Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 
 
 
 
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct fwnode_handle *dev_fwnode(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22{
  23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24		&dev->of_node->fwnode : dev->fwnode;
  25}
  26EXPORT_SYMBOL_GPL(dev_fwnode);
  27
  28/**
  29 * device_property_present - check if a property of a device is present
  30 * @dev: Device whose property is being checked
  31 * @propname: Name of the property
  32 *
  33 * Check if property @propname is present in the device firmware description.
  34 */
  35bool device_property_present(struct device *dev, const char *propname)
  36{
  37	return fwnode_property_present(dev_fwnode(dev), propname);
  38}
  39EXPORT_SYMBOL_GPL(device_property_present);
  40
 
 
 
 
 
 
 
 
 
 
 
 
  41/**
  42 * fwnode_property_present - check if a property of a firmware node is present
  43 * @fwnode: Firmware node whose property to check
  44 * @propname: Name of the property
  45 */
  46bool fwnode_property_present(const struct fwnode_handle *fwnode,
  47			     const char *propname)
  48{
  49	bool ret;
  50
  51	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  52	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
  53	    !IS_ERR_OR_NULL(fwnode->secondary))
  54		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
  55					 propname);
  56	return ret;
  57}
  58EXPORT_SYMBOL_GPL(fwnode_property_present);
  59
  60/**
  61 * device_property_read_u8_array - return a u8 array property of a device
  62 * @dev: Device to get the property of
  63 * @propname: Name of the property
  64 * @val: The values are stored here or %NULL to return the number of values
  65 * @nval: Size of the @val array
  66 *
  67 * Function reads an array of u8 properties with @propname from the device
  68 * firmware description and stores them to @val if found.
  69 *
  70 * Return: number of values if @val was %NULL,
  71 *         %0 if the property was found (success),
  72 *	   %-EINVAL if given arguments are not valid,
  73 *	   %-ENODATA if the property does not have a value,
  74 *	   %-EPROTO if the property is not an array of numbers,
  75 *	   %-EOVERFLOW if the size of the property is not as expected.
  76 *	   %-ENXIO if no suitable firmware interface is present.
  77 */
  78int device_property_read_u8_array(struct device *dev, const char *propname,
  79				  u8 *val, size_t nval)
  80{
  81	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  82}
  83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  84
  85/**
  86 * device_property_read_u16_array - return a u16 array property of a device
  87 * @dev: Device to get the property of
  88 * @propname: Name of the property
  89 * @val: The values are stored here or %NULL to return the number of values
  90 * @nval: Size of the @val array
  91 *
  92 * Function reads an array of u16 properties with @propname from the device
  93 * firmware description and stores them to @val if found.
  94 *
  95 * Return: number of values if @val was %NULL,
  96 *         %0 if the property was found (success),
  97 *	   %-EINVAL if given arguments are not valid,
  98 *	   %-ENODATA if the property does not have a value,
  99 *	   %-EPROTO if the property is not an array of numbers,
 100 *	   %-EOVERFLOW if the size of the property is not as expected.
 101 *	   %-ENXIO if no suitable firmware interface is present.
 102 */
 103int device_property_read_u16_array(struct device *dev, const char *propname,
 104				   u16 *val, size_t nval)
 105{
 106	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 107}
 108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 109
 110/**
 111 * device_property_read_u32_array - return a u32 array property of a device
 112 * @dev: Device to get the property of
 113 * @propname: Name of the property
 114 * @val: The values are stored here or %NULL to return the number of values
 115 * @nval: Size of the @val array
 116 *
 117 * Function reads an array of u32 properties with @propname from the device
 118 * firmware description and stores them to @val if found.
 119 *
 120 * Return: number of values if @val was %NULL,
 121 *         %0 if the property was found (success),
 122 *	   %-EINVAL if given arguments are not valid,
 123 *	   %-ENODATA if the property does not have a value,
 124 *	   %-EPROTO if the property is not an array of numbers,
 125 *	   %-EOVERFLOW if the size of the property is not as expected.
 126 *	   %-ENXIO if no suitable firmware interface is present.
 127 */
 128int device_property_read_u32_array(struct device *dev, const char *propname,
 129				   u32 *val, size_t nval)
 130{
 131	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 132}
 133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 134
 135/**
 136 * device_property_read_u64_array - return a u64 array property of a device
 137 * @dev: Device to get the property of
 138 * @propname: Name of the property
 139 * @val: The values are stored here or %NULL to return the number of values
 140 * @nval: Size of the @val array
 141 *
 142 * Function reads an array of u64 properties with @propname from the device
 143 * firmware description and stores them to @val if found.
 144 *
 145 * Return: number of values if @val was %NULL,
 146 *         %0 if the property was found (success),
 147 *	   %-EINVAL if given arguments are not valid,
 148 *	   %-ENODATA if the property does not have a value,
 149 *	   %-EPROTO if the property is not an array of numbers,
 150 *	   %-EOVERFLOW if the size of the property is not as expected.
 151 *	   %-ENXIO if no suitable firmware interface is present.
 152 */
 153int device_property_read_u64_array(struct device *dev, const char *propname,
 154				   u64 *val, size_t nval)
 155{
 156	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 157}
 158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 159
 160/**
 161 * device_property_read_string_array - return a string array property of device
 162 * @dev: Device to get the property of
 163 * @propname: Name of the property
 164 * @val: The values are stored here or %NULL to return the number of values
 165 * @nval: Size of the @val array
 166 *
 167 * Function reads an array of string properties with @propname from the device
 168 * firmware description and stores them to @val if found.
 169 *
 170 * Return: number of values read on success if @val is non-NULL,
 171 *	   number of values available on success if @val is NULL,
 172 *	   %-EINVAL if given arguments are not valid,
 173 *	   %-ENODATA if the property does not have a value,
 174 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 175 *	   %-EOVERFLOW if the size of the property is not as expected.
 176 *	   %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_string_array(struct device *dev, const char *propname,
 179				      const char **val, size_t nval)
 180{
 181	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_string_array);
 184
 185/**
 186 * device_property_read_string - return a string property of a device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The value is stored here
 190 *
 191 * Function reads property @propname from the device firmware description and
 192 * stores the value into @val if found. The value is checked to be a string.
 193 *
 194 * Return: %0 if the property was found (success),
 195 *	   %-EINVAL if given arguments are not valid,
 196 *	   %-ENODATA if the property does not have a value,
 197 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 198 *	   %-ENXIO if no suitable firmware interface is present.
 199 */
 200int device_property_read_string(struct device *dev, const char *propname,
 201				const char **val)
 202{
 203	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 204}
 205EXPORT_SYMBOL_GPL(device_property_read_string);
 206
 207/**
 208 * device_property_match_string - find a string in an array and return index
 209 * @dev: Device to get the property of
 210 * @propname: Name of the property holding the array
 211 * @string: String to look for
 212 *
 213 * Find a given string in a string array and if it is found return the
 214 * index back.
 215 *
 216 * Return: %0 if the property was found (success),
 217 *	   %-EINVAL if given arguments are not valid,
 218 *	   %-ENODATA if the property does not have a value,
 219 *	   %-EPROTO if the property is not an array of strings,
 220 *	   %-ENXIO if no suitable firmware interface is present.
 221 */
 222int device_property_match_string(struct device *dev, const char *propname,
 223				 const char *string)
 224{
 225	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 226}
 227EXPORT_SYMBOL_GPL(device_property_match_string);
 228
 229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 230					  const char *propname,
 231					  unsigned int elem_size, void *val,
 232					  size_t nval)
 233{
 234	int ret;
 235
 236	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 237				 elem_size, val, nval);
 238	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 239	    !IS_ERR_OR_NULL(fwnode->secondary))
 240		ret = fwnode_call_int_op(
 241			fwnode->secondary, property_read_int_array, propname,
 242			elem_size, val, nval);
 243
 244	return ret;
 245}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247/**
 248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 249 * @fwnode: Firmware node to get the property of
 250 * @propname: Name of the property
 251 * @val: The values are stored here or %NULL to return the number of values
 252 * @nval: Size of the @val array
 253 *
 254 * Read an array of u8 properties with @propname from @fwnode and stores them to
 255 * @val if found.
 256 *
 257 * Return: number of values if @val was %NULL,
 258 *         %0 if the property was found (success),
 259 *	   %-EINVAL if given arguments are not valid,
 260 *	   %-ENODATA if the property does not have a value,
 261 *	   %-EPROTO if the property is not an array of numbers,
 262 *	   %-EOVERFLOW if the size of the property is not as expected,
 263 *	   %-ENXIO if no suitable firmware interface is present.
 264 */
 265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 266				  const char *propname, u8 *val, size_t nval)
 267{
 268	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 269					      val, nval);
 270}
 271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 272
 273/**
 274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 275 * @fwnode: Firmware node to get the property of
 276 * @propname: Name of the property
 277 * @val: The values are stored here or %NULL to return the number of values
 278 * @nval: Size of the @val array
 279 *
 280 * Read an array of u16 properties with @propname from @fwnode and store them to
 281 * @val if found.
 282 *
 283 * Return: number of values if @val was %NULL,
 284 *         %0 if the property was found (success),
 285 *	   %-EINVAL if given arguments are not valid,
 286 *	   %-ENODATA if the property does not have a value,
 287 *	   %-EPROTO if the property is not an array of numbers,
 288 *	   %-EOVERFLOW if the size of the property is not as expected,
 289 *	   %-ENXIO if no suitable firmware interface is present.
 290 */
 291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 292				   const char *propname, u16 *val, size_t nval)
 293{
 294	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 295					      val, nval);
 296}
 297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 298
 299/**
 300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 301 * @fwnode: Firmware node to get the property of
 302 * @propname: Name of the property
 303 * @val: The values are stored here or %NULL to return the number of values
 304 * @nval: Size of the @val array
 305 *
 306 * Read an array of u32 properties with @propname from @fwnode store them to
 307 * @val if found.
 308 *
 309 * Return: number of values if @val was %NULL,
 310 *         %0 if the property was found (success),
 311 *	   %-EINVAL if given arguments are not valid,
 312 *	   %-ENODATA if the property does not have a value,
 313 *	   %-EPROTO if the property is not an array of numbers,
 314 *	   %-EOVERFLOW if the size of the property is not as expected,
 315 *	   %-ENXIO if no suitable firmware interface is present.
 316 */
 317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 318				   const char *propname, u32 *val, size_t nval)
 319{
 320	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 321					      val, nval);
 322}
 323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 324
 325/**
 326 * fwnode_property_read_u64_array - return a u64 array property firmware node
 327 * @fwnode: Firmware node to get the property of
 328 * @propname: Name of the property
 329 * @val: The values are stored here or %NULL to return the number of values
 330 * @nval: Size of the @val array
 331 *
 332 * Read an array of u64 properties with @propname from @fwnode and store them to
 333 * @val if found.
 334 *
 335 * Return: number of values if @val was %NULL,
 336 *         %0 if the property was found (success),
 337 *	   %-EINVAL if given arguments are not valid,
 338 *	   %-ENODATA if the property does not have a value,
 339 *	   %-EPROTO if the property is not an array of numbers,
 340 *	   %-EOVERFLOW if the size of the property is not as expected,
 341 *	   %-ENXIO if no suitable firmware interface is present.
 342 */
 343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 344				   const char *propname, u64 *val, size_t nval)
 345{
 346	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 347					      val, nval);
 348}
 349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351/**
 352 * fwnode_property_read_string_array - return string array property of a node
 353 * @fwnode: Firmware node to get the property of
 354 * @propname: Name of the property
 355 * @val: The values are stored here or %NULL to return the number of values
 356 * @nval: Size of the @val array
 357 *
 358 * Read an string list property @propname from the given firmware node and store
 359 * them to @val if found.
 360 *
 361 * Return: number of values read on success if @val is non-NULL,
 362 *	   number of values available on success if @val is NULL,
 363 *	   %-EINVAL if given arguments are not valid,
 364 *	   %-ENODATA if the property does not have a value,
 365 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 366 *	   %-EOVERFLOW if the size of the property is not as expected,
 367 *	   %-ENXIO if no suitable firmware interface is present.
 368 */
 369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 370				      const char *propname, const char **val,
 371				      size_t nval)
 372{
 373	int ret;
 374
 375	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 376				 val, nval);
 377	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 378	    !IS_ERR_OR_NULL(fwnode->secondary))
 379		ret = fwnode_call_int_op(fwnode->secondary,
 380					 property_read_string_array, propname,
 381					 val, nval);
 382	return ret;
 383}
 384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 385
 386/**
 387 * fwnode_property_read_string - return a string property of a firmware node
 388 * @fwnode: Firmware node to get the property of
 389 * @propname: Name of the property
 390 * @val: The value is stored here
 391 *
 392 * Read property @propname from the given firmware node and store the value into
 393 * @val if found.  The value is checked to be a string.
 394 *
 395 * Return: %0 if the property was found (success),
 396 *	   %-EINVAL if given arguments are not valid,
 397 *	   %-ENODATA if the property does not have a value,
 398 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 399 *	   %-ENXIO if no suitable firmware interface is present.
 400 */
 401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 402				const char *propname, const char **val)
 403{
 404	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 405
 406	return ret < 0 ? ret : 0;
 
