Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
  28#include <linux/pgtable.h>
  29#include <asm/io.h>
  30#include <asm/string.h>
  31#include <asm/page.h>
  32#include <asm/irq.h>
  33#include <asm/dma.h>
  34#include <asm/byteorder.h>
  35#include <linux/uaccess.h>
  36#include <linux/atomic.h>
  37
  38#ifdef CONFIG_SBUS
  39#include <linux/of.h>
  40#include <linux/of_device.h>
  41#include <asm/idprom.h>
  42#include <asm/openprom.h>
  43#include <asm/oplib.h>
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88				    __func__, __LINE__, #expr); \
  89			     panic(FORE200E "%s", __func__); \
  90			 }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170	alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177	return -ENOMEM;
 178
 179    if (alignment > 0)
 180	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185				     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187	kfree(chunk->alloc_addr);
 188	return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200		     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211		int size, int nbr, int alignment)
 212{
 213	/* returned chunks are page-aligned */
 214	chunk->alloc_size = size * nbr;
 215	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216					       &chunk->dma_addr, GFP_KERNEL);
 217	if (!chunk->alloc_addr)
 218		return -ENOMEM;
 219	chunk->align_addr = chunk->alloc_addr;
 220	return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230			  chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250	    break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257	       *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272	if ((ok = (fore200e->bus->read(addr) == val)))
 273	    break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280	       fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301		    struct chunk* data = &buffer[ nbr ].data;
 302
 303		    if (data->alloc_addr != NULL)
 304			fore200e_chunk_free(fore200e, data);
 305		}
 306	    }
 307	}
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322	    
 323	    if (status->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, status);
 325	    
 326	    if (rbd_block->alloc_addr)
 327		fore200e_dma_chunk_free(fore200e, rbd_block);
 328	}
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346	if (ok == 0) {
 347	    
 348	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349	    return -ENODEV;
 350	}
 351
 352	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353	
 354	fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365	   fore200e->name, fore200e->phys_base, 
 366	   fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369	/* first, reset the board to prevent further interrupts or data transfers */
 370	fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377	kfree(fore200e->stats);
 378
 379	fallthrough;
 380    case FORE200E_STATE_IRQ:
 381	free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383	fallthrough;
 384    case FORE200E_STATE_ALLOC_BUF:
 385	fore200e_free_rx_buf(fore200e);
 386
 387	fallthrough;
 388    case FORE200E_STATE_INIT_BSQ:
 389	fore200e_uninit_bs_queue(fore200e);
 390
 391	fallthrough;
 392    case FORE200E_STATE_INIT_RXQ:
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396	fallthrough;
 397    case FORE200E_STATE_INIT_TXQ:
 398	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401	fallthrough;
 402    case FORE200E_STATE_INIT_CMDQ:
 403	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405	fallthrough;
 406    case FORE200E_STATE_INITIALIZE:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413	/* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416	fore200e->bus->unmap(fore200e);
 417
 418	fallthrough;
 419    case FORE200E_STATE_CONFIGURE:
 420	/* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423	/* XXX shouldn't we *start* by deregistering the device? */
 424	atm_dev_deregister(fore200e->atm_dev);
 425
 
 426    case FORE200E_STATE_BLANK:
 427	/* nothing to do for that state */
 428	break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489	printk(FORE200E "can't map device %s\n", fore200e->name);
 490	return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511	iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524	return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531	/* request the PCA board to convert the endianess of slave RAM accesses */
 532	| PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570			      DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572	return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588	return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614	.model_name		= "PCA-200E",
 615	.proc_name		= "pca200e",
 616	.descr_alignment	= 32,
 617	.buffer_alignment	= 4,
 618	.status_alignment	= 32,
 619	.read			= fore200e_pca_read,
 620	.write			= fore200e_pca_write,
 621	.configure		= fore200e_pca_configure,
 622	.map			= fore200e_pca_map,
 623	.reset			= fore200e_pca_reset,
 624	.prom_read		= fore200e_pca_prom_read,
 625	.unmap			= fore200e_pca_unmap,
 626	.irq_check		= fore200e_pca_irq_check,
 627	.irq_ack		= fore200e_pca_irq_ack,
 628	.proc_read		= fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664	fore200e_spin(10);
 665	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670	struct platform_device *op = to_platform_device(fore200e->dev);
 671	unsigned int bursts;
 672
 673	/* gain access to the SBA specific registers  */
 674	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679	if (!fore200e->virt_base) {
 680		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681		return -EFAULT;
 682	}
 683
 684	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688	/* get the supported DVMA burst sizes */
 689	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691	if (sbus_can_dma_64bit())
 692		sbus_set_sbus64(&op->dev, bursts);
 693
 694	fore200e->state = FORE200E_STATE_MAP;
 695	return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700	struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710	fore200e->state = FORE200E_STATE_CONFIGURE;
 711	return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716	struct platform_device *op = to_platform_device(fore200e->dev);
 717	const u8 *prop;
 718	int len;
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[4], prop, 4);
 724
 725	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726	if (!prop)
 727		return -ENODEV;
 728	memcpy(&prom->mac_addr[2], prop, 4);
 729
 730	prom->serial_number = of_getintprop_default(op->dev.of_node,
 731						    "serialnumber", 0);
 732	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733						  "promversion", 0);
 734    
 735	return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740	struct platform_device *op = to_platform_device(fore200e->dev);
 741	const struct linux_prom_registers *regs;
 742
 743	regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746		       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750	.model_name		= "SBA-200E",
 751	.proc_name		= "sba200e",
 752	.descr_alignment	= 32,
 753	.buffer_alignment	= 64,
 754	.status_alignment	= 32,
 755	.read			= fore200e_sba_read,
 756	.write			= fore200e_sba_write,
 757	.configure		= fore200e_sba_configure,
 758	.map			= fore200e_sba_map,
 759	.reset			= fore200e_sba_reset,
 760	.prom_read		= fore200e_sba_prom_read,
 761	.unmap			= fore200e_sba_unmap,
 762	.irq_enable		= fore200e_sba_irq_enable,
 763	.irq_check		= fore200e_sba_irq_check,
 764	.irq_ack		= fore200e_sba_irq_ack,
 765	.proc_read		= fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778	return;
 779
 780    for (;;) {
 781	
 782	entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785	    break;
 786	}
 787
 788	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789		entry, txq->tail, entry->vc_map, entry->skb);
 790
 791	/* free copy of misaligned data */
 792	kfree(entry->data);
 793	
 794	/* remove DMA mapping */
 795	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796				 DMA_TO_DEVICE);
 797
 798	vc_map = entry->vc_map;
 799
 800	/* vcc closed since the time the entry was submitted for tx? */
 801	if ((vc_map->vcc == NULL) ||
 802	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805		    fore200e->atm_dev->number);
 806
 807	    dev_kfree_skb_any(entry->skb);
 808	}
 809	else {
 810	    ASSERT(vc_map->vcc);
 811
 812	    /* vcc closed then immediately re-opened? */
 813	    if (vc_map->incarn != entry->incarn) {
 814
 815		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816		   if the same vcc is immediately re-opened, those pending PDUs must
 817		   not be popped after the completion of their emission, as they refer
 818		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819		   would be decremented by the size of the (unrelated) skb, possibly
 820		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821		   we thus bind the tx entry to the current incarnation of the vcc
 822		   when the entry is submitted for tx. When the tx later completes,
 823		   if the incarnation number of the tx entry does not match the one
 824		   of the vcc, then this implies that the vcc has been closed then re-opened.
 825		   we thus just drop the skb here. */
 826
 827		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828			fore200e->atm_dev->number);
 829
 830		dev_kfree_skb_any(entry->skb);
 831	    }
 832	    else {
 833		vcc = vc_map->vcc;
 834		ASSERT(vcc);
 835
 836		/* notify tx completion */
 837		if (vcc->pop) {
 838		    vcc->pop(vcc, entry->skb);
 839		}
 840		else {
 841		    dev_kfree_skb_any(entry->skb);
 842		}
 843
 844		/* check error condition */
 845		if (*entry->status & STATUS_ERROR)
 846		    atomic_inc(&vcc->stats->tx_err);
 847		else
 848		    atomic_inc(&vcc->stats->tx);
 849	    }
 850	}
 851
 852	*entry->status = STATUS_FREE;
 853
 854	fore200e->host_txq.txing--;
 855
 856	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870	if (buffer->supplied) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872		   where, scheme, magn, buffer->index);
 873	}
 874
 875	if (buffer->magn != magn) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->magn);
 878	}
 879
 880	if (buffer->scheme != scheme) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882		   where, scheme, magn, buffer->index, buffer->scheme);
 883	}
 884
 885	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887		   where, scheme, magn, buffer->index);
 888	}
 889
 890	count++;
 891	buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896	       where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918	    bsq_audit(1, bsq, scheme, magn);
 919#endif
 920	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925		entry = &bsq->host_entry[ bsq->head ];
 926
 927		for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929		    /* take the first buffer in the free buffer list */
 930		    buffer = bsq->freebuf;
 931		    if (!buffer) {
 932			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933			       scheme, magn, bsq->freebuf_count);
 934			return;
 935		    }
 936		    bsq->freebuf = buffer->next;
 937		    
 938#ifdef FORE200E_BSQ_DEBUG
 939		    if (buffer->supplied)
 940			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941			       scheme, magn, buffer->index);
 942		    buffer->supplied = 1;
 943#endif
 944		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946		}
 947
 948		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950 		/* decrease accordingly the number of free rx buffers */
 951		bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953		*entry->status = STATUS_PENDING;
 954		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955	    }
 956	}
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985	pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991	pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997	atomic_inc(&vcc->stats->rx_drop);
 998	return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005	*((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011	
1012	/* rebuild rx buffer address from rsd handle */
1013	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014	
1015	/* Make device DMA transfer visible to CPU.  */
1016	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018	
1019	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021	/* Now let the device get at it again.  */
1022	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029	fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031	fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038		vcc->itf, vcc->vpi, vcc->vci);
1039
1040	dev_kfree_skb_any(skb);
1041
1042	atomic_inc(&vcc->stats->rx_drop);
1043	return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062	/* rebuild rx buffer address from rsd handle */
1063	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070	if (buffer->supplied == 0)
1071	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072		   buffer->scheme, buffer->magn, buffer->index);
1073	buffer->supplied = 0;
1074#endif
1075
1076	/* re-insert the buffer into the free buffer list */
1077	buffer->next = bsq->freebuf;
1078	bsq->freebuf = buffer;
1079
1080	/* then increment the number of free rx buffers */
1081	bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095	
1096	entry = &rxq->host_entry[ rxq->head ];
1097
1098	/* no more received PDUs */
1099	if ((*entry->status & STATUS_COMPLETE) == 0)
1100	    break;
1101
1102	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104	if ((vc_map->vcc == NULL) ||
1105	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108		    fore200e->atm_dev->number,
1109		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110	}
1111	else {
1112	    vcc = vc_map->vcc;
1113	    ASSERT(vcc);
1114
1115	    if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118	    }
1119	    else {
1120		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121			fore200e->atm_dev->number,
1122			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123		atomic_inc(&vcc->stats->rx_err);
1124	    }
1125	}
1126
1127	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129	fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131	/* rewrite the rpd address to ack the received PDU */
1132	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133	*entry->status = STATUS_FREE;
1134
1135	fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163	
1164	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165	return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239	
1240	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241	activ_opcode.aal    = aal;
1242	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243	activ_opcode.pad    = 0;
1244    }
1245    else {
1246	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247	deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258	mtu = 48;
1259#endif
1260	/* the MTU is not used by the cp, except in the case of AAL0 */
1261	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277	return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281	    activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294	/* compute the data cells to idle cells ratio from the tx PCR */
1295	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299	/* disable rate control */
1300	rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long	    flags;
1312    int			    vci = vcc->vci;
1313    short		    vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325	printk(FORE200E "VC %d.%d.%d already in use\n",
1326	       fore200e->atm_dev->number, vpi, vci);
1327
1328	return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337	vc_map->vcc = NULL;
1338	return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351	
1352	mutex_lock(&fore200e->rate_mtx);
1353	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354	    mutex_unlock(&fore200e->rate_mtx);
1355
1356	    kfree(fore200e_vcc);
1357	    vc_map->vcc = NULL;
1358	    return -EAGAIN;
1359	}
1360
1361	/* reserve bandwidth */
1362	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363	mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375	vc_map->vcc = NULL;
1376
1377	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380	vcc->dev_data = NULL;
1381
1382	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384	kfree(fore200e_vcc);
1385	return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390	
1391	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417    struct fore200e_vcc*    fore200e_vcc;
1418    struct fore200e*        fore200e;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    fore200e = FORE200E_DEV(vcc->dev);
1424
1425    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430    clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434    spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438    /* the vc is no longer considered as "in use" by fore200e_open() */
1439    vc_map->vcc = NULL;
1440
1441    vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443    fore200e_vcc = FORE200E_VCC(vcc);
1444    vcc->dev_data = NULL;
1445
1446    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448    /* release reserved bandwidth, if any */
1449    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451	mutex_lock(&fore200e->rate_mtx);
1452	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454
1455	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456    }
1457
1458    clear_bit(ATM_VF_ADDR, &vcc->flags);
1459    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461    ASSERT(fore200e_vcc);
1462    kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469    struct fore200e*        fore200e;
1470    struct fore200e_vcc*    fore200e_vcc;
1471    struct fore200e_vc_map* vc_map;
1472    struct host_txq*        txq;
1473    struct host_txq_entry*  entry;
1474    struct tpd*             tpd;
1475    struct tpd_haddr        tpd_haddr;
1476    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477    int                     tx_copy      = 0;
1478    int                     tx_len       = skb->len;
1479    u32*                    cell_header  = NULL;
1480    unsigned char*          skb_data;
1481    int                     skb_len;
1482    unsigned char*          data;
1483    unsigned long           flags;
1484
1485    if (!vcc)
1486        return -EINVAL;
1487
1488    fore200e = FORE200E_DEV(vcc->dev);
1489    fore200e_vcc = FORE200E_VCC(vcc);
1490
1491    if (!fore200e)
1492        return -EINVAL;
1493
1494    txq = &fore200e->host_txq;
1495    if (!fore200e_vcc)
1496        return -EINVAL;
1497
1498    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500	dev_kfree_skb_any(skb);
1501	return -EINVAL;
1502    }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506	cell_header = (u32*) skb->data;
1507	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508	skb_len     = tx_len = skb->len  - 4;
1509
1510	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511    }
1512    else 
1513#endif
1514    {
1515	skb_data = skb->data;
1516	skb_len  = skb->len;
1517    }
1518    
1519    if (((unsigned long)skb_data) & 0x3) {
1520
1521	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522	tx_copy = 1;
1523	tx_len  = skb_len;
1524    }
1525
1526    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528        /* this simply NUKES the PCA board */
1529	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530	tx_copy = 1;
1531	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532    }
1533    
1534    if (tx_copy) {
1535	data = kmalloc(tx_len, GFP_ATOMIC);
1536	if (data == NULL) {
1537	    if (vcc->pop) {
1538		vcc->pop(vcc, skb);
1539	    }
1540	    else {
1541		dev_kfree_skb_any(skb);
1542	    }
1543	    return -ENOMEM;
1544	}
1545
1546	memcpy(data, skb_data, skb_len);
1547	if (skb_len < tx_len)
1548	    memset(data + skb_len, 0x00, tx_len - skb_len);
1549    }
1550    else {
1551	data = skb_data;
1552    }
1553
1554    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555    ASSERT(vc_map->vcc == vcc);
1556
1557  retry_here:
1558
1559    spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561    entry = &txq->host_entry[ txq->head ];
1562
1563    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565	/* try to free completed tx queue entries */
1566	fore200e_tx_irq(fore200e);
1567
1568	if (*entry->status != STATUS_FREE) {
1569
1570	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572	    /* retry once again? */
1573	    if (--retry > 0) {
1574		udelay(50);
1575		goto retry_here;
1576	    }
1577
1578	    atomic_inc(&vcc->stats->tx_err);
1579
1580	    fore200e->tx_sat++;
1581	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582		    fore200e->name, fore200e->cp_queues->heartbeat);
1583	    if (vcc->pop) {
1584		vcc->pop(vcc, skb);
1585	    }
1586	    else {
1587		dev_kfree_skb_any(skb);
1588	    }
1589
1590	    if (tx_copy)
1591		kfree(data);
1592
1593	    return -ENOBUFS;
1594	}
1595    }
1596
1597    entry->incarn = vc_map->incarn;
1598    entry->vc_map = vc_map;
1599    entry->skb    = skb;
1600    entry->data   = tx_copy ? data : NULL;
1601
1602    tpd = entry->tpd;
1603    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604					  DMA_TO_DEVICE);
1605    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606	if (tx_copy)
1607	    kfree(data);
1608	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609	return -ENOMEM;
1610    }
1611    tpd->tsd[ 0 ].length = tx_len;
1612
1613    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614    txq->txing++;
1615
1616    /* The dma_map call above implies a dma_sync so the device can use it,
1617     * thus no explicit dma_sync call is necessary here.
