Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566{
567 return fwnode_call_ptr_op(fwnode, get_name);
568}
569EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571/**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579{
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581}
582
583/**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591{
592 return fwnode_call_ptr_op(fwnode, get_parent);
593}
594EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596/**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608{
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614}
615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617/**
618 * fwnode_count_parents - Return the number of parents a node has
619 * @fwnode: The node the parents of which are to be counted
620 *
621 * Returns the number of parents a node has.
622 */
623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624{
625 struct fwnode_handle *__fwnode;
626 unsigned int count;
627
628 __fwnode = fwnode_get_parent(fwnode);
629
630 for (count = 0; __fwnode; count++)
631 __fwnode = fwnode_get_next_parent(__fwnode);
632
633 return count;
634}
635EXPORT_SYMBOL_GPL(fwnode_count_parents);
636
637/**
638 * fwnode_get_nth_parent - Return an nth parent of a node
639 * @fwnode: The node the parent of which is requested
640 * @depth: Distance of the parent from the node
641 *
642 * Returns the nth parent of a node. If there is no parent at the requested
643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645 *
646 * The caller is responsible for calling fwnode_handle_put() for the returned
647 * node.
648 */
649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650 unsigned int depth)
651{
652 unsigned int i;
653
654 fwnode_handle_get(fwnode);
655
656 for (i = 0; i < depth && fwnode; i++)
657 fwnode = fwnode_get_next_parent(fwnode);
658
659 return fwnode;
660}
661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662
663/**
664 * fwnode_get_next_child_node - Return the next child node handle for a node
665 * @fwnode: Firmware node to find the next child node for.
666 * @child: Handle to one of the node's child nodes or a %NULL handle.
667 */
668struct fwnode_handle *
669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670 struct fwnode_handle *child)
671{
672 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673}
674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675
676/**
677 * fwnode_get_next_available_child_node - Return the next
678 * available child node handle for a node
679 * @fwnode: Firmware node to find the next child node for.
680 * @child: Handle to one of the node's child nodes or a %NULL handle.
681 */
682struct fwnode_handle *
683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684 struct fwnode_handle *child)
685{
686 struct fwnode_handle *next_child = child;
687
688 if (!fwnode)
689 return NULL;
690
691 do {
692 next_child = fwnode_get_next_child_node(fwnode, next_child);
693
694 if (!next_child || fwnode_device_is_available(next_child))
695 break;
696 } while (next_child);
697
698 return next_child;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701
702/**
703 * device_get_next_child_node - Return the next child node handle for a device
704 * @dev: Device to find the next child node for.
705 * @child: Handle to one of the device's child nodes or a null handle.
706 */
707struct fwnode_handle *device_get_next_child_node(struct device *dev,
708 struct fwnode_handle *child)
709{
710 struct acpi_device *adev = ACPI_COMPANION(dev);
711 struct fwnode_handle *fwnode = NULL, *next;
712
713 if (dev->of_node)
714 fwnode = &dev->of_node->fwnode;
715 else if (adev)
716 fwnode = acpi_fwnode_handle(adev);
717
718 /* Try to find a child in primary fwnode */
719 next = fwnode_get_next_child_node(fwnode, child);
720 if (next)
721 return next;
722
723 /* When no more children in primary, continue with secondary */
724 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725 next = fwnode_get_next_child_node(fwnode->secondary, child);
726
727 return next;
728}
729EXPORT_SYMBOL_GPL(device_get_next_child_node);
730
731/**
732 * fwnode_get_named_child_node - Return first matching named child node handle
733 * @fwnode: Firmware node to find the named child node for.
734 * @childname: String to match child node name against.
735 */
736struct fwnode_handle *
737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738 const char *childname)
739{
740 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741}
742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743
744/**
745 * device_get_named_child_node - Return first matching named child node handle
746 * @dev: Device to find the named child node for.
747 * @childname: String to match child node name against.
748 */
749struct fwnode_handle *device_get_named_child_node(struct device *dev,
750 const char *childname)
751{
752 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753}
754EXPORT_SYMBOL_GPL(device_get_named_child_node);
755
756/**
757 * fwnode_handle_get - Obtain a reference to a device node
758 * @fwnode: Pointer to the device node to obtain the reference to.
759 *
760 * Returns the fwnode handle.
761 */
762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763{
764 if (!fwnode_has_op(fwnode, get))
765 return fwnode;
766
767 return fwnode_call_ptr_op(fwnode, get);
768}
769EXPORT_SYMBOL_GPL(fwnode_handle_get);
770
771/**
772 * fwnode_handle_put - Drop reference to a device node
773 * @fwnode: Pointer to the device node to drop the reference to.
774 *
775 * This has to be used when terminating device_for_each_child_node() iteration
776 * with break or return to prevent stale device node references from being left
777 * behind.
778 */
779void fwnode_handle_put(struct fwnode_handle *fwnode)
780{
781 fwnode_call_void_op(fwnode, put);
782}
783EXPORT_SYMBOL_GPL(fwnode_handle_put);
784
785/**
786 * fwnode_device_is_available - check if a device is available for use
787 * @fwnode: Pointer to the fwnode of the device.
788 */
789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790{
791 return fwnode_call_bool_op(fwnode, device_is_available);
792}
793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794
795/**
796 * device_get_child_node_count - return the number of child nodes for device
797 * @dev: Device to cound the child nodes for
798 */
799unsigned int device_get_child_node_count(struct device *dev)
800{
801 struct fwnode_handle *child;
802 unsigned int count = 0;
803
804 device_for_each_child_node(dev, child)
805 count++;
806
807 return count;
808}
809EXPORT_SYMBOL_GPL(device_get_child_node_count);
810
811bool device_dma_supported(struct device *dev)
812{
813 /* For DT, this is always supported.
814 * For ACPI, this depends on CCA, which
815 * is determined by the acpi_dma_supported().
816 */
817 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818 return true;
819
820 return acpi_dma_supported(ACPI_COMPANION(dev));
821}
822EXPORT_SYMBOL_GPL(device_dma_supported);
823
824enum dev_dma_attr device_get_dma_attr(struct device *dev)
825{
826 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827
828 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829 if (of_dma_is_coherent(dev->of_node))
830 attr = DEV_DMA_COHERENT;
831 else
832 attr = DEV_DMA_NON_COHERENT;
833 } else
834 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835
836 return attr;
837}
838EXPORT_SYMBOL_GPL(device_get_dma_attr);
839
840/**
841 * fwnode_get_phy_mode - Get phy mode for given firmware node
842 * @fwnode: Pointer to the given node
843 *
844 * The function gets phy interface string from property 'phy-mode' or
845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
846 * error case.
