028 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1029 pci_power_name(dev->current_state),
1030 pci_power_name(state));
1031 return -EIO;
1032 }
1033
1034 /*
1035 * If we're (effectively) in D3, force entire word to 0.
1036 * This doesn't affect PME_Status, disables PME_En, and
1037 * sets PowerState to 0.
1038 */
1039 switch (dev->current_state) {
1040 case PCI_D0:
1041 case PCI_D1:
1042 case PCI_D2:
1043 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1044 pmcsr |= state;
1045 break;
1046 case PCI_D3hot:
1047 case PCI_D3cold:
1048 case PCI_UNKNOWN: /* Boot-up */
1049 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1050 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1051 need_restore = true;
1052 fallthrough; /* force to D0 */
1053 default:
1054 pmcsr = 0;
1055 break;
1056 }
1057
1058 /* Enter specified state */
1059 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1060
1061 /*
1062 * Mandatory power management transition delays; see PCI PM 1.1
1063 * 5.6.1 table 18
1064 */
1065 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1066 pci_dev_d3_sleep(dev);
1067 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1068 msleep(PCI_PM_D2_DELAY);
1069
1070 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1072 if (dev->current_state != state)
1073 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1074 pci_power_name(dev->current_state),
1075 pci_power_name(state));
1076
1077 /*
1078 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1079 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1080 * from D3hot to D0 _may_ perform an internal reset, thereby
1081 * going to "D0 Uninitialized" rather than "D0 Initialized".
1082 * For example, at least some versions of the 3c905B and the
1083 * 3c556B exhibit this behaviour.
1084 *
1085 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1086 * devices in a D3hot state at boot. Consequently, we need to
1087 * restore at least the BARs so that the device will be
1088 * accessible to its driver.
1089 */
1090 if (need_restore)
1091 pci_restore_bars(dev);
1092
1093 if (dev->bus->self)
1094 pcie_aspm_pm_state_change(dev->bus->self);
1095
1096 return 0;
1097}
1098
1099/**
1100 * pci_update_current_state - Read power state of given device and cache it
1101 * @dev: PCI device to handle.
1102 * @state: State to cache in case the device doesn't have the PM capability
1103 *
1104 * The power state is read from the PMCSR register, which however is
1105 * inaccessible in D3cold. The platform firmware is therefore queried first
1106 * to detect accessibility of the register. In case the platform firmware
1107 * reports an incorrect state or the device isn't power manageable by the
1108 * platform at all, we try to detect D3cold by testing accessibility of the
1109 * vendor ID in config space.
1110 */
1111void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1112{
1113 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1114 !pci_device_is_present(dev)) {
1115 dev->current_state = PCI_D3cold;
1116 } else if (dev->pm_cap) {
1117 u16 pmcsr;
1118
1119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1121 } else {
1122 dev->current_state = state;
1123 }
1124}
1125
1126/**
1127 * pci_refresh_power_state - Refresh the given device's power state data
1128 * @dev: Target PCI device.
1129 *
1130 * Ask the platform to refresh the devices power state information and invoke
1131 * pci_update_current_state() to update its current PCI power state.
1132 */
1133void pci_refresh_power_state(struct pci_dev *dev)
1134{
1135 if (platform_pci_power_manageable(dev))
1136 platform_pci_refresh_power_state(dev);
1137
1138 pci_update_current_state(dev, dev->current_state);
1139}
1140
1141/**
1142 * pci_platform_power_transition - Use platform to change device power state
1143 * @dev: PCI device to handle.
1144 * @state: State to put the device into.
1145 */
1146int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1147{
1148 int error;
1149
1150 if (platform_pci_power_manageable(dev)) {
1151 error = platform_pci_set_power_state(dev, state);
1152 if (!error)
1153 pci_update_current_state(dev, state);
1154 } else
1155 error = -ENODEV;
1156
1157 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1158 dev->current_state = PCI_D0;
1159
1160 return error;
1161}
1162EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1163
1164/**
1165 * pci_wakeup - Wake up a PCI device
1166 * @pci_dev: Device to handle.
1167 * @ign: ignored parameter
1168 */
1169static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1170{
1171 pci_wakeup_event(pci_dev);
1172 pm_request_resume(&pci_dev->dev);
1173 return 0;
1174}
1175
1176/**
1177 * pci_wakeup_bus - Walk given bus and wake up devices on it
1178 * @bus: Top bus of the subtree to walk.
1179 */
1180void pci_wakeup_bus(struct pci_bus *bus)
1181{
1182 if (bus)
1183 pci_walk_bus(bus, pci_wakeup, NULL);
1184}
1185
1186static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1187{
1188 int delay = 1;
1189 u32 id;
1190
1191 /*
1192 * After reset, the device should not silently discard config
1193 * requests, but it may still indicate that it needs more time by
1194 * responding to them with CRS completions. The Root Port will
1195 * generally synthesize ~0 data to complete the read (except when
1196 * CRS SV is enabled and the read was for the Vendor ID; in that
1197 * case it synthesizes 0x0001 data).
1198 *
1199 * Wait for the device to return a non-CRS completion. Read the
1200 * Command register instead of Vendor ID so we don't have to
1201 * contend with the CRS SV value.
1202 */
1203 pci_read_config_dword(dev, PCI_COMMAND, &id);
1204 while (id == ~0) {
1205 if (delay > timeout) {
1206 pci_warn(dev, "not ready %dms after %s; giving up\n",
1207 delay - 1, reset_type);
1208 return -ENOTTY;
1209 }
1210
1211 if (delay > 1000)
1212 pci_info(dev, "not ready %dms after %s; waiting\n",
1213 delay - 1, reset_type);
1214
1215 msleep(delay);
1216 delay *= 2;
1217 pci_read_config_dword(dev, PCI_COMMAND, &id);
1218 }
1219
1220 if (delay > 1000)
1221 pci_info(dev, "ready %dms after %s\n", delay - 1,
1222 reset_type);
1223
1224 return 0;
1225}
1226
1227/**
1228 * pci_power_up - Put the given device into D0
1229 * @dev: PCI device to power up
1230 */
1231int pci_power_up(struct pci_dev *dev)
1232{
1233 pci_platform_power_transition(dev, PCI_D0);
1234
1235 /*
1236 * Mandatory power management transition delays are handled in
1237 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1238 * corresponding bridge.
1239 */
1240 if (dev->runtime_d3cold) {
1241 /*
1242 * When powering on a bridge from D3cold, the whole hierarchy
1243 * may be powered on into D0uninitialized state, resume them to
1244 * give them a chance to suspend again
1245 */
1246 pci_wakeup_bus(dev->subordinate);
1247 }
1248
1249 return pci_raw_set_power_state(dev, PCI_D0);
1250}
1251
1252/**
1253 * __pci_dev_set_current_state - Set current state of a PCI device
1254 * @dev: Device to handle
1255 * @data: pointer to state to be set
1256 */
1257static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1258{
1259 pci_power_t state = *(pci_power_t *)data;
1260
1261 dev->current_state = state;
1262 return 0;
1263}
1264
1265/**
1266 * pci_bus_set_current_state - Walk given bus and set current state of devices
1267 * @bus: Top bus of the subtree to walk.
1268 * @state: state to be set
1269 */
1270void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1271{
1272 if (bus)
1273 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1274}
1275
1276/**
1277 * pci_set_power_state - Set the power state of a PCI device
1278 * @dev: PCI device to handle.
1279 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1280 *
1281 * Transition a device to a new power state, using the platform firmware and/or
1282 * the device's PCI PM registers.
1283 *
1284 * RETURN VALUE:
1285 * -EINVAL if the requested state is invalid.
1286 * -EIO if device does not support PCI PM or its PM capabilities register has a
1287 * wrong version, or device doesn't support the requested state.
1288 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1289 * 0 if device already is in the requested state.
1290 * 0 if the transition is to D3 but D3 is not supported.
1291 * 0 if device's power state has been successfully changed.
1292 */
1293int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1294{
1295 int error;
1296
1297 /* Bound the state we're entering */
1298 if (state > PCI_D3cold)
1299 state = PCI_D3cold;
1300 else if (state < PCI_D0)
1301 state = PCI_D0;
1302 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1303
1304 /*
1305 * If the device or the parent bridge do not support PCI
1306 * PM, ignore the request if we're doing anything other
1307 * than putting it into D0 (which would only happen on
1308 * boot).
1309 */
1310 return 0;
1311
1312 /* Check if we're already there */
1313 if (dev->current_state == state)
1314 return 0;
1315
1316 if (state == PCI_D0)
1317 return pci_power_up(dev);
1318
1319 /*
1320 * This device is quirked not to be put into D3, so don't put it in
1321 * D3
1322 */
1323 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1324 return 0;
1325
1326 /*
1327 * To put device in D3cold, we put device into D3hot in native
1328 * way, then put device into D3cold with platform ops
1329 */
1330 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1331 PCI_D3hot : state);
1332
1333 if (pci_platform_power_transition(dev, state))
1334 return error;
1335
1336 /* Powering off a bridge may power off the whole hierarchy */
1337 if (state == PCI_D3cold)
1338 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1339
1340 return 0;
1341}
1342EXPORT_SYMBOL(pci_set_power_state);
1343
1344/**
1345 * pci_choose_state - Choose the power state of a PCI device
1346 * @dev: PCI device to be suspended
1347 * @state: target sleep state for the whole system. This is the value
1348 * that is passed to suspend() function.
1349 *
1350 * Returns PCI power state suitable for given device and given system
1351 * message.
1352 */
1353pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1354{
1355 pci_power_t ret;
1356
1357 if (!dev->pm_cap)
1358 return PCI_D0;
1359
1360 ret = platform_pci_choose_state(dev);
1361 if (ret != PCI_POWER_ERROR)
1362 return ret;
1363
1364 switch (state.event) {
1365 case PM_EVENT_ON:
1366 return PCI_D0;
1367 case PM_EVENT_FREEZE:
1368 case PM_EVENT_PRETHAW:
1369 /* REVISIT both freeze and pre-thaw "should" use D0 */
1370 case PM_EVENT_SUSPEND:
1371 case PM_EVENT_HIBERNATE:
1372 return PCI_D3hot;
1373 default:
1374 pci_info(dev, "unrecognized suspend event %d\n",
1375 state.event);
1376 BUG();
1377 }
1378 return PCI_D0;
1379}
1380EXPORT_SYMBOL(pci_choose_state);
1381
1382#define PCI_EXP_SAVE_REGS 7
1383
1384static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1385 u16 cap, bool extended)
1386{
1387 struct pci_cap_saved_state *tmp;
1388
1389 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1390 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1391 return tmp;
1392 }
1393 return NULL;
1394}
1395
1396struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1397{
1398 return _pci_find_saved_cap(dev, cap, false);
1399}
1400
1401struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1402{
1403 return _pci_find_saved_cap(dev, cap, true);
1404}
1405
1406static int pci_save_pcie_state(struct pci_dev *dev)
1407{
1408 int i = 0;
1409 struct pci_cap_saved_state *save_state;
1410 u16 *cap;
1411
1412 if (!pci_is_pcie(dev))
1413 return 0;
1414
1415 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1416 if (!save_state) {
1417 pci_err(dev, "buffer not found in %s\n", __func__);
1418 return -ENOMEM;
1419 }
1420
1421 cap = (u16 *)&save_state->cap.data[0];
1422 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1423 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1424 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1425 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1426 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1427 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1428 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1429
1430 return 0;
1431}
1432
1433static void pci_restore_pcie_state(struct pci_dev *dev)
1434{
1435 int i = 0;
1436 struct pci_cap_saved_state *save_state;
1437 u16 *cap;
1438
1439 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1440 if (!save_state)
1441 return;
1442
1443 cap = (u16 *)&save_state->cap.data[0];
1444 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1445 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1446 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1447 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1448 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1449 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1450 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1451}
1452
1453static int pci_save_pcix_state(struct pci_dev *dev)
1454{
1455 int pos;
1456 struct pci_cap_saved_state *save_state;
1457
1458 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1459 if (!pos)
1460 return 0;
1461
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1463 if (!save_state) {
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1465 return -ENOMEM;
1466 }
1467
1468 pci_read_config_word(dev, pos + PCI_X_CMD,
1469 (u16 *)save_state->cap.data);
1470
1471 return 0;
1472}
1473
1474static void pci_restore_pcix_state(struct pci_dev *dev)
1475{
1476 int i = 0, pos;
1477 struct pci_cap_saved_state *save_state;
1478 u16 *cap;
1479
1480 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1481 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1482 if (!save_state || !pos)
1483 return;
1484 cap = (u16 *)&save_state->cap.data[0];
1485
1486 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1487}
1488
1489static void pci_save_ltr_state(struct pci_dev *dev)
1490{
1491 int ltr;
1492 struct pci_cap_saved_state *save_state;
1493 u16 *cap;
1494
1495 if (!pci_is_pcie(dev))
1496 return;
1497
1498 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1499 if (!ltr)
1500 return;
1501
1502 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1503 if (!save_state) {
1504 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1505 return;
1506 }
1507
1508 cap = (u16 *)&save_state->cap.data[0];
1509 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1510 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1511}
1512
1513static void pci_restore_ltr_state(struct pci_dev *dev)
1514{
1515 struct pci_cap_saved_state *save_state;
1516 int ltr;
1517 u16 *cap;
1518
1519 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1521 if (!save_state || !ltr)
1522 return;
1523
1524 cap = (u16 *)&save_state->cap.data[0];
1525 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1526 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1527}
1528
1529/**
1530 * pci_save_state - save the PCI configuration space of a device before
1531 * suspending
1532 * @dev: PCI device that we're dealing with
1533 */
1534int pci_save_state(struct pci_dev *dev)
1535{
1536 int i;
1537 /* XXX: 100% dword access ok here? */
1538 for (i = 0; i < 16; i++) {
1539 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1540 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1541 i * 4, dev->saved_config_space[i]);
1542 }
1543 dev->state_saved = true;
1544
1545 i = pci_save_pcie_state(dev);
1546 if (i != 0)
1547 return i;
1548
1549 i = pci_save_pcix_state(dev);
1550 if (i != 0)
1551 return i;
1552
1553 pci_save_ltr_state(dev);
1554 pci_save_dpc_state(dev);
1555 pci_save_aer_state(dev);
1556 return pci_save_vc_state(dev);
1557}
1558EXPORT_SYMBOL(pci_save_state);
1559
1560static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1561 u32 saved_val, int retry, bool force)
1562{
1563 u32 val;
1564
1565 pci_read_config_dword(pdev, offset, &val);
1566 if (!force && val == saved_val)
1567 return;
1568
1569 for (;;) {
1570 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1571 offset, val, saved_val);
1572 pci_write_config_dword(pdev, offset, saved_val);
1573 if (retry-- <= 0)
1574 return;
1575
1576 pci_read_config_dword(pdev, offset, &val);
1577 if (val == saved_val)
1578 return;
1579
1580 mdelay(1);
1581 }
1582}
1583
1584static void pci_restore_config_space_range(struct pci_dev *pdev,
1585 int start, int end, int retry,
1586 bool force)
1587{
1588 int index;
1589
1590 for (index = end; index >= start; index--)
1591 pci_restore_config_dword(pdev, 4 * index,
1592 pdev->saved_config_space[index],
1593 retry, force);
1594}
1595
1596static void pci_restore_config_space(struct pci_dev *pdev)
1597{
1598 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1599 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1600 /* Restore BARs before the command register. */
1601 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1602 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1603 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1604 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1605
1606 /*
1607 * Force rewriting of prefetch registers to avoid S3 resume
1608 * issues on Intel PCI bridges that occur when these
1609 * registers are not explicitly written.
1610 */
1611 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1612 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1613 } else {
1614 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1615 }
1616}
1617
1618static void pci_restore_rebar_state(struct pci_dev *pdev)
1619{
1620 unsigned int pos, nbars, i;
1621 u32 ctrl;
1622
1623 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1624 if (!pos)
1625 return;
1626
1627 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1628 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1629 PCI_REBAR_CTRL_NBAR_SHIFT;
1630
1631 for (i = 0; i < nbars; i++, pos += 8) {
1632 struct resource *res;
1633 int bar_idx, size;
1634
1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1637 res = pdev->resource + bar_idx;
1638 size = ilog2(resource_size(res)) - 20;
1639 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1640 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1641 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1642 }
1643}
1644
1645/**
1646 * pci_restore_state - Restore the saved state of a PCI device
1647 * @dev: PCI device that we're dealing with
1648 */
1649void pci_restore_state(struct pci_dev *dev)
1650{
1651 if (!dev->state_saved)
1652 return;
1653
1654 /*
1655 * Restore max latencies (in the LTR capability) before enabling
1656 * LTR itself (in the PCIe capability).
1657 */
1658 pci_restore_ltr_state(dev);
1659
1660 pci_restore_pcie_state(dev);
1661 pci_restore_pasid_state(dev);
1662 pci_restore_pri_state(dev);
1663 pci_restore_ats_state(dev);
1664 pci_restore_vc_state(dev);
1665 pci_restore_rebar_state(dev);
1666 pci_restore_dpc_state(dev);
1667
1668 pci_aer_clear_status(dev);
1669 pci_restore_aer_state(dev);
1670
1671 pci_restore_config_space(dev);
1672
1673 pci_restore_pcix_state(dev);
1674 pci_restore_msi_state(dev);
1675
1676 /* Restore ACS and IOV configuration state */
1677 pci_enable_acs(dev);
1678 pci_restore_iov_state(dev);
1679
1680 dev->state_saved = false;
1681}
1682EXPORT_SYMBOL(pci_restore_state);
1683
1684struct pci_saved_state {
1685 u32 config_space[16];
1686 struct pci_cap_saved_data cap[];
1687};
1688
1689/**
1690 * pci_store_saved_state - Allocate and return an opaque struct containing
1691 * the device saved state.
1692 * @dev: PCI device that we're dealing with
1693 *
1694 * Return NULL if no state or error.
1695 */
1696struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1697{
1698 struct pci_saved_state *state;
1699 struct pci_cap_saved_state *tmp;
1700 struct pci_cap_saved_data *cap;
1701 size_t size;
1702
1703 if (!dev->state_saved)
1704 return NULL;
1705
1706 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1707
1708 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1709 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1710
1711 state = kzalloc(size, GFP_KERNEL);
1712 if (!state)
1713 return NULL;
1714
1715 memcpy(state->config_space, dev->saved_config_space,
1716 sizeof(state->config_space));
1717
1718 cap = state->cap;
1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1720 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721 memcpy(cap, &tmp->cap, len);
1722 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1723 }
1724 /* Empty cap_save terminates list */
1725
1726 return state;
1727}
1728EXPORT_SYMBOL_GPL(pci_store_saved_state);
1729
1730/**
1731 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1732 * @dev: PCI device that we're dealing with
1733 * @state: Saved state returned from pci_store_saved_state()
1734 */
1735int pci_load_saved_state(struct pci_dev *dev,
1736 struct pci_saved_state *state)
1737{
1738 struct pci_cap_saved_data *cap;
1739
1740 dev->state_saved = false;
1741
1742 if (!state)
1743 return 0;
1744
1745 memcpy(dev->saved_config_space, state->config_space,
1746 sizeof(state->config_space));
1747
1748 cap = state->cap;
1749 while (cap->size) {
1750 struct pci_cap_saved_state *tmp;
1751
1752 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1753 if (!tmp || tmp->cap.size != cap->size)
1754 return -EINVAL;
1755
1756 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1757 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1758 sizeof(struct pci_cap_saved_data) + cap->size);
1759 }
1760
1761 dev->state_saved = true;
1762 return 0;
1763}
1764EXPORT_SYMBOL_GPL(pci_load_saved_state);
1765
1766/**
1767 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1768 * and free the memory allocated for it.
1769 * @dev: PCI device that we're dealing with
1770 * @state: Pointer to saved state returned from pci_store_saved_state()
1771 */
1772int pci_load_and_free_saved_state(struct pci_dev *dev,
1773 struct pci_saved_state **state)
1774{
1775 int ret = pci_load_saved_state(dev, *state);
1776 kfree(*state);
1777 *state = NULL;
1778 return ret;
1779}
1780EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1781
1782int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1783{
1784 return pci_enable_resources(dev, bars);
1785}
1786
1787static int do_pci_enable_device(struct pci_dev *dev, int bars)
1788{
1789 int err;
1790 struct pci_dev *bridge;
1791 u16 cmd;
1792 u8 pin;
1793
1794 err = pci_set_power_state(dev, PCI_D0);
1795 if (err < 0 && err != -EIO)
1796 return err;
1797
1798 bridge = pci_upstream_bridge(dev);
1799 if (bridge)
1800 pcie_aspm_powersave_config_link(bridge);
1801
1802 err = pcibios_enable_device(dev, bars);
1803 if (err < 0)
1804 return err;
1805 pci_fixup_device(pci_fixup_enable, dev);
1806
1807 if (dev->msi_enabled || dev->msix_enabled)
1808 return 0;
1809
1810 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1811 if (pin) {
1812 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1813 if (cmd & PCI_COMMAND_INTX_DISABLE)
1814 pci_write_config_word(dev, PCI_COMMAND,
1815 cmd & ~PCI_COMMAND_INTX_DISABLE);
1816 }
1817
1818 return 0;
1819}
1820
1821/**
1822 * pci_reenable_device - Resume abandoned device
1823 * @dev: PCI device to be resumed
1824 *
1825 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1826 * to be called by normal code, write proper resume handler and use it instead.
1827 */
1828int pci_reenable_device(struct pci_dev *dev)
1829{
1830 if (pci_is_enabled(dev))
1831 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1832 return 0;
1833}
1834EXPORT_SYMBOL(pci_reenable_device);
1835
1836static void pci_enable_bridge(struct pci_dev *dev)
1837{
1838 struct pci_dev *bridge;
1839 int retval;
1840
1841 bridge = pci_upstream_bridge(dev);
1842 if (bridge)
1843 pci_enable_bridge(bridge);
1844
1845 if (pci_is_enabled(dev)) {
1846 if (!dev->is_busmaster)
1847 pci_set_master(dev);
1848 return;
1849 }
1850
1851 retval = pci_enable_device(dev);
1852 if (retval)
1853 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1854 retval);
1855 pci_set_master(dev);
1856}
1857
1858static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1859{
1860 struct pci_dev *bridge;
1861 int err;
1862 int i, bars = 0;
1863
1864 /*
1865 * Power state could be unknown at this point, either due to a fresh
1866 * boot or a device removal call. So get the current power state
1867 * so that things like MSI message writing will behave as expected
1868 * (e.g. if the device really is in D0 at enable time).
1869 */
1870 if (dev->pm_cap) {
1871 u16 pmcsr;
1872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1873 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1874 }
1875
1876 if (atomic_inc_return(&dev->enable_cnt) > 1)
1877 return 0; /* already enabled */
1878
1879 bridge = pci_upstream_bridge(dev);
1880 if (bridge)
1881 pci_enable_bridge(bridge);
1882
1883 /* only skip sriov related */
1884 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1885 if (dev->resource[i].flags & flags)
1886 bars |= (1 << i);
1887 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1888 if (dev->resource[i].flags & flags)
1889 bars |= (1 << i);
1890
1891 err = do_pci_enable_device(dev, bars);
1892 if (err < 0)
1893 atomic_dec(&dev->enable_cnt);
1894 return err;
1895}
1896
1897/**
1898 * pci_enable_device_io - Initialize a device for use with IO space
1899 * @dev: PCI device to be initialized
1900 *
1901 * Initialize device before it's used by a driver. Ask low-level code
1902 * to enable I/O resources. Wake up the device if it was suspended.
1903 * Beware, this function can fail.
1904 */
1905int pci_enable_device_io(struct pci_dev *dev)
1906{
1907 return pci_enable_device_flags(dev, IORESOURCE_IO);
1908}
1909EXPORT_SYMBOL(pci_enable_device_io);
1910
1911/**
1912 * pci_enable_device_mem - Initialize a device for use with Memory space
1913 * @dev: PCI device to be initialized
1914 *
1915 * Initialize device before it's used by a driver. Ask low-level code
1916 * to enable Memory resources. Wake up the device if it was suspended.
1917 * Beware, this function can fail.
1918 */
1919int pci_enable_device_mem(struct pci_dev *dev)
1920{
1921 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1922}
1923EXPORT_SYMBOL(pci_enable_device_mem);
1924
1925/**
1926 * pci_enable_device - Initialize device before it's used by a driver.
1927 * @dev: PCI device to be initialized
1928 *
1929 * Initialize device before it's used by a driver. Ask low-level code
1930 * to enable I/O and memory. Wake up the device if it was suspended.
1931 * Beware, this function can fail.
1932 *
1933 * Note we don't actually enable the device many times if we call
1934 * this function repeatedly (we just increment the count).
1935 */
1936int pci_enable_device(struct pci_dev *dev)
1937{
1938 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1939}
1940EXPORT_SYMBOL(pci_enable_device);
1941
1942/*
1943 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1944 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1945 * there's no need to track it separately. pci_devres is initialized
1946 * when a device is enabled using managed PCI device enable interface.
1947 */
1948struct pci_devres {
1949 unsigned int enabled:1;
1950 unsigned int pinned:1;
1951 unsigned int orig_intx:1;
1952 unsigned int restore_intx:1;
1953 unsigned int mwi:1;
1954 u32 region_mask;
1955};
1956
1957static void pcim_release(struct device *gendev, void *res)
1958{
1959 struct pci_dev *dev = to_pci_dev(gendev);
1960 struct pci_devres *this = res;
1961 int i;
1962
1963 if (dev->msi_enabled)
1964 pci_disable_msi(dev);
1965 if (dev->msix_enabled)
1966 pci_disable_msix(dev);
1967
1968 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1969 if (this->region_mask & (1 << i))
1970 pci_release_region(dev, i);
1971
1972 if (this->mwi)
1973 pci_clear_mwi(dev);
1974
1975 if (this->restore_intx)
1976 pci_intx(dev, this->orig_intx);
1977
1978 if (this->enabled && !this->pinned)
1979 pci_disable_device(dev);
1980}
1981
1982static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1983{
1984 struct pci_devres *dr, *new_dr;
1985
1986 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1987 if (dr)
1988 return dr;
1989
1990 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1991 if (!new_dr)
1992 return NULL;
1993 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1994}
1995
1996static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1997{
1998 if (pci_is_managed(pdev))
1999 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 return NULL;
2001}
2002
2003/**
2004 * pcim_enable_device - Managed pci_enable_device()
2005 * @pdev: PCI device to be initialized
2006 *
2007 * Managed pci_enable_device().
2008 */
2009int pcim_enable_device(struct pci_dev *pdev)
2010{
2011 struct pci_devres *dr;
2012 int rc;
2013
2014 dr = get_pci_dr(pdev);
2015 if (unlikely(!dr))
2016 return -ENOMEM;
2017 if (dr->enabled)
2018 return 0;
2019
2020 rc = pci_enable_device(pdev);
2021 if (!rc) {
2022 pdev->is_managed = 1;
2023 dr->enabled = 1;
2024 }
2025 return rc;
2026}
2027EXPORT_SYMBOL(pcim_enable_device);
2028
2029/**
2030 * pcim_pin_device - Pin managed PCI device
2031 * @pdev: PCI device to pin
2032 *
2033 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2034 * driver detach. @pdev must have been enabled with
2035 * pcim_enable_device().
2036 */
2037void pcim_pin_device(struct pci_dev *pdev)
2038{
2039 struct pci_devres *dr;
2040
2041 dr = find_pci_dr(pdev);
2042 WARN_ON(!dr || !dr->enabled);
2043 if (dr)
2044 dr->pinned = 1;
2045}
2046EXPORT_SYMBOL(pcim_pin_device);
2047
2048/*
2049 * pcibios_add_device - provide arch specific hooks when adding device dev
2050 * @dev: the PCI device being added
2051 *
2052 * Permits the platform to provide architecture specific functionality when
2053 * devices are added. This is the default implementation. Architecture
2054 * implementations can override this.
2055 */
2056int __weak pcibios_add_device(struct pci_dev *dev)
2057{
2058 return 0;
2059}
2060
2061/**
2062 * pcibios_release_device - provide arch specific hooks when releasing
2063 * device dev
2064 * @dev: the PCI device being released
2065 *
2066 * Permits the platform to provide architecture specific functionality when
2067 * devices are released. This is the default implementation. Architecture
2068 * implementations can override this.
2069 */
2070void __weak pcibios_release_device(struct pci_dev *dev) {}
2071
2072/**
2073 * pcibios_disable_device - disable arch specific PCI resources for device dev
2074 * @dev: the PCI device to disable
2075 *
2076 * Disables architecture specific PCI resources for the device. This
2077 * is the default implementation. Architecture implementations can
2078 * override this.
2079 */
2080void __weak pcibios_disable_device(struct pci_dev *dev) {}
2081
2082/**
2083 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2084 * @irq: ISA IRQ to penalize
2085 * @active: IRQ active or not
2086 *
2087 * Permits the platform to provide architecture-specific functionality when
2088 * penalizing ISA IRQs. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2092
2093static void do_pci_disable_device(struct pci_dev *dev)
2094{
2095 u16 pci_command;
2096
2097 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2098 if (pci_command & PCI_COMMAND_MASTER) {
2099 pci_command &= ~PCI_COMMAND_MASTER;
2100 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2101 }
2102
2103 pcibios_disable_device(dev);
2104}
2105
2106/**
2107 * pci_disable_enabled_device - Disable device without updating enable_cnt
2108 * @dev: PCI device to disable
2109 *
2110 * NOTE: This function is a backend of PCI power management routines and is
2111 * not supposed to be called drivers.
2112 */
2113void pci_disable_enabled_device(struct pci_dev *dev)
2114{
2115 if (pci_is_enabled(dev))
2116 do_pci_disable_device(dev);
2117}
2118
2119/**
2120 * pci_disable_device - Disable PCI device after use
2121 * @dev: PCI device to be disabled
2122 *
2123 * Signal to the system that the PCI device is not in use by the system
2124 * anymore. This only involves disabling PCI bus-mastering, if active.
2125 *
2126 * Note we don't actually disable the device until all callers of
2127 * pci_enable_device() have called pci_disable_device().
2128 */
2129void pci_disable_device(struct pci_dev *dev)
2130{
2131 struct pci_devres *dr;
2132
2133 dr = find_pci_dr(dev);
2134 if (dr)
2135 dr->enabled = 0;
2136
2137 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2138 "disabling already-disabled device");
2139
2140 if (atomic_dec_return(&dev->enable_cnt) != 0)
2141 return;
2142
2143 do_pci_disable_device(dev);
2144
2145 dev->is_busmaster = 0;
2146}
2147EXPORT_SYMBOL(pci_disable_device);
2148
2149/**
2150 * pcibios_set_pcie_reset_state - set reset state for device dev
2151 * @dev: the PCIe device reset
2152 * @state: Reset state to enter into
2153 *
2154 * Set the PCIe reset state for the device. This is the default
2155 * implementation. Architecture implementations can override this.
2156 */
2157int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2158 enum pcie_reset_state state)
2159{
2160 return -EINVAL;
2161}
2162
2163/**
2164 * pci_set_pcie_reset_state - set reset state for device dev
2165 * @dev: the PCIe device reset
2166 * @state: Reset state to enter into
2167 *
2168 * Sets the PCI reset state for the device.
2169 */
2170int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2171{
2172 return pcibios_set_pcie_reset_state(dev, state);
2173}
2174EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2175
2176void pcie_clear_device_status(struct pci_dev *dev)
2177{
2178 u16 sta;
2179
2180 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2181 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2182}
2183
2184/**
2185 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2186 * @dev: PCIe root port or event collector.
2187 */
2188void pcie_clear_root_pme_status(struct pci_dev *dev)
2189{
2190 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2191}
2192
2193/**
2194 * pci_check_pme_status - Check if given device has generated PME.
2195 * @dev: Device to check.
2196 *
2197 * Check the PME status of the device and if set, clear it and clear PME enable
2198 * (if set). Return 'true' if PME status and PME enable were both set or
2199 * 'false' otherwise.
2200 */
2201bool pci_check_pme_status(struct pci_dev *dev)
2202{
2203 int pmcsr_pos;
2204 u16 pmcsr;
2205 bool ret = false;
2206
2207 if (!dev->pm_cap)
2208 return false;
2209
2210 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2211 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2212 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2213 return false;
2214
2215 /* Clear PME status. */
2216 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2217 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2218 /* Disable PME to avoid interrupt flood. */
2219 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2220 ret = true;
2221 }
2222
2223 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2224
2225 return ret;
2226}
2227
2228/**
2229 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2230 * @dev: Device to handle.
2231 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2232 *
2233 * Check if @dev has generated PME and queue a resume request for it in that
2234 * case.
2235 */
2236static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2237{
2238 if (pme_poll_reset && dev->pme_poll)
2239 dev->pme_poll = false;
2240
2241 if (pci_check_pme_status(dev)) {
2242 pci_wakeup_event(dev);
2243 pm_request_resume(&dev->dev);
2244 }
2245 return 0;
2246}
2247
2248/**
2249 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2250 * @bus: Top bus of the subtree to walk.
2251 */
2252void pci_pme_wakeup_bus(struct pci_bus *bus)
2253{
2254 if (bus)
2255 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2256}
2257
2258
2259/**
2260 * pci_pme_capable - check the capability of PCI device to generate PME#
2261 * @dev: PCI device to handle.
2262 * @state: PCI state from which device will issue PME#.
2263 */
2264bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2265{
2266 if (!dev->pm_cap)
2267 return false;
2268
2269 return !!(dev->pme_support & (1 << state));
2270}
2271EXPORT_SYMBOL(pci_pme_capable);
2272
2273static void pci_pme_list_scan(struct work_struct *work)
2274{
2275 struct pci_pme_device *pme_dev, *n;
2276
2277 mutex_lock(&pci_pme_list_mutex);
2278 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2279 if (pme_dev->dev->pme_poll) {
2280 struct pci_dev *bridge;
2281
2282 bridge = pme_dev->dev->bus->self;
2283 /*
2284 * If bridge is in low power state, the
2285 * configuration space of subordinate devices
2286 * may be not accessible
2287 */
2288 if (bridge && bridge->current_state != PCI_D0)
2289 continue;
2290 /*
2291 * If the device is in D3cold it should not be
2292 * polled either.
2293 */
2294 if (pme_dev->dev->current_state == PCI_D3cold)
2295 continue;
2296
2297 pci_pme_wakeup(pme_dev->dev, NULL);
2298 } else {
2299 list_del(&pme_dev->list);
2300 kfree(pme_dev);
2301 }
2302 }
2303 if (!list_empty(&pci_pme_list))
2304 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2305 msecs_to_jiffies(PME_TIMEOUT));
2306 mutex_unlock(&pci_pme_list_mutex);
2307}
2308
2309static void __pci_pme_active(struct pci_dev *dev, bool enable)
2310{
2311 u16 pmcsr;
2312
2313 if (!dev->pme_support)
2314 return;
2315
2316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2317 /* Clear PME_Status by writing 1 to it and enable PME# */
2318 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2319 if (!enable)
2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321
2322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2323}
2324
2325/**
2326 * pci_pme_restore - Restore PME configuration after config space restore.
2327 * @dev: PCI device to update.
2328 */
2329void pci_pme_restore(struct pci_dev *dev)
2330{
2331 u16 pmcsr;
2332
2333 if (!dev->pme_support)
2334 return;
2335
2336 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2337 if (dev->wakeup_prepared) {
2338 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2339 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2340 } else {
2341 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2342 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2343 }
2344 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2345}
2346
2347/**
2348 * pci_pme_active - enable or disable PCI device's PME# function
2349 * @dev: PCI device to handle.
2350 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2351 *
2352 * The caller must verify that the device is capable of generating PME# before
2353 * calling this function with @enable equal to 'true'.
2354 */
2355void pci_pme_active(struct pci_dev *dev, bool enable)
2356{
2357 __pci_pme_active(dev, enable);
2358
2359 /*
2360 * PCI (as opposed to PCIe) PME requires that the device have
2361 * its PME# line hooked up correctly. Not all hardware vendors
2362 * do this, so the PME never gets delivered and the device
2363 * remains asleep. The easiest way around this is to
2364 * periodically walk the list of suspended devices and check
2365 * whether any have their PME flag set. The assumption is that
2366 * we'll wake up often enough anyway that this won't be a huge
2367 * hit, and the power savings from the devices will still be a
2368 * win.
2369 *
2370 * Although PCIe uses in-band PME message instead of PME# line
2371 * to report PME, PME does not work for some PCIe devices in
2372 * reality. For example, there are devices that set their PME
2373 * status bits, but don't really bother to send a PME message;
2374 * there are PCI Express Root Ports that don't bother to
2375 * trigger interrupts when they receive PME messages from the
2376 * devices below. So PME poll is used for PCIe devices too.
2377 */
2378
2379 if (dev->pme_poll) {
2380 struct pci_pme_device *pme_dev;
2381 if (enable) {
2382 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2383 GFP_KERNEL);
2384 if (!pme_dev) {
2385 pci_warn(dev, "can't enable PME#\n");
2386 return;
2387 }
2388 pme_dev->dev = dev;
2389 mutex_lock(&pci_pme_list_mutex);
2390 list_add(&pme_dev->list, &pci_pme_list);
2391 if (list_is_singular(&pci_pme_list))
2392 queue_delayed_work(system_freezable_wq,
2393 &pci_pme_work,
2394 msecs_to_jiffies(PME_TIMEOUT));
2395 mutex_unlock(&pci_pme_list_mutex);
2396 } else {
2397 mutex_lock(&pci_pme_list_mutex);
2398 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2399 if (pme_dev->dev == dev) {
2400 list_del(&pme_dev->list);
2401 kfree(pme_dev);
2402 break;
2403 }
2404 }
2405 mutex_unlock(&pci_pme_list_mutex);
2406 }
2407 }
2408
2409 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2410}
2411EXPORT_SYMBOL(pci_pme_active);
2412
2413/**
2414 * __pci_enable_wake - enable PCI device as wakeup event source
2415 * @dev: PCI device affected
2416 * @state: PCI state from which device will issue wakeup events
2417 * @enable: True to enable event generation; false to disable
2418 *
2419 * This enables the device as a wakeup event source, or disables it.
2420 * When such events involves platform-specific hooks, those hooks are
2421 * called automatically by this routine.
2422 *
2423 * Devices with legacy power management (no standard PCI PM capabilities)
2424 * always require such platform hooks.
2425 *
2426 * RETURN VALUE:
2427 * 0 is returned on success
2428 * -EINVAL is returned if device is not supposed to wake up the system
2429 * Error code depending on the platform is returned if both the platform and
2430 * the native mechanism fail to enable the generation of wake-up events
2431 */
2432static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2433{
2434 int ret = 0;
2435
2436 /*
2437 * Bridges that are not power-manageable directly only signal
2438 * wakeup on behalf of subordinate devices which is set up
2439 * elsewhere, so skip them. However, bridges that are
2440 * power-manageable may signal wakeup for themselves (for example,
2441 * on a hotplug event) and they need to be covered here.
2442 */
2443 if (!pci_power_manageable(dev))
2444 return 0;
2445
2446 /* Don't do the same thing twice in a row for one device. */
2447 if (!!enable == !!dev->wakeup_prepared)
2448 return 0;
2449
2450 /*
2451 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2452 * Anderson we should be doing PME# wake enable followed by ACPI wake
2453 * enable. To disable wake-up we call the platform first, for symmetry.
