Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566{
567 return fwnode_call_ptr_op(fwnode, get_name);
568}
569EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571/**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579{
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581}
582
583/**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591{
592 return fwnode_call_ptr_op(fwnode, get_parent);
593}
594EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596/**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608{
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614}
615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617/**
618 * fwnode_count_parents - Return the number of parents a node has
619 * @fwnode: The node the parents of which are to be counted
620 *
621 * Returns the number of parents a node has.
622 */
623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624{
625 struct fwnode_handle *__fwnode;
626 unsigned int count;
627
628 __fwnode = fwnode_get_parent(fwnode);
629
630 for (count = 0; __fwnode; count++)
631 __fwnode = fwnode_get_next_parent(__fwnode);
632
633 return count;
634}
635EXPORT_SYMBOL_GPL(fwnode_count_parents);
636
637/**
638 * fwnode_get_nth_parent - Return an nth parent of a node
639 * @fwnode: The node the parent of which is requested
640 * @depth: Distance of the parent from the node
641 *
642 * Returns the nth parent of a node. If there is no parent at the requested
643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645 *
646 * The caller is responsible for calling fwnode_handle_put() for the returned
647 * node.
648 */
649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650 unsigned int depth)
651{
652 unsigned int i;
653
654 fwnode_handle_get(fwnode);
655
656 for (i = 0; i < depth && fwnode; i++)
657 fwnode = fwnode_get_next_parent(fwnode);
658
659 return fwnode;
660}
661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662
663/**
664 * fwnode_get_next_child_node - Return the next child node handle for a node
665 * @fwnode: Firmware node to find the next child node for.
666 * @child: Handle to one of the node's child nodes or a %NULL handle.
667 */
668struct fwnode_handle *
669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670 struct fwnode_handle *child)
671{
672 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673}
674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675
676/**
677 * fwnode_get_next_available_child_node - Return the next
678 * available child node handle for a node
679 * @fwnode: Firmware node to find the next child node for.
680 * @child: Handle to one of the node's child nodes or a %NULL handle.
681 */
682struct fwnode_handle *
683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684 struct fwnode_handle *child)
685{
686 struct fwnode_handle *next_child = child;
687
688 if (!fwnode)
689 return NULL;
690
691 do {
692 next_child = fwnode_get_next_child_node(fwnode, next_child);
693
694 if (!next_child || fwnode_device_is_available(next_child))
695 break;
696 } while (next_child);
697
698 return next_child;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701
702/**
703 * device_get_next_child_node - Return the next child node handle for a device
704 * @dev: Device to find the next child node for.
705 * @child: Handle to one of the device's child nodes or a null handle.
706 */
707struct fwnode_handle *device_get_next_child_node(struct device *dev,
708 struct fwnode_handle *child)
709{
710 struct acpi_device *adev = ACPI_COMPANION(dev);
711 struct fwnode_handle *fwnode = NULL, *next;
712
713 if (dev->of_node)
714 fwnode = &dev->of_node->fwnode;
715 else if (adev)
716 fwnode = acpi_fwnode_handle(adev);
717
718 /* Try to find a child in primary fwnode */
719 next = fwnode_get_next_child_node(fwnode, child);
720 if (next)
721 return next;
722
723 /* When no more children in primary, continue with secondary */
724 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725 next = fwnode_get_next_child_node(fwnode->secondary, child);
726
727 return next;
728}
729EXPORT_SYMBOL_GPL(device_get_next_child_node);
730
731/**
732 * fwnode_get_named_child_node - Return first matching named child node handle
733 * @fwnode: Firmware node to find the named child node for.
734 * @childname: String to match child node name against.
735 */
736struct fwnode_handle *
737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738 const char *childname)
739{
740 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741}
742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743
744/**
745 * device_get_named_child_node - Return first matching named child node handle
746 * @dev: Device to find the named child node for.
747 * @childname: String to match child node name against.
748 */
749struct fwnode_handle *device_get_named_child_node(struct device *dev,
750 const char *childname)
751{
752 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753}
754EXPORT_SYMBOL_GPL(device_get_named_child_node);
755
756/**
757 * fwnode_handle_get - Obtain a reference to a device node
758 * @fwnode: Pointer to the device node to obtain the reference to.
759 *
760 * Returns the fwnode handle.
761 */
762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763{
764 if (!fwnode_has_op(fwnode, get))
765 return fwnode;
766
767 return fwnode_call_ptr_op(fwnode, get);
768}
769EXPORT_SYMBOL_GPL(fwnode_handle_get);
770
771/**
772 * fwnode_handle_put - Drop reference to a device node
773 * @fwnode: Pointer to the device node to drop the reference to.
774 *
775 * This has to be used when terminating device_for_each_child_node() iteration
776 * with break or return to prevent stale device node references from being left
777 * behind.
778 */
779void fwnode_handle_put(struct fwnode_handle *fwnode)
780{
781 fwnode_call_void_op(fwnode, put);
782}
783EXPORT_SYMBOL_GPL(fwnode_handle_put);
784
785/**
786 * fwnode_device_is_available - check if a device is available for use
787 * @fwnode: Pointer to the fwnode of the device.
788 */
789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790{
791 return fwnode_call_bool_op(fwnode, device_is_available);
792}
793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794
795/**
796 * device_get_child_node_count - return the number of child nodes for device
797 * @dev: Device to cound the child nodes for
798 */
799unsigned int device_get_child_node_count(struct device *dev)
800{
801 struct fwnode_handle *child;
802 unsigned int count = 0;
803
804 device_for_each_child_node(dev, child)
805 count++;
806
807 return count;
808}
809EXPORT_SYMBOL_GPL(device_get_child_node_count);
810
811bool device_dma_supported(struct device *dev)
812{
813 /* For DT, this is always supported.
