Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
  28#include <linux/pgtable.h>
  29#include <asm/io.h>
  30#include <asm/string.h>
  31#include <asm/page.h>
  32#include <asm/irq.h>
  33#include <asm/dma.h>
  34#include <asm/byteorder.h>
  35#include <linux/uaccess.h>
  36#include <linux/atomic.h>
  37
  38#ifdef CONFIG_SBUS
  39#include <linux/of.h>
  40#include <linux/of_device.h>
  41#include <asm/idprom.h>
  42#include <asm/openprom.h>
  43#include <asm/oplib.h>
 
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88				    __func__, __LINE__, #expr); \
  89			     panic(FORE200E "%s", __func__); \
  90			 }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
 
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170	alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177	return -ENOMEM;
 178
 179    if (alignment > 0)
 180	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185				     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187	kfree(chunk->alloc_addr);
 188	return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200		     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211		int size, int nbr, int alignment)
 212{
 213	/* returned chunks are page-aligned */
 214	chunk->alloc_size = size * nbr;
 215	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216					       &chunk->dma_addr, GFP_KERNEL);
 217	if (!chunk->alloc_addr)
 218		return -ENOMEM;
 219	chunk->align_addr = chunk->alloc_addr;
 220	return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230			  chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250	    break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257	       *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272	if ((ok = (fore200e->bus->read(addr) == val)))
 273	    break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280	       fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301		    struct chunk* data = &buffer[ nbr ].data;
 302
 303		    if (data->alloc_addr != NULL)
 304			fore200e_chunk_free(fore200e, data);
 305		}
 306	    }
 307	}
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322	    
 323	    if (status->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, status);
 325	    
 326	    if (rbd_block->alloc_addr)
 327		fore200e_dma_chunk_free(fore200e, rbd_block);
 328	}
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346	if (ok == 0) {
 347	    
 348	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349	    return -ENODEV;
 350	}
 351
 352	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353	
 354	fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365	   fore200e->name, fore200e->phys_base, 
 366	   fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369	/* first, reset the board to prevent further interrupts or data transfers */
 370	fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377	kfree(fore200e->stats);
 378
 379	fallthrough;
 380    case FORE200E_STATE_IRQ:
 381	free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383	fallthrough;
 384    case FORE200E_STATE_ALLOC_BUF:
 385	fore200e_free_rx_buf(fore200e);
 386
 387	fallthrough;
 388    case FORE200E_STATE_INIT_BSQ:
 389	fore200e_uninit_bs_queue(fore200e);
 390
 391	fallthrough;
 392    case FORE200E_STATE_INIT_RXQ:
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396	fallthrough;
 397    case FORE200E_STATE_INIT_TXQ:
 398	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401	fallthrough;
 402    case FORE200E_STATE_INIT_CMDQ:
 403	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405	fallthrough;
 406    case FORE200E_STATE_INITIALIZE:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413	/* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416	fore200e->bus->unmap(fore200e);
 417
 418	fallthrough;
 419    case FORE200E_STATE_CONFIGURE:
 420	/* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423	/* XXX shouldn't we *start* by deregistering the device? */
 424	atm_dev_deregister(fore200e->atm_dev);
 425
 426    case FORE200E_STATE_BLANK:
 427	/* nothing to do for that state */
 428	break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489	printk(FORE200E "can't map device %s\n", fore200e->name);
 490	return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511	iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524	return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531	/* request the PCA board to convert the endianess of slave RAM accesses */
 532	| PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570			      DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572	return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588	return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614	.model_name		= "PCA-200E",
 615	.proc_name		= "pca200e",
 616	.descr_alignment	= 32,
 617	.buffer_alignment	= 4,
 618	.status_alignment	= 32,
 619	.read			= fore200e_pca_read,
 620	.write			= fore200e_pca_write,
 621	.configure		= fore200e_pca_configure,
 622	.map			= fore200e_pca_map,
 623	.reset			= fore200e_pca_reset,
 624	.prom_read		= fore200e_pca_prom_read,
 625	.unmap			= fore200e_pca_unmap,
 626	.irq_check		= fore200e_pca_irq_check,
 627	.irq_ack		= fore200e_pca_irq_ack,
 628	.proc_read		= fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664	fore200e_spin(10);
 665	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670	struct platform_device *op = to_platform_device(fore200e->dev);
 671	unsigned int bursts;
 672
 673	/* gain access to the SBA specific registers  */
 674	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679	if (!fore200e->virt_base) {
 680		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681		return -EFAULT;
 682	}
 683
 684	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688	/* get the supported DVMA burst sizes */
 689	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691	if (sbus_can_dma_64bit())
 692		sbus_set_sbus64(&op->dev, bursts);
 693
 694	fore200e->state = FORE200E_STATE_MAP;
 695	return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700	struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710	fore200e->state = FORE200E_STATE_CONFIGURE;
 711	return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716	struct platform_device *op = to_platform_device(fore200e->dev);
 717	const u8 *prop;
 718	int len;
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[4], prop, 4);
 724
 725	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726	if (!prop)
 727		return -ENODEV;
 728	memcpy(&prom->mac_addr[2], prop, 4);
 729
 730	prom->serial_number = of_getintprop_default(op->dev.of_node,
 731						    "serialnumber", 0);
 732	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733						  "promversion", 0);
 734    
 735	return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740	struct platform_device *op = to_platform_device(fore200e->dev);
 741	const struct linux_prom_registers *regs;
 742
 743	regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746		       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750	.model_name		= "SBA-200E",
 751	.proc_name		= "sba200e",
 752	.descr_alignment	= 32,
 753	.buffer_alignment	= 64,
 754	.status_alignment	= 32,
 755	.read			= fore200e_sba_read,
 756	.write			= fore200e_sba_write,
 757	.configure		= fore200e_sba_configure,
 758	.map			= fore200e_sba_map,
 759	.reset			= fore200e_sba_reset,
 760	.prom_read		= fore200e_sba_prom_read,
 761	.unmap			= fore200e_sba_unmap,
 762	.irq_enable		= fore200e_sba_irq_enable,
 763	.irq_check		= fore200e_sba_irq_check,
 764	.irq_ack		= fore200e_sba_irq_ack,
 765	.proc_read		= fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778	return;
 779
 780    for (;;) {
 781	
 782	entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785	    break;
 786	}
 787
 788	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789		entry, txq->tail, entry->vc_map, entry->skb);
 790
 791	/* free copy of misaligned data */
 792	kfree(entry->data);
 793	
 794	/* remove DMA mapping */
 795	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796				 DMA_TO_DEVICE);
 797
 798	vc_map = entry->vc_map;
 799
 800	/* vcc closed since the time the entry was submitted for tx? */
 801	if ((vc_map->vcc == NULL) ||
 802	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805		    fore200e->atm_dev->number);
 806
 807	    dev_kfree_skb_any(entry->skb);
 808	}
 809	else {
 810	    ASSERT(vc_map->vcc);
 811
 812	    /* vcc closed then immediately re-opened? */
 813	    if (vc_map->incarn != entry->incarn) {
 814
 815		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816		   if the same vcc is immediately re-opened, those pending PDUs must
 817		   not be popped after the completion of their emission, as they refer
 818		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819		   would be decremented by the size of the (unrelated) skb, possibly
 820		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821		   we thus bind the tx entry to the current incarnation of the vcc
 822		   when the entry is submitted for tx. When the tx later completes,
 823		   if the incarnation number of the tx entry does not match the one
 824		   of the vcc, then this implies that the vcc has been closed then re-opened.
 825		   we thus just drop the skb here. */
 826
 827		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828			fore200e->atm_dev->number);
 829
 830		dev_kfree_skb_any(entry->skb);
 831	    }
 832	    else {
 833		vcc = vc_map->vcc;
 834		ASSERT(vcc);
 835
 836		/* notify tx completion */
 837		if (vcc->pop) {
 838		    vcc->pop(vcc, entry->skb);
 839		}
 840		else {
 841		    dev_kfree_skb_any(entry->skb);
 842		}
 843
 844		/* check error condition */
 845		if (*entry->status & STATUS_ERROR)
 846		    atomic_inc(&vcc->stats->tx_err);
 847		else
 848		    atomic_inc(&vcc->stats->tx);
 849	    }
 850	}
 851
 852	*entry->status = STATUS_FREE;
 853
 854	fore200e->host_txq.txing--;
 855
 856	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870	if (buffer->supplied) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872		   where, scheme, magn, buffer->index);
 873	}
 874
 875	if (buffer->magn != magn) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->magn);
 878	}
 879
 880	if (buffer->scheme != scheme) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882		   where, scheme, magn, buffer->index, buffer->scheme);
 883	}
 884
 885	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887		   where, scheme, magn, buffer->index);
 888	}
 889
 890	count++;
 891	buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896	       where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918	    bsq_audit(1, bsq, scheme, magn);
 919#endif
 920	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925		entry = &bsq->host_entry[ bsq->head ];
 926
 927		for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929		    /* take the first buffer in the free buffer list */
 930		    buffer = bsq->freebuf;
 931		    if (!buffer) {
 932			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933			       scheme, magn, bsq->freebuf_count);
 934			return;
 935		    }
 936		    bsq->freebuf = buffer->next;
 937		    
 938#ifdef FORE200E_BSQ_DEBUG
 939		    if (buffer->supplied)
 940			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941			       scheme, magn, buffer->index);
 942		    buffer->supplied = 1;
 943#endif
 944		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946		}
 947
 948		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950 		/* decrease accordingly the number of free rx buffers */
 951		bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953		*entry->status = STATUS_PENDING;
 954		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955	    }
 956	}
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985	pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991	pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997	atomic_inc(&vcc->stats->rx_drop);
 998	return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005	*((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011	
1012	/* rebuild rx buffer address from rsd handle */
1013	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014	
1015	/* Make device DMA transfer visible to CPU.  */
1016	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018	
1019	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021	/* Now let the device get at it again.  */
1022	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029	fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031	fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038		vcc->itf, vcc->vpi, vcc->vci);
1039
1040	dev_kfree_skb_any(skb);
1041
1042	atomic_inc(&vcc->stats->rx_drop);
1043	return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062	/* rebuild rx buffer address from rsd handle */
1063	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070	if (buffer->supplied == 0)
1071	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072		   buffer->scheme, buffer->magn, buffer->index);
1073	buffer->supplied = 0;
1074#endif
1075
1076	/* re-insert the buffer into the free buffer list */
1077	buffer->next = bsq->freebuf;
1078	bsq->freebuf = buffer;
1079
1080	/* then increment the number of free rx buffers */
1081	bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095	
1096	entry = &rxq->host_entry[ rxq->head ];
1097
1098	/* no more received PDUs */
1099	if ((*entry->status & STATUS_COMPLETE) == 0)
1100	    break;
1101
1102	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104	if ((vc_map->vcc == NULL) ||
1105	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108		    fore200e->atm_dev->number,
1109		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110	}
1111	else {
1112	    vcc = vc_map->vcc;
1113	    ASSERT(vcc);
1114
1115	    if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118	    }
1119	    else {
1120		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121			fore200e->atm_dev->number,
1122			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123		atomic_inc(&vcc->stats->rx_err);
1124	    }
1125	}
1126
1127	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129	fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131	/* rewrite the rpd address to ack the received PDU */
1132	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133	*entry->status = STATUS_FREE;
1134
1135	fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163	
1164	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165	return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239	
1240	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241	activ_opcode.aal    = aal;
1242	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243	activ_opcode.pad    = 0;
1244    }
1245    else {
1246	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247	deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258	mtu = 48;
1259#endif
1260	/* the MTU is not used by the cp, except in the case of AAL0 */
1261	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277	return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281	    activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294	/* compute the data cells to idle cells ratio from the tx PCR */
1295	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299	/* disable rate control */
1300	rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long	    flags;
1312    int			    vci = vcc->vci;
1313    short		    vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325	printk(FORE200E "VC %d.%d.%d already in use\n",
1326	       fore200e->atm_dev->number, vpi, vci);
1327
1328	return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337	vc_map->vcc = NULL;
1338	return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351	
1352	mutex_lock(&fore200e->rate_mtx);
1353	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354	    mutex_unlock(&fore200e->rate_mtx);
1355
1356	    kfree(fore200e_vcc);
1357	    vc_map->vcc = NULL;
1358	    return -EAGAIN;
1359	}
1360
1361	/* reserve bandwidth */
1362	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363	mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375	vc_map->vcc = NULL;
1376
1377	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380	vcc->dev_data = NULL;
1381
1382	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384	kfree(fore200e_vcc);
1385	return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390	
1391	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
 