1618     */
1619    
1620    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1621	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622	    tpd->tsd[0].length, skb_len);
1623
1624    if (skb_len < fore200e_vcc->tx_min_pdu)
1625	fore200e_vcc->tx_min_pdu = skb_len;
1626    if (skb_len > fore200e_vcc->tx_max_pdu)
1627	fore200e_vcc->tx_max_pdu = skb_len;
1628    fore200e_vcc->tx_pdu++;
1629
1630    /* set tx rate control information */
1631    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634    if (cell_header) {
1635	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640    }
1641    else {
1642	/* set the ATM header, common to all cells conveying the PDU */
1643	tpd->atm_header.clp = 0;
1644	tpd->atm_header.plt = 0;
1645	tpd->atm_header.vci = vcc->vci;
1646	tpd->atm_header.vpi = vcc->vpi;
1647	tpd->atm_header.gfc = 0;
1648    }
1649
1650    tpd->spec.length = tx_len;
1651    tpd->spec.nseg   = 1;
1652    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653    tpd->spec.intr   = 1;
1654
1655    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656    tpd_haddr.pad   = 0;
1657    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659    *entry->status = STATUS_PENDING;
1660    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664    return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673    struct stats_opcode     opcode;
1674    int                     ok;
1675    u32                     stats_dma_addr;
1676
1677    if (fore200e->stats == NULL) {
1678	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679	if (fore200e->stats == NULL)
1680	    return -ENOMEM;
1681    }
1682    
1683    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684				    sizeof(struct stats), DMA_FROM_DEVICE);
1685    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686    	return -ENOMEM;
1687    
1688    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690    opcode.opcode = OPCODE_GET_STATS;
1691    opcode.pad    = 0;
1692
1693    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694    
1695    *entry->status = STATUS_PENDING;
1696
1697    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701    *entry->status = STATUS_FREE;
1702
1703    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704    
1705    if (ok == 0) {
1706	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707	return -EIO;
1708    }
1709
1710    return 0;
1711}
1712
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719    struct oc3_opcode       opcode;
1720    int                     ok;
1721    u32                     oc3_regs_dma_addr;
1722
1723    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727    opcode.opcode = OPCODE_GET_OC3;
1728    opcode.reg    = 0;
1729    opcode.value  = 0;
1730    opcode.mask   = 0;
1731
1732    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733    
1734    *entry->status = STATUS_PENDING;
1735
1736    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740    *entry->status = STATUS_FREE;
1741
1742    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743    
1744    if (ok == 0) {
1745	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746	return -EIO;
1747    }
1748
1749    return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759    struct oc3_opcode       opcode;
1760    int                     ok;
1761
1762    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766    opcode.opcode = OPCODE_SET_OC3;
1767    opcode.reg    = reg;
1768    opcode.value  = value;
1769    opcode.mask   = mask;
1770
1771    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772    
1773    *entry->status = STATUS_PENDING;
1774
1775    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779    *entry->status = STATUS_FREE;
1780
1781    if (ok == 0) {
1782	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783	return -EIO;
1784    }
1785
1786    return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793    u32 mct_value, mct_mask;
1794    int error;
1795
1796    if (!capable(CAP_NET_ADMIN))
1797	return -EPERM;
1798    
1799    switch (loop_mode) {
1800
1801    case ATM_LM_NONE:
1802	mct_value = 0; 
1803	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804	break;
1805	
1806    case ATM_LM_LOC_PHY:
1807	mct_value = mct_mask = SUNI_MCT_DLE;
1808	break;
1809
1810    case ATM_LM_RMT_PHY:
1811	mct_value = mct_mask = SUNI_MCT_LLE;
1812	break;
1813
1814    default:
1815	return -EINVAL;
1816    }
1817
1818    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819    if (error == 0)
1820	fore200e->loop_mode = loop_mode;
1821
1822    return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829    struct sonet_stats tmp;
1830
1831    if (fore200e_getstats(fore200e) < 0)
1832	return -EIO;
1833
1834    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848    if (arg)
1849	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1850    
1851    return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858    struct fore200e* fore200e = FORE200E_DEV(dev);
1859    
1860    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862    switch (cmd) {
1863
1864    case SONET_GETSTAT:
1865	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867    case SONET_GETDIAG:
1868	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870    case ATM_SETLOOP:
1871	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873    case ATM_GETLOOP:
1874	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876    case ATM_QUERYLOOP:
1877	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878    }
1879
1880    return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892	return -EINVAL;
1893    }
1894
1895    DPRINTK(2, "change_qos %d.%d.%d, "
1896	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898	    "available_cell_rate = %u",
1899	    vcc->itf, vcc->vpi, vcc->vci,
1900	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1901	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904	    flags, fore200e->available_cell_rate);
1905
1906    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908	mutex_lock(&fore200e->rate_mtx);
1909	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910	    mutex_unlock(&fore200e->rate_mtx);
1911	    return -EAGAIN;
1912	}
1913
1914	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917	mutex_unlock(&fore200e->rate_mtx);
1918	
1919	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920	
1921	/* update rate control parameters */
1922	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924	set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926	return 0;
1927    }
1928    
1929    return -EINVAL;
1930}
1931    
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939	return -EBUSY;
1940    }
1941
1942    printk(FORE200E "IRQ %s reserved for device %s\n",
1943	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950    fore200e->state = FORE200E_STATE_IRQ;
1951    return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958    int ok, i;
1959
1960    if (!prom)
1961	return -ENOMEM;
1962
1963    ok = fore200e->bus->prom_read(fore200e, prom);
1964    if (ok < 0) {
1965	kfree(prom);
1966	return -EBUSY;
1967    }
1968	
1969    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970	   fore200e->name, 
1971	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973	
1974    for (i = 0; i < ESI_LEN; i++) {
1975	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976    }
1977    
1978    kfree(prom);
1979
1980    return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986    int scheme, magn, nbr, size, i;
1987
1988    struct host_bsq* bsq;
1989    struct buffer*   buffer;
1990
1991    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001	    /* allocate the array of receive buffers */
2002	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                           GFP_KERNEL);
2004
2005	    if (buffer == NULL)
2006		return -ENOMEM;
2007
2008	    bsq->freebuf = NULL;
2009
2010	    for (i = 0; i < nbr; i++) {
2011
2012		buffer[ i ].scheme = scheme;
2013		buffer[ i ].magn   = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015		buffer[ i ].index  = i;
2016		buffer[ i ].supplied = 0;
2017#endif
2018
2019		/* allocate the receive buffer body */
2020		if (fore200e_chunk_alloc(fore200e,
2021					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022					 DMA_FROM_DEVICE) < 0) {
2023		    
2024		    while (i > 0)
2025			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026		    kfree(buffer);
2027		    
2028		    return -ENOMEM;
2029		}
2030
2031		/* insert the buffer into the free buffer list */
2032		buffer[ i ].next = bsq->freebuf;
2033		bsq->freebuf = &buffer[ i ];
2034	    }
2035	    /* all the buffers are free, initially */
2036	    bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039	    bsq_audit(3, bsq, scheme, magn);
2040#endif
2041	}
2042    }
2043
2044    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045    return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051    int scheme, magn, i;
2052
2053    struct host_bsq*     bsq;
2054    struct cp_bsq_entry __iomem * cp_entry;
2055
2056    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063	    /* allocate and align the array of status words */
2064	    if (fore200e_dma_chunk_alloc(fore200e,
2065					       &bsq->status,
2066					       sizeof(enum status), 
2067					       QUEUE_SIZE_BS,
2068					       fore200e->bus->status_alignment) < 0) {
2069		return -ENOMEM;
2070	    }
2071
2072	    /* allocate and align the array of receive buffer descriptors */
2073	    if (fore200e_dma_chunk_alloc(fore200e,
2074					       &bsq->rbd_block,
2075					       sizeof(struct rbd_block),
2076					       QUEUE_SIZE_BS,
2077					       fore200e->bus->descr_alignment) < 0) {
2078		
2079		fore200e_dma_chunk_free(fore200e, &bsq->status);
2080		return -ENOMEM;
2081	    }
2082	    
2083	    /* get the base address of the cp resident buffer supply queue entries */
2084	    cp_entry = fore200e->virt_base + 
2085		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086	    
2087	    /* fill the host resident and cp resident buffer supply queue entries */
2088	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089		
2090		bsq->host_entry[ i ].status = 
2091		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092	        bsq->host_entry[ i ].rbd_block =
2093		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].rbd_block_dma =
2095		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097		
2098		*bsq->host_entry[ i ].status = STATUS_FREE;
2099		
2100		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2101				     &cp_entry[ i ].status_haddr);
2102	    }
2103	}
2104    }
2105
2106    fore200e->state = FORE200E_STATE_INIT_BSQ;
2107    return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113    struct host_rxq*     rxq =  &fore200e->host_rxq;
2114    struct cp_rxq_entry __iomem * cp_entry;
2115    int i;
2116
2117    DPRINTK(2, "receive queue is being initialized\n");
2118
2119    /* allocate and align the array of status words */
2120    if (fore200e_dma_chunk_alloc(fore200e,
2121				       &rxq->status,
2122				       sizeof(enum status), 
2123				       QUEUE_SIZE_RX,
2124				       fore200e->bus->status_alignment) < 0) {
2125	return -ENOMEM;
2126    }
2127
2128    /* allocate and align the array of receive PDU descriptors */
2129    if (fore200e_dma_chunk_alloc(fore200e,
2130				       &rxq->rpd,
2131				       sizeof(struct rpd), 
2132				       QUEUE_SIZE_RX,
2133				       fore200e->bus->descr_alignment) < 0) {
2134	
2135	fore200e_dma_chunk_free(fore200e, &rxq->status);
2136	return -ENOMEM;
2137    }
2138
2139    /* get the base address of the cp resident rx queue entries */
2140    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142    /* fill the host resident and cp resident rx entries */
2143    for (i=0; i < QUEUE_SIZE_RX; i++) {
2144	
2145	rxq->host_entry[ i ].status = 
2146	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147	rxq->host_entry[ i ].rpd = 
2148	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149	rxq->host_entry[ i ].rpd_dma = 
2150	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153	*rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2156			     &cp_entry[ i ].status_haddr);
2157
2158	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159			     &cp_entry[ i ].rpd_haddr);
2160    }
2161
2162    /* set the head entry of the queue */
2163    rxq->head = 0;
2164
2165    fore200e->state = FORE200E_STATE_INIT_RXQ;
2166    return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172    struct host_txq*     txq =  &fore200e->host_txq;
2173    struct cp_txq_entry __iomem * cp_entry;
2174    int i;
2175
2176    DPRINTK(2, "transmit queue is being initialized\n");
2177
2178    /* allocate and align the array of status words */
2179    if (fore200e_dma_chunk_alloc(fore200e,
2180				       &txq->status,
2181				       sizeof(enum status), 
2182				       QUEUE_SIZE_TX,
2183				       fore200e->bus->status_alignment) < 0) {
2184	return -ENOMEM;
2185    }
2186
2187    /* allocate and align the array of transmit PDU descriptors */
2188    if (fore200e_dma_chunk_alloc(fore200e,
2189				       &txq->tpd,
2190				       sizeof(struct tpd), 
2191				       QUEUE_SIZE_TX,
2192				       fore200e->bus->descr_alignment) < 0) {
2193	
2194	fore200e_dma_chunk_free(fore200e, &txq->status);
2195	return -ENOMEM;
2196    }
2197
2198    /* get the base address of the cp resident tx queue entries */
2199    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201    /* fill the host resident and cp resident tx entries */
2202    for (i=0; i < QUEUE_SIZE_TX; i++) {
2203	
2204	txq->host_entry[ i ].status = 
2205	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206	txq->host_entry[ i ].tpd = 
2207	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208	txq->host_entry[ i ].tpd_dma  = 
2209                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212	*txq->host_entry[ i ].status = STATUS_FREE;
2213	
2214	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2215			     &cp_entry[ i ].status_haddr);
2216	
2217        /* although there is a one-to-one mapping of tx queue entries and tpds,
2218	   we do not write here the DMA (physical) base address of each tpd into
2219	   the related cp resident entry, because the cp relies on this write
2220	   operation to detect that a new pdu has been submitted for tx */
2221    }
2222
2223    /* set the head and tail entries of the queue */
2224    txq->head = 0;
2225    txq->tail = 0;
2226
2227    fore200e->state = FORE200E_STATE_INIT_TXQ;
2228    return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235    struct cp_cmdq_entry __iomem * cp_entry;
2236    int i;
2237
2238    DPRINTK(2, "command queue is being initialized\n");
2239
2240    /* allocate and align the array of status words */