847 */
848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849{
850 const char *pm;
851 int err, i;
852
853 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854 if (err < 0)
855 err = fwnode_property_read_string(fwnode,
856 "phy-connection-type", &pm);
857 if (err < 0)
858 return err;
859
860 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861 if (!strcasecmp(pm, phy_modes(i)))
862 return i;
863
864 return -ENODEV;
865}
866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867
868/**
869 * device_get_phy_mode - Get phy mode for given device
870 * @dev: Pointer to the given device
871 *
872 * The function gets phy interface string from property 'phy-mode' or
873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
874 * error case.
875 */
876int device_get_phy_mode(struct device *dev)
877{
878 return fwnode_get_phy_mode(dev_fwnode(dev));
879}
880EXPORT_SYMBOL_GPL(device_get_phy_mode);
881
882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883 const char *name, char *addr,
884 int alen)
885{
886 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887
888 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889 return addr;
890 return NULL;
891}
892
893/**
894 * fwnode_get_mac_address - Get the MAC from the firmware node
895 * @fwnode: Pointer to the firmware node
896 * @addr: Address of buffer to store the MAC in
897 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
898 *
899 * Search the firmware node for the best MAC address to use. 'mac-address' is
900 * checked first, because that is supposed to contain to "most recent" MAC
901 * address. If that isn't set, then 'local-mac-address' is checked next,
902 * because that is the default address. If that isn't set, then the obsolete
903 * 'address' is checked, just in case we're using an old device tree.
904 *
905 * Note that the 'address' property is supposed to contain a virtual address of
906 * the register set, but some DTS files have redefined that property to be the
907 * MAC address.
908 *
909 * All-zero MAC addresses are rejected, because those could be properties that
910 * exist in the firmware tables, but were not updated by the firmware. For
911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
912 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914 * exists but is all zeros.
915*/
916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917{
918 char *res;
919
920 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921 if (res)
922 return res;
923
924 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925 if (res)
926 return res;
927
928 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929}
930EXPORT_SYMBOL(fwnode_get_mac_address);
931
932/**
933 * device_get_mac_address - Get the MAC for a given device
934 * @dev: Pointer to the device
935 * @addr: Address of buffer to store the MAC in
936 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
937 */
938void *device_get_mac_address(struct device *dev, char *addr, int alen)
939{
940 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941}
942EXPORT_SYMBOL(device_get_mac_address);
943
944/**
945 * fwnode_irq_get - Get IRQ directly from a fwnode
946 * @fwnode: Pointer to the firmware node
947 * @index: Zero-based index of the IRQ
948 *
949 * Returns Linux IRQ number on success. Other values are determined
950 * accordingly to acpi_/of_ irq_get() operation.
951 */
952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953{
954 struct device_node *of_node = to_of_node(fwnode);
955 struct resource res;
956 int ret;
957
958 if (IS_ENABLED(CONFIG_OF) && of_node)
959 return of_irq_get(of_node, index);
960
961 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962 if (ret)
963 return ret;
964
965 return res.start;
966}
967EXPORT_SYMBOL(fwnode_irq_get);
968
969/**
970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971 * @fwnode: Pointer to the parent firmware node
972 * @prev: Previous endpoint node or %NULL to get the first
973 *
974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975 * are available.
976 */
977struct fwnode_handle *
978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979 struct fwnode_handle *prev)
980{
981 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982}
983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984
985/**
986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987 * @endpoint: Endpoint firmware node of the port
988 *
989 * Return: the firmware node of the device the @endpoint belongs to.
990 */
991struct fwnode_handle *
992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993{
994 struct fwnode_handle *port, *parent;
995
996 port = fwnode_get_parent(endpoint);
997 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998
999 fwnode_handle_put(port);
1000
1001 return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014 struct fwnode_handle *endpoint, *parent;
1015
1016 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017 parent = fwnode_graph_get_port_parent(endpoint);
1018
1019 fwnode_handle_put(endpoint);
1020
1021 return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 * to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062 u32 endpoint_id)
1063{
1064 struct fwnode_handle *endpoint = NULL;
1065
1066 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067 struct fwnode_endpoint fwnode_ep;
1068 struct fwnode_handle *remote;
1069 int ret;
1070
1071 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072 if (ret < 0)
1073 continue;
1074
1075 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076 continue;
1077
1078 remote = fwnode_graph_get_remote_port_parent(endpoint);
1079 if (!remote)
1080 return NULL;
1081
1082 return fwnode_device_is_available(remote) ? remote : NULL;
1083 }
1084
1085 return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111 u32 port, u32 endpoint, unsigned long flags)
1112{
1113 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114 unsigned int best_ep_id = 0;
1115 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119 struct fwnode_endpoint fwnode_ep = { 0 };
1120 int ret;
1121
1122 if (enabled_only) {
1123 struct fwnode_handle *dev_node;
1124 bool available;
1125
1126 dev_node = fwnode_graph_get_remote_port_parent(ep);
1127 available = fwnode_device_is_available(dev_node);
1128 fwnode_handle_put(dev_node);
1129 if (!available)
1130 continue;
1131 }
1132
1133 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134 if (ret < 0)
1135 continue;
1136
1137 if (fwnode_ep.port != port)
1138 continue;
1139
1140 if (fwnode_ep.id == endpoint)
1141 return ep;
1142
1143 if (!endpoint_next)
1144 continue;
1145
1146 /*
1147 * If the endpoint that has just been found is not the first
1148 * matching one and the ID of the one found previously is closer
1149 * to the requested endpoint ID, skip it.
1150 */
1151 if (fwnode_ep.id < endpoint ||
1152 (best_ep && best_ep_id < fwnode_ep.id))
1153 continue;
1154
1155 fwnode_handle_put(best_ep);
1156 best_ep = fwnode_handle_get(ep);
1157 best_ep_id = fwnode_ep.id;
1158 }
1159
1160 return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174 struct fwnode_endpoint *endpoint)
1175{
1176 memset(endpoint, 0, sizeof(*endpoint));
1177
1178 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 *
41 * Return: true if property @propname is present. Otherwise, returns false.
42 */
43bool device_property_present(const struct device *dev, const char *propname)
44{
45 return fwnode_property_present(dev_fwnode(dev), propname);
46}
47EXPORT_SYMBOL_GPL(device_property_present);
48
49/**
50 * fwnode_property_present - check if a property of a firmware node is present
51 * @fwnode: Firmware node whose property to check
52 * @propname: Name of the property
53 *
54 * Return: true if property @propname is present. Otherwise, returns false.