2454 */
2455
2456 if (enable) {
2457 int error;
2458
2459 if (pci_pme_capable(dev, state))
2460 pci_pme_active(dev, true);
2461 else
2462 ret = 1;
2463 error = platform_pci_set_wakeup(dev, true);
2464 if (ret)
2465 ret = error;
2466 if (!ret)
2467 dev->wakeup_prepared = true;
2468 } else {
2469 platform_pci_set_wakeup(dev, false);
2470 pci_pme_active(dev, false);
2471 dev->wakeup_prepared = false;
2472 }
2473
2474 return ret;
2475}
2476
2477/**
2478 * pci_enable_wake - change wakeup settings for a PCI device
2479 * @pci_dev: Target device
2480 * @state: PCI state from which device will issue wakeup events
2481 * @enable: Whether or not to enable event generation
2482 *
2483 * If @enable is set, check device_may_wakeup() for the device before calling
2484 * __pci_enable_wake() for it.
2485 */
2486int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2487{
2488 if (enable && !device_may_wakeup(&pci_dev->dev))
2489 return -EINVAL;
2490
2491 return __pci_enable_wake(pci_dev, state, enable);
2492}
2493EXPORT_SYMBOL(pci_enable_wake);
2494
2495/**
2496 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2497 * @dev: PCI device to prepare
2498 * @enable: True to enable wake-up event generation; false to disable
2499 *
2500 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2501 * and this function allows them to set that up cleanly - pci_enable_wake()
2502 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2503 * ordering constraints.
2504 *
2505 * This function only returns error code if the device is not allowed to wake
2506 * up the system from sleep or it is not capable of generating PME# from both
2507 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2508 */
2509int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2510{
2511 return pci_pme_capable(dev, PCI_D3cold) ?
2512 pci_enable_wake(dev, PCI_D3cold, enable) :
2513 pci_enable_wake(dev, PCI_D3hot, enable);
2514}
2515EXPORT_SYMBOL(pci_wake_from_d3);
2516
2517/**
2518 * pci_target_state - find an appropriate low power state for a given PCI dev
2519 * @dev: PCI device
2520 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2521 *
2522 * Use underlying platform code to find a supported low power state for @dev.
2523 * If the platform can't manage @dev, return the deepest state from which it
2524 * can generate wake events, based on any available PME info.
2525 */
2526static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2527{
2528 pci_power_t target_state = PCI_D3hot;
2529
2530 if (platform_pci_power_manageable(dev)) {
2531 /*
2532 * Call the platform to find the target state for the device.
2533 */
2534 pci_power_t state = platform_pci_choose_state(dev);
2535
2536 switch (state) {
2537 case PCI_POWER_ERROR:
2538 case PCI_UNKNOWN:
2539 break;
2540 case PCI_D1:
2541 case PCI_D2:
2542 if (pci_no_d1d2(dev))
2543 break;
2544 fallthrough;
2545 default:
2546 target_state = state;
2547 }
2548
2549 return target_state;
2550 }
2551
2552 if (!dev->pm_cap)
2553 target_state = PCI_D0;
2554
2555 /*
2556 * If the device is in D3cold even though it's not power-manageable by
2557 * the platform, it may have been powered down by non-standard means.
2558 * Best to let it slumber.
2559 */
2560 if (dev->current_state == PCI_D3cold)
2561 target_state = PCI_D3cold;
2562
2563 if (wakeup) {
2564 /*
2565 * Find the deepest state from which the device can generate
2566 * PME#.
2567 */
2568 if (dev->pme_support) {
2569 while (target_state
2570 && !(dev->pme_support & (1 << target_state)))
2571 target_state--;
2572 }
2573 }
2574
2575 return target_state;
2576}
2577
2578/**
2579 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2580 * into a sleep state
2581 * @dev: Device to handle.
2582 *
2583 * Choose the power state appropriate for the device depending on whether
2584 * it can wake up the system and/or is power manageable by the platform
2585 * (PCI_D3hot is the default) and put the device into that state.
2586 */
2587int pci_prepare_to_sleep(struct pci_dev *dev)
2588{
2589 bool wakeup = device_may_wakeup(&dev->dev);
2590 pci_power_t target_state = pci_target_state(dev, wakeup);
2591 int error;
2592
2593 if (target_state == PCI_POWER_ERROR)
2594 return -EIO;
2595
2596 pci_enable_wake(dev, target_state, wakeup);
2597
2598 error = pci_set_power_state(dev, target_state);
2599
2600 if (error)
2601 pci_enable_wake(dev, target_state, false);
2602
2603 return error;
2604}
2605EXPORT_SYMBOL(pci_prepare_to_sleep);
2606
2607/**
2608 * pci_back_from_sleep - turn PCI device on during system-wide transition
2609 * into working state
2610 * @dev: Device to handle.
2611 *
2612 * Disable device's system wake-up capability and put it into D0.
2613 */
2614int pci_back_from_sleep(struct pci_dev *dev)
2615{
2616 pci_enable_wake(dev, PCI_D0, false);
2617 return pci_set_power_state(dev, PCI_D0);
2618}
2619EXPORT_SYMBOL(pci_back_from_sleep);
2620
2621/**
2622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2623 * @dev: PCI device being suspended.
2624 *
2625 * Prepare @dev to generate wake-up events at run time and put it into a low
2626 * power state.
2627 */
2628int pci_finish_runtime_suspend(struct pci_dev *dev)
2629{
2630 pci_power_t target_state;
2631 int error;
2632
2633 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2634 if (target_state == PCI_POWER_ERROR)
2635 return -EIO;
2636
2637 dev->runtime_d3cold = target_state == PCI_D3cold;
2638
2639 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2640
2641 error = pci_set_power_state(dev, target_state);
2642
2643 if (error) {
2644 pci_enable_wake(dev, target_state, false);
2645 dev->runtime_d3cold = false;
2646 }
2647
2648 return error;
2649}
2650
2651/**
2652 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2653 * @dev: Device to check.
2654 *
2655 * Return true if the device itself is capable of generating wake-up events
2656 * (through the platform or using the native PCIe PME) or if the device supports
2657 * PME and one of its upstream bridges can generate wake-up events.
2658 */
2659bool pci_dev_run_wake(struct pci_dev *dev)
2660{
2661 struct pci_bus *bus = dev->bus;
2662
2663 if (!dev->pme_support)
2664 return false;
2665
2666 /* PME-capable in principle, but not from the target power state */
2667 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2668 return false;
2669
2670 if (device_can_wakeup(&dev->dev))
2671 return true;
2672
2673 while (bus->parent) {
2674 struct pci_dev *bridge = bus->self;
2675
2676 if (device_can_wakeup(&bridge->dev))
2677 return true;
2678
2679 bus = bus->parent;
2680 }
2681
2682 /* We have reached the root bus. */
2683 if (bus->bridge)
2684 return device_can_wakeup(bus->bridge);
2685
2686 return false;
2687}
2688EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2689
2690/**
2691 * pci_dev_need_resume - Check if it is necessary to resume the device.
2692 * @pci_dev: Device to check.
2693 *
2694 * Return 'true' if the device is not runtime-suspended or it has to be
2695 * reconfigured due to wakeup settings difference between system and runtime
2696 * suspend, or the current power state of it is not suitable for the upcoming
2697 * (system-wide) transition.
2698 */
2699bool pci_dev_need_resume(struct pci_dev *pci_dev)
2700{
2701 struct device *dev = &pci_dev->dev;
2702 pci_power_t target_state;
2703
2704 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2705 return true;
2706
2707 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2708
2709 /*
2710 * If the earlier platform check has not triggered, D3cold is just power
2711 * removal on top of D3hot, so no need to resume the device in that
2712 * case.
2713 */
2714 return target_state != pci_dev->current_state &&
2715 target_state != PCI_D3cold &&
2716 pci_dev->current_state != PCI_D3hot;
2717}
2718
2719/**
2720 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2721 * @pci_dev: Device to check.
2722 *
2723 * If the device is suspended and it is not configured for system wakeup,
2724 * disable PME for it to prevent it from waking up the system unnecessarily.
2725 *
2726 * Note that if the device's power state is D3cold and the platform check in
2727 * pci_dev_need_resume() has not triggered, the device's configuration need not
2728 * be changed.
2729 */
2730void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2731{
2732 struct device *dev = &pci_dev->dev;
2733
2734 spin_lock_irq(&dev->power.lock);
2735
2736 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2737 pci_dev->current_state < PCI_D3cold)
2738 __pci_pme_active(pci_dev, false);
2739
2740 spin_unlock_irq(&dev->power.lock);
2741}
2742
2743/**
2744 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2745 * @pci_dev: Device to handle.
2746 *
2747 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2748 * it might have been disabled during the prepare phase of system suspend if
2749 * the device was not configured for system wakeup.
2750 */
2751void pci_dev_complete_resume(struct pci_dev *pci_dev)
2752{
2753 struct device *dev = &pci_dev->dev;
2754
2755 if (!pci_dev_run_wake(pci_dev))
2756 return;
2757
2758 spin_lock_irq(&dev->power.lock);
2759
2760 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2761 __pci_pme_active(pci_dev, true);
2762
2763 spin_unlock_irq(&dev->power.lock);
2764}
2765
2766void pci_config_pm_runtime_get(struct pci_dev *pdev)
2767{
2768 struct device *dev = &pdev->dev;
2769 struct device *parent = dev->parent;
2770
2771 if (parent)
2772 pm_runtime_get_sync(parent);
2773 pm_runtime_get_noresume(dev);
2774 /*
2775 * pdev->current_state is set to PCI_D3cold during suspending,
2776 * so wait until suspending completes
2777 */
2778 pm_runtime_barrier(dev);
2779 /*
2780 * Only need to resume devices in D3cold, because config
2781 * registers are still accessible for devices suspended but
2782 * not in D3cold.
2783 */
2784 if (pdev->current_state == PCI_D3cold)
2785 pm_runtime_resume(dev);
2786}
2787
2788void pci_config_pm_runtime_put(struct pci_dev *pdev)
2789{
2790 struct device *dev = &pdev->dev;
2791 struct device *parent = dev->parent;
2792
2793 pm_runtime_put(dev);
2794 if (parent)
2795 pm_runtime_put_sync(parent);
2796}
2797
2798static const struct dmi_system_id bridge_d3_blacklist[] = {
2799#ifdef CONFIG_X86
2800 {
2801 /*
2802 * Gigabyte X299 root port is not marked as hotplug capable
2803 * which allows Linux to power manage it. However, this
2804 * confuses the BIOS SMI handler so don't power manage root
2805 * ports on that system.
2806 */
2807 .ident = "X299 DESIGNARE EX-CF",
2808 .matches = {
2809 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2810 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2811 },
2812 },
2813#endif
2814 { }
2815};
2816
2817/**
2818 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2819 * @bridge: Bridge to check
2820 *
2821 * This function checks if it is possible to move the bridge to D3.
2822 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2823 */
2824bool pci_bridge_d3_possible(struct pci_dev *bridge)
2825{
2826 if (!pci_is_pcie(bridge))
2827 return false;
2828
2829 switch (pci_pcie_type(bridge)) {
2830 case PCI_EXP_TYPE_ROOT_PORT:
2831 case PCI_EXP_TYPE_UPSTREAM:
2832 case PCI_EXP_TYPE_DOWNSTREAM:
2833 if (pci_bridge_d3_disable)
2834 return false;
2835
2836 /*
2837 * Hotplug ports handled by firmware in System Management Mode
2838 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2839 */
2840 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2841 return false;
2842
2843 if (pci_bridge_d3_force)
2844 return true;
2845
2846 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2847 if (bridge->is_thunderbolt)
2848 return true;
2849
2850 /* Platform might know better if the bridge supports D3 */
2851 if (platform_pci_bridge_d3(bridge))
2852 return true;
2853
2854 /*
2855 * Hotplug ports handled natively by the OS were not validated
2856 * by vendors for runtime D3 at least until 2018 because there
2857 * was no OS support.
2858 */
2859 if (bridge->is_hotplug_bridge)
2860 return false;
2861
2862 if (dmi_check_system(bridge_d3_blacklist))
2863 return false;
2864
2865 /*
2866 * It should be safe to put PCIe ports from 2015 or newer
2867 * to D3.
2868 */
2869 if (dmi_get_bios_year() >= 2015)
2870 return true;
2871 break;
2872 }
2873
2874 return false;
2875}
2876
2877static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2878{
2879 bool *d3cold_ok = data;
2880
2881 if (/* The device needs to be allowed to go D3cold ... */
2882 dev->no_d3cold || !dev->d3cold_allowed ||
2883
2884 /* ... and if it is wakeup capable to do so from D3cold. */
2885 (device_may_wakeup(&dev->dev) &&
2886 !pci_pme_capable(dev, PCI_D3cold)) ||
2887
2888 /* If it is a bridge it must be allowed to go to D3. */
2889 !pci_power_manageable(dev))
2890
2891 *d3cold_ok = false;
2892
2893 return !*d3cold_ok;
2894}
2895
2896/*
2897 * pci_bridge_d3_update - Update bridge D3 capabilities
2898 * @dev: PCI device which is changed
2899 *
2900 * Update upstream bridge PM capabilities accordingly depending on if the
2901 * device PM configuration was changed or the device is being removed. The
2902 * change is also propagated upstream.
2903 */
2904void pci_bridge_d3_update(struct pci_dev *dev)
2905{
2906 bool remove = !device_is_registered(&dev->dev);
2907 struct pci_dev *bridge;
2908 bool d3cold_ok = true;
2909
2910 bridge = pci_upstream_bridge(dev);
2911 if (!bridge || !pci_bridge_d3_possible(bridge))
2912 return;
2913
2914 /*
2915 * If D3 is currently allowed for the bridge, removing one of its
2916 * children won't change that.
2917 */
2918 if (remove && bridge->bridge_d3)
2919 return;
2920
2921 /*
2922 * If D3 is currently allowed for the bridge and a child is added or
2923 * changed, disallowance of D3 can only be caused by that child, so
2924 * we only need to check that single device, not any of its siblings.
2925 *
2926 * If D3 is currently not allowed for the bridge, checking the device
2927 * first may allow us to skip checking its siblings.
2928 */
2929 if (!remove)
2930 pci_dev_check_d3cold(dev, &d3cold_ok);
2931
2932 /*
2933 * If D3 is currently not allowed for the bridge, this may be caused
2934 * either by the device being changed/removed or any of its siblings,
2935 * so we need to go through all children to find out if one of them
2936 * continues to block D3.
2937 */
2938 if (d3cold_ok && !bridge->bridge_d3)
2939 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2940 &d3cold_ok);
2941
2942 if (bridge->bridge_d3 != d3cold_ok) {
2943 bridge->bridge_d3 = d3cold_ok;
2944 /* Propagate change to upstream bridges */
2945 pci_bridge_d3_update(bridge);
2946 }
2947}
2948
2949/**
2950 * pci_d3cold_enable - Enable D3cold for device
2951 * @dev: PCI device to handle
2952 *
2953 * This function can be used in drivers to enable D3cold from the device
2954 * they handle. It also updates upstream PCI bridge PM capabilities
2955 * accordingly.
2956 */
2957void pci_d3cold_enable(struct pci_dev *dev)
2958{
2959 if (dev->no_d3cold) {
2960 dev->no_d3cold = false;
2961 pci_bridge_d3_update(dev);
2962 }
2963}
2964EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2965
2966/**
2967 * pci_d3cold_disable - Disable D3cold for device
2968 * @dev: PCI device to handle
2969 *
2970 * This function can be used in drivers to disable D3cold from the device
2971 * they handle. It also updates upstream PCI bridge PM capabilities
2972 * accordingly.
2973 */
2974void pci_d3cold_disable(struct pci_dev *dev)
2975{
2976 if (!dev->no_d3cold) {
2977 dev->no_d3cold = true;
2978 pci_bridge_d3_update(dev);
2979 }
2980}
2981EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2982
2983/**
2984 * pci_pm_init - Initialize PM functions of given PCI device
2985 * @dev: PCI device to handle.
2986 */
2987void pci_pm_init(struct pci_dev *dev)
2988{
2989 int pm;
2990 u16 status;
2991 u16 pmc;
2992
2993 pm_runtime_forbid(&dev->dev);
2994 pm_runtime_set_active(&dev->dev);
2995 pm_runtime_enable(&dev->dev);
2996 device_enable_async_suspend(&dev->dev);
2997 dev->wakeup_prepared = false;
2998
2999 dev->pm_cap = 0;
3000 dev->pme_support = 0;
3001
3002 /* find PCI PM capability in list */
3003 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3004 if (!pm)
3005 return;
3006 /* Check device's ability to generate PME# */
3007 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3008
3009 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3010 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3011 pmc & PCI_PM_CAP_VER_MASK);
3012 return;
3013 }
3014
3015 dev->pm_cap = pm;
3016 dev->d3_delay = PCI_PM_D3_WAIT;
3017 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3018 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3019 dev->d3cold_allowed = true;
3020
3021 dev->d1_support = false;
3022 dev->d2_support = false;
3023 if (!pci_no_d1d2(dev)) {
3024 if (pmc & PCI_PM_CAP_D1)
3025 dev->d1_support = true;
3026 if (pmc & PCI_PM_CAP_D2)
3027 dev->d2_support = true;
3028
3029 if (dev->d1_support || dev->d2_support)
3030 pci_info(dev, "supports%s%s\n",
3031 dev->d1_support ? " D1" : "",
3032 dev->d2_support ? " D2" : "");
3033 }
3034
3035 pmc &= PCI_PM_CAP_PME_MASK;
3036 if (pmc) {
3037 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3038 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3039 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3040 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3041 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
3042 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3043 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3044 dev->pme_poll = true;
3045 /*
3046 * Make device's PM flags reflect the wake-up capability, but
3047 * let the user space enable it to wake up the system as needed.
3048 */
3049 device_set_wakeup_capable(&dev->dev, true);
3050 /* Disable the PME# generation functionality */
3051 pci_pme_active(dev, false);
3052 }
3053
3054 pci_read_config_word(dev, PCI_STATUS, &status);
3055 if (status & PCI_STATUS_IMM_READY)
3056 dev->imm_ready = 1;
3057}
3058
3059static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3060{
3061 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3062
3063 switch (prop) {
3064 case PCI_EA_P_MEM:
3065 case PCI_EA_P_VF_MEM:
3066 flags |= IORESOURCE_MEM;
3067 break;
3068 case PCI_EA_P_MEM_PREFETCH:
3069 case PCI_EA_P_VF_MEM_PREFETCH:
3070 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3071 break;
3072 case PCI_EA_P_IO:
3073 flags |= IORESOURCE_IO;
3074 break;
3075 default:
3076 return 0;
3077 }
3078
3079 return flags;
3080}
3081
3082static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3083 u8 prop)
3084{
3085 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3086 return &dev->resource[bei];
3087#ifdef CONFIG_PCI_IOV
3088 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3089 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3090 return &dev->resource[PCI_IOV_RESOURCES +
3091 bei - PCI_EA_BEI_VF_BAR0];
3092#endif
3093 else if (bei == PCI_EA_BEI_ROM)
3094 return &dev->resource[PCI_ROM_RESOURCE];
3095 else
3096 return NULL;
3097}
3098
3099/* Read an Enhanced Allocation (EA) entry */
3100static int pci_ea_read(struct pci_dev *dev, int offset)
3101{
3102 struct resource *res;
3103 int ent_size, ent_offset = offset;
3104 resource_size_t start, end;
3105 unsigned long flags;
3106 u32 dw0, bei, base, max_offset;
3107 u8 prop;
3108 bool support_64 = (sizeof(resource_size_t) >= 8);
3109
3110 pci_read_config_dword(dev, ent_offset, &dw0);
3111 ent_offset += 4;
3112
3113 /* Entry size field indicates DWORDs after 1st */
3114 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3115
3116 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3117 goto out;
3118
3119 bei = (dw0 & PCI_EA_BEI) >> 4;
3120 prop = (dw0 & PCI_EA_PP) >> 8;
3121
3122 /*
3123 * If the Property is in the reserved range, try the Secondary
3124 * Property instead.
3125 */
3126 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3127 prop = (dw0 & PCI_EA_SP) >> 16;
3128 if (prop > PCI_EA_P_BRIDGE_IO)
3129 goto out;
3130
3131 res = pci_ea_get_resource(dev, bei, prop);
3132 if (!res) {
3133 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3134 goto out;
3135 }
3136
3137 flags = pci_ea_flags(dev, prop);
3138 if (!flags) {
3139 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3140 goto out;
3141 }
3142
3143 /* Read Base */
3144 pci_read_config_dword(dev, ent_offset, &base);
3145 start = (base & PCI_EA_FIELD_MASK);
3146 ent_offset += 4;
3147
3148 /* Read MaxOffset */
3149 pci_read_config_dword(dev, ent_offset, &max_offset);
3150 ent_offset += 4;
3151
3152 /* Read Base MSBs (if 64-bit entry) */
3153 if (base & PCI_EA_IS_64) {
3154 u32 base_upper;
3155
3156 pci_read_config_dword(dev, ent_offset, &base_upper);
3157 ent_offset += 4;
3158
3159 flags |= IORESOURCE_MEM_64;
3160
3161 /* entry starts above 32-bit boundary, can't use */
3162 if (!support_64 && base_upper)
3163 goto out;
3164
3165 if (support_64)
3166 start |= ((u64)base_upper << 32);
3167 }
3168
3169 end = start + (max_offset | 0x03);
3170
3171 /* Read MaxOffset MSBs (if 64-bit entry) */
3172 if (max_offset & PCI_EA_IS_64) {
3173 u32 max_offset_upper;
3174
3175 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3176 ent_offset += 4;
3177
3178 flags |= IORESOURCE_MEM_64;
3179
3180 /* entry too big, can't use */
3181 if (!support_64 && max_offset_upper)
3182 goto out;
3183
3184 if (support_64)
3185 end += ((u64)max_offset_upper << 32);
3186 }
3187
3188 if (end < start) {
3189 pci_err(dev, "EA Entry crosses address boundary\n");
3190 goto out;
3191 }
3192
3193 if (ent_size != ent_offset - offset) {
3194 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3195 ent_size, ent_offset - offset);
3196 goto out;
3197 }
3198
3199 res->name = pci_name(dev);
3200 res->start = start;
3201 res->end = end;
3202 res->flags = flags;
3203
3204 if (bei <= PCI_EA_BEI_BAR5)
3205 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3206 bei, res, prop);
3207 else if (bei == PCI_EA_BEI_ROM)
3208 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3209 res, prop);
3210 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3211 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3212 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3213 else
3214 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3215 bei, res, prop);
3216
3217out:
3218 return offset + ent_size;
3219}
3220
3221/* Enhanced Allocation Initialization */
3222void pci_ea_init(struct pci_dev *dev)
3223{
3224 int ea;
3225 u8 num_ent;
3226 int offset;
3227 int i;
3228
3229 /* find PCI EA capability in list */
3230 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3231 if (!ea)
3232 return;
3233
3234 /* determine the number of entries */
3235 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3236 &num_ent);
3237 num_ent &= PCI_EA_NUM_ENT_MASK;
3238
3239 offset = ea + PCI_EA_FIRST_ENT;
3240
3241 /* Skip DWORD 2 for type 1 functions */
3242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3243 offset += 4;
3244
3245 /* parse each EA entry */
3246 for (i = 0; i < num_ent; ++i)
3247 offset = pci_ea_read(dev, offset);
3248}
3249
3250static void pci_add_saved_cap(struct pci_dev *pci_dev,
3251 struct pci_cap_saved_state *new_cap)
3252{
3253 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3254}
3255
3256/**
3257 * _pci_add_cap_save_buffer - allocate buffer for saving given
3258 * capability registers
3259 * @dev: the PCI device
3260 * @cap: the capability to allocate the buffer for
3261 * @extended: Standard or Extended capability ID
3262 * @size: requested size of the buffer
3263 */
3264static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3265 bool extended, unsigned int size)
3266{
3267 int pos;
3268 struct pci_cap_saved_state *save_state;
3269
3270 if (extended)
3271 pos = pci_find_ext_capability(dev, cap);
3272 else
3273 pos = pci_find_capability(dev, cap);
3274
3275 if (!pos)
3276 return 0;
3277
3278 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3279 if (!save_state)
3280 return -ENOMEM;
3281
3282 save_state->cap.cap_nr = cap;
3283 save_state->cap.cap_extended = extended;
3284 save_state->cap.size = size;
3285 pci_add_saved_cap(dev, save_state);
3286
3287 return 0;
3288}
3289
3290int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3291{
3292 return _pci_add_cap_save_buffer(dev, cap, false, size);
3293}
3294
3295int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3296{
3297 return _pci_add_cap_save_buffer(dev, cap, true, size);
3298}
3299
3300/**
3301 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3302 * @dev: the PCI device
3303 */
3304void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3305{
3306 int error;
3307
3308 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3309 PCI_EXP_SAVE_REGS * sizeof(u16));
3310 if (error)
3311 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3312
3313 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3314 if (error)
3315 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3316
3317 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3318 2 * sizeof(u16));
3319 if (error)
3320 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3321
3322 pci_allocate_vc_save_buffers(dev);
3323}
3324
3325void pci_free_cap_save_buffers(struct pci_dev *dev)
3326{
3327 struct pci_cap_saved_state *tmp;
3328 struct hlist_node *n;
3329
3330 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3331 kfree(tmp);
3332}
3333
3334/**
3335 * pci_configure_ari - enable or disable ARI forwarding
3336 * @dev: the PCI device
3337 *
3338 * If @dev and its upstream bridge both support ARI, enable ARI in the
3339 * bridge. Otherwise, disable ARI in the bridge.
3340 */
3341void pci_configure_ari(struct pci_dev *dev)
3342{
3343 u32 cap;
3344 struct pci_dev *bridge;
3345
3346 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3347 return;
3348
3349 bridge = dev->bus->self;
3350 if (!bridge)
3351 return;
3352
3353 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3354 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3355 return;
3356
3357 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3358 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3359 PCI_EXP_DEVCTL2_ARI);
3360 bridge->ari_enabled = 1;
3361 } else {
3362 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3363 PCI_EXP_DEVCTL2_ARI);
3364 bridge->ari_enabled = 0;
3365 }
3366}
3367
3368static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3369{
3370 int pos;
3371 u16 cap, ctrl;
3372
3373 pos = pdev->acs_cap;
3374 if (!pos)
3375 return false;
3376
3377 /*
3378 * Except for egress control, capabilities are either required
3379 * or only required if controllable. Features missing from the
3380 * capability field can therefore be assumed as hard-wired enabled.
3381 */
3382 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3383 acs_flags &= (cap | PCI_ACS_EC);
3384
3385 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3386 return (ctrl & acs_flags) == acs_flags;
3387}
3388
3389/**
3390 * pci_acs_enabled - test ACS against required flags for a given device
3391 * @pdev: device to test
3392 * @acs_flags: required PCI ACS flags
3393 *
3394 * Return true if the device supports the provided flags. Automatically
3395 * filters out flags that are not implemented on multifunction devices.
3396 *
3397 * Note that this interface checks the effective ACS capabilities of the
3398 * device rather than the actual capabilities. For instance, most single
3399 * function endpoints are not required to support ACS because they have no
3400 * opportunity for peer-to-peer access. We therefore return 'true'
3401 * regardless of whether the device exposes an ACS capability. This makes
3402 * it much easier for callers of this function to ignore the actual type
3403 * or topology of the device when testing ACS support.
3404 */
3405bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3406{
3407 int ret;
3408
3409 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3410 if (ret >= 0)
3411 return ret > 0;
3412
3413 /*
3414 * Conventional PCI and PCI-X devices never support ACS, either
3415 * effectively or actually. The shared bus topology implies that
3416 * any device on the bus can receive or snoop DMA.
3417 */
3418 if (!pci_is_pcie(pdev))
3419 return false;
3420
3421 switch (pci_pcie_type(pdev)) {
3422 /*
3423 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3424 * but since their primary interface is PCI/X, we conservatively
3425 * handle them as we would a non-PCIe device.
3426 */
3427 case PCI_EXP_TYPE_PCIE_BRIDGE:
3428 /*
3429 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3430 * applicable... must never implement an ACS Extended Capability...".
3431 * This seems arbitrary, but we take a conservative interpretation
3432 * of this statement.
3433 */
3434 case PCI_EXP_TYPE_PCI_BRIDGE:
3435 case PCI_EXP_TYPE_RC_EC:
3436 return false;
3437 /*
3438 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3439 * implement ACS in order to indicate their peer-to-peer capabilities,
3440 * regardless of whether they are single- or multi-function devices.
3441 */
3442 case PCI_EXP_TYPE_DOWNSTREAM:
3443 case PCI_EXP_TYPE_ROOT_PORT:
3444 return pci_acs_flags_enabled(pdev, acs_flags);
3445 /*
3446 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3447 * implemented by the remaining PCIe types to indicate peer-to-peer
3448 * capabilities, but only when they are part of a multifunction
3449 * device. The footnote for section 6.12 indicates the specific
3450 * PCIe types included here.
3451 */
3452 case PCI_EXP_TYPE_ENDPOINT:
3453 case PCI_EXP_TYPE_UPSTREAM:
3454 case PCI_EXP_TYPE_LEG_END:
3455 case PCI_EXP_TYPE_RC_END:
3456 if (!pdev->multifunction)
3457 break;
3458
3459 return pci_acs_flags_enabled(pdev, acs_flags);
3460 }
3461
3462 /*
3463 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3464 * to single function devices with the exception of downstream ports.
3465 */
3466 return true;
3467}
3468
3469/**
3470 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3471 * @start: starting downstream device
3472 * @end: ending upstream device or NULL to search to the root bus
3473 * @acs_flags: required flags
3474 *
3475 * Walk up a device tree from start to end testing PCI ACS support. If
3476 * any step along the way does not support the required flags, return false.
3477 */
3478bool pci_acs_path_enabled(struct pci_dev *start,
3479 struct pci_dev *end, u16 acs_flags)
3480{
3481 struct pci_dev *pdev, *parent = start;
3482
3483 do {
3484 pdev = parent;
3485
3486 if (!pci_acs_enabled(pdev, acs_flags))
3487 return false;
3488
3489 if (pci_is_root_bus(pdev->bus))
3490 return (end == NULL);
3491
3492 parent = pdev->bus->self;
3493 } while (pdev != end);
3494
3495 return true;
3496}
3497
3498/**
3499 * pci_acs_init - Initialize ACS if hardware supports it
3500 * @dev: the PCI device
3501 */
3502void pci_acs_init(struct pci_dev *dev)
3503{
3504 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3505
3506 if (dev->acs_cap)
3507 pci_enable_acs(dev);
3508}
3509
3510/**
3511 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3512 * @pdev: PCI device
3513 * @bar: BAR to find
3514 *
3515 * Helper to find the position of the ctrl register for a BAR.
3516 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3517 * Returns -ENOENT if no ctrl register for the BAR could be found.
3518 */
3519static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3520{
3521 unsigned int pos, nbars, i;
3522 u32 ctrl;
3523
3524 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3525 if (!pos)
3526 return -ENOTSUPP;
3527
3528 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3529 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3530 PCI_REBAR_CTRL_NBAR_SHIFT;
3531
3532 for (i = 0; i < nbars; i++, pos += 8) {
3533 int bar_idx;
3534
3535 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3536 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3537 if (bar_idx == bar)
3538 return pos;
3539 }
3540
3541 return -ENOENT;
3542}
3543
3544/**
3545 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3546 * @pdev: PCI device
3547 * @bar: BAR to query
3548 *
3549 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3550 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3551 */
3552u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3553{
3554 int pos;
3555 u32 cap;
3556
3557 pos = pci_rebar_find_pos(pdev, bar);
3558 if (pos < 0)
3559 return 0;
3560
3561 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3562 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3563}
3564
3565/**
3566 * pci_rebar_get_current_size - get the current size of a BAR
3567 * @pdev: PCI device
3568 * @bar: BAR to set size to
3569 *
3570 * Read the size of a BAR from the resizable BAR config.
3571 * Returns size if found or negative error code.
3572 */
3573int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3574{
3575 int pos;
3576 u32 ctrl;
3577
3578 pos = pci_rebar_find_pos(pdev, bar);
3579 if (pos < 0)
3580 return pos;
3581
3582 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3583 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3584}
3585
3586/**
3587 * pci_rebar_set_size - set a new size for a BAR
3588 * @pdev: PCI device
3589 * @bar: BAR to set size to
3590 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3591 *
3592 * Set the new size of a BAR as defined in the spec.
3593 * Returns zero if resizing was successful, error code otherwise.
3594 */
3595int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3596{
3597 int pos;
3598 u32 ctrl;
3599
3600 pos = pci_rebar_find_pos(pdev, bar);
3601 if (pos < 0)
3602 return pos;
3603
3604 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3605 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3606 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3607 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3608 return 0;
3609}
3610
3611/**
3612 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3613 * @dev: the PCI device
3614 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3615 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3616 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3618 *
3619 * Return 0 if all upstream bridges support AtomicOp routing, egress
3620 * blocking is disabled on all upstream ports, and the root port supports
3621 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3622 * AtomicOp completion), or negative otherwise.
3623 */
3624int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3625{
3626 struct pci_bus *bus = dev->bus;
3627 struct pci_dev *bridge;
3628 u32 cap, ctl2;
3629
3630 if (!pci_is_pcie(dev))
3631 return -EINVAL;
3632
3633 /*
3634 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3635 * AtomicOp requesters. For now, we only support endpoints as
3636 * requesters and root ports as completers. No endpoints as
3637 * completers, and no peer-to-peer.
3638 */
3639
3640 switch (pci_pcie_type(dev)) {
3641 case PCI_EXP_TYPE_ENDPOINT:
3642 case PCI_EXP_TYPE_LEG_END:
3643 case PCI_EXP_TYPE_RC_END:
3644 break;
3645 default:
3646 return -EINVAL;
3647 }
3648
3649 while (bus->parent) {
3650 bridge = bus->self;
3651
3652 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3653
3654 switch (pci_pcie_type(bridge)) {
3655 /* Ensure switch ports support AtomicOp routing */
3656 case PCI_EXP_TYPE_UPSTREAM:
3657 case PCI_EXP_TYPE_DOWNSTREAM:
3658 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3659 return -EINVAL;
3660 break;
3661
3662 /* Ensure root port supports all the sizes we care about */
3663 case PCI_EXP_TYPE_ROOT_PORT:
3664 if ((cap & cap_mask) != cap_mask)
3665 return -EINVAL;
3666 break;
3667 }
3668
3669 /* Ensure upstream ports don't block AtomicOps on egress */
3670 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3671 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3672 &ctl2);
3673 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3674 return -EINVAL;
3675 }
3676
3677 bus = bus->parent;
3678 }
3679
3680 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3681 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3682 return 0;
3683}
3684EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3685
3686/**
3687 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3688 * @dev: the PCI device
3689 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3690 *
3691 * Perform INTx swizzling for a device behind one level of bridge. This is
3692 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3693 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3694 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3695 * the PCI Express Base Specification, Revision 2.1)
3696 */
3697u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3698{
3699 int slot;
3700
3701 if (pci_ari_enabled(dev->bus))
3702 slot = 0;
3703 else
3704 slot = PCI_SLOT(dev->devfn);
3705
3706 return (((pin - 1) + slot) % 4) + 1;
3707}
3708
3709int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3710{
3711 u8 pin;
3712
3713 pin = dev->pin;
3714 if (!pin)
3715 return -1;
3716
3717 while (!pci_is_root_bus(dev->bus)) {
3718 pin = pci_swizzle_interrupt_pin(dev, pin);
3719 dev = dev->bus->self;
3720 }
3721 *bridge = dev;
3722 return pin;
3723}
3724
3725/**
3726 * pci_common_swizzle - swizzle INTx all the way to root bridge
3727 * @dev: the PCI device
3728 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3729 *
3730 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3731 * bridges all the way up to a PCI root bus.
3732 */
3733u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3734{
3735 u8 pin = *pinp;
3736
3737 while (!pci_is_root_bus(dev->bus)) {
3738 pin = pci_swizzle_interrupt_pin(dev, pin);
3739 dev = dev->bus->self;
3740 }
3741 *pinp = pin;
3742 return PCI_SLOT(dev->devfn);
3743}
3744EXPORT_SYMBOL_GPL(pci_common_swizzle);
3745
3746/**
3747 * pci_release_region - Release a PCI bar
3748 * @pdev: PCI device whose resources were previously reserved by
3749 * pci_request_region()
3750 * @bar: BAR to release
3751 *
3752 * Releases the PCI I/O and memory resources previously reserved by a
3753 * successful call to pci_request_region(). Call this function only
3754 * after all use of the PCI regions has ceased.
3755 */
3756void pci_release_region(struct pci_dev *pdev, int bar)
3757{
3758 struct pci_devres *dr;
3759
3760 if (pci_resource_len(pdev, bar) == 0)
3761 return;
3762 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3763 release_region(pci_resource_start(pdev, bar),
3764 pci_resource_len(pdev, bar));
3765 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3766 release_mem_region(pci_resource_start(pdev, bar),
3767 pci_resource_len(pdev, bar));
3768
3769 dr = find_pci_dr(pdev);
3770 if (dr)
3771 dr->region_mask &= ~(1 << bar);
3772}
3773EXPORT_SYMBOL(pci_release_region);
3774
3775/**
3776 * __pci_request_region - Reserved PCI I/O and memory resource
3777 * @pdev: PCI device whose resources are to be reserved
3778 * @bar: BAR to be reserved
3779 * @res_name: Name to be associated with resource.
3780 * @exclusive: whether the region access is exclusive or not
3781 *
3782 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3783 * being reserved by owner @res_name. Do not access any
3784 * address inside the PCI regions unless this call returns
3785 * successfully.
3786 *
3787 * If @exclusive is set, then the region is marked so that userspace
3788 * is explicitly not allowed to map the resource via /dev/mem or
3789 * sysfs MMIO access.
3790 *
3791 * Returns 0 on success, or %EBUSY on error. A warning
3792 * message is also printed on failure.
3793 */
3794static int __pci_request_region(struct pci_dev *pdev, int bar,
3795 const char *res_name, int exclusive)
3796{
3797 struct pci_devres *dr;
3798
3799 if (pci_resource_len(pdev, bar) == 0)
3800 return 0;
3801
3802 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3803 if (!request_region(pci_resource_start(pdev, bar),
3804 pci_resource_len(pdev, bar), res_name))
3805 goto err_out;
3806 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3807 if (!__request_mem_region(pci_resource_start(pdev, bar),
3808 pci_resource_len(pdev, bar), res_name,
3809 exclusive))
3810 goto err_out;
3811 }
3812
3813 dr = find_pci_dr(pdev);
3814 if (dr)
3815 dr->region_mask |= 1 << bar;
3816
3817 return 0;
3818
3819err_out:
3820 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3821 &pdev->resource[bar]);
3822 return -EBUSY;
3823}
3824
3825/**
3826 * pci_request_region - Reserve PCI I/O and memory resource
3827 * @pdev: PCI device whose resources are to be reserved
3828 * @bar: BAR to be reserved
3829 * @res_name: Name to be associated with resource
3830 *
3831 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3832 * being reserved by owner @res_name. Do not access any
3833 * address inside the PCI regions unless this call returns
3834 * successfully.