1417    struct fore200e_vcc*    fore200e_vcc;
1418    struct fore200e*        fore200e;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    fore200e = FORE200E_DEV(vcc->dev);
1424
1425    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430    clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434    spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438    /* the vc is no longer considered as "in use" by fore200e_open() */
1439    vc_map->vcc = NULL;
1440
1441    vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443    fore200e_vcc = FORE200E_VCC(vcc);
1444    vcc->dev_data = NULL;
1445
1446    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448    /* release reserved bandwidth, if any */
1449    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451	mutex_lock(&fore200e->rate_mtx);
1452	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454
1455	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456    }
1457
1458    clear_bit(ATM_VF_ADDR, &vcc->flags);
1459    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461    ASSERT(fore200e_vcc);
1462    kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469    struct fore200e*        fore200e;
1470    struct fore200e_vcc*    fore200e_vcc;
1471    struct fore200e_vc_map* vc_map;
1472    struct host_txq*        txq;
1473    struct host_txq_entry*  entry;
1474    struct tpd*             tpd;
1475    struct tpd_haddr        tpd_haddr;
1476    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477    int                     tx_copy      = 0;
1478    int                     tx_len       = skb->len;
1479    u32*                    cell_header  = NULL;
1480    unsigned char*          skb_data;
1481    int                     skb_len;
1482    unsigned char*          data;
1483    unsigned long           flags;
1484
1485    if (!vcc)
1486        return -EINVAL;
1487
1488    fore200e = FORE200E_DEV(vcc->dev);
1489    fore200e_vcc = FORE200E_VCC(vcc);
1490
1491    if (!fore200e)
1492        return -EINVAL;
1493
1494    txq = &fore200e->host_txq;
1495    if (!fore200e_vcc)
1496        return -EINVAL;
1497
1498    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500	dev_kfree_skb_any(skb);
1501	return -EINVAL;
1502    }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506	cell_header = (u32*) skb->data;
1507	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508	skb_len     = tx_len = skb->len  - 4;
1509
1510	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511    }
1512    else 
1513#endif
1514    {
1515	skb_data = skb->data;
1516	skb_len  = skb->len;
1517    }
1518    
1519    if (((unsigned long)skb_data) & 0x3) {
1520
1521	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522	tx_copy = 1;
1523	tx_len  = skb_len;
1524    }
1525
1526    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528        /* this simply NUKES the PCA board */
1529	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530	tx_copy = 1;
1531	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532    }
1533    
1534    if (tx_copy) {
1535	data = kmalloc(tx_len, GFP_ATOMIC);
1536	if (data == NULL) {
1537	    if (vcc->pop) {
1538		vcc->pop(vcc, skb);
1539	    }
1540	    else {
1541		dev_kfree_skb_any(skb);
1542	    }
1543	    return -ENOMEM;
1544	}
1545
1546	memcpy(data, skb_data, skb_len);
1547	if (skb_len < tx_len)
1548	    memset(data + skb_len, 0x00, tx_len - skb_len);
1549    }
1550    else {
1551	data = skb_data;
1552    }
1553
1554    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555    ASSERT(vc_map->vcc == vcc);
1556
1557  retry_here:
1558
1559    spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561    entry = &txq->host_entry[ txq->head ];
1562
1563    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565	/* try to free completed tx queue entries */
1566	fore200e_tx_irq(fore200e);
1567
1568	if (*entry->status != STATUS_FREE) {
1569
1570	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572	    /* retry once again? */
1573	    if (--retry > 0) {
1574		udelay(50);
1575		goto retry_here;
1576	    }
1577
1578	    atomic_inc(&vcc->stats->tx_err);
1579
1580	    fore200e->tx_sat++;
1581	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582		    fore200e->name, fore200e->cp_queues->heartbeat);
1583	    if (vcc->pop) {
1584		vcc->pop(vcc, skb);
1585	    }
1586	    else {
1587		dev_kfree_skb_any(skb);
1588	    }
1589
1590	    if (tx_copy)
1591		kfree(data);
1592
1593	    return -ENOBUFS;
1594	}
1595    }
1596
1597    entry->incarn = vc_map->incarn;
1598    entry->vc_map = vc_map;
1599    entry->skb    = skb;
1600    entry->data   = tx_copy ? data : NULL;
1601
1602    tpd = entry->tpd;
1603    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604					  DMA_TO_DEVICE);
1605    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606	if (tx_copy)
1607	    kfree(data);
1608	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609	return -ENOMEM;
1610    }
1611    tpd->tsd[ 0 ].length = tx_len;
1612
1613    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614    txq->txing++;
1615
1616    /* The dma_map call above implies a dma_sync so the device can use it,
1617     * thus no explicit dma_sync call is necessary here.
1618     */
1619    
1620    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1621	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622	    tpd->tsd[0].length, skb_len);
1623
1624    if (skb_len < fore200e_vcc->tx_min_pdu)
1625	fore200e_vcc->tx_min_pdu = skb_len;
1626    if (skb_len > fore200e_vcc->tx_max_pdu)
1627	fore200e_vcc->tx_max_pdu = skb_len;
1628    fore200e_vcc->tx_pdu++;
1629
1630    /* set tx rate control information */
1631    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634    if (cell_header) {
1635	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640    }
1641    else {
1642	/* set the ATM header, common to all cells conveying the PDU */
1643	tpd->atm_header.clp = 0;
1644	tpd->atm_header.plt = 0;
1645	tpd->atm_header.vci = vcc->vci;
1646	tpd->atm_header.vpi = vcc->vpi;
1647	tpd->atm_header.gfc = 0;
1648    }
1649
1650    tpd->spec.length = tx_len;
1651    tpd->spec.nseg   = 1;
1652    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653    tpd->spec.intr   = 1;
1654
1655    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656    tpd_haddr.pad   = 0;
1657    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659    *entry->status = STATUS_PENDING;
1660    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664    return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673    struct stats_opcode     opcode;
1674    int                     ok;
1675    u32                     stats_dma_addr;
1676
1677    if (fore200e->stats == NULL) {
1678	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679	if (fore200e->stats == NULL)
1680	    return -ENOMEM;
1681    }
1682    
1683    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684				    sizeof(struct stats), DMA_FROM_DEVICE);
1685    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686    	return -ENOMEM;
1687    
1688    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690    opcode.opcode = OPCODE_GET_STATS;
1691    opcode.pad    = 0;
1692
1693    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694    
1695    *entry->status = STATUS_PENDING;
1696
1697    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701    *entry->status = STATUS_FREE;
1702
1703    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704    
1705    if (ok == 0) {
1706	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707	return -EIO;
1708    }
1709
1710    return 0;
1711}
1712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719    struct oc3_opcode       opcode;
1720    int                     ok;
1721    u32                     oc3_regs_dma_addr;
1722
1723    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727    opcode.opcode = OPCODE_GET_OC3;
1728    opcode.reg    = 0;
1729    opcode.value  = 0;
1730    opcode.mask   = 0;
1731
1732    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733    
1734    *entry->status = STATUS_PENDING;
1735
1736    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740    *entry->status = STATUS_FREE;
1741
1742    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743    
1744    if (ok == 0) {
1745	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746	return -EIO;
1747    }
1748
1749    return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759    struct oc3_opcode       opcode;
1760    int                     ok;
1761
1762    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766    opcode.opcode = OPCODE_SET_OC3;
1767    opcode.reg    = reg;
1768    opcode.value  = value;
1769    opcode.mask   = mask;
1770
1771    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772    
1773    *entry->status = STATUS_PENDING;
1774
1775    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779    *entry->status = STATUS_FREE;
1780
1781    if (ok == 0) {
1782	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783	return -EIO;
1784    }
1785
1786    return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793    u32 mct_value, mct_mask;
1794    int error;
1795
1796    if (!capable(CAP_NET_ADMIN))
1797	return -EPERM;
1798    
1799    switch (loop_mode) {
1800
1801    case ATM_LM_NONE:
1802	mct_value = 0; 
1803	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804	break;
1805	
1806    case ATM_LM_LOC_PHY:
1807	mct_value = mct_mask = SUNI_MCT_DLE;
1808	break;
1809
1810    case ATM_LM_RMT_PHY:
1811	mct_value = mct_mask = SUNI_MCT_LLE;
1812	break;
1813
1814    default:
1815	return -EINVAL;
1816    }
1817
1818    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819    if (error == 0)
1820	fore200e->loop_mode = loop_mode;
1821
1822    return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829    struct sonet_stats tmp;
1830
1831    if (fore200e_getstats(fore200e) < 0)
1832	return -EIO;
1833
1834    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848    if (arg)
1849	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1850    
1851    return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858    struct fore200e* fore200e = FORE200E_DEV(dev);
1859    
1860    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862    switch (cmd) {
1863
1864    case SONET_GETSTAT:
1865	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867    case SONET_GETDIAG:
1868	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870    case ATM_SETLOOP:
1871	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873    case ATM_GETLOOP:
1874	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876    case ATM_QUERYLOOP:
1877	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878    }
1879
1880    return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892	return -EINVAL;
1893    }
1894
1895    DPRINTK(2, "change_qos %d.%d.%d, "
1896	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898	    "available_cell_rate = %u",
1899	    vcc->itf, vcc->vpi, vcc->vci,
1900	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1901	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904	    flags, fore200e->available_cell_rate);
1905
1906    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908	mutex_lock(&fore200e->rate_mtx);
1909	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910	    mutex_unlock(&fore200e->rate_mtx);
1911	    return -EAGAIN;
1912	}
1913
1914	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917	mutex_unlock(&fore200e->rate_mtx);
1918	
1919	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920	
1921	/* update rate control parameters */
1922	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924	set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926	return 0;
1927    }
1928    
1929    return -EINVAL;
1930}
1931    
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939	return -EBUSY;
1940    }
1941
1942    printk(FORE200E "IRQ %s reserved for device %s\n",
1943	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950    fore200e->state = FORE200E_STATE_IRQ;
1951    return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958    int ok, i;
1959
1960    if (!prom)
1961	return -ENOMEM;
1962
1963    ok = fore200e->bus->prom_read(fore200e, prom);
1964    if (ok < 0) {
1965	kfree(prom);
1966	return -EBUSY;
1967    }
1968	
1969    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970	   fore200e->name, 
1971	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973	
1974    for (i = 0; i < ESI_LEN; i++) {
1975	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976    }
1977    
1978    kfree(prom);
1979
1980    return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986    int scheme, magn, nbr, size, i;
1987
1988    struct host_bsq* bsq;
1989    struct buffer*   buffer;
1990
1991    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001	    /* allocate the array of receive buffers */
2002	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                           GFP_KERNEL);
2004
2005	    if (buffer == NULL)
2006		return -ENOMEM;
2007
2008	    bsq->freebuf = NULL;
2009
2010	    for (i = 0; i < nbr; i++) {
2011
2012		buffer[ i ].scheme = scheme;
2013		buffer[ i ].magn   = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015		buffer[ i ].index  = i;
2016		buffer[ i ].supplied = 0;
2017#endif
2018
2019		/* allocate the receive buffer body */
2020		if (fore200e_chunk_alloc(fore200e,
2021					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022					 DMA_FROM_DEVICE) < 0) {
2023		    
2024		    while (i > 0)
2025			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026		    kfree(buffer);
2027		    
2028		    return -ENOMEM;
2029		}
2030
2031		/* insert the buffer into the free buffer list */
2032		buffer[ i ].next = bsq->freebuf;
2033		bsq->freebuf = &buffer[ i ];
2034	    }
2035	    /* all the buffers are free, initially */
2036	    bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039	    bsq_audit(3, bsq, scheme, magn);
2040#endif
2041	}
2042    }
2043
2044    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045    return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051    int scheme, magn, i;
2052
2053    struct host_bsq*     bsq;
2054    struct cp_bsq_entry __iomem * cp_entry;
2055
2056    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063	    /* allocate and align the array of status words */
2064	    if (fore200e_dma_chunk_alloc(fore200e,
2065					       &bsq->status,
2066					       sizeof(enum status), 
2067					       QUEUE_SIZE_BS,
2068					       fore200e->bus->status_alignment) < 0) {
2069		return -ENOMEM;
2070	    }
2071
2072	    /* allocate and align the array of receive buffer descriptors */
2073	    if (fore200e_dma_chunk_alloc(fore200e,
2074					       &bsq->rbd_block,
2075					       sizeof(struct rbd_block),
2076					       QUEUE_SIZE_BS,
2077					       fore200e->bus->descr_alignment) < 0) {
2078		
2079		fore200e_dma_chunk_free(fore200e, &bsq->status);
2080		return -ENOMEM;
2081	    }
2082	    
2083	    /* get the base address of the cp resident buffer supply queue entries */
2084	    cp_entry = fore200e->virt_base + 
2085		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086	    
2087	    /* fill the host resident and cp resident buffer supply queue entries */
2088	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089		
2090		bsq->host_entry[ i ].status = 
2091		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092	        bsq->host_entry[ i ].rbd_block =
2093		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].rbd_block_dma =
2095		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097		
2098		*bsq->host_entry[ i ].status = STATUS_FREE;
2099		
2100		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2101				     &cp_entry[ i ].status_haddr);
2102	    }
2103	}
2104    }
2105
2106    fore200e->state = FORE200E_STATE_INIT_BSQ;
2107    return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113    struct host_rxq*     rxq =  &fore200e->host_rxq;
2114    struct cp_rxq_entry __iomem * cp_entry;
2115    int i;
2116
2117    DPRINTK(2, "receive queue is being initialized\n");
2118
2119    /* allocate and align the array of status words */
2120    if (fore200e_dma_chunk_alloc(fore200e,
2121				       &rxq->status,
2122				       sizeof(enum status), 
2123				       QUEUE_SIZE_RX,
2124				       fore200e->bus->status_alignment) < 0) {
2125	return -ENOMEM;
2126    }
2127
2128    /* allocate and align the array of receive PDU descriptors */
2129    if (fore200e_dma_chunk_alloc(fore200e,
2130				       &rxq->rpd,
2131				       sizeof(struct rpd), 
2132				       QUEUE_SIZE_RX,
2133				       fore200e->bus->descr_alignment) < 0) {
2134	
2135	fore200e_dma_chunk_free(fore200e, &rxq->status);
2136	return -ENOMEM;
2137    }
2138
2139    /* get the base address of the cp resident rx queue entries */
2140    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142    /* fill the host resident and cp resident rx entries */
2143    for (i=0; i < QUEUE_SIZE_RX; i++) {
2144	
2145	rxq->host_entry[ i ].status = 
2146	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147	rxq->host_entry[ i ].rpd = 
2148	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149	rxq->host_entry[ i ].rpd_dma = 
2150	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153	*rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2156			     &cp_entry[ i ].status_haddr);
2157
2158	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159			     &cp_entry[ i ].rpd_haddr);
2160    }
2161
2162    /* set the head entry of the queue */
2163    rxq->head = 0;
2164
2165    fore200e->state = FORE200E_STATE_INIT_RXQ;
2166    return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172    struct host_txq*     txq =  &fore200e->host_txq;
2173    struct cp_txq_entry __iomem * cp_entry;
2174    int i;
2175
2176    DPRINTK(2, "transmit queue is being initialized\n");
2177
2178    /* allocate and align the array of status words */
2179    if (fore200e_dma_chunk_alloc(fore200e,
2180				       &txq->status,
2181				       sizeof(enum status), 
2182				       QUEUE_SIZE_TX,
2183				       fore200e->bus->status_alignment) < 0) {
2184	return -ENOMEM;
2185    }
2186
2187    /* allocate and align the array of transmit PDU descriptors */
2188    if (fore200e_dma_chunk_alloc(fore200e,
2189				       &txq->tpd,
2190				       sizeof(struct tpd), 
2191				       QUEUE_SIZE_TX,
2192				       fore200e->bus->descr_alignment) < 0) {
2193	
2194	fore200e_dma_chunk_free(fore200e, &txq->status);
2195	return -ENOMEM;
2196    }
2197
2198    /* get the base address of the cp resident tx queue entries */
2199    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201    /* fill the host resident and cp resident tx entries */
2202    for (i=0; i < QUEUE_SIZE_TX; i++) {
2203	
2204	txq->host_entry[ i ].status = 
2205	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206	txq->host_entry[ i ].tpd = 
2207	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208	txq->host_entry[ i ].tpd_dma  = 
2209                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212	*txq->host_entry[ i ].status = STATUS_FREE;
2213	
2214	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2215			     &cp_entry[ i ].status_haddr);
2216	
2217        /* although there is a one-to-one mapping of tx queue entries and tpds,
2218	   we do not write here the DMA (physical) base address of each tpd into
2219	   the related cp resident entry, because the cp relies on this write
2220	   operation to detect that a new pdu has been submitted for tx */
2221    }
2222
2223    /* set the head and tail entries of the queue */
2224    txq->head = 0;
2225    txq->tail = 0;
2226
2227    fore200e->state = FORE200E_STATE_INIT_TXQ;
2228    return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235    struct cp_cmdq_entry __iomem * cp_entry;
2236    int i;
2237
2238    DPRINTK(2, "command queue is being initialized\n");
2239
2240    /* allocate and align the array of status words */
2241    if (fore200e_dma_chunk_alloc(fore200e,
2242				       &cmdq->status,
2243				       sizeof(enum status), 
2244				       QUEUE_SIZE_CMD,
2245				       fore200e->bus->status_alignment) < 0) {
2246	return -ENOMEM;
2247    }
2248    
2249    /* get the base address of the cp resident cmd queue entries */
2250    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252    /* fill the host resident and cp resident cmd entries */
2253    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254	
2255	cmdq->host_entry[ i ].status   = 
2256                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259	*cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2262                             &cp_entry[ i ].status_haddr);
2263    }
2264
2265    /* set the head entry of the queue */
2266    cmdq->head = 0;
2267
2268    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269    return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274				    enum buffer_scheme scheme,
2275				    enum buffer_magn magn, int queue_length,
2276				    int pool_size, int supply_blksize)
2277{
2278    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289    struct cp_queues __iomem * cpq;
2290    int               ok, scheme, magn;
2291
2292    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294    mutex_init(&fore200e->rate_mtx);
2295    spin_lock_init(&fore200e->q_lock);
2296
2297    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299    /* enable cp to host interrupts */
2300    fore200e->bus->write(1, &cpq->imask);
2301
2302    if (fore200e->bus->irq_enable)
2303	fore200e->bus->irq_enable(fore200e);
2304    
2305    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316	    fore200e_param_bs_queue(fore200e, scheme, magn,
2317				    QUEUE_SIZE_BS, 
2318				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319				    RBD_BLK_SIZE);
2320
2321    /* issue the initialize command */
2322    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326    if (ok == 0) {
2327	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328	return -ENODEV;
2329    }
2330
2331    printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333    fore200e->state = FORE200E_STATE_INITIALIZE;
2334    return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343    printk("%c", c);
2344#endif
2345    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353    int                c;
2354
2355    while (time_before(jiffies, timeout)) {
2356
2357	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363	    printk("%c", c & 0xFF);
2364#endif
2365	    return c & 0xFF;
2366	}
2367    }
2368
2369    return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375    while (*str) {
2376
2377	/* the i960 monitor doesn't accept any new character if it has something to say */
2378	while (fore200e_monitor_getc(fore200e) >= 0);
2379	
2380	fore200e_monitor_putc(fore200e, *str++);
2381    }
2382
2383    while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394    const struct firmware *firmware;
 
