Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566{
567 return fwnode_call_ptr_op(fwnode, get_name);
568}
569EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571/**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579{
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581}
582
583/**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591{
592 return fwnode_call_ptr_op(fwnode, get_parent);
593}
594EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596/**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608{
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614}
615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617/**
618 * fwnode_count_parents - Return the number of parents a node has
619 * @fwnode: The node the parents of which are to be counted
620 *
621 * Returns the number of parents a node has.
622 */
623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624{
625 struct fwnode_handle *__fwnode;
626 unsigned int count;
627
628 __fwnode = fwnode_get_parent(fwnode);
629
630 for (count = 0; __fwnode; count++)
631 __fwnode = fwnode_get_next_parent(__fwnode);
632
633 return count;
634}
635EXPORT_SYMBOL_GPL(fwnode_count_parents);
636
637/**
638 * fwnode_get_nth_parent - Return an nth parent of a node
639 * @fwnode: The node the parent of which is requested
640 * @depth: Distance of the parent from the node
641 *
642 * Returns the nth parent of a node. If there is no parent at the requested
643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645 *
646 * The caller is responsible for calling fwnode_handle_put() for the returned
647 * node.
648 */
649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650 unsigned int depth)
651{
652 unsigned int i;
653
654 fwnode_handle_get(fwnode);
655
656 for (i = 0; i < depth && fwnode; i++)
657 fwnode = fwnode_get_next_parent(fwnode);
658
659 return fwnode;
660}
661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662
663/**
664 * fwnode_get_next_child_node - Return the next child node handle for a node
665 * @fwnode: Firmware node to find the next child node for.
666 * @child: Handle to one of the node's child nodes or a %NULL handle.
667 */
668struct fwnode_handle *
669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670 struct fwnode_handle *child)
671{
672 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673}
674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675
676/**
677 * fwnode_get_next_available_child_node - Return the next
678 * available child node handle for a node
679 * @fwnode: Firmware node to find the next child node for.
680 * @child: Handle to one of the node's child nodes or a %NULL handle.
681 */
682struct fwnode_handle *
683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684 struct fwnode_handle *child)
685{
686 struct fwnode_handle *next_child = child;
687
688 if (!fwnode)
689 return NULL;
690
691 do {
692 next_child = fwnode_get_next_child_node(fwnode, next_child);
693
694 if (!next_child || fwnode_device_is_available(next_child))
695 break;
696 } while (next_child);
697
698 return next_child;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701
702/**
703 * device_get_next_child_node - Return the next child node handle for a device
704 * @dev: Device to find the next child node for.
705 * @child: Handle to one of the device's child nodes or a null handle.
706 */
707struct fwnode_handle *device_get_next_child_node(struct device *dev,
708 struct fwnode_handle *child)
709{
710 struct acpi_device *adev = ACPI_COMPANION(dev);
711 struct fwnode_handle *fwnode = NULL, *next;
712
713 if (dev->of_node)
714 fwnode = &dev->of_node->fwnode;
715 else if (adev)
716 fwnode = acpi_fwnode_handle(adev);
717
718 /* Try to find a child in primary fwnode */
719 next = fwnode_get_next_child_node(fwnode, child);
720 if (next)
721 return next;
722
723 /* When no more children in primary, continue with secondary */
724 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725 next = fwnode_get_next_child_node(fwnode->secondary, child);
726
727 return next;
728}
729EXPORT_SYMBOL_GPL(device_get_next_child_node);
730
731/**
732 * fwnode_get_named_child_node - Return first matching named child node handle
733 * @fwnode: Firmware node to find the named child node for.
734 * @childname: String to match child node name against.
735 */
736struct fwnode_handle *
737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738 const char *childname)
739{
740 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741}
742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743
744/**
745 * device_get_named_child_node - Return first matching named child node handle
746 * @dev: Device to find the named child node for.
747 * @childname: String to match child node name against.
748 */
749struct fwnode_handle *device_get_named_child_node(struct device *dev,
750 const char *childname)
751{
752 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753}
754EXPORT_SYMBOL_GPL(device_get_named_child_node);
755
756/**
757 * fwnode_handle_get - Obtain a reference to a device node
758 * @fwnode: Pointer to the device node to obtain the reference to.
759 *
760 * Returns the fwnode handle.
761 */
762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763{
764 if (!fwnode_has_op(fwnode, get))
765 return fwnode;
766
767 return fwnode_call_ptr_op(fwnode, get);
768}
769EXPORT_SYMBOL_GPL(fwnode_handle_get);
770
771/**
772 * fwnode_handle_put - Drop reference to a device node
773 * @fwnode: Pointer to the device node to drop the reference to.
774 *
775 * This has to be used when terminating device_for_each_child_node() iteration
776 * with break or return to prevent stale device node references from being left
777 * behind.
778 */
779void fwnode_handle_put(struct fwnode_handle *fwnode)
780{
781 fwnode_call_void_op(fwnode, put);
782}
783EXPORT_SYMBOL_GPL(fwnode_handle_put);
784
785/**
786 * fwnode_device_is_available - check if a device is available for use
787 * @fwnode: Pointer to the fwnode of the device.
788 */
789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790{
791 return fwnode_call_bool_op(fwnode, device_is_available);
792}
793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794
795/**
796 * device_get_child_node_count - return the number of child nodes for device
797 * @dev: Device to cound the child nodes for
798 */
799unsigned int device_get_child_node_count(struct device *dev)
800{
801 struct fwnode_handle *child;
802 unsigned int count = 0;
803
804 device_for_each_child_node(dev, child)
805 count++;
806
807 return count;
808}
809EXPORT_SYMBOL_GPL(device_get_child_node_count);
810
811bool device_dma_supported(struct device *dev)
812{
813 /* For DT, this is always supported.
814 * For ACPI, this depends on CCA, which
815 * is determined by the acpi_dma_supported().