3835 *
3836 * Returns 0 on success, or %EBUSY on error. A warning
3837 * message is also printed on failure.
3838 */
3839int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3840{
3841 return __pci_request_region(pdev, bar, res_name, 0);
3842}
3843EXPORT_SYMBOL(pci_request_region);
3844
3845/**
3846 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved
3848 * @bars: Bitmask of BARs to be released
3849 *
3850 * Release selected PCI I/O and memory resources previously reserved.
3851 * Call this function only after all use of the PCI regions has ceased.
3852 */
3853void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3854{
3855 int i;
3856
3857 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3858 if (bars & (1 << i))
3859 pci_release_region(pdev, i);
3860}
3861EXPORT_SYMBOL(pci_release_selected_regions);
3862
3863static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3864 const char *res_name, int excl)
3865{
3866 int i;
3867
3868 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3869 if (bars & (1 << i))
3870 if (__pci_request_region(pdev, i, res_name, excl))
3871 goto err_out;
3872 return 0;
3873
3874err_out:
3875 while (--i >= 0)
3876 if (bars & (1 << i))
3877 pci_release_region(pdev, i);
3878
3879 return -EBUSY;
3880}
3881
3882
3883/**
3884 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3885 * @pdev: PCI device whose resources are to be reserved
3886 * @bars: Bitmask of BARs to be requested
3887 * @res_name: Name to be associated with resource
3888 */
3889int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3890 const char *res_name)
3891{
3892 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3893}
3894EXPORT_SYMBOL(pci_request_selected_regions);
3895
3896int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3897 const char *res_name)
3898{
3899 return __pci_request_selected_regions(pdev, bars, res_name,
3900 IORESOURCE_EXCLUSIVE);
3901}
3902EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3903
3904/**
3905 * pci_release_regions - Release reserved PCI I/O and memory resources
3906 * @pdev: PCI device whose resources were previously reserved by
3907 * pci_request_regions()
3908 *
3909 * Releases all PCI I/O and memory resources previously reserved by a
3910 * successful call to pci_request_regions(). Call this function only
3911 * after all use of the PCI regions has ceased.
3912 */
3913
3914void pci_release_regions(struct pci_dev *pdev)
3915{
3916 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3917}
3918EXPORT_SYMBOL(pci_release_regions);
3919
3920/**
3921 * pci_request_regions - Reserve PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @res_name: Name to be associated with resource.
3924 *
3925 * Mark all PCI regions associated with PCI device @pdev as
3926 * being reserved by owner @res_name. Do not access any
3927 * address inside the PCI regions unless this call returns
3928 * successfully.
3929 *
3930 * Returns 0 on success, or %EBUSY on error. A warning
3931 * message is also printed on failure.
3932 */
3933int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3934{
3935 return pci_request_selected_regions(pdev,
3936 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3937}
3938EXPORT_SYMBOL(pci_request_regions);
3939
3940/**
3941 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @res_name: Name to be associated with resource.
3944 *
3945 * Mark all PCI regions associated with PCI device @pdev as being reserved
3946 * by owner @res_name. Do not access any address inside the PCI regions
3947 * unless this call returns successfully.
3948 *
3949 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3950 * and the sysfs MMIO access will not be allowed.
3951 *
3952 * Returns 0 on success, or %EBUSY on error. A warning message is also
3953 * printed on failure.
3954 */
3955int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3956{
3957 return pci_request_selected_regions_exclusive(pdev,
3958 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3959}
3960EXPORT_SYMBOL(pci_request_regions_exclusive);
3961
3962/*
3963 * Record the PCI IO range (expressed as CPU physical address + size).
3964 * Return a negative value if an error has occurred, zero otherwise
3965 */
3966int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3967 resource_size_t size)
3968{
3969 int ret = 0;
3970#ifdef PCI_IOBASE
3971 struct logic_pio_hwaddr *range;
3972
3973 if (!size || addr + size < addr)
3974 return -EINVAL;
3975
3976 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3977 if (!range)
3978 return -ENOMEM;
3979
3980 range->fwnode = fwnode;
3981 range->size = size;
3982 range->hw_start = addr;
3983 range->flags = LOGIC_PIO_CPU_MMIO;
3984
3985 ret = logic_pio_register_range(range);
3986 if (ret)
3987 kfree(range);
3988#endif
3989
3990 return ret;
3991}
3992
3993phys_addr_t pci_pio_to_address(unsigned long pio)
3994{
3995 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3996
3997#ifdef PCI_IOBASE
3998 if (pio >= MMIO_UPPER_LIMIT)
3999 return address;
4000
4001 address = logic_pio_to_hwaddr(pio);
4002#endif
4003
4004 return address;
4005}
4006
4007unsigned long __weak pci_address_to_pio(phys_addr_t address)
4008{
4009#ifdef PCI_IOBASE
4010 return logic_pio_trans_cpuaddr(address);
4011#else
4012 if (address > IO_SPACE_LIMIT)
4013 return (unsigned long)-1;
4014
4015 return (unsigned long) address;
4016#endif
4017}
4018
4019/**
4020 * pci_remap_iospace - Remap the memory mapped I/O space
4021 * @res: Resource describing the I/O space
4022 * @phys_addr: physical address of range to be mapped
4023 *
4024 * Remap the memory mapped I/O space described by the @res and the CPU
4025 * physical address @phys_addr into virtual address space. Only
4026 * architectures that have memory mapped IO functions defined (and the
4027 * PCI_IOBASE value defined) should call this function.
4028 */
4029int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4030{
4031#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4032 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4033
4034 if (!(res->flags & IORESOURCE_IO))
4035 return -EINVAL;
4036
4037 if (res->end > IO_SPACE_LIMIT)
4038 return -EINVAL;
4039
4040 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4041 pgprot_device(PAGE_KERNEL));
4042#else
4043 /*
4044 * This architecture does not have memory mapped I/O space,
4045 * so this function should never be called
4046 */
4047 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4048 return -ENODEV;
4049#endif
4050}
4051EXPORT_SYMBOL(pci_remap_iospace);
4052
4053/**
4054 * pci_unmap_iospace - Unmap the memory mapped I/O space
4055 * @res: resource to be unmapped
4056 *
4057 * Unmap the CPU virtual address @res from virtual address space. Only
4058 * architectures that have memory mapped IO functions defined (and the
4059 * PCI_IOBASE value defined) should call this function.
4060 */
4061void pci_unmap_iospace(struct resource *res)
4062{
4063#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4064 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4065
4066 unmap_kernel_range(vaddr, resource_size(res));
4067#endif
4068}
4069EXPORT_SYMBOL(pci_unmap_iospace);
4070
4071static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4072{
4073 struct resource **res = ptr;
4074
4075 pci_unmap_iospace(*res);
4076}
4077
4078/**
4079 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4080 * @dev: Generic device to remap IO address for
4081 * @res: Resource describing the I/O space
4082 * @phys_addr: physical address of range to be mapped
4083 *
4084 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4085 * detach.
4086 */
4087int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4088 phys_addr_t phys_addr)
4089{
4090 const struct resource **ptr;
4091 int error;
4092
4093 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4094 if (!ptr)
4095 return -ENOMEM;
4096
4097 error = pci_remap_iospace(res, phys_addr);
4098 if (error) {
4099 devres_free(ptr);
4100 } else {
4101 *ptr = res;
4102 devres_add(dev, ptr);
4103 }
4104
4105 return error;
4106}
4107EXPORT_SYMBOL(devm_pci_remap_iospace);
4108
4109/**
4110 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4111 * @dev: Generic device to remap IO address for
4112 * @offset: Resource address to map
4113 * @size: Size of map
4114 *
4115 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4116 * detach.
4117 */
4118void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4119 resource_size_t offset,
4120 resource_size_t size)
4121{
4122 void __iomem **ptr, *addr;
4123
4124 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4125 if (!ptr)
4126 return NULL;
4127
4128 addr = pci_remap_cfgspace(offset, size);
4129 if (addr) {
4130 *ptr = addr;
4131 devres_add(dev, ptr);
4132 } else
4133 devres_free(ptr);
4134
4135 return addr;
4136}
4137EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4138
4139/**
4140 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4141 * @dev: generic device to handle the resource for
4142 * @res: configuration space resource to be handled
4143 *
4144 * Checks that a resource is a valid memory region, requests the memory
4145 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4146 * proper PCI configuration space memory attributes are guaranteed.
4147 *
4148 * All operations are managed and will be undone on driver detach.
4149 *
4150 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4151 * on failure. Usage example::
4152 *
4153 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4154 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4155 * if (IS_ERR(base))
4156 * return PTR_ERR(base);
4157 */
4158void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4159 struct resource *res)
4160{
4161 resource_size_t size;
4162 const char *name;
4163 void __iomem *dest_ptr;
4164
4165 BUG_ON(!dev);
4166
4167 if (!res || resource_type(res) != IORESOURCE_MEM) {
4168 dev_err(dev, "invalid resource\n");
4169 return IOMEM_ERR_PTR(-EINVAL);
4170 }
4171
4172 size = resource_size(res);
4173 name = res->name ?: dev_name(dev);
4174
4175 if (!devm_request_mem_region(dev, res->start, size, name)) {
4176 dev_err(dev, "can't request region for resource %pR\n", res);
4177 return IOMEM_ERR_PTR(-EBUSY);
4178 }
4179
4180 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4181 if (!dest_ptr) {
4182 dev_err(dev, "ioremap failed for resource %pR\n", res);
4183 devm_release_mem_region(dev, res->start, size);
4184 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4185 }
4186
4187 return dest_ptr;
4188}
4189EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4190
4191static void __pci_set_master(struct pci_dev *dev, bool enable)
4192{
4193 u16 old_cmd, cmd;
4194
4195 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4196 if (enable)
4197 cmd = old_cmd | PCI_COMMAND_MASTER;
4198 else
4199 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200 if (cmd != old_cmd) {
4201 pci_dbg(dev, "%s bus mastering\n",
4202 enable ? "enabling" : "disabling");
4203 pci_write_config_word(dev, PCI_COMMAND, cmd);
4204 }
4205 dev->is_busmaster = enable;
4206}
4207
4208/**
4209 * pcibios_setup - process "pci=" kernel boot arguments
4210 * @str: string used to pass in "pci=" kernel boot arguments
4211 *
4212 * Process kernel boot arguments. This is the default implementation.
4213 * Architecture specific implementations can override this as necessary.
4214 */
4215char * __weak __init pcibios_setup(char *str)
4216{
4217 return str;
4218}
4219
4220/**
4221 * pcibios_set_master - enable PCI bus-mastering for device dev
4222 * @dev: the PCI device to enable
4223 *
4224 * Enables PCI bus-mastering for the device. This is the default
4225 * implementation. Architecture specific implementations can override
4226 * this if necessary.
4227 */
4228void __weak pcibios_set_master(struct pci_dev *dev)
4229{
4230 u8 lat;
4231
4232 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233 if (pci_is_pcie(dev))
4234 return;
4235
4236 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4237 if (lat < 16)
4238 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239 else if (lat > pcibios_max_latency)
4240 lat = pcibios_max_latency;
4241 else
4242 return;
4243
4244 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4245}
4246
4247/**
4248 * pci_set_master - enables bus-mastering for device dev
4249 * @dev: the PCI device to enable
4250 *
4251 * Enables bus-mastering on the device and calls pcibios_set_master()
4252 * to do the needed arch specific settings.
4253 */
4254void pci_set_master(struct pci_dev *dev)
4255{
4256 __pci_set_master(dev, true);
4257 pcibios_set_master(dev);
4258}
4259EXPORT_SYMBOL(pci_set_master);
4260
4261/**
4262 * pci_clear_master - disables bus-mastering for device dev
4263 * @dev: the PCI device to disable
4264 */
4265void pci_clear_master(struct pci_dev *dev)
4266{
4267 __pci_set_master(dev, false);
4268}
4269EXPORT_SYMBOL(pci_clear_master);
4270
4271/**
4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273 * @dev: the PCI device for which MWI is to be enabled
4274 *
4275 * Helper function for pci_set_mwi.
4276 * Originally copied from drivers/net/acenic.c.
4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_set_cacheline_size(struct pci_dev *dev)
4282{
4283 u8 cacheline_size;
4284
4285 if (!pci_cache_line_size)
4286 return -EINVAL;
4287
4288 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289 equal to or multiple of the right value. */
4290 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291 if (cacheline_size >= pci_cache_line_size &&
4292 (cacheline_size % pci_cache_line_size) == 0)
4293 return 0;
4294
4295 /* Write the correct value. */
4296 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4297 /* Read it back. */
4298 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299 if (cacheline_size == pci_cache_line_size)
4300 return 0;
4301
4302 pci_info(dev, "cache line size of %d is not supported\n",
4303 pci_cache_line_size << 2);
4304
4305 return -EINVAL;
4306}
4307EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4308
4309/**
4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311 * @dev: the PCI device for which MWI is enabled
4312 *
4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4314 *
4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4316 */
4317int pci_set_mwi(struct pci_dev *dev)
4318{
4319#ifdef PCI_DISABLE_MWI
4320 return 0;
4321#else
4322 int rc;
4323 u16 cmd;
4324
4325 rc = pci_set_cacheline_size(dev);
4326 if (rc)
4327 return rc;
4328
4329 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332 cmd |= PCI_COMMAND_INVALIDATE;
4333 pci_write_config_word(dev, PCI_COMMAND, cmd);
4334 }
4335 return 0;
4336#endif
4337}
4338EXPORT_SYMBOL(pci_set_mwi);
4339
4340/**
4341 * pcim_set_mwi - a device-managed pci_set_mwi()
4342 * @dev: the PCI device for which MWI is enabled
4343 *
4344 * Managed pci_set_mwi().
4345 *
4346 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4347 */
4348int pcim_set_mwi(struct pci_dev *dev)
4349{
4350 struct pci_devres *dr;
4351
4352 dr = find_pci_dr(dev);
4353 if (!dr)
4354 return -ENOMEM;
4355
4356 dr->mwi = 1;
4357 return pci_set_mwi(dev);
4358}
4359EXPORT_SYMBOL(pcim_set_mwi);
4360
4361/**
4362 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4363 * @dev: the PCI device for which MWI is enabled
4364 *
4365 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * Callers are not required to check the return value.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_try_set_mwi(struct pci_dev *dev)
4371{
4372#ifdef PCI_DISABLE_MWI
4373 return 0;
4374#else
4375 return pci_set_mwi(dev);
4376#endif
4377}
4378EXPORT_SYMBOL(pci_try_set_mwi);
4379
4380/**
4381 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4382 * @dev: the PCI device to disable
4383 *
4384 * Disables PCI Memory-Write-Invalidate transaction on the device
4385 */
4386void pci_clear_mwi(struct pci_dev *dev)
4387{
4388#ifndef PCI_DISABLE_MWI
4389 u16 cmd;
4390
4391 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4392 if (cmd & PCI_COMMAND_INVALIDATE) {
4393 cmd &= ~PCI_COMMAND_INVALIDATE;
4394 pci_write_config_word(dev, PCI_COMMAND, cmd);
4395 }
4396#endif
4397}
4398EXPORT_SYMBOL(pci_clear_mwi);
4399
4400/**
4401 * pci_intx - enables/disables PCI INTx for device dev
4402 * @pdev: the PCI device to operate on
4403 * @enable: boolean: whether to enable or disable PCI INTx
4404 *
4405 * Enables/disables PCI INTx for device @pdev
4406 */
4407void pci_intx(struct pci_dev *pdev, int enable)
4408{
4409 u16 pci_command, new;
4410
4411 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4412
4413 if (enable)
4414 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4415 else
4416 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4417
4418 if (new != pci_command) {
4419 struct pci_devres *dr;
4420
4421 pci_write_config_word(pdev, PCI_COMMAND, new);
4422
4423 dr = find_pci_dr(pdev);
4424 if (dr && !dr->restore_intx) {
4425 dr->restore_intx = 1;
4426 dr->orig_intx = !enable;
4427 }
4428 }
4429}
4430EXPORT_SYMBOL_GPL(pci_intx);
4431
4432static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4433{
4434 struct pci_bus *bus = dev->bus;
4435 bool mask_updated = true;
4436 u32 cmd_status_dword;
4437 u16 origcmd, newcmd;
4438 unsigned long flags;
4439 bool irq_pending;
4440
4441 /*
4442 * We do a single dword read to retrieve both command and status.
4443 * Document assumptions that make this possible.
4444 */
4445 BUILD_BUG_ON(PCI_COMMAND % 4);
4446 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4447
4448 raw_spin_lock_irqsave(&pci_lock, flags);
4449
4450 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4451
4452 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4453
4454 /*
4455 * Check interrupt status register to see whether our device
4456 * triggered the interrupt (when masking) or the next IRQ is
4457 * already pending (when unmasking).
4458 */
4459 if (mask != irq_pending) {
4460 mask_updated = false;
4461 goto done;
4462 }
4463
4464 origcmd = cmd_status_dword;
4465 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4466 if (mask)
4467 newcmd |= PCI_COMMAND_INTX_DISABLE;
4468 if (newcmd != origcmd)
4469 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4470
4471done:
4472 raw_spin_unlock_irqrestore(&pci_lock, flags);
4473
4474 return mask_updated;
4475}
4476
4477/**
4478 * pci_check_and_mask_intx - mask INTx on pending interrupt
4479 * @dev: the PCI device to operate on
4480 *
4481 * Check if the device dev has its INTx line asserted, mask it and return
4482 * true in that case. False is returned if no interrupt was pending.
4483 */
4484bool pci_check_and_mask_intx(struct pci_dev *dev)
4485{
4486 return pci_check_and_set_intx_mask(dev, true);
4487}
4488EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4489
4490/**
4491 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4492 * @dev: the PCI device to operate on
4493 *
4494 * Check if the device dev has its INTx line asserted, unmask it if not and
4495 * return true. False is returned and the mask remains active if there was
4496 * still an interrupt pending.
4497 */
4498bool pci_check_and_unmask_intx(struct pci_dev *dev)
4499{
4500 return pci_check_and_set_intx_mask(dev, false);
4501}
4502EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4503
4504/**
4505 * pci_wait_for_pending_transaction - wait for pending transaction
4506 * @dev: the PCI device to operate on
4507 *
4508 * Return 0 if transaction is pending 1 otherwise.
4509 */
4510int pci_wait_for_pending_transaction(struct pci_dev *dev)
4511{
4512 if (!pci_is_pcie(dev))
4513 return 1;
4514
4515 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4516 PCI_EXP_DEVSTA_TRPND);
4517}
4518EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4519
4520/**
4521 * pcie_has_flr - check if a device supports function level resets
4522 * @dev: device to check
4523 *
4524 * Returns true if the device advertises support for PCIe function level
4525 * resets.
4526 */
4527bool pcie_has_flr(struct pci_dev *dev)
4528{
4529 u32 cap;
4530
4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532 return false;
4533
4534 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4535 return cap & PCI_EXP_DEVCAP_FLR;
4536}
4537EXPORT_SYMBOL_GPL(pcie_has_flr);
4538
4539/**
4540 * pcie_flr - initiate a PCIe function level reset
4541 * @dev: device to reset
4542 *
4543 * Initiate a function level reset on @dev. The caller should ensure the
4544 * device supports FLR before calling this function, e.g. by using the
4545 * pcie_has_flr() helper.
4546 */
4547int pcie_flr(struct pci_dev *dev)
4548{
4549 if (!pci_wait_for_pending_transaction(dev))
4550 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4551
4552 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4553
4554 if (dev->imm_ready)
4555 return 0;
4556
4557 /*
4558 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4559 * 100ms, but may silently discard requests while the FLR is in
4560 * progress. Wait 100ms before trying to access the device.
4561 */
4562 msleep(100);
4563
4564 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4565}
4566EXPORT_SYMBOL_GPL(pcie_flr);
4567
4568static int pci_af_flr(struct pci_dev *dev, int probe)
4569{
4570 int pos;
4571 u8 cap;
4572
4573 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4574 if (!pos)
4575 return -ENOTTY;
4576
4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578 return -ENOTTY;
4579
4580 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4581 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4582 return -ENOTTY;
4583
4584 if (probe)
4585 return 0;
4586
4587 /*
4588 * Wait for Transaction Pending bit to clear. A word-aligned test
4589 * is used, so we use the control offset rather than status and shift
4590 * the test bit to match.
4591 */
4592 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4593 PCI_AF_STATUS_TP << 8))
4594 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4595
4596 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4597
4598 if (dev->imm_ready)
4599 return 0;
4600
4601 /*
4602 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4603 * updated 27 July 2006; a device must complete an FLR within
4604 * 100ms, but may silently discard requests while the FLR is in
4605 * progress. Wait 100ms before trying to access the device.
4606 */
4607 msleep(100);
4608
4609 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4610}
4611
4612/**
4613 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4614 * @dev: Device to reset.
4615 * @probe: If set, only check if the device can be reset this way.
4616 *
4617 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4618 * unset, it will be reinitialized internally when going from PCI_D3hot to
4619 * PCI_D0. If that's the case and the device is not in a low-power state
4620 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4621 *
4622 * NOTE: This causes the caller to sleep for twice the device power transition
4623 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4624 * by default (i.e. unless the @dev's d3_delay field has a different value).
4625 * Moreover, only devices in D0 can be reset by this function.
4626 */
4627static int pci_pm_reset(struct pci_dev *dev, int probe)
4628{
4629 u16 csr;
4630
4631 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4632 return -ENOTTY;
4633
4634 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4635 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4636 return -ENOTTY;
4637
4638 if (probe)
4639 return 0;
4640
4641 if (dev->current_state != PCI_D0)
4642 return -EINVAL;
4643
4644 csr &= ~PCI_PM_CTRL_STATE_MASK;
4645 csr |= PCI_D3hot;
4646 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4647 pci_dev_d3_sleep(dev);
4648
4649 csr &= ~PCI_PM_CTRL_STATE_MASK;
4650 csr |= PCI_D0;
4651 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4652 pci_dev_d3_sleep(dev);
4653
4654 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4655}
4656
4657/**
4658 * pcie_wait_for_link_delay - Wait until link is active or inactive
4659 * @pdev: Bridge device
4660 * @active: waiting for active or inactive?
4661 * @delay: Delay to wait after link has become active (in ms)
4662 *
4663 * Use this to wait till link becomes active or inactive.
4664 */
4665static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4666 int delay)
4667{
4668 int timeout = 1000;
4669 bool ret;
4670 u16 lnk_status;
4671
4672 /*
4673 * Some controllers might not implement link active reporting. In this
4674 * case, we wait for 1000 ms + any delay requested by the caller.
4675 */
4676 if (!pdev->link_active_reporting) {
4677 msleep(timeout + delay);
4678 return true;
4679 }
4680
4681 /*
4682 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4683 * after which we should expect an link active if the reset was
4684 * successful. If so, software must wait a minimum 100ms before sending
4685 * configuration requests to devices downstream this port.
4686 *
4687 * If the link fails to activate, either the device was physically
4688 * removed or the link is permanently failed.
4689 */
4690 if (active)
4691 msleep(20);
4692 for (;;) {
4693 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4694 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4695 if (ret == active)
4696 break;
4697 if (timeout <= 0)
4698 break;
4699 msleep(10);
4700 timeout -= 10;
4701 }
4702 if (active && ret)
4703 msleep(delay);
4704 else if (ret != active)
4705 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4706 active ? "set" : "cleared");
4707 return ret == active;
4708}
4709
4710/**
4711 * pcie_wait_for_link - Wait until link is active or inactive
4712 * @pdev: Bridge device
4713 * @active: waiting for active or inactive?
4714 *
4715 * Use this to wait till link becomes active or inactive.
4716 */
4717bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4718{
4719 return pcie_wait_for_link_delay(pdev, active, 100);
4720}
4721
4722/*
4723 * Find maximum D3cold delay required by all the devices on the bus. The
4724 * spec says 100 ms, but firmware can lower it and we allow drivers to
4725 * increase it as well.
4726 *
4727 * Called with @pci_bus_sem locked for reading.
4728 */
4729static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4730{
4731 const struct pci_dev *pdev;
4732 int min_delay = 100;
4733 int max_delay = 0;
4734
4735 list_for_each_entry(pdev, &bus->devices, bus_list) {
4736 if (pdev->d3cold_delay < min_delay)
4737 min_delay = pdev->d3cold_delay;
4738 if (pdev->d3cold_delay > max_delay)
4739 max_delay = pdev->d3cold_delay;
4740 }
4741
4742 return max(min_delay, max_delay);
4743}
4744
4745/**
4746 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4747 * @dev: PCI bridge
4748 *
4749 * Handle necessary delays before access to the devices on the secondary
4750 * side of the bridge are permitted after D3cold to D0 transition.
4751 *
4752 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4753 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4754 * 4.3.2.
4755 */
4756void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4757{
4758 struct pci_dev *child;
4759 int delay;
4760
4761 if (pci_dev_is_disconnected(dev))
4762 return;
4763
4764 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4765 return;
4766
4767 down_read(&pci_bus_sem);
4768
4769 /*
4770 * We only deal with devices that are present currently on the bus.
4771 * For any hot-added devices the access delay is handled in pciehp
4772 * board_added(). In case of ACPI hotplug the firmware is expected
4773 * to configure the devices before OS is notified.
4774 */
4775 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4776 up_read(&pci_bus_sem);
4777 return;
4778 }
4779
4780 /* Take d3cold_delay requirements into account */
4781 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4782 if (!delay) {
4783 up_read(&pci_bus_sem);
4784 return;
4785 }
4786
4787 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4788 bus_list);
4789 up_read(&pci_bus_sem);
4790
4791 /*
4792 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4793 * accessing the device after reset (that is 1000 ms + 100 ms). In
4794 * practice this should not be needed because we don't do power
4795 * management for them (see pci_bridge_d3_possible()).
4796 */
4797 if (!pci_is_pcie(dev)) {
4798 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4799 msleep(1000 + delay);
4800 return;
4801 }
4802
4803 /*
4804 * For PCIe downstream and root ports that do not support speeds
4805 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4806 * speeds (gen3) we need to wait first for the data link layer to
4807 * become active.
4808 *
4809 * However, 100 ms is the minimum and the PCIe spec says the
4810 * software must allow at least 1s before it can determine that the
4811 * device that did not respond is a broken device. There is
4812 * evidence that 100 ms is not always enough, for example certain
4813 * Titan Ridge xHCI controller does not always respond to
4814 * configuration requests if we only wait for 100 ms (see
4815 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4816 *
4817 * Therefore we wait for 100 ms and check for the device presence.
4818 * If it is still not present give it an additional 100 ms.
4819 */
4820 if (!pcie_downstream_port(dev))
4821 return;
4822
4823 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4824 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4825 msleep(delay);
4826 } else {
4827 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4828 delay);
4829 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4830 /* Did not train, no need to wait any further */
4831 return;
4832 }
4833 }
4834
4835 if (!pci_device_is_present(child)) {
4836 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4837 msleep(delay);
4838 }
4839}
4840
4841void pci_reset_secondary_bus(struct pci_dev *dev)
4842{
4843 u16 ctrl;
4844
4845 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4846 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4847 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4848
4849 /*
4850 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4851 * this to 2ms to ensure that we meet the minimum requirement.
4852 */
4853 msleep(2);
4854
4855 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858 /*
4859 * Trhfa for conventional PCI is 2^25 clock cycles.
4860 * Assuming a minimum 33MHz clock this results in a 1s
4861 * delay before we can consider subordinate devices to
4862 * be re-initialized. PCIe has some ways to shorten this,
4863 * but we don't make use of them yet.
4864 */
4865 ssleep(1);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870 pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882 pcibios_reset_secondary_bus(dev);
4883
4884 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4889{
4890 struct pci_dev *pdev;
4891
4892 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 return -ENOTTY;
4895
4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 if (pdev != dev)
4898 return -ENOTTY;
4899
4900 if (probe)
4901 return 0;
4902
4903 return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4907{
4908 int rc = -ENOTTY;
4909
4910 if (!hotplug || !try_module_get(hotplug->owner))
4911 return rc;
4912
4913 if (hotplug->ops->reset_slot)
4914 rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916 module_put(hotplug->owner);
4917
4918 return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4922{
4923 struct pci_dev *pdev;
4924
4925 if (dev->subordinate || !dev->slot ||
4926 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4927 return -ENOTTY;
4928
4929 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4930 if (pdev != dev && pdev->slot == dev->slot)
4931 return -ENOTTY;
4932
4933 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4934}
4935
4936static void pci_dev_lock(struct pci_dev *dev)
4937{
4938 pci_cfg_access_lock(dev);
4939 /* block PM suspend, driver probe, etc. */
4940 device_lock(&dev->dev);
4941}
4942
4943/* Return 1 on successful lock, 0 on contention */
4944static int pci_dev_trylock(struct pci_dev *dev)
4945{
4946 if (pci_cfg_access_trylock(dev)) {
4947 if (device_trylock(&dev->dev))
4948 return 1;
4949 pci_cfg_access_unlock(dev);
4950 }
4951
4952 return 0;
4953}
4954
4955static void pci_dev_unlock(struct pci_dev *dev)
4956{
4957 device_unlock(&dev->dev);
4958 pci_cfg_access_unlock(dev);
4959}
4960
4961static void pci_dev_save_and_disable(struct pci_dev *dev)
4962{
4963 const struct pci_error_handlers *err_handler =
4964 dev->driver ? dev->driver->err_handler : NULL;
4965
4966 /*
4967 * dev->driver->err_handler->reset_prepare() is protected against
4968 * races with ->remove() by the device lock, which must be held by
4969 * the caller.
4970 */
4971 if (err_handler && err_handler->reset_prepare)
4972 err_handler->reset_prepare(dev);
4973
4974 /*
4975 * Wake-up device prior to save. PM registers default to D0 after
4976 * reset and a simple register restore doesn't reliably return
4977 * to a non-D0 state anyway.
4978 */
4979 pci_set_power_state(dev, PCI_D0);
4980
4981 pci_save_state(dev);
4982 /*
4983 * Disable the device by clearing the Command register, except for
4984 * INTx-disable which is set. This not only disables MMIO and I/O port
4985 * BARs, but also prevents the device from being Bus Master, preventing
4986 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4987 * compliant devices, INTx-disable prevents legacy interrupts.
4988 */
4989 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4990}
4991
4992static void pci_dev_restore(struct pci_dev *dev)
4993{
4994 const struct pci_error_handlers *err_handler =
4995 dev->driver ? dev->driver->err_handler : NULL;
4996
4997 pci_restore_state(dev);
4998
4999 /*
5000 * dev->driver->err_handler->reset_done() is protected against
5001 * races with ->remove() by the device lock, which must be held by
5002 * the caller.
5003 */
5004 if (err_handler && err_handler->reset_done)
5005 err_handler->reset_done(dev);
5006}
5007
5008/**
5009 * __pci_reset_function_locked - reset a PCI device function while holding
5010 * the @dev mutex lock.
5011 * @dev: PCI device to reset
5012 *
5013 * Some devices allow an individual function to be reset without affecting
5014 * other functions in the same device. The PCI device must be responsive
5015 * to PCI config space in order to use this function.
5016 *
5017 * The device function is presumed to be unused and the caller is holding
5018 * the device mutex lock when this function is called.
5019 *
5020 * Resetting the device will make the contents of PCI configuration space
5021 * random, so any caller of this must be prepared to reinitialise the
5022 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5023 * etc.
5024 *
5025 * Returns 0 if the device function was successfully reset or negative if the
5026 * device doesn't support resetting a single function.
5027 */
5028int __pci_reset_function_locked(struct pci_dev *dev)
5029{
5030 int rc;
5031
5032 might_sleep();
5033
5034 /*
5035 * A reset method returns -ENOTTY if it doesn't support this device
5036 * and we should try the next method.
5037 *
5038 * If it returns 0 (success), we're finished. If it returns any
5039 * other error, we're also finished: this indicates that further
5040 * reset mechanisms might be broken on the device.
5041 */
5042 rc = pci_dev_specific_reset(dev, 0);
5043 if (rc != -ENOTTY)
5044 return rc;
5045 if (pcie_has_flr(dev)) {
5046 rc = pcie_flr(dev);
5047 if (rc != -ENOTTY)
5048 return rc;
5049 }
5050 rc = pci_af_flr(dev, 0);
5051 if (rc != -ENOTTY)
5052 return rc;
5053 rc = pci_pm_reset(dev, 0);
5054 if (rc != -ENOTTY)
5055 return rc;
5056 rc = pci_dev_reset_slot_function(dev, 0);
5057 if (rc != -ENOTTY)
5058 return rc;
5059 return pci_parent_bus_reset(dev, 0);
5060}
5061EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5062
5063/**
5064 * pci_probe_reset_function - check whether the device can be safely reset
5065 * @dev: PCI device to reset
5066 *
5067 * Some devices allow an individual function to be reset without affecting
5068 * other functions in the same device. The PCI device must be responsive
5069 * to PCI config space in order to use this function.
5070 *
5071 * Returns 0 if the device function can be reset or negative if the
5072 * device doesn't support resetting a single function.
5073 */
5074int pci_probe_reset_function(struct pci_dev *dev)
5075{
5076 int rc;
5077
5078 might_sleep();
5079
5080 rc = pci_dev_specific_reset(dev, 1);
5081 if (rc != -ENOTTY)
5082 return rc;
5083 if (pcie_has_flr(dev))
5084 return 0;
5085 rc = pci_af_flr(dev, 1);
5086 if (rc != -ENOTTY)
5087 return rc;
5088 rc = pci_pm_reset(dev, 1);
5089 if (rc != -ENOTTY)
5090 return rc;
5091 rc = pci_dev_reset_slot_function(dev, 1);
5092 if (rc != -ENOTTY)
5093 return rc;
5094
5095 return pci_parent_bus_reset(dev, 1);
5096}
5097
5098/**
5099 * pci_reset_function - quiesce and reset a PCI device function
5100 * @dev: PCI device to reset
5101 *
5102 * Some devices allow an individual function to be reset without affecting
5103 * other functions in the same device. The PCI device must be responsive
5104 * to PCI config space in order to use this function.
5105 *
5106 * This function does not just reset the PCI portion of a device, but
5107 * clears all the state associated with the device. This function differs
5108 * from __pci_reset_function_locked() in that it saves and restores device state
5109 * over the reset and takes the PCI device lock.
5110 *
5111 * Returns 0 if the device function was successfully reset or negative if the
5112 * device doesn't support resetting a single function.
5113 */
5114int pci_reset_function(struct pci_dev *dev)
5115{
5116 int rc;
5117
5118 if (!dev->reset_fn)
5119 return -ENOTTY;
5120
5121 pci_dev_lock(dev);
5122 pci_dev_save_and_disable(dev);
5123
5124 rc = __pci_reset_function_locked(dev);
5125
5126 pci_dev_restore(dev);
5127 pci_dev_unlock(dev);
5128
5129 return rc;
5130}
5131EXPORT_SYMBOL_GPL(pci_reset_function);
5132
5133/**
5134 * pci_reset_function_locked - quiesce and reset a PCI device function
5135 * @dev: PCI device to reset
5136 *
5137 * Some devices allow an individual function to be reset without affecting
5138 * other functions in the same device. The PCI device must be responsive
5139 * to PCI config space in order to use this function.
5140 *
5141 * This function does not just reset the PCI portion of a device, but
5142 * clears all the state associated with the device. This function differs
5143 * from __pci_reset_function_locked() in that it saves and restores device state
5144 * over the reset. It also differs from pci_reset_function() in that it
5145 * requires the PCI device lock to be held.
5146 *
5147 * Returns 0 if the device function was successfully reset or negative if the
5148 * device doesn't support resetting a single function.
5149 */
5150int pci_reset_function_locked(struct pci_dev *dev)
5151{
5152 int rc;
5153
5154 if (!dev->reset_fn)
5155 return -ENOTTY;
5156
5157 pci_dev_save_and_disable(dev);
5158
5159 rc = __pci_reset_function_locked(dev);
5160
5161 pci_dev_restore(dev);
5162
5163 return rc;
5164}
5165EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5166
5167/**
5168 * pci_try_reset_function - quiesce and reset a PCI device function
5169 * @dev: PCI device to reset
5170 *
5171 * Same as above, except return -EAGAIN if unable to lock device.
5172 */
5173int pci_try_reset_function(struct pci_dev *dev)
5174{
5175 int rc;
5176
5177 if (!dev->reset_fn)
5178 return -ENOTTY;
5179
5180 if (!pci_dev_trylock(dev))
5181 return -EAGAIN;
5182
5183 pci_dev_save_and_disable(dev);
5184 rc = __pci_reset_function_locked(dev);
5185 pci_dev_restore(dev);
5186 pci_dev_unlock(dev);
5187
5188 return rc;
5189}
5190EXPORT_SYMBOL_GPL(pci_try_reset_function);
5191
5192/* Do any devices on or below this bus prevent a bus reset? */
5193static bool pci_bus_resetable(struct pci_bus *bus)
5194{
5195 struct pci_dev *dev;
5196
5197
5198 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5199 return false;
5200
5201 list_for_each_entry(dev, &bus->devices, bus_list) {
5202 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5203 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5204 return false;
5205 }
5206
5207 return true;
5208}
5209
5210/* Lock devices from the top of the tree down */
5211static void pci_bus_lock(struct pci_bus *bus)
5212{
5213 struct pci_dev *dev;
5214
5215 list_for_each_entry(dev, &bus->devices, bus_list) {
5216 pci_dev_lock(dev);
5217 if (dev->subordinate)
5218 pci_bus_lock(dev->subordinate);
5219 }
5220}
5221
5222/* Unlock devices from the bottom of the tree up */
5223static void pci_bus_unlock(struct pci_bus *bus)
5224{
5225 struct pci_dev *dev;
5226
5227 list_for_each_entry(dev, &bus->devices, bus_list) {
5228 if (dev->subordinate)
5229 pci_bus_unlock(dev->subordinate);
5230 pci_dev_unlock(dev);
5231 }
5232}
5233
5234/* Return 1 on successful lock, 0 on contention */
5235static int pci_bus_trylock(struct pci_bus *bus)
5236{
5237 struct pci_dev *dev;
5238
5239 list_for_each_entry(dev, &bus->devices, bus_list) {
5240 if (!pci_dev_trylock(dev))
5241 goto unlock;
5242 if (dev->subordinate) {
5243 if (!pci_bus_trylock(dev->subordinate)) {
5244 pci_dev_unlock(dev);
5245 goto unlock;
5246 }
5247 }
5248 }
5249 return 1;
5250
5251unlock:
5252 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5253 if (dev->subordinate)
5254 pci_bus_unlock(dev->subordinate);
5255 pci_dev_unlock(dev);
5256 }
5257 return 0;
5258}
5259
5260/* Do any devices on or below this slot prevent a bus reset? */
5261static bool pci_slot_resetable(struct pci_slot *slot)
5262{
5263 struct pci_dev *dev;
5264
5265 if (slot->bus->self &&
5266 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5267 return false;
5268
5269 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270 if (!dev->slot || dev->slot != slot)
5271 continue;
5272 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5273 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5274 return false;
5275 }
5276
5277 return true;
5278}
5279
5280/* Lock devices from the top of the tree down */
5281static void pci_slot_lock(struct pci_slot *slot)
5282{
5283 struct pci_dev *dev;
5284
5285 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5286 if (!dev->slot || dev->slot != slot)
5287 continue;
5288 pci_dev_lock(dev);
5289 if (dev->subordinate)
5290 pci_bus_lock(dev->subordinate);
5291 }
5292}
5293
5294/* Unlock devices from the bottom of the tree up */
5295static void pci_slot_unlock(struct pci_slot *slot)
5296{
5297 struct pci_dev *dev;
5298
5299 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 if (!dev->slot || dev->slot != slot)
5301 continue;
5302 if (dev->subordinate)
5303 pci_bus_unlock(dev->subordinate);
5304 pci_dev_unlock(dev);
5305 }
5306}
5307
5308/* Return 1 on successful lock, 0 on contention */
5309static int pci_slot_trylock(struct pci_slot *slot)
5310{
5311 struct pci_dev *dev;
5312
5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 if (!dev->slot || dev->slot != slot)
5315 continue;
5316 if (!pci_dev_trylock(dev))
5317 goto unlock;
5318 if (dev->subordinate) {
5319 if (!pci_bus_trylock(dev->subordinate)) {
5320 pci_dev_unlock(dev);
5321 goto unlock;
5322 }
5323 }
5324 }
5325 return 1;
5326
5327unlock:
5328 list_for_each_entry_continue_reverse(dev,
5329 &slot->bus->devices, bus_list) {
5330 if (!dev->slot || dev->slot != slot)
5331 continue;
5332 if (dev->subordinate)
5333 pci_bus_unlock(dev->subordinate);
5334 pci_dev_unlock(dev);
5335 }
5336 return 0;
5337}
5338
5339/*
5340 * Save and disable devices from the top of the tree down while holding
5341 * the @dev mutex lock for the entire tree.