2395    const struct fw_header *fw_header;
2396    const __le32 *fw_data;
2397    u32 fw_size;
2398    u32 __iomem *load_addr;
2399    char buf[48];
2400    int err;
 
 
 
 
 
 
 
 
 
2401
2402    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405	return err;
2406    }
2407
2408    fw_data = (const __le32 *)firmware->data;
2409    fw_size = firmware->size / sizeof(u32);
2410    fw_header = (const struct fw_header *)firmware->data;
2411    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414	    fore200e->name, load_addr, fw_size);
2415
2416    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418	goto release;
2419    }
2420
2421    for (; fw_size--; fw_data++, load_addr++)
2422	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427    /* reported to be required by SBA cards on some sparc64 hosts */
2428    fore200e_spin(100);
2429#endif
2430
2431    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432    fore200e_monitor_puts(fore200e, buf);
2433
2434    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436	goto release;
2437    }
2438
2439    printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441    fore200e->state = FORE200E_STATE_START_FW;
2442    err = 0;
2443
2444release:
2445    release_firmware(firmware);
2446    return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452    struct atm_dev* atm_dev;
2453
2454    DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                               -1, NULL);
2458    if (atm_dev == NULL) {
2459	printk(FORE200E "unable to register device %s\n", fore200e->name);
2460	return -ENODEV;
2461    }
2462
2463    atm_dev->dev_data = fore200e;
2464    fore200e->atm_dev = atm_dev;
2465
2466    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469    fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471    fore200e->state = FORE200E_STATE_REGISTER;
2472    return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478    if (fore200e_register(fore200e, parent) < 0)
2479	return -ENODEV;
2480    
2481    if (fore200e->bus->configure(fore200e) < 0)
2482	return -ENODEV;
2483
2484    if (fore200e->bus->map(fore200e) < 0)
2485	return -ENODEV;
2486
2487    if (fore200e_reset(fore200e, 1) < 0)
2488	return -ENODEV;
2489
2490    if (fore200e_load_and_start_fw(fore200e) < 0)
2491	return -ENODEV;
2492
2493    if (fore200e_initialize(fore200e) < 0)
2494	return -ENODEV;
2495
2496    if (fore200e_init_cmd_queue(fore200e) < 0)
2497	return -ENOMEM;
2498
2499    if (fore200e_init_tx_queue(fore200e) < 0)
2500	return -ENOMEM;
2501
2502    if (fore200e_init_rx_queue(fore200e) < 0)
2503	return -ENOMEM;
2504
2505    if (fore200e_init_bs_queue(fore200e) < 0)
2506	return -ENOMEM;
2507
2508    if (fore200e_alloc_rx_buf(fore200e) < 0)
2509	return -ENOMEM;
2510
2511    if (fore200e_get_esi(fore200e) < 0)
2512	return -EIO;
2513
2514    if (fore200e_irq_request(fore200e) < 0)
2515	return -EBUSY;
2516
2517    fore200e_supply(fore200e);
2518
2519    /* all done, board initialization is now complete */
2520    fore200e->state = FORE200E_STATE_COMPLETE;
2521    return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528	const struct of_device_id *match;
 
2529	struct fore200e *fore200e;
2530	static int index = 0;
2531	int err;
2532
2533	match = of_match_device(fore200e_sba_match, &op->dev);
2534	if (!match)
2535		return -EINVAL;
 
2536
2537	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538	if (!fore200e)
2539		return -ENOMEM;
2540
2541	fore200e->bus = &fore200e_sbus_ops;
2542	fore200e->dev = &op->dev;
2543	fore200e->irq = op->archdata.irqs[0];
2544	fore200e->phys_base = op->resource[0].start;
2545
2546	sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548	err = fore200e_init(fore200e, &op->dev);
2549	if (err < 0) {
2550		fore200e_shutdown(fore200e);
2551		kfree(fore200e);
2552		return err;
2553	}
2554
2555	index++;
2556	dev_set_drvdata(&op->dev, fore200e);
2557
2558	return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565	fore200e_shutdown(fore200e);
2566	kfree(fore200e);
2567
2568	return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572	{
2573		.name = SBA200E_PROM_NAME,
 
2574	},
2575	{},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580	.driver = {
2581		.name = "fore_200e",
2582		.of_match_table = fore200e_sba_match,
2583	},
2584	.probe		= fore200e_sba_probe,
2585	.remove		= fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591			       const struct pci_device_id *pci_ent)
2592{
 
2593    struct fore200e* fore200e;
2594    int err = 0;
2595    static int index = 0;
2596
2597    if (pci_enable_device(pci_dev)) {
2598	err = -EINVAL;
2599	goto out;
2600    }
2601
2602    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603	err = -EINVAL;
2604	goto out;
2605    }
2606    
2607    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608    if (fore200e == NULL) {
2609	err = -ENOMEM;
2610	goto out_disable;
2611    }
2612
2613    fore200e->bus       = &fore200e_pci_ops;
2614    fore200e->dev	= &pci_dev->dev;
2615    fore200e->irq       = pci_dev->irq;
2616    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620    pci_set_master(pci_dev);
2621
2622    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2623	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625    sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627    err = fore200e_init(fore200e, &pci_dev->dev);
2628    if (err < 0) {
2629	fore200e_shutdown(fore200e);
2630	goto out_free;
2631    }
2632
2633    ++index;
2634    pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637    return err;
2638
2639out_free:
2640    kfree(fore200e);
2641out_disable:
2642    pci_disable_device(pci_dev);
2643    goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649    struct fore200e *fore200e;
2650
2651    fore200e = pci_get_drvdata(pci_dev);
2652
2653    fore200e_shutdown(fore200e);
2654    kfree(fore200e);
2655    pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2661    { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667    .name =     "fore_200e",
2668    .probe =    fore200e_pca_detect,
2669    .remove =   fore200e_pca_remove_one,
2670    .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676	int err = 0;
2677
2678	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681	err = platform_driver_register(&fore200e_sba_driver);
2682	if (err)
2683		return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687	err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691	if (err)
2692		platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695	return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701	pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704	platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712    struct fore200e_vcc* fore200e_vcc;
2713    struct atm_vcc*      vcc;
2714    int                  i, len, left = *pos;
2715    unsigned long        flags;
2716
2717    if (!left--) {
2718
2719	if (fore200e_getstats(fore200e) < 0)
2720	    return -EIO;
2721
2722	len = sprintf(page,"\n"
2723		       " device:\n"
2724		       "   internal name:\t\t%s\n", fore200e->name);
2725
2726	/* print bus-specific information */
2727	if (fore200e->bus->proc_read)
2728	    len += fore200e->bus->proc_read(fore200e, page + len);
2729	
2730	len += sprintf(page + len,
2731		"   interrupt line:\t\t%s\n"
2732		"   physical base address:\t0x%p\n"
2733		"   virtual base address:\t0x%p\n"
2734		"   factory address (ESI):\t%pM\n"
2735		"   board serial number:\t\t%d\n\n",
2736		fore200e_irq_itoa(fore200e->irq),
2737		(void*)fore200e->phys_base,
2738		fore200e->virt_base,
2739		fore200e->esi,
2740		fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742	return len;
2743    }
2744
2745    if (!left--)
2746	return sprintf(page,
2747		       "   free small bufs, scheme 1:\t%d\n"
2748		       "   free large bufs, scheme 1:\t%d\n"
2749		       "   free small bufs, scheme 2:\t%d\n"
2750		       "   free large bufs, scheme 2:\t%d\n",
2751		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756    if (!left--) {
2757	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759	len = sprintf(page,"\n\n"
2760		      " cell processor:\n"
2761		      "   heartbeat state:\t\t");
2762	
2763	if (hb >> 16 != 0xDEAD)
2764	    len += sprintf(page + len, "0x%08x\n", hb);
2765	else
2766	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768	return len;
2769    }
2770
2771    if (!left--) {
2772	static const char* media_name[] = {
2773	    "unshielded twisted pair",
2774	    "multimode optical fiber ST",
2775	    "multimode optical fiber SC",
2776	    "single-mode optical fiber ST",
2777	    "single-mode optical fiber SC",
2778	    "unknown"
2779	};
2780
2781	static const char* oc3_mode[] = {
2782	    "normal operation",
2783	    "diagnostic loopback",
2784	    "line loopback",
2785	    "unknown"
2786	};
2787
2788	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792	u32 oc3_index;
2793
2794	if (media_index > 4)
2795		media_index = 5;
2796	
2797	switch (fore200e->loop_mode) {
2798	    case ATM_LM_NONE:    oc3_index = 0;
2799		                 break;
2800	    case ATM_LM_LOC_PHY: oc3_index = 1;
2801		                 break;
2802	    case ATM_LM_RMT_PHY: oc3_index = 2;
2803		                 break;
2804	    default:             oc3_index = 3;
2805	}
2806
2807	return sprintf(page,
2808		       "   firmware release:\t\t%d.%d.%d\n"
2809		       "   monitor release:\t\t%d.%d\n"
2810		       "   media type:\t\t\t%s\n"
2811		       "   OC-3 revision:\t\t0x%x\n"
2812                       "   OC-3 mode:\t\t\t%s",
2813		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814		       mon960_release >> 16, mon960_release << 16 >> 16,
2815		       media_name[ media_index ],
2816		       oc3_revision,
2817		       oc3_mode[ oc3_index ]);
2818    }
2819
2820    if (!left--) {
2821	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823	return sprintf(page,
2824		       "\n\n"
2825		       " monitor:\n"
2826		       "   version number:\t\t%d\n"
2827		       "   boot status word:\t\t0x%08x\n",
2828		       fore200e->bus->read(&cp_monitor->mon_version),
2829		       fore200e->bus->read(&cp_monitor->bstat));
2830    }
2831
2832    if (!left--)
2833	return sprintf(page,
2834		       "\n"
2835		       " device statistics:\n"
2836		       "  4b5b:\n"
2837		       "     crc_header_errors:\t\t%10u\n"
2838		       "     framing_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841    
2842    if (!left--)
2843	return sprintf(page, "\n"
2844		       "  OC-3:\n"
2845		       "     section_bip8_errors:\t%10u\n"
2846		       "     path_bip8_errors:\t\t%10u\n"
2847		       "     line_bip24_errors:\t\t%10u\n"
2848		       "     line_febe_errors:\t\t%10u\n"
2849		       "     path_febe_errors:\t\t%10u\n"
2850		       "     corr_hcs_errors:\t\t%10u\n"
2851		       "     ucorr_hcs_errors:\t\t%10u\n",
2852		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860    if (!left--)
2861	return sprintf(page,"\n"
2862		       "   ATM:\t\t\t\t     cells\n"
2863		       "     TX:\t\t\t%10u\n"
2864		       "     RX:\t\t\t%10u\n"
2865		       "     vpi out of range:\t\t%10u\n"
2866		       "     vpi no conn:\t\t%10u\n"
2867		       "     vci out of range:\t\t%10u\n"
2868		       "     vci no conn:\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->atm.cells_received),
2871		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875    
2876    if (!left--)
2877	return sprintf(page,"\n"
2878		       "   AAL0:\t\t\t     cells\n"
2879		       "     TX:\t\t\t%10u\n"
2880		       "     RX:\t\t\t%10u\n"
2881		       "     dropped:\t\t\t%10u\n",
2882		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885    
2886    if (!left--)
2887	return sprintf(page,"\n"
2888		       "   AAL3/4:\n"
2889		       "     SAR sublayer:\t\t     cells\n"
2890		       "       TX:\t\t\t%10u\n"
2891		       "       RX:\t\t\t%10u\n"
2892		       "       dropped:\t\t\t%10u\n"
2893		       "       CRC errors:\t\t%10u\n"
2894		       "       protocol errors:\t\t%10u\n\n"
2895		       "     CS  sublayer:\t\t      PDUs\n"
2896		       "       TX:\t\t\t%10u\n"
2897		       "       RX:\t\t\t%10u\n"
2898		       "       dropped:\t\t\t%10u\n"
2899		       "       protocol errors:\t\t%10u\n",
2900		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909    
2910    if (!left--)
2911	return sprintf(page,"\n"
2912		       "   AAL5:\n"
2913		       "     SAR sublayer:\t\t     cells\n"
2914		       "       TX:\t\t\t%10u\n"
2915		       "       RX:\t\t\t%10u\n"
2916		       "       dropped:\t\t\t%10u\n"
2917		       "       congestions:\t\t%10u\n\n"
2918		       "     CS  sublayer:\t\t      PDUs\n"
2919		       "       TX:\t\t\t%10u\n"
2920		       "       RX:\t\t\t%10u\n"
2921		       "       dropped:\t\t\t%10u\n"
2922		       "       CRC errors:\t\t%10u\n"
2923		       "       protocol errors:\t\t%10u\n",
2924		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933    
2934    if (!left--)
2935	return sprintf(page,"\n"
2936		       "   AUX:\t\t       allocation failures\n"
2937		       "     small b1:\t\t\t%10u\n"
2938		       "     large b1:\t\t\t%10u\n"
2939		       "     small b2:\t\t\t%10u\n"
2940		       "     large b2:\t\t\t%10u\n"
2941		       "     RX PDUs:\t\t\t%10u\n"
2942		       "     TX PDUs:\t\t\t%10lu\n",
2943		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948		       fore200e->tx_sat);
2949    
2950    if (!left--)
2951	return sprintf(page,"\n"
2952		       " receive carrier:\t\t\t%s\n",
2953		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954    
2955    if (!left--) {
2956        return sprintf(page,"\n"
2957		       " VCCs:\n  address   VPI VCI   AAL "
2958		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959    }
2960
2961    for (i = 0; i < NBR_CONNECT; i++) {
2962
2963	vcc = fore200e->vc_map[i].vcc;
2964
2965	if (vcc == NULL)
2966	    continue;
2967
2968	spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972	    fore200e_vcc = FORE200E_VCC(vcc);
2973	    ASSERT(fore200e_vcc);
2974
2975	    len = sprintf(page,
2976			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977			  vcc,
2978			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979			  fore200e_vcc->tx_pdu,
2980			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981			  fore200e_vcc->tx_max_pdu,
2982			  fore200e_vcc->rx_pdu,
2983			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984			  fore200e_vcc->rx_max_pdu);
2985
2986	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987	    return len;
2988	}
2989
2990	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991    }
2992    
2993    return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
 