814 * For ACPI, this depends on CCA, which
815 * is determined by the acpi_dma_supported().
816 */
817 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818 return true;
819
820 return acpi_dma_supported(ACPI_COMPANION(dev));
821}
822EXPORT_SYMBOL_GPL(device_dma_supported);
823
824enum dev_dma_attr device_get_dma_attr(struct device *dev)
825{
826 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827
828 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829 if (of_dma_is_coherent(dev->of_node))
830 attr = DEV_DMA_COHERENT;
831 else
832 attr = DEV_DMA_NON_COHERENT;
833 } else
834 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835
836 return attr;
837}
838EXPORT_SYMBOL_GPL(device_get_dma_attr);
839
840/**
841 * fwnode_get_phy_mode - Get phy mode for given firmware node
842 * @fwnode: Pointer to the given node
843 *
844 * The function gets phy interface string from property 'phy-mode' or
845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
846 * error case.
847 */
848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849{
850 const char *pm;
851 int err, i;
852
853 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854 if (err < 0)
855 err = fwnode_property_read_string(fwnode,
856 "phy-connection-type", &pm);
857 if (err < 0)
858 return err;
859
860 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861 if (!strcasecmp(pm, phy_modes(i)))
862 return i;
863
864 return -ENODEV;
865}
866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867
868/**
869 * device_get_phy_mode - Get phy mode for given device
870 * @dev: Pointer to the given device
871 *
872 * The function gets phy interface string from property 'phy-mode' or
873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
874 * error case.
875 */
876int device_get_phy_mode(struct device *dev)
877{
878 return fwnode_get_phy_mode(dev_fwnode(dev));
879}
880EXPORT_SYMBOL_GPL(device_get_phy_mode);
881
882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883 const char *name, char *addr,
884 int alen)
885{
886 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887
888 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889 return addr;
890 return NULL;
891}
892
893/**
894 * fwnode_get_mac_address - Get the MAC from the firmware node
895 * @fwnode: Pointer to the firmware node
896 * @addr: Address of buffer to store the MAC in
897 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
898 *
899 * Search the firmware node for the best MAC address to use. 'mac-address' is
900 * checked first, because that is supposed to contain to "most recent" MAC
901 * address. If that isn't set, then 'local-mac-address' is checked next,
902 * because that is the default address. If that isn't set, then the obsolete
903 * 'address' is checked, just in case we're using an old device tree.
904 *
905 * Note that the 'address' property is supposed to contain a virtual address of
906 * the register set, but some DTS files have redefined that property to be the
907 * MAC address.
908 *
909 * All-zero MAC addresses are rejected, because those could be properties that
910 * exist in the firmware tables, but were not updated by the firmware. For
911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
912 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914 * exists but is all zeros.
915*/
916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917{
918 char *res;
919
920 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921 if (res)
922 return res;
923
924 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925 if (res)
926 return res;
927
928 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929}
930EXPORT_SYMBOL(fwnode_get_mac_address);
931
932/**
933 * device_get_mac_address - Get the MAC for a given device
934 * @dev: Pointer to the device
935 * @addr: Address of buffer to store the MAC in
936 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
937 */
938void *device_get_mac_address(struct device *dev, char *addr, int alen)
939{
940 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941}
942EXPORT_SYMBOL(device_get_mac_address);
943
944/**
945 * fwnode_irq_get - Get IRQ directly from a fwnode
946 * @fwnode: Pointer to the firmware node
947 * @index: Zero-based index of the IRQ
948 *
949 * Returns Linux IRQ number on success. Other values are determined
950 * accordingly to acpi_/of_ irq_get() operation.
951 */
952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953{
954 struct device_node *of_node = to_of_node(fwnode);
955 struct resource res;
956 int ret;
957
958 if (IS_ENABLED(CONFIG_OF) && of_node)
959 return of_irq_get(of_node, index);
960
961 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962 if (ret)
963 return ret;
964
965 return res.start;
966}
967EXPORT_SYMBOL(fwnode_irq_get);
968
969/**
970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971 * @fwnode: Pointer to the parent firmware node
972 * @prev: Previous endpoint node or %NULL to get the first
973 *
974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975 * are available.
976 */
977struct fwnode_handle *
978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979 struct fwnode_handle *prev)
980{
981 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982}
983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984
985/**
986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987 * @endpoint: Endpoint firmware node of the port
988 *
989 * Return: the firmware node of the device the @endpoint belongs to.
990 */
991struct fwnode_handle *
992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993{
994 struct fwnode_handle *port, *parent;
995
996 port = fwnode_get_parent(endpoint);
997 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998
999 fwnode_handle_put(port);
1000
1001 return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014 struct fwnode_handle *endpoint, *parent;
1015
1016 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017 parent = fwnode_graph_get_port_parent(endpoint);
1018
1019 fwnode_handle_put(endpoint);
1020
1021 return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 * to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062 u32 endpoint_id)
1063{
1064 struct fwnode_handle *endpoint = NULL;
1065
1066 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067 struct fwnode_endpoint fwnode_ep;
1068 struct fwnode_handle *remote;
1069 int ret;
1070
1071 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072 if (ret < 0)
1073 continue;
1074
1075 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076 continue;
1077
1078 remote = fwnode_graph_get_remote_port_parent(endpoint);
1079 if (!remote)
1080 return NULL;
1081
1082 return fwnode_device_is_available(remote) ? remote : NULL;
1083 }
1084
1085 return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111 u32 port, u32 endpoint, unsigned long flags)
1112{
1113 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114 unsigned int best_ep_id = 0;
1115 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119 struct fwnode_endpoint fwnode_ep = { 0 };
1120 int ret;
1121
1122 if (enabled_only) {
1123 struct fwnode_handle *dev_node;
1124 bool available;
1125
1126 dev_node = fwnode_graph_get_remote_port_parent(ep);
1127 available = fwnode_device_is_available(dev_node);
1128 fwnode_handle_put(dev_node);
1129 if (!available)
1130 continue;
1131 }
1132
1133 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134 if (ret < 0)
1135 continue;
1136
1137 if (fwnode_ep.port != port)
1138 continue;
1139
1140 if (fwnode_ep.id == endpoint)
1141 return ep;
1142
1143 if (!endpoint_next)
1144 continue;
1145
1146 /*
1147 * If the endpoint that has just been found is not the first
1148 * matching one and the ID of the one found previously is closer
1149 * to the requested endpoint ID, skip it.