55 */
56bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 const char *propname)
58{
59 bool ret;
60
61 if (IS_ERR_OR_NULL(fwnode))
62 return false;
63
64 ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 if (ret)
66 return ret;
67
68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69}
70EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72/**
73 * device_property_read_u8_array - return a u8 array property of a device
74 * @dev: Device to get the property of
75 * @propname: Name of the property
76 * @val: The values are stored here or %NULL to return the number of values
77 * @nval: Size of the @val array
78 *
79 * Function reads an array of u8 properties with @propname from the device
80 * firmware description and stores them to @val if found.
81 *
82 * It's recommended to call device_property_count_u8() instead of calling
83 * this function with @val equals %NULL and @nval equals 0.
84 *
85 * Return: number of values if @val was %NULL,
86 * %0 if the property was found (success),
87 * %-EINVAL if given arguments are not valid,
88 * %-ENODATA if the property does not have a value,
89 * %-EPROTO if the property is not an array of numbers,
90 * %-EOVERFLOW if the size of the property is not as expected.
91 * %-ENXIO if no suitable firmware interface is present.
92 */
93int device_property_read_u8_array(const struct device *dev, const char *propname,
94 u8 *val, size_t nval)
95{
96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97}
98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100/**
101 * device_property_read_u16_array - return a u16 array property of a device
102 * @dev: Device to get the property of
103 * @propname: Name of the property
104 * @val: The values are stored here or %NULL to return the number of values
105 * @nval: Size of the @val array
106 *
107 * Function reads an array of u16 properties with @propname from the device
108 * firmware description and stores them to @val if found.
109 *
110 * It's recommended to call device_property_count_u16() instead of calling
111 * this function with @val equals %NULL and @nval equals 0.
112 *
113 * Return: number of values if @val was %NULL,
114 * %0 if the property was found (success),
115 * %-EINVAL if given arguments are not valid,
116 * %-ENODATA if the property does not have a value,
117 * %-EPROTO if the property is not an array of numbers,
118 * %-EOVERFLOW if the size of the property is not as expected.
119 * %-ENXIO if no suitable firmware interface is present.
120 */
121int device_property_read_u16_array(const struct device *dev, const char *propname,
122 u16 *val, size_t nval)
123{
124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125}
126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128/**
129 * device_property_read_u32_array - return a u32 array property of a device
130 * @dev: Device to get the property of
131 * @propname: Name of the property
132 * @val: The values are stored here or %NULL to return the number of values
133 * @nval: Size of the @val array
134 *
135 * Function reads an array of u32 properties with @propname from the device
136 * firmware description and stores them to @val if found.
137 *
138 * It's recommended to call device_property_count_u32() instead of calling
139 * this function with @val equals %NULL and @nval equals 0.
140 *
141 * Return: number of values if @val was %NULL,
142 * %0 if the property was found (success),
143 * %-EINVAL if given arguments are not valid,
144 * %-ENODATA if the property does not have a value,
145 * %-EPROTO if the property is not an array of numbers,
146 * %-EOVERFLOW if the size of the property is not as expected.
147 * %-ENXIO if no suitable firmware interface is present.
148 */
149int device_property_read_u32_array(const struct device *dev, const char *propname,
150 u32 *val, size_t nval)
151{
152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153}
154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156/**
157 * device_property_read_u64_array - return a u64 array property of a device
158 * @dev: Device to get the property of
159 * @propname: Name of the property
160 * @val: The values are stored here or %NULL to return the number of values
161 * @nval: Size of the @val array
162 *
163 * Function reads an array of u64 properties with @propname from the device
164 * firmware description and stores them to @val if found.
165 *
166 * It's recommended to call device_property_count_u64() instead of calling
167 * this function with @val equals %NULL and @nval equals 0.
168 *
169 * Return: number of values if @val was %NULL,
170 * %0 if the property was found (success),
171 * %-EINVAL if given arguments are not valid,
172 * %-ENODATA if the property does not have a value,
173 * %-EPROTO if the property is not an array of numbers,
174 * %-EOVERFLOW if the size of the property is not as expected.
175 * %-ENXIO if no suitable firmware interface is present.
176 */
177int device_property_read_u64_array(const struct device *dev, const char *propname,
178 u64 *val, size_t nval)
179{
180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181}
182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184/**
185 * device_property_read_string_array - return a string array property of device
186 * @dev: Device to get the property of
187 * @propname: Name of the property
188 * @val: The values are stored here or %NULL to return the number of values
189 * @nval: Size of the @val array
190 *
191 * Function reads an array of string properties with @propname from the device
192 * firmware description and stores them to @val if found.
193 *
194 * It's recommended to call device_property_string_array_count() instead of calling
195 * this function with @val equals %NULL and @nval equals 0.
196 *
197 * Return: number of values read on success if @val is non-NULL,
198 * number of values available on success if @val is NULL,
199 * %-EINVAL if given arguments are not valid,
200 * %-ENODATA if the property does not have a value,
201 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
202 * %-EOVERFLOW if the size of the property is not as expected.
203 * %-ENXIO if no suitable firmware interface is present.
204 */
205int device_property_read_string_array(const struct device *dev, const char *propname,
206 const char **val, size_t nval)
207{
208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209}
210EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212/**
213 * device_property_read_string - return a string property of a device
214 * @dev: Device to get the property of
215 * @propname: Name of the property
216 * @val: The value is stored here
217 *
218 * Function reads property @propname from the device firmware description and
219 * stores the value into @val if found. The value is checked to be a string.
220 *
221 * Return: %0 if the property was found (success),
222 * %-EINVAL if given arguments are not valid,
223 * %-ENODATA if the property does not have a value,
224 * %-EPROTO or %-EILSEQ if the property type is not a string.
225 * %-ENXIO if no suitable firmware interface is present.
226 */
227int device_property_read_string(const struct device *dev, const char *propname,
228 const char **val)
229{
230 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231}
232EXPORT_SYMBOL_GPL(device_property_read_string);
233
234/**
235 * device_property_match_string - find a string in an array and return index
236 * @dev: Device to get the property of
237 * @propname: Name of the property holding the array
238 * @string: String to look for
239 *
240 * Find a given string in a string array and if it is found return the
241 * index back.
242 *
243 * Return: index, starting from %0, if the property was found (success),
244 * %-EINVAL if given arguments are not valid,
245 * %-ENODATA if the property does not have a value,
246 * %-EPROTO if the property is not an array of strings,
247 * %-ENXIO if no suitable firmware interface is present.