3001	.open       = fore200e_open,
3002	.close      = fore200e_close,
3003	.ioctl      = fore200e_ioctl,
 
 
3004	.send       = fore200e_send,
3005	.change_qos = fore200e_change_qos,
3006	.proc_read  = fore200e_proc_read,
3007	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
v4.17
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <linux/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 
 
 
 210
 211    kfree(chunk->alloc_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 361	/* fall through */
 362    case FORE200E_STATE_IRQ:
 363	free_irq(fore200e->irq, fore200e->atm_dev);
 364
 365	/* fall through */
 366    case FORE200E_STATE_ALLOC_BUF:
 367	fore200e_free_rx_buf(fore200e);
 368
 369	/* fall through */
 370    case FORE200E_STATE_INIT_BSQ:
 371	fore200e_uninit_bs_queue(fore200e);
 372
 373	/* fall through */
 374    case FORE200E_STATE_INIT_RXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 377
 378	/* fall through */
 379    case FORE200E_STATE_INIT_TXQ:
 380	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 381	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 382
 383	/* fall through */
 384    case FORE200E_STATE_INIT_CMDQ:
 385	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 386
 387	/* fall through */
 388    case FORE200E_STATE_INITIALIZE:
 389	/* nothing to do for that state */
 390
 391    case FORE200E_STATE_START_FW:
 392	/* nothing to do for that state */
 393
 394    case FORE200E_STATE_RESET:
 395	/* nothing to do for that state */
 396
 397    case FORE200E_STATE_MAP:
 398	fore200e->bus->unmap(fore200e);
 399
 400	/* fall through */
 401    case FORE200E_STATE_CONFIGURE:
 402	/* nothing to do for that state */
 403
 404    case FORE200E_STATE_REGISTER:
 405	/* XXX shouldn't we *start* by deregistering the device? */
 406	atm_dev_deregister(fore200e->atm_dev);
 407
 408    case FORE200E_STATE_BLANK:
 409	/* nothing to do for that state */
 410	break;
 411    }
 412}
 413
 414
 415#ifdef CONFIG_PCI
 416
 417static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    return le32_to_cpu(readl(addr));
 422}
 423
 424
 425static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 426{
 427    /* on big-endian hosts, the board is configured to convert
 428       the endianess of slave RAM accesses  */
 429    writel(cpu_to_le32(val), addr);
 430}
 431
 432
 433static u32
 434fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 435{
 436    u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
 437
 438    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 439	    virt_addr, size, direction, dma_addr);
 440    
 441    return dma_addr;
 442}
 443
 444
 445static void
 446fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 447{
 448    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 449	    dma_addr, size, direction);
 450
 451    dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 452}
 453
 454
 455static void
 456fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 461}
 462
 463static void
 464fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 465{
 466    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 467
 468    dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 469}
 470
 471
 472/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 473   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 474
 475static int
 476fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 477			     int size, int nbr, int alignment)
 478{
 479    /* returned chunks are page-aligned */
 480    chunk->alloc_size = size * nbr;
 481    chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 482					   chunk->alloc_size,
 483					   &chunk->dma_addr,
 484					   GFP_KERNEL);
 485    
 486    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 487	return -ENOMEM;
 488
 489    chunk->align_addr = chunk->alloc_addr;
 490    
 491    return 0;
 492}
 493
 494
 495/* free a DMA consistent chunk of memory */
 496
 497static void
 498fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 499{
 500    dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 501			chunk->alloc_size,
 502			chunk->alloc_addr,
 503			chunk->dma_addr);
 504}
 505
 506
 507static int
 508fore200e_pca_irq_check(struct fore200e* fore200e)
 509{
 510    /* this is a 1 bit register */
 511    int irq_posted = readl(fore200e->regs.pca.psr);
 512
 513#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 514    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 515	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 516    }
 517#endif
 518
 519    return irq_posted;
 520}
 521
 522
 523static void
 524fore200e_pca_irq_ack(struct fore200e* fore200e)
 525{
 526    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static void
 531fore200e_pca_reset(struct fore200e* fore200e)
 532{
 533    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 534    fore200e_spin(10);
 535    writel(0, fore200e->regs.pca.hcr);
 536}
 537
 538
 539static int fore200e_pca_map(struct fore200e* fore200e)
 540{
 541    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 542
 543    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 544    
 545    if (fore200e->virt_base == NULL) {
 546	printk(FORE200E "can't map device %s\n", fore200e->name);
 547	return -EFAULT;
 548    }
 549
 550    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 551
 552    /* gain access to the PCA specific registers  */
 553    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 554    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 555    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 556
 557    fore200e->state = FORE200E_STATE_MAP;
 558    return 0;
 559}
 560
 561
 562static void
 563fore200e_pca_unmap(struct fore200e* fore200e)
 564{
 565    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 566
 567    if (fore200e->virt_base != NULL)
 568	iounmap(fore200e->virt_base);
 569}
 570
 571
 572static int fore200e_pca_configure(struct fore200e *fore200e)
 573{
 574    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 575    u8              master_ctrl, latency;
 576
 577    DPRINTK(2, "device %s being configured\n", fore200e->name);
 578
 579    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 580	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 581	return -EIO;
 582    }
 583
 584    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 585
 586    master_ctrl = master_ctrl
 587#if defined(__BIG_ENDIAN)
 588	/* request the PCA board to convert the endianess of slave RAM accesses */
 589	| PCA200E_CTRL_CONVERT_ENDIAN
 590#endif
 591#if 0
 592        | PCA200E_CTRL_DIS_CACHE_RD
 593        | PCA200E_CTRL_DIS_WRT_INVAL
 594        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 595        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 596#endif
 597	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 598    
 599    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 600
 601    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 602       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 603       this may impact the performances of other PCI devices on the same bus, though */
 604    latency = 192;
 605    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 606
 607    fore200e->state = FORE200E_STATE_CONFIGURE;
 608    return 0;
 609}
 610
 611
 612static int __init
 613fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 614{
 615    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 616    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 617    struct prom_opcode      opcode;
 618    int                     ok;
 619    u32                     prom_dma;
 620
 621    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 622
 623    opcode.opcode = OPCODE_GET_PROM;
 624    opcode.pad    = 0;
 625
 626    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 627
 628    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 629    
 630    *entry->status = STATUS_PENDING;
 631
 632    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 633
 634    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 635
 636    *entry->status = STATUS_FREE;
 637
 638    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 639
 640    if (ok == 0) {
 641	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 642	return -EIO;
 643    }
 644
 645#if defined(__BIG_ENDIAN)
 646    
 647#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 648
 649    /* MAC address is stored as little-endian */
 650    swap_here(&prom->mac_addr[0]);
 651    swap_here(&prom->mac_addr[4]);
 652#endif
 653    
 654    return 0;
 655}
 656
 657
 658static int
 659fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 660{
 661    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 662
 663    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 664		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667#endif /* CONFIG_PCI */
 668
 669
 670#ifdef CONFIG_SBUS
 671
 672static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 673{
 674    return sbus_readl(addr);
 675}
 676
 677static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 678{
 679    sbus_writel(val, addr);
 680}
 681
 682static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 683{
 684	struct platform_device *op = fore200e->bus_dev;
 685	u32 dma_addr;
 686
 687	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 688
 689	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 690		virt_addr, size, direction, dma_addr);
 691    
 692	return dma_addr;
 693}
 694
 695static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 696{
 697	struct platform_device *op = fore200e->bus_dev;
 698
 699	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 700		dma_addr, size, direction);
 701
 702	dma_unmap_single(&op->dev, dma_addr, size, direction);
 703}
 704
 705static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 706{
 707	struct platform_device *op = fore200e->bus_dev;
 708
 709	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 710    
 711	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 712}
 713
 714static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 715{
 716	struct platform_device *op = fore200e->bus_dev;
 717
 718	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 719
 720	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 721}
 722
 723/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 724 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 725 */
 726static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 727					int size, int nbr, int alignment)
 728{
 729	struct platform_device *op = fore200e->bus_dev;
 730
 731	chunk->alloc_size = chunk->align_size = size * nbr;
 732
 733	/* returned chunks are page-aligned */
 734	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 735					       &chunk->dma_addr, GFP_ATOMIC);
 736
 737	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 738		return -ENOMEM;
 739
 740	chunk->align_addr = chunk->alloc_addr;
 741    
 742	return 0;
 743}
 744
 745/* free a DVMA consistent chunk of memory */
 746static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 747{
 748	struct platform_device *op = fore200e->bus_dev;
 749
 750	dma_free_coherent(&op->dev, chunk->alloc_size,
 751			  chunk->alloc_addr, chunk->dma_addr);
 752}
 753
 754static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 755{
 756	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 757	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 758}
 759
 760static int fore200e_sba_irq_check(struct fore200e *fore200e)
 761{
 762	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 763}
 764
 765static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 766{
 767	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 768	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 769}
 770
 771static void fore200e_sba_reset(struct fore200e *fore200e)
 772{
 773	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 774	fore200e_spin(10);
 775	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 776}
 777
 778static int __init fore200e_sba_map(struct fore200e *fore200e)
 779{
 780	struct platform_device *op = fore200e->bus_dev;
 781	unsigned int bursts;
 782
 783	/* gain access to the SBA specific registers  */
 784	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 785	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 786	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 787	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 788
 789	if (!fore200e->virt_base) {
 790		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 791		return -EFAULT;
 792	}
 793
 794	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 795    
 796	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 797
 798	/* get the supported DVMA burst sizes */
 799	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 800
 801	if (sbus_can_dma_64bit())
 802		sbus_set_sbus64(&op->dev, bursts);
 803
 804	fore200e->state = FORE200E_STATE_MAP;
 805	return 0;
 806}
 807
 808static void fore200e_sba_unmap(struct fore200e *fore200e)
 809{
 810	struct platform_device *op = fore200e->bus_dev;
 811
 812	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 813	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 814	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 815	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 816}
 817
 818static int __init fore200e_sba_configure(struct fore200e *fore200e)
 819{
 820	fore200e->state = FORE200E_STATE_CONFIGURE;
 821	return 0;
 822}
 823
 824static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 825{
 826	struct platform_device *op = fore200e->bus_dev;
 827	const u8 *prop;
 828	int len;
 829
 830	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 831	if (!prop)
 832		return -ENODEV;
 833	memcpy(&prom->mac_addr[4], prop, 4);
 834
 835	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 836	if (!prop)
 837		return -ENODEV;
 838	memcpy(&prom->mac_addr[2], prop, 4);
 839
 840	prom->serial_number = of_getintprop_default(op->dev.of_node,
 841						    "serialnumber", 0);
 842	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 843						  "promversion", 0);
 844    
 845	return 0;
 846}
 847
 848static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 849{
 850	struct platform_device *op = fore200e->bus_dev;
 851	const struct linux_prom_registers *regs;
 852
 853	regs = of_get_property(op->dev.of_node, "reg", NULL);
 854
 855	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 856		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 857}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858#endif /* CONFIG_SBUS */
 859
 860
 861static void
 862fore200e_tx_irq(struct fore200e* fore200e)
 863{
 864    struct host_txq*        txq = &fore200e->host_txq;
 865    struct host_txq_entry*  entry;
 866    struct atm_vcc*         vcc;
 867    struct fore200e_vc_map* vc_map;
 868
 869    if (fore200e->host_txq.txing == 0)
 870	return;
 871
 872    for (;;) {
 873	
 874	entry = &txq->host_entry[ txq->tail ];
 875
 876        if ((*entry->status & STATUS_COMPLETE) == 0) {
 877	    break;
 878	}
 879
 880	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 881		entry, txq->tail, entry->vc_map, entry->skb);
 882
 883	/* free copy of misaligned data */
 884	kfree(entry->data);
 885	
 886	/* remove DMA mapping */
 887	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 888				 DMA_TO_DEVICE);
 889
 890	vc_map = entry->vc_map;
 891
 892	/* vcc closed since the time the entry was submitted for tx? */
 893	if ((vc_map->vcc == NULL) ||
 894	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 895
 896	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 897		    fore200e->atm_dev->number);
 898
 899	    dev_kfree_skb_any(entry->skb);
 900	}
 901	else {
 902	    ASSERT(vc_map->vcc);
 903
 904	    /* vcc closed then immediately re-opened? */
 905	    if (vc_map->incarn != entry->incarn) {
 906
 907		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 908		   if the same vcc is immediately re-opened, those pending PDUs must
 909		   not be popped after the completion of their emission, as they refer
 910		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 911		   would be decremented by the size of the (unrelated) skb, possibly
 912		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 913		   we thus bind the tx entry to the current incarnation of the vcc
 914		   when the entry is submitted for tx. When the tx later completes,
 915		   if the incarnation number of the tx entry does not match the one
 916		   of the vcc, then this implies that the vcc has been closed then re-opened.
 917		   we thus just drop the skb here. */
 918
 919		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 920			fore200e->atm_dev->number);
 921
 922		dev_kfree_skb_any(entry->skb);
 923	    }
 924	    else {
 925		vcc = vc_map->vcc;
 926		ASSERT(vcc);
 927
 928		/* notify tx completion */
 929		if (vcc->pop) {
 930		    vcc->pop(vcc, entry->skb);
 931		}
 932		else {
 933		    dev_kfree_skb_any(entry->skb);
 934		}
 935
 936		/* check error condition */
 937		if (*entry->status & STATUS_ERROR)
 938		    atomic_inc(&vcc->stats->tx_err);
 939		else
 940		    atomic_inc(&vcc->stats->tx);
 941	    }
 942	}
 943
 944	*entry->status = STATUS_FREE;
 945
 946	fore200e->host_txq.txing--;
 947
 948	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 949    }
 950}
 951
 952
 953#ifdef FORE200E_BSQ_DEBUG
 954int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 955{
 956    struct buffer* buffer;
 957    int count = 0;
 958
 959    buffer = bsq->freebuf;
 960    while (buffer) {
 961
 962	if (buffer->supplied) {
 963	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 964		   where, scheme, magn, buffer->index);
 965	}
 966
 967	if (buffer->magn != magn) {
 968	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 969		   where, scheme, magn, buffer->index, buffer->magn);
 970	}
 971
 972	if (buffer->scheme != scheme) {
 973	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 974		   where, scheme, magn, buffer->index, buffer->scheme);
 975	}
 976
 977	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 978	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 979		   where, scheme, magn, buffer->index);
 980	}
 981
 982	count++;
 983	buffer = buffer->next;
 984    }
 985
 986    if (count != bsq->freebuf_count) {
 987	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 988	       where, scheme, magn, count, bsq->freebuf_count);
 989    }
 990    return 0;
 991}
 992#endif
 993
 994
 995static void
 996fore200e_supply(struct fore200e* fore200e)
 997{
 998    int  scheme, magn, i;
 999
1000    struct host_bsq*       bsq;
1001    struct host_bsq_entry* entry;
1002    struct buffer*         buffer;
1003
1004    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006
1007	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008
1009#ifdef FORE200E_BSQ_DEBUG
1010	    bsq_audit(1, bsq, scheme, magn);
1011#endif
1012	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013
1014		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016
1017		entry = &bsq->host_entry[ bsq->head ];
1018
1019		for (i = 0; i < RBD_BLK_SIZE; i++) {
1020
1021		    /* take the first buffer in the free buffer list */
1022		    buffer = bsq->freebuf;
1023		    if (!buffer) {
1024			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025			       scheme, magn, bsq->freebuf_count);
1026			return;
1027		    }
1028		    bsq->freebuf = buffer->next;
1029		    
1030#ifdef FORE200E_BSQ_DEBUG
1031		    if (buffer->supplied)
1032			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033			       scheme, magn, buffer->index);
1034		    buffer->supplied = 1;
1035#endif
1036		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1038		}
1039
1040		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041
1042 		/* decrease accordingly the number of free rx buffers */
1043		bsq->freebuf_count -= RBD_BLK_SIZE;
1044
1045		*entry->status = STATUS_PENDING;
1046		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047	    }
1048	}
1049    }
1050}
1051
1052
1053static int
1054fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055{
1056    struct sk_buff*      skb;
1057    struct buffer*       buffer;
1058    struct fore200e_vcc* fore200e_vcc;
1059    int                  i, pdu_len = 0;
1060#ifdef FORE200E_52BYTE_AAL0_SDU
1061    u32                  cell_header = 0;
1062#endif
1063
1064    ASSERT(vcc);
1065    
1066    fore200e_vcc = FORE200E_VCC(vcc);
1067    ASSERT(fore200e_vcc);
1068
1069#ifdef FORE200E_52BYTE_AAL0_SDU
1070    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071
1072	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1076                       rpd->atm_header.clp;
1077	pdu_len = 4;
1078    }
1079#endif
1080    
1081    /* compute total PDU length */
1082    for (i = 0; i < rpd->nseg; i++)
1083	pdu_len += rpd->rsd[ i ].length;
1084    
1085    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086    if (skb == NULL) {
1087	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088
1089	atomic_inc(&vcc->stats->rx_drop);
1090	return -ENOMEM;
1091    } 
1092
1093    __net_timestamp(skb);
1094    
1095#ifdef FORE200E_52BYTE_AAL0_SDU
1096    if (cell_header) {
1097	*((u32*)skb_put(skb, 4)) = cell_header;
1098    }
1099#endif
1100
1101    /* reassemble segments */
1102    for (i = 0; i < rpd->nseg; i++) {
1103	
1104	/* rebuild rx buffer address from rsd handle */
1105	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106	
1107	/* Make device DMA transfer visible to CPU.  */
1108	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1109	
1110	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111
1112	/* Now let the device get at it again.  */
1113	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1114    }
1115
1116    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117    
1118    if (pdu_len < fore200e_vcc->rx_min_pdu)
1119	fore200e_vcc->rx_min_pdu = pdu_len;
1120    if (pdu_len > fore200e_vcc->rx_max_pdu)
1121	fore200e_vcc->rx_max_pdu = pdu_len;
1122    fore200e_vcc->rx_pdu++;
1123
1124    /* push PDU */
1125    if (atm_charge(vcc, skb->truesize) == 0) {
1126
1127	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128		vcc->itf, vcc->vpi, vcc->vci);
1129
1130	dev_kfree_skb_any(skb);
1131
1132	atomic_inc(&vcc->stats->rx_drop);
1133	return -ENOMEM;
1134    }
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146    struct host_bsq* bsq;
1147    struct buffer*   buffer;
1148    int              i;
1149    
1150    for (i = 0; i < rpd->nseg; i++) {
1151
1152	/* rebuild rx buffer address from rsd handle */
1153	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160	if (buffer->supplied == 0)
1161	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162		   buffer->scheme, buffer->magn, buffer->index);
1163	buffer->supplied = 0;
1164#endif
1165
1166	/* re-insert the buffer into the free buffer list */
1167	buffer->next = bsq->freebuf;
1168	bsq->freebuf = buffer;
1169
1170	/* then increment the number of free rx buffers */
1171	bsq->freebuf_count++;
1172    }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179    struct host_rxq*        rxq = &fore200e->host_rxq;
1180    struct host_rxq_entry*  entry;
1181    struct atm_vcc*         vcc;
1182    struct fore200e_vc_map* vc_map;
1183
1184    for (;;) {
1185	
1186	entry = &rxq->host_entry[ rxq->head ];
1187
1188	/* no more received PDUs */
1189	if ((*entry->status & STATUS_COMPLETE) == 0)
1190	    break;
1191
1192	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194	if ((vc_map->vcc == NULL) ||
1195	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198		    fore200e->atm_dev->number,
1199		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200	}
1201	else {
1202	    vcc = vc_map->vcc;
1203	    ASSERT(vcc);
1204
1205	    if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208	    }
1209	    else {
1210		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211			fore200e->atm_dev->number,
1212			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213		atomic_inc(&vcc->stats->rx_err);
1214	    }
1215	}
1216
1217	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219	fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221	/* rewrite the rpd address to ack the received PDU */
1222	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223	*entry->status = STATUS_FREE;
1224
1225	fore200e_supply(fore200e);
1226    }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234    unsigned long flags;
1235
1236    spin_lock_irqsave(&fore200e->q_lock, flags);
1237    fore200e_rx_irq(fore200e);
1238    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240    spin_lock_irqsave(&fore200e->q_lock, flags);
1241    fore200e_tx_irq(fore200e);
1242    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
1248fore200e_interrupt(int irq, void* dev)
1249{
1250    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252    if (fore200e->bus->irq_check(fore200e) == 0) {
1253	
1254	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255	return IRQ_NONE;
1256    }
1257    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260    tasklet_schedule(&fore200e->tx_tasklet);
1261    tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263    fore200e_irq(fore200e);
1264#endif
1265    
1266    fore200e->bus->irq_ack(fore200e);
1267    return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275    struct fore200e* fore200e = (struct fore200e*) data;
1276    unsigned long flags;
1277
1278    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280    spin_lock_irqsave(&fore200e->q_lock, flags);
1281    fore200e_tx_irq(fore200e);
1282    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289    struct fore200e* fore200e = (struct fore200e*) data;
1290    unsigned long    flags;
1291
1292    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294    spin_lock_irqsave(&fore200e->q_lock, flags);
1295    fore200e_rx_irq((struct fore200e*) data);
1296    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304    /* fairly balance the VCs over (identical) buffer schemes */
1305    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310    return scheme;
1311}
1312
1313
1314static int 
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319    struct activate_opcode   activ_opcode;
1320    struct deactivate_opcode deactiv_opcode;
1321    struct vpvc              vpvc;
1322    int                      ok;
1323    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326    
1327    if (activate) {
1328	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329	
1330	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331	activ_opcode.aal    = aal;
1332	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333	activ_opcode.pad    = 0;
1334    }
1335    else {
1336	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337	deactiv_opcode.pad    = 0;
1338    }
1339
1340    vpvc.vci = vcc->vci;
1341    vpvc.vpi = vcc->vpi;
1342
1343    *entry->status = STATUS_PENDING;
1344
1345    if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348	mtu = 48;
1349#endif
1350	/* the MTU is not used by the cp, except in the case of AAL0 */
1351	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354    }
1355    else {
1356	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358    }
1359
1360    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362    *entry->status = STATUS_FREE;
1363
1364    if (ok == 0) {
1365	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367	return -EIO;
1368    }
1369
1370    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1371	    activate ? "open" : "clos");
1372
1373    return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383    
1384	/* compute the data cells to idle cells ratio from the tx PCR */
1385	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387    }
1388    else {
1389	/* disable rate control */
1390	rate->data_cells = rate->idle_cells = 0;
1391    }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399    struct fore200e_vcc*    fore200e_vcc;
1400    struct fore200e_vc_map* vc_map;
1401    unsigned long	    flags;
1402    int			    vci = vcc->vci;
1403    short		    vpi = vcc->vpi;
1404
1405    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408    spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411    if (vc_map->vcc) {
1412
1413	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415	printk(FORE200E "VC %d.%d.%d already in use\n",
1416	       fore200e->atm_dev->number, vpi, vci);
1417
1418	return -EINVAL;
1419    }
1420
1421    vc_map->vcc = vcc;
1422
1423    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426    if (fore200e_vcc == NULL) {
1427	vc_map->vcc = NULL;
1428	return -ENOMEM;
1429    }
1430
1431    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438    
1439    /* pseudo-CBR bandwidth requested? */
1440    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441	
1442	mutex_lock(&fore200e->rate_mtx);
1443	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444	    mutex_unlock(&fore200e->rate_mtx);
1445
1446	    kfree(fore200e_vcc);
1447	    vc_map->vcc = NULL;
1448	    return -EAGAIN;
1449	}
1450
1451	/* reserve bandwidth */
1452	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454    }
1455    
1456    vcc->itf = vcc->dev->number;
1457
1458    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459    set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461    vcc->dev_data = fore200e_vcc;
1462    
1463    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465	vc_map->vcc = NULL;
1466
1467	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470	vcc->dev_data = NULL;
1471
1472	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474	kfree(fore200e_vcc);
1475	return -EINVAL;
1476    }
1477    
1478    /* compute rate control parameters */
1479    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480	
1481	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1487		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488    }
1489    
1490    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494    /* new incarnation of the vcc */
1495    vc_map->incarn = ++fore200e->incarn_count;
1496
1497    /* VC unusable before this flag is set */
1498    set_bit(ATM_VF_READY, &vcc->flags);
1499
1500    return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508    struct fore200e_vcc*    fore200e_vcc;
 
1509    struct fore200e_vc_map* vc_map;
1510    unsigned long           flags;
1511
1512    ASSERT(vcc);
 
