Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11*/
12
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/capability.h>
18#include <linux/interrupt.h>
19#include <linux/bitops.h>
20#include <linux/pci.h>
21#include <linux/module.h>
22#include <linux/atmdev.h>
23#include <linux/sonet.h>
24#include <linux/atm_suni.h>
25#include <linux/dma-mapping.h>
26#include <linux/delay.h>
27#include <linux/firmware.h>
28#include <linux/pgtable.h>
29#include <asm/io.h>
30#include <asm/string.h>
31#include <asm/page.h>
32#include <asm/irq.h>
33#include <asm/dma.h>
34#include <asm/byteorder.h>
35#include <linux/uaccess.h>
36#include <linux/atomic.h>
37
38#ifdef CONFIG_SBUS
39#include <linux/of.h>
40#include <linux/of_device.h>
41#include <asm/idprom.h>
42#include <asm/openprom.h>
43#include <asm/oplib.h>
44#endif
45
46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47#define FORE200E_USE_TASKLET
48#endif
49
50#if 0 /* enable the debugging code of the buffer supply queues */
51#define FORE200E_BSQ_DEBUG
52#endif
53
54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55#define FORE200E_52BYTE_AAL0_SDU
56#endif
57
58#include "fore200e.h"
59#include "suni.h"
60
61#define FORE200E_VERSION "0.3e"
62
63#define FORE200E "fore200e: "
64
65#if 0 /* override .config */
66#define CONFIG_ATM_FORE200E_DEBUG 1
67#endif
68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70 printk(FORE200E format, ##args); } while (0)
71#else
72#define DPRINTK(level, format, args...) do {} while (0)
73#endif
74
75
76#define FORE200E_ALIGN(addr, alignment) \
77 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78
79#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
80
81#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
82
83#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
84
85#if 1
86#define ASSERT(expr) if (!(expr)) { \
87 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88 __func__, __LINE__, #expr); \
89 panic(FORE200E "%s", __func__); \
90 }
91#else
92#define ASSERT(expr) do {} while (0)
93#endif
94
95
96static const struct atmdev_ops fore200e_ops;
97
98static LIST_HEAD(fore200e_boards);
99
100
101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104
105
106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107 { BUFFER_S1_NBR, BUFFER_L1_NBR },
108 { BUFFER_S2_NBR, BUFFER_L2_NBR }
109};
110
111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114};
115
116
117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119#endif
120
121
122#if 0 /* currently unused */
123static int
124fore200e_fore2atm_aal(enum fore200e_aal aal)
125{
126 switch(aal) {
127 case FORE200E_AAL0: return ATM_AAL0;
128 case FORE200E_AAL34: return ATM_AAL34;
129 case FORE200E_AAL5: return ATM_AAL5;
130 }
131
132 return -EINVAL;
133}
134#endif
135
136
137static enum fore200e_aal
138fore200e_atm2fore_aal(int aal)
139{
140 switch(aal) {
141 case ATM_AAL0: return FORE200E_AAL0;
142 case ATM_AAL34: return FORE200E_AAL34;
143 case ATM_AAL1:
144 case ATM_AAL2:
145 case ATM_AAL5: return FORE200E_AAL5;
146 }
147
148 return -EINVAL;
149}
150
151
152static char*
153fore200e_irq_itoa(int irq)
154{
155 static char str[8];
156 sprintf(str, "%d", irq);
157 return str;
158}
159
160
161/* allocate and align a chunk of memory intended to hold the data behing exchanged
162 between the driver and the adapter (using streaming DVMA) */
163
164static int
165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166{
167 unsigned long offset = 0;
168
169 if (alignment <= sizeof(int))
170 alignment = 0;
171
172 chunk->alloc_size = size + alignment;
173 chunk->direction = direction;
174
175 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176 if (chunk->alloc_addr == NULL)
177 return -ENOMEM;
178
179 if (alignment > 0)
180 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
181
182 chunk->align_addr = chunk->alloc_addr + offset;
183
184 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185 size, direction);
186 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187 kfree(chunk->alloc_addr);
188 return -ENOMEM;
189 }
190 return 0;
191}
192
193
194/* free a chunk of memory */
195
196static void
197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198{
199 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200 chunk->direction);
201 kfree(chunk->alloc_addr);
202}
203
204/*
205 * Allocate a DMA consistent chunk of memory intended to act as a communication
206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207 * and the adapter.
208 */
209static int
210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211 int size, int nbr, int alignment)
212{
213 /* returned chunks are page-aligned */
214 chunk->alloc_size = size * nbr;
215 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216 &chunk->dma_addr, GFP_KERNEL);
217 if (!chunk->alloc_addr)
218 return -ENOMEM;
219 chunk->align_addr = chunk->alloc_addr;
220 return 0;
221}
222
223/*
224 * Free a DMA consistent chunk of memory.
225 */
226static void
227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228{
229 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230 chunk->dma_addr);
231}
232
233static void
234fore200e_spin(int msecs)
235{
236 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237 while (time_before(jiffies, timeout));
238}
239
240
241static int
242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243{
244 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245 int ok;
246
247 mb();
248 do {
249 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250 break;
251
252 } while (time_before(jiffies, timeout));
253
254#if 1
255 if (!ok) {
256 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257 *addr, val);
258 }
259#endif
260
261 return ok;
262}
263
264
265static int
266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267{
268 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269 int ok;
270
271 do {
272 if ((ok = (fore200e->bus->read(addr) == val)))
273 break;
274
275 } while (time_before(jiffies, timeout));
276
277#if 1
278 if (!ok) {
279 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280 fore200e->bus->read(addr), val);
281 }
282#endif
283
284 return ok;
285}
286
287
288static void
289fore200e_free_rx_buf(struct fore200e* fore200e)
290{
291 int scheme, magn, nbr;
292 struct buffer* buffer;
293
294 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296
297 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298
299 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300
301 struct chunk* data = &buffer[ nbr ].data;
302
303 if (data->alloc_addr != NULL)
304 fore200e_chunk_free(fore200e, data);
305 }
306 }
307 }
308 }
309}
310
311
312static void
313fore200e_uninit_bs_queue(struct fore200e* fore200e)
314{
315 int scheme, magn;
316
317 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319
320 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
321 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322
323 if (status->alloc_addr)
324 fore200e_dma_chunk_free(fore200e, status);
325
326 if (rbd_block->alloc_addr)
327 fore200e_dma_chunk_free(fore200e, rbd_block);
328 }
329 }
330}
331
332
333static int
334fore200e_reset(struct fore200e* fore200e, int diag)
335{
336 int ok;
337
338 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339
340 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341
342 fore200e->bus->reset(fore200e);
343
344 if (diag) {
345 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346 if (ok == 0) {
347
348 printk(FORE200E "device %s self-test failed\n", fore200e->name);
349 return -ENODEV;
350 }
351
352 printk(FORE200E "device %s self-test passed\n", fore200e->name);
353
354 fore200e->state = FORE200E_STATE_RESET;
355 }
356
357 return 0;
358}
359
360
361static void
362fore200e_shutdown(struct fore200e* fore200e)
363{
364 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365 fore200e->name, fore200e->phys_base,
366 fore200e_irq_itoa(fore200e->irq));
367
368 if (fore200e->state > FORE200E_STATE_RESET) {
369 /* first, reset the board to prevent further interrupts or data transfers */
370 fore200e_reset(fore200e, 0);
371 }
372
373 /* then, release all allocated resources */
374 switch(fore200e->state) {
375
376 case FORE200E_STATE_COMPLETE:
377 kfree(fore200e->stats);
378
379 fallthrough;
380 case FORE200E_STATE_IRQ:
381 free_irq(fore200e->irq, fore200e->atm_dev);
382
383 fallthrough;
384 case FORE200E_STATE_ALLOC_BUF:
385 fore200e_free_rx_buf(fore200e);
386
387 fallthrough;
388 case FORE200E_STATE_INIT_BSQ:
389 fore200e_uninit_bs_queue(fore200e);
390
391 fallthrough;
392 case FORE200E_STATE_INIT_RXQ:
393 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395
396 fallthrough;
397 case FORE200E_STATE_INIT_TXQ:
398 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400
401 fallthrough;
402 case FORE200E_STATE_INIT_CMDQ:
403 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404
405 fallthrough;
406 case FORE200E_STATE_INITIALIZE:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_START_FW:
410 /* nothing to do for that state */
411
412 case FORE200E_STATE_RESET:
413 /* nothing to do for that state */
414
415 case FORE200E_STATE_MAP:
416 fore200e->bus->unmap(fore200e);
417
418 fallthrough;
419 case FORE200E_STATE_CONFIGURE:
420 /* nothing to do for that state */
421
422 case FORE200E_STATE_REGISTER:
423 /* XXX shouldn't we *start* by deregistering the device? */
424 atm_dev_deregister(fore200e->atm_dev);
425
426 case FORE200E_STATE_BLANK:
427 /* nothing to do for that state */
428 break;
429 }
430}
431
432
433#ifdef CONFIG_PCI
434
435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436{
437 /* on big-endian hosts, the board is configured to convert
438 the endianess of slave RAM accesses */
439 return le32_to_cpu(readl(addr));
440}
441
442
443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444{
445 /* on big-endian hosts, the board is configured to convert
446 the endianess of slave RAM accesses */
447 writel(cpu_to_le32(val), addr);
448}
449
450static int
451fore200e_pca_irq_check(struct fore200e* fore200e)
452{
453 /* this is a 1 bit register */
454 int irq_posted = readl(fore200e->regs.pca.psr);
455
456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459 }
460#endif
461
462 return irq_posted;
463}
464
465
466static void
467fore200e_pca_irq_ack(struct fore200e* fore200e)
468{
469 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470}
471
472
473static void
474fore200e_pca_reset(struct fore200e* fore200e)
475{
476 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477 fore200e_spin(10);
478 writel(0, fore200e->regs.pca.hcr);
479}
480
481
482static int fore200e_pca_map(struct fore200e* fore200e)
483{
484 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485
486 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487
488 if (fore200e->virt_base == NULL) {
489 printk(FORE200E "can't map device %s\n", fore200e->name);
490 return -EFAULT;
491 }
492
493 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494
495 /* gain access to the PCA specific registers */
496 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499
500 fore200e->state = FORE200E_STATE_MAP;
501 return 0;
502}
503
504
505static void
506fore200e_pca_unmap(struct fore200e* fore200e)
507{
508 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509
510 if (fore200e->virt_base != NULL)
511 iounmap(fore200e->virt_base);
512}
513
514
515static int fore200e_pca_configure(struct fore200e *fore200e)
516{
517 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518 u8 master_ctrl, latency;
519
520 DPRINTK(2, "device %s being configured\n", fore200e->name);
521
522 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524 return -EIO;
525 }
526
527 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528
529 master_ctrl = master_ctrl
530#if defined(__BIG_ENDIAN)
531 /* request the PCA board to convert the endianess of slave RAM accesses */
532 | PCA200E_CTRL_CONVERT_ENDIAN
533#endif
534#if 0
535 | PCA200E_CTRL_DIS_CACHE_RD
536 | PCA200E_CTRL_DIS_WRT_INVAL
537 | PCA200E_CTRL_ENA_CONT_REQ_MODE
538 | PCA200E_CTRL_2_CACHE_WRT_INVAL
539#endif
540 | PCA200E_CTRL_LARGE_PCI_BURSTS;
541
542 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543
544 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546 this may impact the performances of other PCI devices on the same bus, though */
547 latency = 192;
548 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549
550 fore200e->state = FORE200E_STATE_CONFIGURE;
551 return 0;
552}
553
554
555static int __init
556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557{