 
 
 
 
 407}
 408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 409
 410/**
 411 * fwnode_property_match_string - find a string in an array and return index
 412 * @fwnode: Firmware node to get the property of
 413 * @propname: Name of the property holding the array
 414 * @string: String to look for
 415 *
 416 * Find a given string in a string array and if it is found return the
 417 * index back.
 418 *
 419 * Return: %0 if the property was found (success),
 420 *	   %-EINVAL if given arguments are not valid,
 421 *	   %-ENODATA if the property does not have a value,
 422 *	   %-EPROTO if the property is not an array of strings,
 423 *	   %-ENXIO if no suitable firmware interface is present.
 424 */
 425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 426	const char *propname, const char *string)
 427{
 428	const char **values;
 429	int nval, ret;
 430
 431	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 432	if (nval < 0)
 433		return nval;
 434
 435	if (nval == 0)
 436		return -ENODATA;
 437
 438	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 439	if (!values)
 440		return -ENOMEM;
 441
 442	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 443	if (ret < 0)
 444		goto out;
 445
 446	ret = match_string(values, nval, string);
 447	if (ret < 0)
 448		ret = -ENODATA;
 449out:
 450	kfree(values);
 451	return ret;
 452}
 453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 454
 455/**
 456 * fwnode_property_get_reference_args() - Find a reference with arguments
 457 * @fwnode:	Firmware node where to look for the reference
 458 * @prop:	The name of the property
 459 * @nargs_prop:	The name of the property telling the number of
 460 *		arguments in the referred node. NULL if @nargs is known,
 461 *		otherwise @nargs is ignored. Only relevant on OF.
 462 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 463 * @index:	Index of the reference, from zero onwards.
 464 * @args:	Result structure with reference and integer arguments.
 465 *
 466 * Obtain a reference based on a named property in an fwnode, with
 467 * integer arguments.
 468 *
 469 * Caller is responsible to call fwnode_handle_put() on the returned
 470 * args->fwnode pointer.
 471 *
 472 * Returns: %0 on success
 473 *	    %-ENOENT when the index is out of bounds, the index has an empty
 474 *		     reference or the property was not found
 475 *	    %-EINVAL on parse error
 476 */
 477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 478				       const char *prop, const char *nargs_prop,
 479				       unsigned int nargs, unsigned int index,
 480				       struct fwnode_reference_args *args)
 481{
 482	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 483				  nargs, index, args);
 484}
 485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 486
 487/**
 488 * fwnode_find_reference - Find named reference to a fwnode_handle
 489 * @fwnode: Firmware node where to look for the reference
 490 * @name: The name of the reference
 491 * @index: Index of the reference
 492 *
 493 * @index can be used when the named reference holds a table of references.
 494 *
 495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 496 * call fwnode_handle_put() on the returned fwnode pointer.
 497 */
 498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 499					    const char *name,
 500					    unsigned int index)
 501{
 502	struct fwnode_reference_args args;
 503	int ret;
 504
 505	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 506						 &args);
 507	return ret ? ERR_PTR(ret) : args.fwnode;
 508}
 509EXPORT_SYMBOL_GPL(fwnode_find_reference);
 510
 511/**
 512 * device_remove_properties - Remove properties from a device object.
 513 * @dev: Device whose properties to remove.
 514 *
 515 * The function removes properties previously associated to the device
 516 * firmware node with device_add_properties(). Memory allocated to the
 517 * properties will also be released.
 518 */
 519void device_remove_properties(struct device *dev)
 520{
 521	struct fwnode_handle *fwnode = dev_fwnode(dev);
 