1150 */
1151 if (fwnode_ep.id < endpoint ||
1152 (best_ep && best_ep_id < fwnode_ep.id))
1153 continue;
1154
1155 fwnode_handle_put(best_ep);
1156 best_ep = fwnode_handle_get(ep);
1157 best_ep_id = fwnode_ep.id;
1158 }
1159
1160 return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174 struct fwnode_endpoint *endpoint)
1175{
1176 memset(endpoint, 0, sizeof(*endpoint));
1177
1178 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct property_set {
22 struct device *dev;
23 struct fwnode_handle fwnode;
24 const struct property_entry *properties;
25};
26
27static const struct fwnode_operations pset_fwnode_ops;
28
29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30{
31 return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32}
33
34#define to_pset_node(__fwnode) \
35 ({ \
36 typeof(__fwnode) __to_pset_node_fwnode = __fwnode; \
37 \
38 is_pset_node(__to_pset_node_fwnode) ? \
39 container_of(__to_pset_node_fwnode, \
40 struct property_set, fwnode) : \
41 NULL; \
42 })
43
44static const struct property_entry *
45pset_prop_get(const struct property_set *pset, const char *name)
46{
47 const struct property_entry *prop;
48
49 if (!pset || !pset->properties)
50 return NULL;
51
52 for (prop = pset->properties; prop->name; prop++)
53 if (!strcmp(name, prop->name))
54 return prop;
55
56 return NULL;
57}
58
59static const void *pset_prop_find(const struct property_set *pset,
60 const char *propname, size_t length)
61{
62 const struct property_entry *prop;
63 const void *pointer;
64
65 prop = pset_prop_get(pset, propname);
66 if (!prop)
67 return ERR_PTR(-EINVAL);
68 if (prop->is_array)
69 pointer = prop->pointer.raw_data;
70 else
71 pointer = &prop->value.raw_data;
72 if (!pointer)
73 return ERR_PTR(-ENODATA);
74 if (length > prop->length)
75 return ERR_PTR(-EOVERFLOW);
76 return pointer;
77}
78
79static int pset_prop_read_u8_array(const struct property_set *pset,
80 const char *propname,
81 u8 *values, size_t nval)
82{
83 const void *pointer;
84 size_t length = nval * sizeof(*values);
85
86 pointer = pset_prop_find(pset, propname, length);
87 if (IS_ERR(pointer))
88 return PTR_ERR(pointer);
89
90 memcpy(values, pointer, length);
91 return 0;
92}
93
94static int pset_prop_read_u16_array(const struct property_set *pset,
95 const char *propname,
96 u16 *values, size_t nval)
97{
98 const void *pointer;
99 size_t length = nval * sizeof(*values);
100
101 pointer = pset_prop_find(pset, propname, length);
102 if (IS_ERR(pointer))
103 return PTR_ERR(pointer);
104
105 memcpy(values, pointer, length);
106 return 0;
107}
108
109static int pset_prop_read_u32_array(const struct property_set *pset,
110 const char *propname,
111 u32 *values, size_t nval)
112{
113 const void *pointer;
114 size_t length = nval * sizeof(*values);
115
116 pointer = pset_prop_find(pset, propname, length);
117 if (IS_ERR(pointer))
118 return PTR_ERR(pointer);
119
120 memcpy(values, pointer, length);
121 return 0;
122}
123
124static int pset_prop_read_u64_array(const struct property_set *pset,
125 const char *propname,
126 u64 *values, size_t nval)
127{
128 const void *pointer;
129 size_t length = nval * sizeof(*values);
130
131 pointer = pset_prop_find(pset, propname, length);
132 if (IS_ERR(pointer))
133 return PTR_ERR(pointer);
134
135 memcpy(values, pointer, length);
136 return 0;
137}
138
139static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 const char *propname, size_t length)
141{
142 const struct property_entry *prop;
143
144 prop = pset_prop_get(pset, propname);
145 if (!prop)
146 return -EINVAL;
147
148 return prop->length / length;
149}
150
151static int pset_prop_read_string_array(const struct property_set *pset,
152 const char *propname,
153 const char **strings, size_t nval)
154{
155 const struct property_entry *prop;
156 const void *pointer;
157 size_t array_len, length;
158
159 /* Find out the array length. */
160 prop = pset_prop_get(pset, propname);
161 if (!prop)
162 return -EINVAL;
163
164 if (!prop->is_array)
165 /* The array length for a non-array string property is 1. */
166 array_len = 1;
167 else
168 /* Find the length of an array. */
169 array_len = pset_prop_count_elems_of_size(pset, propname,
170 sizeof(const char *));
171
172 /* Return how many there are if strings is NULL. */
173 if (!strings)
174 return array_len;
175
176 array_len = min(nval, array_len);
177 length = array_len * sizeof(*strings);
178
179 pointer = pset_prop_find(pset, propname, length);
180 if (IS_ERR(pointer))
181 return PTR_ERR(pointer);
182
183 memcpy(strings, pointer, length);
184
185 return array_len;
186}
187
188struct fwnode_handle *dev_fwnode(struct device *dev)
189{
190 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
191 &dev->of_node->fwnode : dev->fwnode;
192}
193EXPORT_SYMBOL_GPL(dev_fwnode);
194
195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 const char *propname)
197{
198 return !!pset_prop_get(to_pset_node(fwnode), propname);
199}
200
201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 const char *propname,
203 unsigned int elem_size, void *val,
204 size_t nval)
205{
206 const struct property_set *node = to_pset_node(fwnode);
207
208 if (!val)
209 return pset_prop_count_elems_of_size(node, propname, elem_size);
210
211 switch (elem_size) {
212 case sizeof(u8):
213 return pset_prop_read_u8_array(node, propname, val, nval);
214 case sizeof(u16):