558 struct host_cmdq* cmdq = &fore200e->host_cmdq;
559 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560 struct prom_opcode opcode;
561 int ok;
562 u32 prom_dma;
563
564 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565
566 opcode.opcode = OPCODE_GET_PROM;
567 opcode.pad = 0;
568
569 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570 DMA_FROM_DEVICE);
571 if (dma_mapping_error(fore200e->dev, prom_dma))
572 return -ENOMEM;
573
574 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575
576 *entry->status = STATUS_PENDING;
577
578 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579
580 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581
582 *entry->status = STATUS_FREE;
583
584 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585
586 if (ok == 0) {
587 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588 return -EIO;
589 }
590
591#if defined(__BIG_ENDIAN)
592
593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594
595 /* MAC address is stored as little-endian */
596 swap_here(&prom->mac_addr[0]);
597 swap_here(&prom->mac_addr[4]);
598#endif
599
600 return 0;
601}
602
603
604static int
605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606{
607 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608
609 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
610 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611}
612
613static const struct fore200e_bus fore200e_pci_ops = {
614 .model_name = "PCA-200E",
615 .proc_name = "pca200e",
616 .descr_alignment = 32,
617 .buffer_alignment = 4,
618 .status_alignment = 32,
619 .read = fore200e_pca_read,
620 .write = fore200e_pca_write,
621 .configure = fore200e_pca_configure,
622 .map = fore200e_pca_map,
623 .reset = fore200e_pca_reset,
624 .prom_read = fore200e_pca_prom_read,
625 .unmap = fore200e_pca_unmap,
626 .irq_check = fore200e_pca_irq_check,
627 .irq_ack = fore200e_pca_irq_ack,
628 .proc_read = fore200e_pca_proc_read,
629};
630#endif /* CONFIG_PCI */
631
632#ifdef CONFIG_SBUS
633
634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635{
636 return sbus_readl(addr);
637}
638
639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640{
641 sbus_writel(val, addr);
642}
643
644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645{
646 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648}
649
650static int fore200e_sba_irq_check(struct fore200e *fore200e)
651{
652 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653}
654
655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656{
657 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659}
660
661static void fore200e_sba_reset(struct fore200e *fore200e)
662{
663 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664 fore200e_spin(10);
665 fore200e->bus->write(0, fore200e->regs.sba.hcr);
666}
667
668static int __init fore200e_sba_map(struct fore200e *fore200e)
669{
670 struct platform_device *op = to_platform_device(fore200e->dev);
671 unsigned int bursts;
672
673 /* gain access to the SBA specific registers */
674 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678
679 if (!fore200e->virt_base) {
680 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681 return -EFAULT;
682 }
683
684 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685
686 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687
688 /* get the supported DVMA burst sizes */
689 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690
691 if (sbus_can_dma_64bit())
692 sbus_set_sbus64(&op->dev, bursts);
693
694 fore200e->state = FORE200E_STATE_MAP;
695 return 0;
696}
697
698static void fore200e_sba_unmap(struct fore200e *fore200e)
699{
700 struct platform_device *op = to_platform_device(fore200e->dev);
701
702 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
706}
707
708static int __init fore200e_sba_configure(struct fore200e *fore200e)
709{
710 fore200e->state = FORE200E_STATE_CONFIGURE;
711 return 0;
712}
713
714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715{
716 struct platform_device *op = to_platform_device(fore200e->dev);
717 const u8 *prop;
718 int len;
719
720 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721 if (!prop)
722 return -ENODEV;
723 memcpy(&prom->mac_addr[4], prop, 4);
724
725 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726 if (!prop)
727 return -ENODEV;
728 memcpy(&prom->mac_addr[2], prop, 4);
729
730 prom->serial_number = of_getintprop_default(op->dev.of_node,
731 "serialnumber", 0);
732 prom->hw_revision = of_getintprop_default(op->dev.of_node,
733 "promversion", 0);
734
735 return 0;
736}
737
738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739{
740 struct platform_device *op = to_platform_device(fore200e->dev);
741 const struct linux_prom_registers *regs;
742
743 regs = of_get_property(op->dev.of_node, "reg", NULL);
744
745 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
746 (regs ? regs->which_io : 0), op->dev.of_node);
747}
748
749static const struct fore200e_bus fore200e_sbus_ops = {
750 .model_name = "SBA-200E",
751 .proc_name = "sba200e",
752 .descr_alignment = 32,
753 .buffer_alignment = 64,
754 .status_alignment = 32,
755 .read = fore200e_sba_read,
756 .write = fore200e_sba_write,
757 .configure = fore200e_sba_configure,
758 .map = fore200e_sba_map,
759 .reset = fore200e_sba_reset,
760 .prom_read = fore200e_sba_prom_read,
761 .unmap = fore200e_sba_unmap,
762 .irq_enable = fore200e_sba_irq_enable,
763 .irq_check = fore200e_sba_irq_check,
764 .irq_ack = fore200e_sba_irq_ack,
765 .proc_read = fore200e_sba_proc_read,
766};
767#endif /* CONFIG_SBUS */
768
769static void
770fore200e_tx_irq(struct fore200e* fore200e)
771{
772 struct host_txq* txq = &fore200e->host_txq;
773 struct host_txq_entry* entry;
774 struct atm_vcc* vcc;
775 struct fore200e_vc_map* vc_map;
776
777 if (fore200e->host_txq.txing == 0)
778 return;
779
780 for (;;) {
781
782 entry = &txq->host_entry[ txq->tail ];
783
784 if ((*entry->status & STATUS_COMPLETE) == 0) {
785 break;
786 }
787
788 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
789 entry, txq->tail, entry->vc_map, entry->skb);
790
791 /* free copy of misaligned data */
792 kfree(entry->data);
793
794 /* remove DMA mapping */
795 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796 DMA_TO_DEVICE);
797
798 vc_map = entry->vc_map;
799
800 /* vcc closed since the time the entry was submitted for tx? */
801 if ((vc_map->vcc == NULL) ||
802 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803
804 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805 fore200e->atm_dev->number);
806
807 dev_kfree_skb_any(entry->skb);
808 }
809 else {
810 ASSERT(vc_map->vcc);
811
812 /* vcc closed then immediately re-opened? */
813 if (vc_map->incarn != entry->incarn) {
814
815 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
816 if the same vcc is immediately re-opened, those pending PDUs must
817 not be popped after the completion of their emission, as they refer
818 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819 would be decremented by the size of the (unrelated) skb, possibly
820 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821 we thus bind the tx entry to the current incarnation of the vcc
822 when the entry is submitted for tx. When the tx later completes,
823 if the incarnation number of the tx entry does not match the one
824 of the vcc, then this implies that the vcc has been closed then re-opened.
825 we thus just drop the skb here. */
826
827 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828 fore200e->atm_dev->number);
829
830 dev_kfree_skb_any(entry->skb);
831 }
832 else {
833 vcc = vc_map->vcc;
834 ASSERT(vcc);
835
836 /* notify tx completion */
837 if (vcc->pop) {
838 vcc->pop(vcc, entry->skb);
839 }
840 else {
841 dev_kfree_skb_any(entry->skb);
842 }
843
844 /* check error condition */
845 if (*entry->status & STATUS_ERROR)
846 atomic_inc(&vcc->stats->tx_err);
847 else
848 atomic_inc(&vcc->stats->tx);
849 }
850 }
851
852 *entry->status = STATUS_FREE;
853
854 fore200e->host_txq.txing--;
855
856 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857 }
858}
859
860
861#ifdef FORE200E_BSQ_DEBUG
862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863{
864 struct buffer* buffer;
865 int count = 0;
866
867 buffer = bsq->freebuf;
868 while (buffer) {
869
870 if (buffer->supplied) {
871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872 where, scheme, magn, buffer->index);
873 }
874
875 if (buffer->magn != magn) {
876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877 where, scheme, magn, buffer->index, buffer->magn);
878 }
879
880 if (buffer->scheme != scheme) {
881 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882 where, scheme, magn, buffer->index, buffer->scheme);
883 }
884
885 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887 where, scheme, magn, buffer->index);
888 }
889
890 count++;
891 buffer = buffer->next;
892 }
893
894 if (count != bsq->freebuf_count) {
895 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896 where, scheme, magn, count, bsq->freebuf_count);
897 }
898 return 0;
899}
900#endif
901
902
903static void
904fore200e_supply(struct fore200e* fore200e)
905{
906 int scheme, magn, i;
907
908 struct host_bsq* bsq;
909 struct host_bsq_entry* entry;
910 struct buffer* buffer;
911
912 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914
915 bsq = &fore200e->host_bsq[ scheme ][ magn ];
916
917#ifdef FORE200E_BSQ_DEBUG
918 bsq_audit(1, bsq, scheme, magn);
919#endif
920 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921
922 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924
925 entry = &bsq->host_entry[ bsq->head ];
926
927 for (i = 0; i < RBD_BLK_SIZE; i++) {
928
929 /* take the first buffer in the free buffer list */
930 buffer = bsq->freebuf;
931 if (!buffer) {
932 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933 scheme, magn, bsq->freebuf_count);
934 return;
935 }
936 bsq->freebuf = buffer->next;
937
938#ifdef FORE200E_BSQ_DEBUG
939 if (buffer->supplied)
940 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941 scheme, magn, buffer->index);
942 buffer->supplied = 1;
943#endif
944 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
946 }
947
948 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949
950 /* decrease accordingly the number of free rx buffers */
951 bsq->freebuf_count -= RBD_BLK_SIZE;
952
953 *entry->status = STATUS_PENDING;
954 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955 }
956 }
957 }
958}
959
960
961static int
962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963{
964 struct sk_buff* skb;
965 struct buffer* buffer;
966 struct fore200e_vcc* fore200e_vcc;
967 int i, pdu_len = 0;
968#ifdef FORE200E_52BYTE_AAL0_SDU
969 u32 cell_header = 0;
970#endif
971
972 ASSERT(vcc);
973
974 fore200e_vcc = FORE200E_VCC(vcc);
975 ASSERT(fore200e_vcc);
976
977#ifdef FORE200E_52BYTE_AAL0_SDU
978 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979
980 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
984 rpd->atm_header.clp;
985 pdu_len = 4;
986 }
987#endif
988
989 /* compute total PDU length */
990 for (i = 0; i < rpd->nseg; i++)
991 pdu_len += rpd->rsd[ i ].length;
992
993 skb = alloc_skb(pdu_len, GFP_ATOMIC);
994 if (skb == NULL) {
995 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996
997 atomic_inc(&vcc->stats->rx_drop);
998 return -ENOMEM;
999 }
1000
1001 __net_timestamp(skb);
1002
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004 if (cell_header) {
1005 *((u32*)skb_put(skb, 4)) = cell_header;
1006 }
1007#endif
1008
1009 /* reassemble segments */
1010 for (i = 0; i < rpd->nseg; i++) {
1011
1012 /* rebuild rx buffer address from rsd handle */
1013 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014
1015 /* Make device DMA transfer visible to CPU. */
1016 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017 rpd->rsd[i].length, DMA_FROM_DEVICE);
1018
1019 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021 /* Now let the device get at it again. */
1022 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023 rpd->rsd[i].length, DMA_FROM_DEVICE);
1024 }
1025
1026 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027
1028 if (pdu_len < fore200e_vcc->rx_min_pdu)
1029 fore200e_vcc->rx_min_pdu = pdu_len;
1030 if (pdu_len > fore200e_vcc->rx_max_pdu)
1031 fore200e_vcc->rx_max_pdu = pdu_len;
1032 fore200e_vcc->rx_pdu++;
1033
1034 /* push PDU */
1035 if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038 vcc->itf, vcc->vpi, vcc->vci);
1039
1040 dev_kfree_skb_any(skb);
1041
1042 atomic_inc(&vcc->stats->rx_drop);