 522
 523	if (!fwnode)
 524		return;
 525
 526	if (is_software_node(fwnode->secondary)) {
 527		fwnode_remove_software_node(fwnode->secondary);
 528		set_secondary_fwnode(dev, NULL);
 
 
 
 
 
 
 
 
 
 529	}
 
 
 
 530}
 531EXPORT_SYMBOL_GPL(device_remove_properties);
 532
 533/**
 534 * device_add_properties - Add a collection of properties to a device object.
 535 * @dev: Device to add properties to.
 536 * @properties: Collection of properties to add.
 537 *
 538 * Associate a collection of device properties represented by @properties with
 539 * @dev. The function takes a copy of @properties.
 540 *
 541 * WARNING: The callers should not use this function if it is known that there
 542 * is no real firmware node associated with @dev! In that case the callers
 543 * should create a software node and assign it to @dev directly.
 544 */
 545int device_add_properties(struct device *dev,
 546			  const struct property_entry *properties)
 547{
 548	struct fwnode_handle *fwnode;
 549
 550	fwnode = fwnode_create_software_node(properties, NULL);
 551	if (IS_ERR(fwnode))
 552		return PTR_ERR(fwnode);
 553
 554	set_secondary_fwnode(dev, fwnode);
 555	return 0;
 556}
 557EXPORT_SYMBOL_GPL(device_add_properties);
 558
 559/**
 560 * fwnode_get_name - Return the name of a node
 561 * @fwnode: The firmware node
 562 *
 563 * Returns a pointer to the node name.
 564 */
 565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 566{
 567	return fwnode_call_ptr_op(fwnode, get_name);
 568}
 569EXPORT_SYMBOL_GPL(fwnode_get_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571/**
 572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 573 * @fwnode: The firmware node
 574 *
 575 * Returns the prefix of a node, intended to be printed right before the node.
 576 * The prefix works also as a separator between the nodes.
 577 */
 578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 579{
 580	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 581}
 582
 583/**
 584 * fwnode_get_parent - Return parent firwmare node
 585 * @fwnode: Firmware whose parent is retrieved
 586 *
 587 * Return parent firmware node of the given node if possible or %NULL if no
 588 * parent was available.
 589 */
 590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 591{
 592	return fwnode_call_ptr_op(fwnode, get_parent);
 593}
 594EXPORT_SYMBOL_GPL(fwnode_get_parent);
 595
 596/**
 597 * fwnode_get_next_parent - Iterate to the node's parent
 598 * @fwnode: Firmware whose parent is retrieved
 599 *
 600 * This is like fwnode_get_parent() except that it drops the refcount
 601 * on the passed node, making it suitable for iterating through a
 602 * node's parents.
 603 *
 604 * Returns a node pointer with refcount incremented, use
 605 * fwnode_handle_node() on it when done.
 606 */
 607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 608{
 609	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 
 
 610
 611	fwnode_handle_put(fwnode);
 
 
 612
 613	return parent;
 614}
 615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 616
 617/**
 618 * fwnode_count_parents - Return the number of parents a node has
 619 * @fwnode: The node the parents of which are to be counted
 620 *
 621 * Returns the number of parents a node has.
 622 */
 623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 624{
 625	struct fwnode_handle *__fwnode;
 626	unsigned int count;
 627
 628	__fwnode = fwnode_get_parent(fwnode);
 629
 630	for (count = 0; __fwnode; count++)
 631		__fwnode = fwnode_get_next_parent(__fwnode);
 
 
 
 
 
 
 632
 633	return count;
 634}
 635EXPORT_SYMBOL_GPL(fwnode_count_parents);
 636
 637/**
 638 * fwnode_get_nth_parent - Return an nth parent of a node
 639 * @fwnode: The node the parent of which is requested
 640 * @depth: Distance of the parent from the node
 641 *
 642 * Returns the nth parent of a node. If there is no parent at the requested
 643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 645 *
 646 * The caller is responsible for calling fwnode_handle_put() for the returned
 647 * node.
 
 648 */
 649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 650					    unsigned int depth)
 651{
 652	unsigned int i;
 653
 654	fwnode_handle_get(fwnode);
 655
 656	for (i = 0; i < depth && fwnode; i++)
 657		fwnode = fwnode_get_next_parent(fwnode);
 658
 659	return fwnode;
 660}
 661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 662
 663/**
 664 * fwnode_get_next_child_node - Return the next child node handle for a node
 665 * @fwnode: Firmware node to find the next child node for.
 666 * @child: Handle to one of the node's child nodes or a %NULL handle.
 667 */
 668struct fwnode_handle *
 669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 670			   struct fwnode_handle *child)
 671{
 672	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 
 
 
 
 
 
 
 
 673}
 674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 675
 676/**
 677 * fwnode_get_next_available_child_node - Return the next
 678 * available child node handle for a node
 679 * @fwnode: Firmware node to find the next child node for.
 680 * @child: Handle to one of the node's child nodes or a %NULL handle.
 
 
 
 681 */
 682struct fwnode_handle *
 683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 684				     struct fwnode_handle *child)
 685{
 686	struct fwnode_handle *next_child = child;
 687
 688	if (!fwnode)
 689		return NULL;
 690
 691	do {
 692		next_child = fwnode_get_next_child_node(fwnode, next_child);
 693
 694		if (!next_child || fwnode_device_is_available(next_child))
 695			break;
 696	} while (next_child);
 697
 698	return next_child;
 
 
 699}
 700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 701
 702/**
 703 * device_get_next_child_node - Return the next child node handle for a device
 704 * @dev: Device to find the next child node for.
 705 * @child: Handle to one of the device's child nodes or a null handle.
 706 */
 707struct fwnode_handle *device_get_next_child_node(struct device *dev,
 708						 struct fwnode_handle *child)
 709{
 710	struct acpi_device *adev = ACPI_COMPANION(dev);
 711	struct fwnode_handle *fwnode = NULL, *next;
 712
 713	if (dev->of_node)
 714		fwnode = &dev->of_node->fwnode;
 715	else if (adev)
 716		fwnode = acpi_fwnode_handle(adev);
 717
 718	/* Try to find a child in primary fwnode */
 719	next = fwnode_get_next_child_node(fwnode, child);
 720	if (next)
 721		return next;
 722
 723	/* When no more children in primary, continue with secondary */
 724	if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
 725		next = fwnode_get_next_child_node(fwnode->secondary, child);
 726
 727	return next;
 
 
 
 
 
 
 728}
 729EXPORT_SYMBOL_GPL(device_get_next_child_node);
 730
 731/**
 732 * fwnode_get_named_child_node - Return first matching named child node handle
 733 * @fwnode: Firmware node to find the named child node for.
 734 * @childname: String to match child node name against.
 735 */
 736struct fwnode_handle *
 737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 738			    const char *childname)
 739{
 740	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 741}
 742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 743
 744/**
 745 * device_get_named_child_node - Return first matching named child node handle
 746 * @dev: Device to find the named child node for.
 747 * @childname: String to match child node name against.
 748 */
 749struct fwnode_handle *device_get_named_child_node(struct device *dev,
 750						  const char *childname)
 751{
 752	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 753}
 754EXPORT_SYMBOL_GPL(device_get_named_child_node);
 755
 756/**
 757 * fwnode_handle_get - Obtain a reference to a device node
 758 * @fwnode: Pointer to the device node to obtain the reference to.
 759 *
 760 * Returns the fwnode handle.
 761 */
 762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 763{
 764	if (!fwnode_has_op(fwnode, get))
 765		return fwnode;
 
 
 
 766
 767	return fwnode_call_ptr_op(fwnode, get);
 768}
 769EXPORT_SYMBOL_GPL(fwnode_handle_get);
 770
 771/**
 772 * fwnode_handle_put - Drop reference to a device node
 773 * @fwnode: Pointer to the device node to drop the reference to.
 774 *
 775 * This has to be used when terminating device_for_each_child_node() iteration
 776 * with break or return to prevent stale device node references from being left
 777 * behind.
 778 */
 779void fwnode_handle_put(struct fwnode_handle *fwnode)
 780{
 781	fwnode_call_void_op(fwnode, put);
 