2241    if (fore200e_dma_chunk_alloc(fore200e,
2242				       &cmdq->status,
2243				       sizeof(enum status), 
2244				       QUEUE_SIZE_CMD,
2245				       fore200e->bus->status_alignment) < 0) {
2246	return -ENOMEM;
2247    }
2248    
2249    /* get the base address of the cp resident cmd queue entries */
2250    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252    /* fill the host resident and cp resident cmd entries */
2253    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254	
2255	cmdq->host_entry[ i ].status   = 
2256                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259	*cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2262                             &cp_entry[ i ].status_haddr);
2263    }
2264
2265    /* set the head entry of the queue */
2266    cmdq->head = 0;
2267
2268    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269    return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274				    enum buffer_scheme scheme,
2275				    enum buffer_magn magn, int queue_length,
2276				    int pool_size, int supply_blksize)
2277{
2278    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289    struct cp_queues __iomem * cpq;
2290    int               ok, scheme, magn;
2291
2292    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294    mutex_init(&fore200e->rate_mtx);
2295    spin_lock_init(&fore200e->q_lock);
2296
2297    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299    /* enable cp to host interrupts */
2300    fore200e->bus->write(1, &cpq->imask);
2301
2302    if (fore200e->bus->irq_enable)
2303	fore200e->bus->irq_enable(fore200e);
2304    
2305    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316	    fore200e_param_bs_queue(fore200e, scheme, magn,
2317				    QUEUE_SIZE_BS, 
2318				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319				    RBD_BLK_SIZE);
2320
2321    /* issue the initialize command */
2322    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326    if (ok == 0) {
2327	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328	return -ENODEV;
2329    }
2330
2331    printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333    fore200e->state = FORE200E_STATE_INITIALIZE;
2334    return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343    printk("%c", c);
2344#endif
2345    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353    int                c;
2354
2355    while (time_before(jiffies, timeout)) {
2356
2357	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363	    printk("%c", c & 0xFF);
2364#endif
2365	    return c & 0xFF;
2366	}
2367    }
2368
2369    return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375    while (*str) {
2376
2377	/* the i960 monitor doesn't accept any new character if it has something to say */
2378	while (fore200e_monitor_getc(fore200e) >= 0);
2379	
2380	fore200e_monitor_putc(fore200e, *str++);
2381    }
2382
2383    while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394    const struct firmware *firmware;
2395    const struct fw_header *fw_header;
2396    const __le32 *fw_data;
2397    u32 fw_size;
2398    u32 __iomem *load_addr;
2399    char buf[48];
2400    int err;
2401
2402    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405	return err;
2406    }
2407
2408    fw_data = (const __le32 *)firmware->data;
2409    fw_size = firmware->size / sizeof(u32);
2410    fw_header = (const struct fw_header *)firmware->data;
2411    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414	    fore200e->name, load_addr, fw_size);
2415
2416    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418	goto release;
2419    }
2420
2421    for (; fw_size--; fw_data++, load_addr++)
2422	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427    /* reported to be required by SBA cards on some sparc64 hosts */
2428    fore200e_spin(100);
2429#endif
2430
2431    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432    fore200e_monitor_puts(fore200e, buf);
2433
2434    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436	goto release;
2437    }
2438
2439    printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441    fore200e->state = FORE200E_STATE_START_FW;
2442    err = 0;
2443
2444release:
2445    release_firmware(firmware);
2446    return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452    struct atm_dev* atm_dev;
2453
2454    DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                               -1, NULL);
2458    if (atm_dev == NULL) {
2459	printk(FORE200E "unable to register device %s\n", fore200e->name);
2460	return -ENODEV;
2461    }
2462
2463    atm_dev->dev_data = fore200e;
2464    fore200e->atm_dev = atm_dev;
2465
2466    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469    fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471    fore200e->state = FORE200E_STATE_REGISTER;
2472    return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478    if (fore200e_register(fore200e, parent) < 0)
2479	return -ENODEV;
2480    
2481    if (fore200e->bus->configure(fore200e) < 0)
2482	return -ENODEV;
2483
2484    if (fore200e->bus->map(fore200e) < 0)
2485	return -ENODEV;
2486
2487    if (fore200e_reset(fore200e, 1) < 0)
2488	return -ENODEV;
2489
2490    if (fore200e_load_and_start_fw(fore200e) < 0)
2491	return -ENODEV;
2492
2493    if (fore200e_initialize(fore200e) < 0)
2494	return -ENODEV;
2495
2496    if (fore200e_init_cmd_queue(fore200e) < 0)
2497	return -ENOMEM;
2498
2499    if (fore200e_init_tx_queue(fore200e) < 0)
2500	return -ENOMEM;
2501
2502    if (fore200e_init_rx_queue(fore200e) < 0)
2503	return -ENOMEM;
2504
2505    if (fore200e_init_bs_queue(fore200e) < 0)
2506	return -ENOMEM;
2507
2508    if (fore200e_alloc_rx_buf(fore200e) < 0)
2509	return -ENOMEM;
2510
2511    if (fore200e_get_esi(fore200e) < 0)
2512	return -EIO;
2513
2514    if (fore200e_irq_request(fore200e) < 0)
2515	return -EBUSY;
2516
2517    fore200e_supply(fore200e);
2518
2519    /* all done, board initialization is now complete */
2520    fore200e->state = FORE200E_STATE_COMPLETE;
2521    return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528	const struct of_device_id *match;
2529	struct fore200e *fore200e;
2530	static int index = 0;
2531	int err;
2532
2533	match = of_match_device(fore200e_sba_match, &op->dev);
2534	if (!match)
2535		return -EINVAL;
2536
2537	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538	if (!fore200e)
2539		return -ENOMEM;
2540
2541	fore200e->bus = &fore200e_sbus_ops;
2542	fore200e->dev = &op->dev;
2543	fore200e->irq = op->archdata.irqs[0];
2544	fore200e->phys_base = op->resource[0].start;
2545
2546	sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548	err = fore200e_init(fore200e, &op->dev);
2549	if (err < 0) {
2550		fore200e_shutdown(fore200e);
2551		kfree(fore200e);
2552		return err;
2553	}
2554
2555	index++;
2556	dev_set_drvdata(&op->dev, fore200e);
2557
2558	return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565	fore200e_shutdown(fore200e);
2566	kfree(fore200e);
2567
2568	return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572	{
2573		.name = SBA200E_PROM_NAME,
2574	},
2575	{},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580	.driver = {
2581		.name = "fore_200e",
2582		.of_match_table = fore200e_sba_match,
2583	},
2584	.probe		= fore200e_sba_probe,
2585	.remove		= fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591			       const struct pci_device_id *pci_ent)
2592{
2593    struct fore200e* fore200e;
2594    int err = 0;
2595    static int index = 0;
2596
2597    if (pci_enable_device(pci_dev)) {
2598	err = -EINVAL;
2599	goto out;
2600    }
2601
2602    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603	err = -EINVAL;
2604	goto out;
2605    }
2606    
2607    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608    if (fore200e == NULL) {
2609	err = -ENOMEM;
2610	goto out_disable;
2611    }
2612
2613    fore200e->bus       = &fore200e_pci_ops;
2614    fore200e->dev	= &pci_dev->dev;
2615    fore200e->irq       = pci_dev->irq;
2616    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620    pci_set_master(pci_dev);
2621
2622    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625    sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627    err = fore200e_init(fore200e, &pci_dev->dev);
2628    if (err < 0) {
2629	fore200e_shutdown(fore200e);
2630	goto out_free;
2631    }
2632
2633    ++index;
2634    pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637    return err;
2638
2639out_free:
2640    kfree(fore200e);
2641out_disable:
2642    pci_disable_device(pci_dev);
2643    goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649    struct fore200e *fore200e;
2650
2651    fore200e = pci_get_drvdata(pci_dev);
2652
2653    fore200e_shutdown(fore200e);
2654    kfree(fore200e);
2655    pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661    { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667    .name =     "fore_200e",
2668    .probe =    fore200e_pca_detect,
2669    .remove =   fore200e_pca_remove_one,
2670    .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676	int err = 0;
2677
2678	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681	err = platform_driver_register(&fore200e_sba_driver);
2682	if (err)
2683		return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687	err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691	if (err)
2692		platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695	return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701	pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704	platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712    struct fore200e_vcc* fore200e_vcc;
2713    struct atm_vcc*      vcc;
2714    int                  i, len, left = *pos;
2715    unsigned long        flags;
2716
2717    if (!left--) {
2718
2719	if (fore200e_getstats(fore200e) < 0)
2720	    return -EIO;
2721
2722	len = sprintf(page,"\n"
2723		       " device:\n"
2724		       "   internal name:\t\t%s\n", fore200e->name);
2725
2726	/* print bus-specific information */
2727	if (fore200e->bus->proc_read)
2728	    len += fore200e->bus->proc_read(fore200e, page + len);
2729	
2730	len += sprintf(page + len,
2731		"   interrupt line:\t\t%s\n"
2732		"   physical base address:\t0x%p\n"
2733		"   virtual base address:\t0x%p\n"
2734		"   factory address (ESI):\t%pM\n"
2735		"   board serial number:\t\t%d\n\n",
2736		fore200e_irq_itoa(fore200e->irq),
2737		(void*)fore200e->phys_base,
2738		fore200e->virt_base,
2739		fore200e->esi,
2740		fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742	return len;
2743    }
2744
2745    if (!left--)
2746	return sprintf(page,
2747		       "   free small bufs, scheme 1:\t%d\n"
2748		       "   free large bufs, scheme 1:\t%d\n"
2749		       "   free small bufs, scheme 2:\t%d\n"
2750		       "   free large bufs, scheme 2:\t%d\n",
2751		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756    if (!left--) {
2757	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759	len = sprintf(page,"\n\n"
2760		      " cell processor:\n"
2761		      "   heartbeat state:\t\t");
2762	
2763	if (hb >> 16 != 0xDEAD)
2764	    len += sprintf(page + len, "0x%08x\n", hb);
2765	else
2766	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768	return len;
2769    }
2770
2771    if (!left--) {
2772	static const char* media_name[] = {
2773	    "unshielded twisted pair",
2774	    "multimode optical fiber ST",
2775	    "multimode optical fiber SC",
2776	    "single-mode optical fiber ST",
2777	    "single-mode optical fiber SC",
2778	    "unknown"
2779	};
2780
2781	static const char* oc3_mode[] = {
2782	    "normal operation",
2783	    "diagnostic loopback",
2784	    "line loopback",
2785	    "unknown"
2786	};
2787
2788	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792	u32 oc3_index;
2793
2794	if (media_index > 4)
2795		media_index = 5;
2796	
2797	switch (fore200e->loop_mode) {
2798	    case ATM_LM_NONE:    oc3_index = 0;
2799		                 break;
2800	    case ATM_LM_LOC_PHY: oc3_index = 1;
2801		                 break;
2802	    case ATM_LM_RMT_PHY: oc3_index = 2;
2803		                 break;
2804	    default:             oc3_index = 3;
2805	}
2806
2807	return sprintf(page,
2808		       "   firmware release:\t\t%d.%d.%d\n"
2809		       "   monitor release:\t\t%d.%d\n"
2810		       "   media type:\t\t\t%s\n"
2811		       "   OC-3 revision:\t\t0x%x\n"
2812                       "   OC-3 mode:\t\t\t%s",
2813		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814		       mon960_release >> 16, mon960_release << 16 >> 16,
2815		       media_name[ media_index ],
2816		       oc3_revision,
2817		       oc3_mode[ oc3_index ]);
2818    }
2819
2820    if (!left--) {
2821	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823	return sprintf(page,
2824		       "\n\n"
2825		       " monitor:\n"
2826		       "   version number:\t\t%d\n"
2827		       "   boot status word:\t\t0x%08x\n",
2828		       fore200e->bus->read(&cp_monitor->mon_version),
2829		       fore200e->bus->read(&cp_monitor->bstat));
2830    }
2831
2832    if (!left--)
2833	return sprintf(page,
2834		       "\n"
2835		       " device statistics:\n"
2836		       "  4b5b:\n"
2837		       "     crc_header_errors:\t\t%10u\n"
2838		       "     framing_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841    
2842    if (!left--)
2843	return sprintf(page, "\n"
2844		       "  OC-3:\n"
2845		       "     section_bip8_errors:\t%10u\n"
2846		       "     path_bip8_errors:\t\t%10u\n"
2847		       "     line_bip24_errors:\t\t%10u\n"
2848		       "     line_febe_errors:\t\t%10u\n"
2849		       "     path_febe_errors:\t\t%10u\n"
2850		       "     corr_hcs_errors:\t\t%10u\n"
2851		       "     ucorr_hcs_errors:\t\t%10u\n",
2852		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860    if (!left--)
2861	return sprintf(page,"\n"
2862		       "   ATM:\t\t\t\t     cells\n"
2863		       "     TX:\t\t\t%10u\n"
2864		       "     RX:\t\t\t%10u\n"
2865		       "     vpi out of range:\t\t%10u\n"
2866		       "     vpi no conn:\t\t%10u\n"
2867		       "     vci out of range:\t\t%10u\n"
2868		       "     vci no conn:\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->atm.cells_received),
2871		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875    
2876    if (!left--)
2877	return sprintf(page,"\n"
2878		       "   AAL0:\t\t\t     cells\n"
2879		       "     TX:\t\t\t%10u\n"
2880		       "     RX:\t\t\t%10u\n"
2881		       "     dropped:\t\t\t%10u\n",
2882		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885    
2886    if (!left--)
2887	return sprintf(page,"\n"
2888		       "   AAL3/4:\n"
2889		       "     SAR sublayer:\t\t     cells\n"
2890		       "       TX:\t\t\t%10u\n"
2891		       "       RX:\t\t\t%10u\n"