215 return pset_prop_read_u16_array(node, propname, val, nval);
216 case sizeof(u32):
217 return pset_prop_read_u32_array(node, propname, val, nval);
218 case sizeof(u64):
219 return pset_prop_read_u64_array(node, propname, val, nval);
220 }
221
222 return -ENXIO;
223}
224
225static int
226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
227 const char *propname,
228 const char **val, size_t nval)
229{
230 return pset_prop_read_string_array(to_pset_node(fwnode), propname,
231 val, nval);
232}
233
234static const struct fwnode_operations pset_fwnode_ops = {
235 .property_present = pset_fwnode_property_present,
236 .property_read_int_array = pset_fwnode_read_int_array,
237 .property_read_string_array = pset_fwnode_property_read_string_array,
238};
239
240/**
241 * device_property_present - check if a property of a device is present
242 * @dev: Device whose property is being checked
243 * @propname: Name of the property
244 *
245 * Check if property @propname is present in the device firmware description.
246 */
247bool device_property_present(struct device *dev, const char *propname)
248{
249 return fwnode_property_present(dev_fwnode(dev), propname);
250}
251EXPORT_SYMBOL_GPL(device_property_present);
252
253/**
254 * fwnode_property_present - check if a property of a firmware node is present
255 * @fwnode: Firmware node whose property to check
256 * @propname: Name of the property
257 */
258bool fwnode_property_present(const struct fwnode_handle *fwnode,
259 const char *propname)
260{
261 bool ret;
262
263 ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
265 !IS_ERR_OR_NULL(fwnode->secondary))
266 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267 propname);
268 return ret;
269}
270EXPORT_SYMBOL_GPL(fwnode_property_present);
271
272/**
273 * device_property_read_u8_array - return a u8 array property of a device
274 * @dev: Device to get the property of
275 * @propname: Name of the property
276 * @val: The values are stored here or %NULL to return the number of values
277 * @nval: Size of the @val array
278 *
279 * Function reads an array of u8 properties with @propname from the device
280 * firmware description and stores them to @val if found.
281 *
282 * Return: number of values if @val was %NULL,
283 * %0 if the property was found (success),
284 * %-EINVAL if given arguments are not valid,
285 * %-ENODATA if the property does not have a value,
286 * %-EPROTO if the property is not an array of numbers,
287 * %-EOVERFLOW if the size of the property is not as expected.
288 * %-ENXIO if no suitable firmware interface is present.
289 */
290int device_property_read_u8_array(struct device *dev, const char *propname,
291 u8 *val, size_t nval)
292{
293 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294}
295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
296
297/**
298 * device_property_read_u16_array - return a u16 array property of a device
299 * @dev: Device to get the property of
300 * @propname: Name of the property
301 * @val: The values are stored here or %NULL to return the number of values
302 * @nval: Size of the @val array
303 *
304 * Function reads an array of u16 properties with @propname from the device
305 * firmware description and stores them to @val if found.
306 *
307 * Return: number of values if @val was %NULL,
308 * %0 if the property was found (success),
309 * %-EINVAL if given arguments are not valid,
310 * %-ENODATA if the property does not have a value,
311 * %-EPROTO if the property is not an array of numbers,
312 * %-EOVERFLOW if the size of the property is not as expected.
313 * %-ENXIO if no suitable firmware interface is present.
314 */
315int device_property_read_u16_array(struct device *dev, const char *propname,
316 u16 *val, size_t nval)
317{
318 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319}
320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
321
322/**
323 * device_property_read_u32_array - return a u32 array property of a device
324 * @dev: Device to get the property of
325 * @propname: Name of the property
326 * @val: The values are stored here or %NULL to return the number of values
327 * @nval: Size of the @val array
328 *
329 * Function reads an array of u32 properties with @propname from the device
330 * firmware description and stores them to @val if found.
331 *
332 * Return: number of values if @val was %NULL,
333 * %0 if the property was found (success),
334 * %-EINVAL if given arguments are not valid,
335 * %-ENODATA if the property does not have a value,
336 * %-EPROTO if the property is not an array of numbers,
337 * %-EOVERFLOW if the size of the property is not as expected.
338 * %-ENXIO if no suitable firmware interface is present.
339 */
340int device_property_read_u32_array(struct device *dev, const char *propname,
341 u32 *val, size_t nval)
342{
343 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344}
345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
346
347/**
348 * device_property_read_u64_array - return a u64 array property of a device
349 * @dev: Device to get the property of
350 * @propname: Name of the property
351 * @val: The values are stored here or %NULL to return the number of values
352 * @nval: Size of the @val array
353 *
354 * Function reads an array of u64 properties with @propname from the device
355 * firmware description and stores them to @val if found.