5342 */
5343static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5344{
5345 struct pci_dev *dev;
5346
5347 list_for_each_entry(dev, &bus->devices, bus_list) {
5348 pci_dev_save_and_disable(dev);
5349 if (dev->subordinate)
5350 pci_bus_save_and_disable_locked(dev->subordinate);
5351 }
5352}
5353
5354/*
5355 * Restore devices from top of the tree down while holding @dev mutex lock
5356 * for the entire tree. Parent bridges need to be restored before we can
5357 * get to subordinate devices.
5358 */
5359static void pci_bus_restore_locked(struct pci_bus *bus)
5360{
5361 struct pci_dev *dev;
5362
5363 list_for_each_entry(dev, &bus->devices, bus_list) {
5364 pci_dev_restore(dev);
5365 if (dev->subordinate)
5366 pci_bus_restore_locked(dev->subordinate);
5367 }
5368}
5369
5370/*
5371 * Save and disable devices from the top of the tree down while holding
5372 * the @dev mutex lock for the entire tree.
5373 */
5374static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5375{
5376 struct pci_dev *dev;
5377
5378 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5379 if (!dev->slot || dev->slot != slot)
5380 continue;
5381 pci_dev_save_and_disable(dev);
5382 if (dev->subordinate)
5383 pci_bus_save_and_disable_locked(dev->subordinate);
5384 }
5385}
5386
5387/*
5388 * Restore devices from top of the tree down while holding @dev mutex lock
5389 * for the entire tree. Parent bridges need to be restored before we can
5390 * get to subordinate devices.
5391 */
5392static void pci_slot_restore_locked(struct pci_slot *slot)
5393{
5394 struct pci_dev *dev;
5395
5396 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397 if (!dev->slot || dev->slot != slot)
5398 continue;
5399 pci_dev_restore(dev);
5400 if (dev->subordinate)
5401 pci_bus_restore_locked(dev->subordinate);
5402 }
5403}
5404
5405static int pci_slot_reset(struct pci_slot *slot, int probe)
5406{
5407 int rc;
5408
5409 if (!slot || !pci_slot_resetable(slot))
5410 return -ENOTTY;
5411
5412 if (!probe)
5413 pci_slot_lock(slot);
5414
5415 might_sleep();
5416
5417 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5418
5419 if (!probe)
5420 pci_slot_unlock(slot);
5421
5422 return rc;
5423}
5424
5425/**
5426 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5427 * @slot: PCI slot to probe
5428 *
5429 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5430 */
5431int pci_probe_reset_slot(struct pci_slot *slot)
5432{
5433 return pci_slot_reset(slot, 1);
5434}
5435EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5436
5437/**
5438 * __pci_reset_slot - Try to reset a PCI slot
5439 * @slot: PCI slot to reset
5440 *
5441 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5442 * independent of other slots. For instance, some slots may support slot power
5443 * control. In the case of a 1:1 bus to slot architecture, this function may
5444 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5445 * Generally a slot reset should be attempted before a bus reset. All of the
5446 * function of the slot and any subordinate buses behind the slot are reset
5447 * through this function. PCI config space of all devices in the slot and
5448 * behind the slot is saved before and restored after reset.
5449 *
5450 * Same as above except return -EAGAIN if the slot cannot be locked
5451 */
5452static int __pci_reset_slot(struct pci_slot *slot)
5453{
5454 int rc;
5455
5456 rc = pci_slot_reset(slot, 1);
5457 if (rc)
5458 return rc;
5459
5460 if (pci_slot_trylock(slot)) {
5461 pci_slot_save_and_disable_locked(slot);
5462 might_sleep();
5463 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5464 pci_slot_restore_locked(slot);
5465 pci_slot_unlock(slot);
5466 } else
5467 rc = -EAGAIN;
5468
5469 return rc;
5470}
5471
5472static int pci_bus_reset(struct pci_bus *bus, int probe)
5473{
5474 int ret;
5475
5476 if (!bus->self || !pci_bus_resetable(bus))
5477 return -ENOTTY;
5478
5479 if (probe)
5480 return 0;
5481
5482 pci_bus_lock(bus);
5483
5484 might_sleep();
5485
5486 ret = pci_bridge_secondary_bus_reset(bus->self);
5487
5488 pci_bus_unlock(bus);
5489
5490 return ret;
5491}
5492
5493/**
5494 * pci_bus_error_reset - reset the bridge's subordinate bus
5495 * @bridge: The parent device that connects to the bus to reset
5496 *
5497 * This function will first try to reset the slots on this bus if the method is
5498 * available. If slot reset fails or is not available, this will fall back to a
5499 * secondary bus reset.
5500 */
5501int pci_bus_error_reset(struct pci_dev *bridge)
5502{
5503 struct pci_bus *bus = bridge->subordinate;
5504 struct pci_slot *slot;
5505
5506 if (!bus)
5507 return -ENOTTY;
5508
5509 mutex_lock(&pci_slot_mutex);
5510 if (list_empty(&bus->slots))
5511 goto bus_reset;
5512
5513 list_for_each_entry(slot, &bus->slots, list)
5514 if (pci_probe_reset_slot(slot))
5515 goto bus_reset;
5516
5517 list_for_each_entry(slot, &bus->slots, list)
5518 if (pci_slot_reset(slot, 0))
5519 goto bus_reset;
5520
5521 mutex_unlock(&pci_slot_mutex);
5522 return 0;
5523bus_reset:
5524 mutex_unlock(&pci_slot_mutex);
5525 return pci_bus_reset(bridge->subordinate, 0);
5526}
5527
5528/**
5529 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5530 * @bus: PCI bus to probe
5531 *
5532 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5533 */
5534int pci_probe_reset_bus(struct pci_bus *bus)
5535{
5536 return pci_bus_reset(bus, 1);
5537}
5538EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5539
5540/**
5541 * __pci_reset_bus - Try to reset a PCI bus
5542 * @bus: top level PCI bus to reset
5543 *
5544 * Same as above except return -EAGAIN if the bus cannot be locked
5545 */
5546static int __pci_reset_bus(struct pci_bus *bus)
5547{
5548 int rc;
5549
5550 rc = pci_bus_reset(bus, 1);
5551 if (rc)
5552 return rc;
5553
5554 if (pci_bus_trylock(bus)) {
5555 pci_bus_save_and_disable_locked(bus);
5556 might_sleep();
5557 rc = pci_bridge_secondary_bus_reset(bus->self);
5558 pci_bus_restore_locked(bus);
5559 pci_bus_unlock(bus);
5560 } else
5561 rc = -EAGAIN;
5562
5563 return rc;
5564}
5565
5566/**
5567 * pci_reset_bus - Try to reset a PCI bus
5568 * @pdev: top level PCI device to reset via slot/bus
5569 *
5570 * Same as above except return -EAGAIN if the bus cannot be locked
5571 */
5572int pci_reset_bus(struct pci_dev *pdev)
5573{
5574 return (!pci_probe_reset_slot(pdev->slot)) ?
5575 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5576}
5577EXPORT_SYMBOL_GPL(pci_reset_bus);
5578
5579/**
5580 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5581 * @dev: PCI device to query
5582 *
5583 * Returns mmrbc: maximum designed memory read count in bytes or
5584 * appropriate error value.
5585 */
5586int pcix_get_max_mmrbc(struct pci_dev *dev)
5587{
5588 int cap;
5589 u32 stat;
5590
5591 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5592 if (!cap)
5593 return -EINVAL;
5594
5595 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5596 return -EINVAL;
5597
5598 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5599}
5600EXPORT_SYMBOL(pcix_get_max_mmrbc);
5601
5602/**
5603 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5604 * @dev: PCI device to query
5605 *
5606 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5607 * value.
5608 */
5609int pcix_get_mmrbc(struct pci_dev *dev)
5610{
5611 int cap;
5612 u16 cmd;
5613
5614 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5615 if (!cap)
5616 return -EINVAL;
5617
5618 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5619 return -EINVAL;
5620
5621 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5622}
5623EXPORT_SYMBOL(pcix_get_mmrbc);
5624
5625/**
5626 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5627 * @dev: PCI device to query
5628 * @mmrbc: maximum memory read count in bytes
5629 * valid values are 512, 1024, 2048, 4096
5630 *
5631 * If possible sets maximum memory read byte count, some bridges have errata
5632 * that prevent this.
5633 */
5634int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5635{
5636 int cap;
5637 u32 stat, v, o;
5638 u16 cmd;
5639
5640 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5641 return -EINVAL;
5642
5643 v = ffs(mmrbc) - 10;
5644
5645 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5646 if (!cap)
5647 return -EINVAL;
5648
5649 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5650 return -EINVAL;
5651
5652 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5653 return -E2BIG;
5654
5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656 return -EINVAL;
5657
5658 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5659 if (o != v) {
5660 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5661 return -EIO;
5662
5663 cmd &= ~PCI_X_CMD_MAX_READ;
5664 cmd |= v << 2;
5665 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5666 return -EIO;
5667 }
5668 return 0;
5669}
5670EXPORT_SYMBOL(pcix_set_mmrbc);
5671
5672/**
5673 * pcie_get_readrq - get PCI Express read request size
5674 * @dev: PCI device to query
5675 *
5676 * Returns maximum memory read request in bytes or appropriate error value.
5677 */
5678int pcie_get_readrq(struct pci_dev *dev)
5679{
5680 u16 ctl;
5681
5682 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5683
5684 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5685}
5686EXPORT_SYMBOL(pcie_get_readrq);
5687
5688/**
5689 * pcie_set_readrq - set PCI Express maximum memory read request
5690 * @dev: PCI device to query
5691 * @rq: maximum memory read count in bytes
5692 * valid values are 128, 256, 512, 1024, 2048, 4096
5693 *
5694 * If possible sets maximum memory read request in bytes
5695 */
5696int pcie_set_readrq(struct pci_dev *dev, int rq)
5697{
5698 u16 v;
5699 int ret;
5700
5701 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5702 return -EINVAL;
5703
5704 /*
5705 * If using the "performance" PCIe config, we clamp the read rq
5706 * size to the max packet size to keep the host bridge from
5707 * generating requests larger than we can cope with.
5708 */
5709 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5710 int mps = pcie_get_mps(dev);
5711
5712 if (mps < rq)
5713 rq = mps;
5714 }
5715
5716 v = (ffs(rq) - 8) << 12;
5717
5718 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5719 PCI_EXP_DEVCTL_READRQ, v);
5720
5721 return pcibios_err_to_errno(ret);
5722}
5723EXPORT_SYMBOL(pcie_set_readrq);
5724
5725/**
5726 * pcie_get_mps - get PCI Express maximum payload size
5727 * @dev: PCI device to query
5728 *
5729 * Returns maximum payload size in bytes
5730 */
5731int pcie_get_mps(struct pci_dev *dev)
5732{
5733 u16 ctl;
5734
5735 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5736
5737 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5738}
5739EXPORT_SYMBOL(pcie_get_mps);
5740
5741/**
5742 * pcie_set_mps - set PCI Express maximum payload size
5743 * @dev: PCI device to query
5744 * @mps: maximum payload size in bytes
5745 * valid values are 128, 256, 512, 1024, 2048, 4096
5746 *
5747 * If possible sets maximum payload size
5748 */
5749int pcie_set_mps(struct pci_dev *dev, int mps)
5750{
5751 u16 v;
5752 int ret;
5753
5754 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5755 return -EINVAL;
5756
5757 v = ffs(mps) - 8;
5758 if (v > dev->pcie_mpss)
5759 return -EINVAL;
5760 v <<= 5;
5761
5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 PCI_EXP_DEVCTL_PAYLOAD, v);
5764
5765 return pcibios_err_to_errno(ret);
5766}
5767EXPORT_SYMBOL(pcie_set_mps);
5768
5769/**
5770 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5771 * device and its bandwidth limitation
5772 * @dev: PCI device to query
5773 * @limiting_dev: storage for device causing the bandwidth limitation
5774 * @speed: storage for speed of limiting device
5775 * @width: storage for width of limiting device
5776 *
5777 * Walk up the PCI device chain and find the point where the minimum
5778 * bandwidth is available. Return the bandwidth available there and (if
5779 * limiting_dev, speed, and width pointers are supplied) information about
5780 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5781 * raw bandwidth.
5782 */
5783u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5784 enum pci_bus_speed *speed,
5785 enum pcie_link_width *width)
5786{
5787 u16 lnksta;
5788 enum pci_bus_speed next_speed;
5789 enum pcie_link_width next_width;
5790 u32 bw, next_bw;
5791
5792 if (speed)
5793 *speed = PCI_SPEED_UNKNOWN;
5794 if (width)
5795 *width = PCIE_LNK_WIDTH_UNKNOWN;
5796
5797 bw = 0;
5798
5799 while (dev) {
5800 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5801
5802 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5803 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5804 PCI_EXP_LNKSTA_NLW_SHIFT;
5805
5806 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5807
5808 /* Check if current device limits the total bandwidth */
5809 if (!bw || next_bw <= bw) {
5810 bw = next_bw;
5811
5812 if (limiting_dev)
5813 *limiting_dev = dev;
5814 if (speed)
5815 *speed = next_speed;
5816 if (width)
5817 *width = next_width;
5818 }
5819
5820 dev = pci_upstream_bridge(dev);
5821 }
5822
5823 return bw;
5824}
5825EXPORT_SYMBOL(pcie_bandwidth_available);
5826
5827/**
5828 * pcie_get_speed_cap - query for the PCI device's link speed capability
5829 * @dev: PCI device to query
5830 *
5831 * Query the PCI device speed capability. Return the maximum link speed
5832 * supported by the device.
5833 */
5834enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5835{
5836 u32 lnkcap2, lnkcap;
5837
5838 /*
5839 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5840 * implementation note there recommends using the Supported Link
5841 * Speeds Vector in Link Capabilities 2 when supported.
5842 *
5843 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5844 * should use the Supported Link Speeds field in Link Capabilities,
5845 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5846 */
5847 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5848
5849 /* PCIe r3.0-compliant */
5850 if (lnkcap2)
5851 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5852
5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5854 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5855 return PCIE_SPEED_5_0GT;
5856 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5857 return PCIE_SPEED_2_5GT;
5858
5859 return PCI_SPEED_UNKNOWN;
5860}
5861EXPORT_SYMBOL(pcie_get_speed_cap);
5862
5863/**
5864 * pcie_get_width_cap - query for the PCI device's link width capability
5865 * @dev: PCI device to query
5866 *
5867 * Query the PCI device width capability. Return the maximum link width
5868 * supported by the device.
5869 */
5870enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5871{
5872 u32 lnkcap;
5873
5874 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5875 if (lnkcap)
5876 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5877
5878 return PCIE_LNK_WIDTH_UNKNOWN;
5879}
5880EXPORT_SYMBOL(pcie_get_width_cap);
5881
5882/**
5883 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5884 * @dev: PCI device
5885 * @speed: storage for link speed
5886 * @width: storage for link width
5887 *
5888 * Calculate a PCI device's link bandwidth by querying for its link speed
5889 * and width, multiplying them, and applying encoding overhead. The result
5890 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5891 */
5892u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5893 enum pcie_link_width *width)
5894{
5895 *speed = pcie_get_speed_cap(dev);
5896 *width = pcie_get_width_cap(dev);
5897
5898 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5899 return 0;
5900
5901 return *width * PCIE_SPEED2MBS_ENC(*speed);
5902}
5903
5904/**
5905 * __pcie_print_link_status - Report the PCI device's link speed and width
5906 * @dev: PCI device to query
5907 * @verbose: Print info even when enough bandwidth is available
5908 *
5909 * If the available bandwidth at the device is less than the device is
5910 * capable of, report the device's maximum possible bandwidth and the
5911 * upstream link that limits its performance. If @verbose, always print
5912 * the available bandwidth, even if the device isn't constrained.
5913 */
5914void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5915{
5916 enum pcie_link_width width, width_cap;
5917 enum pci_bus_speed speed, speed_cap;
5918 struct pci_dev *limiting_dev = NULL;
5919 u32 bw_avail, bw_cap;
5920
5921 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5922 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5923
5924 if (bw_avail >= bw_cap && verbose)
5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5926 bw_cap / 1000, bw_cap % 1000,
5927 pci_speed_string(speed_cap), width_cap);
5928 else if (bw_avail < bw_cap)
5929 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5930 bw_avail / 1000, bw_avail % 1000,
5931 pci_speed_string(speed), width,
5932 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5933 bw_cap / 1000, bw_cap % 1000,
5934 pci_speed_string(speed_cap), width_cap);
5935}
5936
5937/**
5938 * pcie_print_link_status - Report the PCI device's link speed and width
5939 * @dev: PCI device to query
5940 *
5941 * Report the available bandwidth at the device.
5942 */
5943void pcie_print_link_status(struct pci_dev *dev)
5944{
5945 __pcie_print_link_status(dev, true);
5946}
5947EXPORT_SYMBOL(pcie_print_link_status);
5948
5949/**
5950 * pci_select_bars - Make BAR mask from the type of resource
5951 * @dev: the PCI device for which BAR mask is made
5952 * @flags: resource type mask to be selected
5953 *
5954 * This helper routine makes bar mask from the type of resource.
5955 */
5956int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5957{
5958 int i, bars = 0;
5959 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5960 if (pci_resource_flags(dev, i) & flags)
5961 bars |= (1 << i);
5962 return bars;
5963}
5964EXPORT_SYMBOL(pci_select_bars);
5965
5966/* Some architectures require additional programming to enable VGA */
5967static arch_set_vga_state_t arch_set_vga_state;
5968
5969void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5970{
5971 arch_set_vga_state = func; /* NULL disables */
5972}
5973
5974static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5975 unsigned int command_bits, u32 flags)
5976{
5977 if (arch_set_vga_state)
5978 return arch_set_vga_state(dev, decode, command_bits,
5979 flags);
5980 return 0;
5981}
5982
5983/**
5984 * pci_set_vga_state - set VGA decode state on device and parents if requested
5985 * @dev: the PCI device
5986 * @decode: true = enable decoding, false = disable decoding
5987 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5988 * @flags: traverse ancestors and change bridges
5989 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5990 */
5991int pci_set_vga_state(struct pci_dev *dev, bool decode,
5992 unsigned int command_bits, u32 flags)
5993{
5994 struct pci_bus *bus;
5995 struct pci_dev *bridge;
5996 u16 cmd;
5997 int rc;
5998
5999 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6000
6001 /* ARCH specific VGA enables */
6002 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6003 if (rc)
6004 return rc;
6005
6006 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6007 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6008 if (decode == true)
6009 cmd |= command_bits;
6010 else
6011 cmd &= ~command_bits;
6012 pci_write_config_word(dev, PCI_COMMAND, cmd);
6013 }
6014
6015 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6016 return 0;
6017
6018 bus = dev->bus;
6019 while (bus) {
6020 bridge = bus->self;
6021 if (bridge) {
6022 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6023 &cmd);
6024 if (decode == true)
6025 cmd |= PCI_BRIDGE_CTL_VGA;
6026 else
6027 cmd &= ~PCI_BRIDGE_CTL_VGA;
6028 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6029 cmd);
6030 }
6031 bus = bus->parent;
6032 }
6033 return 0;
6034}
6035
6036#ifdef CONFIG_ACPI
6037bool pci_pr3_present(struct pci_dev *pdev)
6038{
6039 struct acpi_device *adev;
6040
6041 if (acpi_disabled)
6042 return false;
6043
6044 adev = ACPI_COMPANION(&pdev->dev);
6045 if (!adev)
6046 return false;
6047
6048 return adev->power.flags.power_resources &&
6049 acpi_has_method(adev->handle, "_PR3");
6050}
6051EXPORT_SYMBOL_GPL(pci_pr3_present);
6052#endif
6053
6054/**
6055 * pci_add_dma_alias - Add a DMA devfn alias for a device
6056 * @dev: the PCI device for which alias is added
6057 * @devfn_from: alias slot and function
6058 * @nr_devfns: number of subsequent devfns to alias
6059 *
6060 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6061 * which is used to program permissible bus-devfn source addresses for DMA
6062 * requests in an IOMMU. These aliases factor into IOMMU group creation
6063 * and are useful for devices generating DMA requests beyond or different
6064 * from their logical bus-devfn. Examples include device quirks where the
6065 * device simply uses the wrong devfn, as well as non-transparent bridges
6066 * where the alias may be a proxy for devices in another domain.
6067 *
6068 * IOMMU group creation is performed during device discovery or addition,
6069 * prior to any potential DMA mapping and therefore prior to driver probing
6070 * (especially for userspace assigned devices where IOMMU group definition
6071 * cannot be left as a userspace activity). DMA aliases should therefore
6072 * be configured via quirks, such as the PCI fixup header quirk.
6073 */
6074void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6075{
6076 int devfn_to;
6077
6078 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6079 devfn_to = devfn_from + nr_devfns - 1;
6080
6081 if (!dev->dma_alias_mask)
6082 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6083 if (!dev->dma_alias_mask) {
6084 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6085 return;
6086 }
6087
6088 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6089
6090 if (nr_devfns == 1)
6091 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6092 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6093 else if (nr_devfns > 1)
6094 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6095 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6096 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6097}
6098
6099bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6100{
6101 return (dev1->dma_alias_mask &&
6102 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6103 (dev2->dma_alias_mask &&
6104 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6105 pci_real_dma_dev(dev1) == dev2 ||
6106 pci_real_dma_dev(dev2) == dev1;
6107}
6108
6109bool pci_device_is_present(struct pci_dev *pdev)
6110{
6111 u32 v;
6112
6113 if (pci_dev_is_disconnected(pdev))
6114 return false;
6115 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6116}
6117EXPORT_SYMBOL_GPL(pci_device_is_present);
6118
6119void pci_ignore_hotplug(struct pci_dev *dev)
6120{
6121 struct pci_dev *bridge = dev->bus->self;
6122
6123 dev->ignore_hotplug = 1;
6124 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6125 if (bridge)
6126 bridge->ignore_hotplug = 1;
6127}
6128EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6129
6130/**
6131 * pci_real_dma_dev - Get PCI DMA device for PCI device
6132 * @dev: the PCI device that may have a PCI DMA alias
6133 *
6134 * Permits the platform to provide architecture-specific functionality to
6135 * devices needing to alias DMA to another PCI device on another PCI bus. If
6136 * the PCI device is on the same bus, it is recommended to use
6137 * pci_add_dma_alias(). This is the default implementation. Architecture
6138 * implementations can override this.
6139 */
6140struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6141{
6142 return dev;
6143}
6144
6145resource_size_t __weak pcibios_default_alignment(void)
6146{
6147 return 0;
6148}
6149
6150/*
6151 * Arches that don't want to expose struct resource to userland as-is in
6152 * sysfs and /proc can implement their own pci_resource_to_user().
6153 */
6154void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6155 const struct resource *rsrc,
6156 resource_size_t *start, resource_size_t *end)
6157{
6158 *start = rsrc->start;
6159 *end = rsrc->end;
6160}
6161
6162static char *resource_alignment_param;
6163static DEFINE_SPINLOCK(resource_alignment_lock);
6164
6165/**
6166 * pci_specified_resource_alignment - get resource alignment specified by user.
6167 * @dev: the PCI device to get
6168 * @resize: whether or not to change resources' size when reassigning alignment
6169 *
6170 * RETURNS: Resource alignment if it is specified.
6171 * Zero if it is not specified.
6172 */
6173static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6174 bool *resize)
6175{
6176 int align_order, count;
6177 resource_size_t align = pcibios_default_alignment();
6178 const char *p;
6179 int ret;
6180
6181 spin_lock(&resource_alignment_lock);
6182 p = resource_alignment_param;
6183 if (!p || !*p)
6184 goto out;
6185 if (pci_has_flag(PCI_PROBE_ONLY)) {
6186 align = 0;
6187 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6188 goto out;
6189 }
6190
6191 while (*p) {
6192 count = 0;
6193 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6194 p[count] == '@') {
6195 p += count + 1;
6196 } else {
6197 align_order = -1;
6198 }
6199
6200 ret = pci_dev_str_match(dev, p, &p);
6201 if (ret == 1) {
6202 *resize = true;
6203 if (align_order == -1)
6204 align = PAGE_SIZE;
6205 else
6206 align = 1 << align_order;
6207 break;
6208 } else if (ret < 0) {
6209 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6210 p);
6211 break;
6212 }
6213
6214 if (*p != ';' && *p != ',') {
6215 /* End of param or invalid format */
6216 break;
6217 }
6218 p++;
6219 }
6220out:
6221 spin_unlock(&resource_alignment_lock);
6222 return align;
6223}
6224
6225static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6226 resource_size_t align, bool resize)
6227{
6228 struct resource *r = &dev->resource[bar];
6229 resource_size_t size;
6230
6231 if (!(r->flags & IORESOURCE_MEM))
6232 return;
6233
6234 if (r->flags & IORESOURCE_PCI_FIXED) {
6235 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6236 bar, r, (unsigned long long)align);
6237 return;
6238 }
6239
6240 size = resource_size(r);
6241 if (size >= align)
6242 return;
6243
6244 /*
6245 * Increase the alignment of the resource. There are two ways we
6246 * can do this:
6247 *
6248 * 1) Increase the size of the resource. BARs are aligned on their
6249 * size, so when we reallocate space for this resource, we'll
6250 * allocate it with the larger alignment. This also prevents
6251 * assignment of any other BARs inside the alignment region, so
6252 * if we're requesting page alignment, this means no other BARs
6253 * will share the page.
6254 *
6255 * The disadvantage is that this makes the resource larger than
6256 * the hardware BAR, which may break drivers that compute things
6257 * based on the resource size, e.g., to find registers at a
6258 * fixed offset before the end of the BAR.
6259 *
6260 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6261 * set r->start to the desired alignment. By itself this
6262 * doesn't prevent other BARs being put inside the alignment
6263 * region, but if we realign *every* resource of every device in
6264 * the system, none of them will share an alignment region.
6265 *
6266 * When the user has requested alignment for only some devices via
6267 * the "pci=resource_alignment" argument, "resize" is true and we
6268 * use the first method. Otherwise we assume we're aligning all
6269 * devices and we use the second.
6270 */
6271
6272 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6273 bar, r, (unsigned long long)align);
6274
6275 if (resize) {
6276 r->start = 0;
6277 r->end = align - 1;
6278 } else {
6279 r->flags &= ~IORESOURCE_SIZEALIGN;
6280 r->flags |= IORESOURCE_STARTALIGN;
6281 r->start = align;
6282 r->end = r->start + size - 1;
6283 }
6284 r->flags |= IORESOURCE_UNSET;
6285}
6286
6287/*
6288 * This function disables memory decoding and releases memory resources
6289 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6290 * It also rounds up size to specified alignment.
6291 * Later on, the kernel will assign page-aligned memory resource back
6292 * to the device.
6293 */
6294void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6295{
6296 int i;
6297 struct resource *r;
6298 resource_size_t align;
6299 u16 command;
6300 bool resize = false;
6301
6302 /*
6303 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6304 * 3.4.1.11. Their resources are allocated from the space
6305 * described by the VF BARx register in the PF's SR-IOV capability.
6306 * We can't influence their alignment here.
6307 */
6308 if (dev->is_virtfn)
6309 return;
6310
6311 /* check if specified PCI is target device to reassign */
6312 align = pci_specified_resource_alignment(dev, &resize);
6313 if (!align)
6314 return;
6315
6316 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6317 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6318 pci_warn(dev, "Can't reassign resources to host bridge\n");
6319 return;
6320 }
6321
6322 pci_read_config_word(dev, PCI_COMMAND, &command);
6323 command &= ~PCI_COMMAND_MEMORY;
6324 pci_write_config_word(dev, PCI_COMMAND, command);
6325
6326 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6327 pci_request_resource_alignment(dev, i, align, resize);
6328
6329 /*
6330 * Need to disable bridge's resource window,
6331 * to enable the kernel to reassign new resource
6332 * window later on.
6333 */
6334 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6335 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6336 r = &dev->resource[i];
6337 if (!(r->flags & IORESOURCE_MEM))
6338 continue;
6339 r->flags |= IORESOURCE_UNSET;
6340 r->end = resource_size(r) - 1;
6341 r->start = 0;
6342 }
6343 pci_disable_bridge_window(dev);
6344 }
6345}
6346
6347static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6348{
6349 size_t count = 0;
6350
6351 spin_lock(&resource_alignment_lock);
6352 if (resource_alignment_param)
6353 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6354 spin_unlock(&resource_alignment_lock);
6355
6356 /*
6357 * When set by the command line, resource_alignment_param will not
6358 * have a trailing line feed, which is ugly. So conditionally add
6359 * it here.
6360 */
6361 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6362 buf[count - 1] = '\n';
6363 buf[count++] = 0;
6364 }
6365
6366 return count;
6367}
6368
6369static ssize_t resource_alignment_store(struct bus_type *bus,
6370 const char *buf, size_t count)
6371{
6372 char *param = kstrndup(buf, count, GFP_KERNEL);
6373
6374 if (!param)
6375 return -ENOMEM;
6376
6377 spin_lock(&resource_alignment_lock);
6378 kfree(resource_alignment_param);
6379 resource_alignment_param = param;
6380 spin_unlock(&resource_alignment_lock);
6381 return count;
6382}
6383
6384static BUS_ATTR_RW(resource_alignment);
6385
6386static int __init pci_resource_alignment_sysfs_init(void)
6387{
6388 return bus_create_file(&pci_bus_type,
6389 &bus_attr_resource_alignment);
6390}
6391late_initcall(pci_resource_alignment_sysfs_init);
6392
6393static void pci_no_domains(void)
6394{
6395#ifdef CONFIG_PCI_DOMAINS
6396 pci_domains_supported = 0;
6397#endif
6398}
6399
6400#ifdef CONFIG_PCI_DOMAINS_GENERIC
6401static atomic_t __domain_nr = ATOMIC_INIT(-1);
6402
6403static int pci_get_new_domain_nr(void)
6404{
6405 return atomic_inc_return(&__domain_nr);
6406}
6407
6408static int of_pci_bus_find_domain_nr(struct device *parent)
6409{
6410 static int use_dt_domains = -1;
6411 int domain = -1;
6412
6413 if (parent)
6414 domain = of_get_pci_domain_nr(parent->of_node);
6415
6416 /*
6417 * Check DT domain and use_dt_domains values.
6418 *
6419 * If DT domain property is valid (domain >= 0) and
6420 * use_dt_domains != 0, the DT assignment is valid since this means
6421 * we have not previously allocated a domain number by using
6422 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6423 * 1, to indicate that we have just assigned a domain number from
6424 * DT.
6425 *
6426 * If DT domain property value is not valid (ie domain < 0), and we
6427 * have not previously assigned a domain number from DT
6428 * (use_dt_domains != 1) we should assign a domain number by
6429 * using the:
6430 *
6431 * pci_get_new_domain_nr()
6432 *
6433 * API and update the use_dt_domains value to keep track of method we
6434 * are using to assign domain numbers (use_dt_domains = 0).
6435 *
6436 * All other combinations imply we have a platform that is trying
6437 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6438 * which is a recipe for domain mishandling and it is prevented by
6439 * invalidating the domain value (domain = -1) and printing a
6440 * corresponding error.
6441 */
6442 if (domain >= 0 && use_dt_domains) {
6443 use_dt_domains = 1;
6444 } else if (domain < 0 && use_dt_domains != 1) {
6445 use_dt_domains = 0;
6446 domain = pci_get_new_domain_nr();
6447 } else {
6448 if (parent)
6449 pr_err("Node %pOF has ", parent->of_node);
6450 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6451 domain = -1;
6452 }
6453
6454 return domain;
6455}
6456
6457int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6458{
6459 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6460 acpi_pci_bus_find_domain_nr(bus);
6461}
6462#endif
6463
6464/**
6465 * pci_ext_cfg_avail - can we access extended PCI config space?
6466 *
6467 * Returns 1 if we can access PCI extended config space (offsets
6468 * greater than 0xff). This is the default implementation. Architecture
6469 * implementations can override this.
6470 */
6471int __weak pci_ext_cfg_avail(void)
6472{
6473 return 1;
6474}
6475
6476void __weak pci_fixup_cardbus(struct pci_bus *bus)
6477{
6478}
6479EXPORT_SYMBOL(pci_fixup_cardbus);
6480
6481static int __init pci_setup(char *str)
6482{
6483 while (str) {
6484 char *k = strchr(str, ',');
6485 if (k)
6486 *k++ = 0;
6487 if (*str && (str = pcibios_setup(str)) && *str) {
6488 if (!strcmp(str, "nomsi")) {
6489 pci_no_msi();
6490 } else if (!strncmp(str, "noats", 5)) {
6491 pr_info("PCIe: ATS is disabled\n");
6492 pcie_ats_disabled = true;
6493 } else if (!strcmp(str, "noaer")) {
6494 pci_no_aer();
6495 } else if (!strcmp(str, "earlydump")) {
6496 pci_early_dump = true;
6497 } else if (!strncmp(str, "realloc=", 8)) {
6498 pci_realloc_get_opt(str + 8);
6499 } else if (!strncmp(str, "realloc", 7)) {
6500 pci_realloc_get_opt("on");
6501 } else if (!strcmp(str, "nodomains")) {
6502 pci_no_domains();
6503 } else if (!strncmp(str, "noari", 5)) {
6504 pcie_ari_disabled = true;
6505 } else if (!strncmp(str, "cbiosize=", 9)) {
6506 pci_cardbus_io_size = memparse(str + 9, &str);
6507 } else if (!strncmp(str, "cbmemsize=", 10)) {
6508 pci_cardbus_mem_size = memparse(str + 10, &str);
6509 } else if (!strncmp(str, "resource_alignment=", 19)) {
6510 resource_alignment_param = str + 19;
6511 } else if (!strncmp(str, "ecrc=", 5)) {
6512 pcie_ecrc_get_policy(str + 5);
6513 } else if (!strncmp(str, "hpiosize=", 9)) {
6514 pci_hotplug_io_size = memparse(str + 9, &str);
6515 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6516 pci_hotplug_mmio_size = memparse(str + 11, &str);
6517 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6518 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6519 } else if (!strncmp(str, "hpmemsize=", 10)) {
6520 pci_hotplug_mmio_size = memparse(str + 10, &str);
6521 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6522 } else if (!strncmp(str, "hpbussize=", 10)) {
6523 pci_hotplug_bus_size =
6524 simple_strtoul(str + 10, &str, 0);
6525 if (pci_hotplug_bus_size > 0xff)
6526 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6527 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6528 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6529 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6530 pcie_bus_config = PCIE_BUS_SAFE;
6531 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6532 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6533 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6534 pcie_bus_config = PCIE_BUS_PEER2PEER;
6535 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6536 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6537 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6538 disable_acs_redir_param = str + 18;
6539 } else {
6540 pr_err("PCI: Unknown option `%s'\n", str);
6541 }
6542 }
6543 str = k;
6544 }
6545 return 0;
6546}
6547early_param("pci", pci_setup);
6548
6549/*
6550 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6551 * in pci_setup(), above, to point to data in the __initdata section which
6552 * will be freed after the init sequence is complete. We can't allocate memory
6553 * in pci_setup() because some architectures do not have any memory allocation
6554 * service available during an early_param() call. So we allocate memory and
6555 * copy the variable here before the init section is freed.
6556 *
6557 */
6558static int __init pci_realloc_setup_params(void)
6559{
6560 resource_alignment_param = kstrdup(resource_alignment_param,
6561 GFP_KERNEL);
6562 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6563
6564 return 0;
6565}
6566pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46int pci_pci_problems;
47EXPORT_SYMBOL(pci_pci_problems);
48
49unsigned int pci_pm_d3hot_delay;
50
51static void pci_pme_list_scan(struct work_struct *work);
52
53static LIST_HEAD(pci_pme_list);
54static DEFINE_MUTEX(pci_pme_list_mutex);
55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60};
61
62#define PME_TIMEOUT 1000 /* How long between PME checks */
63
64static void pci_dev_d3_sleep(struct pci_dev *dev)
65{
66 unsigned int delay = dev->d3hot_delay;
67
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
70
71 if (delay)
72 msleep(delay);
73}
74
75#ifdef CONFIG_PCI_DOMAINS
76int pci_domains_supported = 1;
77#endif
78
79#define DEFAULT_CARDBUS_IO_SIZE (256)
80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85#define DEFAULT_HOTPLUG_IO_SIZE (256)
86#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88/* hpiosize=nn can override this */
89unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90/*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97
98#define DEFAULT_HOTPLUG_BUS_SIZE 1
99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
101
102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105#elif defined CONFIG_PCIE_BUS_SAFE
106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109#elif defined CONFIG_PCIE_BUS_PEER2PEER
110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111#else
112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113#endif
114
115/*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122u8 pci_cache_line_size;
123
124/*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128unsigned int pcibios_max_latency = 255;
129
130/* If set, the PCIe ARI capability will not be used. */
131static bool pcie_ari_disabled;
132
133/* If set, the PCIe ATS capability will not be used. */
134static bool pcie_ats_disabled;
135
136/* If set, the PCI config space of each device is printed during boot. */
137bool pci_early_dump;
138
139bool pci_ats_disabled(void)
140{
141 return pcie_ats_disabled;
142}
143EXPORT_SYMBOL_GPL(pci_ats_disabled);
144
145/* Disable bridge_d3 for all PCIe ports */
146static bool pci_bridge_d3_disable;
147/* Force bridge_d3 for all PCIe ports */
148static bool pci_bridge_d3_force;
149
150static int __init pcie_port_pm_setup(char *str)
151{
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157}
158__setup("pcie_port_pm=", pcie_port_pm_setup);
159
160/* Time to wait after a reset for device to become responsive */
161#define PCIE_RESET_READY_POLL_MS 60000
162
163/**
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
166 *
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
169 */
170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171{
172 struct pci_bus *tmp;
173 unsigned char max, n;
174
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
178 if (n > max)
179 max = n;
180 }
181 return max;
182}
183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184
185/**
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
188 *
189 * Returns error bits set in PCI_STATUS and clears them.