816 */
817 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818 return true;
819
820 return acpi_dma_supported(ACPI_COMPANION(dev));
821}
822EXPORT_SYMBOL_GPL(device_dma_supported);
823
824enum dev_dma_attr device_get_dma_attr(struct device *dev)
825{
826 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827
828 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829 if (of_dma_is_coherent(dev->of_node))
830 attr = DEV_DMA_COHERENT;
831 else
832 attr = DEV_DMA_NON_COHERENT;
833 } else
834 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835
836 return attr;
837}
838EXPORT_SYMBOL_GPL(device_get_dma_attr);
839
840/**
841 * fwnode_get_phy_mode - Get phy mode for given firmware node
842 * @fwnode: Pointer to the given node
843 *
844 * The function gets phy interface string from property 'phy-mode' or
845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
846 * error case.
847 */
848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849{
850 const char *pm;
851 int err, i;
852
853 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854 if (err < 0)
855 err = fwnode_property_read_string(fwnode,
856 "phy-connection-type", &pm);
857 if (err < 0)
858 return err;
859
860 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861 if (!strcasecmp(pm, phy_modes(i)))
862 return i;
863
864 return -ENODEV;
865}
866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867
868/**
869 * device_get_phy_mode - Get phy mode for given device
870 * @dev: Pointer to the given device
871 *
872 * The function gets phy interface string from property 'phy-mode' or
873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
874 * error case.
875 */
876int device_get_phy_mode(struct device *dev)
877{
878 return fwnode_get_phy_mode(dev_fwnode(dev));
879}
880EXPORT_SYMBOL_GPL(device_get_phy_mode);
881
882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883 const char *name, char *addr,
884 int alen)
885{
886 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887
888 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889 return addr;
890 return NULL;
891}
892
893/**
894 * fwnode_get_mac_address - Get the MAC from the firmware node
895 * @fwnode: Pointer to the firmware node
896 * @addr: Address of buffer to store the MAC in
897 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
898 *
899 * Search the firmware node for the best MAC address to use. 'mac-address' is
900 * checked first, because that is supposed to contain to "most recent" MAC
901 * address. If that isn't set, then 'local-mac-address' is checked next,
902 * because that is the default address. If that isn't set, then the obsolete
903 * 'address' is checked, just in case we're using an old device tree.
904 *
905 * Note that the 'address' property is supposed to contain a virtual address of
906 * the register set, but some DTS files have redefined that property to be the
907 * MAC address.
908 *
909 * All-zero MAC addresses are rejected, because those could be properties that
910 * exist in the firmware tables, but were not updated by the firmware. For
911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
912 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914 * exists but is all zeros.
915*/
916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917{
918 char *res;
919
920 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921 if (res)
922 return res;
923
924 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925 if (res)
926 return res;
927
928 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929}
930EXPORT_SYMBOL(fwnode_get_mac_address);
931
932/**
933 * device_get_mac_address - Get the MAC for a given device
934 * @dev: Pointer to the device
935 * @addr: Address of buffer to store the MAC in
936 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
937 */
938void *device_get_mac_address(struct device *dev, char *addr, int alen)
939{
940 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941}
942EXPORT_SYMBOL(device_get_mac_address);
943
944/**
945 * fwnode_irq_get - Get IRQ directly from a fwnode
946 * @fwnode: Pointer to the firmware node
947 * @index: Zero-based index of the IRQ
948 *
949 * Returns Linux IRQ number on success. Other values are determined
950 * accordingly to acpi_/of_ irq_get() operation.
951 */
952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953{
954 struct device_node *of_node = to_of_node(fwnode);
955 struct resource res;
956 int ret;
957
958 if (IS_ENABLED(CONFIG_OF) && of_node)
959 return of_irq_get(of_node, index);
960
961 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962 if (ret)
963 return ret;
964
965 return res.start;
966}
967EXPORT_SYMBOL(fwnode_irq_get);
968
969/**
970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971 * @fwnode: Pointer to the parent firmware node
972 * @prev: Previous endpoint node or %NULL to get the first
973 *
974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975 * are available.
976 */
977struct fwnode_handle *
978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979 struct fwnode_handle *prev)
980{
981 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982}
983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984
985/**
986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987 * @endpoint: Endpoint firmware node of the port
988 *
989 * Return: the firmware node of the device the @endpoint belongs to.
990 */
991struct fwnode_handle *
992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993{
994 struct fwnode_handle *port, *parent;
995
996 port = fwnode_get_parent(endpoint);
997 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998
999 fwnode_handle_put(port);
1000
1001 return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014 struct fwnode_handle *endpoint, *parent;
1015
1016 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017 parent = fwnode_graph_get_port_parent(endpoint);
1018
1019 fwnode_handle_put(endpoint);
1020
1021 return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 * to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062 u32 endpoint_id)
1063{
1064 struct fwnode_handle *endpoint = NULL;
1065
1066 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067 struct fwnode_endpoint fwnode_ep;
1068 struct fwnode_handle *remote;
1069 int ret;
1070
1071 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072 if (ret < 0)
1073 continue;
1074
1075 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076 continue;
1077
1078 remote = fwnode_graph_get_remote_port_parent(endpoint);
1079 if (!remote)
1080 return NULL;
1081
1082 return fwnode_device_is_available(remote) ? remote : NULL;
1083 }
1084
1085 return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111 u32 port, u32 endpoint, unsigned long flags)
1112{
1113 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114 unsigned int best_ep_id = 0;
1115 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119 struct fwnode_endpoint fwnode_ep = { 0 };
1120 int ret;
1121
1122 if (enabled_only) {
1123 struct fwnode_handle *dev_node;
1124 bool available;
1125
1126 dev_node = fwnode_graph_get_remote_port_parent(ep);
1127 available = fwnode_device_is_available(dev_node);
1128 fwnode_handle_put(dev_node);
1129 if (!available)
1130 continue;
1131 }
1132
1133 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134 if (ret < 0)
1135 continue;
1136
1137 if (fwnode_ep.port != port)
1138 continue;
1139
1140 if (fwnode_ep.id == endpoint)
1141 return ep;
1142
1143 if (!endpoint_next)
1144 continue;
1145
1146 /*
1147 * If the endpoint that has just been found is not the first
1148 * matching one and the ID of the one found previously is closer
1149 * to the requested endpoint ID, skip it.