248 */
249int device_property_match_string(const struct device *dev, const char *propname,
250 const char *string)
251{
252 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253}
254EXPORT_SYMBOL_GPL(device_property_match_string);
255
256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 const char *propname,
258 unsigned int elem_size, void *val,
259 size_t nval)
260{
261 int ret;
262
263 if (IS_ERR_OR_NULL(fwnode))
264 return -EINVAL;
265
266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 elem_size, val, nval);
268 if (ret != -EINVAL)
269 return ret;
270
271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 elem_size, val, nval);
273}
274
275/**
276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
277 * @fwnode: Firmware node to get the property of
278 * @propname: Name of the property
279 * @val: The values are stored here or %NULL to return the number of values
280 * @nval: Size of the @val array
281 *
282 * Read an array of u8 properties with @propname from @fwnode and stores them to
283 * @val if found.
284 *
285 * It's recommended to call fwnode_property_count_u8() instead of calling
286 * this function with @val equals %NULL and @nval equals 0.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected,
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 const char *propname, u8 *val, size_t nval)
298{
299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 val, nval);
301}
302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304/**
305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
306 * @fwnode: Firmware node to get the property of
307 * @propname: Name of the property
308 * @val: The values are stored here or %NULL to return the number of values
309 * @nval: Size of the @val array
310 *
311 * Read an array of u16 properties with @propname from @fwnode and store them to
312 * @val if found.
313 *
314 * It's recommended to call fwnode_property_count_u16() instead of calling
315 * this function with @val equals %NULL and @nval equals 0.
316 *
317 * Return: number of values if @val was %NULL,
318 * %0 if the property was found (success),
319 * %-EINVAL if given arguments are not valid,
320 * %-ENODATA if the property does not have a value,
321 * %-EPROTO if the property is not an array of numbers,
322 * %-EOVERFLOW if the size of the property is not as expected,
323 * %-ENXIO if no suitable firmware interface is present.
324 */
325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 const char *propname, u16 *val, size_t nval)
327{
328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 val, nval);
330}
331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333/**
334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
335 * @fwnode: Firmware node to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Read an array of u32 properties with @propname from @fwnode store them to
341 * @val if found.
342 *
343 * It's recommended to call fwnode_property_count_u32() instead of calling
344 * this function with @val equals %NULL and @nval equals 0.
345 *
346 * Return: number of values if @val was %NULL,
347 * %0 if the property was found (success),
348 * %-EINVAL if given arguments are not valid,
349 * %-ENODATA if the property does not have a value,
350 * %-EPROTO if the property is not an array of numbers,
351 * %-EOVERFLOW if the size of the property is not as expected,
352 * %-ENXIO if no suitable firmware interface is present.
353 */
354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 const char *propname, u32 *val, size_t nval)
356{
357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 val, nval);
359}
360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362/**
363 * fwnode_property_read_u64_array - return a u64 array property firmware node
364 * @fwnode: Firmware node to get the property of
365 * @propname: Name of the property
366 * @val: The values are stored here or %NULL to return the number of values
367 * @nval: Size of the @val array
368 *
369 * Read an array of u64 properties with @propname from @fwnode and store them to
370 * @val if found.
371 *
372 * It's recommended to call fwnode_property_count_u64() instead of calling
373 * this function with @val equals %NULL and @nval equals 0.
374 *
375 * Return: number of values if @val was %NULL,
376 * %0 if the property was found (success),
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO if the property is not an array of numbers,
380 * %-EOVERFLOW if the size of the property is not as expected,
381 * %-ENXIO if no suitable firmware interface is present.
382 */
383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 const char *propname, u64 *val, size_t nval)
385{
386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 val, nval);
388}
389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391/**
392 * fwnode_property_read_string_array - return string array property of a node
393 * @fwnode: Firmware node to get the property of
394 * @propname: Name of the property
395 * @val: The values are stored here or %NULL to return the number of values
396 * @nval: Size of the @val array
397 *
398 * Read an string list property @propname from the given firmware node and store
399 * them to @val if found.
400 *
401 * It's recommended to call fwnode_property_string_array_count() instead of calling
402 * this function with @val equals %NULL and @nval equals 0.
403 *
404 * Return: number of values read on success if @val is non-NULL,
405 * number of values available on success if @val is NULL,
406 * %-EINVAL if given arguments are not valid,
407 * %-ENODATA if the property does not have a value,
408 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
409 * %-EOVERFLOW if the size of the property is not as expected,
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 const char *propname, const char **val,
414 size_t nval)
415{
416 int ret;
417
418 if (IS_ERR_OR_NULL(fwnode))
419 return -EINVAL;
420
421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 val, nval);
423 if (ret != -EINVAL)
424 return ret;
425
426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 val, nval);
428}
429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431/**
432 * fwnode_property_read_string - return a string property of a firmware node
433 * @fwnode: Firmware node to get the property of
434 * @propname: Name of the property
435 * @val: The value is stored here
436 *
437 * Read property @propname from the given firmware node and store the value into
438 * @val if found. The value is checked to be a string.
439 *
440 * Return: %0 if the property was found (success),
441 * %-EINVAL if given arguments are not valid,
442 * %-ENODATA if the property does not have a value,
443 * %-EPROTO or %-EILSEQ if the property is not a string,
444 * %-ENXIO if no suitable firmware interface is present.
445 */
446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 const char *propname, const char **val)
448{
449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451 return ret < 0 ? ret : 0;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455/**
456 * fwnode_property_match_string - find a string in an array and return index
457 * @fwnode: Firmware node to get the property of
458 * @propname: Name of the property holding the array
459 * @string: String to look for
460 *
461 * Find a given string in a string array and if it is found return the
462 * index back.
463 *
464 * Return: index, starting from %0, if the property was found (success),
465 * %-EINVAL if given arguments are not valid,
466 * %-ENODATA if the property does not have a value,
467 * %-EPROTO if the property is not an array of strings,
468 * %-ENXIO if no suitable firmware interface is present.
469 */
470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 const char *propname, const char *string)
472{
473 const char **values;
474 int nval, ret;
475
476 nval = fwnode_property_string_array_count(fwnode, propname);
477 if (nval < 0)
478 return nval;
479
480 if (nval == 0)
481 return -ENODATA;
482
483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 if (!values)
485 return -ENOMEM;
486
487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 if (ret < 0)
489 goto out_free;
490
491 ret = match_string(values, nval, string);
492 if (ret < 0)
493 ret = -ENODATA;
494
495out_free:
496 kfree(values);
497 return ret;
498}
499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501/**
502 * fwnode_property_match_property_string - find a property string value in an array and return index
503 * @fwnode: Firmware node to get the property of
504 * @propname: Name of the property holding the string value
505 * @array: String array to search in
506 * @n: Size of the @array
507 *
508 * Find a property string value in a given @array and if it is found return
509 * the index back.