190 */
191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192{
193 u16 status;
194 int ret;
195
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
199
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
203
204 return status;
205}
206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207
208#ifdef CONFIG_HAS_IOMEM
209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210{
211 struct resource *res = &pdev->resource[bar];
212
213 /*
214 * Make sure the BAR is actually a memory resource, not an IO resource
215 */
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 return NULL;
219 }
220 return ioremap(res->start, resource_size(res));
221}
222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223
224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225{
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
232 }
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
235}
236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237#endif
238
239/**
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
244 *
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
248 *
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250 *
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
254 *
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
257 */
258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
260{
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
265
266 *endptr = strchrnul(path, ';');
267
268 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
269 if (!wpath)
270 return -ENOMEM;
271
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
280 }
281
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
285 }
286
287 /*
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
292 */
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
297 }
298
299 *p = 0;
300 }
301
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
310 }
311 }
312
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
316
317free_and_exit:
318 kfree(wpath);
319 return ret;
320}
321
322/**
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
327 *
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
330 *
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333 *
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
341 *
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
348 *
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
351 */
352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
354{
355 int ret;
356 int count;
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
358
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
368
369 subsystem_vendor = 0;
370 subsystem_device = 0;
371 }
372
373 p += count;
374
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
382 } else {
383 /*
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
386 */
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
391 goto found;
392 }
393
394 *endptr = p;
395 return 0;
396
397found:
398 *endptr = p;
399 return 1;
400}
401
402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
404{
405 u8 id;
406 u16 ent;
407
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
409
410 while ((*ttl)--) {
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
415
416 id = ent & 0xff;
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
421 pos = (ent >> 8);
422 }
423 return 0;
424}
425
426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
428{
429 int ttl = PCI_FIND_CAP_TTL;
430
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432}
433
434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435{
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
438}
439EXPORT_SYMBOL_GPL(pci_find_next_capability);
440
441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
443{
444 u16 status;
445
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
449
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
456 }
457
458 return 0;
459}
460
461/**
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
465 *
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
470 *
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
479 */
480u8 pci_find_capability(struct pci_dev *dev, int cap)
481{
482 u8 pos;
483
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487
488 return pos;
489}
490EXPORT_SYMBOL(pci_find_capability);
491
492/**
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
497 *
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
500 *
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
504 */
505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506{
507 u8 hdr_type, pos;
508
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 if (pos)
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
514
515 return pos;
516}
517EXPORT_SYMBOL(pci_bus_find_capability);
518
519/**
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
524 *
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
529 */
530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531{
532 u32 header;
533 int ttl;
534 u16 pos = PCI_CFG_SPACE_SIZE;
535
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 return 0;
541
542 if (start)
543 pos = start;
544
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 return 0;
547
548 /*
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
551 */
552 if (header == 0)
553 return 0;
554
555 while (ttl-- > 0) {
556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 return pos;
558
559 pos = PCI_EXT_CAP_NEXT(header);
560 if (pos < PCI_CFG_SPACE_SIZE)
561 break;
562
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 break;
565 }
566
567 return 0;
568}
569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570
571/**
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
575 *
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
579 *
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
584 */
585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586{
587 return pci_find_next_ext_capability(dev, 0, cap);
588}
589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590
591/**
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
594 *
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596 * Number.
597 *
598 * Returns the DSN, or zero if the capability does not exist.
599 */
600u64 pci_get_dsn(struct pci_dev *dev)
601{
602 u32 dword;
603 u64 dsn;
604 int pos;
605
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 if (!pos)
608 return 0;
609
610 /*
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
614 */
615 pos += 4;
616 pci_read_config_dword(dev, pos, &dword);
617 dsn = (u64)dword;
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
620
621 return dsn;
622}
623EXPORT_SYMBOL_GPL(pci_get_dsn);
624
625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626{
627 int rc, ttl = PCI_FIND_CAP_TTL;
628 u8 cap, mask;
629
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
632 else
633 mask = HT_5BIT_CAP_MASK;
634
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
637 while (pos) {
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
640 return 0;
641
642 if ((cap & mask) == ht_cap)
643 return pos;
644
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
647 PCI_CAP_ID_HT, &ttl);
648 }
649
650 return 0;
651}
652
653/**
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
658 *
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
662 *
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
665 */
666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667{
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669}
670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671
672/**
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
676 *
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
682 */
683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684{
685 u8 pos;
686
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690
691 return pos;
692}
693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694
695/**
696 * pci_find_vsec_capability - Find a vendor-specific extended capability
697 * @dev: PCI device to query
698 * @vendor: Vendor ID for which capability is defined
699 * @cap: Vendor-specific capability ID
700 *
701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
702 * VSEC ID @cap. If found, return the capability offset in
703 * config space; otherwise return 0.
704 */
705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706{
707 u16 vsec = 0;
708 u32 header;
709
710 if (vendor != dev->vendor)
711 return 0;
712
713 while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 PCI_EXT_CAP_ID_VNDR))) {
715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 &header) == PCIBIOS_SUCCESSFUL &&
717 PCI_VNDR_HEADER_ID(header) == cap)
718 return vsec;
719 }
720
721 return 0;
722}
723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724
725/**
726 * pci_find_parent_resource - return resource region of parent bus of given
727 * region
728 * @dev: PCI device structure contains resources to be searched
729 * @res: child resource record for which parent is sought
730 *
731 * For given resource region of given device, return the resource region of
732 * parent bus the given region is contained in.
733 */
734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 struct resource *res)
736{
737 const struct pci_bus *bus = dev->bus;
738 struct resource *r;
739 int i;
740
741 pci_bus_for_each_resource(bus, r, i) {
742 if (!r)
743 continue;
744 if (resource_contains(r, res)) {
745
746 /*
747 * If the window is prefetchable but the BAR is
748 * not, the allocator made a mistake.
749 */
750 if (r->flags & IORESOURCE_PREFETCH &&
751 !(res->flags & IORESOURCE_PREFETCH))
752 return NULL;
753
754 /*
755 * If we're below a transparent bridge, there may
756 * be both a positively-decoded aperture and a
757 * subtractively-decoded region that contain the BAR.
758 * We want the positively-decoded one, so this depends
759 * on pci_bus_for_each_resource() giving us those
760 * first.
761 */
762 return r;
763 }
764 }
765 return NULL;
766}
767EXPORT_SYMBOL(pci_find_parent_resource);
768
769/**
770 * pci_find_resource - Return matching PCI device resource
771 * @dev: PCI device to query
772 * @res: Resource to look for
773 *
774 * Goes over standard PCI resources (BARs) and checks if the given resource
775 * is partially or fully contained in any of them. In that case the
776 * matching resource is returned, %NULL otherwise.
777 */
778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779{
780 int i;
781
782 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 struct resource *r = &dev->resource[i];
784
785 if (r->start && resource_contains(r, res))
786 return r;
787 }
788
789 return NULL;
790}
791EXPORT_SYMBOL(pci_find_resource);
792
793/**
794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795 * @dev: the PCI device to operate on
796 * @pos: config space offset of status word
797 * @mask: mask of bit(s) to care about in status word
798 *
799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800 */
801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802{
803 int i;
804
805 /* Wait for Transaction Pending bit clean */
806 for (i = 0; i < 4; i++) {
807 u16 status;
808 if (i)
809 msleep((1 << (i - 1)) * 100);
810
811 pci_read_config_word(dev, pos, &status);
812 if (!(status & mask))
813 return 1;
814 }
815
816 return 0;
817}
818
819static int pci_acs_enable;
820
821/**
822 * pci_request_acs - ask for ACS to be enabled if supported
823 */
824void pci_request_acs(void)
825{
826 pci_acs_enable = 1;
827}
828
829static const char *disable_acs_redir_param;
830
831/**
832 * pci_disable_acs_redir - disable ACS redirect capabilities
833 * @dev: the PCI device
834 *
835 * For only devices specified in the disable_acs_redir parameter.
836 */
837static void pci_disable_acs_redir(struct pci_dev *dev)
838{
839 int ret = 0;
840 const char *p;
841 int pos;
842 u16 ctrl;
843
844 if (!disable_acs_redir_param)
845 return;
846
847 p = disable_acs_redir_param;
848 while (*p) {
849 ret = pci_dev_str_match(dev, p, &p);
850 if (ret < 0) {
851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 disable_acs_redir_param);
853
854 break;
855 } else if (ret == 1) {
856 /* Found a match */
857 break;
858 }
859
860 if (*p != ';' && *p != ',') {
861 /* End of param or invalid format */
862 break;
863 }
864 p++;
865 }
866
867 if (ret != 1)
868 return;
869
870 if (!pci_dev_specific_disable_acs_redir(dev))
871 return;
872
873 pos = dev->acs_cap;
874 if (!pos) {
875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 return;
877 }
878
879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880
881 /* P2P Request & Completion Redirect */
882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883
884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885
886 pci_info(dev, "disabled ACS redirect\n");
887}
888
889/**
890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891 * @dev: the PCI device
892 */
893static void pci_std_enable_acs(struct pci_dev *dev)
894{
895 int pos;
896 u16 cap;
897 u16 ctrl;
898
899 pos = dev->acs_cap;
900 if (!pos)
901 return;
902
903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905
906 /* Source Validation */
907 ctrl |= (cap & PCI_ACS_SV);
908
909 /* P2P Request Redirect */
910 ctrl |= (cap & PCI_ACS_RR);
911
912 /* P2P Completion Redirect */
913 ctrl |= (cap & PCI_ACS_CR);
914
915 /* Upstream Forwarding */
916 ctrl |= (cap & PCI_ACS_UF);
917
918 /* Enable Translation Blocking for external devices */
919 if (dev->external_facing || dev->untrusted)
920 ctrl |= (cap & PCI_ACS_TB);
921
922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923}
924
925/**
926 * pci_enable_acs - enable ACS if hardware support it
927 * @dev: the PCI device
928 */
929static void pci_enable_acs(struct pci_dev *dev)
930{
931 if (!pci_acs_enable)
932 goto disable_acs_redir;
933
934 if (!pci_dev_specific_enable_acs(dev))
935 goto disable_acs_redir;
936
937 pci_std_enable_acs(dev);
938
939disable_acs_redir:
940 /*
941 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 * enabled by the kernel because it may have been enabled by
943 * platform firmware. So if we are told to disable it, we should
944 * always disable it after setting the kernel's default
945 * preferences.
946 */
947 pci_disable_acs_redir(dev);
948}
949
950/**
951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952 * @dev: PCI device to have its BARs restored
953 *
954 * Restore the BAR values for a given device, so as to make it
955 * accessible by its driver.
956 */
957static void pci_restore_bars(struct pci_dev *dev)
958{
959 int i;
960
961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 pci_update_resource(dev, i);
963}
964
965static const struct pci_platform_pm_ops *pci_platform_pm;
966
967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
968{
969 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
971 return -EINVAL;
972 pci_platform_pm = ops;
973 return 0;
974}
975
976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977{
978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979}
980
981static inline int platform_pci_set_power_state(struct pci_dev *dev,
982 pci_power_t t)
983{
984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985}
986
987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988{
989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990}
991
992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993{
994 if (pci_platform_pm && pci_platform_pm->refresh_state)
995 pci_platform_pm->refresh_state(dev);
996}
997
998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999{
1000 return pci_platform_pm ?
1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006 return pci_platform_pm ?
1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 return pci_platform_pm->bridge_d3(dev);
1019 return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 * given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037 u16 pmcsr;
1038 bool need_restore = false;
1039
1040 /* Check if we're already there */
1041 if (dev->current_state == state)
1042 return 0;
1043
1044 if (!dev->pm_cap)
1045 return -EIO;
1046
1047 if (state < PCI_D0 || state > PCI_D3hot)
1048 return -EINVAL;
1049
1050 /*
1051 * Validate transition: We can enter D0 from any state, but if
1052 * we're already in a low-power state, we can only go deeper. E.g.,
1053 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 * we'd have to go from D3 to D0, then to D1.
1055 */
1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 && dev->current_state > state) {
1058 pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 pci_power_name(dev->current_state),
1060 pci_power_name(state));
1061 return -EINVAL;
1062 }
1063
1064 /* Check if this device supports the desired state */
1065 if ((state == PCI_D1 && !dev->d1_support)
1066 || (state == PCI_D2 && !dev->d2_support))
1067 return -EIO;
1068
1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 if (pmcsr == (u16) ~0) {
1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 pci_power_name(dev->current_state),
1073 pci_power_name(state));
1074 return -EIO;
1075 }
1076
1077 /*
1078 * If we're (effectively) in D3, force entire word to 0.
1079 * This doesn't affect PME_Status, disables PME_En, and
1080 * sets PowerState to 0.
1081 */
1082 switch (dev->current_state) {
1083 case PCI_D0:
1084 case PCI_D1:
1085 case PCI_D2:
1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 pmcsr |= state;
1088 break;
1089 case PCI_D3hot:
1090 case PCI_D3cold:
1091 case PCI_UNKNOWN: /* Boot-up */
1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 need_restore = true;
1095 fallthrough; /* force to D0 */
1096 default:
1097 pmcsr = 0;
1098 break;
1099 }
1100
1101 /* Enter specified state */
1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104 /*
1105 * Mandatory power management transition delays; see PCI PM 1.1
1106 * 5.6.1 table 18
1107 */
1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 pci_dev_d3_sleep(dev);
1110 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 udelay(PCI_PM_D2_DELAY);
1112
1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 if (dev->current_state != state)
1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 pci_power_name(dev->current_state),
1118 pci_power_name(state));
1119
1120 /*
1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 * For example, at least some versions of the 3c905B and the
1126 * 3c556B exhibit this behaviour.
1127 *
1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 * devices in a D3hot state at boot. Consequently, we need to
1130 * restore at least the BARs so that the device will be
1131 * accessible to its driver.
1132 */
1133 if (need_restore)
1134 pci_restore_bars(dev);
1135
1136 if (dev->bus->self)
1137 pcie_aspm_pm_state_change(dev->bus->self);
1138
1139 return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold. The platform firmware is therefore queried first
1149 * to detect accessibility of the register. In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 !pci_device_is_present(dev)) {
1158 dev->current_state = PCI_D3cold;
1159 } else if (dev->pm_cap) {
1160 u16 pmcsr;
1161
1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 } else {
1165 dev->current_state = state;
1166 }
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178 if (platform_pci_power_manageable(dev))
1179 platform_pci_refresh_power_state(dev);
1180
1181 pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191 int error;
1192
1193 if (platform_pci_power_manageable(dev)) {
1194 error = platform_pci_set_power_state(dev, state);
1195 if (!error)
1196 pci_update_current_state(dev, state);
1197 } else
1198 error = -ENODEV;
1199
1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 dev->current_state = PCI_D0;
1202
1203 return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209 pm_request_resume(&pci_dev->dev);
1210 return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219 if (bus)
1220 pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225 int delay = 1;
1226 u32 id;
1227
1228 /*
1229 * After reset, the device should not silently discard config
1230 * requests, but it may still indicate that it needs more time by
1231 * responding to them with CRS completions. The Root Port will
1232 * generally synthesize ~0 data to complete the read (except when
1233 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 * case it synthesizes 0x0001 data).
1235 *
1236 * Wait for the device to return a non-CRS completion. Read the
1237 * Command register instead of Vendor ID so we don't have to
1238 * contend with the CRS SV value.
1239 */
1240 pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 while (id == ~0) {
1242 if (delay > timeout) {
1243 pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 delay - 1, reset_type);
1245 return -ENOTTY;
1246 }
1247
1248 if (delay > 1000)
1249 pci_info(dev, "not ready %dms after %s; waiting\n",
1250 delay - 1, reset_type);
1251
1252 msleep(delay);
1253 delay *= 2;
1254 pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 }
1256
1257 if (delay > 1000)
1258 pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 reset_type);
1260
1261 return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270 pci_platform_power_transition(dev, PCI_D0);
1271
1272 /*
1273 * Mandatory power management transition delays are handled in
1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 * corresponding bridge.
1276 */
1277 if (dev->runtime_d3cold) {
1278 /*
1279 * When powering on a bridge from D3cold, the whole hierarchy
1280 * may be powered on into D0uninitialized state, resume them to
1281 * give them a chance to suspend again
1282 */
1283 pci_resume_bus(dev->subordinate);
1284 }
1285
1286 return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296 pci_power_t state = *(pci_power_t *)data;
1297
1298 dev->current_state = state;
1299 return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309 if (bus)
1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332 int error;
1333
1334 /* Bound the state we're entering */
1335 if (state > PCI_D3cold)
1336 state = PCI_D3cold;
1337 else if (state < PCI_D0)
1338 state = PCI_D0;
1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341 /*
1342 * If the device or the parent bridge do not support PCI
1343 * PM, ignore the request if we're doing anything other
1344 * than putting it into D0 (which would only happen on
1345 * boot).
1346 */
1347 return 0;
1348
1349 /* Check if we're already there */
1350 if (dev->current_state == state)
1351 return 0;
1352
1353 if (state == PCI_D0)
1354 return pci_power_up(dev);
1355
1356 /*
1357 * This device is quirked not to be put into D3, so don't put it in
1358 * D3
1359 */
1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361 return 0;
1362
1363 /*
1364 * To put device in D3cold, we put device into D3hot in native
1365 * way, then put device into D3cold with platform ops
1366 */
1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 PCI_D3hot : state);
1369
1370 if (pci_platform_power_transition(dev, state))
1371 return error;
1372
1373 /* Powering off a bridge may power off the whole hierarchy */
1374 if (state == PCI_D3cold)
1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377 return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 * that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392 pci_power_t ret;
1393
1394 if (!dev->pm_cap)
1395 return PCI_D0;
1396
1397 ret = platform_pci_choose_state(dev);
1398 if (ret != PCI_POWER_ERROR)
1399 return ret;
1400
1401 switch (state.event) {
1402 case PM_EVENT_ON:
1403 return PCI_D0;
1404 case PM_EVENT_FREEZE:
1405 case PM_EVENT_PRETHAW:
1406 /* REVISIT both freeze and pre-thaw "should" use D0 */
1407 case PM_EVENT_SUSPEND:
1408 case PM_EVENT_HIBERNATE:
1409 return PCI_D3hot;
1410 default:
1411 pci_info(dev, "unrecognized suspend event %d\n",
1412 state.event);
1413 BUG();
1414 }
1415 return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS 7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 u16 cap, bool extended)
1423{
1424 struct pci_cap_saved_state *tmp;
1425
1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428 return tmp;
1429 }
1430 return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435 return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440 return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445 int i = 0;
1446 struct pci_cap_saved_state *save_state;
1447 u16 *cap;
1448
1449 if (!pci_is_pcie(dev))
1450 return 0;
1451
1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 if (!save_state) {
1454 pci_err(dev, "buffer not found in %s\n", __func__);
1455 return -ENOMEM;
1456 }
1457
1458 cap = (u16 *)&save_state->cap.data[0];
1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467 return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472 int i = 0;
1473 struct pci_cap_saved_state *save_state;
1474 u16 *cap;
1475
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477 if (!save_state)
1478 return;
1479
1480 cap = (u16 *)&save_state->cap.data[0];
1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492 int pos;
1493 struct pci_cap_saved_state *save_state;
1494
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 if (!pos)
1497 return 0;
1498
1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500 if (!save_state) {
1501 pci_err(dev, "buffer not found in %s\n", __func__);
1502 return -ENOMEM;
1503 }
1504
1505 pci_read_config_word(dev, pos + PCI_X_CMD,
1506 (u16 *)save_state->cap.data);
1507
1508 return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513 int i = 0, pos;
1514 struct pci_cap_saved_state *save_state;
1515 u16 *cap;
1516
1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 if (!save_state || !pos)
1520 return;
1521 cap = (u16 *)&save_state->cap.data[0];
1522
1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528 int ltr;
1529 struct pci_cap_saved_state *save_state;
1530 u16 *cap;
1531
1532 if (!pci_is_pcie(dev))
1533 return;
1534
1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 if (!ltr)
1537 return;
1538
1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 if (!save_state) {
1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 return;
1543 }
1544
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552 struct pci_cap_saved_state *save_state;
1553 int ltr;
1554 u16 *cap;
1555
1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 if (!save_state || !ltr)
1559 return;
1560
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 * suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573 int i;
1574 /* XXX: 100% dword access ok here? */
1575 for (i = 0; i < 16; i++) {
1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 i * 4, dev->saved_config_space[i]);
1579 }
1580 dev->state_saved = true;
1581
1582 i = pci_save_pcie_state(dev);
1583 if (i != 0)
1584 return i;
1585
1586 i = pci_save_pcix_state(dev);
1587 if (i != 0)
1588 return i;
1589
1590 pci_save_ltr_state(dev);
1591 pci_save_dpc_state(dev);
1592 pci_save_aer_state(dev);
1593 pci_save_ptm_state(dev);
1594 return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 u32 saved_val, int retry, bool force)
1600{
1601 u32 val;
1602
1603 pci_read_config_dword(pdev, offset, &val);
1604 if (!force && val == saved_val)
1605 return;
1606
1607 for (;;) {
1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 offset, val, saved_val);
1610 pci_write_config_dword(pdev, offset, saved_val);
1611 if (retry-- <= 0)
1612 return;
1613
1614 pci_read_config_dword(pdev, offset, &val);
1615 if (val == saved_val)
1616 return;
1617
1618 mdelay(1);
1619 }
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 int start, int end, int retry,
1624 bool force)
1625{
1626 int index;
1627
1628 for (index = end; index >= start; index--)
1629 pci_restore_config_dword(pdev, 4 * index,
1630 pdev->saved_config_space[index],
1631 retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 /* Restore BARs before the command register. */
1639 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644 /*
1645 * Force rewriting of prefetch registers to avoid S3 resume
1646 * issues on Intel PCI bridges that occur when these
1647 * registers are not explicitly written.
1648 */
1649 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651 } else {
1652 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653 }
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658 unsigned int pos, nbars, i;
1659 u32 ctrl;
1660
1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 if (!pos)
1663 return;
1664
1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669 for (i = 0; i < nbars; i++, pos += 8) {
1670 struct resource *res;
1671 int bar_idx, size;
1672
1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 res = pdev->resource + bar_idx;
1676 size = pci_rebar_bytes_to_size(resource_size(res));
1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 }
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689 if (!dev->state_saved)
1690 return;
1691
1692 /*
1693 * Restore max latencies (in the LTR capability) before enabling
1694 * LTR itself (in the PCIe capability).
1695 */
1696 pci_restore_ltr_state(dev);
1697
1698 pci_restore_pcie_state(dev);
1699 pci_restore_pasid_state(dev);
1700 pci_restore_pri_state(dev);
1701 pci_restore_ats_state(dev);
1702 pci_restore_vc_state(dev);
1703 pci_restore_rebar_state(dev);
1704 pci_restore_dpc_state(dev);
1705 pci_restore_ptm_state(dev);
1706
1707 pci_aer_clear_status(dev);
1708 pci_restore_aer_state(dev);
1709
1710 pci_restore_config_space(dev);
1711
1712 pci_restore_pcix_state(dev);
1713 pci_restore_msi_state(dev);
1714
1715 /* Restore ACS and IOV configuration state */
1716 pci_enable_acs(dev);
1717 pci_restore_iov_state(dev);
1718
1719 dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724 u32 config_space[16];
1725 struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 * the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737 struct pci_saved_state *state;
1738 struct pci_cap_saved_state *tmp;
1739 struct pci_cap_saved_data *cap;
1740 size_t size;
1741
1742 if (!dev->state_saved)
1743 return NULL;
1744
1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750 state = kzalloc(size, GFP_KERNEL);
1751 if (!state)
1752 return NULL;
1753
1754 memcpy(state->config_space, dev->saved_config_space,
1755 sizeof(state->config_space));
1756
1757 cap = state->cap;
1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 memcpy(cap, &tmp->cap, len);
1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 }
1763 /* Empty cap_save terminates list */
1764
1765 return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775 struct pci_saved_state *state)
1776{
1777 struct pci_cap_saved_data *cap;
1778
1779 dev->state_saved = false;
1780
1781 if (!state)
1782 return 0;
1783
1784 memcpy(dev->saved_config_space, state->config_space,
1785 sizeof(state->config_space));
1786
1787 cap = state->cap;
1788 while (cap->size) {
1789 struct pci_cap_saved_state *tmp;
1790
1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 if (!tmp || tmp->cap.size != cap->size)
1793 return -EINVAL;
1794
1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 sizeof(struct pci_cap_saved_data) + cap->size);
1798 }
1799
1800 dev->state_saved = true;
1801 return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 * and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state **state)
1813{
1814 int ret = pci_load_saved_state(dev, *state);
1815 kfree(*state);
1816 *state = NULL;
1817 return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823 return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828 int err;
1829 struct pci_dev *bridge;
1830 u16 cmd;
1831 u8 pin;
1832
1833 err = pci_set_power_state(dev, PCI_D0);
1834 if (err < 0 && err != -EIO)
1835 return err;
1836
1837 bridge = pci_upstream_bridge(dev);
1838 if (bridge)
1839 pcie_aspm_powersave_config_link(bridge);
1840
1841 err = pcibios_enable_device(dev, bars);
1842 if (err < 0)
1843 return err;
1844 pci_fixup_device(pci_fixup_enable, dev);
1845
1846 if (dev->msi_enabled || dev->msix_enabled)
1847 return 0;
1848
1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 if (pin) {
1851 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 pci_write_config_word(dev, PCI_COMMAND,
1854 cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 }
1856
1857 return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869 if (pci_is_enabled(dev))
1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877 struct pci_dev *bridge;
1878 int retval;
1879
1880 bridge = pci_upstream_bridge(dev);
1881 if (bridge)
1882 pci_enable_bridge(bridge);
1883
1884 if (pci_is_enabled(dev)) {
1885 if (!dev->is_busmaster)
1886 pci_set_master(dev);
1887 return;
1888 }
1889
1890 retval = pci_enable_device(dev);
1891 if (retval)
1892 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893 retval);
1894 pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899 struct pci_dev *bridge;
1900 int err;
1901 int i, bars = 0;
1902
1903 /*
1904 * Power state could be unknown at this point, either due to a fresh
1905 * boot or a device removal call. So get the current power state
1906 * so that things like MSI message writing will behave as expected
1907 * (e.g. if the device really is in D0 at enable time).
1908 */
1909 pci_update_current_state(dev, dev->current_state);
1910
1911 if (atomic_inc_return(&dev->enable_cnt) > 1)
1912 return 0; /* already enabled */
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pci_enable_bridge(bridge);
1917
1918 /* only skip sriov related */
1919 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920 if (dev->resource[i].flags & flags)
1921 bars |= (1 << i);
1922 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923 if (dev->resource[i].flags & flags)
1924 bars |= (1 << i);
1925
1926 err = do_pci_enable_device(dev, bars);
1927 if (err < 0)
1928 atomic_dec(&dev->enable_cnt);
1929 return err;
1930}
1931
1932/**
1933 * pci_enable_device_io - Initialize a device for use with IO space
1934 * @dev: PCI device to be initialized
1935 *
1936 * Initialize device before it's used by a driver. Ask low-level code
1937 * to enable I/O resources. Wake up the device if it was suspended.
1938 * Beware, this function can fail.
1939 */
1940int pci_enable_device_io(struct pci_dev *dev)
1941{
1942 return pci_enable_device_flags(dev, IORESOURCE_IO);
1943}
1944EXPORT_SYMBOL(pci_enable_device_io);
1945
1946/**
1947 * pci_enable_device_mem - Initialize a device for use with Memory space
1948 * @dev: PCI device to be initialized
1949 *
1950 * Initialize device before it's used by a driver. Ask low-level code
1951 * to enable Memory resources. Wake up the device if it was suspended.
1952 * Beware, this function can fail.
1953 */
1954int pci_enable_device_mem(struct pci_dev *dev)
1955{
1956 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957}
1958EXPORT_SYMBOL(pci_enable_device_mem);
1959
1960/**
1961 * pci_enable_device - Initialize device before it's used by a driver.
1962 * @dev: PCI device to be initialized
1963 *
1964 * Initialize device before it's used by a driver. Ask low-level code
1965 * to enable I/O and memory. Wake up the device if it was suspended.
1966 * Beware, this function can fail.
1967 *
1968 * Note we don't actually enable the device many times if we call
1969 * this function repeatedly (we just increment the count).
1970 */
1971int pci_enable_device(struct pci_dev *dev)
1972{
1973 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974}
1975EXPORT_SYMBOL(pci_enable_device);
1976
1977/*
1978 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1979 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1980 * there's no need to track it separately. pci_devres is initialized
1981 * when a device is enabled using managed PCI device enable interface.
1982 */
1983struct pci_devres {
1984 unsigned int enabled:1;
1985 unsigned int pinned:1;
1986 unsigned int orig_intx:1;
1987 unsigned int restore_intx:1;
1988 unsigned int mwi:1;
1989 u32 region_mask;
1990};
1991
1992static void pcim_release(struct device *gendev, void *res)
1993{
1994 struct pci_dev *dev = to_pci_dev(gendev);
1995 struct pci_devres *this = res;
1996 int i;
1997
1998 if (dev->msi_enabled)
1999 pci_disable_msi(dev);
2000 if (dev->msix_enabled)
2001 pci_disable_msix(dev);
2002
2003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004 if (this->region_mask & (1 << i))
2005 pci_release_region(dev, i);
2006
2007 if (this->mwi)
2008 pci_clear_mwi(dev);
2009
2010 if (this->restore_intx)
2011 pci_intx(dev, this->orig_intx);
2012
2013 if (this->enabled && !this->pinned)
2014 pci_disable_device(dev);
2015}
2016
2017static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018{
2019 struct pci_devres *dr, *new_dr;
2020
2021 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022 if (dr)
2023 return dr;
2024
2025 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026 if (!new_dr)
2027 return NULL;
2028 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029}
2030
2031static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032{
2033 if (pci_is_managed(pdev))
2034 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035 return NULL;
2036}
2037
2038/**
2039 * pcim_enable_device - Managed pci_enable_device()
2040 * @pdev: PCI device to be initialized
2041 *
2042 * Managed pci_enable_device().
2043 */
2044int pcim_enable_device(struct pci_dev *pdev)
2045{
2046 struct pci_devres *dr;
2047 int rc;
2048
2049 dr = get_pci_dr(pdev);
2050 if (unlikely(!dr))
2051 return -ENOMEM;
2052 if (dr->enabled)
2053 return 0;
2054
2055 rc = pci_enable_device(pdev);
2056 if (!rc) {
2057 pdev->is_managed = 1;
2058 dr->enabled = 1;
2059 }
2060 return rc;
2061}
2062EXPORT_SYMBOL(pcim_enable_device);
2063
2064/**
2065 * pcim_pin_device - Pin managed PCI device
2066 * @pdev: PCI device to pin
2067 *
2068 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2069 * driver detach. @pdev must have been enabled with
2070 * pcim_enable_device().
2071 */
2072void pcim_pin_device(struct pci_dev *pdev)
2073{
2074 struct pci_devres *dr;
2075
2076 dr = find_pci_dr(pdev);
2077 WARN_ON(!dr || !dr->enabled);
2078 if (dr)
2079 dr->pinned = 1;
2080}
2081EXPORT_SYMBOL(pcim_pin_device);
2082
2083/*
2084 * pcibios_add_device - provide arch specific hooks when adding device dev
2085 * @dev: the PCI device being added
2086 *
2087 * Permits the platform to provide architecture specific functionality when
2088 * devices are added. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091int __weak pcibios_add_device(struct pci_dev *dev)
2092{
2093 return 0;
2094}
2095
2096/**
2097 * pcibios_release_device - provide arch specific hooks when releasing
2098 * device dev
2099 * @dev: the PCI device being released
2100 *
2101 * Permits the platform to provide architecture specific functionality when
2102 * devices are released. This is the default implementation. Architecture
2103 * implementations can override this.
2104 */
2105void __weak pcibios_release_device(struct pci_dev *dev) {}
2106
2107/**
2108 * pcibios_disable_device - disable arch specific PCI resources for device dev
2109 * @dev: the PCI device to disable
2110 *
2111 * Disables architecture specific PCI resources for the device. This
2112 * is the default implementation. Architecture implementations can
2113 * override this.
2114 */
2115void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116
2117/**
2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119 * @irq: ISA IRQ to penalize
2120 * @active: IRQ active or not
2121 *
2122 * Permits the platform to provide architecture-specific functionality when
2123 * penalizing ISA IRQs. This is the default implementation. Architecture
2124 * implementations can override this.
2125 */
2126void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127
2128static void do_pci_disable_device(struct pci_dev *dev)
2129{
2130 u16 pci_command;
2131
2132 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133 if (pci_command & PCI_COMMAND_MASTER) {
2134 pci_command &= ~PCI_COMMAND_MASTER;
2135 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136 }
2137
2138 pcibios_disable_device(dev);
2139}
2140
2141/**
2142 * pci_disable_enabled_device - Disable device without updating enable_cnt
2143 * @dev: PCI device to disable
2144 *
2145 * NOTE: This function is a backend of PCI power management routines and is
2146 * not supposed to be called drivers.
2147 */
2148void pci_disable_enabled_device(struct pci_dev *dev)
2149{
2150 if (pci_is_enabled(dev))
2151 do_pci_disable_device(dev);
2152}
2153
2154/**
2155 * pci_disable_device - Disable PCI device after use
2156 * @dev: PCI device to be disabled
2157 *
2158 * Signal to the system that the PCI device is not in use by the system
2159 * anymore. This only involves disabling PCI bus-mastering, if active.
2160 *
2161 * Note we don't actually disable the device until all callers of
2162 * pci_enable_device() have called pci_disable_device().
2163 */
2164void pci_disable_device(struct pci_dev *dev)
2165{
2166 struct pci_devres *dr;
2167
2168 dr = find_pci_dr(dev);
2169 if (dr)
2170 dr->enabled = 0;
2171
2172 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173 "disabling already-disabled device");
2174
2175 if (atomic_dec_return(&dev->enable_cnt) != 0)
2176 return;
2177
2178 do_pci_disable_device(dev);
2179
2180 dev->is_busmaster = 0;
2181}
2182EXPORT_SYMBOL(pci_disable_device);
2183
2184/**
2185 * pcibios_set_pcie_reset_state - set reset state for device dev
2186 * @dev: the PCIe device reset
2187 * @state: Reset state to enter into
2188 *
2189 * Set the PCIe reset state for the device. This is the default
2190 * implementation. Architecture implementations can override this.
2191 */
2192int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193 enum pcie_reset_state state)
2194{
2195 return -EINVAL;
2196}
2197
2198/**
2199 * pci_set_pcie_reset_state - set reset state for device dev
2200 * @dev: the PCIe device reset
2201 * @state: Reset state to enter into
2202 *
2203 * Sets the PCI reset state for the device.
2204 */
2205int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206{
2207 return pcibios_set_pcie_reset_state(dev, state);
2208}
2209EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210
2211void pcie_clear_device_status(struct pci_dev *dev)
2212{
2213 u16 sta;
2214
2215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217}
2218
2219/**
2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221 * @dev: PCIe root port or event collector.
2222 */
2223void pcie_clear_root_pme_status(struct pci_dev *dev)
2224{
2225 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226}
2227
2228/**
2229 * pci_check_pme_status - Check if given device has generated PME.
2230 * @dev: Device to check.
2231 *
2232 * Check the PME status of the device and if set, clear it and clear PME enable
2233 * (if set). Return 'true' if PME status and PME enable were both set or
2234 * 'false' otherwise.
2235 */
2236bool pci_check_pme_status(struct pci_dev *dev)
2237{
2238 int pmcsr_pos;
2239 u16 pmcsr;
2240 bool ret = false;
2241
2242 if (!dev->pm_cap)
2243 return false;
2244
2245 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248 return false;
2249
2250 /* Clear PME status. */
2251 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253 /* Disable PME to avoid interrupt flood. */
2254 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255 ret = true;
2256 }
2257
2258 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259
2260 return ret;
2261}
2262
2263/**
2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265 * @dev: Device to handle.
2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267 *
2268 * Check if @dev has generated PME and queue a resume request for it in that
2269 * case.
2270 */
2271static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272{
2273 if (pme_poll_reset && dev->pme_poll)
2274 dev->pme_poll = false;
2275
2276 if (pci_check_pme_status(dev)) {
2277 pci_wakeup_event(dev);
2278 pm_request_resume(&dev->dev);
2279 }
2280 return 0;
2281}
2282
2283/**
2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285 * @bus: Top bus of the subtree to walk.
2286 */
2287void pci_pme_wakeup_bus(struct pci_bus *bus)
2288{
2289 if (bus)
2290 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291}
2292
2293
2294/**
2295 * pci_pme_capable - check the capability of PCI device to generate PME#
2296 * @dev: PCI device to handle.
2297 * @state: PCI state from which device will issue PME#.
2298 */
2299bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300{
2301 if (!dev->pm_cap)
2302 return false;
2303
2304 return !!(dev->pme_support & (1 << state));
2305}
2306EXPORT_SYMBOL(pci_pme_capable);
2307
2308static void pci_pme_list_scan(struct work_struct *work)
2309{
2310 struct pci_pme_device *pme_dev, *n;
2311
2312 mutex_lock(&pci_pme_list_mutex);
2313 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314 if (pme_dev->dev->pme_poll) {
2315 struct pci_dev *bridge;
2316
2317 bridge = pme_dev->dev->bus->self;
2318 /*
2319 * If bridge is in low power state, the
2320 * configuration space of subordinate devices
2321 * may be not accessible
2322 */
2323 if (bridge && bridge->current_state != PCI_D0)
2324 continue;
2325 /*
2326 * If the device is in D3cold it should not be
2327 * polled either.
2328 */
2329 if (pme_dev->dev->current_state == PCI_D3cold)
2330 continue;
2331
2332 pci_pme_wakeup(pme_dev->dev, NULL);
2333 } else {
2334 list_del(&pme_dev->list);
2335 kfree(pme_dev);
2336 }
2337 }
2338 if (!list_empty(&pci_pme_list))
2339 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340 msecs_to_jiffies(PME_TIMEOUT));
2341 mutex_unlock(&pci_pme_list_mutex);
2342}
2343
2344static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345{
2346 u16 pmcsr;
2347
2348 if (!dev->pme_support)
2349 return;
2350
2351 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352 /* Clear PME_Status by writing 1 to it and enable PME# */
2353 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354 if (!enable)
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356
2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358}
2359
2360/**
2361 * pci_pme_restore - Restore PME configuration after config space restore.
2362 * @dev: PCI device to update.
2363 */
2364void pci_pme_restore(struct pci_dev *dev)
2365{
2366 u16 pmcsr;
2367
2368 if (!dev->pme_support)
2369 return;
2370
2371 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372 if (dev->wakeup_prepared) {
2373 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375 } else {
2376 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378 }
2379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380}
2381
2382/**
2383 * pci_pme_active - enable or disable PCI device's PME# function
2384 * @dev: PCI device to handle.
2385 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386 *
2387 * The caller must verify that the device is capable of generating PME# before
2388 * calling this function with @enable equal to 'true'.