1150 */
1151 if (fwnode_ep.id < endpoint ||
1152 (best_ep && best_ep_id < fwnode_ep.id))
1153 continue;
1154
1155 fwnode_handle_put(best_ep);
1156 best_ep = fwnode_handle_get(ep);
1157 best_ep_id = fwnode_ep.id;
1158 }
1159
1160 return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174 struct fwnode_endpoint *endpoint)
1175{
1176 memset(endpoint, 0, sizeof(*endpoint));
1177
1178 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/export.h>
13#include <linux/kconfig.h>
14#include <linux/of.h>
15#include <linux/property.h>
16#include <linux/phy.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/types.h>
20
21struct fwnode_handle *__dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 of_fwnode_handle(dev->of_node) : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(__dev_fwnode);
27
28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
29{
30 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
31 of_fwnode_handle(dev->of_node) : dev->fwnode;
32}
33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
34
35/**
36 * device_property_present - check if a property of a device is present
37 * @dev: Device whose property is being checked
38 * @propname: Name of the property
39 *
40 * Check if property @propname is present in the device firmware description.
41 *
42 * Return: true if property @propname is present. Otherwise, returns false.
43 */
44bool device_property_present(const struct device *dev, const char *propname)
45{
46 return fwnode_property_present(dev_fwnode(dev), propname);
47}
48EXPORT_SYMBOL_GPL(device_property_present);
49
50/**
51 * fwnode_property_present - check if a property of a firmware node is present
52 * @fwnode: Firmware node whose property to check
53 * @propname: Name of the property
54 *
55 * Return: true if property @propname is present. Otherwise, returns false.
56 */
57bool fwnode_property_present(const struct fwnode_handle *fwnode,
58 const char *propname)
59{
60 bool ret;
61
62 if (IS_ERR_OR_NULL(fwnode))
63 return false;
64
65 ret = fwnode_call_bool_op(fwnode, property_present, propname);
66 if (ret)
67 return ret;
68
69 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
70}
71EXPORT_SYMBOL_GPL(fwnode_property_present);
72
73/**
74 * device_property_read_u8_array - return a u8 array property of a device
75 * @dev: Device to get the property of
76 * @propname: Name of the property
77 * @val: The values are stored here or %NULL to return the number of values
78 * @nval: Size of the @val array
79 *
80 * Function reads an array of u8 properties with @propname from the device
81 * firmware description and stores them to @val if found.
82 *
83 * It's recommended to call device_property_count_u8() instead of calling
84 * this function with @val equals %NULL and @nval equals 0.
85 *
86 * Return: number of values if @val was %NULL,
87 * %0 if the property was found (success),
88 * %-EINVAL if given arguments are not valid,
89 * %-ENODATA if the property does not have a value,
90 * %-EPROTO if the property is not an array of numbers,
91 * %-EOVERFLOW if the size of the property is not as expected.
92 * %-ENXIO if no suitable firmware interface is present.
93 */
94int device_property_read_u8_array(const struct device *dev, const char *propname,
95 u8 *val, size_t nval)
96{
97 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
98}
99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
100
101/**
102 * device_property_read_u16_array - return a u16 array property of a device
103 * @dev: Device to get the property of
104 * @propname: Name of the property
105 * @val: The values are stored here or %NULL to return the number of values
106 * @nval: Size of the @val array
107 *
108 * Function reads an array of u16 properties with @propname from the device
109 * firmware description and stores them to @val if found.
110 *
111 * It's recommended to call device_property_count_u16() instead of calling
112 * this function with @val equals %NULL and @nval equals 0.
113 *
114 * Return: number of values if @val was %NULL,
115 * %0 if the property was found (success),
116 * %-EINVAL if given arguments are not valid,
117 * %-ENODATA if the property does not have a value,
118 * %-EPROTO if the property is not an array of numbers,
119 * %-EOVERFLOW if the size of the property is not as expected.
120 * %-ENXIO if no suitable firmware interface is present.
121 */
122int device_property_read_u16_array(const struct device *dev, const char *propname,
123 u16 *val, size_t nval)
124{
125 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
126}
127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
128
129/**
130 * device_property_read_u32_array - return a u32 array property of a device
131 * @dev: Device to get the property of
132 * @propname: Name of the property
133 * @val: The values are stored here or %NULL to return the number of values
134 * @nval: Size of the @val array
135 *
136 * Function reads an array of u32 properties with @propname from the device
137 * firmware description and stores them to @val if found.
138 *
139 * It's recommended to call device_property_count_u32() instead of calling
140 * this function with @val equals %NULL and @nval equals 0.
141 *
142 * Return: number of values if @val was %NULL,
143 * %0 if the property was found (success),
144 * %-EINVAL if given arguments are not valid,
145 * %-ENODATA if the property does not have a value,
146 * %-EPROTO if the property is not an array of numbers,
147 * %-EOVERFLOW if the size of the property is not as expected.
148 * %-ENXIO if no suitable firmware interface is present.
149 */
150int device_property_read_u32_array(const struct device *dev, const char *propname,
151 u32 *val, size_t nval)
152{
153 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
154}
155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
156
157/**
158 * device_property_read_u64_array - return a u64 array property of a device
159 * @dev: Device to get the property of
160 * @propname: Name of the property
161 * @val: The values are stored here or %NULL to return the number of values
162 * @nval: Size of the @val array
163 *
164 * Function reads an array of u64 properties with @propname from the device
165 * firmware description and stores them to @val if found.