510 *
511 * Return: index, starting from %0, if the string value was found in the @array (success),
512 * %-ENOENT when the string value was not found in the @array,
513 * %-EINVAL if given arguments are not valid,
514 * %-ENODATA if the property does not have a value,
515 * %-EPROTO or %-EILSEQ if the property is not a string,
516 * %-ENXIO if no suitable firmware interface is present.
517 */
518int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519 const char *propname, const char * const *array, size_t n)
520{
521 const char *string;
522 int ret;
523
524 ret = fwnode_property_read_string(fwnode, propname, &string);
525 if (ret)
526 return ret;
527
528 ret = match_string(array, n, string);
529 if (ret < 0)
530 ret = -ENOENT;
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535
536/**
537 * fwnode_property_get_reference_args() - Find a reference with arguments
538 * @fwnode: Firmware node where to look for the reference
539 * @prop: The name of the property
540 * @nargs_prop: The name of the property telling the number of
541 * arguments in the referred node. NULL if @nargs is known,
542 * otherwise @nargs is ignored. Only relevant on OF.
543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
544 * @index: Index of the reference, from zero onwards.
545 * @args: Result structure with reference and integer arguments.
546 * May be NULL.
547 *
548 * Obtain a reference based on a named property in an fwnode, with
549 * integer arguments.
550 *
551 * The caller is responsible for calling fwnode_handle_put() on the returned
552 * @args->fwnode pointer.
553 *
554 * Return: %0 on success
555 * %-ENOENT when the index is out of bounds, the index has an empty
556 * reference or the property was not found
557 * %-EINVAL on parse error
558 */
559int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
560 const char *prop, const char *nargs_prop,
561 unsigned int nargs, unsigned int index,
562 struct fwnode_reference_args *args)
563{
564 int ret;
565
566 if (IS_ERR_OR_NULL(fwnode))
567 return -ENOENT;
568
569 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
570 nargs, index, args);
571 if (ret == 0)
572 return ret;
573
574 if (IS_ERR_OR_NULL(fwnode->secondary))
575 return ret;
576
577 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
578 nargs, index, args);
579}
580EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
581
582/**
583 * fwnode_find_reference - Find named reference to a fwnode_handle
584 * @fwnode: Firmware node where to look for the reference
585 * @name: The name of the reference
586 * @index: Index of the reference
587 *
588 * @index can be used when the named reference holds a table of references.
589 *
590 * The caller is responsible for calling fwnode_handle_put() on the returned
591 * fwnode pointer.
592 *
593 * Return: a pointer to the reference fwnode, when found. Otherwise,
594 * returns an error pointer.
595 */
596struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
597 const char *name,
598 unsigned int index)
599{
600 struct fwnode_reference_args args;
601 int ret;
602
603 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
604 &args);
605 return ret ? ERR_PTR(ret) : args.fwnode;
606}
607EXPORT_SYMBOL_GPL(fwnode_find_reference);
608
609/**
610 * fwnode_get_name - Return the name of a node
611 * @fwnode: The firmware node
612 *
613 * Return: a pointer to the node name, or %NULL.
614 */
615const char *fwnode_get_name(const struct fwnode_handle *fwnode)
616{
617 return fwnode_call_ptr_op(fwnode, get_name);
618}
619EXPORT_SYMBOL_GPL(fwnode_get_name);
620
621/**
622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
623 * @fwnode: The firmware node
624 *
625 * Return: the prefix of a node, intended to be printed right before the node.
626 * The prefix works also as a separator between the nodes.
627 */
628const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
629{
630 return fwnode_call_ptr_op(fwnode, get_name_prefix);
631}
632
633/**
634 * fwnode_name_eq - Return true if node name is equal
635 * @fwnode: The firmware node
636 * @name: The name to which to compare the node name
637 *
638 * Compare the name provided as an argument to the name of the node, stopping
639 * the comparison at either NUL or '@' character, whichever comes first. This
640 * function is generally used for comparing node names while ignoring the
641 * possible unit address of the node.
642 *
643 * Return: true if the node name matches with the name provided in the @name
644 * argument, false otherwise.
645 */
646bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
647{
648 const char *node_name;
649 ptrdiff_t len;
650
651 node_name = fwnode_get_name(fwnode);
652 if (!node_name)
653 return false;
654
655 len = strchrnul(node_name, '@') - node_name;
656
657 return str_has_prefix(node_name, name) == len;
658}
659EXPORT_SYMBOL_GPL(fwnode_name_eq);
660
661/**
662 * fwnode_get_parent - Return parent firwmare node
663 * @fwnode: Firmware whose parent is retrieved
664 *
665 * The caller is responsible for calling fwnode_handle_put() on the returned
666 * fwnode pointer.
667 *
668 * Return: parent firmware node of the given node if possible or %NULL if no
669 * parent was available.
670 */
671struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
672{
673 return fwnode_call_ptr_op(fwnode, get_parent);
674}
675EXPORT_SYMBOL_GPL(fwnode_get_parent);
676
677/**
678 * fwnode_get_next_parent - Iterate to the node's parent
679 * @fwnode: Firmware whose parent is retrieved
680 *
681 * This is like fwnode_get_parent() except that it drops the refcount
682 * on the passed node, making it suitable for iterating through a
683 * node's parents.
684 *
685 * The caller is responsible for calling fwnode_handle_put() on the returned
686 * fwnode pointer. Note that this function also puts a reference to @fwnode
687 * unconditionally.
688 *
689 * Return: parent firmware node of the given node if possible or %NULL if no
690 * parent was available.
691 */
692struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
693{
694 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
695
696 fwnode_handle_put(fwnode);
697
698 return parent;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
701
702/**
703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
704 * @fwnode: firmware node
705 *
706 * Given a firmware node (@fwnode), this function finds its closest ancestor
707 * firmware node that has a corresponding struct device and returns that struct
708 * device.
709 *
710 * The caller is responsible for calling put_device() on the returned device
711 * pointer.
712 *
713 * Return: a pointer to the device of the @fwnode's closest ancestor.
714 */
715struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
716{
717 struct fwnode_handle *parent;
718 struct device *dev;
719
720 fwnode_for_each_parent_node(fwnode, parent) {
721 dev = get_dev_from_fwnode(parent);
722 if (dev) {
723 fwnode_handle_put(parent);
724 return dev;
725 }
726 }
727 return NULL;
728}
729
730/**
731 * fwnode_count_parents - Return the number of parents a node has
732 * @fwnode: The node the parents of which are to be counted
733 *
734 * Return: the number of parents a node has.