2389 */
2390void pci_pme_active(struct pci_dev *dev, bool enable)
2391{
2392 __pci_pme_active(dev, enable);
2393
2394 /*
2395 * PCI (as opposed to PCIe) PME requires that the device have
2396 * its PME# line hooked up correctly. Not all hardware vendors
2397 * do this, so the PME never gets delivered and the device
2398 * remains asleep. The easiest way around this is to
2399 * periodically walk the list of suspended devices and check
2400 * whether any have their PME flag set. The assumption is that
2401 * we'll wake up often enough anyway that this won't be a huge
2402 * hit, and the power savings from the devices will still be a
2403 * win.
2404 *
2405 * Although PCIe uses in-band PME message instead of PME# line
2406 * to report PME, PME does not work for some PCIe devices in
2407 * reality. For example, there are devices that set their PME
2408 * status bits, but don't really bother to send a PME message;
2409 * there are PCI Express Root Ports that don't bother to
2410 * trigger interrupts when they receive PME messages from the
2411 * devices below. So PME poll is used for PCIe devices too.
2412 */
2413
2414 if (dev->pme_poll) {
2415 struct pci_pme_device *pme_dev;
2416 if (enable) {
2417 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418 GFP_KERNEL);
2419 if (!pme_dev) {
2420 pci_warn(dev, "can't enable PME#\n");
2421 return;
2422 }
2423 pme_dev->dev = dev;
2424 mutex_lock(&pci_pme_list_mutex);
2425 list_add(&pme_dev->list, &pci_pme_list);
2426 if (list_is_singular(&pci_pme_list))
2427 queue_delayed_work(system_freezable_wq,
2428 &pci_pme_work,
2429 msecs_to_jiffies(PME_TIMEOUT));
2430 mutex_unlock(&pci_pme_list_mutex);
2431 } else {
2432 mutex_lock(&pci_pme_list_mutex);
2433 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434 if (pme_dev->dev == dev) {
2435 list_del(&pme_dev->list);
2436 kfree(pme_dev);
2437 break;
2438 }
2439 }
2440 mutex_unlock(&pci_pme_list_mutex);
2441 }
2442 }
2443
2444 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445}
2446EXPORT_SYMBOL(pci_pme_active);
2447
2448/**
2449 * __pci_enable_wake - enable PCI device as wakeup event source
2450 * @dev: PCI device affected
2451 * @state: PCI state from which device will issue wakeup events
2452 * @enable: True to enable event generation; false to disable
2453 *
2454 * This enables the device as a wakeup event source, or disables it.
2455 * When such events involves platform-specific hooks, those hooks are
2456 * called automatically by this routine.
2457 *
2458 * Devices with legacy power management (no standard PCI PM capabilities)
2459 * always require such platform hooks.
2460 *
2461 * RETURN VALUE:
2462 * 0 is returned on success
2463 * -EINVAL is returned if device is not supposed to wake up the system
2464 * Error code depending on the platform is returned if both the platform and
2465 * the native mechanism fail to enable the generation of wake-up events
2466 */
2467static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468{
2469 int ret = 0;
2470
2471 /*
2472 * Bridges that are not power-manageable directly only signal
2473 * wakeup on behalf of subordinate devices which is set up
2474 * elsewhere, so skip them. However, bridges that are
2475 * power-manageable may signal wakeup for themselves (for example,
2476 * on a hotplug event) and they need to be covered here.
2477 */
2478 if (!pci_power_manageable(dev))
2479 return 0;
2480
2481 /* Don't do the same thing twice in a row for one device. */
2482 if (!!enable == !!dev->wakeup_prepared)
2483 return 0;
2484
2485 /*
2486 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488 * enable. To disable wake-up we call the platform first, for symmetry.
2489 */
2490
2491 if (enable) {
2492 int error;
2493
2494 /*
2495 * Enable PME signaling if the device can signal PME from
2496 * D3cold regardless of whether or not it can signal PME from
2497 * the current target state, because that will allow it to
2498 * signal PME when the hierarchy above it goes into D3cold and
2499 * the device itself ends up in D3cold as a result of that.
2500 */
2501 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502 pci_pme_active(dev, true);
2503 else
2504 ret = 1;
2505 error = platform_pci_set_wakeup(dev, true);
2506 if (ret)
2507 ret = error;
2508 if (!ret)
2509 dev->wakeup_prepared = true;
2510 } else {
2511 platform_pci_set_wakeup(dev, false);
2512 pci_pme_active(dev, false);
2513 dev->wakeup_prepared = false;
2514 }
2515
2516 return ret;
2517}
2518
2519/**
2520 * pci_enable_wake - change wakeup settings for a PCI device
2521 * @pci_dev: Target device
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: Whether or not to enable event generation
2524 *
2525 * If @enable is set, check device_may_wakeup() for the device before calling
2526 * __pci_enable_wake() for it.
2527 */
2528int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529{
2530 if (enable && !device_may_wakeup(&pci_dev->dev))
2531 return -EINVAL;
2532
2533 return __pci_enable_wake(pci_dev, state, enable);
2534}
2535EXPORT_SYMBOL(pci_enable_wake);
2536
2537/**
2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539 * @dev: PCI device to prepare
2540 * @enable: True to enable wake-up event generation; false to disable
2541 *
2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543 * and this function allows them to set that up cleanly - pci_enable_wake()
2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545 * ordering constraints.
2546 *
2547 * This function only returns error code if the device is not allowed to wake
2548 * up the system from sleep or it is not capable of generating PME# from both
2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550 */
2551int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552{
2553 return pci_pme_capable(dev, PCI_D3cold) ?
2554 pci_enable_wake(dev, PCI_D3cold, enable) :
2555 pci_enable_wake(dev, PCI_D3hot, enable);
2556}
2557EXPORT_SYMBOL(pci_wake_from_d3);
2558
2559/**
2560 * pci_target_state - find an appropriate low power state for a given PCI dev
2561 * @dev: PCI device
2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563 *
2564 * Use underlying platform code to find a supported low power state for @dev.
2565 * If the platform can't manage @dev, return the deepest state from which it
2566 * can generate wake events, based on any available PME info.
2567 */
2568static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569{
2570 pci_power_t target_state = PCI_D3hot;
2571
2572 if (platform_pci_power_manageable(dev)) {
2573 /*
2574 * Call the platform to find the target state for the device.
2575 */
2576 pci_power_t state = platform_pci_choose_state(dev);
2577
2578 switch (state) {
2579 case PCI_POWER_ERROR:
2580 case PCI_UNKNOWN:
2581 break;
2582 case PCI_D1:
2583 case PCI_D2:
2584 if (pci_no_d1d2(dev))
2585 break;
2586 fallthrough;
2587 default:
2588 target_state = state;
2589 }
2590
2591 return target_state;
2592 }
2593
2594 if (!dev->pm_cap)
2595 target_state = PCI_D0;
2596
2597 /*
2598 * If the device is in D3cold even though it's not power-manageable by
2599 * the platform, it may have been powered down by non-standard means.
2600 * Best to let it slumber.
2601 */
2602 if (dev->current_state == PCI_D3cold)
2603 target_state = PCI_D3cold;
2604
2605 if (wakeup && dev->pme_support) {
2606 pci_power_t state = target_state;
2607
2608 /*
2609 * Find the deepest state from which the device can generate
2610 * PME#.
2611 */
2612 while (state && !(dev->pme_support & (1 << state)))
2613 state--;
2614
2615 if (state)
2616 return state;
2617 else if (dev->pme_support & 1)
2618 return PCI_D0;
2619 }
2620
2621 return target_state;
2622}
2623
2624/**
2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626 * into a sleep state
2627 * @dev: Device to handle.
2628 *
2629 * Choose the power state appropriate for the device depending on whether
2630 * it can wake up the system and/or is power manageable by the platform
2631 * (PCI_D3hot is the default) and put the device into that state.
2632 */
2633int pci_prepare_to_sleep(struct pci_dev *dev)
2634{
2635 bool wakeup = device_may_wakeup(&dev->dev);
2636 pci_power_t target_state = pci_target_state(dev, wakeup);
2637 int error;
2638
2639 if (target_state == PCI_POWER_ERROR)
2640 return -EIO;
2641
2642 /*
2643 * There are systems (for example, Intel mobile chips since Coffee
2644 * Lake) where the power drawn while suspended can be significantly
2645 * reduced by disabling PTM on PCIe root ports as this allows the
2646 * port to enter a lower-power PM state and the SoC to reach a
2647 * lower-power idle state as a whole.
2648 */
2649 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650 pci_disable_ptm(dev);
2651
2652 pci_enable_wake(dev, target_state, wakeup);
2653
2654 error = pci_set_power_state(dev, target_state);
2655
2656 if (error) {
2657 pci_enable_wake(dev, target_state, false);
2658 pci_restore_ptm_state(dev);
2659 }
2660
2661 return error;
2662}
2663EXPORT_SYMBOL(pci_prepare_to_sleep);
2664
2665/**
2666 * pci_back_from_sleep - turn PCI device on during system-wide transition
2667 * into working state
2668 * @dev: Device to handle.
2669 *
2670 * Disable device's system wake-up capability and put it into D0.
2671 */
2672int pci_back_from_sleep(struct pci_dev *dev)
2673{
2674 pci_enable_wake(dev, PCI_D0, false);
2675 return pci_set_power_state(dev, PCI_D0);
2676}
2677EXPORT_SYMBOL(pci_back_from_sleep);
2678
2679/**
2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681 * @dev: PCI device being suspended.
2682 *
2683 * Prepare @dev to generate wake-up events at run time and put it into a low
2684 * power state.
2685 */
2686int pci_finish_runtime_suspend(struct pci_dev *dev)
2687{
2688 pci_power_t target_state;
2689 int error;
2690
2691 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692 if (target_state == PCI_POWER_ERROR)
2693 return -EIO;
2694
2695 dev->runtime_d3cold = target_state == PCI_D3cold;
2696
2697 /*
2698 * There are systems (for example, Intel mobile chips since Coffee
2699 * Lake) where the power drawn while suspended can be significantly
2700 * reduced by disabling PTM on PCIe root ports as this allows the
2701 * port to enter a lower-power PM state and the SoC to reach a
2702 * lower-power idle state as a whole.
2703 */
2704 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705 pci_disable_ptm(dev);
2706
2707 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708
2709 error = pci_set_power_state(dev, target_state);
2710
2711 if (error) {
2712 pci_enable_wake(dev, target_state, false);
2713 pci_restore_ptm_state(dev);
2714 dev->runtime_d3cold = false;
2715 }
2716
2717 return error;
2718}
2719
2720/**
2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722 * @dev: Device to check.
2723 *
2724 * Return true if the device itself is capable of generating wake-up events
2725 * (through the platform or using the native PCIe PME) or if the device supports
2726 * PME and one of its upstream bridges can generate wake-up events.
2727 */
2728bool pci_dev_run_wake(struct pci_dev *dev)
2729{
2730 struct pci_bus *bus = dev->bus;
2731
2732 if (!dev->pme_support)
2733 return false;
2734
2735 /* PME-capable in principle, but not from the target power state */
2736 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737 return false;
2738
2739 if (device_can_wakeup(&dev->dev))
2740 return true;
2741
2742 while (bus->parent) {
2743 struct pci_dev *bridge = bus->self;
2744
2745 if (device_can_wakeup(&bridge->dev))
2746 return true;
2747
2748 bus = bus->parent;
2749 }
2750
2751 /* We have reached the root bus. */
2752 if (bus->bridge)
2753 return device_can_wakeup(bus->bridge);
2754
2755 return false;
2756}
2757EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758
2759/**
2760 * pci_dev_need_resume - Check if it is necessary to resume the device.
2761 * @pci_dev: Device to check.
2762 *
2763 * Return 'true' if the device is not runtime-suspended or it has to be
2764 * reconfigured due to wakeup settings difference between system and runtime
2765 * suspend, or the current power state of it is not suitable for the upcoming
2766 * (system-wide) transition.
2767 */
2768bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769{
2770 struct device *dev = &pci_dev->dev;
2771 pci_power_t target_state;
2772
2773 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774 return true;
2775
2776 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777
2778 /*
2779 * If the earlier platform check has not triggered, D3cold is just power
2780 * removal on top of D3hot, so no need to resume the device in that
2781 * case.
2782 */
2783 return target_state != pci_dev->current_state &&
2784 target_state != PCI_D3cold &&
2785 pci_dev->current_state != PCI_D3hot;
2786}
2787
2788/**
2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790 * @pci_dev: Device to check.
2791 *
2792 * If the device is suspended and it is not configured for system wakeup,
2793 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 *
2795 * Note that if the device's power state is D3cold and the platform check in
2796 * pci_dev_need_resume() has not triggered, the device's configuration need not
2797 * be changed.
2798 */
2799void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800{
2801 struct device *dev = &pci_dev->dev;
2802
2803 spin_lock_irq(&dev->power.lock);
2804
2805 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806 pci_dev->current_state < PCI_D3cold)
2807 __pci_pme_active(pci_dev, false);
2808
2809 spin_unlock_irq(&dev->power.lock);
2810}
2811
2812/**
2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814 * @pci_dev: Device to handle.
2815 *
2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817 * it might have been disabled during the prepare phase of system suspend if
2818 * the device was not configured for system wakeup.
2819 */
2820void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821{
2822 struct device *dev = &pci_dev->dev;
2823
2824 if (!pci_dev_run_wake(pci_dev))
2825 return;
2826
2827 spin_lock_irq(&dev->power.lock);
2828
2829 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830 __pci_pme_active(pci_dev, true);
2831
2832 spin_unlock_irq(&dev->power.lock);
2833}
2834
2835void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836{
2837 struct device *dev = &pdev->dev;
2838 struct device *parent = dev->parent;
2839
2840 if (parent)
2841 pm_runtime_get_sync(parent);
2842 pm_runtime_get_noresume(dev);
2843 /*
2844 * pdev->current_state is set to PCI_D3cold during suspending,
2845 * so wait until suspending completes
2846 */
2847 pm_runtime_barrier(dev);
2848 /*
2849 * Only need to resume devices in D3cold, because config
2850 * registers are still accessible for devices suspended but
2851 * not in D3cold.
2852 */
2853 if (pdev->current_state == PCI_D3cold)
2854 pm_runtime_resume(dev);
2855}
2856
2857void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858{
2859 struct device *dev = &pdev->dev;
2860 struct device *parent = dev->parent;
2861
2862 pm_runtime_put(dev);
2863 if (parent)
2864 pm_runtime_put_sync(parent);
2865}
2866
2867static const struct dmi_system_id bridge_d3_blacklist[] = {
2868#ifdef CONFIG_X86
2869 {
2870 /*
2871 * Gigabyte X299 root port is not marked as hotplug capable
2872 * which allows Linux to power manage it. However, this
2873 * confuses the BIOS SMI handler so don't power manage root
2874 * ports on that system.
2875 */
2876 .ident = "X299 DESIGNARE EX-CF",
2877 .matches = {
2878 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880 },
2881 },
2882#endif
2883 { }
2884};
2885
2886/**
2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888 * @bridge: Bridge to check
2889 *
2890 * This function checks if it is possible to move the bridge to D3.
2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 */
2893bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894{
2895 if (!pci_is_pcie(bridge))
2896 return false;
2897
2898 switch (pci_pcie_type(bridge)) {
2899 case PCI_EXP_TYPE_ROOT_PORT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_DOWNSTREAM:
2902 if (pci_bridge_d3_disable)
2903 return false;
2904
2905 /*
2906 * Hotplug ports handled by firmware in System Management Mode
2907 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908 */
2909 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910 return false;
2911
2912 if (pci_bridge_d3_force)
2913 return true;
2914
2915 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2916 if (bridge->is_thunderbolt)
2917 return true;
2918
2919 /* Platform might know better if the bridge supports D3 */
2920 if (platform_pci_bridge_d3(bridge))
2921 return true;
2922
2923 /*
2924 * Hotplug ports handled natively by the OS were not validated
2925 * by vendors for runtime D3 at least until 2018 because there
2926 * was no OS support.
2927 */
2928 if (bridge->is_hotplug_bridge)
2929 return false;
2930
2931 if (dmi_check_system(bridge_d3_blacklist))
2932 return false;
2933
2934 /*
2935 * It should be safe to put PCIe ports from 2015 or newer
2936 * to D3.
2937 */
2938 if (dmi_get_bios_year() >= 2015)
2939 return true;
2940 break;
2941 }
2942
2943 return false;
2944}
2945
2946static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947{
2948 bool *d3cold_ok = data;
2949
2950 if (/* The device needs to be allowed to go D3cold ... */
2951 dev->no_d3cold || !dev->d3cold_allowed ||
2952
2953 /* ... and if it is wakeup capable to do so from D3cold. */
2954 (device_may_wakeup(&dev->dev) &&
2955 !pci_pme_capable(dev, PCI_D3cold)) ||
2956
2957 /* If it is a bridge it must be allowed to go to D3. */
2958 !pci_power_manageable(dev))
2959
2960 *d3cold_ok = false;
2961
2962 return !*d3cold_ok;
2963}
2964
2965/*
2966 * pci_bridge_d3_update - Update bridge D3 capabilities
2967 * @dev: PCI device which is changed
2968 *
2969 * Update upstream bridge PM capabilities accordingly depending on if the
2970 * device PM configuration was changed or the device is being removed. The
2971 * change is also propagated upstream.
2972 */
2973void pci_bridge_d3_update(struct pci_dev *dev)
2974{
2975 bool remove = !device_is_registered(&dev->dev);
2976 struct pci_dev *bridge;
2977 bool d3cold_ok = true;
2978
2979 bridge = pci_upstream_bridge(dev);
2980 if (!bridge || !pci_bridge_d3_possible(bridge))
2981 return;
2982
2983 /*
2984 * If D3 is currently allowed for the bridge, removing one of its
2985 * children won't change that.
2986 */
2987 if (remove && bridge->bridge_d3)
2988 return;
2989
2990 /*
2991 * If D3 is currently allowed for the bridge and a child is added or
2992 * changed, disallowance of D3 can only be caused by that child, so
2993 * we only need to check that single device, not any of its siblings.
2994 *
2995 * If D3 is currently not allowed for the bridge, checking the device
2996 * first may allow us to skip checking its siblings.
2997 */
2998 if (!remove)
2999 pci_dev_check_d3cold(dev, &d3cold_ok);
3000
3001 /*
3002 * If D3 is currently not allowed for the bridge, this may be caused
3003 * either by the device being changed/removed or any of its siblings,
3004 * so we need to go through all children to find out if one of them
3005 * continues to block D3.
3006 */
3007 if (d3cold_ok && !bridge->bridge_d3)
3008 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009 &d3cold_ok);
3010
3011 if (bridge->bridge_d3 != d3cold_ok) {
3012 bridge->bridge_d3 = d3cold_ok;
3013 /* Propagate change to upstream bridges */
3014 pci_bridge_d3_update(bridge);
3015 }
3016}
3017
3018/**
3019 * pci_d3cold_enable - Enable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to enable D3cold from the device
3023 * they handle. It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_enable(struct pci_dev *dev)
3027{
3028 if (dev->no_d3cold) {
3029 dev->no_d3cold = false;
3030 pci_bridge_d3_update(dev);
3031 }
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034
3035/**
3036 * pci_d3cold_disable - Disable D3cold for device
3037 * @dev: PCI device to handle
3038 *
3039 * This function can be used in drivers to disable D3cold from the device
3040 * they handle. It also updates upstream PCI bridge PM capabilities
3041 * accordingly.
3042 */
3043void pci_d3cold_disable(struct pci_dev *dev)
3044{
3045 if (!dev->no_d3cold) {
3046 dev->no_d3cold = true;
3047 pci_bridge_d3_update(dev);
3048 }
3049}
3050EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051
3052/**
3053 * pci_pm_init - Initialize PM functions of given PCI device
3054 * @dev: PCI device to handle.
3055 */
3056void pci_pm_init(struct pci_dev *dev)
3057{
3058 int pm;
3059 u16 status;
3060 u16 pmc;
3061
3062 pm_runtime_forbid(&dev->dev);
3063 pm_runtime_set_active(&dev->dev);
3064 pm_runtime_enable(&dev->dev);
3065 device_enable_async_suspend(&dev->dev);
3066 dev->wakeup_prepared = false;
3067
3068 dev->pm_cap = 0;
3069 dev->pme_support = 0;
3070
3071 /* find PCI PM capability in list */
3072 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073 if (!pm)
3074 return;
3075 /* Check device's ability to generate PME# */
3076 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077
3078 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080 pmc & PCI_PM_CAP_VER_MASK);
3081 return;
3082 }
3083
3084 dev->pm_cap = pm;
3085 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088 dev->d3cold_allowed = true;
3089
3090 dev->d1_support = false;
3091 dev->d2_support = false;
3092 if (!pci_no_d1d2(dev)) {
3093 if (pmc & PCI_PM_CAP_D1)
3094 dev->d1_support = true;
3095 if (pmc & PCI_PM_CAP_D2)
3096 dev->d2_support = true;
3097
3098 if (dev->d1_support || dev->d2_support)
3099 pci_info(dev, "supports%s%s\n",
3100 dev->d1_support ? " D1" : "",
3101 dev->d2_support ? " D2" : "");
3102 }
3103
3104 pmc &= PCI_PM_CAP_PME_MASK;
3105 if (pmc) {
3106 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113 dev->pme_poll = true;
3114 /*
3115 * Make device's PM flags reflect the wake-up capability, but
3116 * let the user space enable it to wake up the system as needed.
3117 */
3118 device_set_wakeup_capable(&dev->dev, true);
3119 /* Disable the PME# generation functionality */
3120 pci_pme_active(dev, false);
3121 }
3122
3123 pci_read_config_word(dev, PCI_STATUS, &status);
3124 if (status & PCI_STATUS_IMM_READY)
3125 dev->imm_ready = 1;
3126}
3127
3128static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129{
3130 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131
3132 switch (prop) {
3133 case PCI_EA_P_MEM:
3134 case PCI_EA_P_VF_MEM:
3135 flags |= IORESOURCE_MEM;
3136 break;
3137 case PCI_EA_P_MEM_PREFETCH:
3138 case PCI_EA_P_VF_MEM_PREFETCH:
3139 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140 break;
3141 case PCI_EA_P_IO:
3142 flags |= IORESOURCE_IO;
3143 break;
3144 default:
3145 return 0;
3146 }
3147
3148 return flags;
3149}
3150
3151static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152 u8 prop)
3153{
3154 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155 return &dev->resource[bei];
3156#ifdef CONFIG_PCI_IOV
3157 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159 return &dev->resource[PCI_IOV_RESOURCES +
3160 bei - PCI_EA_BEI_VF_BAR0];
3161#endif
3162 else if (bei == PCI_EA_BEI_ROM)
3163 return &dev->resource[PCI_ROM_RESOURCE];
3164 else
3165 return NULL;
3166}
3167
3168/* Read an Enhanced Allocation (EA) entry */
3169static int pci_ea_read(struct pci_dev *dev, int offset)
3170{
3171 struct resource *res;
3172 int ent_size, ent_offset = offset;
3173 resource_size_t start, end;
3174 unsigned long flags;
3175 u32 dw0, bei, base, max_offset;
3176 u8 prop;
3177 bool support_64 = (sizeof(resource_size_t) >= 8);
3178
3179 pci_read_config_dword(dev, ent_offset, &dw0);
3180 ent_offset += 4;
3181
3182 /* Entry size field indicates DWORDs after 1st */
3183 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184
3185 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186 goto out;
3187
3188 bei = (dw0 & PCI_EA_BEI) >> 4;
3189 prop = (dw0 & PCI_EA_PP) >> 8;
3190
3191 /*
3192 * If the Property is in the reserved range, try the Secondary
3193 * Property instead.
3194 */
3195 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196 prop = (dw0 & PCI_EA_SP) >> 16;
3197 if (prop > PCI_EA_P_BRIDGE_IO)
3198 goto out;
3199
3200 res = pci_ea_get_resource(dev, bei, prop);
3201 if (!res) {
3202 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203 goto out;
3204 }
3205
3206 flags = pci_ea_flags(dev, prop);
3207 if (!flags) {
3208 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209 goto out;
3210 }
3211
3212 /* Read Base */
3213 pci_read_config_dword(dev, ent_offset, &base);
3214 start = (base & PCI_EA_FIELD_MASK);
3215 ent_offset += 4;
3216
3217 /* Read MaxOffset */
3218 pci_read_config_dword(dev, ent_offset, &max_offset);
3219 ent_offset += 4;
3220
3221 /* Read Base MSBs (if 64-bit entry) */
3222 if (base & PCI_EA_IS_64) {
3223 u32 base_upper;
3224
3225 pci_read_config_dword(dev, ent_offset, &base_upper);
3226 ent_offset += 4;
3227
3228 flags |= IORESOURCE_MEM_64;
3229
3230 /* entry starts above 32-bit boundary, can't use */
3231 if (!support_64 && base_upper)
3232 goto out;
3233
3234 if (support_64)
3235 start |= ((u64)base_upper << 32);
3236 }
3237
3238 end = start + (max_offset | 0x03);
3239
3240 /* Read MaxOffset MSBs (if 64-bit entry) */
3241 if (max_offset & PCI_EA_IS_64) {
3242 u32 max_offset_upper;
3243
3244 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245 ent_offset += 4;
3246
3247 flags |= IORESOURCE_MEM_64;
3248
3249 /* entry too big, can't use */
3250 if (!support_64 && max_offset_upper)
3251 goto out;
3252
3253 if (support_64)
3254 end += ((u64)max_offset_upper << 32);
3255 }
3256
3257 if (end < start) {
3258 pci_err(dev, "EA Entry crosses address boundary\n");
3259 goto out;
3260 }
3261
3262 if (ent_size != ent_offset - offset) {
3263 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264 ent_size, ent_offset - offset);
3265 goto out;
3266 }
3267
3268 res->name = pci_name(dev);
3269 res->start = start;
3270 res->end = end;
3271 res->flags = flags;
3272
3273 if (bei <= PCI_EA_BEI_BAR5)
3274 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 bei, res, prop);
3276 else if (bei == PCI_EA_BEI_ROM)
3277 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278 res, prop);
3279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282 else
3283 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284 bei, res, prop);
3285
3286out:
3287 return offset + ent_size;
3288}
3289
3290/* Enhanced Allocation Initialization */
3291void pci_ea_init(struct pci_dev *dev)
3292{
3293 int ea;
3294 u8 num_ent;
3295 int offset;
3296 int i;
3297
3298 /* find PCI EA capability in list */
3299 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300 if (!ea)
3301 return;
3302
3303 /* determine the number of entries */
3304 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305 &num_ent);
3306 num_ent &= PCI_EA_NUM_ENT_MASK;
3307
3308 offset = ea + PCI_EA_FIRST_ENT;
3309
3310 /* Skip DWORD 2 for type 1 functions */
3311 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312 offset += 4;
3313
3314 /* parse each EA entry */
3315 for (i = 0; i < num_ent; ++i)
3316 offset = pci_ea_read(dev, offset);
3317}
3318
3319static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320 struct pci_cap_saved_state *new_cap)
3321{
3322 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323}
3324
3325/**
3326 * _pci_add_cap_save_buffer - allocate buffer for saving given
3327 * capability registers
3328 * @dev: the PCI device
3329 * @cap: the capability to allocate the buffer for
3330 * @extended: Standard or Extended capability ID
3331 * @size: requested size of the buffer
3332 */
3333static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334 bool extended, unsigned int size)
3335{
3336 int pos;
3337 struct pci_cap_saved_state *save_state;
3338
3339 if (extended)
3340 pos = pci_find_ext_capability(dev, cap);
3341 else
3342 pos = pci_find_capability(dev, cap);
3343
3344 if (!pos)
3345 return 0;
3346
3347 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348 if (!save_state)
3349 return -ENOMEM;
3350
3351 save_state->cap.cap_nr = cap;
3352 save_state->cap.cap_extended = extended;
3353 save_state->cap.size = size;
3354 pci_add_saved_cap(dev, save_state);
3355
3356 return 0;
3357}
3358
3359int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360{
3361 return _pci_add_cap_save_buffer(dev, cap, false, size);
3362}
3363
3364int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365{
3366 return _pci_add_cap_save_buffer(dev, cap, true, size);
3367}
3368
3369/**
3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371 * @dev: the PCI device
3372 */
3373void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374{
3375 int error;
3376
3377 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378 PCI_EXP_SAVE_REGS * sizeof(u16));
3379 if (error)
3380 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381
3382 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383 if (error)
3384 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385
3386 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387 2 * sizeof(u16));
3388 if (error)
3389 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390
3391 pci_allocate_vc_save_buffers(dev);
3392}
3393
3394void pci_free_cap_save_buffers(struct pci_dev *dev)
3395{
3396 struct pci_cap_saved_state *tmp;
3397 struct hlist_node *n;
3398
3399 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400 kfree(tmp);
3401}
3402
3403/**
3404 * pci_configure_ari - enable or disable ARI forwarding
3405 * @dev: the PCI device
3406 *
3407 * If @dev and its upstream bridge both support ARI, enable ARI in the
3408 * bridge. Otherwise, disable ARI in the bridge.
3409 */
3410void pci_configure_ari(struct pci_dev *dev)
3411{
3412 u32 cap;
3413 struct pci_dev *bridge;
3414
3415 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416 return;
3417
3418 bridge = dev->bus->self;
3419 if (!bridge)
3420 return;
3421
3422 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424 return;
3425
3426 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428 PCI_EXP_DEVCTL2_ARI);
3429 bridge->ari_enabled = 1;
3430 } else {
3431 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432 PCI_EXP_DEVCTL2_ARI);
3433 bridge->ari_enabled = 0;
3434 }
3435}
3436
3437static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439 int pos;
3440 u16 cap, ctrl;
3441
3442 pos = pdev->acs_cap;
3443 if (!pos)
3444 return false;
3445
3446 /*
3447 * Except for egress control, capabilities are either required
3448 * or only required if controllable. Features missing from the
3449 * capability field can therefore be assumed as hard-wired enabled.
3450 */
3451 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452 acs_flags &= (cap | PCI_ACS_EC);
3453
3454 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455 return (ctrl & acs_flags) == acs_flags;
3456}
3457
3458/**
3459 * pci_acs_enabled - test ACS against required flags for a given device
3460 * @pdev: device to test
3461 * @acs_flags: required PCI ACS flags
3462 *
3463 * Return true if the device supports the provided flags. Automatically
3464 * filters out flags that are not implemented on multifunction devices.
3465 *
3466 * Note that this interface checks the effective ACS capabilities of the
3467 * device rather than the actual capabilities. For instance, most single
3468 * function endpoints are not required to support ACS because they have no
3469 * opportunity for peer-to-peer access. We therefore return 'true'
3470 * regardless of whether the device exposes an ACS capability. This makes
3471 * it much easier for callers of this function to ignore the actual type
3472 * or topology of the device when testing ACS support.
3473 */
3474bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475{
3476 int ret;
3477
3478 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479 if (ret >= 0)
3480 return ret > 0;
3481
3482 /*
3483 * Conventional PCI and PCI-X devices never support ACS, either
3484 * effectively or actually. The shared bus topology implies that
3485 * any device on the bus can receive or snoop DMA.
3486 */
3487 if (!pci_is_pcie(pdev))
3488 return false;
3489
3490 switch (pci_pcie_type(pdev)) {
3491 /*
3492 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493 * but since their primary interface is PCI/X, we conservatively
3494 * handle them as we would a non-PCIe device.
3495 */
3496 case PCI_EXP_TYPE_PCIE_BRIDGE:
3497 /*
3498 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3499 * applicable... must never implement an ACS Extended Capability...".
3500 * This seems arbitrary, but we take a conservative interpretation
3501 * of this statement.
3502 */
3503 case PCI_EXP_TYPE_PCI_BRIDGE:
3504 case PCI_EXP_TYPE_RC_EC:
3505 return false;
3506 /*
3507 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508 * implement ACS in order to indicate their peer-to-peer capabilities,
3509 * regardless of whether they are single- or multi-function devices.
3510 */
3511 case PCI_EXP_TYPE_DOWNSTREAM:
3512 case PCI_EXP_TYPE_ROOT_PORT:
3513 return pci_acs_flags_enabled(pdev, acs_flags);
3514 /*
3515 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516 * implemented by the remaining PCIe types to indicate peer-to-peer
3517 * capabilities, but only when they are part of a multifunction
3518 * device. The footnote for section 6.12 indicates the specific
3519 * PCIe types included here.
3520 */
3521 case PCI_EXP_TYPE_ENDPOINT:
3522 case PCI_EXP_TYPE_UPSTREAM:
3523 case PCI_EXP_TYPE_LEG_END:
3524 case PCI_EXP_TYPE_RC_END:
3525 if (!pdev->multifunction)
3526 break;
3527
3528 return pci_acs_flags_enabled(pdev, acs_flags);
3529 }
3530
3531 /*
3532 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533 * to single function devices with the exception of downstream ports.
3534 */
3535 return true;
3536}
3537
3538/**
3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540 * @start: starting downstream device
3541 * @end: ending upstream device or NULL to search to the root bus
3542 * @acs_flags: required flags
3543 *
3544 * Walk up a device tree from start to end testing PCI ACS support. If
3545 * any step along the way does not support the required flags, return false.
3546 */
3547bool pci_acs_path_enabled(struct pci_dev *start,
3548 struct pci_dev *end, u16 acs_flags)
3549{
3550 struct pci_dev *pdev, *parent = start;
3551
3552 do {
3553 pdev = parent;
3554
3555 if (!pci_acs_enabled(pdev, acs_flags))
3556 return false;
3557
3558 if (pci_is_root_bus(pdev->bus))
3559 return (end == NULL);
3560
3561 parent = pdev->bus->self;
3562 } while (pdev != end);
3563
3564 return true;
3565}
3566
3567/**
3568 * pci_acs_init - Initialize ACS if hardware supports it
3569 * @dev: the PCI device
3570 */
3571void pci_acs_init(struct pci_dev *dev)
3572{
3573 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574
3575 /*
3576 * Attempt to enable ACS regardless of capability because some Root
3577 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578 * the standard ACS capability but still support ACS via those
3579 * quirks.
3580 */
3581 pci_enable_acs(dev);
3582}
3583
3584/**
3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586 * @pdev: PCI device
3587 * @bar: BAR to find
3588 *
3589 * Helper to find the position of the ctrl register for a BAR.
3590 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 */
3593static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594{
3595 unsigned int pos, nbars, i;
3596 u32 ctrl;
3597
3598 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599 if (!pos)
3600 return -ENOTSUPP;
3601
3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604 PCI_REBAR_CTRL_NBAR_SHIFT;
3605
3606 for (i = 0; i < nbars; i++, pos += 8) {
3607 int bar_idx;
3608
3609 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611 if (bar_idx == bar)
3612 return pos;
3613 }
3614
3615 return -ENOENT;
3616}
3617
3618/**
3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @pdev: PCI device
3621 * @bar: BAR to query
3622 *
3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 */
3626u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627{
3628 int pos;
3629 u32 cap;
3630
3631 pos = pci_rebar_find_pos(pdev, bar);
3632 if (pos < 0)
3633 return 0;
3634
3635 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636 cap &= PCI_REBAR_CAP_SIZES;
3637
3638 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640 bar == 0 && cap == 0x7000)
3641 cap = 0x3f000;
3642
3643 return cap >> 4;
3644}
3645EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646
3647/**
3648 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @pdev: PCI device
3650 * @bar: BAR to set size to
3651 *
3652 * Read the size of a BAR from the resizable BAR config.
3653 * Returns size if found or negative error code.
3654 */
3655int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656{
3657 int pos;
3658 u32 ctrl;
3659
3660 pos = pci_rebar_find_pos(pdev, bar);
3661 if (pos < 0)
3662 return pos;
3663
3664 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666}
3667
3668/**
3669 * pci_rebar_set_size - set a new size for a BAR
3670 * @pdev: PCI device
3671 * @bar: BAR to set size to
3672 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 *
3674 * Set the new size of a BAR as defined in the spec.
3675 * Returns zero if resizing was successful, error code otherwise.
3676 */
3677int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678{
3679 int pos;
3680 u32 ctrl;
3681
3682 pos = pci_rebar_find_pos(pdev, bar);
3683 if (pos < 0)
3684 return pos;
3685
3686 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690 return 0;
3691}
3692
3693/**
3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695 * @dev: the PCI device
3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 *
3701 * Return 0 if all upstream bridges support AtomicOp routing, egress
3702 * blocking is disabled on all upstream ports, and the root port supports
3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704 * AtomicOp completion), or negative otherwise.
3705 */
3706int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707{
3708 struct pci_bus *bus = dev->bus;
3709 struct pci_dev *bridge;
3710 u32 cap, ctl2;
3711
3712 if (!pci_is_pcie(dev))
3713 return -EINVAL;
3714
3715 /*
3716 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717 * AtomicOp requesters. For now, we only support endpoints as
3718 * requesters and root ports as completers. No endpoints as
3719 * completers, and no peer-to-peer.
3720 */
3721
3722 switch (pci_pcie_type(dev)) {
3723 case PCI_EXP_TYPE_ENDPOINT:
3724 case PCI_EXP_TYPE_LEG_END:
3725 case PCI_EXP_TYPE_RC_END:
3726 break;
3727 default:
3728 return -EINVAL;
3729 }
3730
3731 while (bus->parent) {
3732 bridge = bus->self;
3733
3734 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735
3736 switch (pci_pcie_type(bridge)) {
3737 /* Ensure switch ports support AtomicOp routing */
3738 case PCI_EXP_TYPE_UPSTREAM:
3739 case PCI_EXP_TYPE_DOWNSTREAM:
3740 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741 return -EINVAL;
3742 break;
3743
3744 /* Ensure root port supports all the sizes we care about */
3745 case PCI_EXP_TYPE_ROOT_PORT:
3746 if ((cap & cap_mask) != cap_mask)
3747 return -EINVAL;
3748 break;
3749 }
3750
3751 /* Ensure upstream ports don't block AtomicOps on egress */
3752 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754 &ctl2);
3755 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756 return -EINVAL;
3757 }
3758
3759 bus = bus->parent;
3760 }
3761
3762 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764 return 0;
3765}
3766EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767
3768/**
3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770 * @dev: the PCI device
3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 *
3773 * Perform INTx swizzling for a device behind one level of bridge. This is
3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777 * the PCI Express Base Specification, Revision 2.1)
3778 */
3779u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780{
3781 int slot;
3782
3783 if (pci_ari_enabled(dev->bus))
3784 slot = 0;
3785 else
3786 slot = PCI_SLOT(dev->devfn);
3787
3788 return (((pin - 1) + slot) % 4) + 1;
3789}
3790
3791int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792{
3793 u8 pin;
3794
3795 pin = dev->pin;
3796 if (!pin)
3797 return -1;
3798
3799 while (!pci_is_root_bus(dev->bus)) {
3800 pin = pci_swizzle_interrupt_pin(dev, pin);
3801 dev = dev->bus->self;
3802 }
3803 *bridge = dev;
3804 return pin;
3805}
3806
3807/**
3808 * pci_common_swizzle - swizzle INTx all the way to root bridge
3809 * @dev: the PCI device
3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 *
3812 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3813 * bridges all the way up to a PCI root bus.