356 *
357 * Return: number of values if @val was %NULL,
358 * %0 if the property was found (success),
359 * %-EINVAL if given arguments are not valid,
360 * %-ENODATA if the property does not have a value,
361 * %-EPROTO if the property is not an array of numbers,
362 * %-EOVERFLOW if the size of the property is not as expected.
363 * %-ENXIO if no suitable firmware interface is present.
364 */
365int device_property_read_u64_array(struct device *dev, const char *propname,
366 u64 *val, size_t nval)
367{
368 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369}
370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
371
372/**
373 * device_property_read_string_array - return a string array property of device
374 * @dev: Device to get the property of
375 * @propname: Name of the property
376 * @val: The values are stored here or %NULL to return the number of values
377 * @nval: Size of the @val array
378 *
379 * Function reads an array of string properties with @propname from the device
380 * firmware description and stores them to @val if found.
381 *
382 * Return: number of values read on success if @val is non-NULL,
383 * number of values available on success if @val is NULL,
384 * %-EINVAL if given arguments are not valid,
385 * %-ENODATA if the property does not have a value,
386 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
387 * %-EOVERFLOW if the size of the property is not as expected.
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390int device_property_read_string_array(struct device *dev, const char *propname,
391 const char **val, size_t nval)
392{
393 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394}
395EXPORT_SYMBOL_GPL(device_property_read_string_array);
396
397/**
398 * device_property_read_string - return a string property of a device
399 * @dev: Device to get the property of
400 * @propname: Name of the property
401 * @val: The value is stored here
402 *
403 * Function reads property @propname from the device firmware description and
404 * stores the value into @val if found. The value is checked to be a string.
405 *
406 * Return: %0 if the property was found (success),
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property type is not a string.
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int device_property_read_string(struct device *dev, const char *propname,
413 const char **val)
414{
415 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416}
417EXPORT_SYMBOL_GPL(device_property_read_string);
418
419/**
420 * device_property_match_string - find a string in an array and return index
421 * @dev: Device to get the property of
422 * @propname: Name of the property holding the array
423 * @string: String to look for
424 *
425 * Find a given string in a string array and if it is found return the
426 * index back.
427 *
428 * Return: %0 if the property was found (success),
429 * %-EINVAL if given arguments are not valid,
430 * %-ENODATA if the property does not have a value,
431 * %-EPROTO if the property is not an array of strings,
432 * %-ENXIO if no suitable firmware interface is present.
433 */
434int device_property_match_string(struct device *dev, const char *propname,
435 const char *string)
436{
437 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
438}
439EXPORT_SYMBOL_GPL(device_property_match_string);
440
441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 const char *propname,
443 unsigned int elem_size, void *val,
444 size_t nval)
445{
446 int ret;
447
448 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
449 elem_size, val, nval);
450 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
451 !IS_ERR_OR_NULL(fwnode->secondary))
452 ret = fwnode_call_int_op(
453 fwnode->secondary, property_read_int_array, propname,
454 elem_size, val, nval);
455
456 return ret;
457}
458
459/**
460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
461 * @fwnode: Firmware node to get the property of
462 * @propname: Name of the property
463 * @val: The values are stored here or %NULL to return the number of values
464 * @nval: Size of the @val array
465 *
466 * Read an array of u8 properties with @propname from @fwnode and stores them to
467 * @val if found.
468 *
469 * Return: number of values if @val was %NULL,
470 * %0 if the property was found (success),
471 * %-EINVAL if given arguments are not valid,
472 * %-ENODATA if the property does not have a value,
473 * %-EPROTO if the property is not an array of numbers,
474 * %-EOVERFLOW if the size of the property is not as expected,
475 * %-ENXIO if no suitable firmware interface is present.
476 */
477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 const char *propname, u8 *val, size_t nval)
479{
480 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
481 val, nval);
482}
483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
484
485/**
486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
487 * @fwnode: Firmware node to get the property of
488 * @propname: Name of the property
489 * @val: The values are stored here or %NULL to return the number of values
490 * @nval: Size of the @val array
491 *
492 * Read an array of u16 properties with @propname from @fwnode and store them to
493 * @val if found.
494 *
495 * Return: number of values if @val was %NULL,
496 * %0 if the property was found (success),
497 * %-EINVAL if given arguments are not valid,
498 * %-ENODATA if the property does not have a value,
499 * %-EPROTO if the property is not an array of numbers,
500 * %-EOVERFLOW if the size of the property is not as expected,
501 * %-ENXIO if no suitable firmware interface is present.
502 */
503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 const char *propname, u16 *val, size_t nval)
505{
506 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
507 val, nval);
508}
509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
510
511/**
512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
513 * @fwnode: Firmware node to get the property of
514 * @propname: Name of the property
515 * @val: The values are stored here or %NULL to return the number of values
516 * @nval: Size of the @val array
517 *
518 * Read an array of u32 properties with @propname from @fwnode store them to
519 * @val if found.
520 *
521 * Return: number of values if @val was %NULL,
522 * %0 if the property was found (success),
523 * %-EINVAL if given arguments are not valid,
524 * %-ENODATA if the property does not have a value,
525 * %-EPROTO if the property is not an array of numbers,
526 * %-EOVERFLOW if the size of the property is not as expected,
527 * %-ENXIO if no suitable firmware interface is present.