 
1513    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518    clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522    spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526    /* the vc is no longer considered as "in use" by fore200e_open() */
1527    vc_map->vcc = NULL;
1528
1529    vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531    fore200e_vcc = FORE200E_VCC(vcc);
1532    vcc->dev_data = NULL;
1533
1534    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536    /* release reserved bandwidth, if any */
1537    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539	mutex_lock(&fore200e->rate_mtx);
1540	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541	mutex_unlock(&fore200e->rate_mtx);
1542
1543	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544    }
1545
1546    clear_bit(ATM_VF_ADDR, &vcc->flags);
1547    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549    ASSERT(fore200e_vcc);
1550    kfree(fore200e_vcc);
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559    struct fore200e_vc_map* vc_map;
1560    struct host_txq*        txq          = &fore200e->host_txq;
1561    struct host_txq_entry*  entry;
1562    struct tpd*             tpd;
1563    struct tpd_haddr        tpd_haddr;
1564    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565    int                     tx_copy      = 0;
1566    int                     tx_len       = skb->len;
1567    u32*                    cell_header  = NULL;
1568    unsigned char*          skb_data;
1569    int                     skb_len;
1570    unsigned char*          data;
1571    unsigned long           flags;
1572
1573    ASSERT(vcc);
1574    ASSERT(fore200e);
1575    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
 