 782}
 783EXPORT_SYMBOL_GPL(fwnode_handle_put);
 784
 785/**
 786 * fwnode_device_is_available - check if a device is available for use
 787 * @fwnode: Pointer to the fwnode of the device.
 788 */
 789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 790{
 791	return fwnode_call_bool_op(fwnode, device_is_available);
 792}
 793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 794
 795/**
 796 * device_get_child_node_count - return the number of child nodes for device
 797 * @dev: Device to cound the child nodes for
 798 */
 799unsigned int device_get_child_node_count(struct device *dev)
 800{
 801	struct fwnode_handle *child;
 802	unsigned int count = 0;
 803
 804	device_for_each_child_node(dev, child)
 805		count++;
 806
 807	return count;
 808}
 809EXPORT_SYMBOL_GPL(device_get_child_node_count);
 810
 811bool device_dma_supported(struct device *dev)
 812{
 813	/* For DT, this is always supported.
 814	 * For ACPI, this depends on CCA, which
 815	 * is determined by the acpi_dma_supported().
 816	 */
 817	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 818		return true;
 819
 820	return acpi_dma_supported(ACPI_COMPANION(dev));
 821}
 822EXPORT_SYMBOL_GPL(device_dma_supported);
 823
 824enum dev_dma_attr device_get_dma_attr(struct device *dev)
 825{
 826	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 827
 828	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 829		if (of_dma_is_coherent(dev->of_node))
 830			attr = DEV_DMA_COHERENT;
 831		else
 832			attr = DEV_DMA_NON_COHERENT;
 833	} else
 834		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 835
 836	return attr;
 837}
 838EXPORT_SYMBOL_GPL(device_get_dma_attr);
 839
 840/**
 841 * fwnode_get_phy_mode - Get phy mode for given firmware node
 842 * @fwnode:	Pointer to the given node
 843 *
 844 * The function gets phy interface string from property 'phy-mode' or
 845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 846 * error case.
 847 */
 848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 849{
 850	const char *pm;
 851	int err, i;
 852
 853	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 854	if (err < 0)
 855		err = fwnode_property_read_string(fwnode,
 856						  "phy-connection-type", &pm);
 857	if (err < 0)
 858		return err;
 859
 860	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 861		if (!strcasecmp(pm, phy_modes(i)))
 862			return i;
 863
 864	return -ENODEV;
 865}
 866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 867
 868/**
 869 * device_get_phy_mode - Get phy mode for given device
 870 * @dev:	Pointer to the given device
 871 *
 872 * The function gets phy interface string from property 'phy-mode' or
 873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 874 * error case.
 875 */
 876int device_get_phy_mode(struct device *dev)
 877{
 878	return fwnode_get_phy_mode(dev_fwnode(dev));
 879}
 880EXPORT_SYMBOL_GPL(device_get_phy_mode);
 881
 882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
 883				 const char *name, char *addr,
 884				 int alen)
 885{
 886	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
 887
 888	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
 889		return addr;
 890	return NULL;
 891}
 892
 893/**
 894 * fwnode_get_mac_address - Get the MAC from the firmware node
 895 * @fwnode:	Pointer to the firmware node
 896 * @addr:	Address of buffer to store the MAC in
 897 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 898 *
 899 * Search the firmware node for the best MAC address to use.  'mac-address' is
 900 * checked first, because that is supposed to contain to "most recent" MAC
 901 * address. If that isn't set, then 'local-mac-address' is checked next,
 902 * because that is the default address.  If that isn't set, then the obsolete
 903 * 'address' is checked, just in case we're using an old device tree.
 904 *
 905 * Note that the 'address' property is supposed to contain a virtual address of
 906 * the register set, but some DTS files have redefined that property to be the
 907 * MAC address.
 908 *
 909 * All-zero MAC addresses are rejected, because those could be properties that
 910 * exist in the firmware tables, but were not updated by the firmware.  For
 911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 912 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 914 * exists but is all zeros.
 915*/
 916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
 917{
 918	char *res;
 919
 920	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
 921	if (res)
 922		return res;
 923
 924	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
 925	if (res)
 926		return res;
 927
 928	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
 929}
 930EXPORT_SYMBOL(fwnode_get_mac_address);
 931
 932/**
 933 * device_get_mac_address - Get the MAC for a given device
 934 * @dev:	Pointer to the device
 935 * @addr:	Address of buffer to store the MAC in
 936 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 937 */
 938void *device_get_mac_address(struct device *dev, char *addr, int alen)
 939{
 940	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
 941}
 942EXPORT_SYMBOL(device_get_mac_address);
 943
 944/**
 945 * fwnode_irq_get - Get IRQ directly from a fwnode
 946 * @fwnode:	Pointer to the firmware node
 947 * @index:	Zero-based index of the IRQ
 948 *
 949 * Returns Linux IRQ number on success. Other values are determined
 950 * accordingly to acpi_/of_ irq_get() operation.
 951 */
 952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
 953{
 954	struct device_node *of_node = to_of_node(fwnode);
 955	struct resource res;
 956	int ret;
 957
 958	if (IS_ENABLED(CONFIG_OF) && of_node)
 959		return of_irq_get(of_node, index);
 960
 961	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
 962	if (ret)
 963		return ret;
 964
 965	return res.start;
 966}
 967EXPORT_SYMBOL(fwnode_irq_get);
 968
 969/**
 970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 971 * @fwnode: Pointer to the parent firmware node
 972 * @prev: Previous endpoint node or %NULL to get the first
 973 *
 974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 975 * are available.
 976 */
 977struct fwnode_handle *
 978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 979			       struct fwnode_handle *prev)
 980{
 981	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
 982}
 983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
 984
 985/**
 986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 987 * @endpoint: Endpoint firmware node of the port
 988 *
 989 * Return: the firmware node of the device the @endpoint belongs to.
 990 */
 991struct fwnode_handle *
 992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
 993{
 994	struct fwnode_handle *port, *parent;
 995
 996	port = fwnode_get_parent(endpoint);
 997	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
 998
 999	fwnode_handle_put(port);
1000
1001	return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014	struct fwnode_handle *endpoint, *parent;
1015
1016	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017	parent = fwnode_graph_get_port_parent(endpoint);
1018
1019	fwnode_handle_put(endpoint);
1020
1021	return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 *	   to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062			     u32 endpoint_id)
1063{
1064	struct fwnode_handle *endpoint = NULL;
1065
1066	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067		struct fwnode_endpoint fwnode_ep;
1068		struct fwnode_handle *remote;
1069		int ret;
1070
1071		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072		if (ret < 0)
1073			continue;
1074
1075		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076			continue;
1077
1078		remote = fwnode_graph_get_remote_port_parent(endpoint);
1079		if (!remote)
1080			return NULL;
1081
1082		return fwnode_device_is_available(remote) ? remote : NULL;
1083	}
1084
1085	return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111				u32 port, u32 endpoint, unsigned long flags)
1112{
1113	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114	unsigned int best_ep_id = 0;
1115	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119		struct fwnode_endpoint fwnode_ep = { 0 };
1120		int ret;
1121
1122		if (enabled_only) {
1123			struct fwnode_handle *dev_node;
1124			bool available;
1125
1126			dev_node = fwnode_graph_get_remote_port_parent(ep);
1127			available = fwnode_device_is_available(dev_node);
1128			fwnode_handle_put(dev_node);
1129			if (!available)
1130				continue;
1131		}
1132
1133		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134		if (ret < 0)
1135			continue;
1136
1137		if (fwnode_ep.port != port)
1138			continue;
1139
1140		if (fwnode_ep.id == endpoint)
1141			return ep;
1142
1143		if (!endpoint_next)
1144			continue;
1145
1146		/*
1147		 * If the endpoint that has just been found is not the first
1148		 * matching one and the ID of the one found previously is closer
1149		 * to the requested endpoint ID, skip it.
1150		 */
1151		if (fwnode_ep.id < endpoint ||
1152		    (best_ep && best_ep_id < fwnode_ep.id))
1153			continue;
1154
1155		fwnode_handle_put(best_ep);
1156		best_ep = fwnode_handle_get(ep);
1157		best_ep_id = fwnode_ep.id;
1158	}
1159
1160	return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174				struct fwnode_endpoint *endpoint)
1175{
1176	memset(endpoint, 0, sizeof(*endpoint));
1177
1178	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
v4.10.11
 
   1/*
   2 * property.c - Unified device property interface.
   3 *
   4 * Copyright (C) 2014, Intel Corporation
   5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   6 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/acpi.h>
  14#include <linux/export.h>
  15#include <linux/kernel.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
 