735 */
736unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
737{
738 struct fwnode_handle *parent;
739 unsigned int count = 0;
740
741 fwnode_for_each_parent_node(fwnode, parent)
742 count++;
743
744 return count;
745}
746EXPORT_SYMBOL_GPL(fwnode_count_parents);
747
748/**
749 * fwnode_get_nth_parent - Return an nth parent of a node
750 * @fwnode: The node the parent of which is requested
751 * @depth: Distance of the parent from the node
752 *
753 * The caller is responsible for calling fwnode_handle_put() on the returned
754 * fwnode pointer.
755 *
756 * Return: the nth parent of a node. If there is no parent at the requested
757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
759 */
760struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
761 unsigned int depth)
762{
763 struct fwnode_handle *parent;
764
765 if (depth == 0)
766 return fwnode_handle_get(fwnode);
767
768 fwnode_for_each_parent_node(fwnode, parent) {
769 if (--depth == 0)
770 return parent;
771 }
772 return NULL;
773}
774EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
775
776/**
777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
778 * @ancestor: Firmware which is tested for being an ancestor
779 * @child: Firmware which is tested for being the child
780 *
781 * A node is considered an ancestor of itself too.
782 *
783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
784 */
785bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
786{
787 struct fwnode_handle *parent;
788
789 if (IS_ERR_OR_NULL(ancestor))
790 return false;
791
792 if (child == ancestor)
793 return true;
794
795 fwnode_for_each_parent_node(child, parent) {
796 if (parent == ancestor) {
797 fwnode_handle_put(parent);
798 return true;
799 }
800 }
801 return false;
802}
803
804/**
805 * fwnode_get_next_child_node - Return the next child node handle for a node
806 * @fwnode: Firmware node to find the next child node for.
807 * @child: Handle to one of the node's child nodes or a %NULL handle.
808 *
809 * The caller is responsible for calling fwnode_handle_put() on the returned
810 * fwnode pointer. Note that this function also puts a reference to @child
811 * unconditionally.
812 */
813struct fwnode_handle *
814fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
815 struct fwnode_handle *child)
816{
817 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
818}
819EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
820
821/**
822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
823 * @fwnode: Firmware node to find the next child node for.
824 * @child: Handle to one of the node's child nodes or a %NULL handle.
825 *
826 * The caller is responsible for calling fwnode_handle_put() on the returned
827 * fwnode pointer. Note that this function also puts a reference to @child
828 * unconditionally.
829 */
830struct fwnode_handle *
831fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
832 struct fwnode_handle *child)
833{
834 struct fwnode_handle *next_child = child;
835
836 if (IS_ERR_OR_NULL(fwnode))
837 return NULL;
838
839 do {
840 next_child = fwnode_get_next_child_node(fwnode, next_child);
841 if (!next_child)
842 return NULL;
843 } while (!fwnode_device_is_available(next_child));
844
845 return next_child;
846}
847EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
848
849/**
850 * device_get_next_child_node - Return the next child node handle for a device
851 * @dev: Device to find the next child node for.
852 * @child: Handle to one of the device's child nodes or a %NULL handle.
853 *
854 * The caller is responsible for calling fwnode_handle_put() on the returned
855 * fwnode pointer. Note that this function also puts a reference to @child
856 * unconditionally.
857 */
858struct fwnode_handle *device_get_next_child_node(const struct device *dev,
859 struct fwnode_handle *child)
860{
861 const struct fwnode_handle *fwnode = dev_fwnode(dev);
862 struct fwnode_handle *next;
863
864 if (IS_ERR_OR_NULL(fwnode))
865 return NULL;
866
867 /* Try to find a child in primary fwnode */
868 next = fwnode_get_next_child_node(fwnode, child);
869 if (next)
870 return next;
871
872 /* When no more children in primary, continue with secondary */
873 return fwnode_get_next_child_node(fwnode->secondary, child);
874}
875EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877/**
878 * fwnode_get_named_child_node - Return first matching named child node handle
879 * @fwnode: Firmware node to find the named child node for.
880 * @childname: String to match child node name against.
881 *
882 * The caller is responsible for calling fwnode_handle_put() on the returned
883 * fwnode pointer.
884 */
885struct fwnode_handle *
886fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
887 const char *childname)
888{
889 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
890}
891EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
892
893/**
894 * device_get_named_child_node - Return first matching named child node handle
895 * @dev: Device to find the named child node for.
896 * @childname: String to match child node name against.
897 *
898 * The caller is responsible for calling fwnode_handle_put() on the returned
899 * fwnode pointer.
900 */
901struct fwnode_handle *device_get_named_child_node(const struct device *dev,
902 const char *childname)
903{
904 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
905}
906EXPORT_SYMBOL_GPL(device_get_named_child_node);
907
908/**
909 * fwnode_handle_get - Obtain a reference to a device node
910 * @fwnode: Pointer to the device node to obtain the reference to.
911 *
912 * The caller is responsible for calling fwnode_handle_put() on the returned
913 * fwnode pointer.
914 *
915 * Return: the fwnode handle.
916 */
917struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
918{
919 if (!fwnode_has_op(fwnode, get))
920 return fwnode;
921
922 return fwnode_call_ptr_op(fwnode, get);
923}
924EXPORT_SYMBOL_GPL(fwnode_handle_get);
925
926/**
927 * fwnode_handle_put - Drop reference to a device node
928 * @fwnode: Pointer to the device node to drop the reference to.
929 *
930 * This has to be used when terminating device_for_each_child_node() iteration
931 * with break or return to prevent stale device node references from being left
932 * behind.
933 */
934void fwnode_handle_put(struct fwnode_handle *fwnode)
935{
936 fwnode_call_void_op(fwnode, put);
937}
938EXPORT_SYMBOL_GPL(fwnode_handle_put);
939
940/**
941 * fwnode_device_is_available - check if a device is available for use
942 * @fwnode: Pointer to the fwnode of the device.
943 *
944 * Return: true if device is available for use. Otherwise, returns false.
945 *
946 * For fwnode node types that don't implement the .device_is_available()
947 * operation, this function returns true.
948 */
949bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
950{
951 if (IS_ERR_OR_NULL(fwnode))
952 return false;
953
954 if (!fwnode_has_op(fwnode, device_is_available))
955 return true;
956
957 return fwnode_call_bool_op(fwnode, device_is_available);
958}
959EXPORT_SYMBOL_GPL(fwnode_device_is_available);
960
961/**
962 * device_get_child_node_count - return the number of child nodes for device
963 * @dev: Device to cound the child nodes for
964 *
965 * Return: the number of child nodes for a given device.