528 */
529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 const char *propname, u32 *val, size_t nval)
531{
532 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
533 val, nval);
534}
535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
536
537/**
538 * fwnode_property_read_u64_array - return a u64 array property firmware node
539 * @fwnode: Firmware node to get the property of
540 * @propname: Name of the property
541 * @val: The values are stored here or %NULL to return the number of values
542 * @nval: Size of the @val array
543 *
544 * Read an array of u64 properties with @propname from @fwnode and store them to
545 * @val if found.
546 *
547 * Return: number of values if @val was %NULL,
548 * %0 if the property was found (success),
549 * %-EINVAL if given arguments are not valid,
550 * %-ENODATA if the property does not have a value,
551 * %-EPROTO if the property is not an array of numbers,
552 * %-EOVERFLOW if the size of the property is not as expected,
553 * %-ENXIO if no suitable firmware interface is present.
554 */
555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 const char *propname, u64 *val, size_t nval)
557{
558 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
559 val, nval);
560}
561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
562
563/**
564 * fwnode_property_read_string_array - return string array property of a node
565 * @fwnode: Firmware node to get the property of
566 * @propname: Name of the property
567 * @val: The values are stored here or %NULL to return the number of values
568 * @nval: Size of the @val array
569 *
570 * Read an string list property @propname from the given firmware node and store
571 * them to @val if found.
572 *
573 * Return: number of values read on success if @val is non-NULL,
574 * number of values available on success if @val is NULL,
575 * %-EINVAL if given arguments are not valid,
576 * %-ENODATA if the property does not have a value,
577 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
578 * %-EOVERFLOW if the size of the property is not as expected,
579 * %-ENXIO if no suitable firmware interface is present.
580 */
581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 const char *propname, const char **val,
583 size_t nval)
584{
585 int ret;
586
587 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
588 val, nval);
589 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
590 !IS_ERR_OR_NULL(fwnode->secondary))
591 ret = fwnode_call_int_op(fwnode->secondary,
592 property_read_string_array, propname,
593 val, nval);
594 return ret;
595}
596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
597
598/**
599 * fwnode_property_read_string - return a string property of a firmware node
600 * @fwnode: Firmware node to get the property of
601 * @propname: Name of the property
602 * @val: The value is stored here
603 *
604 * Read property @propname from the given firmware node and store the value into
605 * @val if found. The value is checked to be a string.
606 *
607 * Return: %0 if the property was found (success),
608 * %-EINVAL if given arguments are not valid,
609 * %-ENODATA if the property does not have a value,
610 * %-EPROTO or %-EILSEQ if the property is not a string,
611 * %-ENXIO if no suitable firmware interface is present.
612 */
613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 const char *propname, const char **val)
615{
616 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617
618 return ret < 0 ? ret : 0;
619}
620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
621
622/**
623 * fwnode_property_match_string - find a string in an array and return index
624 * @fwnode: Firmware node to get the property of
625 * @propname: Name of the property holding the array
626 * @string: String to look for
627 *
628 * Find a given string in a string array and if it is found return the
629 * index back.
630 *
631 * Return: %0 if the property was found (success),
632 * %-EINVAL if given arguments are not valid,
633 * %-ENODATA if the property does not have a value,
634 * %-EPROTO if the property is not an array of strings,
635 * %-ENXIO if no suitable firmware interface is present.
636 */
637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 const char *propname, const char *string)
639{
640 const char **values;
641 int nval, ret;
642
643 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
644 if (nval < 0)
645 return nval;
646
647 if (nval == 0)
648 return -ENODATA;
649
650 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
651 if (!values)
652 return -ENOMEM;
653
654 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
655 if (ret < 0)
656 goto out;
657
658 ret = match_string(values, nval, string);
659 if (ret < 0)
660 ret = -ENODATA;
661out:
662 kfree(values);
663 return ret;
664}
665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
666
667/**
668 * fwnode_property_get_reference_args() - Find a reference with arguments
669 * @fwnode: Firmware node where to look for the reference
670 * @prop: The name of the property
671 * @nargs_prop: The name of the property telling the number of
672 * arguments in the referred node. NULL if @nargs is known,
673 * otherwise @nargs is ignored. Only relevant on OF.
674 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
675 * @index: Index of the reference, from zero onwards.
676 * @args: Result structure with reference and integer arguments.
677 *
678 * Obtain a reference based on a named property in an fwnode, with
679 * integer arguments.
680 *
681 * Caller is responsible to call fwnode_handle_put() on the returned
682 * args->fwnode pointer.