 
  18#include <linux/property.h>
  19#include <linux/etherdevice.h>
  20#include <linux/phy.h>
  21
  22struct property_set {
  23	struct fwnode_handle fwnode;
  24	struct property_entry *properties;
  25};
  26
  27static inline bool is_pset_node(struct fwnode_handle *fwnode)
  28{
  29	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
  30}
  31
  32static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
  33{
  34	return is_pset_node(fwnode) ?
  35		container_of(fwnode, struct property_set, fwnode) : NULL;
  36}
  37
  38static struct property_entry *pset_prop_get(struct property_set *pset,
  39					    const char *name)
  40{
  41	struct property_entry *prop;
  42
  43	if (!pset || !pset->properties)
  44		return NULL;
  45
  46	for (prop = pset->properties; prop->name; prop++)
  47		if (!strcmp(name, prop->name))
  48			return prop;
  49
  50	return NULL;
  51}
  52
  53static void *pset_prop_find(struct property_set *pset, const char *propname,
  54			    size_t length)
  55{
  56	struct property_entry *prop;
  57	void *pointer;
  58
  59	prop = pset_prop_get(pset, propname);
  60	if (!prop)
  61		return ERR_PTR(-EINVAL);
  62	if (prop->is_array)
  63		pointer = prop->pointer.raw_data;
  64	else
  65		pointer = &prop->value.raw_data;
  66	if (!pointer)
  67		return ERR_PTR(-ENODATA);
  68	if (length > prop->length)
  69		return ERR_PTR(-EOVERFLOW);
  70	return pointer;
  71}
  72
  73static int pset_prop_read_u8_array(struct property_set *pset,
  74				   const char *propname,
  75				   u8 *values, size_t nval)
  76{
  77	void *pointer;
  78	size_t length = nval * sizeof(*values);
  79
  80	pointer = pset_prop_find(pset, propname, length);
  81	if (IS_ERR(pointer))
  82		return PTR_ERR(pointer);
  83
  84	memcpy(values, pointer, length);
  85	return 0;
  86}
  87
  88static int pset_prop_read_u16_array(struct property_set *pset,
  89				    const char *propname,
  90				    u16 *values, size_t nval)
  91{
  92	void *pointer;
  93	size_t length = nval * sizeof(*values);
  94
  95	pointer = pset_prop_find(pset, propname, length);
  96	if (IS_ERR(pointer))
  97		return PTR_ERR(pointer);
  98
  99	memcpy(values, pointer, length);
 100	return 0;
 101}
 102
 103static int pset_prop_read_u32_array(struct property_set *pset,
 104				    const char *propname,
 105				    u32 *values, size_t nval)
 106{
 107	void *pointer;
 108	size_t length = nval * sizeof(*values);
 109
 110	pointer = pset_prop_find(pset, propname, length);
 111	if (IS_ERR(pointer))
 112		return PTR_ERR(pointer);
 113
 114	memcpy(values, pointer, length);
 115	return 0;
 116}
 117
 118static int pset_prop_read_u64_array(struct property_set *pset,
 119				    const char *propname,
 120				    u64 *values, size_t nval)
 121{
 122	void *pointer;
 123	size_t length = nval * sizeof(*values);
 124
 125	pointer = pset_prop_find(pset, propname, length);
 126	if (IS_ERR(pointer))
 127		return PTR_ERR(pointer);
 128
 129	memcpy(values, pointer, length);
 130	return 0;
 131}
 132
 133static int pset_prop_count_elems_of_size(struct property_set *pset,
 134					 const char *propname, size_t length)
 135{
 136	struct property_entry *prop;
 137
 138	prop = pset_prop_get(pset, propname);
 139	if (!prop)
 140		return -EINVAL;
 141
 142	return prop->length / length;
 143}
 144
 145static int pset_prop_read_string_array(struct property_set *pset,
 146				       const char *propname,
 147				       const char **strings, size_t nval)
 148{
 149	void *pointer;
 150	size_t length = nval * sizeof(*strings);
 151
 152	pointer = pset_prop_find(pset, propname, length);
 153	if (IS_ERR(pointer))
 154		return PTR_ERR(pointer);
 155
 156	memcpy(strings, pointer, length);
 157	return 0;
 158}
 159
 160static int pset_prop_read_string(struct property_set *pset,
 161				 const char *propname, const char **strings)
 162{
 163	struct property_entry *prop;
 164	const char **pointer;
 165
 166	prop = pset_prop_get(pset, propname);
 167	if (!prop)
 168		return -EINVAL;
 169	if (!prop->is_string)
 170		return -EILSEQ;
 171	if (prop->is_array) {
 172		pointer = prop->pointer.str;
 173		if (!pointer)
 174			return -ENODATA;
 175	} else {
 176		pointer = &prop->value.str;
 177		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
 178			return -EILSEQ;
 179	}
 180
 181	*strings = *pointer;
 182	return 0;
 183}
 184
 185static inline struct fwnode_handle *dev_fwnode(struct device *dev)
 186{
 187	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 188		&dev->of_node->fwnode : dev->fwnode;
 189}
 
 190
 191/**
 192 * device_property_present - check if a property of a device is present
 193 * @dev: Device whose property is being checked
 194 * @propname: Name of the property
 195 *
 196 * Check if property @propname is present in the device firmware description.
 197 */
 198bool device_property_present(struct device *dev, const char *propname)
 199{
 200	return fwnode_property_present(dev_fwnode(dev), propname);
 201}
 202EXPORT_SYMBOL_GPL(device_property_present);
 203
 204static bool __fwnode_property_present(struct fwnode_handle *fwnode,
 205				      const char *propname)
 206{
 207	if (is_of_node(fwnode))
 208		return of_property_read_bool(to_of_node(fwnode), propname);
 209	else if (is_acpi_node(fwnode))
 210		return !acpi_node_prop_get(fwnode, propname, NULL);
 211	else if (is_pset_node(fwnode))
 212		return !!pset_prop_get(to_pset_node(fwnode), propname);
 213	return false;
 214}
 215
 216/**
 217 * fwnode_property_present - check if a property of a firmware node is present
 218 * @fwnode: Firmware node whose property to check
 219 * @propname: Name of the property
 220 */
 221bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
 
 222{
 223	bool ret;
 224
 225	ret = __fwnode_property_present(fwnode, propname);
 226	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 227	    !IS_ERR_OR_NULL(fwnode->secondary))
 228		ret = __fwnode_property_present(fwnode->secondary, propname);
 