966 */
967unsigned int device_get_child_node_count(const struct device *dev)
968{
969 struct fwnode_handle *child;
970 unsigned int count = 0;
971
972 device_for_each_child_node(dev, child)
973 count++;
974
975 return count;
976}
977EXPORT_SYMBOL_GPL(device_get_child_node_count);
978
979bool device_dma_supported(const struct device *dev)
980{
981 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
982}
983EXPORT_SYMBOL_GPL(device_dma_supported);
984
985enum dev_dma_attr device_get_dma_attr(const struct device *dev)
986{
987 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
988 return DEV_DMA_NOT_SUPPORTED;
989
990 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
991}
992EXPORT_SYMBOL_GPL(device_get_dma_attr);
993
994/**
995 * fwnode_get_phy_mode - Get phy mode for given firmware node
996 * @fwnode: Pointer to the given node
997 *
998 * The function gets phy interface string from property 'phy-mode' or
999 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000 * error case.
1001 */
1002int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003{
1004 const char *pm;
1005 int err, i;
1006
1007 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008 if (err < 0)
1009 err = fwnode_property_read_string(fwnode,
1010 "phy-connection-type", &pm);
1011 if (err < 0)
1012 return err;
1013
1014 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015 if (!strcasecmp(pm, phy_modes(i)))
1016 return i;
1017
1018 return -ENODEV;
1019}
1020EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022/**
1023 * device_get_phy_mode - Get phy mode for given device
1024 * @dev: Pointer to the given device
1025 *
1026 * The function gets phy interface string from property 'phy-mode' or
1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028 * error case.
1029 */
1030int device_get_phy_mode(struct device *dev)
1031{
1032 return fwnode_get_phy_mode(dev_fwnode(dev));
1033}
1034EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036/**
1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038 * @fwnode: Pointer to the firmware node
1039 * @index: Index of the IO range
1040 *
1041 * Return: a pointer to the mapped memory.
1042 */
1043void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044{
1045 return fwnode_call_ptr_op(fwnode, iomap, index);
1046}
1047EXPORT_SYMBOL(fwnode_iomap);
1048
1049/**
1050 * fwnode_irq_get - Get IRQ directly from a fwnode
1051 * @fwnode: Pointer to the firmware node
1052 * @index: Zero-based index of the IRQ
1053 *
1054 * Return: Linux IRQ number on success. Negative errno on failure.
1055 */
1056int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057{
1058 int ret;
1059
1060 ret = fwnode_call_int_op(fwnode, irq_get, index);
1061 /* We treat mapping errors as invalid case */
1062 if (ret == 0)
1063 return -EINVAL;
1064
1065 return ret;
1066}
1067EXPORT_SYMBOL(fwnode_irq_get);
1068
1069/**
1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071 * @fwnode: Pointer to the firmware node
1072 * @name: IRQ name
1073 *
1074 * Description:
1075 * Find a match to the string @name in the 'interrupt-names' string array
1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077 * number of the IRQ resource corresponding to the index of the matched
1078 * string.
1079 *
1080 * Return: Linux IRQ number on success, or negative errno otherwise.
1081 */
1082int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083{
1084 int index;
1085
1086 if (!name)
1087 return -EINVAL;
1088
1089 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1090 if (index < 0)
1091 return index;
1092
1093 return fwnode_irq_get(fwnode, index);
1094}
1095EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097/**
1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099 * @fwnode: Pointer to the parent firmware node
1100 * @prev: Previous endpoint node or %NULL to get the first
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer. Note that this function also puts a reference to @prev
1104 * unconditionally.
1105 *
1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107 * are available.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111 struct fwnode_handle *prev)
1112{
1113 struct fwnode_handle *ep, *port_parent = NULL;
1114 const struct fwnode_handle *parent;
1115
1116 /*
1117 * If this function is in a loop and the previous iteration returned
1118 * an endpoint from fwnode->secondary, then we need to use the secondary
1119 * as parent rather than @fwnode.
1120 */
1121 if (prev) {
1122 port_parent = fwnode_graph_get_port_parent(prev);
1123 parent = port_parent;
1124 } else {
1125 parent = fwnode;
1126 }
1127 if (IS_ERR_OR_NULL(parent))
1128 return NULL;
1129
1130 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131 if (ep)
1132 goto out_put_port_parent;
1133
1134 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136out_put_port_parent:
1137 fwnode_handle_put(port_parent);
1138 return ep;
1139}
1140EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142/**
1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144 * @endpoint: Endpoint firmware node of the port
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 *
1149 * Return: the firmware node of the device the @endpoint belongs to.
1150 */
1151struct fwnode_handle *
1152fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153{
1154 struct fwnode_handle *port, *parent;
1155
1156 port = fwnode_get_parent(endpoint);
1157 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159 fwnode_handle_put(port);
1160
1161 return parent;
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165/**
1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168 *
1169 * Extracts firmware node of a remote device the @fwnode points to.
1170 *
1171 * The caller is responsible for calling fwnode_handle_put() on the returned
1172 * fwnode pointer.
1173 */
1174struct fwnode_handle *
1175fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176{
1177 struct fwnode_handle *endpoint, *parent;
1178
1179 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180 parent = fwnode_graph_get_port_parent(endpoint);
1181
1182 fwnode_handle_put(endpoint);
1183
1184 return parent;
1185}
1186EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188/**
1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191 *
1192 * Extracts firmware node of a remote port the @fwnode points to.
1193 *
1194 * The caller is responsible for calling fwnode_handle_put() on the returned
1195 * fwnode pointer.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199{
1200 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201}
1202EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204/**
1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207 *
1208 * Extracts firmware node of a remote endpoint the @fwnode points to.
1209 *
1210 * The caller is responsible for calling fwnode_handle_put() on the returned
1211 * fwnode pointer.
1212 */
1213struct fwnode_handle *
1214fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215{
1216 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217}
1218EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221{
1222 struct fwnode_handle *dev_node;
1223 bool available;
1224
1225 dev_node = fwnode_graph_get_remote_port_parent(ep);
1226 available = fwnode_device_is_available(dev_node);
1227 fwnode_handle_put(dev_node);
1228
1229 return available;
1230}
1231
1232/**
1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234 * @fwnode: parent fwnode_handle containing the graph
1235 * @port: identifier of the port node
1236 * @endpoint: identifier of the endpoint node under the port node
1237 * @flags: fwnode lookup flags
1238 *
1239 * The caller is responsible for calling fwnode_handle_put() on the returned
1240 * fwnode pointer.