683 *
684 * Returns: %0 on success
685 * %-ENOENT when the index is out of bounds, the index has an empty
686 * reference or the property was not found
687 * %-EINVAL on parse error
688 */
689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
690 const char *prop, const char *nargs_prop,
691 unsigned int nargs, unsigned int index,
692 struct fwnode_reference_args *args)
693{
694 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
695 nargs, index, args);
696}
697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
698
699static void property_entry_free_data(const struct property_entry *p)
700{
701 size_t i, nval;
702
703 if (p->is_array) {
704 if (p->is_string && p->pointer.str) {
705 nval = p->length / sizeof(const char *);
706 for (i = 0; i < nval; i++)
707 kfree(p->pointer.str[i]);
708 }
709 kfree(p->pointer.raw_data);
710 } else if (p->is_string) {
711 kfree(p->value.str);
712 }
713 kfree(p->name);
714}
715
716static int property_copy_string_array(struct property_entry *dst,
717 const struct property_entry *src)
718{
719 char **d;
720 size_t nval = src->length / sizeof(*d);
721 int i;
722
723 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
724 if (!d)
725 return -ENOMEM;
726
727 for (i = 0; i < nval; i++) {
728 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
729 if (!d[i] && src->pointer.str[i]) {
730 while (--i >= 0)
731 kfree(d[i]);
732 kfree(d);
733 return -ENOMEM;
734 }
735 }
736
737 dst->pointer.raw_data = d;
738 return 0;
739}
740
741static int property_entry_copy_data(struct property_entry *dst,
742 const struct property_entry *src)
743{
744 int error;
745
746 if (src->is_array) {
747 if (!src->length)
748 return -ENODATA;
749
750 if (src->is_string) {
751 error = property_copy_string_array(dst, src);
752 if (error)
753 return error;
754 } else {
755 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
756 src->length, GFP_KERNEL);
757 if (!dst->pointer.raw_data)
758 return -ENOMEM;
759 }
760 } else if (src->is_string) {
761 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 if (!dst->value.str && src->value.str)
763 return -ENOMEM;
764 } else {
765 dst->value.raw_data = src->value.raw_data;
766 }
767
768 dst->length = src->length;
769 dst->is_array = src->is_array;
770 dst->is_string = src->is_string;
771
772 dst->name = kstrdup(src->name, GFP_KERNEL);
773 if (!dst->name)
774 goto out_free_data;
775
776 return 0;
777
778out_free_data:
779 property_entry_free_data(dst);
780 return -ENOMEM;
781}
782
783/**
784 * property_entries_dup - duplicate array of properties
785 * @properties: array of properties to copy
786 *
787 * This function creates a deep copy of the given NULL-terminated array
788 * of property entries.
789 */
790struct property_entry *
791property_entries_dup(const struct property_entry *properties)
792{
793 struct property_entry *p;
794 int i, n = 0;
795
796 while (properties[n].name)
797 n++;
798
799 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
800 if (!p)
801 return ERR_PTR(-ENOMEM);
802
803 for (i = 0; i < n; i++) {
804 int ret = property_entry_copy_data(&p[i], &properties[i]);
805 if (ret) {
806 while (--i >= 0)
807 property_entry_free_data(&p[i]);
808 kfree(p);
809 return ERR_PTR(ret);
810 }
811 }
812
813 return p;
814}
815EXPORT_SYMBOL_GPL(property_entries_dup);
816
817/**
818 * property_entries_free - free previously allocated array of properties
819 * @properties: array of properties to destroy
820 *
821 * This function frees given NULL-terminated array of property entries,
822 * along with their data.
823 */
824void property_entries_free(const struct property_entry *properties)
825{
826 const struct property_entry *p;
827
828 for (p = properties; p->name; p++)
829 property_entry_free_data(p);
830
831 kfree(properties);
832}
833EXPORT_SYMBOL_GPL(property_entries_free);
834
835/**
836 * pset_free_set - releases memory allocated for copied property set
837 * @pset: Property set to release
838 *
839 * Function takes previously copied property set and releases all the
840 * memory allocated to it.
841 */
842static void pset_free_set(struct property_set *pset)
843{
844 if (!pset)
845 return;
846
847 property_entries_free(pset->properties);
848 kfree(pset);
849}
850
851/**
852 * pset_copy_set - copies property set
853 * @pset: Property set to copy
854 *
855 * This function takes a deep copy of the given property set and returns
856 * pointer to the copy. Call device_free_property_set() to free resources
857 * allocated in this function.
858 *
859 * Return: Pointer to the new property set or error pointer.
860 */
861static struct property_set *pset_copy_set(const struct property_set *pset)
862{
863 struct property_entry *properties;
864 struct property_set *p;
865
866 p = kzalloc(sizeof(*p), GFP_KERNEL);
867 if (!p)
868 return ERR_PTR(-ENOMEM);
869
870 properties = property_entries_dup(pset->properties);
871 if (IS_ERR(properties)) {
872 kfree(p);
873 return ERR_CAST(properties);
874 }
875
876 p->properties = properties;
877 return p;
878}
879
880/**
881 * device_remove_properties - Remove properties from a device object.
882 * @dev: Device whose properties to remove.
883 *
884 * The function removes properties previously associated to the device
885 * secondary firmware node with device_add_properties(). Memory allocated
886 * to the properties will also be released.
887 */
888void device_remove_properties(struct device *dev)
889{
890 struct fwnode_handle *fwnode;
891 struct property_set *pset;
892
893 fwnode = dev_fwnode(dev);
894 if (!fwnode)
895 return;
896 /*
897 * Pick either primary or secondary node depending which one holds
898 * the pset. If there is no real firmware node (ACPI/DT) primary
899 * will hold the pset.
900 */
901 pset = to_pset_node(fwnode);
902 if (pset) {
903 set_primary_fwnode(dev, NULL);
904 } else {
905 pset = to_pset_node(fwnode->secondary);
906 if (pset && dev == pset->dev)
907 set_secondary_fwnode(dev, NULL);
908 }
909 if (pset && dev == pset->dev)
910 pset_free_set(pset);
911}
912EXPORT_SYMBOL_GPL(device_remove_properties);
913
914/**
915 * device_add_properties - Add a collection of properties to a device object.
916 * @dev: Device to add properties to.
917 * @properties: Collection of properties to add.
918 *
919 * Associate a collection of device properties represented by @properties with
920 * @dev as its secondary firmware node. The function takes a copy of
921 * @properties.
922 */
923int device_add_properties(struct device *dev,
924 const struct property_entry *properties)
925{
926 struct property_set *p, pset;
927
928 if (!properties)
929 return -EINVAL;
930
931 pset.properties = properties;
932
933 p = pset_copy_set(&pset);
934 if (IS_ERR(p))
935 return PTR_ERR(p);
936
937 p->fwnode.ops = &pset_fwnode_ops;
938 set_secondary_fwnode(dev, &p->fwnode);
939 p->dev = dev;
940 return 0;
941}
942EXPORT_SYMBOL_GPL(device_add_properties);
943
944/**
945 * fwnode_get_next_parent - Iterate to the node's parent
946 * @fwnode: Firmware whose parent is retrieved
947 *
948 * This is like fwnode_get_parent() except that it drops the refcount
949 * on the passed node, making it suitable for iterating through a
950 * node's parents.