166 *
167 * It's recommended to call device_property_count_u64() instead of calling
168 * this function with @val equals %NULL and @nval equals 0.
169 *
170 * Return: number of values if @val was %NULL,
171 * %0 if the property was found (success),
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO if the property is not an array of numbers,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_u64_array(const struct device *dev, const char *propname,
179 u64 *val, size_t nval)
180{
181 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
184
185/**
186 * device_property_read_string_array - return a string array property of device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The values are stored here or %NULL to return the number of values
190 * @nval: Size of the @val array
191 *
192 * Function reads an array of string properties with @propname from the device
193 * firmware description and stores them to @val if found.
194 *
195 * It's recommended to call device_property_string_array_count() instead of calling
196 * this function with @val equals %NULL and @nval equals 0.
197 *
198 * Return: number of values read on success if @val is non-NULL,
199 * number of values available on success if @val is NULL,
200 * %-EINVAL if given arguments are not valid,
201 * %-ENODATA if the property does not have a value,
202 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
203 * %-EOVERFLOW if the size of the property is not as expected.
204 * %-ENXIO if no suitable firmware interface is present.
205 */
206int device_property_read_string_array(const struct device *dev, const char *propname,
207 const char **val, size_t nval)
208{
209 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
210}
211EXPORT_SYMBOL_GPL(device_property_read_string_array);
212
213/**
214 * device_property_read_string - return a string property of a device
215 * @dev: Device to get the property of
216 * @propname: Name of the property
217 * @val: The value is stored here
218 *
219 * Function reads property @propname from the device firmware description and
220 * stores the value into @val if found. The value is checked to be a string.
221 *
222 * Return: %0 if the property was found (success),
223 * %-EINVAL if given arguments are not valid,
224 * %-ENODATA if the property does not have a value,
225 * %-EPROTO or %-EILSEQ if the property type is not a string.
226 * %-ENXIO if no suitable firmware interface is present.
227 */
228int device_property_read_string(const struct device *dev, const char *propname,
229 const char **val)
230{
231 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
232}
233EXPORT_SYMBOL_GPL(device_property_read_string);
234
235/**
236 * device_property_match_string - find a string in an array and return index
237 * @dev: Device to get the property of
238 * @propname: Name of the property holding the array
239 * @string: String to look for
240 *
241 * Find a given string in a string array and if it is found return the
242 * index back.
243 *
244 * Return: index, starting from %0, if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of strings,
248 * %-ENXIO if no suitable firmware interface is present.
249 */
250int device_property_match_string(const struct device *dev, const char *propname,
251 const char *string)
252{
253 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
254}
255EXPORT_SYMBOL_GPL(device_property_match_string);
256
257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
258 const char *propname,
259 unsigned int elem_size, void *val,
260 size_t nval)
261{
262 int ret;
263
264 if (IS_ERR_OR_NULL(fwnode))
265 return -EINVAL;
266
267 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
268 elem_size, val, nval);
269 if (ret != -EINVAL)
270 return ret;
271
272 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
273 elem_size, val, nval);
274}
275
276/**
277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
278 * @fwnode: Firmware node to get the property of
279 * @propname: Name of the property
280 * @val: The values are stored here or %NULL to return the number of values
281 * @nval: Size of the @val array
282 *
283 * Read an array of u8 properties with @propname from @fwnode and stores them to
284 * @val if found.
285 *
286 * It's recommended to call fwnode_property_count_u8() instead of calling
287 * this function with @val equals %NULL and @nval equals 0.
288 *
289 * Return: number of values if @val was %NULL,
290 * %0 if the property was found (success),
291 * %-EINVAL if given arguments are not valid,
292 * %-ENODATA if the property does not have a value,
293 * %-EPROTO if the property is not an array of numbers,
294 * %-EOVERFLOW if the size of the property is not as expected,
295 * %-ENXIO if no suitable firmware interface is present.
296 */
297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
298 const char *propname, u8 *val, size_t nval)
299{
300 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
301 val, nval);
302}
303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
304
305/**
306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
307 * @fwnode: Firmware node to get the property of
308 * @propname: Name of the property
309 * @val: The values are stored here or %NULL to return the number of values
310 * @nval: Size of the @val array
311 *
312 * Read an array of u16 properties with @propname from @fwnode and store them to
313 * @val if found.
314 *
315 * It's recommended to call fwnode_property_count_u16() instead of calling
316 * this function with @val equals %NULL and @nval equals 0.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected,
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
327 const char *propname, u16 *val, size_t nval)
328{
329 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
330 val, nval);
331}
332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
333
334/**
335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
336 * @fwnode: Firmware node to get the property of
337 * @propname: Name of the property
338 * @val: The values are stored here or %NULL to return the number of values
339 * @nval: Size of the @val array
340 *
341 * Read an array of u32 properties with @propname from @fwnode store them to
342 * @val if found.
343 *
344 * It's recommended to call fwnode_property_count_u32() instead of calling
345 * this function with @val equals %NULL and @nval equals 0.
346 *
347 * Return: number of values if @val was %NULL,
348 * %0 if the property was found (success),
349 * %-EINVAL if given arguments are not valid,
350 * %-ENODATA if the property does not have a value,
351 * %-EPROTO if the property is not an array of numbers,
352 * %-EOVERFLOW if the size of the property is not as expected,
353 * %-ENXIO if no suitable firmware interface is present.
354 */
355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
356 const char *propname, u32 *val, size_t nval)
357{
358 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
359 val, nval);
360}
361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
362
363/**
364 * fwnode_property_read_u64_array - return a u64 array property firmware node
365 * @fwnode: Firmware node to get the property of
366 * @propname: Name of the property
367 * @val: The values are stored here or %NULL to return the number of values
368 * @nval: Size of the @val array
369 *
370 * Read an array of u64 properties with @propname from @fwnode and store them to
371 * @val if found.