1043 return -ENOMEM;
1044 }
1045
1046 vcc->push(vcc, skb);
1047 atomic_inc(&vcc->stats->rx);
1048
1049 return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056 struct host_bsq* bsq;
1057 struct buffer* buffer;
1058 int i;
1059
1060 for (i = 0; i < rpd->nseg; i++) {
1061
1062 /* rebuild rx buffer address from rsd handle */
1063 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070 if (buffer->supplied == 0)
1071 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072 buffer->scheme, buffer->magn, buffer->index);
1073 buffer->supplied = 0;
1074#endif
1075
1076 /* re-insert the buffer into the free buffer list */
1077 buffer->next = bsq->freebuf;
1078 bsq->freebuf = buffer;
1079
1080 /* then increment the number of free rx buffers */
1081 bsq->freebuf_count++;
1082 }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089 struct host_rxq* rxq = &fore200e->host_rxq;
1090 struct host_rxq_entry* entry;
1091 struct atm_vcc* vcc;
1092 struct fore200e_vc_map* vc_map;
1093
1094 for (;;) {
1095
1096 entry = &rxq->host_entry[ rxq->head ];
1097
1098 /* no more received PDUs */
1099 if ((*entry->status & STATUS_COMPLETE) == 0)
1100 break;
1101
1102 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104 if ((vc_map->vcc == NULL) ||
1105 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108 fore200e->atm_dev->number,
1109 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110 }
1111 else {
1112 vcc = vc_map->vcc;
1113 ASSERT(vcc);
1114
1115 if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118 }
1119 else {
1120 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121 fore200e->atm_dev->number,
1122 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123 atomic_inc(&vcc->stats->rx_err);
1124 }
1125 }
1126
1127 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129 fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131 /* rewrite the rpd address to ack the received PDU */
1132 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133 *entry->status = STATUS_FREE;
1134
1135 fore200e_supply(fore200e);
1136 }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&fore200e->q_lock, flags);
1147 fore200e_rx_irq(fore200e);
1148 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150 spin_lock_irqsave(&fore200e->q_lock, flags);
1151 fore200e_tx_irq(fore200e);
1152 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162 if (fore200e->bus->irq_check(fore200e) == 0) {
1163
1164 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165 return IRQ_NONE;
1166 }
1167 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170 tasklet_schedule(&fore200e->tx_tasklet);
1171 tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173 fore200e_irq(fore200e);
1174#endif
1175
1176 fore200e->bus->irq_ack(fore200e);
1177 return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185 struct fore200e* fore200e = (struct fore200e*) data;
1186 unsigned long flags;
1187
1188 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190 spin_lock_irqsave(&fore200e->q_lock, flags);
1191 fore200e_tx_irq(fore200e);
1192 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199 struct fore200e* fore200e = (struct fore200e*) data;
1200 unsigned long flags;
1201
1202 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204 spin_lock_irqsave(&fore200e->q_lock, flags);
1205 fore200e_rx_irq((struct fore200e*) data);
1206 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214 /* fairly balance the VCs over (identical) buffer schemes */
1215 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218 vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220 return scheme;
1221}
1222
1223
1224static int
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1228 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1229 struct activate_opcode activ_opcode;
1230 struct deactivate_opcode deactiv_opcode;
1231 struct vpvc vpvc;
1232 int ok;
1233 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236
1237 if (activate) {
1238 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239
1240 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241 activ_opcode.aal = aal;
1242 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243 activ_opcode.pad = 0;
1244 }
1245 else {
1246 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247 deactiv_opcode.pad = 0;
1248 }
1249
1250 vpvc.vci = vcc->vci;
1251 vpvc.vpi = vcc->vpi;
1252
1253 *entry->status = STATUS_PENDING;
1254
1255 if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258 mtu = 48;
1259#endif
1260 /* the MTU is not used by the cp, except in the case of AAL0 */
1261 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1262 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264 }
1265 else {
1266 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268 }
1269
1270 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272 *entry->status = STATUS_FREE;
1273
1274 if (ok == 0) {
1275 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277 return -EIO;
1278 }
1279
1280 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1281 activate ? "open" : "clos");
1282
1283 return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293
1294 /* compute the data cells to idle cells ratio from the tx PCR */
1295 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297 }
1298 else {
1299 /* disable rate control */
1300 rate->data_cells = rate->idle_cells = 0;
1301 }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1309 struct fore200e_vcc* fore200e_vcc;
1310 struct fore200e_vc_map* vc_map;
1311 unsigned long flags;
1312 int vci = vcc->vci;
1313 short vpi = vcc->vpi;
1314
1315 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318 spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321 if (vc_map->vcc) {
1322
1323 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325 printk(FORE200E "VC %d.%d.%d already in use\n",
1326 fore200e->atm_dev->number, vpi, vci);
1327
1328 return -EINVAL;
1329 }
1330
1331 vc_map->vcc = vcc;
1332
1333 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336 if (fore200e_vcc == NULL) {
1337 vc_map->vcc = NULL;
1338 return -ENOMEM;
1339 }
1340
1341 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348
1349 /* pseudo-CBR bandwidth requested? */
1350 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351
1352 mutex_lock(&fore200e->rate_mtx);
1353 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354 mutex_unlock(&fore200e->rate_mtx);
1355
1356 kfree(fore200e_vcc);
1357 vc_map->vcc = NULL;
1358 return -EAGAIN;
1359 }
1360
1361 /* reserve bandwidth */
1362 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363 mutex_unlock(&fore200e->rate_mtx);
1364 }
1365
1366 vcc->itf = vcc->dev->number;
1367
1368 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369 set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371 vcc->dev_data = fore200e_vcc;
1372
1373 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375 vc_map->vcc = NULL;
1376
1377 clear_bit(ATM_VF_ADDR, &vcc->flags);
1378 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380 vcc->dev_data = NULL;
1381
1382 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384 kfree(fore200e_vcc);
1385 return -EINVAL;
1386 }
1387
1388 /* compute rate control parameters */
1389 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390
1391 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392 set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1397 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398 }
1399
1400 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1403
1404 /* new incarnation of the vcc */
1405 vc_map->incarn = ++fore200e->incarn_count;
1406
1407 /* VC unusable before this flag is set */
1408 set_bit(ATM_VF_READY, &vcc->flags);
1409
1410 return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417 struct fore200e_vcc* fore200e_vcc;
1418 struct fore200e* fore200e;
1419 struct fore200e_vc_map* vc_map;
1420 unsigned long flags;
1421
1422 ASSERT(vcc);
1423 fore200e = FORE200E_DEV(vcc->dev);
1424
1425 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430 clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434 spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438 /* the vc is no longer considered as "in use" by fore200e_open() */
1439 vc_map->vcc = NULL;
1440
1441 vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443 fore200e_vcc = FORE200E_VCC(vcc);
1444 vcc->dev_data = NULL;
1445
1446 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448 /* release reserved bandwidth, if any */
1449 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451 mutex_lock(&fore200e->rate_mtx);
1452 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453 mutex_unlock(&fore200e->rate_mtx);
1454
1455 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456 }
1457
1458 clear_bit(ATM_VF_ADDR, &vcc->flags);
1459 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461 ASSERT(fore200e_vcc);
1462 kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469 struct fore200e* fore200e;
1470 struct fore200e_vcc* fore200e_vcc;
1471 struct fore200e_vc_map* vc_map;
1472 struct host_txq* txq;
1473 struct host_txq_entry* entry;
1474 struct tpd* tpd;
1475 struct tpd_haddr tpd_haddr;
1476 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1477 int tx_copy = 0;
1478 int tx_len = skb->len;
1479 u32* cell_header = NULL;
1480 unsigned char* skb_data;
1481 int skb_len;
1482 unsigned char* data;
1483 unsigned long flags;
1484
1485 if (!vcc)
1486 return -EINVAL;
1487
1488 fore200e = FORE200E_DEV(vcc->dev);
1489 fore200e_vcc = FORE200E_VCC(vcc);
1490
1491 if (!fore200e)
1492 return -EINVAL;
1493
1494 txq = &fore200e->host_txq;
1495 if (!fore200e_vcc)
1496 return -EINVAL;
1497
1498 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500 dev_kfree_skb_any(skb);
1501 return -EINVAL;
1502 }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506 cell_header = (u32*) skb->data;
1507 skb_data = skb->data + 4; /* skip 4-byte cell header */
1508 skb_len = tx_len = skb->len - 4;
1509
1510 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511 }
1512 else
1513#endif
1514 {
1515 skb_data = skb->data;
1516 skb_len = skb->len;
1517 }
1518
1519 if (((unsigned long)skb_data) & 0x3) {
1520
1521 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522 tx_copy = 1;
1523 tx_len = skb_len;
1524 }
1525
1526 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528 /* this simply NUKES the PCA board */
1529 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530 tx_copy = 1;
1531 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532 }
1533
1534 if (tx_copy) {
1535 data = kmalloc(tx_len, GFP_ATOMIC);
1536 if (data == NULL) {
1537 if (vcc->pop) {
1538 vcc->pop(vcc, skb);
1539 }
1540 else {
1541 dev_kfree_skb_any(skb);
1542 }
1543 return -ENOMEM;
1544 }
1545
1546 memcpy(data, skb_data, skb_len);
1547 if (skb_len < tx_len)
1548 memset(data + skb_len, 0x00, tx_len - skb_len);
1549 }
1550 else {
1551 data = skb_data;
1552 }
1553
1554 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555 ASSERT(vc_map->vcc == vcc);
1556
1557 retry_here:
1558
1559 spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561 entry = &txq->host_entry[ txq->head ];
1562
1563 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565 /* try to free completed tx queue entries */
1566 fore200e_tx_irq(fore200e);
1567
1568 if (*entry->status != STATUS_FREE) {
1569
1570 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572 /* retry once again? */
1573 if (--retry > 0) {
1574 udelay(50);
1575 goto retry_here;
1576 }
1577
1578 atomic_inc(&vcc->stats->tx_err);
1579
1580 fore200e->tx_sat++;
1581 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582 fore200e->name, fore200e->cp_queues->heartbeat);
1583 if (vcc->pop) {
1584 vcc->pop(vcc, skb);
1585 }
1586 else {
1587 dev_kfree_skb_any(skb);
1588 }
1589
1590 if (tx_copy)
1591 kfree(data);
1592
1593 return -ENOBUFS;
1594 }
1595 }
1596
1597 entry->incarn = vc_map->incarn;
1598 entry->vc_map = vc_map;
1599 entry->skb = skb;
1600 entry->data = tx_copy ? data : NULL;
1601
1602 tpd = entry->tpd;
1603 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604 DMA_TO_DEVICE);
1605 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606 if (tx_copy)
1607 kfree(data);
1608 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609 return -ENOMEM;
1610 }
1611 tpd->tsd[ 0 ].length = tx_len;
1612
1613 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614 txq->txing++;
1615
1616 /* The dma_map call above implies a dma_sync so the device can use it,
1617 * thus no explicit dma_sync call is necessary here.