3814 */
3815u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816{
3817 u8 pin = *pinp;
3818
3819 while (!pci_is_root_bus(dev->bus)) {
3820 pin = pci_swizzle_interrupt_pin(dev, pin);
3821 dev = dev->bus->self;
3822 }
3823 *pinp = pin;
3824 return PCI_SLOT(dev->devfn);
3825}
3826EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827
3828/**
3829 * pci_release_region - Release a PCI bar
3830 * @pdev: PCI device whose resources were previously reserved by
3831 * pci_request_region()
3832 * @bar: BAR to release
3833 *
3834 * Releases the PCI I/O and memory resources previously reserved by a
3835 * successful call to pci_request_region(). Call this function only
3836 * after all use of the PCI regions has ceased.
3837 */
3838void pci_release_region(struct pci_dev *pdev, int bar)
3839{
3840 struct pci_devres *dr;
3841
3842 if (pci_resource_len(pdev, bar) == 0)
3843 return;
3844 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845 release_region(pci_resource_start(pdev, bar),
3846 pci_resource_len(pdev, bar));
3847 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848 release_mem_region(pci_resource_start(pdev, bar),
3849 pci_resource_len(pdev, bar));
3850
3851 dr = find_pci_dr(pdev);
3852 if (dr)
3853 dr->region_mask &= ~(1 << bar);
3854}
3855EXPORT_SYMBOL(pci_release_region);
3856
3857/**
3858 * __pci_request_region - Reserved PCI I/O and memory resource
3859 * @pdev: PCI device whose resources are to be reserved
3860 * @bar: BAR to be reserved
3861 * @res_name: Name to be associated with resource.
3862 * @exclusive: whether the region access is exclusive or not
3863 *
3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865 * being reserved by owner @res_name. Do not access any
3866 * address inside the PCI regions unless this call returns
3867 * successfully.
3868 *
3869 * If @exclusive is set, then the region is marked so that userspace
3870 * is explicitly not allowed to map the resource via /dev/mem or
3871 * sysfs MMIO access.
3872 *
3873 * Returns 0 on success, or %EBUSY on error. A warning
3874 * message is also printed on failure.
3875 */
3876static int __pci_request_region(struct pci_dev *pdev, int bar,
3877 const char *res_name, int exclusive)
3878{
3879 struct pci_devres *dr;
3880
3881 if (pci_resource_len(pdev, bar) == 0)
3882 return 0;
3883
3884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885 if (!request_region(pci_resource_start(pdev, bar),
3886 pci_resource_len(pdev, bar), res_name))
3887 goto err_out;
3888 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889 if (!__request_mem_region(pci_resource_start(pdev, bar),
3890 pci_resource_len(pdev, bar), res_name,
3891 exclusive))
3892 goto err_out;
3893 }
3894
3895 dr = find_pci_dr(pdev);
3896 if (dr)
3897 dr->region_mask |= 1 << bar;
3898
3899 return 0;
3900
3901err_out:
3902 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903 &pdev->resource[bar]);
3904 return -EBUSY;
3905}
3906
3907/**
3908 * pci_request_region - Reserve PCI I/O and memory resource
3909 * @pdev: PCI device whose resources are to be reserved
3910 * @bar: BAR to be reserved
3911 * @res_name: Name to be associated with resource
3912 *
3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914 * being reserved by owner @res_name. Do not access any
3915 * address inside the PCI regions unless this call returns
3916 * successfully.
3917 *
3918 * Returns 0 on success, or %EBUSY on error. A warning
3919 * message is also printed on failure.
3920 */
3921int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922{
3923 return __pci_request_region(pdev, bar, res_name, 0);
3924}
3925EXPORT_SYMBOL(pci_request_region);
3926
3927/**
3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources were previously reserved
3930 * @bars: Bitmask of BARs to be released
3931 *
3932 * Release selected PCI I/O and memory resources previously reserved.
3933 * Call this function only after all use of the PCI regions has ceased.
3934 */
3935void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936{
3937 int i;
3938
3939 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940 if (bars & (1 << i))
3941 pci_release_region(pdev, i);
3942}
3943EXPORT_SYMBOL(pci_release_selected_regions);
3944
3945static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946 const char *res_name, int excl)
3947{
3948 int i;
3949
3950 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951 if (bars & (1 << i))
3952 if (__pci_request_region(pdev, i, res_name, excl))
3953 goto err_out;
3954 return 0;
3955
3956err_out:
3957 while (--i >= 0)
3958 if (bars & (1 << i))
3959 pci_release_region(pdev, i);
3960
3961 return -EBUSY;
3962}
3963
3964
3965/**
3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @bars: Bitmask of BARs to be requested
3969 * @res_name: Name to be associated with resource
3970 */
3971int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972 const char *res_name)
3973{
3974 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975}
3976EXPORT_SYMBOL(pci_request_selected_regions);
3977
3978int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979 const char *res_name)
3980{
3981 return __pci_request_selected_regions(pdev, bars, res_name,
3982 IORESOURCE_EXCLUSIVE);
3983}
3984EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985
3986/**
3987 * pci_release_regions - Release reserved PCI I/O and memory resources
3988 * @pdev: PCI device whose resources were previously reserved by
3989 * pci_request_regions()
3990 *
3991 * Releases all PCI I/O and memory resources previously reserved by a
3992 * successful call to pci_request_regions(). Call this function only
3993 * after all use of the PCI regions has ceased.
3994 */
3995
3996void pci_release_regions(struct pci_dev *pdev)
3997{
3998 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999}
4000EXPORT_SYMBOL(pci_release_regions);
4001
4002/**
4003 * pci_request_regions - Reserve PCI I/O and memory resources
4004 * @pdev: PCI device whose resources are to be reserved
4005 * @res_name: Name to be associated with resource.
4006 *
4007 * Mark all PCI regions associated with PCI device @pdev as
4008 * being reserved by owner @res_name. Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * Returns 0 on success, or %EBUSY on error. A warning
4013 * message is also printed on failure.
4014 */
4015int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016{
4017 return pci_request_selected_regions(pdev,
4018 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019}
4020EXPORT_SYMBOL(pci_request_regions);
4021
4022/**
4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024 * @pdev: PCI device whose resources are to be reserved
4025 * @res_name: Name to be associated with resource.
4026 *
4027 * Mark all PCI regions associated with PCI device @pdev as being reserved
4028 * by owner @res_name. Do not access any address inside the PCI regions
4029 * unless this call returns successfully.
4030 *
4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032 * and the sysfs MMIO access will not be allowed.
4033 *
4034 * Returns 0 on success, or %EBUSY on error. A warning message is also
4035 * printed on failure.
4036 */
4037int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038{
4039 return pci_request_selected_regions_exclusive(pdev,
4040 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041}
4042EXPORT_SYMBOL(pci_request_regions_exclusive);
4043
4044/*
4045 * Record the PCI IO range (expressed as CPU physical address + size).
4046 * Return a negative value if an error has occurred, zero otherwise
4047 */
4048int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049 resource_size_t size)
4050{
4051 int ret = 0;
4052#ifdef PCI_IOBASE
4053 struct logic_pio_hwaddr *range;
4054
4055 if (!size || addr + size < addr)
4056 return -EINVAL;
4057
4058 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059 if (!range)
4060 return -ENOMEM;
4061
4062 range->fwnode = fwnode;
4063 range->size = size;
4064 range->hw_start = addr;
4065 range->flags = LOGIC_PIO_CPU_MMIO;
4066
4067 ret = logic_pio_register_range(range);
4068 if (ret)
4069 kfree(range);
4070
4071 /* Ignore duplicates due to deferred probing */
4072 if (ret == -EEXIST)
4073 ret = 0;
4074#endif
4075
4076 return ret;
4077}
4078
4079phys_addr_t pci_pio_to_address(unsigned long pio)
4080{
4081 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082
4083#ifdef PCI_IOBASE
4084 if (pio >= MMIO_UPPER_LIMIT)
4085 return address;
4086
4087 address = logic_pio_to_hwaddr(pio);
4088#endif
4089
4090 return address;
4091}
4092EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093
4094unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095{
4096#ifdef PCI_IOBASE
4097 return logic_pio_trans_cpuaddr(address);
4098#else
4099 if (address > IO_SPACE_LIMIT)
4100 return (unsigned long)-1;
4101
4102 return (unsigned long) address;
4103#endif
4104}
4105
4106/**
4107 * pci_remap_iospace - Remap the memory mapped I/O space
4108 * @res: Resource describing the I/O space
4109 * @phys_addr: physical address of range to be mapped
4110 *
4111 * Remap the memory mapped I/O space described by the @res and the CPU
4112 * physical address @phys_addr into virtual address space. Only
4113 * architectures that have memory mapped IO functions defined (and the
4114 * PCI_IOBASE value defined) should call this function.
4115 */
4116int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117{
4118#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120
4121 if (!(res->flags & IORESOURCE_IO))
4122 return -EINVAL;
4123
4124 if (res->end > IO_SPACE_LIMIT)
4125 return -EINVAL;
4126
4127 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128 pgprot_device(PAGE_KERNEL));
4129#else
4130 /*
4131 * This architecture does not have memory mapped I/O space,
4132 * so this function should never be called
4133 */
4134 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135 return -ENODEV;
4136#endif
4137}
4138EXPORT_SYMBOL(pci_remap_iospace);
4139
4140/**
4141 * pci_unmap_iospace - Unmap the memory mapped I/O space
4142 * @res: resource to be unmapped
4143 *
4144 * Unmap the CPU virtual address @res from virtual address space. Only
4145 * architectures that have memory mapped IO functions defined (and the
4146 * PCI_IOBASE value defined) should call this function.
4147 */
4148void pci_unmap_iospace(struct resource *res)
4149{
4150#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152
4153 vunmap_range(vaddr, vaddr + resource_size(res));
4154#endif
4155}
4156EXPORT_SYMBOL(pci_unmap_iospace);
4157
4158static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159{
4160 struct resource **res = ptr;
4161
4162 pci_unmap_iospace(*res);
4163}
4164
4165/**
4166 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167 * @dev: Generic device to remap IO address for
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4172 * detach.
4173 */
4174int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175 phys_addr_t phys_addr)
4176{
4177 const struct resource **ptr;
4178 int error;
4179
4180 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181 if (!ptr)
4182 return -ENOMEM;
4183
4184 error = pci_remap_iospace(res, phys_addr);
4185 if (error) {
4186 devres_free(ptr);
4187 } else {
4188 *ptr = res;
4189 devres_add(dev, ptr);
4190 }
4191
4192 return error;
4193}
4194EXPORT_SYMBOL(devm_pci_remap_iospace);
4195
4196/**
4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198 * @dev: Generic device to remap IO address for
4199 * @offset: Resource address to map
4200 * @size: Size of map
4201 *
4202 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4203 * detach.
4204 */
4205void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206 resource_size_t offset,
4207 resource_size_t size)
4208{
4209 void __iomem **ptr, *addr;
4210
4211 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212 if (!ptr)
4213 return NULL;
4214
4215 addr = pci_remap_cfgspace(offset, size);
4216 if (addr) {
4217 *ptr = addr;
4218 devres_add(dev, ptr);
4219 } else
4220 devres_free(ptr);
4221
4222 return addr;
4223}
4224EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225
4226/**
4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228 * @dev: generic device to handle the resource for
4229 * @res: configuration space resource to be handled
4230 *
4231 * Checks that a resource is a valid memory region, requests the memory
4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233 * proper PCI configuration space memory attributes are guaranteed.
4234 *
4235 * All operations are managed and will be undone on driver detach.
4236 *
4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238 * on failure. Usage example::
4239 *
4240 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 * if (IS_ERR(base))
4243 * return PTR_ERR(base);
4244 */
4245void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246 struct resource *res)
4247{
4248 resource_size_t size;
4249 const char *name;
4250 void __iomem *dest_ptr;
4251
4252 BUG_ON(!dev);
4253
4254 if (!res || resource_type(res) != IORESOURCE_MEM) {
4255 dev_err(dev, "invalid resource\n");
4256 return IOMEM_ERR_PTR(-EINVAL);
4257 }
4258
4259 size = resource_size(res);
4260
4261 if (res->name)
4262 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263 res->name);
4264 else
4265 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266 if (!name)
4267 return IOMEM_ERR_PTR(-ENOMEM);
4268
4269 if (!devm_request_mem_region(dev, res->start, size, name)) {
4270 dev_err(dev, "can't request region for resource %pR\n", res);
4271 return IOMEM_ERR_PTR(-EBUSY);
4272 }
4273
4274 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275 if (!dest_ptr) {
4276 dev_err(dev, "ioremap failed for resource %pR\n", res);
4277 devm_release_mem_region(dev, res->start, size);
4278 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279 }
4280
4281 return dest_ptr;
4282}
4283EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284
4285static void __pci_set_master(struct pci_dev *dev, bool enable)
4286{
4287 u16 old_cmd, cmd;
4288
4289 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290 if (enable)
4291 cmd = old_cmd | PCI_COMMAND_MASTER;
4292 else
4293 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294 if (cmd != old_cmd) {
4295 pci_dbg(dev, "%s bus mastering\n",
4296 enable ? "enabling" : "disabling");
4297 pci_write_config_word(dev, PCI_COMMAND, cmd);
4298 }
4299 dev->is_busmaster = enable;
4300}
4301
4302/**
4303 * pcibios_setup - process "pci=" kernel boot arguments
4304 * @str: string used to pass in "pci=" kernel boot arguments
4305 *
4306 * Process kernel boot arguments. This is the default implementation.
4307 * Architecture specific implementations can override this as necessary.
4308 */
4309char * __weak __init pcibios_setup(char *str)
4310{
4311 return str;
4312}
4313
4314/**
4315 * pcibios_set_master - enable PCI bus-mastering for device dev
4316 * @dev: the PCI device to enable
4317 *
4318 * Enables PCI bus-mastering for the device. This is the default
4319 * implementation. Architecture specific implementations can override
4320 * this if necessary.
4321 */
4322void __weak pcibios_set_master(struct pci_dev *dev)
4323{
4324 u8 lat;
4325
4326 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327 if (pci_is_pcie(dev))
4328 return;
4329
4330 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331 if (lat < 16)
4332 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333 else if (lat > pcibios_max_latency)
4334 lat = pcibios_max_latency;
4335 else
4336 return;
4337
4338 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339}
4340
4341/**
4342 * pci_set_master - enables bus-mastering for device dev
4343 * @dev: the PCI device to enable
4344 *
4345 * Enables bus-mastering on the device and calls pcibios_set_master()
4346 * to do the needed arch specific settings.
4347 */
4348void pci_set_master(struct pci_dev *dev)
4349{
4350 __pci_set_master(dev, true);
4351 pcibios_set_master(dev);
4352}
4353EXPORT_SYMBOL(pci_set_master);
4354
4355/**
4356 * pci_clear_master - disables bus-mastering for device dev
4357 * @dev: the PCI device to disable
4358 */
4359void pci_clear_master(struct pci_dev *dev)
4360{
4361 __pci_set_master(dev, false);
4362}
4363EXPORT_SYMBOL(pci_clear_master);
4364
4365/**
4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367 * @dev: the PCI device for which MWI is to be enabled
4368 *
4369 * Helper function for pci_set_mwi.
4370 * Originally copied from drivers/net/acenic.c.
4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 *
4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 */
4375int pci_set_cacheline_size(struct pci_dev *dev)
4376{
4377 u8 cacheline_size;
4378
4379 if (!pci_cache_line_size)
4380 return -EINVAL;
4381
4382 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383 equal to or multiple of the right value. */
4384 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385 if (cacheline_size >= pci_cache_line_size &&
4386 (cacheline_size % pci_cache_line_size) == 0)
4387 return 0;
4388
4389 /* Write the correct value. */
4390 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391 /* Read it back. */
4392 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393 if (cacheline_size == pci_cache_line_size)
4394 return 0;
4395
4396 pci_dbg(dev, "cache line size of %d is not supported\n",
4397 pci_cache_line_size << 2);
4398
4399 return -EINVAL;
4400}
4401EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402
4403/**
4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405 * @dev: the PCI device for which MWI is enabled
4406 *
4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 *
4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 */
4411int pci_set_mwi(struct pci_dev *dev)
4412{
4413#ifdef PCI_DISABLE_MWI
4414 return 0;
4415#else
4416 int rc;
4417 u16 cmd;
4418
4419 rc = pci_set_cacheline_size(dev);
4420 if (rc)
4421 return rc;
4422
4423 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426 cmd |= PCI_COMMAND_INVALIDATE;
4427 pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 }
4429 return 0;
4430#endif
4431}
4432EXPORT_SYMBOL(pci_set_mwi);
4433
4434/**
4435 * pcim_set_mwi - a device-managed pci_set_mwi()
4436 * @dev: the PCI device for which MWI is enabled
4437 *
4438 * Managed pci_set_mwi().
4439 *
4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 */
4442int pcim_set_mwi(struct pci_dev *dev)
4443{
4444 struct pci_devres *dr;
4445
4446 dr = find_pci_dr(dev);
4447 if (!dr)
4448 return -ENOMEM;
4449
4450 dr->mwi = 1;
4451 return pci_set_mwi(dev);
4452}
4453EXPORT_SYMBOL(pcim_set_mwi);
4454
4455/**
4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457 * @dev: the PCI device for which MWI is enabled
4458 *
4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460 * Callers are not required to check the return value.
4461 *
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 */
4464int pci_try_set_mwi(struct pci_dev *dev)
4465{
4466#ifdef PCI_DISABLE_MWI
4467 return 0;
4468#else
4469 return pci_set_mwi(dev);
4470#endif
4471}
4472EXPORT_SYMBOL(pci_try_set_mwi);
4473
4474/**
4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476 * @dev: the PCI device to disable
4477 *
4478 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 */
4480void pci_clear_mwi(struct pci_dev *dev)
4481{
4482#ifndef PCI_DISABLE_MWI
4483 u16 cmd;
4484
4485 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 if (cmd & PCI_COMMAND_INVALIDATE) {
4487 cmd &= ~PCI_COMMAND_INVALIDATE;
4488 pci_write_config_word(dev, PCI_COMMAND, cmd);
4489 }
4490#endif
4491}
4492EXPORT_SYMBOL(pci_clear_mwi);
4493
4494/**
4495 * pci_disable_parity - disable parity checking for device
4496 * @dev: the PCI device to operate on
4497 *
4498 * Disable parity checking for device @dev
4499 */
4500void pci_disable_parity(struct pci_dev *dev)
4501{
4502 u16 cmd;
4503
4504 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505 if (cmd & PCI_COMMAND_PARITY) {
4506 cmd &= ~PCI_COMMAND_PARITY;
4507 pci_write_config_word(dev, PCI_COMMAND, cmd);
4508 }
4509}
4510
4511/**
4512 * pci_intx - enables/disables PCI INTx for device dev
4513 * @pdev: the PCI device to operate on
4514 * @enable: boolean: whether to enable or disable PCI INTx
4515 *
4516 * Enables/disables PCI INTx for device @pdev
4517 */
4518void pci_intx(struct pci_dev *pdev, int enable)
4519{
4520 u16 pci_command, new;
4521
4522 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523
4524 if (enable)
4525 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526 else
4527 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528
4529 if (new != pci_command) {
4530 struct pci_devres *dr;
4531
4532 pci_write_config_word(pdev, PCI_COMMAND, new);
4533
4534 dr = find_pci_dr(pdev);
4535 if (dr && !dr->restore_intx) {
4536 dr->restore_intx = 1;
4537 dr->orig_intx = !enable;
4538 }
4539 }
4540}
4541EXPORT_SYMBOL_GPL(pci_intx);
4542
4543static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544{
4545 struct pci_bus *bus = dev->bus;
4546 bool mask_updated = true;
4547 u32 cmd_status_dword;
4548 u16 origcmd, newcmd;
4549 unsigned long flags;
4550 bool irq_pending;
4551
4552 /*
4553 * We do a single dword read to retrieve both command and status.
4554 * Document assumptions that make this possible.
4555 */
4556 BUILD_BUG_ON(PCI_COMMAND % 4);
4557 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558
4559 raw_spin_lock_irqsave(&pci_lock, flags);
4560
4561 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562
4563 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564
4565 /*
4566 * Check interrupt status register to see whether our device
4567 * triggered the interrupt (when masking) or the next IRQ is
4568 * already pending (when unmasking).
4569 */
4570 if (mask != irq_pending) {
4571 mask_updated = false;
4572 goto done;
4573 }
4574
4575 origcmd = cmd_status_dword;
4576 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577 if (mask)
4578 newcmd |= PCI_COMMAND_INTX_DISABLE;
4579 if (newcmd != origcmd)
4580 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581
4582done:
4583 raw_spin_unlock_irqrestore(&pci_lock, flags);
4584
4585 return mask_updated;
4586}
4587
4588/**
4589 * pci_check_and_mask_intx - mask INTx on pending interrupt
4590 * @dev: the PCI device to operate on
4591 *
4592 * Check if the device dev has its INTx line asserted, mask it and return
4593 * true in that case. False is returned if no interrupt was pending.
4594 */
4595bool pci_check_and_mask_intx(struct pci_dev *dev)
4596{
4597 return pci_check_and_set_intx_mask(dev, true);
4598}
4599EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600
4601/**
4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603 * @dev: the PCI device to operate on
4604 *
4605 * Check if the device dev has its INTx line asserted, unmask it if not and
4606 * return true. False is returned and the mask remains active if there was
4607 * still an interrupt pending.
4608 */
4609bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610{
4611 return pci_check_and_set_intx_mask(dev, false);
4612}
4613EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614
4615/**
4616 * pci_wait_for_pending_transaction - wait for pending transaction
4617 * @dev: the PCI device to operate on
4618 *
4619 * Return 0 if transaction is pending 1 otherwise.
4620 */
4621int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622{
4623 if (!pci_is_pcie(dev))
4624 return 1;
4625
4626 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627 PCI_EXP_DEVSTA_TRPND);
4628}
4629EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630
4631/**
4632 * pcie_has_flr - check if a device supports function level resets
4633 * @dev: device to check
4634 *
4635 * Returns true if the device advertises support for PCIe function level
4636 * resets.
4637 */
4638bool pcie_has_flr(struct pci_dev *dev)
4639{
4640 u32 cap;
4641
4642 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643 return false;
4644
4645 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646 return cap & PCI_EXP_DEVCAP_FLR;
4647}
4648EXPORT_SYMBOL_GPL(pcie_has_flr);
4649
4650/**
4651 * pcie_flr - initiate a PCIe function level reset
4652 * @dev: device to reset
4653 *
4654 * Initiate a function level reset on @dev. The caller should ensure the
4655 * device supports FLR before calling this function, e.g. by using the
4656 * pcie_has_flr() helper.
4657 */
4658int pcie_flr(struct pci_dev *dev)
4659{
4660 if (!pci_wait_for_pending_transaction(dev))
4661 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662
4663 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664
4665 if (dev->imm_ready)
4666 return 0;
4667
4668 /*
4669 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670 * 100ms, but may silently discard requests while the FLR is in
4671 * progress. Wait 100ms before trying to access the device.
4672 */
4673 msleep(100);
4674
4675 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676}
4677EXPORT_SYMBOL_GPL(pcie_flr);
4678
4679static int pci_af_flr(struct pci_dev *dev, int probe)
4680{
4681 int pos;
4682 u8 cap;
4683
4684 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685 if (!pos)
4686 return -ENOTTY;
4687
4688 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689 return -ENOTTY;
4690
4691 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693 return -ENOTTY;
4694
4695 if (probe)
4696 return 0;
4697
4698 /*
4699 * Wait for Transaction Pending bit to clear. A word-aligned test
4700 * is used, so we use the control offset rather than status and shift
4701 * the test bit to match.
4702 */
4703 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704 PCI_AF_STATUS_TP << 8))
4705 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706
4707 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708
4709 if (dev->imm_ready)
4710 return 0;
4711
4712 /*
4713 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714 * updated 27 July 2006; a device must complete an FLR within
4715 * 100ms, but may silently discard requests while the FLR is in
4716 * progress. Wait 100ms before trying to access the device.
4717 */
4718 msleep(100);
4719
4720 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721}
4722
4723/**
4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725 * @dev: Device to reset.
4726 * @probe: If set, only check if the device can be reset this way.
4727 *
4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729 * unset, it will be reinitialized internally when going from PCI_D3hot to
4730 * PCI_D0. If that's the case and the device is not in a low-power state
4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732 *
4733 * NOTE: This causes the caller to sleep for twice the device power transition
4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736 * Moreover, only devices in D0 can be reset by this function.
4737 */
4738static int pci_pm_reset(struct pci_dev *dev, int probe)
4739{
4740 u16 csr;
4741
4742 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743 return -ENOTTY;
4744
4745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747 return -ENOTTY;
4748
4749 if (probe)
4750 return 0;
4751
4752 if (dev->current_state != PCI_D0)
4753 return -EINVAL;
4754
4755 csr &= ~PCI_PM_CTRL_STATE_MASK;
4756 csr |= PCI_D3hot;
4757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758 pci_dev_d3_sleep(dev);
4759
4760 csr &= ~PCI_PM_CTRL_STATE_MASK;
4761 csr |= PCI_D0;
4762 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763 pci_dev_d3_sleep(dev);
4764
4765 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766}
4767
4768/**
4769 * pcie_wait_for_link_delay - Wait until link is active or inactive
4770 * @pdev: Bridge device
4771 * @active: waiting for active or inactive?
4772 * @delay: Delay to wait after link has become active (in ms)
4773 *
4774 * Use this to wait till link becomes active or inactive.
4775 */
4776static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777 int delay)
4778{
4779 int timeout = 1000;
4780 bool ret;
4781 u16 lnk_status;
4782
4783 /*
4784 * Some controllers might not implement link active reporting. In this
4785 * case, we wait for 1000 ms + any delay requested by the caller.
4786 */
4787 if (!pdev->link_active_reporting) {
4788 msleep(timeout + delay);
4789 return true;
4790 }
4791
4792 /*
4793 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794 * after which we should expect an link active if the reset was
4795 * successful. If so, software must wait a minimum 100ms before sending
4796 * configuration requests to devices downstream this port.
4797 *
4798 * If the link fails to activate, either the device was physically
4799 * removed or the link is permanently failed.
4800 */
4801 if (active)
4802 msleep(20);
4803 for (;;) {
4804 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806 if (ret == active)
4807 break;
4808 if (timeout <= 0)
4809 break;
4810 msleep(10);
4811 timeout -= 10;
4812 }
4813 if (active && ret)
4814 msleep(delay);
4815
4816 return ret == active;
4817}
4818
4819/**
4820 * pcie_wait_for_link - Wait until link is active or inactive
4821 * @pdev: Bridge device
4822 * @active: waiting for active or inactive?
4823 *
4824 * Use this to wait till link becomes active or inactive.
4825 */
4826bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827{
4828 return pcie_wait_for_link_delay(pdev, active, 100);
4829}
4830
4831/*
4832 * Find maximum D3cold delay required by all the devices on the bus. The
4833 * spec says 100 ms, but firmware can lower it and we allow drivers to
4834 * increase it as well.
4835 *
4836 * Called with @pci_bus_sem locked for reading.
4837 */
4838static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839{
4840 const struct pci_dev *pdev;
4841 int min_delay = 100;
4842 int max_delay = 0;
4843
4844 list_for_each_entry(pdev, &bus->devices, bus_list) {
4845 if (pdev->d3cold_delay < min_delay)
4846 min_delay = pdev->d3cold_delay;
4847 if (pdev->d3cold_delay > max_delay)
4848 max_delay = pdev->d3cold_delay;
4849 }
4850
4851 return max(min_delay, max_delay);
4852}
4853
4854/**
4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856 * @dev: PCI bridge
4857 *
4858 * Handle necessary delays before access to the devices on the secondary
4859 * side of the bridge are permitted after D3cold to D0 transition.
4860 *
4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863 * 4.3.2.
4864 */
4865void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866{
4867 struct pci_dev *child;
4868 int delay;
4869
4870 if (pci_dev_is_disconnected(dev))
4871 return;
4872
4873 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874 return;
4875
4876 down_read(&pci_bus_sem);
4877
4878 /*
4879 * We only deal with devices that are present currently on the bus.
4880 * For any hot-added devices the access delay is handled in pciehp
4881 * board_added(). In case of ACPI hotplug the firmware is expected
4882 * to configure the devices before OS is notified.
4883 */
4884 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885 up_read(&pci_bus_sem);
4886 return;
4887 }
4888
4889 /* Take d3cold_delay requirements into account */
4890 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891 if (!delay) {
4892 up_read(&pci_bus_sem);
4893 return;
4894 }
4895
4896 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897 bus_list);
4898 up_read(&pci_bus_sem);
4899
4900 /*
4901 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903 * practice this should not be needed because we don't do power
4904 * management for them (see pci_bridge_d3_possible()).
4905 */
4906 if (!pci_is_pcie(dev)) {
4907 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908 msleep(1000 + delay);
4909 return;
4910 }
4911
4912 /*
4913 * For PCIe downstream and root ports that do not support speeds
4914 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915 * speeds (gen3) we need to wait first for the data link layer to
4916 * become active.
4917 *
4918 * However, 100 ms is the minimum and the PCIe spec says the
4919 * software must allow at least 1s before it can determine that the
4920 * device that did not respond is a broken device. There is
4921 * evidence that 100 ms is not always enough, for example certain
4922 * Titan Ridge xHCI controller does not always respond to
4923 * configuration requests if we only wait for 100 ms (see
4924 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925 *
4926 * Therefore we wait for 100 ms and check for the device presence.
4927 * If it is still not present give it an additional 100 ms.
4928 */
4929 if (!pcie_downstream_port(dev))
4930 return;
4931
4932 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934 msleep(delay);
4935 } else {
4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937 delay);
4938 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939 /* Did not train, no need to wait any further */
4940 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 return;
4942 }
4943 }
4944
4945 if (!pci_device_is_present(child)) {
4946 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947 msleep(delay);
4948 }
4949}
4950
4951void pci_reset_secondary_bus(struct pci_dev *dev)
4952{
4953 u16 ctrl;
4954
4955 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958
4959 /*
4960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4961 * this to 2ms to ensure that we meet the minimum requirement.
4962 */
4963 msleep(2);
4964
4965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967
4968 /*
4969 * Trhfa for conventional PCI is 2^25 clock cycles.
4970 * Assuming a minimum 33MHz clock this results in a 1s
4971 * delay before we can consider subordinate devices to
4972 * be re-initialized. PCIe has some ways to shorten this,
4973 * but we don't make use of them yet.
4974 */
4975 ssleep(1);
4976}
4977
4978void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979{
4980 pci_reset_secondary_bus(dev);
4981}
4982
4983/**
4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985 * @dev: Bridge device
4986 *
4987 * Use the bridge control register to assert reset on the secondary bus.
4988 * Devices on the secondary bus are left in power-on state.
4989 */
4990int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991{
4992 pcibios_reset_secondary_bus(dev);
4993
4994 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995}
4996EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997
4998static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999{
5000 struct pci_dev *pdev;
5001
5002 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004 return -ENOTTY;
5005
5006 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007 if (pdev != dev)
5008 return -ENOTTY;
5009
5010 if (probe)
5011 return 0;
5012
5013 return pci_bridge_secondary_bus_reset(dev->bus->self);
5014}
5015
5016static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017{
5018 int rc = -ENOTTY;
5019
5020 if (!hotplug || !try_module_get(hotplug->owner))
5021 return rc;
5022
5023 if (hotplug->ops->reset_slot)
5024 rc = hotplug->ops->reset_slot(hotplug, probe);
5025
5026 module_put(hotplug->owner);
5027
5028 return rc;
5029}
5030
5031static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032{
5033 if (dev->multifunction || dev->subordinate || !dev->slot ||
5034 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035 return -ENOTTY;
5036
5037 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038}
5039
5040static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041{
5042 int rc;
5043
5044 rc = pci_dev_reset_slot_function(dev, probe);
5045 if (rc != -ENOTTY)
5046 return rc;
5047 return pci_parent_bus_reset(dev, probe);
5048}
5049
5050static void pci_dev_lock(struct pci_dev *dev)
5051{
5052 pci_cfg_access_lock(dev);
5053 /* block PM suspend, driver probe, etc. */
5054 device_lock(&dev->dev);
5055}
5056
5057/* Return 1 on successful lock, 0 on contention */
5058int pci_dev_trylock(struct pci_dev *dev)
5059{
5060 if (pci_cfg_access_trylock(dev)) {
5061 if (device_trylock(&dev->dev))
5062 return 1;
5063 pci_cfg_access_unlock(dev);
5064 }
5065
5066 return 0;
5067}
5068EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069
5070void pci_dev_unlock(struct pci_dev *dev)
5071{
5072 device_unlock(&dev->dev);
5073 pci_cfg_access_unlock(dev);
5074}
5075EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076
5077static void pci_dev_save_and_disable(struct pci_dev *dev)
5078{
5079 const struct pci_error_handlers *err_handler =
5080 dev->driver ? dev->driver->err_handler : NULL;
5081
5082 /*
5083 * dev->driver->err_handler->reset_prepare() is protected against
5084 * races with ->remove() by the device lock, which must be held by
5085 * the caller.
5086 */
5087 if (err_handler && err_handler->reset_prepare)
5088 err_handler->reset_prepare(dev);
5089
5090 /*
5091 * Wake-up device prior to save. PM registers default to D0 after
5092 * reset and a simple register restore doesn't reliably return
5093 * to a non-D0 state anyway.
5094 */
5095 pci_set_power_state(dev, PCI_D0);
5096
5097 pci_save_state(dev);
5098 /*
5099 * Disable the device by clearing the Command register, except for
5100 * INTx-disable which is set. This not only disables MMIO and I/O port
5101 * BARs, but also prevents the device from being Bus Master, preventing
5102 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5103 * compliant devices, INTx-disable prevents legacy interrupts.
5104 */
5105 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106}
5107
5108static void pci_dev_restore(struct pci_dev *dev)
5109{
5110 const struct pci_error_handlers *err_handler =
5111 dev->driver ? dev->driver->err_handler : NULL;
5112
5113 pci_restore_state(dev);
5114
5115 /*
5116 * dev->driver->err_handler->reset_done() is protected against
5117 * races with ->remove() by the device lock, which must be held by
5118 * the caller.
5119 */
5120 if (err_handler && err_handler->reset_done)
5121 err_handler->reset_done(dev);
5122}
5123
5124/**
5125 * __pci_reset_function_locked - reset a PCI device function while holding
5126 * the @dev mutex lock.
5127 * @dev: PCI device to reset
5128 *
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device. The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5132 *
5133 * The device function is presumed to be unused and the caller is holding
5134 * the device mutex lock when this function is called.
5135 *
5136 * Resetting the device will make the contents of PCI configuration space
5137 * random, so any caller of this must be prepared to reinitialise the
5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139 * etc.
5140 *
5141 * Returns 0 if the device function was successfully reset or negative if the
5142 * device doesn't support resetting a single function.
5143 */
5144int __pci_reset_function_locked(struct pci_dev *dev)
5145{
5146 int rc;
5147
5148 might_sleep();
5149
5150 /*
5151 * A reset method returns -ENOTTY if it doesn't support this device
5152 * and we should try the next method.
5153 *
5154 * If it returns 0 (success), we're finished. If it returns any
5155 * other error, we're also finished: this indicates that further
5156 * reset mechanisms might be broken on the device.
5157 */
5158 rc = pci_dev_specific_reset(dev, 0);
5159 if (rc != -ENOTTY)
5160 return rc;
5161 if (pcie_has_flr(dev)) {
5162 rc = pcie_flr(dev);
5163 if (rc != -ENOTTY)
5164 return rc;
5165 }
5166 rc = pci_af_flr(dev, 0);
5167 if (rc != -ENOTTY)
5168 return rc;
5169 rc = pci_pm_reset(dev, 0);
5170 if (rc != -ENOTTY)
5171 return rc;
5172 return pci_reset_bus_function(dev, 0);
5173}
5174EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175
5176/**
5177 * pci_probe_reset_function - check whether the device can be safely reset
5178 * @dev: PCI device to reset
5179 *
5180 * Some devices allow an individual function to be reset without affecting
5181 * other functions in the same device. The PCI device must be responsive
5182 * to PCI config space in order to use this function.
5183 *
5184 * Returns 0 if the device function can be reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_probe_reset_function(struct pci_dev *dev)
5188{
5189 int rc;
5190
5191 might_sleep();
5192
5193 rc = pci_dev_specific_reset(dev, 1);
5194 if (rc != -ENOTTY)
5195 return rc;
5196 if (pcie_has_flr(dev))
5197 return 0;
5198 rc = pci_af_flr(dev, 1);
5199 if (rc != -ENOTTY)
5200 return rc;
5201 rc = pci_pm_reset(dev, 1);
5202 if (rc != -ENOTTY)
5203 return rc;
5204
5205 return pci_reset_bus_function(dev, 1);
5206}
5207
5208/**
5209 * pci_reset_function - quiesce and reset a PCI device function
5210 * @dev: PCI device to reset
5211 *
5212 * Some devices allow an individual function to be reset without affecting
5213 * other functions in the same device. The PCI device must be responsive
5214 * to PCI config space in order to use this function.
5215 *
5216 * This function does not just reset the PCI portion of a device, but
5217 * clears all the state associated with the device. This function differs
5218 * from __pci_reset_function_locked() in that it saves and restores device state
5219 * over the reset and takes the PCI device lock.
5220 *
5221 * Returns 0 if the device function was successfully reset or negative if the
5222 * device doesn't support resetting a single function.
5223 */
5224int pci_reset_function(struct pci_dev *dev)
5225{
5226 int rc;
5227
5228 if (!dev->reset_fn)
5229 return -ENOTTY;
5230
5231 pci_dev_lock(dev);
5232 pci_dev_save_and_disable(dev);
5233
5234 rc = __pci_reset_function_locked(dev);
5235
5236 pci_dev_restore(dev);
5237 pci_dev_unlock(dev);
5238
5239 return rc;
5240}
5241EXPORT_SYMBOL_GPL(pci_reset_function);
5242
5243/**
5244 * pci_reset_function_locked - quiesce and reset a PCI device function
5245 * @dev: PCI device to reset
5246 *
5247 * Some devices allow an individual function to be reset without affecting
5248 * other functions in the same device. The PCI device must be responsive
5249 * to PCI config space in order to use this function.
5250 *
5251 * This function does not just reset the PCI portion of a device, but
5252 * clears all the state associated with the device. This function differs
5253 * from __pci_reset_function_locked() in that it saves and restores device state
5254 * over the reset. It also differs from pci_reset_function() in that it
5255 * requires the PCI device lock to be held.
5256 *
5257 * Returns 0 if the device function was successfully reset or negative if the
5258 * device doesn't support resetting a single function.
5259 */
5260int pci_reset_function_locked(struct pci_dev *dev)
5261{
5262 int rc;
5263
5264 if (!dev->reset_fn)
5265 return -ENOTTY;
5266
5267 pci_dev_save_and_disable(dev);
5268
5269 rc = __pci_reset_function_locked(dev);
5270
5271 pci_dev_restore(dev);
5272
5273 return rc;
5274}
5275EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276
5277/**
5278 * pci_try_reset_function - quiesce and reset a PCI device function
5279 * @dev: PCI device to reset
5280 *
5281 * Same as above, except return -EAGAIN if unable to lock device.