951 *
952 * Returns a node pointer with refcount incremented, use
953 * fwnode_handle_node() on it when done.
954 */
955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
956{
957 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
958
959 fwnode_handle_put(fwnode);
960
961 return parent;
962}
963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
964
965/**
966 * fwnode_get_parent - Return parent firwmare node
967 * @fwnode: Firmware whose parent is retrieved
968 *
969 * Return parent firmware node of the given node if possible or %NULL if no
970 * parent was available.
971 */
972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973{
974 return fwnode_call_ptr_op(fwnode, get_parent);
975}
976EXPORT_SYMBOL_GPL(fwnode_get_parent);
977
978/**
979 * fwnode_get_next_child_node - Return the next child node handle for a node
980 * @fwnode: Firmware node to find the next child node for.
981 * @child: Handle to one of the node's child nodes or a %NULL handle.
982 */
983struct fwnode_handle *
984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
985 struct fwnode_handle *child)
986{
987 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988}
989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
990
991/**
992 * fwnode_get_next_available_child_node - Return the next
993 * available child node handle for a node
994 * @fwnode: Firmware node to find the next child node for.
995 * @child: Handle to one of the node's child nodes or a %NULL handle.
996 */
997struct fwnode_handle *
998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
999 struct fwnode_handle *child)
1000{
1001 struct fwnode_handle *next_child = child;
1002
1003 if (!fwnode)
1004 return NULL;
1005
1006 do {
1007 next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009 if (!next_child || fwnode_device_is_available(next_child))
1010 break;
1011 } while (next_child);
1012
1013 return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023 struct fwnode_handle *child)
1024{
1025 struct acpi_device *adev = ACPI_COMPANION(dev);
1026 struct fwnode_handle *fwnode = NULL;
1027
1028 if (dev->of_node)
1029 fwnode = &dev->of_node->fwnode;
1030 else if (adev)
1031 fwnode = acpi_fwnode_handle(adev);
1032
1033 return fwnode_get_next_child_node(fwnode, child);
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044 const char *childname)
1045{
1046 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056 const char *childname)
1057{
1058 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070 if (!fwnode_has_op(fwnode, get))
1071 return fwnode;
1072
1073 return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087 fwnode_call_void_op(fwnode, put);
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
1097 return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107 struct fwnode_handle *child;
1108 unsigned int count = 0;
1109
1110 device_for_each_child_node(dev, child)
1111 count++;
1112
1113 return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119 /* For DT, this is always supported.
1120 * For ACPI, this depends on CCA, which
1121 * is determined by the acpi_dma_supported().
1122 */
1123 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124 return true;
1125
1126 return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135 if (of_dma_is_coherent(dev->of_node))
1136 attr = DEV_DMA_COHERENT;
1137 else
1138 attr = DEV_DMA_NON_COHERENT;
1139 } else
1140 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142 return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode: Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156 const char *pm;
1157 int err, i;
1158
1159 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160 if (err < 0)
1161 err = fwnode_property_read_string(fwnode,
1162 "phy-connection-type", &pm);
1163 if (err < 0)
1164 return err;
1165
1166 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167 if (!strcasecmp(pm, phy_modes(i)))
1168 return i;
1169
1170 return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev: Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184 return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 const char *name, char *addr,
1190 int alen)
1191{
1192 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 return addr;
1196 return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode: Pointer to the firmware node
1202 * @addr: Address of buffer to store the MAC in
1203 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use. 'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address. If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware. For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224 char *res;
1225
1226 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 if (res)
1228 return res;
1229
1230 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 if (res)
1232 return res;
1233
1234 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev: Pointer to the device
1241 * @addr: Address of buffer to store the MAC in
1242 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode: Pointer to the firmware node
1253 * @index: Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260 struct device_node *of_node = to_of_node(fwnode);
1261 struct resource res;
1262 int ret;
1263
1264 if (IS_ENABLED(CONFIG_OF) && of_node)
1265 return of_irq_get(of_node, index);
1266
1267 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268 if (ret)
1269 return ret;
1270
1271 return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 struct fwnode_handle *prev)
1286{
1287 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300 struct fwnode_handle *port, *parent;
1301
1302 port = fwnode_get_parent(endpoint);
1303 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305 fwnode_handle_put(port);
1306
1307 return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320 struct fwnode_handle *endpoint, *parent;
1321
1322 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323 parent = fwnode_graph_get_port_parent(endpoint);
1324
1325 fwnode_handle_put(endpoint);
1326
1327 return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 * to @node. Use fwnode_node_put() on it when done.
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368 u32 endpoint_id)
1369{
1370 struct fwnode_handle *endpoint = NULL;
1371
1372 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373 struct fwnode_endpoint fwnode_ep;
1374 struct fwnode_handle *remote;
1375 int ret;
1376
1377 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378 if (ret < 0)
1379 continue;
1380
1381 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382 continue;
1383
1384 remote = fwnode_graph_get_remote_port_parent(endpoint);
1385 if (!remote)
1386 return NULL;
1387
1388 return fwnode_device_is_available(remote) ? remote : NULL;
1389 }
1390
1391 return NULL;
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 struct fwnode_endpoint *endpoint)
1406{
1407 memset(endpoint, 0, sizeof(*endpoint));
1408
1409 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);