1576
1577    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1578	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1579	dev_kfree_skb_any(skb);
1580	return -EINVAL;
1581    }
1582
1583#ifdef FORE200E_52BYTE_AAL0_SDU
1584    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1585	cell_header = (u32*) skb->data;
1586	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1587	skb_len     = tx_len = skb->len  - 4;
1588
1589	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1590    }
1591    else 
1592#endif
1593    {
1594	skb_data = skb->data;
1595	skb_len  = skb->len;
1596    }
1597    
1598    if (((unsigned long)skb_data) & 0x3) {
1599
1600	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1601	tx_copy = 1;
1602	tx_len  = skb_len;
1603    }
1604
1605    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1606
1607        /* this simply NUKES the PCA board */
1608	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1609	tx_copy = 1;
1610	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1611    }
1612    
1613    if (tx_copy) {
1614	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1615	if (data == NULL) {
1616	    if (vcc->pop) {
1617		vcc->pop(vcc, skb);
1618	    }
1619	    else {
1620		dev_kfree_skb_any(skb);
1621	    }
1622	    return -ENOMEM;
1623	}
1624
1625	memcpy(data, skb_data, skb_len);
1626	if (skb_len < tx_len)
1627	    memset(data + skb_len, 0x00, tx_len - skb_len);
1628    }
1629    else {
1630	data = skb_data;
1631    }
1632
1633    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1634    ASSERT(vc_map->vcc == vcc);
1635
1636  retry_here:
1637
1638    spin_lock_irqsave(&fore200e->q_lock, flags);
1639
1640    entry = &txq->host_entry[ txq->head ];
1641
1642    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1643
1644	/* try to free completed tx queue entries */
1645	fore200e_tx_irq(fore200e);
1646
1647	if (*entry->status != STATUS_FREE) {
1648
1649	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1650
1651	    /* retry once again? */
1652	    if (--retry > 0) {
1653		udelay(50);
1654		goto retry_here;
1655	    }
1656
1657	    atomic_inc(&vcc->stats->tx_err);
1658
1659	    fore200e->tx_sat++;
1660	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1661		    fore200e->name, fore200e->cp_queues->heartbeat);
1662	    if (vcc->pop) {
1663		vcc->pop(vcc, skb);
1664	    }
1665	    else {
1666		dev_kfree_skb_any(skb);
1667	    }
1668
1669	    if (tx_copy)
1670		kfree(data);
1671
1672	    return -ENOBUFS;
1673	}
1674    }
1675
1676    entry->incarn = vc_map->incarn;
1677    entry->vc_map = vc_map;
1678    entry->skb    = skb;
1679    entry->data   = tx_copy ? data : NULL;
1680
1681    tpd = entry->tpd;
1682    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1683    tpd->tsd[ 0 ].length = tx_len;
1684
1685    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1686    txq->txing++;
1687
1688    /* The dma_map call above implies a dma_sync so the device can use it,
1689     * thus no explicit dma_sync call is necessary here.
1690     */
1691    
1692    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1693	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1694	    tpd->tsd[0].length, skb_len);
1695
1696    if (skb_len < fore200e_vcc->tx_min_pdu)
1697	fore200e_vcc->tx_min_pdu = skb_len;
1698    if (skb_len > fore200e_vcc->tx_max_pdu)
1699	fore200e_vcc->tx_max_pdu = skb_len;
1700    fore200e_vcc->tx_pdu++;
1701
1702    /* set tx rate control information */
1703    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1704    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1705
1706    if (cell_header) {
1707	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1708	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1709	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1710	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1711	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1712    }
1713    else {
1714	/* set the ATM header, common to all cells conveying the PDU */
1715	tpd->atm_header.clp = 0;
1716	tpd->atm_header.plt = 0;
1717	tpd->atm_header.vci = vcc->vci;
1718	tpd->atm_header.vpi = vcc->vpi;
1719	tpd->atm_header.gfc = 0;
1720    }
1721
1722    tpd->spec.length = tx_len;
1723    tpd->spec.nseg   = 1;
1724    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1725    tpd->spec.intr   = 1;
1726
1727    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1728    tpd_haddr.pad   = 0;
1729    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1730
1731    *entry->status = STATUS_PENDING;
1732    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1733
1734    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1735
1736    return 0;
1737}
1738
1739
1740static int
1741fore200e_getstats(struct fore200e* fore200e)
1742{
1743    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1744    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1745    struct stats_opcode     opcode;
1746    int                     ok;
1747    u32                     stats_dma_addr;
1748
1749    if (fore200e->stats == NULL) {
1750	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1751	if (fore200e->stats == NULL)
1752	    return -ENOMEM;
1753    }
1754    
1755    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1756					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1757    
1758    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1759
1760    opcode.opcode = OPCODE_GET_STATS;
1761    opcode.pad    = 0;
1762
1763    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1764    
1765    *entry->status = STATUS_PENDING;
1766
1767    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1768
1769    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1770
1771    *entry->status = STATUS_FREE;
1772
1773    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1774    
1775    if (ok == 0) {
1776	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1777	return -EIO;
1778    }
1779
1780    return 0;
1781}
1782
1783
1784static int
1785fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1786{
1787    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1788
1789    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1790	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1791
1792    return -EINVAL;
1793}
1794
1795
1796static int
1797fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1798{
1799    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1800    
1801    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1802	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1803    
1804    return -EINVAL;
1805}
1806
1807
1808#if 0 /* currently unused */
1809static int
1810fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1811{
1812    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1813    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1814    struct oc3_opcode       opcode;
1815    int                     ok;
1816    u32                     oc3_regs_dma_addr;
1817
1818    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1819
1820    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1821
1822    opcode.opcode = OPCODE_GET_OC3;
1823    opcode.reg    = 0;
1824    opcode.value  = 0;
1825    opcode.mask   = 0;
1826
1827    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1828    
1829    *entry->status = STATUS_PENDING;
1830
1831    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1832
1833    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1834
1835    *entry->status = STATUS_FREE;
1836
1837    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1838    
1839    if (ok == 0) {
1840	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1841	return -EIO;
1842    }
1843
1844    return 0;
1845}
1846#endif
1847
1848
1849static int
1850fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1851{
1852    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1853    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1854    struct oc3_opcode       opcode;
1855    int                     ok;
1856
1857    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1858
1859    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1860
1861    opcode.opcode = OPCODE_SET_OC3;
1862    opcode.reg    = reg;
1863    opcode.value  = value;
1864    opcode.mask   = mask;
1865
1866    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1867    
1868    *entry->status = STATUS_PENDING;
1869
1870    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1871
1872    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1873
1874    *entry->status = STATUS_FREE;
1875
1876    if (ok == 0) {
1877	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1878	return -EIO;
1879    }
1880
1881    return 0;
1882}
1883
1884
1885static int
1886fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1887{
1888    u32 mct_value, mct_mask;
1889    int error;
1890
1891    if (!capable(CAP_NET_ADMIN))
1892	return -EPERM;
1893    
1894    switch (loop_mode) {
1895
1896    case ATM_LM_NONE:
1897	mct_value = 0; 
1898	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1899	break;
1900	
1901    case ATM_LM_LOC_PHY:
1902	mct_value = mct_mask = SUNI_MCT_DLE;
1903	break;
1904
1905    case ATM_LM_RMT_PHY:
1906	mct_value = mct_mask = SUNI_MCT_LLE;
1907	break;
1908
1909    default:
1910	return -EINVAL;
1911    }
1912
1913    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1914    if (error == 0)
1915	fore200e->loop_mode = loop_mode;
1916
1917    return error;
1918}
1919
1920
1921static int
1922fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1923{
1924    struct sonet_stats tmp;
1925
1926    if (fore200e_getstats(fore200e) < 0)
1927	return -EIO;
1928
1929    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1930    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1931    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1932    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1933    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1934    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1935    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1936    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1937	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1938	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1939    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1940	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1941	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1942
1943    if (arg)
1944	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1945    
1946    return 0;
1947}
1948
1949
1950static int
1951fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1952{
1953    struct fore200e* fore200e = FORE200E_DEV(dev);
1954    
1955    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1956
1957    switch (cmd) {
1958
1959    case SONET_GETSTAT:
1960	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1961
1962    case SONET_GETDIAG:
1963	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1964
1965    case ATM_SETLOOP:
1966	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1967
1968    case ATM_GETLOOP:
1969	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1970
1971    case ATM_QUERYLOOP:
1972	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1973    }
1974
1975    return -ENOSYS; /* not implemented */
1976}
1977
1978
1979static int
1980fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1981{
1982    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1983    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1984
1985    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1986	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1987	return -EINVAL;
1988    }
1989
1990    DPRINTK(2, "change_qos %d.%d.%d, "
1991	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1992	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1993	    "available_cell_rate = %u",
1994	    vcc->itf, vcc->vpi, vcc->vci,
1995	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1996	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1997	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1998	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1999	    flags, fore200e->available_cell_rate);
2000
2001    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2002
2003	mutex_lock(&fore200e->rate_mtx);
2004	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2005	    mutex_unlock(&fore200e->rate_mtx);
2006	    return -EAGAIN;
2007	}
2008
2009	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2010	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2011
2012	mutex_unlock(&fore200e->rate_mtx);
2013	
2014	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2015	
2016	/* update rate control parameters */
2017	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2018
2019	set_bit(ATM_VF_HASQOS, &vcc->flags);
2020
2021	return 0;
2022    }
2023    
2024    return -EINVAL;
2025}
2026    
2027
2028static int fore200e_irq_request(struct fore200e *fore200e)
2029{
2030    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2031
2032	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2033	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2034	return -EBUSY;
2035    }
2036
2037    printk(FORE200E "IRQ %s reserved for device %s\n",
2038	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2039
2040#ifdef FORE200E_USE_TASKLET
2041    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2042    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2043#endif
2044
2045    fore200e->state = FORE200E_STATE_IRQ;
2046    return 0;
2047}
2048
2049
2050static int fore200e_get_esi(struct fore200e *fore200e)
2051{
2052    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2053    int ok, i;
2054
2055    if (!prom)
2056	return -ENOMEM;
2057
2058    ok = fore200e->bus->prom_read(fore200e, prom);
2059    if (ok < 0) {
2060	kfree(prom);
2061	return -EBUSY;
2062    }
2063	
2064    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2065	   fore200e->name, 
2066	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2067	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2068	
2069    for (i = 0; i < ESI_LEN; i++) {
2070	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2071    }
2072    
2073    kfree(prom);
2074
2075    return 0;
2076}
2077
2078
2079static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2080{
2081    int scheme, magn, nbr, size, i;
2082
2083    struct host_bsq* bsq;
2084    struct buffer*   buffer;
2085
2086    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2087	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2088
2089	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2090
2091	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2092	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2093
2094	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2095
2096	    /* allocate the array of receive buffers */
2097	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2098
2099	    if (buffer == NULL)
2100		return -ENOMEM;
2101
2102	    bsq->freebuf = NULL;
2103
2104	    for (i = 0; i < nbr; i++) {
2105
2106		buffer[ i ].scheme = scheme;
2107		buffer[ i ].magn   = magn;
2108#ifdef FORE200E_BSQ_DEBUG
2109		buffer[ i ].index  = i;
2110		buffer[ i ].supplied = 0;
2111#endif
2112
2113		/* allocate the receive buffer body */
2114		if (fore200e_chunk_alloc(fore200e,
2115					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2116					 DMA_FROM_DEVICE) < 0) {
2117		    
2118		    while (i > 0)
2119			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2120		    kfree(buffer);
2121		    
2122		    return -ENOMEM;
2123		}
2124
2125		/* insert the buffer into the free buffer list */
2126		buffer[ i ].next = bsq->freebuf;
2127		bsq->freebuf = &buffer[ i ];
2128	    }
2129	    /* all the buffers are free, initially */
2130	    bsq->freebuf_count = nbr;
2131
2132#ifdef FORE200E_BSQ_DEBUG
2133	    bsq_audit(3, bsq, scheme, magn);
2134#endif
2135	}
2136    }
2137
2138    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2139    return 0;
2140}
2141
2142
2143static int fore200e_init_bs_queue(struct fore200e *fore200e)
2144{
2145    int scheme, magn, i;
2146
2147    struct host_bsq*     bsq;
2148    struct cp_bsq_entry __iomem * cp_entry;
2149