 229	return ret;
 230}
 231EXPORT_SYMBOL_GPL(fwnode_property_present);
 232
 233/**
 234 * device_property_read_u8_array - return a u8 array property of a device
 235 * @dev: Device to get the property of
 236 * @propname: Name of the property
 237 * @val: The values are stored here or %NULL to return the number of values
 238 * @nval: Size of the @val array
 239 *
 240 * Function reads an array of u8 properties with @propname from the device
 241 * firmware description and stores them to @val if found.
 242 *
 243 * Return: number of values if @val was %NULL,
 244 *         %0 if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of numbers,
 248 *	   %-EOVERFLOW if the size of the property is not as expected.
 249 *	   %-ENXIO if no suitable firmware interface is present.
 250 */
 251int device_property_read_u8_array(struct device *dev, const char *propname,
 252				  u8 *val, size_t nval)
 253{
 254	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 255}
 256EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 257
 258/**
 259 * device_property_read_u16_array - return a u16 array property of a device
 260 * @dev: Device to get the property of
 261 * @propname: Name of the property
 262 * @val: The values are stored here or %NULL to return the number of values
 263 * @nval: Size of the @val array
 264 *
 265 * Function reads an array of u16 properties with @propname from the device
 266 * firmware description and stores them to @val if found.
 267 *
 268 * Return: number of values if @val was %NULL,
 269 *         %0 if the property was found (success),
 270 *	   %-EINVAL if given arguments are not valid,
 271 *	   %-ENODATA if the property does not have a value,
 272 *	   %-EPROTO if the property is not an array of numbers,
 273 *	   %-EOVERFLOW if the size of the property is not as expected.
 274 *	   %-ENXIO if no suitable firmware interface is present.
 275 */
 276int device_property_read_u16_array(struct device *dev, const char *propname,
 277				   u16 *val, size_t nval)
 278{
 279	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 280}
 281EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 282
 283/**
 284 * device_property_read_u32_array - return a u32 array property of a device
 285 * @dev: Device to get the property of
 286 * @propname: Name of the property
 287 * @val: The values are stored here or %NULL to return the number of values
 288 * @nval: Size of the @val array
 289 *
 290 * Function reads an array of u32 properties with @propname from the device
 291 * firmware description and stores them to @val if found.
 292 *
 293 * Return: number of values if @val was %NULL,
 294 *         %0 if the property was found (success),
 295 *	   %-EINVAL if given arguments are not valid,
 296 *	   %-ENODATA if the property does not have a value,
 297 *	   %-EPROTO if the property is not an array of numbers,
 298 *	   %-EOVERFLOW if the size of the property is not as expected.
 299 *	   %-ENXIO if no suitable firmware interface is present.
 300 */
 301int device_property_read_u32_array(struct device *dev, const char *propname,
 302				   u32 *val, size_t nval)
 303{
 304	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 305}
 306EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 307
 308/**
 309 * device_property_read_u64_array - return a u64 array property of a device
 310 * @dev: Device to get the property of
 311 * @propname: Name of the property
 312 * @val: The values are stored here or %NULL to return the number of values
 313 * @nval: Size of the @val array
 314 *
 315 * Function reads an array of u64 properties with @propname from the device
 316 * firmware description and stores them to @val if found.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected.
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int device_property_read_u64_array(struct device *dev, const char *propname,
 327				   u64 *val, size_t nval)
 328{
 329	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 330}
 331EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 332
 333/**
 334 * device_property_read_string_array - return a string array property of device
 335 * @dev: Device to get the property of
 336 * @propname: Name of the property
 337 * @val: The values are stored here or %NULL to return the number of values
 338 * @nval: Size of the @val array
 339 *
 340 * Function reads an array of string properties with @propname from the device
 341 * firmware description and stores them to @val if found.
 342 *
 343 * Return: number of values if @val was %NULL,
 344 *         %0 if the property was found (success),
 345 *	   %-EINVAL if given arguments are not valid,
 346 *	   %-ENODATA if the property does not have a value,
 347 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 348 *	   %-EOVERFLOW if the size of the property is not as expected.
 349 *	   %-ENXIO if no suitable firmware interface is present.
 350 */
 351int device_property_read_string_array(struct device *dev, const char *propname,
 352				      const char **val, size_t nval)
 353{
 354	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 355}
 356EXPORT_SYMBOL_GPL(device_property_read_string_array);
 357
 358/**
 359 * device_property_read_string - return a string property of a device
 360 * @dev: Device to get the property of
 361 * @propname: Name of the property
 362 * @val: The value is stored here
 363 *
 364 * Function reads property @propname from the device firmware description and
 365 * stores the value into @val if found. The value is checked to be a string.
 366 *
 367 * Return: %0 if the property was found (success),
 368 *	   %-EINVAL if given arguments are not valid,
 369 *	   %-ENODATA if the property does not have a value,
 370 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 371 *	   %-ENXIO if no suitable firmware interface is present.
 372 */
 373int device_property_read_string(struct device *dev, const char *propname,
 374				const char **val)
 375{
 376	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 377}
 378EXPORT_SYMBOL_GPL(device_property_read_string);
 379
 380/**
 381 * device_property_match_string - find a string in an array and return index
 382 * @dev: Device to get the property of
 383 * @propname: Name of the property holding the array
 384 * @string: String to look for
 385 *
 386 * Find a given string in a string array and if it is found return the
 387 * index back.
 388 *
 389 * Return: %0 if the property was found (success),
 390 *	   %-EINVAL if given arguments are not valid,
 391 *	   %-ENODATA if the property does not have a value,
 392 *	   %-EPROTO if the property is not an array of strings,
 393 *	   %-ENXIO if no suitable firmware interface is present.
 394 */
 395int device_property_match_string(struct device *dev, const char *propname,
 396				 const char *string)
 397{
 398	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 399}
 400EXPORT_SYMBOL_GPL(device_property_match_string);
 401
 402#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 403	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
 404	      : of_property_count_elems_of_size((node), (propname), sizeof(type))
 405
 406#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 407	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
 408	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
 409
 410#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 411({											\
 412	int _ret_;									\
 413	if (is_of_node(_fwnode_))							\
 414		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
 415					       _type_, _val_, _nval_);			\
 416	else if (is_acpi_node(_fwnode_))						\
 417		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
 418					    _val_, _nval_);				\
 419	else if (is_pset_node(_fwnode_)) 						\
 420		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
 421					     _type_, _val_, _nval_);			\
 422	else										\
 423		_ret_ = -ENXIO;								\
 424	_ret_;										\
 425})
 426
 427#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 428({											\
 429	int _ret_;									\
 430	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
 431				 _val_, _nval_);					\
 432	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
 433	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
 434		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
 435				_proptype_, _val_, _nval_);				\
 436	_ret_;										\
 437})
 438
 439/**
 440 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 441 * @fwnode: Firmware node to get the property of
 442 * @propname: Name of the property
 443 * @val: The values are stored here or %NULL to return the number of values
 444 * @nval: Size of the @val array
 445 *
 446 * Read an array of u8 properties with @propname from @fwnode and stores them to
 447 * @val if found.
 448 *
 449 * Return: number of values if @val was %NULL,
 450 *         %0 if the property was found (success),
 451 *	   %-EINVAL if given arguments are not valid,
 452 *	   %-ENODATA if the property does not have a value,
 453 *	   %-EPROTO if the property is not an array of numbers,
 454 *	   %-EOVERFLOW if the size of the property is not as expected,
 455 *	   %-ENXIO if no suitable firmware interface is present.
 456 */
 457int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
 458				  const char *propname, u8 *val, size_t nval)
 459{
 460	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
 461				      val, nval);
 462}
 463EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 464
 465/**
 466 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 467 * @fwnode: Firmware node to get the property of
 468 * @propname: Name of the property
 469 * @val: The values are stored here or %NULL to return the number of values
 470 * @nval: Size of the @val array
 471 *
 472 * Read an array of u16 properties with @propname from @fwnode and store them to
 473 * @val if found.
 474 *
 475 * Return: number of values if @val was %NULL,
 476 *         %0 if the property was found (success),
 477 *	   %-EINVAL if given arguments are not valid,
 478 *	   %-ENODATA if the property does not have a value,
 479 *	   %-EPROTO if the property is not an array of numbers,
 480 *	   %-EOVERFLOW if the size of the property is not as expected,
 481 *	   %-ENXIO if no suitable firmware interface is present.
 482 */
 483int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
 484				   const char *propname, u16 *val, size_t nval)
 485{
 486	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
 487				      val, nval);
 488}
 489EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 490
 491/**
 492 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 493 * @fwnode: Firmware node to get the property of
 494 * @propname: Name of the property
 495 * @val: The values are stored here or %NULL to return the number of values
 496 * @nval: Size of the @val array
 497 *
 498 * Read an array of u32 properties with @propname from @fwnode store them to
 499 * @val if found.
 500 *
 501 * Return: number of values if @val was %NULL,
 502 *         %0 if the property was found (success),
 503 *	   %-EINVAL if given arguments are not valid,
 504 *	   %-ENODATA if the property does not have a value,
 505 *	   %-EPROTO if the property is not an array of numbers,
 506 *	   %-EOVERFLOW if the size of the property is not as expected,
 507 *	   %-ENXIO if no suitable firmware interface is present.
 508 */
 509int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
 510				   const char *propname, u32 *val, size_t nval)
 511{
 512	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
 513				      val, nval);
 514}
 515EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 516
 517/**
 518 * fwnode_property_read_u64_array - return a u64 array property firmware node
 519 * @fwnode: Firmware node to get the property of
 520 * @propname: Name of the property
 521 * @val: The values are stored here or %NULL to return the number of values
 522 * @nval: Size of the @val array
 523 *
 524 * Read an array of u64 properties with @propname from @fwnode and store them to
 525 * @val if found.
 526 *
 527 * Return: number of values if @val was %NULL,
 528 *         %0 if the property was found (success),
 529 *	   %-EINVAL if given arguments are not valid,
 530 *	   %-ENODATA if the property does not have a value,
 531 *	   %-EPROTO if the property is not an array of numbers,
 532 *	   %-EOVERFLOW if the size of the property is not as expected,
 533 *	   %-ENXIO if no suitable firmware interface is present.
 534 */
 535int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
 536				   const char *propname, u64 *val, size_t nval)
 537{
 538	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
 539				      val, nval);
 540}
 541EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 542
 543static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 544					       const char *propname,
 545					       const char **val, size_t nval)
 546{
 547	if (is_of_node(fwnode))
 548		return val ?
 549			of_property_read_string_array(to_of_node(fwnode),
 550						      propname, val, nval) :
 551			of_property_count_strings(to_of_node(fwnode), propname);
 552	else if (is_acpi_node(fwnode))
 553		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 554					   val, nval);
 555	else if (is_pset_node(fwnode))
 556		return val ?
 557			pset_prop_read_string_array(to_pset_node(fwnode),
 558						    propname, val, nval) :
 559			pset_prop_count_elems_of_size(to_pset_node(fwnode),
 560						      propname,
 561						      sizeof(const char *));
 562	return -ENXIO;
 563}
 564
 565static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
 566					 const char *propname, const char **val)
 567{
 568	if (is_of_node(fwnode))
 569		return of_property_read_string(to_of_node(fwnode), propname, val);
 570	else if (is_acpi_node(fwnode))
 571		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 572					   val, 1);
 573	else if (is_pset_node(fwnode))
 574		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
 575	return -ENXIO;
 576}
 577
 578/**
 579 * fwnode_property_read_string_array - return string array property of a node
 580 * @fwnode: Firmware node to get the property of
 581 * @propname: Name of the property
 582 * @val: The values are stored here or %NULL to return the number of values
 583 * @nval: Size of the @val array
 584 *
 585 * Read an string list property @propname from the given firmware node and store
 586 * them to @val if found.
 587 *
 588 * Return: number of values if @val was %NULL,
 589 *         %0 if the property was found (success),
 590 *	   %-EINVAL if given arguments are not valid,
 591 *	   %-ENODATA if the property does not have a value,
 592 *	   %-EPROTO if the property is not an array of strings,
 593 *	   %-EOVERFLOW if the size of the property is not as expected,
 594 *	   %-ENXIO if no suitable firmware interface is present.
 595 */
 596int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 597				      const char *propname, const char **val,
 598				      size_t nval)
 599{
 600	int ret;
 601
 602	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
 