1618 */
1619
1620 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1621 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622 tpd->tsd[0].length, skb_len);
1623
1624 if (skb_len < fore200e_vcc->tx_min_pdu)
1625 fore200e_vcc->tx_min_pdu = skb_len;
1626 if (skb_len > fore200e_vcc->tx_max_pdu)
1627 fore200e_vcc->tx_max_pdu = skb_len;
1628 fore200e_vcc->tx_pdu++;
1629
1630 /* set tx rate control information */
1631 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634 if (cell_header) {
1635 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640 }
1641 else {
1642 /* set the ATM header, common to all cells conveying the PDU */
1643 tpd->atm_header.clp = 0;
1644 tpd->atm_header.plt = 0;
1645 tpd->atm_header.vci = vcc->vci;
1646 tpd->atm_header.vpi = vcc->vpi;
1647 tpd->atm_header.gfc = 0;
1648 }
1649
1650 tpd->spec.length = tx_len;
1651 tpd->spec.nseg = 1;
1652 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1653 tpd->spec.intr = 1;
1654
1655 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1656 tpd_haddr.pad = 0;
1657 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1658
1659 *entry->status = STATUS_PENDING;
1660 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664 return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1672 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673 struct stats_opcode opcode;
1674 int ok;
1675 u32 stats_dma_addr;
1676
1677 if (fore200e->stats == NULL) {
1678 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679 if (fore200e->stats == NULL)
1680 return -ENOMEM;
1681 }
1682
1683 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684 sizeof(struct stats), DMA_FROM_DEVICE);
1685 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686 return -ENOMEM;
1687
1688 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690 opcode.opcode = OPCODE_GET_STATS;
1691 opcode.pad = 0;
1692
1693 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694
1695 *entry->status = STATUS_PENDING;
1696
1697 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701 *entry->status = STATUS_FREE;
1702
1703 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704
1705 if (ok == 0) {
1706 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707 return -EIO;
1708 }
1709
1710 return 0;
1711}
1712
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1718 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719 struct oc3_opcode opcode;
1720 int ok;
1721 u32 oc3_regs_dma_addr;
1722
1723 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727 opcode.opcode = OPCODE_GET_OC3;
1728 opcode.reg = 0;
1729 opcode.value = 0;
1730 opcode.mask = 0;
1731
1732 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733
1734 *entry->status = STATUS_PENDING;
1735
1736 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740 *entry->status = STATUS_FREE;
1741
1742 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743
1744 if (ok == 0) {
1745 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746 return -EIO;
1747 }
1748
1749 return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1758 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759 struct oc3_opcode opcode;
1760 int ok;
1761
1762 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766 opcode.opcode = OPCODE_SET_OC3;
1767 opcode.reg = reg;
1768 opcode.value = value;
1769 opcode.mask = mask;
1770
1771 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772
1773 *entry->status = STATUS_PENDING;
1774
1775 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779 *entry->status = STATUS_FREE;
1780
1781 if (ok == 0) {
1782 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783 return -EIO;
1784 }
1785
1786 return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793 u32 mct_value, mct_mask;
1794 int error;
1795
1796 if (!capable(CAP_NET_ADMIN))
1797 return -EPERM;
1798
1799 switch (loop_mode) {
1800
1801 case ATM_LM_NONE:
1802 mct_value = 0;
1803 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804 break;
1805
1806 case ATM_LM_LOC_PHY:
1807 mct_value = mct_mask = SUNI_MCT_DLE;
1808 break;
1809
1810 case ATM_LM_RMT_PHY:
1811 mct_value = mct_mask = SUNI_MCT_LLE;
1812 break;
1813
1814 default:
1815 return -EINVAL;
1816 }
1817
1818 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819 if (error == 0)
1820 fore200e->loop_mode = loop_mode;
1821
1822 return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829 struct sonet_stats tmp;
1830
1831 if (fore200e_getstats(fore200e) < 0)
1832 return -EIO;
1833
1834 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1842 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1845 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1846 be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848 if (arg)
1849 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1850
1851 return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858 struct fore200e* fore200e = FORE200E_DEV(dev);
1859
1860 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862 switch (cmd) {
1863
1864 case SONET_GETSTAT:
1865 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867 case SONET_GETDIAG:
1868 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870 case ATM_SETLOOP:
1871 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873 case ATM_GETLOOP:
1874 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876 case ATM_QUERYLOOP:
1877 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878 }
1879
1880 return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1889
1890 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892 return -EINVAL;
1893 }
1894
1895 DPRINTK(2, "change_qos %d.%d.%d, "
1896 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898 "available_cell_rate = %u",
1899 vcc->itf, vcc->vpi, vcc->vci,
1900 fore200e_traffic_class[ qos->txtp.traffic_class ],
1901 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904 flags, fore200e->available_cell_rate);
1905
1906 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908 mutex_lock(&fore200e->rate_mtx);
1909 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910 mutex_unlock(&fore200e->rate_mtx);
1911 return -EAGAIN;
1912 }
1913
1914 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917 mutex_unlock(&fore200e->rate_mtx);
1918
1919 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920
1921 /* update rate control parameters */
1922 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924 set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926 return 0;
1927 }
1928
1929 return -EINVAL;
1930}
1931
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939 return -EBUSY;
1940 }
1941
1942 printk(FORE200E "IRQ %s reserved for device %s\n",
1943 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950 fore200e->state = FORE200E_STATE_IRQ;
1951 return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958 int ok, i;
1959
1960 if (!prom)
1961 return -ENOMEM;
1962
1963 ok = fore200e->bus->prom_read(fore200e, prom);
1964 if (ok < 0) {
1965 kfree(prom);
1966 return -EBUSY;
1967 }
1968
1969 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970 fore200e->name,
1971 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1972 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973
1974 for (i = 0; i < ESI_LEN; i++) {
1975 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976 }
1977
1978 kfree(prom);
1979
1980 return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986 int scheme, magn, nbr, size, i;
1987
1988 struct host_bsq* bsq;
1989 struct buffer* buffer;
1990
1991 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997 size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001 /* allocate the array of receive buffers */
2002 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003 GFP_KERNEL);
2004
2005 if (buffer == NULL)
2006 return -ENOMEM;
2007
2008 bsq->freebuf = NULL;
2009
2010 for (i = 0; i < nbr; i++) {
2011
2012 buffer[ i ].scheme = scheme;
2013 buffer[ i ].magn = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015 buffer[ i ].index = i;
2016 buffer[ i ].supplied = 0;
2017#endif
2018
2019 /* allocate the receive buffer body */
2020 if (fore200e_chunk_alloc(fore200e,
2021 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022 DMA_FROM_DEVICE) < 0) {
2023
2024 while (i > 0)
2025 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026 kfree(buffer);
2027
2028 return -ENOMEM;
2029 }
2030
2031 /* insert the buffer into the free buffer list */
2032 buffer[ i ].next = bsq->freebuf;
2033 bsq->freebuf = &buffer[ i ];
2034 }
2035 /* all the buffers are free, initially */
2036 bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039 bsq_audit(3, bsq, scheme, magn);
2040#endif
2041 }
2042 }
2043
2044 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045 return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051 int scheme, magn, i;
2052
2053 struct host_bsq* bsq;
2054 struct cp_bsq_entry __iomem * cp_entry;
2055
2056 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063 /* allocate and align the array of status words */
2064 if (fore200e_dma_chunk_alloc(fore200e,
2065 &bsq->status,
2066 sizeof(enum status),
2067 QUEUE_SIZE_BS,
2068 fore200e->bus->status_alignment) < 0) {
2069 return -ENOMEM;
2070 }
2071
2072 /* allocate and align the array of receive buffer descriptors */
2073 if (fore200e_dma_chunk_alloc(fore200e,
2074 &bsq->rbd_block,
2075 sizeof(struct rbd_block),
2076 QUEUE_SIZE_BS,
2077 fore200e->bus->descr_alignment) < 0) {
2078
2079 fore200e_dma_chunk_free(fore200e, &bsq->status);
2080 return -ENOMEM;
2081 }
2082
2083 /* get the base address of the cp resident buffer supply queue entries */
2084 cp_entry = fore200e->virt_base +
2085 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086
2087 /* fill the host resident and cp resident buffer supply queue entries */
2088 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089
2090 bsq->host_entry[ i ].status =
2091 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092 bsq->host_entry[ i ].rbd_block =
2093 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094 bsq->host_entry[ i ].rbd_block_dma =
2095 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097
2098 *bsq->host_entry[ i ].status = STATUS_FREE;
2099
2100 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2101 &cp_entry[ i ].status_haddr);
2102 }
2103 }
2104 }
2105
2106 fore200e->state = FORE200E_STATE_INIT_BSQ;
2107 return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113 struct host_rxq* rxq = &fore200e->host_rxq;
2114 struct cp_rxq_entry __iomem * cp_entry;
2115 int i;
2116
2117 DPRINTK(2, "receive queue is being initialized\n");
2118
2119 /* allocate and align the array of status words */
2120 if (fore200e_dma_chunk_alloc(fore200e,
2121 &rxq->status,
2122 sizeof(enum status),
2123 QUEUE_SIZE_RX,
2124 fore200e->bus->status_alignment) < 0) {
2125 return -ENOMEM;
2126 }
2127
2128 /* allocate and align the array of receive PDU descriptors */
2129 if (fore200e_dma_chunk_alloc(fore200e,
2130 &rxq->rpd,
2131 sizeof(struct rpd),
2132 QUEUE_SIZE_RX,
2133 fore200e->bus->descr_alignment) < 0) {
2134
2135 fore200e_dma_chunk_free(fore200e, &rxq->status);
2136 return -ENOMEM;
2137 }
2138
2139 /* get the base address of the cp resident rx queue entries */
2140 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142 /* fill the host resident and cp resident rx entries */
2143 for (i=0; i < QUEUE_SIZE_RX; i++) {
2144
2145 rxq->host_entry[ i ].status =
2146 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147 rxq->host_entry[ i ].rpd =
2148 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149 rxq->host_entry[ i ].rpd_dma =
2150 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153 *rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2156 &cp_entry[ i ].status_haddr);
2157
2158 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159 &cp_entry[ i ].rpd_haddr);
2160 }
2161
2162 /* set the head entry of the queue */
2163 rxq->head = 0;
2164
2165 fore200e->state = FORE200E_STATE_INIT_RXQ;