2150    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2151	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2152
2153	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2154
2155	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2156
2157	    /* allocate and align the array of status words */
2158	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2159					       &bsq->status,
2160					       sizeof(enum status), 
2161					       QUEUE_SIZE_BS,
2162					       fore200e->bus->status_alignment) < 0) {
2163		return -ENOMEM;
2164	    }
2165
2166	    /* allocate and align the array of receive buffer descriptors */
2167	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2168					       &bsq->rbd_block,
2169					       sizeof(struct rbd_block),
2170					       QUEUE_SIZE_BS,
2171					       fore200e->bus->descr_alignment) < 0) {
2172		
2173		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2174		return -ENOMEM;
2175	    }
2176	    
2177	    /* get the base address of the cp resident buffer supply queue entries */
2178	    cp_entry = fore200e->virt_base + 
2179		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2180	    
2181	    /* fill the host resident and cp resident buffer supply queue entries */
2182	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2183		
2184		bsq->host_entry[ i ].status = 
2185		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2186	        bsq->host_entry[ i ].rbd_block =
2187		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2188		bsq->host_entry[ i ].rbd_block_dma =
2189		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2190		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2191		
2192		*bsq->host_entry[ i ].status = STATUS_FREE;
2193		
2194		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2195				     &cp_entry[ i ].status_haddr);
2196	    }
2197	}
2198    }
2199
2200    fore200e->state = FORE200E_STATE_INIT_BSQ;
2201    return 0;
2202}
2203
2204
2205static int fore200e_init_rx_queue(struct fore200e *fore200e)
2206{
2207    struct host_rxq*     rxq =  &fore200e->host_rxq;
2208    struct cp_rxq_entry __iomem * cp_entry;
2209    int i;
2210
2211    DPRINTK(2, "receive queue is being initialized\n");
2212
2213    /* allocate and align the array of status words */
2214    if (fore200e->bus->dma_chunk_alloc(fore200e,
2215				       &rxq->status,
2216				       sizeof(enum status), 
2217				       QUEUE_SIZE_RX,
2218				       fore200e->bus->status_alignment) < 0) {
2219	return -ENOMEM;
2220    }
2221
2222    /* allocate and align the array of receive PDU descriptors */
2223    if (fore200e->bus->dma_chunk_alloc(fore200e,
2224				       &rxq->rpd,
2225				       sizeof(struct rpd), 
2226				       QUEUE_SIZE_RX,
2227				       fore200e->bus->descr_alignment) < 0) {
2228	
2229	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2230	return -ENOMEM;
2231    }
2232
2233    /* get the base address of the cp resident rx queue entries */
2234    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2235
2236    /* fill the host resident and cp resident rx entries */
2237    for (i=0; i < QUEUE_SIZE_RX; i++) {
2238	
2239	rxq->host_entry[ i ].status = 
2240	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2241	rxq->host_entry[ i ].rpd = 
2242	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2243	rxq->host_entry[ i ].rpd_dma = 
2244	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2245	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2246
2247	*rxq->host_entry[ i ].status = STATUS_FREE;
2248
2249	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2250			     &cp_entry[ i ].status_haddr);
2251
2252	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2253			     &cp_entry[ i ].rpd_haddr);
2254    }
2255
2256    /* set the head entry of the queue */
2257    rxq->head = 0;
2258
2259    fore200e->state = FORE200E_STATE_INIT_RXQ;
2260    return 0;
2261}
2262
2263
2264static int fore200e_init_tx_queue(struct fore200e *fore200e)
2265{
2266    struct host_txq*     txq =  &fore200e->host_txq;
2267    struct cp_txq_entry __iomem * cp_entry;
2268    int i;
2269
2270    DPRINTK(2, "transmit queue is being initialized\n");
2271
2272    /* allocate and align the array of status words */
2273    if (fore200e->bus->dma_chunk_alloc(fore200e,
2274				       &txq->status,
2275				       sizeof(enum status), 
2276				       QUEUE_SIZE_TX,
2277				       fore200e->bus->status_alignment) < 0) {
2278	return -ENOMEM;
2279    }
2280
2281    /* allocate and align the array of transmit PDU descriptors */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283				       &txq->tpd,
2284				       sizeof(struct tpd), 
2285				       QUEUE_SIZE_TX,
2286				       fore200e->bus->descr_alignment) < 0) {
2287	
2288	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2289	return -ENOMEM;
2290    }
2291
2292    /* get the base address of the cp resident tx queue entries */
2293    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2294
2295    /* fill the host resident and cp resident tx entries */
2296    for (i=0; i < QUEUE_SIZE_TX; i++) {
2297	
2298	txq->host_entry[ i ].status = 
2299	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2300	txq->host_entry[ i ].tpd = 
2301	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2302	txq->host_entry[ i ].tpd_dma  = 
2303                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2304	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2305
2306	*txq->host_entry[ i ].status = STATUS_FREE;
2307	
2308	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2309			     &cp_entry[ i ].status_haddr);
2310	
2311        /* although there is a one-to-one mapping of tx queue entries and tpds,
2312	   we do not write here the DMA (physical) base address of each tpd into
2313	   the related cp resident entry, because the cp relies on this write
2314	   operation to detect that a new pdu has been submitted for tx */
2315    }
2316
2317    /* set the head and tail entries of the queue */
2318    txq->head = 0;
2319    txq->tail = 0;
2320
2321    fore200e->state = FORE200E_STATE_INIT_TXQ;
2322    return 0;
2323}
2324
2325
2326static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2327{
2328    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2329    struct cp_cmdq_entry __iomem * cp_entry;
2330    int i;
2331
2332    DPRINTK(2, "command queue is being initialized\n");
2333
2334    /* allocate and align the array of status words */
2335    if (fore200e->bus->dma_chunk_alloc(fore200e,
2336				       &cmdq->status,
2337				       sizeof(enum status), 
2338				       QUEUE_SIZE_CMD,
2339				       fore200e->bus->status_alignment) < 0) {
2340	return -ENOMEM;
2341    }
2342    
2343    /* get the base address of the cp resident cmd queue entries */
2344    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2345
2346    /* fill the host resident and cp resident cmd entries */
2347    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2348	
2349	cmdq->host_entry[ i ].status   = 
2350                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2351	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2352
2353	*cmdq->host_entry[ i ].status = STATUS_FREE;
2354
2355	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2356                             &cp_entry[ i ].status_haddr);
2357    }
2358
2359    /* set the head entry of the queue */
2360    cmdq->head = 0;
2361
2362    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2363    return 0;
2364}
2365
2366
2367static void fore200e_param_bs_queue(struct fore200e *fore200e,
2368				    enum buffer_scheme scheme,
2369				    enum buffer_magn magn, int queue_length,
2370				    int pool_size, int supply_blksize)
2371{
2372    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2373
2374    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2375    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2376    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2377    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2378}
2379
2380
2381static int fore200e_initialize(struct fore200e *fore200e)
2382{
2383    struct cp_queues __iomem * cpq;
2384    int               ok, scheme, magn;
2385
2386    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2387
2388    mutex_init(&fore200e->rate_mtx);
2389    spin_lock_init(&fore200e->q_lock);
2390
2391    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2392
2393    /* enable cp to host interrupts */
2394    fore200e->bus->write(1, &cpq->imask);
2395
2396    if (fore200e->bus->irq_enable)
2397	fore200e->bus->irq_enable(fore200e);
2398    
2399    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2400
2401    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2402    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2403    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2404
2405    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2406    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2407
2408    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2409	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2410	    fore200e_param_bs_queue(fore200e, scheme, magn,
2411				    QUEUE_SIZE_BS, 
2412				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2413				    RBD_BLK_SIZE);
2414
2415    /* issue the initialize command */
2416    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2417    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2418
2419    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2420    if (ok == 0) {
2421	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2422	return -ENODEV;
2423    }
2424
2425    printk(FORE200E "device %s initialized\n", fore200e->name);
2426
2427    fore200e->state = FORE200E_STATE_INITIALIZE;
2428    return 0;
2429}
2430
2431
2432static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2433{
2434    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2435
2436#if 0
2437    printk("%c", c);
2438#endif
2439    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2440}
2441
2442
2443static int fore200e_monitor_getc(struct fore200e *fore200e)
2444{
2445    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2446    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2447    int                c;
2448
2449    while (time_before(jiffies, timeout)) {
2450
2451	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2452
2453	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2454
2455	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2456#if 0
2457	    printk("%c", c & 0xFF);
2458#endif
2459	    return c & 0xFF;
2460	}
2461    }
2462
2463    return -1;
2464}
2465
2466
2467static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2468{
2469    while (*str) {
2470
2471	/* the i960 monitor doesn't accept any new character if it has something to say */
2472	while (fore200e_monitor_getc(fore200e) >= 0);
2473	
2474	fore200e_monitor_putc(fore200e, *str++);
2475    }
2476
2477    while (fore200e_monitor_getc(fore200e) >= 0);
2478}
2479
2480#ifdef __LITTLE_ENDIAN
2481#define FW_EXT ".bin"
2482#else
2483#define FW_EXT "_ecd.bin2"
2484#endif
2485
2486static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2487{
2488    const struct firmware *firmware;
2489    struct device *device;
2490    const struct fw_header *fw_header;
2491    const __le32 *fw_data;
2492    u32 fw_size;
2493    u32 __iomem *load_addr;
2494    char buf[48];
2495    int err = -ENODEV;
2496
2497    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2498	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2499#ifdef CONFIG_SBUS
2500    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2501	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2502#endif
2503    else
2504	return err;
2505
2506    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2507    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2508	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2509	return err;
2510    }
2511
2512    fw_data = (const __le32 *)firmware->data;
2513    fw_size = firmware->size / sizeof(u32);
2514    fw_header = (const struct fw_header *)firmware->data;
2515    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2516
2517    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2518	    fore200e->name, load_addr, fw_size);
2519
2520    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2521	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2522	goto release;
2523    }
2524
2525    for (; fw_size--; fw_data++, load_addr++)
2526	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2527
2528    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2529
2530#if defined(__sparc_v9__)
2531    /* reported to be required by SBA cards on some sparc64 hosts */
2532    fore200e_spin(100);
2533#endif
2534
2535    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2536    fore200e_monitor_puts(fore200e, buf);
2537
2538    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2539	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2540	goto release;
2541    }
2542
2543    printk(FORE200E "device %s firmware started\n", fore200e->name);
2544
2545    fore200e->state = FORE200E_STATE_START_FW;
2546    err = 0;
2547
2548release:
2549    release_firmware(firmware);
2550    return err;
2551}
2552
2553
2554static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2555{
2556    struct atm_dev* atm_dev;
2557
2558    DPRINTK(2, "device %s being registered\n", fore200e->name);
2559
2560    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2561                               -1, NULL);
2562    if (atm_dev == NULL) {
2563	printk(FORE200E "unable to register device %s\n", fore200e->name);
2564	return -ENODEV;
2565    }
2566
2567    atm_dev->dev_data = fore200e;
2568    fore200e->atm_dev = atm_dev;
2569
2570    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2571    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2572
2573    fore200e->available_cell_rate = ATM_OC3_PCR;
2574
2575    fore200e->state = FORE200E_STATE_REGISTER;
2576    return 0;
2577}
2578
2579
2580static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2581{
2582    if (fore200e_register(fore200e, parent) < 0)
2583	return -ENODEV;
2584    
2585    if (fore200e->bus->configure(fore200e) < 0)
2586	return -ENODEV;
2587
2588    if (fore200e->bus->map(fore200e) < 0)
2589	return -ENODEV;
2590
2591    if (fore200e_reset(fore200e, 1) < 0)
2592	return -ENODEV;
2593
2594    if (fore200e_load_and_start_fw(fore200e) < 0)
2595	return -ENODEV;
2596
2597    if (fore200e_initialize(fore200e) < 0)
2598	return -ENODEV;
2599
2600    if (fore200e_init_cmd_queue(fore200e) < 0)
2601	return -ENOMEM;
2602
2603    if (fore200e_init_tx_queue(fore200e) < 0)
2604	return -ENOMEM;
2605
2606    if (fore200e_init_rx_queue(fore200e) < 0)
2607	return -ENOMEM;
2608
2609    if (fore200e_init_bs_queue(fore200e) < 0)
2610	return -ENOMEM;
2611
2612    if (fore200e_alloc_rx_buf(fore200e) < 0)
2613	return -ENOMEM;
2614
2615    if (fore200e_get_esi(fore200e) < 0)
2616	return -EIO;
2617
2618    if (fore200e_irq_request(fore200e) < 0)
2619	return -EBUSY;
2620
2621    fore200e_supply(fore200e);
2622
2623    /* all done, board initialization is now complete */
2624    fore200e->state = FORE200E_STATE_COMPLETE;
2625    return 0;
2626}
2627
2628#ifdef CONFIG_SBUS
2629static const struct of_device_id fore200e_sba_match[];
2630static int fore200e_sba_probe(struct platform_device *op)
2631{
2632	const struct of_device_id *match;
2633	const struct fore200e_bus *bus;
2634	struct fore200e *fore200e;
2635	static int index = 0;
2636	int err;
2637
2638	match = of_match_device(fore200e_sba_match, &op->dev);
2639	if (!match)
2640		return -EINVAL;
2641	bus = match->data;
2642
2643	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2644	if (!fore200e)
2645		return -ENOMEM;
2646
2647	fore200e->bus = bus;
2648	fore200e->bus_dev = op;
2649	fore200e->irq = op->archdata.irqs[0];
2650	fore200e->phys_base = op->resource[0].start;
2651
2652	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2653
2654	err = fore200e_init(fore200e, &op->dev);
2655	if (err < 0) {
2656		fore200e_shutdown(fore200e);
2657		kfree(fore200e);
2658		return err;
2659	}
2660
2661	index++;
2662	dev_set_drvdata(&op->dev, fore200e);
2663