2892		       "       dropped:\t\t\t%10u\n"
2893		       "       CRC errors:\t\t%10u\n"
2894		       "       protocol errors:\t\t%10u\n\n"
2895		       "     CS  sublayer:\t\t      PDUs\n"
2896		       "       TX:\t\t\t%10u\n"
2897		       "       RX:\t\t\t%10u\n"
2898		       "       dropped:\t\t\t%10u\n"
2899		       "       protocol errors:\t\t%10u\n",
2900		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909    
2910    if (!left--)
2911	return sprintf(page,"\n"
2912		       "   AAL5:\n"
2913		       "     SAR sublayer:\t\t     cells\n"
2914		       "       TX:\t\t\t%10u\n"
2915		       "       RX:\t\t\t%10u\n"
2916		       "       dropped:\t\t\t%10u\n"
2917		       "       congestions:\t\t%10u\n\n"
2918		       "     CS  sublayer:\t\t      PDUs\n"
2919		       "       TX:\t\t\t%10u\n"
2920		       "       RX:\t\t\t%10u\n"
2921		       "       dropped:\t\t\t%10u\n"
2922		       "       CRC errors:\t\t%10u\n"
2923		       "       protocol errors:\t\t%10u\n",
2924		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933    
2934    if (!left--)
2935	return sprintf(page,"\n"
2936		       "   AUX:\t\t       allocation failures\n"
2937		       "     small b1:\t\t\t%10u\n"
2938		       "     large b1:\t\t\t%10u\n"
2939		       "     small b2:\t\t\t%10u\n"
2940		       "     large b2:\t\t\t%10u\n"
2941		       "     RX PDUs:\t\t\t%10u\n"
2942		       "     TX PDUs:\t\t\t%10lu\n",
2943		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948		       fore200e->tx_sat);
2949    
2950    if (!left--)
2951	return sprintf(page,"\n"
2952		       " receive carrier:\t\t\t%s\n",
2953		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954    
2955    if (!left--) {
2956        return sprintf(page,"\n"
2957		       " VCCs:\n  address   VPI VCI   AAL "
2958		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959    }
2960
2961    for (i = 0; i < NBR_CONNECT; i++) {
2962
2963	vcc = fore200e->vc_map[i].vcc;
2964
2965	if (vcc == NULL)
2966	    continue;
2967
2968	spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972	    fore200e_vcc = FORE200E_VCC(vcc);
2973	    ASSERT(fore200e_vcc);
2974
2975	    len = sprintf(page,
2976			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977			  vcc,
2978			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979			  fore200e_vcc->tx_pdu,
2980			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981			  fore200e_vcc->tx_max_pdu,
2982			  fore200e_vcc->rx_pdu,
2983			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984			  fore200e_vcc->rx_max_pdu);
2985
2986	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987	    return len;
2988	}
2989
2990	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991    }
2992    
2993    return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
3001	.open       = fore200e_open,
3002	.close      = fore200e_close,
3003	.ioctl      = fore200e_ioctl,
3004	.send       = fore200e_send,
3005	.change_qos = fore200e_change_qos,
3006	.proc_read  = fore200e_proc_read,
3007	.owner      = THIS_MODULE
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/platform_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
  96
 
 
 
  97MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
  98MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
  99
 100static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 101    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 102    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 103};
 104
 105static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 106    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 107    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 108};
 109
 110
 111#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 112static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 113#endif
 114
 115
 116#if 0 /* currently unused */
 117static int 
 118fore200e_fore2atm_aal(enum fore200e_aal aal)
 119{
 120    switch(aal) {
 121    case FORE200E_AAL0:  return ATM_AAL0;
 122    case FORE200E_AAL34: return ATM_AAL34;
 123    case FORE200E_AAL5:  return ATM_AAL5;
 124    }
 125
 126    return -EINVAL;
 127}
 128#endif
 129
 130
 131static enum fore200e_aal
 132fore200e_atm2fore_aal(int aal)
 133{
 134    switch(aal) {
 135    case ATM_AAL0:  return FORE200E_AAL0;
 136    case ATM_AAL34: return FORE200E_AAL34;
 137    case ATM_AAL1:
 138    case ATM_AAL2:
 139    case ATM_AAL5:  return FORE200E_AAL5;
 140    }
 141
 142    return -EINVAL;
 143}
 144
 145
 146static char*
 147fore200e_irq_itoa(int irq)
 148{
 149    static char str[8];
 150    sprintf(str, "%d", irq);
 151    return str;
 152}
 153
 154
 155/* allocate and align a chunk of memory intended to hold the data behing exchanged
 156   between the driver and the adapter (using streaming DVMA) */
 157
 158static int
 159fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 160{
 161    unsigned long offset = 0;
 162
 163    if (alignment <= sizeof(int))
 164	alignment = 0;
 165
 166    chunk->alloc_size = size + alignment;
 167    chunk->direction  = direction;
 168
 169    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 170    if (chunk->alloc_addr == NULL)
 171	return -ENOMEM;
 172
 173    if (alignment > 0)
 174	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 175    
 176    chunk->align_addr = chunk->alloc_addr + offset;
 177
 178    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 179				     size, direction);
 180    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 181	kfree(chunk->alloc_addr);
 182	return -ENOMEM;
 183    }
 184    return 0;
 185}
 186
 187
 188/* free a chunk of memory */
 189
 190static void
 191fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 192{
 193    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 194		     chunk->direction);
 195    kfree(chunk->alloc_addr);
 196}
 197
 198/*
 199 * Allocate a DMA consistent chunk of memory intended to act as a communication
 200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 201 * and the adapter.
 202 */
 203static int
 204fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 205		int size, int nbr, int alignment)
 206{
 207	/* returned chunks are page-aligned */
 208	chunk->alloc_size = size * nbr;
 209	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 210					       &chunk->dma_addr, GFP_KERNEL);
 211	if (!chunk->alloc_addr)
 212		return -ENOMEM;
 213	chunk->align_addr = chunk->alloc_addr;
 214	return 0;
 215}
 216
 217/*
 218 * Free a DMA consistent chunk of memory.
 219 */
 220static void
 221fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 222{
 223	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 224			  chunk->dma_addr);
 225}
 226
 227static void
 228fore200e_spin(int msecs)
 229{
 230    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 231    while (time_before(jiffies, timeout));
 232}
 233
 234
 235static int
 236fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 237{
 238    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 239    int           ok;
 240
 241    mb();
 242    do {
 243	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 244	    break;
 245
 246    } while (time_before(jiffies, timeout));
 247
 248#if 1
 249    if (!ok) {
 250	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 251	       *addr, val);
 252    }
 253#endif
 254
 255    return ok;
 256}
 257
 258
 259static int
 260fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 261{
 262    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 263    int           ok;
 264
 265    do {
 266	if ((ok = (fore200e->bus->read(addr) == val)))
 267	    break;
 268
 269    } while (time_before(jiffies, timeout));
 270
 271#if 1
 272    if (!ok) {
 273	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 274	       fore200e->bus->read(addr), val);
 275    }
 276#endif
 277
 278    return ok;
 279}
 280
 281
 282static void
 283fore200e_free_rx_buf(struct fore200e* fore200e)
 284{
 285    int scheme, magn, nbr;
 286    struct buffer* buffer;
 287
 288    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 289	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 290
 291	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 292
 293		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 294
 295		    struct chunk* data = &buffer[ nbr ].data;
 296
 297		    if (data->alloc_addr != NULL)
 298			fore200e_chunk_free(fore200e, data);
 299		}
 300	    }
 301	}
 302    }
 303}
 304
 305
 306static void
 307fore200e_uninit_bs_queue(struct fore200e* fore200e)
 308{
 309    int scheme, magn;
 310    
 311    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 312	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 313
 314	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 315	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 316	    
 317	    if (status->alloc_addr)
 318		fore200e_dma_chunk_free(fore200e, status);
 319	    
 320	    if (rbd_block->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, rbd_block);
 322	}
 323    }
 324}
 325
 326
 327static int
 328fore200e_reset(struct fore200e* fore200e, int diag)
 329{
 330    int ok;
 331
 332    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 333    
 334    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 335
 336    fore200e->bus->reset(fore200e);
 337
 338    if (diag) {
 339	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 340	if (ok == 0) {
 341	    
 342	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 343	    return -ENODEV;
 344	}
 345
 346	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 347	
 348	fore200e->state = FORE200E_STATE_RESET;
 349    }
 350
 351    return 0;
 352}
 353
 354
 355static void
 356fore200e_shutdown(struct fore200e* fore200e)
 357{
 358    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 359	   fore200e->name, fore200e->phys_base, 
 360	   fore200e_irq_itoa(fore200e->irq));
 361    
 362    if (fore200e->state > FORE200E_STATE_RESET) {
 363	/* first, reset the board to prevent further interrupts or data transfers */
 364	fore200e_reset(fore200e, 0);
 365    }
 366    
 367    /* then, release all allocated resources */
 368    switch(fore200e->state) {
 369
 370    case FORE200E_STATE_COMPLETE:
 371	kfree(fore200e->stats);
 372
 373	fallthrough;
 374    case FORE200E_STATE_IRQ:
 375	free_irq(fore200e->irq, fore200e->atm_dev);
 376
 377	fallthrough;
 378    case FORE200E_STATE_ALLOC_BUF:
 379	fore200e_free_rx_buf(fore200e);
 380
 381	fallthrough;
 382    case FORE200E_STATE_INIT_BSQ:
 383	fore200e_uninit_bs_queue(fore200e);
 384
 385	fallthrough;
 386    case FORE200E_STATE_INIT_RXQ:
 387	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 388	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 389
 390	fallthrough;
 391    case FORE200E_STATE_INIT_TXQ:
 392	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 394
 395	fallthrough;
 396    case FORE200E_STATE_INIT_CMDQ:
 397	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 398
 399	fallthrough;
 400    case FORE200E_STATE_INITIALIZE:
 401	/* nothing to do for that state */
 402
 403    case FORE200E_STATE_START_FW:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_RESET:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_MAP:
 410	fore200e->bus->unmap(fore200e);
 411
 412	fallthrough;
 413    case FORE200E_STATE_CONFIGURE:
 414	/* nothing to do for that state */
 415
 416    case FORE200E_STATE_REGISTER:
 417	/* XXX shouldn't we *start* by deregistering the device? */
 418	atm_dev_deregister(fore200e->atm_dev);
 419
 420	fallthrough;
 421    case FORE200E_STATE_BLANK:
 422	/* nothing to do for that state */
 423	break;
 424    }
 425}
 426
 427
 428#ifdef CONFIG_PCI
 429
 430static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 431{
 432    /* on big-endian hosts, the board is configured to convert
 433       the endianess of slave RAM accesses  */
 434    return le32_to_cpu(readl(addr));
 435}
 436
 437
 438static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 439{
 440    /* on big-endian hosts, the board is configured to convert
 441       the endianess of slave RAM accesses  */
 442    writel(cpu_to_le32(val), addr);
 443}
 444
 445static int
 446fore200e_pca_irq_check(struct fore200e* fore200e)
 447{
 448    /* this is a 1 bit register */
 449    int irq_posted = readl(fore200e->regs.pca.psr);
 450
 451#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 452    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 453	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 454    }
 455#endif
 456
 457    return irq_posted;
 458}
 459
 460
 461static void
 462fore200e_pca_irq_ack(struct fore200e* fore200e)
 463{
 464    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 465}
 466
 467
 468static void
 469fore200e_pca_reset(struct fore200e* fore200e)
 470{
 471    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 472    fore200e_spin(10);
 473    writel(0, fore200e->regs.pca.hcr);
 474}
 475
 476
 477static int fore200e_pca_map(struct fore200e* fore200e)
 478{
 479    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 480
 481    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 482    
 483    if (fore200e->virt_base == NULL) {
 484	printk(FORE200E "can't map device %s\n", fore200e->name);
 485	return -EFAULT;
 486    }
 487
 488    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 489
 490    /* gain access to the PCA specific registers  */
 491    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 492    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 493    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 494
 495    fore200e->state = FORE200E_STATE_MAP;
 496    return 0;
 497}
 498
 499
 500static void
 501fore200e_pca_unmap(struct fore200e* fore200e)
 502{
 503    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 504
 505    if (fore200e->virt_base != NULL)
 506	iounmap(fore200e->virt_base);
 507}
 508
 509
 510static int fore200e_pca_configure(struct fore200e *fore200e)
 511{
 512    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 513    u8              master_ctrl, latency;
 514
 515    DPRINTK(2, "device %s being configured\n", fore200e->name);
 516
 517    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 518	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 519	return -EIO;
 520    }
 521
 522    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 523
 524    master_ctrl = master_ctrl
 525#if defined(__BIG_ENDIAN)
 526	/* request the PCA board to convert the endianess of slave RAM accesses */
 527	| PCA200E_CTRL_CONVERT_ENDIAN
 528#endif
 529#if 0
 530        | PCA200E_CTRL_DIS_CACHE_RD
 531        | PCA200E_CTRL_DIS_WRT_INVAL
 532        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 533        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 534#endif