5282 */
5283int pci_try_reset_function(struct pci_dev *dev)
5284{
5285 int rc;
5286
5287 if (!dev->reset_fn)
5288 return -ENOTTY;
5289
5290 if (!pci_dev_trylock(dev))
5291 return -EAGAIN;
5292
5293 pci_dev_save_and_disable(dev);
5294 rc = __pci_reset_function_locked(dev);
5295 pci_dev_restore(dev);
5296 pci_dev_unlock(dev);
5297
5298 return rc;
5299}
5300EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301
5302/* Do any devices on or below this bus prevent a bus reset? */
5303static bool pci_bus_resetable(struct pci_bus *bus)
5304{
5305 struct pci_dev *dev;
5306
5307
5308 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309 return false;
5310
5311 list_for_each_entry(dev, &bus->devices, bus_list) {
5312 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314 return false;
5315 }
5316
5317 return true;
5318}
5319
5320/* Lock devices from the top of the tree down */
5321static void pci_bus_lock(struct pci_bus *bus)
5322{
5323 struct pci_dev *dev;
5324
5325 list_for_each_entry(dev, &bus->devices, bus_list) {
5326 pci_dev_lock(dev);
5327 if (dev->subordinate)
5328 pci_bus_lock(dev->subordinate);
5329 }
5330}
5331
5332/* Unlock devices from the bottom of the tree up */
5333static void pci_bus_unlock(struct pci_bus *bus)
5334{
5335 struct pci_dev *dev;
5336
5337 list_for_each_entry(dev, &bus->devices, bus_list) {
5338 if (dev->subordinate)
5339 pci_bus_unlock(dev->subordinate);
5340 pci_dev_unlock(dev);
5341 }
5342}
5343
5344/* Return 1 on successful lock, 0 on contention */
5345static int pci_bus_trylock(struct pci_bus *bus)
5346{
5347 struct pci_dev *dev;
5348
5349 list_for_each_entry(dev, &bus->devices, bus_list) {
5350 if (!pci_dev_trylock(dev))
5351 goto unlock;
5352 if (dev->subordinate) {
5353 if (!pci_bus_trylock(dev->subordinate)) {
5354 pci_dev_unlock(dev);
5355 goto unlock;
5356 }
5357 }
5358 }
5359 return 1;
5360
5361unlock:
5362 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363 if (dev->subordinate)
5364 pci_bus_unlock(dev->subordinate);
5365 pci_dev_unlock(dev);
5366 }
5367 return 0;
5368}
5369
5370/* Do any devices on or below this slot prevent a bus reset? */
5371static bool pci_slot_resetable(struct pci_slot *slot)
5372{
5373 struct pci_dev *dev;
5374
5375 if (slot->bus->self &&
5376 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377 return false;
5378
5379 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380 if (!dev->slot || dev->slot != slot)
5381 continue;
5382 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384 return false;
5385 }
5386
5387 return true;
5388}
5389
5390/* Lock devices from the top of the tree down */
5391static void pci_slot_lock(struct pci_slot *slot)
5392{
5393 struct pci_dev *dev;
5394
5395 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396 if (!dev->slot || dev->slot != slot)
5397 continue;
5398 pci_dev_lock(dev);
5399 if (dev->subordinate)
5400 pci_bus_lock(dev->subordinate);
5401 }
5402}
5403
5404/* Unlock devices from the bottom of the tree up */
5405static void pci_slot_unlock(struct pci_slot *slot)
5406{
5407 struct pci_dev *dev;
5408
5409 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410 if (!dev->slot || dev->slot != slot)
5411 continue;
5412 if (dev->subordinate)
5413 pci_bus_unlock(dev->subordinate);
5414 pci_dev_unlock(dev);
5415 }
5416}
5417
5418/* Return 1 on successful lock, 0 on contention */
5419static int pci_slot_trylock(struct pci_slot *slot)
5420{
5421 struct pci_dev *dev;
5422
5423 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424 if (!dev->slot || dev->slot != slot)
5425 continue;
5426 if (!pci_dev_trylock(dev))
5427 goto unlock;
5428 if (dev->subordinate) {
5429 if (!pci_bus_trylock(dev->subordinate)) {
5430 pci_dev_unlock(dev);
5431 goto unlock;
5432 }
5433 }
5434 }
5435 return 1;
5436
5437unlock:
5438 list_for_each_entry_continue_reverse(dev,
5439 &slot->bus->devices, bus_list) {
5440 if (!dev->slot || dev->slot != slot)
5441 continue;
5442 if (dev->subordinate)
5443 pci_bus_unlock(dev->subordinate);
5444 pci_dev_unlock(dev);
5445 }
5446 return 0;
5447}
5448
5449/*
5450 * Save and disable devices from the top of the tree down while holding
5451 * the @dev mutex lock for the entire tree.
5452 */
5453static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454{
5455 struct pci_dev *dev;
5456
5457 list_for_each_entry(dev, &bus->devices, bus_list) {
5458 pci_dev_save_and_disable(dev);
5459 if (dev->subordinate)
5460 pci_bus_save_and_disable_locked(dev->subordinate);
5461 }
5462}
5463
5464/*
5465 * Restore devices from top of the tree down while holding @dev mutex lock
5466 * for the entire tree. Parent bridges need to be restored before we can
5467 * get to subordinate devices.
5468 */
5469static void pci_bus_restore_locked(struct pci_bus *bus)
5470{
5471 struct pci_dev *dev;
5472
5473 list_for_each_entry(dev, &bus->devices, bus_list) {
5474 pci_dev_restore(dev);
5475 if (dev->subordinate)
5476 pci_bus_restore_locked(dev->subordinate);
5477 }
5478}
5479
5480/*
5481 * Save and disable devices from the top of the tree down while holding
5482 * the @dev mutex lock for the entire tree.
5483 */
5484static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485{
5486 struct pci_dev *dev;
5487
5488 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489 if (!dev->slot || dev->slot != slot)
5490 continue;
5491 pci_dev_save_and_disable(dev);
5492 if (dev->subordinate)
5493 pci_bus_save_and_disable_locked(dev->subordinate);
5494 }
5495}
5496
5497/*
5498 * Restore devices from top of the tree down while holding @dev mutex lock
5499 * for the entire tree. Parent bridges need to be restored before we can
5500 * get to subordinate devices.
5501 */
5502static void pci_slot_restore_locked(struct pci_slot *slot)
5503{
5504 struct pci_dev *dev;
5505
5506 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507 if (!dev->slot || dev->slot != slot)
5508 continue;
5509 pci_dev_restore(dev);
5510 if (dev->subordinate)
5511 pci_bus_restore_locked(dev->subordinate);
5512 }
5513}
5514
5515static int pci_slot_reset(struct pci_slot *slot, int probe)
5516{
5517 int rc;
5518
5519 if (!slot || !pci_slot_resetable(slot))
5520 return -ENOTTY;
5521
5522 if (!probe)
5523 pci_slot_lock(slot);
5524
5525 might_sleep();
5526
5527 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528
5529 if (!probe)
5530 pci_slot_unlock(slot);
5531
5532 return rc;
5533}
5534
5535/**
5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537 * @slot: PCI slot to probe
5538 *
5539 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540 */
5541int pci_probe_reset_slot(struct pci_slot *slot)
5542{
5543 return pci_slot_reset(slot, 1);
5544}
5545EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546
5547/**
5548 * __pci_reset_slot - Try to reset a PCI slot
5549 * @slot: PCI slot to reset
5550 *
5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552 * independent of other slots. For instance, some slots may support slot power
5553 * control. In the case of a 1:1 bus to slot architecture, this function may
5554 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555 * Generally a slot reset should be attempted before a bus reset. All of the
5556 * function of the slot and any subordinate buses behind the slot are reset
5557 * through this function. PCI config space of all devices in the slot and
5558 * behind the slot is saved before and restored after reset.
5559 *
5560 * Same as above except return -EAGAIN if the slot cannot be locked
5561 */
5562static int __pci_reset_slot(struct pci_slot *slot)
5563{
5564 int rc;
5565
5566 rc = pci_slot_reset(slot, 1);
5567 if (rc)
5568 return rc;
5569
5570 if (pci_slot_trylock(slot)) {
5571 pci_slot_save_and_disable_locked(slot);
5572 might_sleep();
5573 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574 pci_slot_restore_locked(slot);
5575 pci_slot_unlock(slot);
5576 } else
5577 rc = -EAGAIN;
5578
5579 return rc;
5580}
5581
5582static int pci_bus_reset(struct pci_bus *bus, int probe)
5583{
5584 int ret;
5585
5586 if (!bus->self || !pci_bus_resetable(bus))
5587 return -ENOTTY;
5588
5589 if (probe)
5590 return 0;
5591
5592 pci_bus_lock(bus);
5593
5594 might_sleep();
5595
5596 ret = pci_bridge_secondary_bus_reset(bus->self);
5597
5598 pci_bus_unlock(bus);
5599
5600 return ret;
5601}
5602
5603/**
5604 * pci_bus_error_reset - reset the bridge's subordinate bus
5605 * @bridge: The parent device that connects to the bus to reset
5606 *
5607 * This function will first try to reset the slots on this bus if the method is
5608 * available. If slot reset fails or is not available, this will fall back to a
5609 * secondary bus reset.
5610 */
5611int pci_bus_error_reset(struct pci_dev *bridge)
5612{
5613 struct pci_bus *bus = bridge->subordinate;
5614 struct pci_slot *slot;
5615
5616 if (!bus)
5617 return -ENOTTY;
5618
5619 mutex_lock(&pci_slot_mutex);
5620 if (list_empty(&bus->slots))
5621 goto bus_reset;
5622
5623 list_for_each_entry(slot, &bus->slots, list)
5624 if (pci_probe_reset_slot(slot))
5625 goto bus_reset;
5626
5627 list_for_each_entry(slot, &bus->slots, list)
5628 if (pci_slot_reset(slot, 0))
5629 goto bus_reset;
5630
5631 mutex_unlock(&pci_slot_mutex);
5632 return 0;
5633bus_reset:
5634 mutex_unlock(&pci_slot_mutex);
5635 return pci_bus_reset(bridge->subordinate, 0);
5636}
5637
5638/**
5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640 * @bus: PCI bus to probe
5641 *
5642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643 */
5644int pci_probe_reset_bus(struct pci_bus *bus)
5645{
5646 return pci_bus_reset(bus, 1);
5647}
5648EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649
5650/**
5651 * __pci_reset_bus - Try to reset a PCI bus
5652 * @bus: top level PCI bus to reset
5653 *
5654 * Same as above except return -EAGAIN if the bus cannot be locked
5655 */
5656static int __pci_reset_bus(struct pci_bus *bus)
5657{
5658 int rc;
5659
5660 rc = pci_bus_reset(bus, 1);
5661 if (rc)
5662 return rc;
5663
5664 if (pci_bus_trylock(bus)) {
5665 pci_bus_save_and_disable_locked(bus);
5666 might_sleep();
5667 rc = pci_bridge_secondary_bus_reset(bus->self);
5668 pci_bus_restore_locked(bus);
5669 pci_bus_unlock(bus);
5670 } else
5671 rc = -EAGAIN;
5672
5673 return rc;
5674}
5675
5676/**
5677 * pci_reset_bus - Try to reset a PCI bus
5678 * @pdev: top level PCI device to reset via slot/bus
5679 *
5680 * Same as above except return -EAGAIN if the bus cannot be locked
5681 */
5682int pci_reset_bus(struct pci_dev *pdev)
5683{
5684 return (!pci_probe_reset_slot(pdev->slot)) ?
5685 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686}
5687EXPORT_SYMBOL_GPL(pci_reset_bus);
5688
5689/**
5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691 * @dev: PCI device to query
5692 *
5693 * Returns mmrbc: maximum designed memory read count in bytes or
5694 * appropriate error value.
5695 */
5696int pcix_get_max_mmrbc(struct pci_dev *dev)
5697{
5698 int cap;
5699 u32 stat;
5700
5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 if (!cap)
5703 return -EINVAL;
5704
5705 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706 return -EINVAL;
5707
5708 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709}
5710EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711
5712/**
5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 *
5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717 * value.
5718 */
5719int pcix_get_mmrbc(struct pci_dev *dev)
5720{
5721 int cap;
5722 u16 cmd;
5723
5724 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725 if (!cap)
5726 return -EINVAL;
5727
5728 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729 return -EINVAL;
5730
5731 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732}
5733EXPORT_SYMBOL(pcix_get_mmrbc);
5734
5735/**
5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737 * @dev: PCI device to query
5738 * @mmrbc: maximum memory read count in bytes
5739 * valid values are 512, 1024, 2048, 4096
5740 *
5741 * If possible sets maximum memory read byte count, some bridges have errata
5742 * that prevent this.
5743 */
5744int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745{
5746 int cap;
5747 u32 stat, v, o;
5748 u16 cmd;
5749
5750 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751 return -EINVAL;
5752
5753 v = ffs(mmrbc) - 10;
5754
5755 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756 if (!cap)
5757 return -EINVAL;
5758
5759 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760 return -EINVAL;
5761
5762 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763 return -E2BIG;
5764
5765 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766 return -EINVAL;
5767
5768 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769 if (o != v) {
5770 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771 return -EIO;
5772
5773 cmd &= ~PCI_X_CMD_MAX_READ;
5774 cmd |= v << 2;
5775 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776 return -EIO;
5777 }
5778 return 0;
5779}
5780EXPORT_SYMBOL(pcix_set_mmrbc);
5781
5782/**
5783 * pcie_get_readrq - get PCI Express read request size
5784 * @dev: PCI device to query
5785 *
5786 * Returns maximum memory read request in bytes or appropriate error value.
5787 */
5788int pcie_get_readrq(struct pci_dev *dev)
5789{
5790 u16 ctl;
5791
5792 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793
5794 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795}
5796EXPORT_SYMBOL(pcie_get_readrq);
5797
5798/**
5799 * pcie_set_readrq - set PCI Express maximum memory read request
5800 * @dev: PCI device to query
5801 * @rq: maximum memory read count in bytes
5802 * valid values are 128, 256, 512, 1024, 2048, 4096
5803 *
5804 * If possible sets maximum memory read request in bytes
5805 */
5806int pcie_set_readrq(struct pci_dev *dev, int rq)
5807{
5808 u16 v;
5809 int ret;
5810
5811 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812 return -EINVAL;
5813
5814 /*
5815 * If using the "performance" PCIe config, we clamp the read rq
5816 * size to the max packet size to keep the host bridge from
5817 * generating requests larger than we can cope with.
5818 */
5819 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820 int mps = pcie_get_mps(dev);
5821
5822 if (mps < rq)
5823 rq = mps;
5824 }
5825
5826 v = (ffs(rq) - 8) << 12;
5827
5828 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829 PCI_EXP_DEVCTL_READRQ, v);
5830
5831 return pcibios_err_to_errno(ret);
5832}
5833EXPORT_SYMBOL(pcie_set_readrq);
5834
5835/**
5836 * pcie_get_mps - get PCI Express maximum payload size
5837 * @dev: PCI device to query
5838 *
5839 * Returns maximum payload size in bytes
5840 */
5841int pcie_get_mps(struct pci_dev *dev)
5842{
5843 u16 ctl;
5844
5845 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846
5847 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848}
5849EXPORT_SYMBOL(pcie_get_mps);
5850
5851/**
5852 * pcie_set_mps - set PCI Express maximum payload size
5853 * @dev: PCI device to query
5854 * @mps: maximum payload size in bytes
5855 * valid values are 128, 256, 512, 1024, 2048, 4096
5856 *
5857 * If possible sets maximum payload size
5858 */
5859int pcie_set_mps(struct pci_dev *dev, int mps)
5860{
5861 u16 v;
5862 int ret;
5863
5864 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865 return -EINVAL;
5866
5867 v = ffs(mps) - 8;
5868 if (v > dev->pcie_mpss)
5869 return -EINVAL;
5870 v <<= 5;
5871
5872 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873 PCI_EXP_DEVCTL_PAYLOAD, v);
5874
5875 return pcibios_err_to_errno(ret);
5876}
5877EXPORT_SYMBOL(pcie_set_mps);
5878
5879/**
5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881 * device and its bandwidth limitation
5882 * @dev: PCI device to query
5883 * @limiting_dev: storage for device causing the bandwidth limitation
5884 * @speed: storage for speed of limiting device
5885 * @width: storage for width of limiting device
5886 *
5887 * Walk up the PCI device chain and find the point where the minimum
5888 * bandwidth is available. Return the bandwidth available there and (if
5889 * limiting_dev, speed, and width pointers are supplied) information about
5890 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5891 * raw bandwidth.
5892 */
5893u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894 enum pci_bus_speed *speed,
5895 enum pcie_link_width *width)
5896{
5897 u16 lnksta;
5898 enum pci_bus_speed next_speed;
5899 enum pcie_link_width next_width;
5900 u32 bw, next_bw;
5901
5902 if (speed)
5903 *speed = PCI_SPEED_UNKNOWN;
5904 if (width)
5905 *width = PCIE_LNK_WIDTH_UNKNOWN;
5906
5907 bw = 0;
5908
5909 while (dev) {
5910 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911
5912 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914 PCI_EXP_LNKSTA_NLW_SHIFT;
5915
5916 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917
5918 /* Check if current device limits the total bandwidth */
5919 if (!bw || next_bw <= bw) {
5920 bw = next_bw;
5921
5922 if (limiting_dev)
5923 *limiting_dev = dev;
5924 if (speed)
5925 *speed = next_speed;
5926 if (width)
5927 *width = next_width;
5928 }
5929
5930 dev = pci_upstream_bridge(dev);
5931 }
5932
5933 return bw;
5934}
5935EXPORT_SYMBOL(pcie_bandwidth_available);
5936
5937/**
5938 * pcie_get_speed_cap - query for the PCI device's link speed capability
5939 * @dev: PCI device to query
5940 *
5941 * Query the PCI device speed capability. Return the maximum link speed
5942 * supported by the device.
5943 */
5944enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945{
5946 u32 lnkcap2, lnkcap;
5947
5948 /*
5949 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5950 * implementation note there recommends using the Supported Link
5951 * Speeds Vector in Link Capabilities 2 when supported.
5952 *
5953 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954 * should use the Supported Link Speeds field in Link Capabilities,
5955 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956 */
5957 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958
5959 /* PCIe r3.0-compliant */
5960 if (lnkcap2)
5961 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5962
5963 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965 return PCIE_SPEED_5_0GT;
5966 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967 return PCIE_SPEED_2_5GT;
5968
5969 return PCI_SPEED_UNKNOWN;
5970}
5971EXPORT_SYMBOL(pcie_get_speed_cap);
5972
5973/**
5974 * pcie_get_width_cap - query for the PCI device's link width capability
5975 * @dev: PCI device to query
5976 *
5977 * Query the PCI device width capability. Return the maximum link width
5978 * supported by the device.
5979 */
5980enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981{
5982 u32 lnkcap;
5983
5984 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985 if (lnkcap)
5986 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987
5988 return PCIE_LNK_WIDTH_UNKNOWN;
5989}
5990EXPORT_SYMBOL(pcie_get_width_cap);
5991
5992/**
5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994 * @dev: PCI device
5995 * @speed: storage for link speed
5996 * @width: storage for link width
5997 *
5998 * Calculate a PCI device's link bandwidth by querying for its link speed
5999 * and width, multiplying them, and applying encoding overhead. The result
6000 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001 */
6002u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003 enum pcie_link_width *width)
6004{
6005 *speed = pcie_get_speed_cap(dev);
6006 *width = pcie_get_width_cap(dev);
6007
6008 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009 return 0;
6010
6011 return *width * PCIE_SPEED2MBS_ENC(*speed);
6012}
6013
6014/**
6015 * __pcie_print_link_status - Report the PCI device's link speed and width
6016 * @dev: PCI device to query
6017 * @verbose: Print info even when enough bandwidth is available
6018 *
6019 * If the available bandwidth at the device is less than the device is
6020 * capable of, report the device's maximum possible bandwidth and the
6021 * upstream link that limits its performance. If @verbose, always print
6022 * the available bandwidth, even if the device isn't constrained.
6023 */
6024void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025{
6026 enum pcie_link_width width, width_cap;
6027 enum pci_bus_speed speed, speed_cap;
6028 struct pci_dev *limiting_dev = NULL;
6029 u32 bw_avail, bw_cap;
6030
6031 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033
6034 if (bw_avail >= bw_cap && verbose)
6035 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036 bw_cap / 1000, bw_cap % 1000,
6037 pci_speed_string(speed_cap), width_cap);
6038 else if (bw_avail < bw_cap)
6039 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040 bw_avail / 1000, bw_avail % 1000,
6041 pci_speed_string(speed), width,
6042 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043 bw_cap / 1000, bw_cap % 1000,
6044 pci_speed_string(speed_cap), width_cap);
6045}
6046
6047/**
6048 * pcie_print_link_status - Report the PCI device's link speed and width
6049 * @dev: PCI device to query
6050 *
6051 * Report the available bandwidth at the device.
6052 */
6053void pcie_print_link_status(struct pci_dev *dev)
6054{
6055 __pcie_print_link_status(dev, true);
6056}
6057EXPORT_SYMBOL(pcie_print_link_status);
6058
6059/**
6060 * pci_select_bars - Make BAR mask from the type of resource
6061 * @dev: the PCI device for which BAR mask is made
6062 * @flags: resource type mask to be selected
6063 *
6064 * This helper routine makes bar mask from the type of resource.
6065 */
6066int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067{
6068 int i, bars = 0;
6069 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070 if (pci_resource_flags(dev, i) & flags)
6071 bars |= (1 << i);
6072 return bars;
6073}
6074EXPORT_SYMBOL(pci_select_bars);
6075
6076/* Some architectures require additional programming to enable VGA */
6077static arch_set_vga_state_t arch_set_vga_state;
6078
6079void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080{
6081 arch_set_vga_state = func; /* NULL disables */
6082}
6083
6084static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085 unsigned int command_bits, u32 flags)
6086{
6087 if (arch_set_vga_state)
6088 return arch_set_vga_state(dev, decode, command_bits,
6089 flags);
6090 return 0;
6091}
6092
6093/**
6094 * pci_set_vga_state - set VGA decode state on device and parents if requested
6095 * @dev: the PCI device
6096 * @decode: true = enable decoding, false = disable decoding
6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098 * @flags: traverse ancestors and change bridges
6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100 */
6101int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102 unsigned int command_bits, u32 flags)
6103{
6104 struct pci_bus *bus;
6105 struct pci_dev *bridge;
6106 u16 cmd;
6107 int rc;
6108
6109 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110
6111 /* ARCH specific VGA enables */
6112 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113 if (rc)
6114 return rc;
6115
6116 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118 if (decode)
6119 cmd |= command_bits;
6120 else
6121 cmd &= ~command_bits;
6122 pci_write_config_word(dev, PCI_COMMAND, cmd);
6123 }
6124
6125 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126 return 0;
6127
6128 bus = dev->bus;
6129 while (bus) {
6130 bridge = bus->self;
6131 if (bridge) {
6132 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133 &cmd);
6134 if (decode)
6135 cmd |= PCI_BRIDGE_CTL_VGA;
6136 else
6137 cmd &= ~PCI_BRIDGE_CTL_VGA;
6138 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139 cmd);
6140 }
6141 bus = bus->parent;
6142 }
6143 return 0;
6144}
6145
6146#ifdef CONFIG_ACPI
6147bool pci_pr3_present(struct pci_dev *pdev)
6148{
6149 struct acpi_device *adev;
6150
6151 if (acpi_disabled)
6152 return false;
6153
6154 adev = ACPI_COMPANION(&pdev->dev);
6155 if (!adev)
6156 return false;
6157
6158 return adev->power.flags.power_resources &&
6159 acpi_has_method(adev->handle, "_PR3");
6160}
6161EXPORT_SYMBOL_GPL(pci_pr3_present);
6162#endif
6163
6164/**
6165 * pci_add_dma_alias - Add a DMA devfn alias for a device
6166 * @dev: the PCI device for which alias is added
6167 * @devfn_from: alias slot and function
6168 * @nr_devfns: number of subsequent devfns to alias
6169 *
6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171 * which is used to program permissible bus-devfn source addresses for DMA
6172 * requests in an IOMMU. These aliases factor into IOMMU group creation
6173 * and are useful for devices generating DMA requests beyond or different
6174 * from their logical bus-devfn. Examples include device quirks where the
6175 * device simply uses the wrong devfn, as well as non-transparent bridges
6176 * where the alias may be a proxy for devices in another domain.
6177 *
6178 * IOMMU group creation is performed during device discovery or addition,
6179 * prior to any potential DMA mapping and therefore prior to driver probing
6180 * (especially for userspace assigned devices where IOMMU group definition
6181 * cannot be left as a userspace activity). DMA aliases should therefore
6182 * be configured via quirks, such as the PCI fixup header quirk.
6183 */
6184void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6185{
6186 int devfn_to;
6187
6188 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189 devfn_to = devfn_from + nr_devfns - 1;
6190
6191 if (!dev->dma_alias_mask)
6192 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193 if (!dev->dma_alias_mask) {
6194 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195 return;
6196 }
6197
6198 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199
6200 if (nr_devfns == 1)
6201 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203 else if (nr_devfns > 1)
6204 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207}
6208
6209bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210{
6211 return (dev1->dma_alias_mask &&
6212 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213 (dev2->dma_alias_mask &&
6214 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215 pci_real_dma_dev(dev1) == dev2 ||
6216 pci_real_dma_dev(dev2) == dev1;
6217}
6218
6219bool pci_device_is_present(struct pci_dev *pdev)
6220{
6221 u32 v;
6222
6223 if (pci_dev_is_disconnected(pdev))
6224 return false;
6225 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226}
6227EXPORT_SYMBOL_GPL(pci_device_is_present);
6228
6229void pci_ignore_hotplug(struct pci_dev *dev)
6230{
6231 struct pci_dev *bridge = dev->bus->self;
6232
6233 dev->ignore_hotplug = 1;
6234 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6235 if (bridge)
6236 bridge->ignore_hotplug = 1;
6237}
6238EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239
6240/**
6241 * pci_real_dma_dev - Get PCI DMA device for PCI device
6242 * @dev: the PCI device that may have a PCI DMA alias
6243 *
6244 * Permits the platform to provide architecture-specific functionality to
6245 * devices needing to alias DMA to another PCI device on another PCI bus. If
6246 * the PCI device is on the same bus, it is recommended to use
6247 * pci_add_dma_alias(). This is the default implementation. Architecture
6248 * implementations can override this.
6249 */
6250struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251{
6252 return dev;
6253}
6254
6255resource_size_t __weak pcibios_default_alignment(void)
6256{
6257 return 0;
6258}
6259
6260/*
6261 * Arches that don't want to expose struct resource to userland as-is in
6262 * sysfs and /proc can implement their own pci_resource_to_user().
6263 */
6264void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265 const struct resource *rsrc,
6266 resource_size_t *start, resource_size_t *end)
6267{
6268 *start = rsrc->start;
6269 *end = rsrc->end;
6270}
6271
6272static char *resource_alignment_param;
6273static DEFINE_SPINLOCK(resource_alignment_lock);
6274
6275/**
6276 * pci_specified_resource_alignment - get resource alignment specified by user.
6277 * @dev: the PCI device to get
6278 * @resize: whether or not to change resources' size when reassigning alignment
6279 *
6280 * RETURNS: Resource alignment if it is specified.
6281 * Zero if it is not specified.
6282 */
6283static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284 bool *resize)
6285{
6286 int align_order, count;
6287 resource_size_t align = pcibios_default_alignment();
6288 const char *p;
6289 int ret;
6290
6291 spin_lock(&resource_alignment_lock);
6292 p = resource_alignment_param;
6293 if (!p || !*p)
6294 goto out;
6295 if (pci_has_flag(PCI_PROBE_ONLY)) {
6296 align = 0;
6297 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298 goto out;
6299 }
6300
6301 while (*p) {
6302 count = 0;
6303 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304 p[count] == '@') {
6305 p += count + 1;
6306 if (align_order > 63) {
6307 pr_err("PCI: Invalid requested alignment (order %d)\n",
6308 align_order);
6309 align_order = PAGE_SHIFT;
6310 }
6311 } else {
6312 align_order = PAGE_SHIFT;
6313 }
6314
6315 ret = pci_dev_str_match(dev, p, &p);
6316 if (ret == 1) {
6317 *resize = true;
6318 align = 1ULL << align_order;
6319 break;
6320 } else if (ret < 0) {
6321 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322 p);
6323 break;
6324 }
6325
6326 if (*p != ';' && *p != ',') {
6327 /* End of param or invalid format */
6328 break;
6329 }
6330 p++;
6331 }
6332out:
6333 spin_unlock(&resource_alignment_lock);
6334 return align;
6335}
6336
6337static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338 resource_size_t align, bool resize)
6339{
6340 struct resource *r = &dev->resource[bar];
6341 resource_size_t size;
6342
6343 if (!(r->flags & IORESOURCE_MEM))
6344 return;
6345
6346 if (r->flags & IORESOURCE_PCI_FIXED) {
6347 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348 bar, r, (unsigned long long)align);
6349 return;
6350 }
6351
6352 size = resource_size(r);
6353 if (size >= align)
6354 return;
6355
6356 /*
6357 * Increase the alignment of the resource. There are two ways we
6358 * can do this:
6359 *
6360 * 1) Increase the size of the resource. BARs are aligned on their
6361 * size, so when we reallocate space for this resource, we'll
6362 * allocate it with the larger alignment. This also prevents
6363 * assignment of any other BARs inside the alignment region, so
6364 * if we're requesting page alignment, this means no other BARs
6365 * will share the page.
6366 *
6367 * The disadvantage is that this makes the resource larger than
6368 * the hardware BAR, which may break drivers that compute things
6369 * based on the resource size, e.g., to find registers at a
6370 * fixed offset before the end of the BAR.
6371 *
6372 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373 * set r->start to the desired alignment. By itself this
6374 * doesn't prevent other BARs being put inside the alignment
6375 * region, but if we realign *every* resource of every device in
6376 * the system, none of them will share an alignment region.
6377 *
6378 * When the user has requested alignment for only some devices via
6379 * the "pci=resource_alignment" argument, "resize" is true and we
6380 * use the first method. Otherwise we assume we're aligning all
6381 * devices and we use the second.
6382 */
6383
6384 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385 bar, r, (unsigned long long)align);
6386
6387 if (resize) {
6388 r->start = 0;
6389 r->end = align - 1;
6390 } else {
6391 r->flags &= ~IORESOURCE_SIZEALIGN;
6392 r->flags |= IORESOURCE_STARTALIGN;
6393 r->start = align;
6394 r->end = r->start + size - 1;
6395 }
6396 r->flags |= IORESOURCE_UNSET;
6397}
6398
6399/*
6400 * This function disables memory decoding and releases memory resources
6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402 * It also rounds up size to specified alignment.
6403 * Later on, the kernel will assign page-aligned memory resource back
6404 * to the device.
6405 */
6406void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407{
6408 int i;
6409 struct resource *r;
6410 resource_size_t align;
6411 u16 command;
6412 bool resize = false;
6413
6414 /*
6415 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416 * 3.4.1.11. Their resources are allocated from the space
6417 * described by the VF BARx register in the PF's SR-IOV capability.
6418 * We can't influence their alignment here.
6419 */
6420 if (dev->is_virtfn)
6421 return;
6422
6423 /* check if specified PCI is target device to reassign */
6424 align = pci_specified_resource_alignment(dev, &resize);
6425 if (!align)
6426 return;
6427
6428 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430 pci_warn(dev, "Can't reassign resources to host bridge\n");
6431 return;
6432 }
6433
6434 pci_read_config_word(dev, PCI_COMMAND, &command);
6435 command &= ~PCI_COMMAND_MEMORY;
6436 pci_write_config_word(dev, PCI_COMMAND, command);
6437
6438 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439 pci_request_resource_alignment(dev, i, align, resize);
6440
6441 /*
6442 * Need to disable bridge's resource window,
6443 * to enable the kernel to reassign new resource
6444 * window later on.
6445 */
6446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448 r = &dev->resource[i];
6449 if (!(r->flags & IORESOURCE_MEM))
6450 continue;
6451 r->flags |= IORESOURCE_UNSET;
6452 r->end = resource_size(r) - 1;
6453 r->start = 0;
6454 }
6455 pci_disable_bridge_window(dev);
6456 }
6457}
6458
6459static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460{
6461 size_t count = 0;
6462
6463 spin_lock(&resource_alignment_lock);
6464 if (resource_alignment_param)
6465 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466 spin_unlock(&resource_alignment_lock);
6467
6468 return count;
6469}
6470
6471static ssize_t resource_alignment_store(struct bus_type *bus,
6472 const char *buf, size_t count)
6473{
6474 char *param, *old, *end;
6475
6476 if (count >= (PAGE_SIZE - 1))
6477 return -EINVAL;
6478
6479 param = kstrndup(buf, count, GFP_KERNEL);
6480 if (!param)
6481 return -ENOMEM;
6482
6483 end = strchr(param, '\n');
6484 if (end)
6485 *end = '\0';
6486
6487 spin_lock(&resource_alignment_lock);
6488 old = resource_alignment_param;
6489 if (strlen(param)) {
6490 resource_alignment_param = param;
6491 } else {
6492 kfree(param);
6493 resource_alignment_param = NULL;
6494 }
6495 spin_unlock(&resource_alignment_lock);
6496
6497 kfree(old);
6498
6499 return count;
6500}
6501
6502static BUS_ATTR_RW(resource_alignment);
6503
6504static int __init pci_resource_alignment_sysfs_init(void)
6505{
6506 return bus_create_file(&pci_bus_type,
6507 &bus_attr_resource_alignment);
6508}
6509late_initcall(pci_resource_alignment_sysfs_init);
6510
6511static void pci_no_domains(void)
6512{
6513#ifdef CONFIG_PCI_DOMAINS
6514 pci_domains_supported = 0;
6515#endif
6516}
6517
6518#ifdef CONFIG_PCI_DOMAINS_GENERIC
6519static atomic_t __domain_nr = ATOMIC_INIT(-1);
6520
6521static int pci_get_new_domain_nr(void)
6522{
6523 return atomic_inc_return(&__domain_nr);
6524}
6525
6526static int of_pci_bus_find_domain_nr(struct device *parent)
6527{
6528 static int use_dt_domains = -1;
6529 int domain = -1;
6530
6531 if (parent)
6532 domain = of_get_pci_domain_nr(parent->of_node);
6533
6534 /*
6535 * Check DT domain and use_dt_domains values.
6536 *
6537 * If DT domain property is valid (domain >= 0) and
6538 * use_dt_domains != 0, the DT assignment is valid since this means
6539 * we have not previously allocated a domain number by using
6540 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541 * 1, to indicate that we have just assigned a domain number from
6542 * DT.
6543 *
6544 * If DT domain property value is not valid (ie domain < 0), and we
6545 * have not previously assigned a domain number from DT
6546 * (use_dt_domains != 1) we should assign a domain number by
6547 * using the:
6548 *
6549 * pci_get_new_domain_nr()
6550 *
6551 * API and update the use_dt_domains value to keep track of method we
6552 * are using to assign domain numbers (use_dt_domains = 0).
6553 *
6554 * All other combinations imply we have a platform that is trying
6555 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556 * which is a recipe for domain mishandling and it is prevented by
6557 * invalidating the domain value (domain = -1) and printing a
6558 * corresponding error.
6559 */
6560 if (domain >= 0 && use_dt_domains) {
6561 use_dt_domains = 1;
6562 } else if (domain < 0 && use_dt_domains != 1) {
6563 use_dt_domains = 0;
6564 domain = pci_get_new_domain_nr();
6565 } else {
6566 if (parent)
6567 pr_err("Node %pOF has ", parent->of_node);
6568 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569 domain = -1;
6570 }
6571
6572 return domain;
6573}
6574
6575int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576{
6577 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578 acpi_pci_bus_find_domain_nr(bus);
6579}
6580#endif
6581
6582/**
6583 * pci_ext_cfg_avail - can we access extended PCI config space?
6584 *
6585 * Returns 1 if we can access PCI extended config space (offsets
6586 * greater than 0xff). This is the default implementation. Architecture
6587 * implementations can override this.
6588 */
6589int __weak pci_ext_cfg_avail(void)
6590{
6591 return 1;
6592}
6593
6594void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595{
6596}
6597EXPORT_SYMBOL(pci_fixup_cardbus);
6598
6599static int __init pci_setup(char *str)
6600{
6601 while (str) {
6602 char *k = strchr(str, ',');
6603 if (k)
6604 *k++ = 0;
6605 if (*str && (str = pcibios_setup(str)) && *str) {
6606 if (!strcmp(str, "nomsi")) {
6607 pci_no_msi();
6608 } else if (!strncmp(str, "noats", 5)) {
6609 pr_info("PCIe: ATS is disabled\n");
6610 pcie_ats_disabled = true;
6611 } else if (!strcmp(str, "noaer")) {
6612 pci_no_aer();
6613 } else if (!strcmp(str, "earlydump")) {
6614 pci_early_dump = true;
6615 } else if (!strncmp(str, "realloc=", 8)) {
6616 pci_realloc_get_opt(str + 8);
6617 } else if (!strncmp(str, "realloc", 7)) {
6618 pci_realloc_get_opt("on");
6619 } else if (!strcmp(str, "nodomains")) {
6620 pci_no_domains();
6621 } else if (!strncmp(str, "noari", 5)) {
6622 pcie_ari_disabled = true;
6623 } else if (!strncmp(str, "cbiosize=", 9)) {
6624 pci_cardbus_io_size = memparse(str + 9, &str);
6625 } else if (!strncmp(str, "cbmemsize=", 10)) {
6626 pci_cardbus_mem_size = memparse(str + 10, &str);
6627 } else if (!strncmp(str, "resource_alignment=", 19)) {
6628 resource_alignment_param = str + 19;
6629 } else if (!strncmp(str, "ecrc=", 5)) {
6630 pcie_ecrc_get_policy(str + 5);
6631 } else if (!strncmp(str, "hpiosize=", 9)) {
6632 pci_hotplug_io_size = memparse(str + 9, &str);
6633 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6634 pci_hotplug_mmio_size = memparse(str + 11, &str);
6635 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637 } else if (!strncmp(str, "hpmemsize=", 10)) {
6638 pci_hotplug_mmio_size = memparse(str + 10, &str);
6639 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640 } else if (!strncmp(str, "hpbussize=", 10)) {
6641 pci_hotplug_bus_size =
6642 simple_strtoul(str + 10, &str, 0);
6643 if (pci_hotplug_bus_size > 0xff)
6644 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648 pcie_bus_config = PCIE_BUS_SAFE;
6649 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652 pcie_bus_config = PCIE_BUS_PEER2PEER;
6653 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6654 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656 disable_acs_redir_param = str + 18;
6657 } else {
6658 pr_err("PCI: Unknown option `%s'\n", str);
6659 }
6660 }
6661 str = k;
6662 }
6663 return 0;
6664}
6665early_param("pci", pci_setup);
6666
6667/*
6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669 * in pci_setup(), above, to point to data in the __initdata section which
6670 * will be freed after the init sequence is complete. We can't allocate memory
6671 * in pci_setup() because some architectures do not have any memory allocation
6672 * service available during an early_param() call. So we allocate memory and
6673 * copy the variable here before the init section is freed.
6674 *
6675 */
6676static int __init pci_realloc_setup_params(void)
6677{
6678 resource_alignment_param = kstrdup(resource_alignment_param,
6679 GFP_KERNEL);
6680 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681
6682 return 0;
6683}
6684pure_initcall(pci_realloc_setup_params);