2166 return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172 struct host_txq* txq = &fore200e->host_txq;
2173 struct cp_txq_entry __iomem * cp_entry;
2174 int i;
2175
2176 DPRINTK(2, "transmit queue is being initialized\n");
2177
2178 /* allocate and align the array of status words */
2179 if (fore200e_dma_chunk_alloc(fore200e,
2180 &txq->status,
2181 sizeof(enum status),
2182 QUEUE_SIZE_TX,
2183 fore200e->bus->status_alignment) < 0) {
2184 return -ENOMEM;
2185 }
2186
2187 /* allocate and align the array of transmit PDU descriptors */
2188 if (fore200e_dma_chunk_alloc(fore200e,
2189 &txq->tpd,
2190 sizeof(struct tpd),
2191 QUEUE_SIZE_TX,
2192 fore200e->bus->descr_alignment) < 0) {
2193
2194 fore200e_dma_chunk_free(fore200e, &txq->status);
2195 return -ENOMEM;
2196 }
2197
2198 /* get the base address of the cp resident tx queue entries */
2199 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201 /* fill the host resident and cp resident tx entries */
2202 for (i=0; i < QUEUE_SIZE_TX; i++) {
2203
2204 txq->host_entry[ i ].status =
2205 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206 txq->host_entry[ i ].tpd =
2207 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208 txq->host_entry[ i ].tpd_dma =
2209 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212 *txq->host_entry[ i ].status = STATUS_FREE;
2213
2214 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2215 &cp_entry[ i ].status_haddr);
2216
2217 /* although there is a one-to-one mapping of tx queue entries and tpds,
2218 we do not write here the DMA (physical) base address of each tpd into
2219 the related cp resident entry, because the cp relies on this write
2220 operation to detect that a new pdu has been submitted for tx */
2221 }
2222
2223 /* set the head and tail entries of the queue */
2224 txq->head = 0;
2225 txq->tail = 0;
2226
2227 fore200e->state = FORE200E_STATE_INIT_TXQ;
2228 return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2235 struct cp_cmdq_entry __iomem * cp_entry;
2236 int i;
2237
2238 DPRINTK(2, "command queue is being initialized\n");
2239
2240 /* allocate and align the array of status words */
2241 if (fore200e_dma_chunk_alloc(fore200e,
2242 &cmdq->status,
2243 sizeof(enum status),
2244 QUEUE_SIZE_CMD,
2245 fore200e->bus->status_alignment) < 0) {
2246 return -ENOMEM;
2247 }
2248
2249 /* get the base address of the cp resident cmd queue entries */
2250 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252 /* fill the host resident and cp resident cmd entries */
2253 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254
2255 cmdq->host_entry[ i ].status =
2256 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259 *cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2262 &cp_entry[ i ].status_haddr);
2263 }
2264
2265 /* set the head entry of the queue */
2266 cmdq->head = 0;
2267
2268 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269 return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274 enum buffer_scheme scheme,
2275 enum buffer_magn magn, int queue_length,
2276 int pool_size, int supply_blksize)
2277{
2278 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2281 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2283 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289 struct cp_queues __iomem * cpq;
2290 int ok, scheme, magn;
2291
2292 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294 mutex_init(&fore200e->rate_mtx);
2295 spin_lock_init(&fore200e->q_lock);
2296
2297 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299 /* enable cp to host interrupts */
2300 fore200e->bus->write(1, &cpq->imask);
2301
2302 if (fore200e->bus->irq_enable)
2303 fore200e->bus->irq_enable(fore200e);
2304
2305 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2309 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2310
2311 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2312 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2313
2314 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316 fore200e_param_bs_queue(fore200e, scheme, magn,
2317 QUEUE_SIZE_BS,
2318 fore200e_rx_buf_nbr[ scheme ][ magn ],
2319 RBD_BLK_SIZE);
2320
2321 /* issue the initialize command */
2322 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2323 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326 if (ok == 0) {
2327 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328 return -ENODEV;
2329 }
2330
2331 printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333 fore200e->state = FORE200E_STATE_INITIALIZE;
2334 return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343 printk("%c", c);
2344#endif
2345 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2353 int c;
2354
2355 while (time_before(jiffies, timeout)) {
2356
2357 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363 printk("%c", c & 0xFF);
2364#endif
2365 return c & 0xFF;
2366 }
2367 }
2368
2369 return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375 while (*str) {
2376
2377 /* the i960 monitor doesn't accept any new character if it has something to say */
2378 while (fore200e_monitor_getc(fore200e) >= 0);
2379
2380 fore200e_monitor_putc(fore200e, *str++);
2381 }
2382
2383 while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394 const struct firmware *firmware;
2395 const struct fw_header *fw_header;
2396 const __le32 *fw_data;
2397 u32 fw_size;
2398 u32 __iomem *load_addr;
2399 char buf[48];
2400 int err;
2401
2402 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405 return err;
2406 }
2407
2408 fw_data = (const __le32 *)firmware->data;
2409 fw_size = firmware->size / sizeof(u32);
2410 fw_header = (const struct fw_header *)firmware->data;
2411 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414 fore200e->name, load_addr, fw_size);
2415
2416 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418 goto release;
2419 }
2420
2421 for (; fw_size--; fw_data++, load_addr++)
2422 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427 /* reported to be required by SBA cards on some sparc64 hosts */
2428 fore200e_spin(100);
2429#endif
2430
2431 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432 fore200e_monitor_puts(fore200e, buf);
2433
2434 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436 goto release;
2437 }
2438
2439 printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441 fore200e->state = FORE200E_STATE_START_FW;
2442 err = 0;
2443
2444release:
2445 release_firmware(firmware);
2446 return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452 struct atm_dev* atm_dev;
2453
2454 DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457 -1, NULL);
2458 if (atm_dev == NULL) {
2459 printk(FORE200E "unable to register device %s\n", fore200e->name);
2460 return -ENODEV;
2461 }
2462
2463 atm_dev->dev_data = fore200e;
2464 fore200e->atm_dev = atm_dev;
2465
2466 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469 fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471 fore200e->state = FORE200E_STATE_REGISTER;
2472 return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478 if (fore200e_register(fore200e, parent) < 0)
2479 return -ENODEV;
2480
2481 if (fore200e->bus->configure(fore200e) < 0)
2482 return -ENODEV;
2483
2484 if (fore200e->bus->map(fore200e) < 0)
2485 return -ENODEV;
2486
2487 if (fore200e_reset(fore200e, 1) < 0)
2488 return -ENODEV;
2489
2490 if (fore200e_load_and_start_fw(fore200e) < 0)
2491 return -ENODEV;
2492
2493 if (fore200e_initialize(fore200e) < 0)
2494 return -ENODEV;
2495
2496 if (fore200e_init_cmd_queue(fore200e) < 0)
2497 return -ENOMEM;
2498
2499 if (fore200e_init_tx_queue(fore200e) < 0)
2500 return -ENOMEM;
2501
2502 if (fore200e_init_rx_queue(fore200e) < 0)
2503 return -ENOMEM;
2504
2505 if (fore200e_init_bs_queue(fore200e) < 0)
2506 return -ENOMEM;
2507
2508 if (fore200e_alloc_rx_buf(fore200e) < 0)
2509 return -ENOMEM;
2510
2511 if (fore200e_get_esi(fore200e) < 0)
2512 return -EIO;
2513
2514 if (fore200e_irq_request(fore200e) < 0)
2515 return -EBUSY;
2516
2517 fore200e_supply(fore200e);
2518
2519 /* all done, board initialization is now complete */
2520 fore200e->state = FORE200E_STATE_COMPLETE;
2521 return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528 const struct of_device_id *match;
2529 struct fore200e *fore200e;
2530 static int index = 0;
2531 int err;
2532
2533 match = of_match_device(fore200e_sba_match, &op->dev);
2534 if (!match)
2535 return -EINVAL;
2536
2537 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538 if (!fore200e)
2539 return -ENOMEM;
2540
2541 fore200e->bus = &fore200e_sbus_ops;
2542 fore200e->dev = &op->dev;
2543 fore200e->irq = op->archdata.irqs[0];
2544 fore200e->phys_base = op->resource[0].start;
2545
2546 sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548 err = fore200e_init(fore200e, &op->dev);
2549 if (err < 0) {
2550 fore200e_shutdown(fore200e);
2551 kfree(fore200e);
2552 return err;
2553 }
2554
2555 index++;
2556 dev_set_drvdata(&op->dev, fore200e);
2557
2558 return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565 fore200e_shutdown(fore200e);
2566 kfree(fore200e);
2567
2568 return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572 {
2573 .name = SBA200E_PROM_NAME,
2574 },
2575 {},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580 .driver = {
2581 .name = "fore_200e",
2582 .of_match_table = fore200e_sba_match,
2583 },
2584 .probe = fore200e_sba_probe,
2585 .remove = fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591 const struct pci_device_id *pci_ent)
2592{
2593 struct fore200e* fore200e;
2594 int err = 0;
2595 static int index = 0;
2596
2597 if (pci_enable_device(pci_dev)) {
2598 err = -EINVAL;
2599 goto out;
2600 }
2601
2602 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603 err = -EINVAL;
2604 goto out;
2605 }
2606
2607 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608 if (fore200e == NULL) {
2609 err = -ENOMEM;
2610 goto out_disable;
2611 }
2612
2613 fore200e->bus = &fore200e_pci_ops;
2614 fore200e->dev = &pci_dev->dev;
2615 fore200e->irq = pci_dev->irq;
2616 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620 pci_set_master(pci_dev);
2621
2622 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625 sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627 err = fore200e_init(fore200e, &pci_dev->dev);
2628 if (err < 0) {
2629 fore200e_shutdown(fore200e);
2630 goto out_free;
2631 }
2632
2633 ++index;
2634 pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637 return err;
2638
2639out_free:
2640 kfree(fore200e);
2641out_disable:
2642 pci_disable_device(pci_dev);
2643 goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649 struct fore200e *fore200e;
2650
2651 fore200e = pci_get_drvdata(pci_dev);
2652
2653 fore200e_shutdown(fore200e);
2654 kfree(fore200e);
2655 pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661 { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667 .name = "fore_200e",
2668 .probe = fore200e_pca_detect,
2669 .remove = fore200e_pca_remove_one,
2670 .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676 int err = 0;
2677
2678 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681 err = platform_driver_register(&fore200e_sba_driver);
2682 if (err)
2683 return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687 err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691 if (err)
2692 platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695 return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701 pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704 platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711 struct fore200e* fore200e = FORE200E_DEV(dev);
2712 struct fore200e_vcc* fore200e_vcc;
2713 struct atm_vcc* vcc;
2714 int i, len, left = *pos;
2715 unsigned long flags;
2716
2717 if (!left--) {
2718
2719 if (fore200e_getstats(fore200e) < 0)
2720 return -EIO;
2721
2722 len = sprintf(page,"\n"
2723 " device:\n"
2724 " internal name:\t\t%s\n", fore200e->name);
2725
2726 /* print bus-specific information */
2727 if (fore200e->bus->proc_read)