372 *
373 * It's recommended to call fwnode_property_count_u64() instead of calling
374 * this function with @val equals %NULL and @nval equals 0.
375 *
376 * Return: number of values if @val was %NULL,
377 * %0 if the property was found (success),
378 * %-EINVAL if given arguments are not valid,
379 * %-ENODATA if the property does not have a value,
380 * %-EPROTO if the property is not an array of numbers,
381 * %-EOVERFLOW if the size of the property is not as expected,
382 * %-ENXIO if no suitable firmware interface is present.
383 */
384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
385 const char *propname, u64 *val, size_t nval)
386{
387 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
388 val, nval);
389}
390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
391
392/**
393 * fwnode_property_read_string_array - return string array property of a node
394 * @fwnode: Firmware node to get the property of
395 * @propname: Name of the property
396 * @val: The values are stored here or %NULL to return the number of values
397 * @nval: Size of the @val array
398 *
399 * Read an string list property @propname from the given firmware node and store
400 * them to @val if found.
401 *
402 * It's recommended to call fwnode_property_string_array_count() instead of calling
403 * this function with @val equals %NULL and @nval equals 0.
404 *
405 * Return: number of values read on success if @val is non-NULL,
406 * number of values available on success if @val is NULL,
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
410 * %-EOVERFLOW if the size of the property is not as expected,
411 * %-ENXIO if no suitable firmware interface is present.
412 */
413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
414 const char *propname, const char **val,
415 size_t nval)
416{
417 int ret;
418
419 if (IS_ERR_OR_NULL(fwnode))
420 return -EINVAL;
421
422 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
423 val, nval);
424 if (ret != -EINVAL)
425 return ret;
426
427 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
428 val, nval);
429}
430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
431
432/**
433 * fwnode_property_read_string - return a string property of a firmware node
434 * @fwnode: Firmware node to get the property of
435 * @propname: Name of the property
436 * @val: The value is stored here
437 *
438 * Read property @propname from the given firmware node and store the value into
439 * @val if found. The value is checked to be a string.
440 *
441 * Return: %0 if the property was found (success),
442 * %-EINVAL if given arguments are not valid,
443 * %-ENODATA if the property does not have a value,
444 * %-EPROTO or %-EILSEQ if the property is not a string,
445 * %-ENXIO if no suitable firmware interface is present.
446 */
447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
448 const char *propname, const char **val)
449{
450 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
451
452 return ret < 0 ? ret : 0;
453}
454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
455
456/**
457 * fwnode_property_match_string - find a string in an array and return index
458 * @fwnode: Firmware node to get the property of
459 * @propname: Name of the property holding the array
460 * @string: String to look for
461 *
462 * Find a given string in a string array and if it is found return the
463 * index back.
464 *
465 * Return: index, starting from %0, if the property was found (success),
466 * %-EINVAL if given arguments are not valid,
467 * %-ENODATA if the property does not have a value,
468 * %-EPROTO if the property is not an array of strings,
469 * %-ENXIO if no suitable firmware interface is present.
470 */
471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
472 const char *propname, const char *string)
473{
474 const char **values;
475 int nval, ret;
476
477 nval = fwnode_property_string_array_count(fwnode, propname);
478 if (nval < 0)
479 return nval;
480
481 if (nval == 0)
482 return -ENODATA;
483
484 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
485 if (!values)
486 return -ENOMEM;
487
488 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
489 if (ret < 0)
490 goto out_free;
491
492 ret = match_string(values, nval, string);
493 if (ret < 0)
494 ret = -ENODATA;
495
496out_free:
497 kfree(values);
498 return ret;
499}
500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
501
502/**
503 * fwnode_property_match_property_string - find a property string value in an array and return index
504 * @fwnode: Firmware node to get the property of
505 * @propname: Name of the property holding the string value
506 * @array: String array to search in
507 * @n: Size of the @array
508 *
509 * Find a property string value in a given @array and if it is found return
510 * the index back.
511 *
512 * Return: index, starting from %0, if the string value was found in the @array (success),
513 * %-ENOENT when the string value was not found in the @array,
514 * %-EINVAL if given arguments are not valid,
515 * %-ENODATA if the property does not have a value,
516 * %-EPROTO or %-EILSEQ if the property is not a string,
517 * %-ENXIO if no suitable firmware interface is present.
518 */
519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
520 const char *propname, const char * const *array, size_t n)
521{
522 const char *string;
523 int ret;
524
525 ret = fwnode_property_read_string(fwnode, propname, &string);
526 if (ret)
527 return ret;
528
529 ret = match_string(array, n, string);
530 if (ret < 0)
531 ret = -ENOENT;
532
533 return ret;
534}
535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
536
537/**
538 * fwnode_property_get_reference_args() - Find a reference with arguments
539 * @fwnode: Firmware node where to look for the reference
540 * @prop: The name of the property
541 * @nargs_prop: The name of the property telling the number of
542 * arguments in the referred node. NULL if @nargs is known,
543 * otherwise @nargs is ignored. Only relevant on OF.
544 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
545 * @index: Index of the reference, from zero onwards.
546 * @args: Result structure with reference and integer arguments.
547 * May be NULL.
548 *
549 * Obtain a reference based on a named property in an fwnode, with
550 * integer arguments.
551 *
552 * The caller is responsible for calling fwnode_handle_put() on the returned
553 * @args->fwnode pointer.