 535	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 536    
 537    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 538
 539    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 540       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 541       this may impact the performances of other PCI devices on the same bus, though */
 542    latency = 192;
 543    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 544
 545    fore200e->state = FORE200E_STATE_CONFIGURE;
 546    return 0;
 547}
 548
 549
 550static int __init
 551fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 552{
 553    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 554    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 555    struct prom_opcode      opcode;
 556    int                     ok;
 557    u32                     prom_dma;
 558
 559    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 560
 561    opcode.opcode = OPCODE_GET_PROM;
 562    opcode.pad    = 0;
 563
 564    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 565			      DMA_FROM_DEVICE);
 566    if (dma_mapping_error(fore200e->dev, prom_dma))
 567	return -ENOMEM;
 568
 569    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 570    
 571    *entry->status = STATUS_PENDING;
 572
 573    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 574
 575    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 576
 577    *entry->status = STATUS_FREE;
 578
 579    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 580
 581    if (ok == 0) {
 582	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 583	return -EIO;
 584    }
 585
 586#if defined(__BIG_ENDIAN)
 587    
 588#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 589
 590    /* MAC address is stored as little-endian */
 591    swap_here(&prom->mac_addr[0]);
 592    swap_here(&prom->mac_addr[4]);
 593#endif
 594    
 595    return 0;
 596}
 597
 598
 599static int
 600fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 601{
 602    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 603
 604    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 605		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 606}
 607
 608static const struct fore200e_bus fore200e_pci_ops = {
 609	.model_name		= "PCA-200E",
 610	.proc_name		= "pca200e",
 611	.descr_alignment	= 32,
 612	.buffer_alignment	= 4,
 613	.status_alignment	= 32,
 614	.read			= fore200e_pca_read,
 615	.write			= fore200e_pca_write,
 616	.configure		= fore200e_pca_configure,
 617	.map			= fore200e_pca_map,
 618	.reset			= fore200e_pca_reset,
 619	.prom_read		= fore200e_pca_prom_read,
 620	.unmap			= fore200e_pca_unmap,
 621	.irq_check		= fore200e_pca_irq_check,
 622	.irq_ack		= fore200e_pca_irq_ack,
 623	.proc_read		= fore200e_pca_proc_read,
 624};
 625#endif /* CONFIG_PCI */
 626
 627#ifdef CONFIG_SBUS
 628
 629static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 630{
 631    return sbus_readl(addr);
 632}
 633
 634static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 635{
 636    sbus_writel(val, addr);
 637}
 638
 639static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 640{
 641	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 642	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 643}
 644
 645static int fore200e_sba_irq_check(struct fore200e *fore200e)
 646{
 647	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 648}
 649
 650static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 651{
 652	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 653	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 654}
 655
 656static void fore200e_sba_reset(struct fore200e *fore200e)
 657{
 658	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 659	fore200e_spin(10);
 660	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 661}
 662
 663static int __init fore200e_sba_map(struct fore200e *fore200e)
 664{
 665	struct platform_device *op = to_platform_device(fore200e->dev);
 666	unsigned int bursts;
 667
 668	/* gain access to the SBA specific registers  */
 669	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 670	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 671	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 672	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 673
 674	if (!fore200e->virt_base) {
 675		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 676		return -EFAULT;
 677	}
 678
 679	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 680    
 681	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 682
 683	/* get the supported DVMA burst sizes */
 684	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 685
 686	if (sbus_can_dma_64bit())
 687		sbus_set_sbus64(&op->dev, bursts);
 688
 689	fore200e->state = FORE200E_STATE_MAP;
 690	return 0;
 691}
 692
 693static void fore200e_sba_unmap(struct fore200e *fore200e)
 694{
 695	struct platform_device *op = to_platform_device(fore200e->dev);
 696
 697	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 698	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 699	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 700	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 701}
 702
 703static int __init fore200e_sba_configure(struct fore200e *fore200e)
 704{
 705	fore200e->state = FORE200E_STATE_CONFIGURE;
 706	return 0;
 707}
 708
 709static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 710{
 711	struct platform_device *op = to_platform_device(fore200e->dev);
 712	const u8 *prop;
 713	int len;
 714
 715	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 716	if (!prop)
 717		return -ENODEV;
 718	memcpy(&prom->mac_addr[4], prop, 4);
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[2], prop, 4);
 724
 725	prom->serial_number = of_getintprop_default(op->dev.of_node,
 726						    "serialnumber", 0);
 727	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 728						  "promversion", 0);
 729    
 730	return 0;
 731}
 732
 733static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 734{
 735	struct platform_device *op = to_platform_device(fore200e->dev);
 736	const struct linux_prom_registers *regs;
 737
 738	regs = of_get_property(op->dev.of_node, "reg", NULL);
 739
 740	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 741		       (regs ? regs->which_io : 0), op->dev.of_node);
 742}
 743
 744static const struct fore200e_bus fore200e_sbus_ops = {
 745	.model_name		= "SBA-200E",
 746	.proc_name		= "sba200e",
 747	.descr_alignment	= 32,
 748	.buffer_alignment	= 64,
 749	.status_alignment	= 32,
 750	.read			= fore200e_sba_read,
 751	.write			= fore200e_sba_write,
 752	.configure		= fore200e_sba_configure,
 753	.map			= fore200e_sba_map,
 754	.reset			= fore200e_sba_reset,
 755	.prom_read		= fore200e_sba_prom_read,
 756	.unmap			= fore200e_sba_unmap,
 757	.irq_enable		= fore200e_sba_irq_enable,
 758	.irq_check		= fore200e_sba_irq_check,
 759	.irq_ack		= fore200e_sba_irq_ack,
 760	.proc_read		= fore200e_sba_proc_read,
 761};
 762#endif /* CONFIG_SBUS */
 763
 764static void
 765fore200e_tx_irq(struct fore200e* fore200e)
 766{
 767    struct host_txq*        txq = &fore200e->host_txq;
 768    struct host_txq_entry*  entry;
 769    struct atm_vcc*         vcc;
 770    struct fore200e_vc_map* vc_map;
 771
 772    if (fore200e->host_txq.txing == 0)
 773	return;
 774
 775    for (;;) {
 776	
 777	entry = &txq->host_entry[ txq->tail ];
 778
 779        if ((*entry->status & STATUS_COMPLETE) == 0) {
 780	    break;
 781	}
 782
 783	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 784		entry, txq->tail, entry->vc_map, entry->skb);
 785
 786	/* free copy of misaligned data */
 787	kfree(entry->data);
 788	
 789	/* remove DMA mapping */
 790	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 791				 DMA_TO_DEVICE);
 792
 793	vc_map = entry->vc_map;
 794
 795	/* vcc closed since the time the entry was submitted for tx? */
 796	if ((vc_map->vcc == NULL) ||
 797	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 798
 799	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 800		    fore200e->atm_dev->number);
 801
 802	    dev_kfree_skb_any(entry->skb);
 803	}
 804	else {
 805	    ASSERT(vc_map->vcc);
 806
 807	    /* vcc closed then immediately re-opened? */
 808	    if (vc_map->incarn != entry->incarn) {
 809
 810		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 811		   if the same vcc is immediately re-opened, those pending PDUs must
 812		   not be popped after the completion of their emission, as they refer
 813		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 814		   would be decremented by the size of the (unrelated) skb, possibly
 815		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 816		   we thus bind the tx entry to the current incarnation of the vcc
 817		   when the entry is submitted for tx. When the tx later completes,
 818		   if the incarnation number of the tx entry does not match the one
 819		   of the vcc, then this implies that the vcc has been closed then re-opened.
 820		   we thus just drop the skb here. */
 821
 822		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 823			fore200e->atm_dev->number);
 824
 825		dev_kfree_skb_any(entry->skb);
 826	    }
 827	    else {
 828		vcc = vc_map->vcc;
 829		ASSERT(vcc);
 830
 831		/* notify tx completion */
 832		if (vcc->pop) {
 833		    vcc->pop(vcc, entry->skb);
 834		}
 835		else {
 836		    dev_kfree_skb_any(entry->skb);
 837		}
 838
 839		/* check error condition */
 840		if (*entry->status & STATUS_ERROR)
 841		    atomic_inc(&vcc->stats->tx_err);
 842		else
 843		    atomic_inc(&vcc->stats->tx);
 844	    }
 845	}
 846
 847	*entry->status = STATUS_FREE;
 848
 849	fore200e->host_txq.txing--;
 850
 851	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 852    }
 853}
 854
 855
 856#ifdef FORE200E_BSQ_DEBUG
 857int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 858{
 859    struct buffer* buffer;
 860    int count = 0;
 861
 862    buffer = bsq->freebuf;
 863    while (buffer) {
 864
 865	if (buffer->supplied) {
 866	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 867		   where, scheme, magn, buffer->index);
 868	}
 869
 870	if (buffer->magn != magn) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 872		   where, scheme, magn, buffer->index, buffer->magn);
 873	}
 874
 875	if (buffer->scheme != scheme) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->scheme);
 878	}
 879
 880	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 882		   where, scheme, magn, buffer->index);
 883	}
 884
 885	count++;
 886	buffer = buffer->next;
 887    }
 888
 889    if (count != bsq->freebuf_count) {
 890	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 891	       where, scheme, magn, count, bsq->freebuf_count);
 892    }
 893    return 0;
 894}
 895#endif
 896
 897
 898static void
 899fore200e_supply(struct fore200e* fore200e)
 900{
 901    int  scheme, magn, i;
 902
 903    struct host_bsq*       bsq;
 904    struct host_bsq_entry* entry;
 905    struct buffer*         buffer;
 906
 907    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 908	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 909
 910	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 911
 912#ifdef FORE200E_BSQ_DEBUG
 913	    bsq_audit(1, bsq, scheme, magn);
 914#endif
 915	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 916
 917		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 918			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 919
 920		entry = &bsq->host_entry[ bsq->head ];
 921
 922		for (i = 0; i < RBD_BLK_SIZE; i++) {
 923
 924		    /* take the first buffer in the free buffer list */
 925		    buffer = bsq->freebuf;
 926		    if (!buffer) {
 927			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 928			       scheme, magn, bsq->freebuf_count);
 929			return;
 930		    }
 931		    bsq->freebuf = buffer->next;
 932		    
 933#ifdef FORE200E_BSQ_DEBUG
 934		    if (buffer->supplied)
 935			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 936			       scheme, magn, buffer->index);
 937		    buffer->supplied = 1;
 938#endif
 939		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 940		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 941		}
 942
 943		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 944
 945 		/* decrease accordingly the number of free rx buffers */
 946		bsq->freebuf_count -= RBD_BLK_SIZE;
 947
 948		*entry->status = STATUS_PENDING;
 949		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 950	    }
 951	}
 952    }
 953}
 954
 955
 956static int
 957fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 958{
 959    struct sk_buff*      skb;
 960    struct buffer*       buffer;
 961    struct fore200e_vcc* fore200e_vcc;
 962    int                  i, pdu_len = 0;
 963#ifdef FORE200E_52BYTE_AAL0_SDU
 964    u32                  cell_header = 0;
 965#endif
 966
 967    ASSERT(vcc);
 968    
 969    fore200e_vcc = FORE200E_VCC(vcc);
 970    ASSERT(fore200e_vcc);
 971
 972#ifdef FORE200E_52BYTE_AAL0_SDU
 973    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 974
 975	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 976	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 977                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 978                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 979                       rpd->atm_header.clp;
 980	pdu_len = 4;
 981    }
 982#endif
 983    
 984    /* compute total PDU length */
 985    for (i = 0; i < rpd->nseg; i++)
 986	pdu_len += rpd->rsd[ i ].length;
 987    
 988    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 989    if (skb == NULL) {
 990	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 991
 992	atomic_inc(&vcc->stats->rx_drop);
 993	return -ENOMEM;
 994    } 
 995
 996    __net_timestamp(skb);
 997    
 998#ifdef FORE200E_52BYTE_AAL0_SDU
 999    if (cell_header) {
1000	*((u32*)skb_put(skb, 4)) = cell_header;
1001    }
1002#endif
1003
1004    /* reassemble segments */
1005    for (i = 0; i < rpd->nseg; i++) {
1006	
1007	/* rebuild rx buffer address from rsd handle */
1008	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009	
1010	/* Make device DMA transfer visible to CPU.  */
1011	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013	
1014	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016	/* Now let the device get at it again.  */
1017	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019    }
1020
1021    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022    
1023    if (pdu_len < fore200e_vcc->rx_min_pdu)
1024	fore200e_vcc->rx_min_pdu = pdu_len;
1025    if (pdu_len > fore200e_vcc->rx_max_pdu)
1026	fore200e_vcc->rx_max_pdu = pdu_len;