2728 len += fore200e->bus->proc_read(fore200e, page + len);
2729
2730 len += sprintf(page + len,
2731 " interrupt line:\t\t%s\n"
2732 " physical base address:\t0x%p\n"
2733 " virtual base address:\t0x%p\n"
2734 " factory address (ESI):\t%pM\n"
2735 " board serial number:\t\t%d\n\n",
2736 fore200e_irq_itoa(fore200e->irq),
2737 (void*)fore200e->phys_base,
2738 fore200e->virt_base,
2739 fore200e->esi,
2740 fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742 return len;
2743 }
2744
2745 if (!left--)
2746 return sprintf(page,
2747 " free small bufs, scheme 1:\t%d\n"
2748 " free large bufs, scheme 1:\t%d\n"
2749 " free small bufs, scheme 2:\t%d\n"
2750 " free large bufs, scheme 2:\t%d\n",
2751 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756 if (!left--) {
2757 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759 len = sprintf(page,"\n\n"
2760 " cell processor:\n"
2761 " heartbeat state:\t\t");
2762
2763 if (hb >> 16 != 0xDEAD)
2764 len += sprintf(page + len, "0x%08x\n", hb);
2765 else
2766 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768 return len;
2769 }
2770
2771 if (!left--) {
2772 static const char* media_name[] = {
2773 "unshielded twisted pair",
2774 "multimode optical fiber ST",
2775 "multimode optical fiber SC",
2776 "single-mode optical fiber ST",
2777 "single-mode optical fiber SC",
2778 "unknown"
2779 };
2780
2781 static const char* oc3_mode[] = {
2782 "normal operation",
2783 "diagnostic loopback",
2784 "line loopback",
2785 "unknown"
2786 };
2787
2788 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792 u32 oc3_index;
2793
2794 if (media_index > 4)
2795 media_index = 5;
2796
2797 switch (fore200e->loop_mode) {
2798 case ATM_LM_NONE: oc3_index = 0;
2799 break;
2800 case ATM_LM_LOC_PHY: oc3_index = 1;
2801 break;
2802 case ATM_LM_RMT_PHY: oc3_index = 2;
2803 break;
2804 default: oc3_index = 3;
2805 }
2806
2807 return sprintf(page,
2808 " firmware release:\t\t%d.%d.%d\n"
2809 " monitor release:\t\t%d.%d\n"
2810 " media type:\t\t\t%s\n"
2811 " OC-3 revision:\t\t0x%x\n"
2812 " OC-3 mode:\t\t\t%s",
2813 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2814 mon960_release >> 16, mon960_release << 16 >> 16,
2815 media_name[ media_index ],
2816 oc3_revision,
2817 oc3_mode[ oc3_index ]);
2818 }
2819
2820 if (!left--) {
2821 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823 return sprintf(page,
2824 "\n\n"
2825 " monitor:\n"
2826 " version number:\t\t%d\n"
2827 " boot status word:\t\t0x%08x\n",
2828 fore200e->bus->read(&cp_monitor->mon_version),
2829 fore200e->bus->read(&cp_monitor->bstat));
2830 }
2831
2832 if (!left--)
2833 return sprintf(page,
2834 "\n"
2835 " device statistics:\n"
2836 " 4b5b:\n"
2837 " crc_header_errors:\t\t%10u\n"
2838 " framing_errors:\t\t%10u\n",
2839 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840 be32_to_cpu(fore200e->stats->phy.framing_errors));
2841
2842 if (!left--)
2843 return sprintf(page, "\n"
2844 " OC-3:\n"
2845 " section_bip8_errors:\t%10u\n"
2846 " path_bip8_errors:\t\t%10u\n"
2847 " line_bip24_errors:\t\t%10u\n"
2848 " line_febe_errors:\t\t%10u\n"
2849 " path_febe_errors:\t\t%10u\n"
2850 " corr_hcs_errors:\t\t%10u\n"
2851 " ucorr_hcs_errors:\t\t%10u\n",
2852 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860 if (!left--)
2861 return sprintf(page,"\n"
2862 " ATM:\t\t\t\t cells\n"
2863 " TX:\t\t\t%10u\n"
2864 " RX:\t\t\t%10u\n"
2865 " vpi out of range:\t\t%10u\n"
2866 " vpi no conn:\t\t%10u\n"
2867 " vci out of range:\t\t%10u\n"
2868 " vci no conn:\t\t%10u\n",
2869 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870 be32_to_cpu(fore200e->stats->atm.cells_received),
2871 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875
2876 if (!left--)
2877 return sprintf(page,"\n"
2878 " AAL0:\t\t\t cells\n"
2879 " TX:\t\t\t%10u\n"
2880 " RX:\t\t\t%10u\n"
2881 " dropped:\t\t\t%10u\n",
2882 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883 be32_to_cpu(fore200e->stats->aal0.cells_received),
2884 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885
2886 if (!left--)
2887 return sprintf(page,"\n"
2888 " AAL3/4:\n"
2889 " SAR sublayer:\t\t cells\n"
2890 " TX:\t\t\t%10u\n"
2891 " RX:\t\t\t%10u\n"
2892 " dropped:\t\t\t%10u\n"
2893 " CRC errors:\t\t%10u\n"
2894 " protocol errors:\t\t%10u\n\n"
2895 " CS sublayer:\t\t PDUs\n"
2896 " TX:\t\t\t%10u\n"
2897 " RX:\t\t\t%10u\n"
2898 " dropped:\t\t\t%10u\n"
2899 " protocol errors:\t\t%10u\n",
2900 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901 be32_to_cpu(fore200e->stats->aal34.cells_received),
2902 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909
2910 if (!left--)
2911 return sprintf(page,"\n"
2912 " AAL5:\n"
2913 " SAR sublayer:\t\t cells\n"
2914 " TX:\t\t\t%10u\n"
2915 " RX:\t\t\t%10u\n"
2916 " dropped:\t\t\t%10u\n"
2917 " congestions:\t\t%10u\n\n"
2918 " CS sublayer:\t\t PDUs\n"
2919 " TX:\t\t\t%10u\n"
2920 " RX:\t\t\t%10u\n"
2921 " dropped:\t\t\t%10u\n"
2922 " CRC errors:\t\t%10u\n"
2923 " protocol errors:\t\t%10u\n",
2924 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925 be32_to_cpu(fore200e->stats->aal5.cells_received),
2926 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933
2934 if (!left--)
2935 return sprintf(page,"\n"
2936 " AUX:\t\t allocation failures\n"
2937 " small b1:\t\t\t%10u\n"
2938 " large b1:\t\t\t%10u\n"
2939 " small b2:\t\t\t%10u\n"
2940 " large b2:\t\t\t%10u\n"
2941 " RX PDUs:\t\t\t%10u\n"
2942 " TX PDUs:\t\t\t%10lu\n",
2943 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948 fore200e->tx_sat);
2949
2950 if (!left--)
2951 return sprintf(page,"\n"
2952 " receive carrier:\t\t\t%s\n",
2953 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954
2955 if (!left--) {
2956 return sprintf(page,"\n"
2957 " VCCs:\n address VPI VCI AAL "
2958 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2959 }
2960
2961 for (i = 0; i < NBR_CONNECT; i++) {
2962
2963 vcc = fore200e->vc_map[i].vcc;
2964
2965 if (vcc == NULL)
2966 continue;
2967
2968 spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972 fore200e_vcc = FORE200E_VCC(vcc);
2973 ASSERT(fore200e_vcc);
2974
2975 len = sprintf(page,
2976 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2977 vcc,
2978 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979 fore200e_vcc->tx_pdu,
2980 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981 fore200e_vcc->tx_max_pdu,
2982 fore200e_vcc->rx_pdu,
2983 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984 fore200e_vcc->rx_max_pdu);
2985
2986 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987 return len;
2988 }
2989
2990 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991 }
2992
2993 return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
3001 .open = fore200e_open,
3002 .close = fore200e_close,
3003 .ioctl = fore200e_ioctl,
3004 .send = fore200e_send,
3005 .change_qos = fore200e_change_qos,
3006 .proc_read = fore200e_proc_read,
3007 .owner = THIS_MODULE
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
1/*
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82 printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...) do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr) if (!(expr)) { \
99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 __func__, __LINE__, #expr); \
101 panic(FORE200E "%s", __func__); \
102 }
103#else
104#define ASSERT(expr) do {} while (0)
105#endif
106
107
108static const struct atmdev_ops fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120 { BUFFER_S1_NBR, BUFFER_L1_NBR },
121 { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139 switch(aal) {
140 case FORE200E_AAL0: return ATM_AAL0;
141 case FORE200E_AAL34: return ATM_AAL34;
142 case FORE200E_AAL5: return ATM_AAL5;
143 }
144
145 return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153 switch(aal) {
154 case ATM_AAL0: return FORE200E_AAL0;
155 case ATM_AAL34: return FORE200E_AAL34;
156 case ATM_AAL1:
157 case ATM_AAL2:
158 case ATM_AAL5: return FORE200E_AAL5;
159 }
160
161 return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168 static char str[8];
169 sprintf(str, "%d", irq);
170 return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175 between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180 unsigned long offset = 0;
181
182 if (alignment <= sizeof(int))
183 alignment = 0;
184
185 chunk->alloc_size = size + alignment;
186 chunk->align_size = size;
187 chunk->direction = direction;
188
189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190 if (chunk->alloc_addr == NULL)
191 return -ENOMEM;
192
193 if (alignment > 0)
194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196 chunk->align_addr = chunk->alloc_addr + offset;
197
198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200 return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211 kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219 while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227 int ok;
228
229 mb();
230 do {
231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 break;
233
234 } while (time_before(jiffies, timeout));
235
236#if 1
237 if (!ok) {
238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 *addr, val);
240 }
241#endif
242
243 return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251 int ok;
252
253 do {
254 if ((ok = (fore200e->bus->read(addr) == val)))
255 break;
256
257 } while (time_before(jiffies, timeout));
258
259#if 1
260 if (!ok) {
261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 fore200e->bus->read(addr), val);
263 }
264#endif
265
266 return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273 int scheme, magn, nbr;
274 struct buffer* buffer;
275
276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283 struct chunk* data = &buffer[ nbr ].data;
284
285 if (data->alloc_addr != NULL)
286 fore200e_chunk_free(fore200e, data);
287 }
288 }
289 }
290 }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297 int scheme, magn;
298
299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305 if (status->alloc_addr)
306 fore200e->bus->dma_chunk_free(fore200e, status);
307
308 if (rbd_block->alloc_addr)
309 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 }
311 }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318 int ok;
319
320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324 fore200e->bus->reset(fore200e);
325
326 if (diag) {
327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 if (ok == 0) {
329
330 printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 return -ENODEV;
332 }
333
334 printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336 fore200e->state = FORE200E_STATE_RESET;
337 }
338
339 return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 fore200e->name, fore200e->phys_base,
348 fore200e_irq_itoa(fore200e->irq));
349
350 if (fore200e->state > FORE200E_STATE_RESET) {
351 /* first, reset the board to prevent further interrupts or data transfers */
352 fore200e_reset(fore200e, 0);
353 }
354
355 /* then, release all allocated resources */
356 switch(fore200e->state) {
357
358 case FORE200E_STATE_COMPLETE:
359 kfree(fore200e->stats);
360
361 case FORE200E_STATE_IRQ:
362 free_irq(fore200e->irq, fore200e->atm_dev);
363
364 case FORE200E_STATE_ALLOC_BUF:
365 fore200e_free_rx_buf(fore200e);
366
367 case FORE200E_STATE_INIT_BSQ:
368 fore200e_uninit_bs_queue(fore200e);
369
370 case FORE200E_STATE_INIT_RXQ:
371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374 case FORE200E_STATE_INIT_TXQ:
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378 case FORE200E_STATE_INIT_CMDQ:
379 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381 case FORE200E_STATE_INITIALIZE:
382 /* nothing to do for that state */
383
384 case FORE200E_STATE_START_FW:
385 /* nothing to do for that state */
386
387 case FORE200E_STATE_RESET:
388 /* nothing to do for that state */
389
390 case FORE200E_STATE_MAP:
391 fore200e->bus->unmap(fore200e);
392
393 case FORE200E_STATE_CONFIGURE:
394 /* nothing to do for that state */
395
396 case FORE200E_STATE_REGISTER:
397 /* XXX shouldn't we *start* by deregistering the device? */
398 atm_dev_deregister(fore200e->atm_dev);
399
400 case FORE200E_STATE_BLANK:
401 /* nothing to do for that state */
402 break;
403 }
404}
405
406
407#ifdef CONFIG_PCI
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411 /* on big-endian hosts, the board is configured to convert
412 the endianess of slave RAM accesses */
413 return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419 /* on big-endian hosts, the board is configured to convert
420 the endianess of slave RAM accesses */
421 writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428 u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429
430 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
431 virt_addr, size, direction, dma_addr);
432
433 return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441 dma_addr, size, direction);
442
443 dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452 dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460 dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469 int size, int nbr, int alignment)
470{
471 /* returned chunks are page-aligned */
472 chunk->alloc_size = size * nbr;
473 chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474 chunk->alloc_size,
475 &chunk->dma_addr,
476 GFP_KERNEL);
477
478 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479 return -ENOMEM;
480
481 chunk->align_addr = chunk->alloc_addr;
482
483 return 0;
484}
485
486
487/* free a DMA consistent chunk of memory */
488
489static void
490fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491{
492 dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493 chunk->alloc_size,
494 chunk->alloc_addr,
495 chunk->dma_addr);
496}
497
498
499static int
500fore200e_pca_irq_check(struct fore200e* fore200e)
501{
502 /* this is a 1 bit register */
503 int irq_posted = readl(fore200e->regs.pca.psr);
504
505#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508 }
509#endif
510
511 return irq_posted;
512}
513
514
515static void
516fore200e_pca_irq_ack(struct fore200e* fore200e)
517{
518 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519}
520
521
522static void
523fore200e_pca_reset(struct fore200e* fore200e)
524{
525 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526 fore200e_spin(10);
527 writel(0, fore200e->regs.pca.hcr);
528}
529
530
531static int fore200e_pca_map(struct fore200e* fore200e)
532{
533 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536
537 if (fore200e->virt_base == NULL) {
538 printk(FORE200E "can't map device %s\n", fore200e->name);
539 return -EFAULT;
540 }
541
542 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544 /* gain access to the PCA specific registers */
545 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549 fore200e->state = FORE200E_STATE_MAP;
550 return 0;
551}
552
553
554static void
555fore200e_pca_unmap(struct fore200e* fore200e)
556{
557 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559 if (fore200e->virt_base != NULL)
560 iounmap(fore200e->virt_base);
561}
562
563
564static int fore200e_pca_configure(struct fore200e *fore200e)
565{
566 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567 u8 master_ctrl, latency;
568
569 DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573 return -EIO;
574 }
575
576 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578 master_ctrl = master_ctrl
579#if defined(__BIG_ENDIAN)
580 /* request the PCA board to convert the endianess of slave RAM accesses */
581 | PCA200E_CTRL_CONVERT_ENDIAN
582#endif
583#if 0
584 | PCA200E_CTRL_DIS_CACHE_RD
585 | PCA200E_CTRL_DIS_WRT_INVAL
586 | PCA200E_CTRL_ENA_CONT_REQ_MODE
587 | PCA200E_CTRL_2_CACHE_WRT_INVAL
588#endif
589 | PCA200E_CTRL_LARGE_PCI_BURSTS;
590
591 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595 this may impact the performances of other PCI devices on the same bus, though */
596 latency = 192;
597 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599 fore200e->state = FORE200E_STATE_CONFIGURE;
600 return 0;
601}
602
603
604static int __init
605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606{
607 struct host_cmdq* cmdq = &fore200e->host_cmdq;
608 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609 struct prom_opcode opcode;
610 int ok;
611 u32 prom_dma;
612
613 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615 opcode.opcode = OPCODE_GET_PROM;
616 opcode.pad = 0;
617
618 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621
622 *entry->status = STATUS_PENDING;
623
624 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628 *entry->status = STATUS_FREE;
629
630 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632 if (ok == 0) {
633 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634 return -EIO;
635 }
636
637#if defined(__BIG_ENDIAN)
638
639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641 /* MAC address is stored as little-endian */
642 swap_here(&prom->mac_addr[0]);
643 swap_here(&prom->mac_addr[4]);
644#endif
645
646 return 0;
647}
648
649
650static int
651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652{
653 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
656 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657}
658
659#endif /* CONFIG_PCI */
660
661
662#ifdef CONFIG_SBUS
663
664static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665{
666 return sbus_readl(addr);
667}
668
669static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670{
671 sbus_writel(val, addr);
672}
673
674static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675{
676 struct platform_device *op = fore200e->bus_dev;
677 u32 dma_addr;
678
679 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680
681 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682 virt_addr, size, direction, dma_addr);
683
684 return dma_addr;
685}
686
687static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688{
689 struct platform_device *op = fore200e->bus_dev;
690
691 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692 dma_addr, size, direction);
693
694 dma_unmap_single(&op->dev, dma_addr, size, direction);
695}
696
697static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698{
699 struct platform_device *op = fore200e->bus_dev;
700
701 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702
703 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704}
705
706static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707{
708 struct platform_device *op = fore200e->bus_dev;
709
710 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711
712 dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713}
714
715/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717 */
718static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719 int size, int nbr, int alignment)
720{
721 struct platform_device *op = fore200e->bus_dev;
722
723 chunk->alloc_size = chunk->align_size = size * nbr;
724
725 /* returned chunks are page-aligned */
726 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727 &chunk->dma_addr, GFP_ATOMIC);
728
729 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730 return -ENOMEM;
731
732 chunk->align_addr = chunk->alloc_addr;
733
734 return 0;
735}
736
737/* free a DVMA consistent chunk of memory */
738static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739{
740 struct platform_device *op = fore200e->bus_dev;
741
742 dma_free_coherent(&op->dev, chunk->alloc_size,
743 chunk->alloc_addr, chunk->dma_addr);
744}
745
746static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747{
748 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750}
751
752static int fore200e_sba_irq_check(struct fore200e *fore200e)
753{
754 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755}
756
757static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758{
759 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761}
762
763static void fore200e_sba_reset(struct fore200e *fore200e)
764{
765 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766 fore200e_spin(10);
767 fore200e->bus->write(0, fore200e->regs.sba.hcr);
768}
769
770static int __init fore200e_sba_map(struct fore200e *fore200e)
771{
772 struct platform_device *op = fore200e->bus_dev;
773 unsigned int bursts;
774
775 /* gain access to the SBA specific registers */
776 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780
781 if (!fore200e->virt_base) {
782 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783 return -EFAULT;
784 }
785
786 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787
788 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789
790 /* get the supported DVMA burst sizes */
791 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792
793 if (sbus_can_dma_64bit())
794 sbus_set_sbus64(&op->dev, bursts);
795
796 fore200e->state = FORE200E_STATE_MAP;
797 return 0;
798}
799
800static void fore200e_sba_unmap(struct fore200e *fore200e)
801{
802 struct platform_device *op = fore200e->bus_dev;
803
804 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
808}
809
810static int __init fore200e_sba_configure(struct fore200e *fore200e)
811{
812 fore200e->state = FORE200E_STATE_CONFIGURE;
813 return 0;
814}
815
816static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817{
818 struct platform_device *op = fore200e->bus_dev;
819 const u8 *prop;
820 int len;
821
822 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823 if (!prop)
824 return -ENODEV;
825 memcpy(&prom->mac_addr[4], prop, 4);
826
827 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828 if (!prop)
829 return -ENODEV;
830 memcpy(&prom->mac_addr[2], prop, 4);
831
832 prom->serial_number = of_getintprop_default(op->dev.of_node,
833 "serialnumber", 0);
834 prom->hw_revision = of_getintprop_default(op->dev.of_node,
835 "promversion", 0);
836
837 return 0;
838}
839
840static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841{
842 struct platform_device *op = fore200e->bus_dev;
843 const struct linux_prom_registers *regs;
844
845 regs = of_get_property(op->dev.of_node, "reg", NULL);
846
847 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
848 (regs ? regs->which_io : 0), op->dev.of_node->name);
849}
850#endif /* CONFIG_SBUS */
851
852
853static void
854fore200e_tx_irq(struct fore200e* fore200e)
855{
856 struct host_txq* txq = &fore200e->host_txq;
857 struct host_txq_entry* entry;
858 struct atm_vcc* vcc;
859 struct fore200e_vc_map* vc_map;
860
861 if (fore200e->host_txq.txing == 0)
862 return;
863
864 for (;;) {
865
866 entry = &txq->host_entry[ txq->tail ];
867
868 if ((*entry->status & STATUS_COMPLETE) == 0) {
869 break;
870 }
871
872 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
873 entry, txq->tail, entry->vc_map, entry->skb);
874
875 /* free copy of misaligned data */
876 kfree(entry->data);
877
878 /* remove DMA mapping */
879 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880 DMA_TO_DEVICE);
881
882 vc_map = entry->vc_map;
883
884 /* vcc closed since the time the entry was submitted for tx? */
885 if ((vc_map->vcc == NULL) ||
886 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887
888 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889 fore200e->atm_dev->number);
890
891 dev_kfree_skb_any(entry->skb);
892 }
893 else {
894 ASSERT(vc_map->vcc);
895
896 /* vcc closed then immediately re-opened? */
897 if (vc_map->incarn != entry->incarn) {
898
899 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
900 if the same vcc is immediately re-opened, those pending PDUs must
901 not be popped after the completion of their emission, as they refer
902 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903 would be decremented by the size of the (unrelated) skb, possibly
904 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905 we thus bind the tx entry to the current incarnation of the vcc
906 when the entry is submitted for tx. When the tx later completes,
907 if the incarnation number of the tx entry does not match the one
908 of the vcc, then this implies that the vcc has been closed then re-opened.