554 *
555 * Return: %0 on success
556 * %-ENOENT when the index is out of bounds, the index has an empty
557 * reference or the property was not found
558 * %-EINVAL on parse error
559 */
560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
561 const char *prop, const char *nargs_prop,
562 unsigned int nargs, unsigned int index,
563 struct fwnode_reference_args *args)
564{
565 int ret;
566
567 if (IS_ERR_OR_NULL(fwnode))
568 return -ENOENT;
569
570 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
571 nargs, index, args);
572 if (ret == 0)
573 return ret;
574
575 if (IS_ERR_OR_NULL(fwnode->secondary))
576 return ret;
577
578 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
579 nargs, index, args);
580}
581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
582
583/**
584 * fwnode_find_reference - Find named reference to a fwnode_handle
585 * @fwnode: Firmware node where to look for the reference
586 * @name: The name of the reference
587 * @index: Index of the reference
588 *
589 * @index can be used when the named reference holds a table of references.
590 *
591 * The caller is responsible for calling fwnode_handle_put() on the returned
592 * fwnode pointer.
593 *
594 * Return: a pointer to the reference fwnode, when found. Otherwise,
595 * returns an error pointer.
596 */
597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
598 const char *name,
599 unsigned int index)
600{
601 struct fwnode_reference_args args;
602 int ret;
603
604 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
605 &args);
606 return ret ? ERR_PTR(ret) : args.fwnode;
607}
608EXPORT_SYMBOL_GPL(fwnode_find_reference);
609
610/**
611 * fwnode_get_name - Return the name of a node
612 * @fwnode: The firmware node
613 *
614 * Return: a pointer to the node name, or %NULL.
615 */
616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
617{
618 return fwnode_call_ptr_op(fwnode, get_name);
619}
620EXPORT_SYMBOL_GPL(fwnode_get_name);
621
622/**
623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
624 * @fwnode: The firmware node
625 *
626 * Return: the prefix of a node, intended to be printed right before the node.
627 * The prefix works also as a separator between the nodes.
628 */
629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
630{
631 return fwnode_call_ptr_op(fwnode, get_name_prefix);
632}
633
634/**
635 * fwnode_name_eq - Return true if node name is equal
636 * @fwnode: The firmware node
637 * @name: The name to which to compare the node name
638 *
639 * Compare the name provided as an argument to the name of the node, stopping
640 * the comparison at either NUL or '@' character, whichever comes first. This
641 * function is generally used for comparing node names while ignoring the
642 * possible unit address of the node.
643 *
644 * Return: true if the node name matches with the name provided in the @name
645 * argument, false otherwise.
646 */
647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
648{
649 const char *node_name;
650 ptrdiff_t len;
651
652 node_name = fwnode_get_name(fwnode);
653 if (!node_name)
654 return false;
655
656 len = strchrnul(node_name, '@') - node_name;
657
658 return str_has_prefix(node_name, name) == len;
659}
660EXPORT_SYMBOL_GPL(fwnode_name_eq);
661
662/**
663 * fwnode_get_parent - Return parent firwmare node
664 * @fwnode: Firmware whose parent is retrieved
665 *
666 * The caller is responsible for calling fwnode_handle_put() on the returned
667 * fwnode pointer.
668 *
669 * Return: parent firmware node of the given node if possible or %NULL if no
670 * parent was available.
671 */
672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
673{
674 return fwnode_call_ptr_op(fwnode, get_parent);
675}
676EXPORT_SYMBOL_GPL(fwnode_get_parent);
677
678/**
679 * fwnode_get_next_parent - Iterate to the node's parent
680 * @fwnode: Firmware whose parent is retrieved
681 *
682 * This is like fwnode_get_parent() except that it drops the refcount
683 * on the passed node, making it suitable for iterating through a
684 * node's parents.
685 *
686 * The caller is responsible for calling fwnode_handle_put() on the returned
687 * fwnode pointer. Note that this function also puts a reference to @fwnode
688 * unconditionally.
689 *
690 * Return: parent firmware node of the given node if possible or %NULL if no
691 * parent was available.
692 */
693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
694{
695 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
696
697 fwnode_handle_put(fwnode);
698
699 return parent;
700}
701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
702
703/**
704 * fwnode_count_parents - Return the number of parents a node has
705 * @fwnode: The node the parents of which are to be counted
706 *
707 * Return: the number of parents a node has.
708 */
709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
710{
711 struct fwnode_handle *parent;
712 unsigned int count = 0;
713
714 fwnode_for_each_parent_node(fwnode, parent)
715 count++;
716
717 return count;
718}
719EXPORT_SYMBOL_GPL(fwnode_count_parents);
720
721/**
722 * fwnode_get_nth_parent - Return an nth parent of a node
723 * @fwnode: The node the parent of which is requested
724 * @depth: Distance of the parent from the node
725 *
726 * The caller is responsible for calling fwnode_handle_put() on the returned
727 * fwnode pointer.
728 *
729 * Return: the nth parent of a node. If there is no parent at the requested
730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
732 */
733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
734 unsigned int depth)
735{
736 struct fwnode_handle *parent;
737
738 if (depth == 0)
739 return fwnode_handle_get(fwnode);
740
741 fwnode_for_each_parent_node(fwnode, parent) {
742 if (--depth == 0)
743 return parent;
744 }
745 return NULL;
746}
747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
748
749/**
750 * fwnode_get_next_child_node - Return the next child node handle for a node
751 * @fwnode: Firmware node to find the next child node for.
752 * @child: Handle to one of the node's child nodes or a %NULL handle.
753 *
754 * The caller is responsible for calling fwnode_handle_put() on the returned
755 * fwnode pointer. Note that this function also puts a reference to @child
756 * unconditionally.
757 */
758struct fwnode_handle *
759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
760 struct fwnode_handle *child)
761{
762 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
763}
764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
765
766/**
767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
768 * @fwnode: Firmware node to find the next child node for.
769 * @child: Handle to one of the node's child nodes or a %NULL handle.
770 *
771 * The caller is responsible for calling fwnode_handle_put() on the returned
772 * fwnode pointer. Note that this function also puts a reference to @child
773 * unconditionally.