1027    fore200e_vcc->rx_pdu++;
1028
1029    /* push PDU */
1030    if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033		vcc->itf, vcc->vpi, vcc->vci);
1034
1035	dev_kfree_skb_any(skb);
1036
1037	atomic_inc(&vcc->stats->rx_drop);
1038	return -ENOMEM;
1039    }
1040
1041    vcc->push(vcc, skb);
1042    atomic_inc(&vcc->stats->rx);
1043
1044    return 0;
1045}
1046
1047
1048static void
1049fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050{
1051    struct host_bsq* bsq;
1052    struct buffer*   buffer;
1053    int              i;
1054    
1055    for (i = 0; i < rpd->nseg; i++) {
1056
1057	/* rebuild rx buffer address from rsd handle */
1058	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062#ifdef FORE200E_BSQ_DEBUG
1063	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065	if (buffer->supplied == 0)
1066	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067		   buffer->scheme, buffer->magn, buffer->index);
1068	buffer->supplied = 0;
1069#endif
1070
1071	/* re-insert the buffer into the free buffer list */
1072	buffer->next = bsq->freebuf;
1073	bsq->freebuf = buffer;
1074
1075	/* then increment the number of free rx buffers */
1076	bsq->freebuf_count++;
1077    }
1078}
1079
1080
1081static void
1082fore200e_rx_irq(struct fore200e* fore200e)
1083{
1084    struct host_rxq*        rxq = &fore200e->host_rxq;
1085    struct host_rxq_entry*  entry;
1086    struct atm_vcc*         vcc;
1087    struct fore200e_vc_map* vc_map;
1088
1089    for (;;) {
1090	
1091	entry = &rxq->host_entry[ rxq->head ];
1092
1093	/* no more received PDUs */
1094	if ((*entry->status & STATUS_COMPLETE) == 0)
1095	    break;
1096
1097	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099	if ((vc_map->vcc == NULL) ||
1100	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103		    fore200e->atm_dev->number,
1104		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105	}
1106	else {
1107	    vcc = vc_map->vcc;
1108	    ASSERT(vcc);
1109
1110	    if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113	    }
1114	    else {
1115		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116			fore200e->atm_dev->number,
1117			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118		atomic_inc(&vcc->stats->rx_err);
1119	    }
1120	}
1121
1122	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124	fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126	/* rewrite the rpd address to ack the received PDU */
1127	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128	*entry->status = STATUS_FREE;
1129
1130	fore200e_supply(fore200e);
1131    }
1132}
1133
1134
1135#ifndef FORE200E_USE_TASKLET
1136static void
1137fore200e_irq(struct fore200e* fore200e)
1138{
1139    unsigned long flags;
1140
1141    spin_lock_irqsave(&fore200e->q_lock, flags);
1142    fore200e_rx_irq(fore200e);
1143    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145    spin_lock_irqsave(&fore200e->q_lock, flags);
1146    fore200e_tx_irq(fore200e);
1147    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148}
1149#endif
1150
1151
1152static irqreturn_t
1153fore200e_interrupt(int irq, void* dev)
1154{
1155    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157    if (fore200e->bus->irq_check(fore200e) == 0) {
1158	
1159	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160	return IRQ_NONE;
1161    }
1162    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164#ifdef FORE200E_USE_TASKLET
1165    tasklet_schedule(&fore200e->tx_tasklet);
1166    tasklet_schedule(&fore200e->rx_tasklet);
1167#else
1168    fore200e_irq(fore200e);
1169#endif
1170    
1171    fore200e->bus->irq_ack(fore200e);
1172    return IRQ_HANDLED;
1173}
1174
1175
1176#ifdef FORE200E_USE_TASKLET
1177static void
1178fore200e_tx_tasklet(unsigned long data)
1179{
1180    struct fore200e* fore200e = (struct fore200e*) data;
1181    unsigned long flags;
1182
1183    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185    spin_lock_irqsave(&fore200e->q_lock, flags);
1186    fore200e_tx_irq(fore200e);
1187    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188}
1189
1190
1191static void
1192fore200e_rx_tasklet(unsigned long data)
1193{
1194    struct fore200e* fore200e = (struct fore200e*) data;
1195    unsigned long    flags;
1196
1197    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199    spin_lock_irqsave(&fore200e->q_lock, flags);
1200    fore200e_rx_irq((struct fore200e*) data);
1201    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202}
1203#endif
1204
1205
1206static int
1207fore200e_select_scheme(struct atm_vcc* vcc)
1208{
1209    /* fairly balance the VCs over (identical) buffer schemes */
1210    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215    return scheme;
1216}
1217
1218
1219static int 
1220fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221{
1222    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224    struct activate_opcode   activ_opcode;
1225    struct deactivate_opcode deactiv_opcode;
1226    struct vpvc              vpvc;
1227    int                      ok;
1228    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231    
1232    if (activate) {
1233	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234	
1235	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236	activ_opcode.aal    = aal;
1237	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238	activ_opcode.pad    = 0;
1239    }
1240    else {
1241	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242	deactiv_opcode.pad    = 0;
1243    }
1244
1245    vpvc.vci = vcc->vci;
1246    vpvc.vpi = vcc->vpi;
1247
1248    *entry->status = STATUS_PENDING;
1249
1250    if (activate) {
1251
1252#ifdef FORE200E_52BYTE_AAL0_SDU
1253	mtu = 48;
1254#endif
1255	/* the MTU is not used by the cp, except in the case of AAL0 */
1256	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259    }
1260    else {
1261	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263    }
1264
1265    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267    *entry->status = STATUS_FREE;
1268
1269    if (ok == 0) {
1270	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272	return -EIO;
1273    }
1274
1275    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1276	    activate ? "open" : "clos");
1277
1278    return 0;
1279}
1280
1281
1282#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283
1284static void
1285fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286{
1287    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288    
1289	/* compute the data cells to idle cells ratio from the tx PCR */
1290	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292    }
1293    else {
1294	/* disable rate control */
1295	rate->data_cells = rate->idle_cells = 0;
1296    }
1297}
1298
1299
1300static int
1301fore200e_open(struct atm_vcc *vcc)
1302{
1303    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304    struct fore200e_vcc*    fore200e_vcc;
1305    struct fore200e_vc_map* vc_map;
1306    unsigned long	    flags;
1307    int			    vci = vcc->vci;
1308    short		    vpi = vcc->vpi;
1309
1310    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313    spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316    if (vc_map->vcc) {
1317
1318	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320	printk(FORE200E "VC %d.%d.%d already in use\n",
1321	       fore200e->atm_dev->number, vpi, vci);
1322
1323	return -EINVAL;
1324    }
1325
1326    vc_map->vcc = vcc;
1327
1328    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331    if (fore200e_vcc == NULL) {
1332	vc_map->vcc = NULL;
1333	return -ENOMEM;
1334    }
1335
1336    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343    
1344    /* pseudo-CBR bandwidth requested? */
1345    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346	
1347	mutex_lock(&fore200e->rate_mtx);
1348	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349	    mutex_unlock(&fore200e->rate_mtx);
1350
1351	    kfree(fore200e_vcc);
1352	    vc_map->vcc = NULL;
1353	    return -EAGAIN;
1354	}
1355
1356	/* reserve bandwidth */
1357	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358	mutex_unlock(&fore200e->rate_mtx);
1359    }
1360    
1361    vcc->itf = vcc->dev->number;
1362
1363    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364    set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366    vcc->dev_data = fore200e_vcc;
1367    
1368    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370	vc_map->vcc = NULL;
1371
1372	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375	vcc->dev_data = NULL;
1376
1377	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379	kfree(fore200e_vcc);
1380	return -EINVAL;
1381    }
1382    
1383    /* compute rate control parameters */
1384    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385	
1386	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387	set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1392		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393    }
1394    
1395    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398
1399    /* new incarnation of the vcc */
1400    vc_map->incarn = ++fore200e->incarn_count;
1401
1402    /* VC unusable before this flag is set */
1403    set_bit(ATM_VF_READY, &vcc->flags);
1404
1405    return 0;
1406}
1407
1408
1409static void
1410fore200e_close(struct atm_vcc* vcc)
1411{
1412    struct fore200e_vcc*    fore200e_vcc;
1413    struct fore200e*        fore200e;
1414    struct fore200e_vc_map* vc_map;
1415    unsigned long           flags;
1416
1417    ASSERT(vcc);
1418    fore200e = FORE200E_DEV(vcc->dev);
1419
1420    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425    clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429    spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433    /* the vc is no longer considered as "in use" by fore200e_open() */
1434    vc_map->vcc = NULL;
1435
1436    vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438    fore200e_vcc = FORE200E_VCC(vcc);
1439    vcc->dev_data = NULL;
1440
1441    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443    /* release reserved bandwidth, if any */
1444    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446	mutex_lock(&fore200e->rate_mtx);
1447	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448	mutex_unlock(&fore200e->rate_mtx);
1449
1450	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451    }
1452
1453    clear_bit(ATM_VF_ADDR, &vcc->flags);
1454    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456    ASSERT(fore200e_vcc);
1457    kfree(fore200e_vcc);
1458}
1459
1460
1461static int
1462fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463{
1464    struct fore200e*        fore200e;
1465    struct fore200e_vcc*    fore200e_vcc;
1466    struct fore200e_vc_map* vc_map;
1467    struct host_txq*        txq;
1468    struct host_txq_entry*  entry;
1469    struct tpd*             tpd;
1470    struct tpd_haddr        tpd_haddr;
1471    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472    int                     tx_copy      = 0;
1473    int                     tx_len       = skb->len;
1474    u32*                    cell_header  = NULL;
1475    unsigned char*          skb_data;
1476    int                     skb_len;
1477    unsigned char*          data;
1478    unsigned long           flags;
1479
1480    if (!vcc)
1481        return -EINVAL;
1482
1483    fore200e = FORE200E_DEV(vcc->dev);
1484    fore200e_vcc = FORE200E_VCC(vcc);
1485
1486    if (!fore200e)
1487        return -EINVAL;
1488
1489    txq = &fore200e->host_txq;
1490    if (!fore200e_vcc)
1491        return -EINVAL;
1492
1493    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495	dev_kfree_skb_any(skb);
1496	return -EINVAL;
1497    }
1498
1499#ifdef FORE200E_52BYTE_AAL0_SDU
1500    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501	cell_header = (u32*) skb->data;
1502	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503	skb_len     = tx_len = skb->len  - 4;
1504
1505	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506    }
1507    else 
1508#endif
1509    {
1510	skb_data = skb->data;
1511	skb_len  = skb->len;
1512    }
1513    
1514    if (((unsigned long)skb_data) & 0x3) {
1515
1516	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517	tx_copy = 1;
1518	tx_len  = skb_len;
1519    }
1520
1521    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523        /* this simply NUKES the PCA board */
1524	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525	tx_copy = 1;
1526	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527    }
1528    
1529    if (tx_copy) {
1530	data = kmalloc(tx_len, GFP_ATOMIC);
1531	if (data == NULL) {
1532	    if (vcc->pop) {
1533		vcc->pop(vcc, skb);
1534	    }
1535	    else {
1536		dev_kfree_skb_any(skb);
1537	    }
1538	    return -ENOMEM;
1539	}
1540
1541	memcpy(data, skb_data, skb_len);
1542	if (skb_len < tx_len)
1543	    memset(data + skb_len, 0x00, tx_len - skb_len);
1544    }
1545    else {
1546	data = skb_data;
1547    }
1548
1549    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550    ASSERT(vc_map->vcc == vcc);
1551
1552  retry_here:
1553
1554    spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556    entry = &txq->host_entry[ txq->head ];
1557
1558    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560	/* try to free completed tx queue entries */
1561	fore200e_tx_irq(fore200e);
1562
1563	if (*entry->status != STATUS_FREE) {
1564
1565	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567	    /* retry once again? */
1568	    if (--retry > 0) {
1569		udelay(50);
1570		goto retry_here;
1571	    }
1572
1573	    atomic_inc(&vcc->stats->tx_err);
1574
1575	    fore200e->tx_sat++;
1576	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577		    fore200e->name, fore200e->cp_queues->heartbeat);
1578	    if (vcc->pop) {
1579		vcc->pop(vcc, skb);
1580	    }
1581	    else {
1582		dev_kfree_skb_any(skb);
1583	    }
1584
1585	    if (tx_copy)
1586		kfree(data);
1587
1588	    return -ENOBUFS;
1589	}
1590    }
1591
1592    entry->incarn = vc_map->incarn;
1593    entry->vc_map = vc_map;
1594    entry->skb    = skb;
1595    entry->data   = tx_copy ? data : NULL;
1596
1597    tpd = entry->tpd;
1598    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599					  DMA_TO_DEVICE);
1600    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601	if (tx_copy)
1602	    kfree(data);
1603	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604	return -ENOMEM;
1605    }
1606    tpd->tsd[ 0 ].length = tx_len;
1607
1608    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609    txq->txing++;
1610
1611    /* The dma_map call above implies a dma_sync so the device can use it,
1612     * thus no explicit dma_sync call is necessary here.