 603	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 604	    !IS_ERR_OR_NULL(fwnode->secondary))
 605		ret = __fwnode_property_read_string_array(fwnode->secondary,
 606							  propname, val, nval);
 
 607	return ret;
 608}
 609EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 610
 611/**
 612 * fwnode_property_read_string - return a string property of a firmware node
 613 * @fwnode: Firmware node to get the property of
 614 * @propname: Name of the property
 615 * @val: The value is stored here
 616 *
 617 * Read property @propname from the given firmware node and store the value into
 618 * @val if found.  The value is checked to be a string.
 619 *
 620 * Return: %0 if the property was found (success),
 621 *	   %-EINVAL if given arguments are not valid,
 622 *	   %-ENODATA if the property does not have a value,
 623 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 624 *	   %-ENXIO if no suitable firmware interface is present.
 625 */
 626int fwnode_property_read_string(struct fwnode_handle *fwnode,
 627				const char *propname, const char **val)
 628{
 629	int ret;
 630
 631	ret = __fwnode_property_read_string(fwnode, propname, val);
 632	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 633	    !IS_ERR_OR_NULL(fwnode->secondary))
 634		ret = __fwnode_property_read_string(fwnode->secondary,
 635						    propname, val);
 636	return ret;
 637}
 638EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 639
 640/**
 641 * fwnode_property_match_string - find a string in an array and return index
 642 * @fwnode: Firmware node to get the property of
 643 * @propname: Name of the property holding the array
 644 * @string: String to look for
 645 *
 646 * Find a given string in a string array and if it is found return the
 647 * index back.
 648 *
 649 * Return: %0 if the property was found (success),
 650 *	   %-EINVAL if given arguments are not valid,
 651 *	   %-ENODATA if the property does not have a value,
 652 *	   %-EPROTO if the property is not an array of strings,
 653 *	   %-ENXIO if no suitable firmware interface is present.
 654 */
 655int fwnode_property_match_string(struct fwnode_handle *fwnode,
 656	const char *propname, const char *string)
 657{
 658	const char **values;
 659	int nval, ret;
 660
 661	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 662	if (nval < 0)
 663		return nval;
 664
 665	if (nval == 0)
 666		return -ENODATA;
 667
 668	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 669	if (!values)
 670		return -ENOMEM;
 671
 672	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 673	if (ret < 0)
 674		goto out;
 675
 676	ret = match_string(values, nval, string);
 677	if (ret < 0)
 678		ret = -ENODATA;
 679out:
 680	kfree(values);
 681	return ret;
 682}
 683EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 684
 685/**
 686 * pset_free_set - releases memory allocated for copied property set
 687 * @pset: Property set to release
 
 
 
 
 
 
 
 
 
 
 688 *
 689 * Function takes previously copied property set and releases all the
 690 * memory allocated to it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691 */
 692static void pset_free_set(struct property_set *pset)
 693{
 694	const struct property_entry *prop;
 695	size_t i, nval;
 696
 697	if (!pset)
 698		return;
 699
 700	for (prop = pset->properties; prop->name; prop++) {
 701		if (prop->is_array) {
 702			if (prop->is_string && prop->pointer.str) {
 703				nval = prop->length / sizeof(const char *);
 704				for (i = 0; i < nval; i++)
 705					kfree(prop->pointer.str[i]);
 706			}
 707			kfree(prop->pointer.raw_data);
 708		} else if (prop->is_string) {
 709			kfree(prop->value.str);
 710		}
 711		kfree(prop->name);
 712	}
 713
 714	kfree(pset->properties);
 715	kfree(pset);
 716}
 
 717
 718static int pset_copy_entry(struct property_entry *dst,
 719			   const struct property_entry *src)
 
 
 
 
 
 
 
 
 
 
 
 
 720{
 721	const char **d, **s;
 722	size_t i, nval;
 
 
 
 723
 724	dst->name = kstrdup(src->name, GFP_KERNEL);
 725	if (!dst->name)
 726		return -ENOMEM;
 
 727
 728	if (src->is_array) {
 729		if (!src->length)
 730			return -ENODATA;
 731
 732		if (src->is_string) {
 733			nval = src->length / sizeof(const char *);
 734			dst->pointer.str = kcalloc(nval, sizeof(const char *),
 735						   GFP_KERNEL);
 736			if (!dst->pointer.str)
 737				return -ENOMEM;
 738
 739			d = dst->pointer.str;
 740			s = src->pointer.str;
 741			for (i = 0; i < nval; i++) {
 742				d[i] = kstrdup(s[i], GFP_KERNEL);
 743				if (!d[i] && s[i])
 744					return -ENOMEM;
 745			}
 746		} else {
 747			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 748							src->length, GFP_KERNEL);
 749			if (!dst->pointer.raw_data)
 750				return -ENOMEM;
 751		}
 752	} else if (src->is_string) {
 753		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 754		if (!dst->value.str && src->value.str)
 755			return -ENOMEM;
 756	} else {
 757		dst->value.raw_data = src->value.raw_data;
 758	}
 759
 760	dst->length = src->length;
 761	dst->is_array = src->is_array;
 762	dst->is_string = src->is_string;
 
 
 
 
 
 
 
 
 763
 764	return 0;
 
 
 
 
 
 
 
 
 
 765}
 
 766
 767/**
 768 * pset_copy_set - copies property set
 769 * @pset: Property set to copy
 770 *
 771 * This function takes a deep copy of the given property set and returns
 772 * pointer to the copy. Call device_free_property_set() to free resources
 773 * allocated in this function.
 774 *
 775 * Return: Pointer to the new property set or error pointer.
 
 776 */
 777static struct property_set *pset_copy_set(const struct property_set *pset)
 778{
 779	const struct property_entry *entry;
 780	struct property_set *p;
 781	size_t i, n = 0;
 782
 783	p = kzalloc(sizeof(*p), GFP_KERNEL);
 784	if (!p)
 785		return ERR_PTR(-ENOMEM);
 786
 787	while (pset->properties[n].name)
 788		n++;
 
 789
 790	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
 791	if (!p->properties) {
 792		kfree(p);
 793		return ERR_PTR(-ENOMEM);
 794	}
 
 
 
 
 
 
 
 795
 796	for (i = 0; i < n; i++) {
 797		int ret = pset_copy_entry(&p->properties[i],
 798					  &pset->properties[i]);
 799		if (ret) {
 800			pset_free_set(p);
 801			return ERR_PTR(ret);
 802		}
 803	}
 804
 805	return p;
 806}
 
 807
 808/**
 809 * device_remove_properties - Remove properties from a device object.
 810 * @dev: Device whose properties to remove.
 