774 */
775struct fwnode_handle *
776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
777 struct fwnode_handle *child)
778{
779 struct fwnode_handle *next_child = child;
780
781 if (IS_ERR_OR_NULL(fwnode))
782 return NULL;
783
784 do {
785 next_child = fwnode_get_next_child_node(fwnode, next_child);
786 if (!next_child)
787 return NULL;
788 } while (!fwnode_device_is_available(next_child));
789
790 return next_child;
791}
792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
793
794/**
795 * device_get_next_child_node - Return the next child node handle for a device
796 * @dev: Device to find the next child node for.
797 * @child: Handle to one of the device's child nodes or a %NULL handle.
798 *
799 * The caller is responsible for calling fwnode_handle_put() on the returned
800 * fwnode pointer. Note that this function also puts a reference to @child
801 * unconditionally.
802 */
803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
804 struct fwnode_handle *child)
805{
806 const struct fwnode_handle *fwnode = dev_fwnode(dev);
807 struct fwnode_handle *next;
808
809 if (IS_ERR_OR_NULL(fwnode))
810 return NULL;
811
812 /* Try to find a child in primary fwnode */
813 next = fwnode_get_next_child_node(fwnode, child);
814 if (next)
815 return next;
816
817 /* When no more children in primary, continue with secondary */
818 return fwnode_get_next_child_node(fwnode->secondary, child);
819}
820EXPORT_SYMBOL_GPL(device_get_next_child_node);
821
822/**
823 * fwnode_get_named_child_node - Return first matching named child node handle
824 * @fwnode: Firmware node to find the named child node for.
825 * @childname: String to match child node name against.
826 *
827 * The caller is responsible for calling fwnode_handle_put() on the returned
828 * fwnode pointer.
829 */
830struct fwnode_handle *
831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
832 const char *childname)
833{
834 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
835}
836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
837
838/**
839 * device_get_named_child_node - Return first matching named child node handle
840 * @dev: Device to find the named child node for.
841 * @childname: String to match child node name against.
842 *
843 * The caller is responsible for calling fwnode_handle_put() on the returned
844 * fwnode pointer.
845 */
846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
847 const char *childname)
848{
849 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
850}
851EXPORT_SYMBOL_GPL(device_get_named_child_node);
852
853/**
854 * fwnode_handle_get - Obtain a reference to a device node
855 * @fwnode: Pointer to the device node to obtain the reference to.
856 *
857 * The caller is responsible for calling fwnode_handle_put() on the returned
858 * fwnode pointer.
859 *
860 * Return: the fwnode handle.
861 */
862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
863{
864 if (!fwnode_has_op(fwnode, get))
865 return fwnode;
866
867 return fwnode_call_ptr_op(fwnode, get);
868}
869EXPORT_SYMBOL_GPL(fwnode_handle_get);
870
871/**
872 * fwnode_device_is_available - check if a device is available for use
873 * @fwnode: Pointer to the fwnode of the device.
874 *
875 * Return: true if device is available for use. Otherwise, returns false.
876 *
877 * For fwnode node types that don't implement the .device_is_available()
878 * operation, this function returns true.
879 */
880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
881{
882 if (IS_ERR_OR_NULL(fwnode))
883 return false;
884
885 if (!fwnode_has_op(fwnode, device_is_available))
886 return true;
887
888 return fwnode_call_bool_op(fwnode, device_is_available);
889}
890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
891
892/**
893 * device_get_child_node_count - return the number of child nodes for device
894 * @dev: Device to count the child nodes for
895 *
896 * Return: the number of child nodes for a given device.
897 */
898unsigned int device_get_child_node_count(const struct device *dev)
899{
900 struct fwnode_handle *child;
901 unsigned int count = 0;
902
903 device_for_each_child_node(dev, child)
904 count++;
905
906 return count;
907}
908EXPORT_SYMBOL_GPL(device_get_child_node_count);
909
910bool device_dma_supported(const struct device *dev)
911{
912 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
913}
914EXPORT_SYMBOL_GPL(device_dma_supported);
915
916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
917{
918 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
919 return DEV_DMA_NOT_SUPPORTED;
920
921 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
922}
923EXPORT_SYMBOL_GPL(device_get_dma_attr);
924
925/**
926 * fwnode_get_phy_mode - Get phy mode for given firmware node
927 * @fwnode: Pointer to the given node
928 *
929 * The function gets phy interface string from property 'phy-mode' or
930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
931 * error case.
932 */
933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
934{
935 const char *pm;
936 int err, i;
937
938 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
939 if (err < 0)
940 err = fwnode_property_read_string(fwnode,
941 "phy-connection-type", &pm);
942 if (err < 0)
943 return err;
944
945 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
946 if (!strcasecmp(pm, phy_modes(i)))
947 return i;
948
949 return -ENODEV;
950}
951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
952
953/**
954 * device_get_phy_mode - Get phy mode for given device
955 * @dev: Pointer to the given device
956 *
957 * The function gets phy interface string from property 'phy-mode' or
958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
959 * error case.
960 */
961int device_get_phy_mode(struct device *dev)
962{
963 return fwnode_get_phy_mode(dev_fwnode(dev));
964}
965EXPORT_SYMBOL_GPL(device_get_phy_mode);
966
967/**
968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
969 * @fwnode: Pointer to the firmware node
970 * @index: Index of the IO range
971 *
972 * Return: a pointer to the mapped memory.
973 */
974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
975{
976 return fwnode_call_ptr_op(fwnode, iomap, index);
977}
978EXPORT_SYMBOL(fwnode_iomap);
979
980/**
981 * fwnode_irq_get - Get IRQ directly from a fwnode
982 * @fwnode: Pointer to the firmware node
983 * @index: Zero-based index of the IRQ
984 *
985 * Return: Linux IRQ number on success. Negative errno on failure.