1613     */
1614    
1615    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1616	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617	    tpd->tsd[0].length, skb_len);
1618
1619    if (skb_len < fore200e_vcc->tx_min_pdu)
1620	fore200e_vcc->tx_min_pdu = skb_len;
1621    if (skb_len > fore200e_vcc->tx_max_pdu)
1622	fore200e_vcc->tx_max_pdu = skb_len;
1623    fore200e_vcc->tx_pdu++;
1624
1625    /* set tx rate control information */
1626    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629    if (cell_header) {
1630	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635    }
1636    else {
1637	/* set the ATM header, common to all cells conveying the PDU */
1638	tpd->atm_header.clp = 0;
1639	tpd->atm_header.plt = 0;
1640	tpd->atm_header.vci = vcc->vci;
1641	tpd->atm_header.vpi = vcc->vpi;
1642	tpd->atm_header.gfc = 0;
1643    }
1644
1645    tpd->spec.length = tx_len;
1646    tpd->spec.nseg   = 1;
1647    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648    tpd->spec.intr   = 1;
1649
1650    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651    tpd_haddr.pad   = 0;
1652    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653
1654    *entry->status = STATUS_PENDING;
1655    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659    return 0;
1660}
1661
1662
1663static int
1664fore200e_getstats(struct fore200e* fore200e)
1665{
1666    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668    struct stats_opcode     opcode;
1669    int                     ok;
1670    u32                     stats_dma_addr;
1671
1672    if (fore200e->stats == NULL) {
1673	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674	if (fore200e->stats == NULL)
1675	    return -ENOMEM;
1676    }
1677    
1678    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679				    sizeof(struct stats), DMA_FROM_DEVICE);
1680    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681    	return -ENOMEM;
1682    
1683    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685    opcode.opcode = OPCODE_GET_STATS;
1686    opcode.pad    = 0;
1687
1688    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689    
1690    *entry->status = STATUS_PENDING;
1691
1692    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696    *entry->status = STATUS_FREE;
1697
1698    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699    
1700    if (ok == 0) {
1701	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702	return -EIO;
1703    }
1704
1705    return 0;
1706}
1707
1708#if 0 /* currently unused */
1709static int
1710fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711{
1712    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714    struct oc3_opcode       opcode;
1715    int                     ok;
1716    u32                     oc3_regs_dma_addr;
1717
1718    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722    opcode.opcode = OPCODE_GET_OC3;
1723    opcode.reg    = 0;
1724    opcode.value  = 0;
1725    opcode.mask   = 0;
1726
1727    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728    
1729    *entry->status = STATUS_PENDING;
1730
1731    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735    *entry->status = STATUS_FREE;
1736
1737    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738    
1739    if (ok == 0) {
1740	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741	return -EIO;
1742    }
1743
1744    return 0;
1745}
1746#endif
1747
1748
1749static int
1750fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751{
1752    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754    struct oc3_opcode       opcode;
1755    int                     ok;
1756
1757    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_SET_OC3;
1762    opcode.reg    = reg;
1763    opcode.value  = value;
1764    opcode.mask   = mask;
1765
1766    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    if (ok == 0) {
1777	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787{
1788    u32 mct_value, mct_mask;
1789    int error;
1790
1791    if (!capable(CAP_NET_ADMIN))
1792	return -EPERM;
1793    
1794    switch (loop_mode) {
1795
1796    case ATM_LM_NONE:
1797	mct_value = 0; 
1798	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799	break;
1800	
1801    case ATM_LM_LOC_PHY:
1802	mct_value = mct_mask = SUNI_MCT_DLE;
1803	break;
1804
1805    case ATM_LM_RMT_PHY:
1806	mct_value = mct_mask = SUNI_MCT_LLE;
1807	break;
1808
1809    default:
1810	return -EINVAL;
1811    }
1812
1813    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814    if (error == 0)
1815	fore200e->loop_mode = loop_mode;
1816
1817    return error;
1818}
1819
1820
1821static int
1822fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823{
1824    struct sonet_stats tmp;
1825
1826    if (fore200e_getstats(fore200e) < 0)
1827	return -EIO;
1828
1829    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843    if (arg)
1844	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1845    
1846    return 0;
1847}
1848
1849
1850static int
1851fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852{
1853    struct fore200e* fore200e = FORE200E_DEV(dev);
1854    
1855    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857    switch (cmd) {
1858
1859    case SONET_GETSTAT:
1860	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862    case SONET_GETDIAG:
1863	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865    case ATM_SETLOOP:
1866	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868    case ATM_GETLOOP:
1869	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871    case ATM_QUERYLOOP:
1872	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873    }
1874
1875    return -ENOSYS; /* not implemented */
1876}
1877
1878
1879static int
1880fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881{
1882    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884
1885    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887	return -EINVAL;
1888    }
1889
1890    DPRINTK(2, "change_qos %d.%d.%d, "
1891	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893	    "available_cell_rate = %u",
1894	    vcc->itf, vcc->vpi, vcc->vci,
1895	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1896	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899	    flags, fore200e->available_cell_rate);
1900
1901    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903	mutex_lock(&fore200e->rate_mtx);
1904	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905	    mutex_unlock(&fore200e->rate_mtx);
1906	    return -EAGAIN;
1907	}
1908
1909	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912	mutex_unlock(&fore200e->rate_mtx);
1913	
1914	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915	
1916	/* update rate control parameters */
1917	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919	set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921	return 0;
1922    }
1923    
1924    return -EINVAL;
1925}
1926    
1927
1928static int fore200e_irq_request(struct fore200e *fore200e)
1929{
1930    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934	return -EBUSY;
1935    }
1936
1937    printk(FORE200E "IRQ %s reserved for device %s\n",
1938	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940#ifdef FORE200E_USE_TASKLET
1941    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943#endif
1944
1945    fore200e->state = FORE200E_STATE_IRQ;
1946    return 0;
1947}
1948
1949
1950static int fore200e_get_esi(struct fore200e *fore200e)
1951{
1952    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953    int ok, i;
1954
1955    if (!prom)
1956	return -ENOMEM;
1957
1958    ok = fore200e->bus->prom_read(fore200e, prom);
1959    if (ok < 0) {
1960	kfree(prom);
1961	return -EBUSY;
1962    }
1963	
1964    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965	   fore200e->name, 
1966	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968	
1969    for (i = 0; i < ESI_LEN; i++) {
1970	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971    }
1972    
1973    kfree(prom);
1974
1975    return 0;
1976}
1977
1978
1979static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980{
1981    int scheme, magn, nbr, size, i;
1982
1983    struct host_bsq* bsq;
1984    struct buffer*   buffer;
1985
1986    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996	    /* allocate the array of receive buffers */
1997	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                           GFP_KERNEL);
1999
2000	    if (buffer == NULL)
2001		return -ENOMEM;
2002
2003	    bsq->freebuf = NULL;
2004
2005	    for (i = 0; i < nbr; i++) {
2006
2007		buffer[ i ].scheme = scheme;
2008		buffer[ i ].magn   = magn;
2009#ifdef FORE200E_BSQ_DEBUG
2010		buffer[ i ].index  = i;
2011		buffer[ i ].supplied = 0;
2012#endif
2013
2014		/* allocate the receive buffer body */
2015		if (fore200e_chunk_alloc(fore200e,
2016					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017					 DMA_FROM_DEVICE) < 0) {
2018		    
2019		    while (i > 0)
2020			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021		    kfree(buffer);
2022		    
2023		    return -ENOMEM;
2024		}
2025
2026		/* insert the buffer into the free buffer list */
2027		buffer[ i ].next = bsq->freebuf;
2028		bsq->freebuf = &buffer[ i ];
2029	    }
2030	    /* all the buffers are free, initially */
2031	    bsq->freebuf_count = nbr;
2032
2033#ifdef FORE200E_BSQ_DEBUG
2034	    bsq_audit(3, bsq, scheme, magn);
2035#endif
2036	}
2037    }
2038
2039    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040    return 0;
2041}
2042
2043
2044static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045{
2046    int scheme, magn, i;
2047
2048    struct host_bsq*     bsq;
2049    struct cp_bsq_entry __iomem * cp_entry;
2050
2051    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058	    /* allocate and align the array of status words */
2059	    if (fore200e_dma_chunk_alloc(fore200e,
2060					       &bsq->status,
2061					       sizeof(enum status), 
2062					       QUEUE_SIZE_BS,
2063					       fore200e->bus->status_alignment) < 0) {
2064		return -ENOMEM;
2065	    }
2066
2067	    /* allocate and align the array of receive buffer descriptors */
2068	    if (fore200e_dma_chunk_alloc(fore200e,
2069					       &bsq->rbd_block,
2070					       sizeof(struct rbd_block),
2071					       QUEUE_SIZE_BS,
2072					       fore200e->bus->descr_alignment) < 0) {
2073		
2074		fore200e_dma_chunk_free(fore200e, &bsq->status);
2075		return -ENOMEM;
2076	    }
2077	    
2078	    /* get the base address of the cp resident buffer supply queue entries */
2079	    cp_entry = fore200e->virt_base + 
2080		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081	    
2082	    /* fill the host resident and cp resident buffer supply queue entries */
2083	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084		
2085		bsq->host_entry[ i ].status = 
2086		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087	        bsq->host_entry[ i ].rbd_block =
2088		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089		bsq->host_entry[ i ].rbd_block_dma =
2090		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092		
2093		*bsq->host_entry[ i ].status = STATUS_FREE;
2094		
2095		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2096				     &cp_entry[ i ].status_haddr);
2097	    }
2098	}
2099    }
2100
2101    fore200e->state = FORE200E_STATE_INIT_BSQ;
2102    return 0;
2103}
2104
2105
2106static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107{
2108    struct host_rxq*     rxq =  &fore200e->host_rxq;
2109    struct cp_rxq_entry __iomem * cp_entry;
2110    int i;
2111
2112    DPRINTK(2, "receive queue is being initialized\n");
2113
2114    /* allocate and align the array of status words */
2115    if (fore200e_dma_chunk_alloc(fore200e,
2116				       &rxq->status,
2117				       sizeof(enum status), 
2118				       QUEUE_SIZE_RX,
2119				       fore200e->bus->status_alignment) < 0) {
2120	return -ENOMEM;
2121    }
2122
2123    /* allocate and align the array of receive PDU descriptors */
2124    if (fore200e_dma_chunk_alloc(fore200e,
2125				       &rxq->rpd,
2126				       sizeof(struct rpd), 
2127				       QUEUE_SIZE_RX,
2128				       fore200e->bus->descr_alignment) < 0) {
2129	
2130	fore200e_dma_chunk_free(fore200e, &rxq->status);
2131	return -ENOMEM;
2132    }
2133
2134    /* get the base address of the cp resident rx queue entries */
2135    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137    /* fill the host resident and cp resident rx entries */
2138    for (i=0; i < QUEUE_SIZE_RX; i++) {
2139	
2140	rxq->host_entry[ i ].status = 
2141	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142	rxq->host_entry[ i ].rpd = 
2143	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144	rxq->host_entry[ i ].rpd_dma = 
2145	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148	*rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2151			     &cp_entry[ i ].status_haddr);
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154			     &cp_entry[ i ].rpd_haddr);
2155    }
2156
2157    /* set the head entry of the queue */
2158    rxq->head = 0;
2159
2160    fore200e->state = FORE200E_STATE_INIT_RXQ;
2161    return 0;
2162}
2163
2164
2165static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166{
2167    struct host_txq*     txq =  &fore200e->host_txq;
2168    struct cp_txq_entry __iomem * cp_entry;
2169    int i;
2170
2171    DPRINTK(2, "transmit queue is being initialized\n");
2172
2173    /* allocate and align the array of status words */
2174    if (fore200e_dma_chunk_alloc(fore200e,
2175				       &txq->status,
2176				       sizeof(enum status), 
2177				       QUEUE_SIZE_TX,
2178				       fore200e->bus->status_alignment) < 0) {
2179	return -ENOMEM;
2180    }
2181
2182    /* allocate and align the array of transmit PDU descriptors */
2183    if (fore200e_dma_chunk_alloc(fore200e,
2184				       &txq->tpd,
2185				       sizeof(struct tpd), 
2186				       QUEUE_SIZE_TX,
2187				       fore200e->bus->descr_alignment) < 0) {
2188	
2189	fore200e_dma_chunk_free(fore200e, &txq->status);
2190	return -ENOMEM;
2191    }
2192
2193    /* get the base address of the cp resident tx queue entries */
2194    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196    /* fill the host resident and cp resident tx entries */
2197    for (i=0; i < QUEUE_SIZE_TX; i++) {
2198	
2199	txq->host_entry[ i ].status = 
2200	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201	txq->host_entry[ i ].tpd = 
2202	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203	txq->host_entry[ i ].tpd_dma  = 
2204                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207	*txq->host_entry[ i ].status = STATUS_FREE;
2208	
2209	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2210			     &cp_entry[ i ].status_haddr);
2211	
2212        /* although there is a one-to-one mapping of tx queue entries and tpds,
2213	   we do not write here the DMA (physical) base address of each tpd into
2214	   the related cp resident entry, because the cp relies on this write
2215	   operation to detect that a new pdu has been submitted for tx */
2216    }
2217
2218    /* set the head and tail entries of the queue */
2219    txq->head = 0;
2220    txq->tail = 0;
2221
2222    fore200e->state = FORE200E_STATE_INIT_TXQ;
2223    return 0;
2224}
2225
2226
2227static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228{
2229    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230    struct cp_cmdq_entry __iomem * cp_entry;
2231    int i;
2232
2233    DPRINTK(2, "command queue is being initialized\n");
2234
2235    /* allocate and align the array of status words */
2236    if (fore200e_dma_chunk_alloc(fore200e,
2237				       &cmdq->status,
2238				       sizeof(enum status), 
2239				       QUEUE_SIZE_CMD,
2240				       fore200e->bus->status_alignment) < 0) {
2241	return -ENOMEM;
2242    }
2243    
2244    /* get the base address of the cp resident cmd queue entries */
2245    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247    /* fill the host resident and cp resident cmd entries */
2248    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249	
2250	cmdq->host_entry[ i ].status   = 
2251                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254	*cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2257                             &cp_entry[ i ].status_haddr);
2258    }
2259
2260    /* set the head entry of the queue */
2261    cmdq->head = 0;
2262
2263    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264    return 0;
2265}
2266
2267
2268static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269				    enum buffer_scheme scheme,
2270				    enum buffer_magn magn, int queue_length,
2271				    int pool_size, int supply_blksize)
2272{
2273    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279}
2280
2281
2282static int fore200e_initialize(struct fore200e *fore200e)
2283{
2284    struct cp_queues __iomem * cpq;
2285    int               ok, scheme, magn;
2286
2287    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289    mutex_init(&fore200e->rate_mtx);
2290    spin_lock_init(&fore200e->q_lock);
2291
2292    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294    /* enable cp to host interrupts */
2295    fore200e->bus->write(1, &cpq->imask);
2296
2297    if (fore200e->bus->irq_enable)
2298	fore200e->bus->irq_enable(fore200e);
2299    
2300    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305
2306    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308
2309    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311	    fore200e_param_bs_queue(fore200e, scheme, magn,
2312				    QUEUE_SIZE_BS, 
2313				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2314				    RBD_BLK_SIZE);
2315