1241 *
1242 * Return: the fwnode handle of the local endpoint corresponding the port and
1243 * endpoint IDs or %NULL if not found.
1244 *
1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246 * has not been found, look for the closest endpoint ID greater than the
1247 * specified one and return the endpoint that corresponds to it, if present.
1248 *
1249 * Does not return endpoints that belong to disabled devices or endpoints that
1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251 */
1252struct fwnode_handle *
1253fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254 u32 port, u32 endpoint, unsigned long flags)
1255{
1256 struct fwnode_handle *ep, *best_ep = NULL;
1257 unsigned int best_ep_id = 0;
1258 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261 fwnode_graph_for_each_endpoint(fwnode, ep) {
1262 struct fwnode_endpoint fwnode_ep = { 0 };
1263 int ret;
1264
1265 if (enabled_only && !fwnode_graph_remote_available(ep))
1266 continue;
1267
1268 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269 if (ret < 0)
1270 continue;
1271
1272 if (fwnode_ep.port != port)
1273 continue;
1274
1275 if (fwnode_ep.id == endpoint)
1276 return ep;
1277
1278 if (!endpoint_next)
1279 continue;
1280
1281 /*
1282 * If the endpoint that has just been found is not the first
1283 * matching one and the ID of the one found previously is closer
1284 * to the requested endpoint ID, skip it.
1285 */
1286 if (fwnode_ep.id < endpoint ||
1287 (best_ep && best_ep_id < fwnode_ep.id))
1288 continue;
1289
1290 fwnode_handle_put(best_ep);
1291 best_ep = fwnode_handle_get(ep);
1292 best_ep_id = fwnode_ep.id;
1293 }
1294
1295 return best_ep;
1296}
1297EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299/**
1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301 * @fwnode: The node related to a device
1302 * @flags: fwnode lookup flags
1303 * Count endpoints in a device node.
1304 *
1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306 * and endpoints connected to disabled devices are counted.
1307 */
1308unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309 unsigned long flags)
1310{
1311 struct fwnode_handle *ep;
1312 unsigned int count = 0;
1313
1314 fwnode_graph_for_each_endpoint(fwnode, ep) {
1315 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316 fwnode_graph_remote_available(ep))
1317 count++;
1318 }
1319
1320 return count;
1321}
1322EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324/**
1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326 * @fwnode: pointer to endpoint fwnode_handle
1327 * @endpoint: pointer to the fwnode endpoint data structure
1328 *
1329 * Parse @fwnode representing a graph endpoint node and store the
1330 * information in @endpoint. The caller must hold a reference to
1331 * @fwnode.
1332 */
1333int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334 struct fwnode_endpoint *endpoint)
1335{
1336 memset(endpoint, 0, sizeof(*endpoint));
1337
1338 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339}
1340EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342const void *device_get_match_data(const struct device *dev)
1343{
1344 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345}
1346EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349 const char *con_id, void *data,
1350 devcon_match_fn_t match,
1351 void **matches,
1352 unsigned int matches_len)
1353{
1354 struct fwnode_handle *node;
1355 struct fwnode_handle *ep;
1356 unsigned int count = 0;
1357 void *ret;
1358
1359 fwnode_graph_for_each_endpoint(fwnode, ep) {
1360 if (matches && count >= matches_len) {
1361 fwnode_handle_put(ep);
1362 break;
1363 }
1364
1365 node = fwnode_graph_get_remote_port_parent(ep);
1366 if (!fwnode_device_is_available(node)) {
1367 fwnode_handle_put(node);
1368 continue;
1369 }
1370
1371 ret = match(node, con_id, data);
1372 fwnode_handle_put(node);
1373 if (ret) {
1374 if (matches)
1375 matches[count] = ret;
1376 count++;
1377 }
1378 }
1379 return count;
1380}
1381
1382static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383 const char *con_id, void *data,
1384 devcon_match_fn_t match,
1385 void **matches,
1386 unsigned int matches_len)
1387{
1388 struct fwnode_handle *node;
1389 unsigned int count = 0;
1390 unsigned int i;
1391 void *ret;
1392
1393 for (i = 0; ; i++) {
1394 if (matches && count >= matches_len)
1395 break;
1396
1397 node = fwnode_find_reference(fwnode, con_id, i);
1398 if (IS_ERR(node))
1399 break;
1400
1401 ret = match(node, NULL, data);
1402 fwnode_handle_put(node);
1403 if (ret) {
1404 if (matches)
1405 matches[count] = ret;
1406 count++;
1407 }
1408 }
1409
1410 return count;
1411}
1412
1413/**
1414 * fwnode_connection_find_match - Find connection from a device node
1415 * @fwnode: Device node with the connection
1416 * @con_id: Identifier for the connection
1417 * @data: Data for the match function
1418 * @match: Function to check and convert the connection description
1419 *
1420 * Find a connection with unique identifier @con_id between @fwnode and another
1421 * device node. @match will be used to convert the connection description to
1422 * data the caller is expecting to be returned.
1423 */
1424void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425 const char *con_id, void *data,
1426 devcon_match_fn_t match)
1427{
1428 unsigned int count;
1429 void *ret;
1430
1431 if (!fwnode || !match)
1432 return NULL;
1433
1434 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435 if (count)
1436 return ret;
1437
1438 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439 return count ? ret : NULL;
1440}
1441EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443/**
1444 * fwnode_connection_find_matches - Find connections from a device node
1445 * @fwnode: Device node with the connection
1446 * @con_id: Identifier for the connection
1447 * @data: Data for the match function
1448 * @match: Function to check and convert the connection description
1449 * @matches: (Optional) array of pointers to fill with matches
1450 * @matches_len: Length of @matches
1451 *
1452 * Find up to @matches_len connections with unique identifier @con_id between
1453 * @fwnode and other device nodes. @match will be used to convert the
1454 * connection description to data the caller is expecting to be returned
1455 * through the @matches array.
1456 *
1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458 * matches is returned.
1459 *
1460 * Return: Number of matches resolved, or negative errno.
1461 */
1462int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463 const char *con_id, void *data,
1464 devcon_match_fn_t match,
1465 void **matches, unsigned int matches_len)
1466{
1467 unsigned int count_graph;
1468 unsigned int count_ref;
1469
1470 if (!fwnode || !match)
1471 return -EINVAL;
1472
1473 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474 matches, matches_len);
1475
1476 if (matches) {
1477 matches += count_graph;
1478 matches_len -= count_graph;
1479 }
1480
1481 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482 matches, matches_len);
1483
1484 return count_graph + count_ref;
1485}
1486EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);