986 */
987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
988{
989 int ret;
990
991 ret = fwnode_call_int_op(fwnode, irq_get, index);
992 /* We treat mapping errors as invalid case */
993 if (ret == 0)
994 return -EINVAL;
995
996 return ret;
997}
998EXPORT_SYMBOL(fwnode_irq_get);
999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode: Pointer to the firmware node
1003 * @name: IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015 int index;
1016
1017 if (!name)
1018 return -EINVAL;
1019
1020 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1021 if (index < 0)
1022 return index;
1023
1024 return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042 struct fwnode_handle *prev)
1043{
1044 struct fwnode_handle *ep, *port_parent = NULL;
1045 const struct fwnode_handle *parent;
1046
1047 /*
1048 * If this function is in a loop and the previous iteration returned
1049 * an endpoint from fwnode->secondary, then we need to use the secondary
1050 * as parent rather than @fwnode.
1051 */
1052 if (prev) {
1053 port_parent = fwnode_graph_get_port_parent(prev);
1054 parent = port_parent;
1055 } else {
1056 parent = fwnode;
1057 }
1058 if (IS_ERR_OR_NULL(parent))
1059 return NULL;
1060
1061 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062 if (ep)
1063 goto out_put_port_parent;
1064
1065 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068 fwnode_handle_put(port_parent);
1069 return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085 struct fwnode_handle *port, *parent;
1086
1087 port = fwnode_get_parent(endpoint);
1088 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090 fwnode_handle_put(port);
1091
1092 return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108 struct fwnode_handle *endpoint, *parent;
1109
1110 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111 parent = fwnode_graph_get_port_parent(endpoint);
1112
1113 fwnode_handle_put(endpoint);
1114
1115 return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153 struct fwnode_handle *dev_node;
1154 bool available;
1155
1156 dev_node = fwnode_graph_get_remote_port_parent(ep);
1157 available = fwnode_device_is_available(dev_node);
1158 fwnode_handle_put(dev_node);
1159
1160 return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185 u32 port, u32 endpoint, unsigned long flags)
1186{
1187 struct fwnode_handle *ep, *best_ep = NULL;
1188 unsigned int best_ep_id = 0;
1189 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192 fwnode_graph_for_each_endpoint(fwnode, ep) {
1193 struct fwnode_endpoint fwnode_ep = { 0 };
1194 int ret;
1195
1196 if (enabled_only && !fwnode_graph_remote_available(ep))
1197 continue;
1198
1199 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200 if (ret < 0)
1201 continue;
1202
1203 if (fwnode_ep.port != port)
1204 continue;
1205
1206 if (fwnode_ep.id == endpoint)
1207 return ep;
1208
1209 if (!endpoint_next)
1210 continue;
1211
1212 /*
1213 * If the endpoint that has just been found is not the first
1214 * matching one and the ID of the one found previously is closer
1215 * to the requested endpoint ID, skip it.
1216 */
1217 if (fwnode_ep.id < endpoint ||
1218 (best_ep && best_ep_id < fwnode_ep.id))
1219 continue;
1220
1221 fwnode_handle_put(best_ep);
1222 best_ep = fwnode_handle_get(ep);
1223 best_ep_id = fwnode_ep.id;
1224 }
1225
1226 return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240 unsigned long flags)
1241{
1242 struct fwnode_handle *ep;
1243 unsigned int count = 0;
1244
1245 fwnode_graph_for_each_endpoint(fwnode, ep) {
1246 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247 fwnode_graph_remote_available(ep))
1248 count++;
1249 }
1250
1251 return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265 struct fwnode_endpoint *endpoint)
1266{
1267 memset(endpoint, 0, sizeof(*endpoint));
1268
1269 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280 const char *con_id, void *data,
1281 devcon_match_fn_t match,
1282 void **matches,
1283 unsigned int matches_len)
1284{
1285 struct fwnode_handle *node;
1286 struct fwnode_handle *ep;
1287 unsigned int count = 0;
1288 void *ret;
1289
1290 fwnode_graph_for_each_endpoint(fwnode, ep) {
1291 if (matches && count >= matches_len) {
1292 fwnode_handle_put(ep);
1293 break;
1294 }
1295
1296 node = fwnode_graph_get_remote_port_parent(ep);
1297 if (!fwnode_device_is_available(node)) {
1298 fwnode_handle_put(node);
1299 continue;
1300 }
1301
1302 ret = match(node, con_id, data);
1303 fwnode_handle_put(node);
1304 if (ret) {
1305 if (matches)
1306 matches[count] = ret;
1307 count++;
1308 }
1309 }
1310 return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314 const char *con_id, void *data,
1315 devcon_match_fn_t match,
1316 void **matches,
1317 unsigned int matches_len)
1318{
1319 struct fwnode_handle *node;
1320 unsigned int count = 0;
1321 unsigned int i;
1322 void *ret;
1323
1324 for (i = 0; ; i++) {
1325 if (matches && count >= matches_len)
1326 break;
1327
1328 node = fwnode_find_reference(fwnode, con_id, i);
1329 if (IS_ERR(node))
1330 break;
1331
1332 ret = match(node, NULL, data);
1333 fwnode_handle_put(node);
1334 if (ret) {
1335 if (matches)
1336 matches[count] = ret;
1337 count++;
1338 }
1339 }
1340
1341 return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356 const char *con_id, void *data,
1357 devcon_match_fn_t match)
1358{
1359 unsigned int count;
1360 void *ret;
1361
1362 if (!fwnode || !match)
1363 return NULL;
1364
1365 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366 if (count)
1367 return ret;
1368
1369 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370 return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394 const char *con_id, void *data,
1395 devcon_match_fn_t match,
1396 void **matches, unsigned int matches_len)
1397{
1398 unsigned int count_graph;
1399 unsigned int count_ref;
1400
1401 if (!fwnode || !match)
1402 return -EINVAL;
1403
1404 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405 matches, matches_len);
1406
1407 if (matches) {
1408 matches += count_graph;
1409 matches_len -= count_graph;
1410 }
1411
1412 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413 matches, matches_len);
1414
1415 return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);