2316    /* issue the initialize command */
2317    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321    if (ok == 0) {
2322	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323	return -ENODEV;
2324    }
2325
2326    printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328    fore200e->state = FORE200E_STATE_INITIALIZE;
2329    return 0;
2330}
2331
2332
2333static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334{
2335    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337#if 0
2338    printk("%c", c);
2339#endif
2340    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341}
2342
2343
2344static int fore200e_monitor_getc(struct fore200e *fore200e)
2345{
2346    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348    int                c;
2349
2350    while (time_before(jiffies, timeout)) {
2351
2352	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357#if 0
2358	    printk("%c", c & 0xFF);
2359#endif
2360	    return c & 0xFF;
2361	}
2362    }
2363
2364    return -1;
2365}
2366
2367
2368static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369{
2370    while (*str) {
2371
2372	/* the i960 monitor doesn't accept any new character if it has something to say */
2373	while (fore200e_monitor_getc(fore200e) >= 0);
2374	
2375	fore200e_monitor_putc(fore200e, *str++);
2376    }
2377
2378    while (fore200e_monitor_getc(fore200e) >= 0);
2379}
2380
2381#ifdef __LITTLE_ENDIAN
2382#define FW_EXT ".bin"
2383#else
2384#define FW_EXT "_ecd.bin2"
2385#endif
2386
2387static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388{
2389    const struct firmware *firmware;
2390    const struct fw_header *fw_header;
2391    const __le32 *fw_data;
2392    u32 fw_size;
2393    u32 __iomem *load_addr;
2394    char buf[48];
2395    int err;
2396
2397    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400	return err;
2401    }
2402
2403    fw_data = (const __le32 *)firmware->data;
2404    fw_size = firmware->size / sizeof(u32);
2405    fw_header = (const struct fw_header *)firmware->data;
2406    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409	    fore200e->name, load_addr, fw_size);
2410
2411    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413	goto release;
2414    }
2415
2416    for (; fw_size--; fw_data++, load_addr++)
2417	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421#if defined(__sparc_v9__)
2422    /* reported to be required by SBA cards on some sparc64 hosts */
2423    fore200e_spin(100);
2424#endif
2425
2426    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427    fore200e_monitor_puts(fore200e, buf);
2428
2429    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431	goto release;
2432    }
2433
2434    printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436    fore200e->state = FORE200E_STATE_START_FW;
2437    err = 0;
2438
2439release:
2440    release_firmware(firmware);
2441    return err;
2442}
2443
2444
2445static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446{
2447    struct atm_dev* atm_dev;
2448
2449    DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                               -1, NULL);
2453    if (atm_dev == NULL) {
2454	printk(FORE200E "unable to register device %s\n", fore200e->name);
2455	return -ENODEV;
2456    }
2457
2458    atm_dev->dev_data = fore200e;
2459    fore200e->atm_dev = atm_dev;
2460
2461    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464    fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466    fore200e->state = FORE200E_STATE_REGISTER;
2467    return 0;
2468}
2469
2470
2471static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472{
2473    if (fore200e_register(fore200e, parent) < 0)
2474	return -ENODEV;
2475    
2476    if (fore200e->bus->configure(fore200e) < 0)
2477	return -ENODEV;
2478
2479    if (fore200e->bus->map(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e_reset(fore200e, 1) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_load_and_start_fw(fore200e) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_initialize(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_init_cmd_queue(fore200e) < 0)
2492	return -ENOMEM;
2493
2494    if (fore200e_init_tx_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_rx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_bs_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_alloc_rx_buf(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_get_esi(fore200e) < 0)
2507	return -EIO;
2508
2509    if (fore200e_irq_request(fore200e) < 0)
2510	return -EBUSY;
2511
2512    fore200e_supply(fore200e);
2513
2514    /* all done, board initialization is now complete */
2515    fore200e->state = FORE200E_STATE_COMPLETE;
2516    return 0;
2517}
2518
2519#ifdef CONFIG_SBUS
 
2520static int fore200e_sba_probe(struct platform_device *op)
2521{
 
2522	struct fore200e *fore200e;
2523	static int index = 0;
2524	int err;
2525
 
 
 
 
2526	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527	if (!fore200e)
2528		return -ENOMEM;
2529
2530	fore200e->bus = &fore200e_sbus_ops;
2531	fore200e->dev = &op->dev;
2532	fore200e->irq = op->archdata.irqs[0];
2533	fore200e->phys_base = op->resource[0].start;
2534
2535	sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537	err = fore200e_init(fore200e, &op->dev);
2538	if (err < 0) {
2539		fore200e_shutdown(fore200e);
2540		kfree(fore200e);
2541		return err;
2542	}
2543
2544	index++;
2545	dev_set_drvdata(&op->dev, fore200e);
2546
2547	return 0;
2548}
2549
2550static void fore200e_sba_remove(struct platform_device *op)
2551{
2552	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554	fore200e_shutdown(fore200e);
2555	kfree(fore200e);
 
 
2556}
2557
2558static const struct of_device_id fore200e_sba_match[] = {
2559	{
2560		.name = SBA200E_PROM_NAME,
2561	},
2562	{},
2563};
2564MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566static struct platform_driver fore200e_sba_driver = {
2567	.driver = {
2568		.name = "fore_200e",
2569		.of_match_table = fore200e_sba_match,
2570	},
2571	.probe		= fore200e_sba_probe,
2572	.remove		= fore200e_sba_remove,
2573};
2574#endif
2575
2576#ifdef CONFIG_PCI
2577static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578			       const struct pci_device_id *pci_ent)
2579{
2580    struct fore200e* fore200e;
2581    int err = 0;
2582    static int index = 0;
2583
2584    if (pci_enable_device(pci_dev)) {
2585	err = -EINVAL;
2586	goto out;
2587    }
2588
2589    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590	err = -EINVAL;
2591	goto out;
2592    }
2593    
2594    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595    if (fore200e == NULL) {
2596	err = -ENOMEM;
2597	goto out_disable;
2598    }
2599
2600    fore200e->bus       = &fore200e_pci_ops;
2601    fore200e->dev	= &pci_dev->dev;
2602    fore200e->irq       = pci_dev->irq;
2603    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607    pci_set_master(pci_dev);
2608
2609    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2610	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612    sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614    err = fore200e_init(fore200e, &pci_dev->dev);
2615    if (err < 0) {
2616	fore200e_shutdown(fore200e);
2617	goto out_free;
2618    }
2619
2620    ++index;
2621    pci_set_drvdata(pci_dev, fore200e);
2622
2623out:
2624    return err;
2625
2626out_free:
2627    kfree(fore200e);
2628out_disable:
2629    pci_disable_device(pci_dev);
2630    goto out;
2631}
2632
2633
2634static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635{
2636    struct fore200e *fore200e;
2637
2638    fore200e = pci_get_drvdata(pci_dev);
2639
2640    fore200e_shutdown(fore200e);
2641    kfree(fore200e);
2642    pci_disable_device(pci_dev);
2643}
2644
2645
2646static const struct pci_device_id fore200e_pca_tbl[] = {
2647    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2648    { 0, }
2649};
2650
2651MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653static struct pci_driver fore200e_pca_driver = {
2654    .name =     "fore_200e",
2655    .probe =    fore200e_pca_detect,
2656    .remove =   fore200e_pca_remove_one,
2657    .id_table = fore200e_pca_tbl,
2658};
2659#endif
2660
2661static int __init fore200e_module_init(void)
2662{
2663	int err = 0;
2664
2665	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667#ifdef CONFIG_SBUS
2668	err = platform_driver_register(&fore200e_sba_driver);
2669	if (err)
2670		return err;
2671#endif
2672
2673#ifdef CONFIG_PCI
2674	err = pci_register_driver(&fore200e_pca_driver);
2675#endif
2676
2677#ifdef CONFIG_SBUS
2678	if (err)
2679		platform_driver_unregister(&fore200e_sba_driver);
2680#endif
2681
2682	return err;
2683}
2684
2685static void __exit fore200e_module_cleanup(void)
2686{
2687#ifdef CONFIG_PCI
2688	pci_unregister_driver(&fore200e_pca_driver);
2689#endif
2690#ifdef CONFIG_SBUS
2691	platform_driver_unregister(&fore200e_sba_driver);
2692#endif
2693}
2694
2695static int
2696fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697{
2698    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699    struct fore200e_vcc* fore200e_vcc;
2700    struct atm_vcc*      vcc;
2701    int                  i, len, left = *pos;
2702    unsigned long        flags;
2703
2704    if (!left--) {
2705
2706	if (fore200e_getstats(fore200e) < 0)
2707	    return -EIO;
2708
2709	len = sprintf(page,"\n"
2710		       " device:\n"
2711		       "   internal name:\t\t%s\n", fore200e->name);
2712
2713	/* print bus-specific information */
2714	if (fore200e->bus->proc_read)
2715	    len += fore200e->bus->proc_read(fore200e, page + len);
2716	
2717	len += sprintf(page + len,
2718		"   interrupt line:\t\t%s\n"
2719		"   physical base address:\t0x%p\n"
2720		"   virtual base address:\t0x%p\n"
2721		"   factory address (ESI):\t%pM\n"
2722		"   board serial number:\t\t%d\n\n",
2723		fore200e_irq_itoa(fore200e->irq),
2724		(void*)fore200e->phys_base,
2725		fore200e->virt_base,
2726		fore200e->esi,
2727		fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729	return len;
2730    }
2731
2732    if (!left--)
2733	return sprintf(page,
2734		       "   free small bufs, scheme 1:\t%d\n"
2735		       "   free large bufs, scheme 1:\t%d\n"
2736		       "   free small bufs, scheme 2:\t%d\n"
2737		       "   free large bufs, scheme 2:\t%d\n",
2738		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743    if (!left--) {
2744	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746	len = sprintf(page,"\n\n"
2747		      " cell processor:\n"
2748		      "   heartbeat state:\t\t");
2749	
2750	if (hb >> 16 != 0xDEAD)
2751	    len += sprintf(page + len, "0x%08x\n", hb);
2752	else
2753	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755	return len;
2756    }
2757
2758    if (!left--) {
2759	static const char* media_name[] = {
2760	    "unshielded twisted pair",
2761	    "multimode optical fiber ST",
2762	    "multimode optical fiber SC",
2763	    "single-mode optical fiber ST",
2764	    "single-mode optical fiber SC",
2765	    "unknown"
2766	};
2767
2768	static const char* oc3_mode[] = {
2769	    "normal operation",
2770	    "diagnostic loopback",
2771	    "line loopback",
2772	    "unknown"
2773	};
2774
2775	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779	u32 oc3_index;
2780
2781	if (media_index > 4)
2782		media_index = 5;
2783	
2784	switch (fore200e->loop_mode) {
2785	    case ATM_LM_NONE:    oc3_index = 0;
2786		                 break;
2787	    case ATM_LM_LOC_PHY: oc3_index = 1;
2788		                 break;
2789	    case ATM_LM_RMT_PHY: oc3_index = 2;
2790		                 break;
2791	    default:             oc3_index = 3;
2792	}
2793
2794	return sprintf(page,
2795		       "   firmware release:\t\t%d.%d.%d\n"
2796		       "   monitor release:\t\t%d.%d\n"
2797		       "   media type:\t\t\t%s\n"
2798		       "   OC-3 revision:\t\t0x%x\n"
2799                       "   OC-3 mode:\t\t\t%s",
2800		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801		       mon960_release >> 16, mon960_release << 16 >> 16,
2802		       media_name[ media_index ],
2803		       oc3_revision,
2804		       oc3_mode[ oc3_index ]);
2805    }
2806
2807    if (!left--) {
2808	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810	return sprintf(page,
2811		       "\n\n"
2812		       " monitor:\n"
2813		       "   version number:\t\t%d\n"
2814		       "   boot status word:\t\t0x%08x\n",
2815		       fore200e->bus->read(&cp_monitor->mon_version),
2816		       fore200e->bus->read(&cp_monitor->bstat));
2817    }
2818
2819    if (!left--)
2820	return sprintf(page,
2821		       "\n"
2822		       " device statistics:\n"
2823		       "  4b5b:\n"
2824		       "     crc_header_errors:\t\t%10u\n"
2825		       "     framing_errors:\t\t%10u\n",
2826		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2828    
2829    if (!left--)
2830	return sprintf(page, "\n"
2831		       "  OC-3:\n"
2832		       "     section_bip8_errors:\t%10u\n"
2833		       "     path_bip8_errors:\t\t%10u\n"
2834		       "     line_bip24_errors:\t\t%10u\n"
2835		       "     line_febe_errors:\t\t%10u\n"
2836		       "     path_febe_errors:\t\t%10u\n"
2837		       "     corr_hcs_errors:\t\t%10u\n"
2838		       "     ucorr_hcs_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847    if (!left--)
2848	return sprintf(page,"\n"
2849		       "   ATM:\t\t\t\t     cells\n"
2850		       "     TX:\t\t\t%10u\n"
2851		       "     RX:\t\t\t%10u\n"
2852		       "     vpi out of range:\t\t%10u\n"
2853		       "     vpi no conn:\t\t%10u\n"
2854		       "     vci out of range:\t\t%10u\n"
2855		       "     vci no conn:\t\t%10u\n",
2856		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857		       be32_to_cpu(fore200e->stats->atm.cells_received),
2858		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862    
2863    if (!left--)
2864	return sprintf(page,"\n"
2865		       "   AAL0:\t\t\t     cells\n"
2866		       "     TX:\t\t\t%10u\n"
2867		       "     RX:\t\t\t%10u\n"
2868		       "     dropped:\t\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2871		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872    
2873    if (!left--)
2874	return sprintf(page,"\n"
2875		       "   AAL3/4:\n"
2876		       "     SAR sublayer:\t\t     cells\n"
2877		       "       TX:\t\t\t%10u\n"
2878		       "       RX:\t\t\t%10u\n"
2879		       "       dropped:\t\t\t%10u\n"
2880		       "       CRC errors:\t\t%10u\n"
2881		       "       protocol errors:\t\t%10u\n\n"
2882		       "     CS  sublayer:\t\t      PDUs\n"
2883		       "       TX:\t\t\t%10u\n"
2884		       "       RX:\t\t\t%10u\n"
2885		       "       dropped:\t\t\t%10u\n"
2886		       "       protocol errors:\t\t%10u\n",
2887		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2889		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896    
2897    if (!left--)
2898	return sprintf(page,"\n"
2899		       "   AAL5:\n"
2900		       "     SAR sublayer:\t\t     cells\n"
2901		       "       TX:\t\t\t%10u\n"
2902		       "       RX:\t\t\t%10u\n"
2903		       "       dropped:\t\t\t%10u\n"
2904		       "       congestions:\t\t%10u\n\n"
2905		       "     CS  sublayer:\t\t      PDUs\n"
2906		       "       TX:\t\t\t%10u\n"
2907		       "       RX:\t\t\t%10u\n"
2908		       "       dropped:\t\t\t%10u\n"
2909		       "       CRC errors:\t\t%10u\n"
2910		       "       protocol errors:\t\t%10u\n",
2911		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2913		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920    
2921    if (!left--)
2922	return sprintf(page,"\n"
2923		       "   AUX:\t\t       allocation failures\n"
2924		       "     small b1:\t\t\t%10u\n"
2925		       "     large b1:\t\t\t%10u\n"
2926		       "     small b2:\t\t\t%10u\n"
2927		       "     large b2:\t\t\t%10u\n"
2928		       "     RX PDUs:\t\t\t%10u\n"
2929		       "     TX PDUs:\t\t\t%10lu\n",
2930		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935		       fore200e->tx_sat);
2936    
2937    if (!left--)
2938	return sprintf(page,"\n"
2939		       " receive carrier:\t\t\t%s\n",
2940		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941    
2942    if (!left--) {
2943        return sprintf(page,"\n"
2944		       " VCCs:\n  address   VPI VCI   AAL "
2945		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946    }
2947
2948    for (i = 0; i < NBR_CONNECT; i++) {
2949
2950	vcc = fore200e->vc_map[i].vcc;
2951
2952	if (vcc == NULL)
2953	    continue;
2954
2955	spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959	    fore200e_vcc = FORE200E_VCC(vcc);
2960	    ASSERT(fore200e_vcc);
2961
2962	    len = sprintf(page,
2963			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964			  vcc,
2965			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966			  fore200e_vcc->tx_pdu,
2967			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968			  fore200e_vcc->tx_max_pdu,
2969			  fore200e_vcc->rx_pdu,
2970			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971			  fore200e_vcc->rx_max_pdu);
2972
2973	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974	    return len;
2975	}
2976
2977	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978    }
2979    
2980    return 0;
2981}
2982
2983module_init(fore200e_module_init);
2984module_exit(fore200e_module_cleanup);
2985
2986
2987static const struct atmdev_ops fore200e_ops = {
2988	.open       = fore200e_open,
2989	.close      = fore200e_close,
2990	.ioctl      = fore200e_ioctl,
2991	.send       = fore200e_send,
2992	.change_qos = fore200e_change_qos,
2993	.proc_read  = fore200e_proc_read,
2994	.owner      = THIS_MODULE
2995};
2996
2997MODULE_LICENSE("GPL");
2998#ifdef CONFIG_PCI
2999#ifdef __LITTLE_ENDIAN__
3000MODULE_FIRMWARE("pca200e.bin");
3001#else
3002MODULE_FIRMWARE("pca200e_ecd.bin2");
3003#endif
3004#endif /* CONFIG_PCI */
3005#ifdef CONFIG_SBUS
3006MODULE_FIRMWARE("sba200e_ecd.bin2");
3007#endif