 
 
 
 
 811 *
 812 * The function removes properties previously associated to the device
 813 * secondary firmware node with device_add_properties(). Memory allocated
 814 * to the properties will also be released.
 815 */
 816void device_remove_properties(struct device *dev)
 
 817{
 818	struct fwnode_handle *fwnode;
 
 
 
 
 
 
 
 
 
 819
 820	fwnode = dev_fwnode(dev);
 821	if (!fwnode)
 822		return;
 823	/*
 824	 * Pick either primary or secondary node depending which one holds
 825	 * the pset. If there is no real firmware node (ACPI/DT) primary
 826	 * will hold the pset.
 827	 */
 828	if (is_pset_node(fwnode)) {
 829		set_primary_fwnode(dev, NULL);
 830		pset_free_set(to_pset_node(fwnode));
 831	} else {
 832		fwnode = fwnode->secondary;
 833		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
 834			set_secondary_fwnode(dev, NULL);
 835			pset_free_set(to_pset_node(fwnode));
 836		}
 837	}
 838}
 839EXPORT_SYMBOL_GPL(device_remove_properties);
 840
 841/**
 842 * device_add_properties - Add a collection of properties to a device object.
 843 * @dev: Device to add properties to.
 844 * @properties: Collection of properties to add.
 845 *
 846 * Associate a collection of device properties represented by @properties with
 847 * @dev as its secondary firmware node. The function takes a copy of
 848 * @properties.
 849 */
 850int device_add_properties(struct device *dev, struct property_entry *properties)
 
 
 851{
 852	struct property_set *p, pset;
 853
 854	if (!properties)
 855		return -EINVAL;
 856
 857	pset.properties = properties;
 
 858
 859	p = pset_copy_set(&pset);
 860	if (IS_ERR(p))
 861		return PTR_ERR(p);
 862
 863	p->fwnode.type = FWNODE_PDATA;
 864	set_secondary_fwnode(dev, &p->fwnode);
 865	return 0;
 866}
 867EXPORT_SYMBOL_GPL(device_add_properties);
 868
 869/**
 870 * device_get_next_child_node - Return the next child node handle for a device
 871 * @dev: Device to find the next child node for.
 872 * @child: Handle to one of the device's child nodes or a null handle.
 873 */
 874struct fwnode_handle *device_get_next_child_node(struct device *dev,
 875						 struct fwnode_handle *child)
 876{
 877	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 878		struct device_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880		node = of_get_next_available_child(dev->of_node, to_of_node(child));
 881		if (node)
 882			return &node->fwnode;
 883	} else if (IS_ENABLED(CONFIG_ACPI)) {
 884		return acpi_get_next_subnode(dev, child);
 885	}
 886	return NULL;
 887}
 888EXPORT_SYMBOL_GPL(device_get_next_child_node);
 889
 890/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 891 * device_get_named_child_node - Return first matching named child node handle
 892 * @dev: Device to find the named child node for.
 893 * @childname: String to match child node name against.
 894 */
 895struct fwnode_handle *device_get_named_child_node(struct device *dev,
 896						  const char *childname)
 897{
 898	struct fwnode_handle *child;
 
 
 899
 900	/*
 901	 * Find first matching named child node of this device.
 902	 * For ACPI this will be a data only sub-node.
 903	 */
 904	device_for_each_child_node(dev, child) {
 905		if (is_of_node(child)) {
 906			if (!of_node_cmp(to_of_node(child)->name, childname))
 907				return child;
 908		} else if (is_acpi_data_node(child)) {
 909			if (acpi_data_node_match(child, childname))
 910				return child;
 911		}
 912	}
 913
 914	return NULL;
 915}
 916EXPORT_SYMBOL_GPL(device_get_named_child_node);
 917
 918/**
 919 * fwnode_handle_put - Drop reference to a device node
 920 * @fwnode: Pointer to the device node to drop the reference to.
 921 *
 922 * This has to be used when terminating device_for_each_child_node() iteration
 923 * with break or return to prevent stale device node references from being left
 924 * behind.
 925 */
 926void fwnode_handle_put(struct fwnode_handle *fwnode)
 927{
 928	if (is_of_node(fwnode))
 929		of_node_put(to_of_node(fwnode));
 930}
 931EXPORT_SYMBOL_GPL(fwnode_handle_put);
 932
 933/**
 
 
 
 
 
 
 
 
 
 
 934 * device_get_child_node_count - return the number of child nodes for device
 935 * @dev: Device to cound the child nodes for
 936 */
 937unsigned int device_get_child_node_count(struct device *dev)
 938{
 939	struct fwnode_handle *child;
 940	unsigned int count = 0;
 941
 942	device_for_each_child_node(dev, child)
 943		count++;
 944
 945	return count;
 946}
 947EXPORT_SYMBOL_GPL(device_get_child_node_count);
 948
 949bool device_dma_supported(struct device *dev)
 950{
 951	/* For DT, this is always supported.
 952	 * For ACPI, this depends on CCA, which
 953	 * is determined by the acpi_dma_supported().
 954	 */
 955	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 956		return true;
 957
 958	return acpi_dma_supported(ACPI_COMPANION(dev));
 959}
 960EXPORT_SYMBOL_GPL(device_dma_supported);
 961
 962enum dev_dma_attr device_get_dma_attr(struct device *dev)
 963{
 964	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 965
 966	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 967		if (of_dma_is_coherent(dev->of_node))
 968			attr = DEV_DMA_COHERENT;
 969		else
 970			attr = DEV_DMA_NON_COHERENT;
 971	} else
 972		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 973
 974	return attr;
 975}
 976EXPORT_SYMBOL_GPL(device_get_dma_attr);
 977
 978/**
 979 * device_get_phy_mode - Get phy mode for given device
 980 * @dev:	Pointer to the given device
 981 *
 982 * The function gets phy interface string from property 'phy-mode' or
 983 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 984 * error case.
 985 */
 986int device_get_phy_mode(struct device *dev)
 987{
 988	const char *pm;
 989	int err, i;
 990
 991	err = device_property_read_string(dev, "phy-mode", &pm);
 992	if (err < 0)
 993		err = device_property_read_string(dev,
 994						  "phy-connection-type", &pm);
 995	if (err < 0)
 996		return err;
 997
 998	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 999		if (!strcasecmp(pm, phy_modes(i)))
1000			return i;
1001
1002	return -ENODEV;
1003}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004EXPORT_SYMBOL_GPL(device_get_phy_mode);
1005
1006static void *device_get_mac_addr(struct device *dev,
1007				 const char *name, char *addr,
1008				 int alen)
1009{
1010	int ret = device_property_read_u8_array(dev, name, addr, alen);
1011
1012	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1013		return addr;
1014	return NULL;
1015}
1016
1017/**
1018 * device_get_mac_address - Get the MAC for a given device
1019 * @dev:	Pointer to the device
1020 * @addr:	Address of buffer to store the MAC in
1021 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1022 *
1023 * Search the firmware node for the best MAC address to use.  'mac-address' is
1024 * checked first, because that is supposed to contain to "most recent" MAC
1025 * address. If that isn't set, then 'local-mac-address' is checked next,
1026 * because that is the default address.  If that isn't set, then the obsolete
1027 * 'address' is checked, just in case we're using an old device tree.
1028 *
1029 * Note that the 'address' property is supposed to contain a virtual address of
1030 * the register set, but some DTS files have redefined that property to be the
1031 * MAC address.
1032 *
1033 * All-zero MAC addresses are rejected, because those could be properties that
1034 * exist in the firmware tables, but were not updated by the firmware.  For
1035 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1036 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1037 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1038 * exists but is all zeros.
1039*/
1040void *device_get_mac_address(struct device *dev, char *addr, int alen)
1041{
1042	char *res;
1043
1044	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1045	if (res)
1046		return res;
1047
1048	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1049	if (res)
1050		return res;
1051
1052	return device_get_mac_addr(dev, "address", addr, alen);
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054EXPORT_SYMBOL(device_get_mac_address);