2664	return 0;
2665}
2666
2667static int fore200e_sba_remove(struct platform_device *op)
2668{
2669	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2670
2671	fore200e_shutdown(fore200e);
2672	kfree(fore200e);
2673
2674	return 0;
2675}
2676
2677static const struct of_device_id fore200e_sba_match[] = {
2678	{
2679		.name = SBA200E_PROM_NAME,
2680		.data = (void *) &fore200e_bus[1],
2681	},
2682	{},
2683};
2684MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2685
2686static struct platform_driver fore200e_sba_driver = {
2687	.driver = {
2688		.name = "fore_200e",
2689		.of_match_table = fore200e_sba_match,
2690	},
2691	.probe		= fore200e_sba_probe,
2692	.remove		= fore200e_sba_remove,
2693};
2694#endif
2695
2696#ifdef CONFIG_PCI
2697static int fore200e_pca_detect(struct pci_dev *pci_dev,
2698			       const struct pci_device_id *pci_ent)
2699{
2700    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2701    struct fore200e* fore200e;
2702    int err = 0;
2703    static int index = 0;
2704
2705    if (pci_enable_device(pci_dev)) {
2706	err = -EINVAL;
2707	goto out;
2708    }
2709
2710    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2711	err = -EINVAL;
2712	goto out;
2713    }
2714    
2715    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2716    if (fore200e == NULL) {
2717	err = -ENOMEM;
2718	goto out_disable;
2719    }
2720
2721    fore200e->bus       = bus;
2722    fore200e->bus_dev   = pci_dev;    
2723    fore200e->irq       = pci_dev->irq;
2724    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2725
2726    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2727
2728    pci_set_master(pci_dev);
2729
2730    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2731	   fore200e->bus->model_name, 
2732	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2733
2734    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2735
2736    err = fore200e_init(fore200e, &pci_dev->dev);
2737    if (err < 0) {
2738	fore200e_shutdown(fore200e);
2739	goto out_free;
2740    }
2741
2742    ++index;
2743    pci_set_drvdata(pci_dev, fore200e);
2744
2745out:
2746    return err;
2747
2748out_free:
2749    kfree(fore200e);
2750out_disable:
2751    pci_disable_device(pci_dev);
2752    goto out;
2753}
2754
2755
2756static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2757{
2758    struct fore200e *fore200e;
2759
2760    fore200e = pci_get_drvdata(pci_dev);
2761
2762    fore200e_shutdown(fore200e);
2763    kfree(fore200e);
2764    pci_disable_device(pci_dev);
2765}
2766
2767
2768static const struct pci_device_id fore200e_pca_tbl[] = {
2769    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2770      0, 0, (unsigned long) &fore200e_bus[0] },
2771    { 0, }
2772};
2773
2774MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2775
2776static struct pci_driver fore200e_pca_driver = {
2777    .name =     "fore_200e",
2778    .probe =    fore200e_pca_detect,
2779    .remove =   fore200e_pca_remove_one,
2780    .id_table = fore200e_pca_tbl,
2781};
2782#endif
2783
2784static int __init fore200e_module_init(void)
2785{
2786	int err = 0;
2787
2788	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2789
2790#ifdef CONFIG_SBUS
2791	err = platform_driver_register(&fore200e_sba_driver);
2792	if (err)
2793		return err;
2794#endif
2795
2796#ifdef CONFIG_PCI
2797	err = pci_register_driver(&fore200e_pca_driver);
2798#endif
2799
2800#ifdef CONFIG_SBUS
2801	if (err)
2802		platform_driver_unregister(&fore200e_sba_driver);
2803#endif
2804
2805	return err;
2806}
2807
2808static void __exit fore200e_module_cleanup(void)
2809{
2810#ifdef CONFIG_PCI
2811	pci_unregister_driver(&fore200e_pca_driver);
2812#endif
2813#ifdef CONFIG_SBUS
2814	platform_driver_unregister(&fore200e_sba_driver);
2815#endif
2816}
2817
2818static int
2819fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2820{
2821    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2822    struct fore200e_vcc* fore200e_vcc;
2823    struct atm_vcc*      vcc;
2824    int                  i, len, left = *pos;
2825    unsigned long        flags;
2826
2827    if (!left--) {
2828
2829	if (fore200e_getstats(fore200e) < 0)
2830	    return -EIO;
2831
2832	len = sprintf(page,"\n"
2833		       " device:\n"
2834		       "   internal name:\t\t%s\n", fore200e->name);
2835
2836	/* print bus-specific information */
2837	if (fore200e->bus->proc_read)
2838	    len += fore200e->bus->proc_read(fore200e, page + len);
2839	
2840	len += sprintf(page + len,
2841		"   interrupt line:\t\t%s\n"
2842		"   physical base address:\t0x%p\n"
2843		"   virtual base address:\t0x%p\n"
2844		"   factory address (ESI):\t%pM\n"
2845		"   board serial number:\t\t%d\n\n",
2846		fore200e_irq_itoa(fore200e->irq),
2847		(void*)fore200e->phys_base,
2848		fore200e->virt_base,
2849		fore200e->esi,
2850		fore200e->esi[4] * 256 + fore200e->esi[5]);
2851
2852	return len;
2853    }
2854
2855    if (!left--)
2856	return sprintf(page,
2857		       "   free small bufs, scheme 1:\t%d\n"
2858		       "   free large bufs, scheme 1:\t%d\n"
2859		       "   free small bufs, scheme 2:\t%d\n"
2860		       "   free large bufs, scheme 2:\t%d\n",
2861		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2862		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2863		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2865
2866    if (!left--) {
2867	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2868
2869	len = sprintf(page,"\n\n"
2870		      " cell processor:\n"
2871		      "   heartbeat state:\t\t");
2872	
2873	if (hb >> 16 != 0xDEAD)
2874	    len += sprintf(page + len, "0x%08x\n", hb);
2875	else
2876	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2877
2878	return len;
2879    }
2880
2881    if (!left--) {
2882	static const char* media_name[] = {
2883	    "unshielded twisted pair",
2884	    "multimode optical fiber ST",
2885	    "multimode optical fiber SC",
2886	    "single-mode optical fiber ST",
2887	    "single-mode optical fiber SC",
2888	    "unknown"
2889	};
2890
2891	static const char* oc3_mode[] = {
2892	    "normal operation",
2893	    "diagnostic loopback",
2894	    "line loopback",
2895	    "unknown"
2896	};
2897
2898	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2899	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2900	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2901	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2902	u32 oc3_index;
2903
2904	if (media_index > 4)
2905		media_index = 5;
2906	
2907	switch (fore200e->loop_mode) {
2908	    case ATM_LM_NONE:    oc3_index = 0;
2909		                 break;
2910	    case ATM_LM_LOC_PHY: oc3_index = 1;
2911		                 break;
2912	    case ATM_LM_RMT_PHY: oc3_index = 2;
2913		                 break;
2914	    default:             oc3_index = 3;
2915	}
2916
2917	return sprintf(page,
2918		       "   firmware release:\t\t%d.%d.%d\n"
2919		       "   monitor release:\t\t%d.%d\n"
2920		       "   media type:\t\t\t%s\n"
2921		       "   OC-3 revision:\t\t0x%x\n"
2922                       "   OC-3 mode:\t\t\t%s",
2923		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2924		       mon960_release >> 16, mon960_release << 16 >> 16,
2925		       media_name[ media_index ],
2926		       oc3_revision,
2927		       oc3_mode[ oc3_index ]);
2928    }
2929
2930    if (!left--) {
2931	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2932
2933	return sprintf(page,
2934		       "\n\n"
2935		       " monitor:\n"
2936		       "   version number:\t\t%d\n"
2937		       "   boot status word:\t\t0x%08x\n",
2938		       fore200e->bus->read(&cp_monitor->mon_version),
2939		       fore200e->bus->read(&cp_monitor->bstat));
2940    }
2941
2942    if (!left--)
2943	return sprintf(page,
2944		       "\n"
2945		       " device statistics:\n"
2946		       "  4b5b:\n"
2947		       "     crc_header_errors:\t\t%10u\n"
2948		       "     framing_errors:\t\t%10u\n",
2949		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2950		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2951    
2952    if (!left--)
2953	return sprintf(page, "\n"
2954		       "  OC-3:\n"
2955		       "     section_bip8_errors:\t%10u\n"
2956		       "     path_bip8_errors:\t\t%10u\n"
2957		       "     line_bip24_errors:\t\t%10u\n"
2958		       "     line_febe_errors:\t\t%10u\n"
2959		       "     path_febe_errors:\t\t%10u\n"
2960		       "     corr_hcs_errors:\t\t%10u\n"
2961		       "     ucorr_hcs_errors:\t\t%10u\n",
2962		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2963		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2964		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2966		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2967		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2968		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2969
2970    if (!left--)
2971	return sprintf(page,"\n"
2972		       "   ATM:\t\t\t\t     cells\n"
2973		       "     TX:\t\t\t%10u\n"
2974		       "     RX:\t\t\t%10u\n"
2975		       "     vpi out of range:\t\t%10u\n"
2976		       "     vpi no conn:\t\t%10u\n"
2977		       "     vci out of range:\t\t%10u\n"
2978		       "     vci no conn:\t\t%10u\n",
2979		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2980		       be32_to_cpu(fore200e->stats->atm.cells_received),
2981		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2982		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2983		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2984		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2985    
2986    if (!left--)
2987	return sprintf(page,"\n"
2988		       "   AAL0:\t\t\t     cells\n"
2989		       "     TX:\t\t\t%10u\n"
2990		       "     RX:\t\t\t%10u\n"
2991		       "     dropped:\t\t\t%10u\n",
2992		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2993		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2994		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2995    
2996    if (!left--)
2997	return sprintf(page,"\n"
2998		       "   AAL3/4:\n"
2999		       "     SAR sublayer:\t\t     cells\n"
3000		       "       TX:\t\t\t%10u\n"
3001		       "       RX:\t\t\t%10u\n"
3002		       "       dropped:\t\t\t%10u\n"
3003		       "       CRC errors:\t\t%10u\n"
3004		       "       protocol errors:\t\t%10u\n\n"
3005		       "     CS  sublayer:\t\t      PDUs\n"
3006		       "       TX:\t\t\t%10u\n"
3007		       "       RX:\t\t\t%10u\n"
3008		       "       dropped:\t\t\t%10u\n"
3009		       "       protocol errors:\t\t%10u\n",
3010		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3011		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3012		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3013		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3014		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3015		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3016		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3017		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3018		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3019    
3020    if (!left--)
3021	return sprintf(page,"\n"
3022		       "   AAL5:\n"
3023		       "     SAR sublayer:\t\t     cells\n"
3024		       "       TX:\t\t\t%10u\n"
3025		       "       RX:\t\t\t%10u\n"
3026		       "       dropped:\t\t\t%10u\n"
3027		       "       congestions:\t\t%10u\n\n"
3028		       "     CS  sublayer:\t\t      PDUs\n"
3029		       "       TX:\t\t\t%10u\n"
3030		       "       RX:\t\t\t%10u\n"
3031		       "       dropped:\t\t\t%10u\n"
3032		       "       CRC errors:\t\t%10u\n"
3033		       "       protocol errors:\t\t%10u\n",
3034		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3035		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3036		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3037		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3038		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3039		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3040		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3041		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3042		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3043    
3044    if (!left--)
3045	return sprintf(page,"\n"
3046		       "   AUX:\t\t       allocation failures\n"
3047		       "     small b1:\t\t\t%10u\n"
3048		       "     large b1:\t\t\t%10u\n"
3049		       "     small b2:\t\t\t%10u\n"
3050		       "     large b2:\t\t\t%10u\n"
3051		       "     RX PDUs:\t\t\t%10u\n"
3052		       "     TX PDUs:\t\t\t%10lu\n",
3053		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3054		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3055		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3056		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3057		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3058		       fore200e->tx_sat);
3059    
3060    if (!left--)
3061	return sprintf(page,"\n"
3062		       " receive carrier:\t\t\t%s\n",
3063		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3064    
3065    if (!left--) {
3066        return sprintf(page,"\n"
3067		       " VCCs:\n  address   VPI VCI   AAL "
3068		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3069    }
3070
3071    for (i = 0; i < NBR_CONNECT; i++) {
3072
3073	vcc = fore200e->vc_map[i].vcc;
3074
3075	if (vcc == NULL)
3076	    continue;
3077
3078	spin_lock_irqsave(&fore200e->q_lock, flags);
3079
3080	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3081
3082	    fore200e_vcc = FORE200E_VCC(vcc);
3083	    ASSERT(fore200e_vcc);
3084
3085	    len = sprintf(page,
3086			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3087			  vcc,
3088			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3089			  fore200e_vcc->tx_pdu,
3090			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3091			  fore200e_vcc->tx_max_pdu,
3092			  fore200e_vcc->rx_pdu,
3093			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3094			  fore200e_vcc->rx_max_pdu);
3095
3096	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3097	    return len;
3098	}
3099
3100	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3101    }
3102    
3103    return 0;
3104}
3105
3106module_init(fore200e_module_init);
3107module_exit(fore200e_module_cleanup);
3108
3109
3110static const struct atmdev_ops fore200e_ops =
3111{
3112	.open       = fore200e_open,
3113	.close      = fore200e_close,
3114	.ioctl      = fore200e_ioctl,
3115	.getsockopt = fore200e_getsockopt,
3116	.setsockopt = fore200e_setsockopt,
3117	.send       = fore200e_send,
3118	.change_qos = fore200e_change_qos,
3119	.proc_read  = fore200e_proc_read,
3120	.owner      = THIS_MODULE
3121};
3122
3123
3124static const struct fore200e_bus fore200e_bus[] = {
3125#ifdef CONFIG_PCI
3126    { "PCA-200E", "pca200e", 32, 4, 32, 
3127      fore200e_pca_read,
3128      fore200e_pca_write,
3129      fore200e_pca_dma_map,
3130      fore200e_pca_dma_unmap,
3131      fore200e_pca_dma_sync_for_cpu,
3132      fore200e_pca_dma_sync_for_device,
3133      fore200e_pca_dma_chunk_alloc,
3134      fore200e_pca_dma_chunk_free,
3135      fore200e_pca_configure,
3136      fore200e_pca_map,
3137      fore200e_pca_reset,
3138      fore200e_pca_prom_read,
3139      fore200e_pca_unmap,
3140      NULL,
3141      fore200e_pca_irq_check,
3142      fore200e_pca_irq_ack,
3143      fore200e_pca_proc_read,
3144    },
3145#endif
3146#ifdef CONFIG_SBUS
3147    { "SBA-200E", "sba200e", 32, 64, 32,
3148      fore200e_sba_read,
3149      fore200e_sba_write,
3150      fore200e_sba_dma_map,
3151      fore200e_sba_dma_unmap,
3152      fore200e_sba_dma_sync_for_cpu,
3153      fore200e_sba_dma_sync_for_device,
3154      fore200e_sba_dma_chunk_alloc,
3155      fore200e_sba_dma_chunk_free,
3156      fore200e_sba_configure,
3157      fore200e_sba_map,
3158      fore200e_sba_reset,
3159      fore200e_sba_prom_read,
3160      fore200e_sba_unmap,
3161      fore200e_sba_irq_enable,
3162      fore200e_sba_irq_check,
3163      fore200e_sba_irq_ack,
3164      fore200e_sba_proc_read,
3165    },
3166#endif
3167    {}
3168};
3169
3170MODULE_LICENSE("GPL");
3171#ifdef CONFIG_PCI
3172#ifdef __LITTLE_ENDIAN__
3173MODULE_FIRMWARE("pca200e.bin");
3174#else
3175MODULE_FIRMWARE("pca200e_ecd.bin2");
3176#endif
3177#endif /* CONFIG_PCI */
3178#ifdef CONFIG_SBUS
3179MODULE_FIRMWARE("sba200e_ecd.bin2");
3180#endif