909 we thus just drop the skb here. */
910
911 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912 fore200e->atm_dev->number);
913
914 dev_kfree_skb_any(entry->skb);
915 }
916 else {
917 vcc = vc_map->vcc;
918 ASSERT(vcc);
919
920 /* notify tx completion */
921 if (vcc->pop) {
922 vcc->pop(vcc, entry->skb);
923 }
924 else {
925 dev_kfree_skb_any(entry->skb);
926 }
927#if 1
928 /* race fixed by the above incarnation mechanism, but... */
929 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
930 atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
931 }
932#endif
933 /* check error condition */
934 if (*entry->status & STATUS_ERROR)
935 atomic_inc(&vcc->stats->tx_err);
936 else
937 atomic_inc(&vcc->stats->tx);
938 }
939 }
940
941 *entry->status = STATUS_FREE;
942
943 fore200e->host_txq.txing--;
944
945 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
946 }
947}
948
949
950#ifdef FORE200E_BSQ_DEBUG
951int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
952{
953 struct buffer* buffer;
954 int count = 0;
955
956 buffer = bsq->freebuf;
957 while (buffer) {
958
959 if (buffer->supplied) {
960 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
961 where, scheme, magn, buffer->index);
962 }
963
964 if (buffer->magn != magn) {
965 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
966 where, scheme, magn, buffer->index, buffer->magn);
967 }
968
969 if (buffer->scheme != scheme) {
970 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
971 where, scheme, magn, buffer->index, buffer->scheme);
972 }
973
974 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
975 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
976 where, scheme, magn, buffer->index);
977 }
978
979 count++;
980 buffer = buffer->next;
981 }
982
983 if (count != bsq->freebuf_count) {
984 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
985 where, scheme, magn, count, bsq->freebuf_count);
986 }
987 return 0;
988}
989#endif
990
991
992static void
993fore200e_supply(struct fore200e* fore200e)
994{
995 int scheme, magn, i;
996
997 struct host_bsq* bsq;
998 struct host_bsq_entry* entry;
999 struct buffer* buffer;
1000
1001 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1002 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1003
1004 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1005
1006#ifdef FORE200E_BSQ_DEBUG
1007 bsq_audit(1, bsq, scheme, magn);
1008#endif
1009 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1010
1011 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1012 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1013
1014 entry = &bsq->host_entry[ bsq->head ];
1015
1016 for (i = 0; i < RBD_BLK_SIZE; i++) {
1017
1018 /* take the first buffer in the free buffer list */
1019 buffer = bsq->freebuf;
1020 if (!buffer) {
1021 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1022 scheme, magn, bsq->freebuf_count);
1023 return;
1024 }
1025 bsq->freebuf = buffer->next;
1026
1027#ifdef FORE200E_BSQ_DEBUG
1028 if (buffer->supplied)
1029 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1030 scheme, magn, buffer->index);
1031 buffer->supplied = 1;
1032#endif
1033 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1034 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1035 }
1036
1037 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1038
1039 /* decrease accordingly the number of free rx buffers */
1040 bsq->freebuf_count -= RBD_BLK_SIZE;
1041
1042 *entry->status = STATUS_PENDING;
1043 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1044 }
1045 }
1046 }
1047}
1048
1049
1050static int
1051fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1052{
1053 struct sk_buff* skb;
1054 struct buffer* buffer;
1055 struct fore200e_vcc* fore200e_vcc;
1056 int i, pdu_len = 0;
1057#ifdef FORE200E_52BYTE_AAL0_SDU
1058 u32 cell_header = 0;
1059#endif
1060
1061 ASSERT(vcc);
1062
1063 fore200e_vcc = FORE200E_VCC(vcc);
1064 ASSERT(fore200e_vcc);
1065
1066#ifdef FORE200E_52BYTE_AAL0_SDU
1067 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1068
1069 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1070 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1071 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1072 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1073 rpd->atm_header.clp;
1074 pdu_len = 4;
1075 }
1076#endif
1077
1078 /* compute total PDU length */
1079 for (i = 0; i < rpd->nseg; i++)
1080 pdu_len += rpd->rsd[ i ].length;
1081
1082 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1083 if (skb == NULL) {
1084 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1085
1086 atomic_inc(&vcc->stats->rx_drop);
1087 return -ENOMEM;
1088 }
1089
1090 __net_timestamp(skb);
1091
1092#ifdef FORE200E_52BYTE_AAL0_SDU
1093 if (cell_header) {
1094 *((u32*)skb_put(skb, 4)) = cell_header;
1095 }
1096#endif
1097
1098 /* reassemble segments */
1099 for (i = 0; i < rpd->nseg; i++) {
1100
1101 /* rebuild rx buffer address from rsd handle */
1102 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1103
1104 /* Make device DMA transfer visible to CPU. */
1105 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106
1107 memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1108
1109 /* Now let the device get at it again. */
1110 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1111 }
1112
1113 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1114
1115 if (pdu_len < fore200e_vcc->rx_min_pdu)
1116 fore200e_vcc->rx_min_pdu = pdu_len;
1117 if (pdu_len > fore200e_vcc->rx_max_pdu)
1118 fore200e_vcc->rx_max_pdu = pdu_len;
1119 fore200e_vcc->rx_pdu++;
1120
1121 /* push PDU */
1122 if (atm_charge(vcc, skb->truesize) == 0) {
1123
1124 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1125 vcc->itf, vcc->vpi, vcc->vci);
1126
1127 dev_kfree_skb_any(skb);
1128
1129 atomic_inc(&vcc->stats->rx_drop);
1130 return -ENOMEM;
1131 }
1132
1133 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1134
1135 vcc->push(vcc, skb);
1136 atomic_inc(&vcc->stats->rx);
1137
1138 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1139
1140 return 0;
1141}
1142
1143
1144static void
1145fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1146{
1147 struct host_bsq* bsq;
1148 struct buffer* buffer;
1149 int i;
1150
1151 for (i = 0; i < rpd->nseg; i++) {
1152
1153 /* rebuild rx buffer address from rsd handle */
1154 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1155
1156 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1157
1158#ifdef FORE200E_BSQ_DEBUG
1159 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1160
1161 if (buffer->supplied == 0)
1162 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1163 buffer->scheme, buffer->magn, buffer->index);
1164 buffer->supplied = 0;
1165#endif
1166
1167 /* re-insert the buffer into the free buffer list */
1168 buffer->next = bsq->freebuf;
1169 bsq->freebuf = buffer;
1170
1171 /* then increment the number of free rx buffers */
1172 bsq->freebuf_count++;
1173 }
1174}
1175
1176
1177static void
1178fore200e_rx_irq(struct fore200e* fore200e)
1179{
1180 struct host_rxq* rxq = &fore200e->host_rxq;
1181 struct host_rxq_entry* entry;
1182 struct atm_vcc* vcc;
1183 struct fore200e_vc_map* vc_map;
1184
1185 for (;;) {
1186
1187 entry = &rxq->host_entry[ rxq->head ];
1188
1189 /* no more received PDUs */
1190 if ((*entry->status & STATUS_COMPLETE) == 0)
1191 break;
1192
1193 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1194
1195 if ((vc_map->vcc == NULL) ||
1196 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1197
1198 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1199 fore200e->atm_dev->number,
1200 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1201 }
1202 else {
1203 vcc = vc_map->vcc;
1204 ASSERT(vcc);
1205
1206 if ((*entry->status & STATUS_ERROR) == 0) {
1207
1208 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1209 }
1210 else {
1211 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1212 fore200e->atm_dev->number,
1213 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1214 atomic_inc(&vcc->stats->rx_err);
1215 }
1216 }
1217
1218 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1219
1220 fore200e_collect_rpd(fore200e, entry->rpd);
1221
1222 /* rewrite the rpd address to ack the received PDU */
1223 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1224 *entry->status = STATUS_FREE;
1225
1226 fore200e_supply(fore200e);
1227 }
1228}
1229
1230
1231#ifndef FORE200E_USE_TASKLET
1232static void
1233fore200e_irq(struct fore200e* fore200e)
1234{
1235 unsigned long flags;
1236
1237 spin_lock_irqsave(&fore200e->q_lock, flags);
1238 fore200e_rx_irq(fore200e);
1239 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1240
1241 spin_lock_irqsave(&fore200e->q_lock, flags);
1242 fore200e_tx_irq(fore200e);
1243 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1244}
1245#endif
1246
1247
1248static irqreturn_t
1249fore200e_interrupt(int irq, void* dev)
1250{
1251 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1252
1253 if (fore200e->bus->irq_check(fore200e) == 0) {
1254
1255 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1256 return IRQ_NONE;
1257 }
1258 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1259
1260#ifdef FORE200E_USE_TASKLET
1261 tasklet_schedule(&fore200e->tx_tasklet);
1262 tasklet_schedule(&fore200e->rx_tasklet);
1263#else
1264 fore200e_irq(fore200e);
1265#endif
1266
1267 fore200e->bus->irq_ack(fore200e);
1268 return IRQ_HANDLED;
1269}
1270
1271
1272#ifdef FORE200E_USE_TASKLET
1273static void
1274fore200e_tx_tasklet(unsigned long data)
1275{
1276 struct fore200e* fore200e = (struct fore200e*) data;
1277 unsigned long flags;
1278
1279 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1280
1281 spin_lock_irqsave(&fore200e->q_lock, flags);
1282 fore200e_tx_irq(fore200e);
1283 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1284}
1285
1286
1287static void
1288fore200e_rx_tasklet(unsigned long data)
1289{
1290 struct fore200e* fore200e = (struct fore200e*) data;
1291 unsigned long flags;
1292
1293 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1294
1295 spin_lock_irqsave(&fore200e->q_lock, flags);
1296 fore200e_rx_irq((struct fore200e*) data);
1297 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298}
1299#endif
1300
1301
1302static int
1303fore200e_select_scheme(struct atm_vcc* vcc)
1304{
1305 /* fairly balance the VCs over (identical) buffer schemes */
1306 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1307
1308 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1309 vcc->itf, vcc->vpi, vcc->vci, scheme);
1310
1311 return scheme;
1312}
1313
1314
1315static int
1316fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1317{
1318 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1319 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1320 struct activate_opcode activ_opcode;
1321 struct deactivate_opcode deactiv_opcode;
1322 struct vpvc vpvc;
1323 int ok;
1324 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1325
1326 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1327
1328 if (activate) {
1329 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1330
1331 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1332 activ_opcode.aal = aal;
1333 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1334 activ_opcode.pad = 0;
1335 }
1336 else {
1337 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1338 deactiv_opcode.pad = 0;
1339 }
1340
1341 vpvc.vci = vcc->vci;
1342 vpvc.vpi = vcc->vpi;
1343
1344 *entry->status = STATUS_PENDING;
1345
1346 if (activate) {
1347
1348#ifdef FORE200E_52BYTE_AAL0_SDU
1349 mtu = 48;
1350#endif
1351 /* the MTU is not used by the cp, except in the case of AAL0 */
1352 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1353 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1354 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1355 }
1356 else {
1357 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1358 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1359 }
1360
1361 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1362
1363 *entry->status = STATUS_FREE;
1364
1365 if (ok == 0) {
1366 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1367 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1368 return -EIO;
1369 }
1370
1371 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1372 activate ? "open" : "clos");
1373
1374 return 0;
1375}
1376
1377
1378#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1379
1380static void
1381fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1382{
1383 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1384
1385 /* compute the data cells to idle cells ratio from the tx PCR */
1386 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1387 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1388 }
1389 else {
1390 /* disable rate control */
1391 rate->data_cells = rate->idle_cells = 0;
1392 }
1393}
1394
1395
1396static int
1397fore200e_open(struct atm_vcc *vcc)
1398{
1399 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1400 struct fore200e_vcc* fore200e_vcc;
1401 struct fore200e_vc_map* vc_map;
1402 unsigned long flags;
1403 int vci = vcc->vci;
1404 short vpi = vcc->vpi;
1405
1406 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1407 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1408
1409 spin_lock_irqsave(&fore200e->q_lock, flags);
1410
1411 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1412 if (vc_map->vcc) {
1413
1414 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1415
1416 printk(FORE200E "VC %d.%d.%d already in use\n",
1417 fore200e->atm_dev->number, vpi, vci);
1418
1419 return -EINVAL;
1420 }
1421
1422 vc_map->vcc = vcc;
1423
1424 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1425
1426 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1427 if (fore200e_vcc == NULL) {
1428 vc_map->vcc = NULL;
1429 return -ENOMEM;
1430 }
1431
1432 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1433 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1434 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1435 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1436 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1437 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1438 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1439
1440 /* pseudo-CBR bandwidth requested? */
1441 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1442
1443 mutex_lock(&fore200e->rate_mtx);
1444 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1445 mutex_unlock(&fore200e->rate_mtx);
1446
1447 kfree(fore200e_vcc);
1448 vc_map->vcc = NULL;
1449 return -EAGAIN;
1450 }
1451
1452 /* reserve bandwidth */
1453 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1454 mutex_unlock(&fore200e->rate_mtx);
1455 }
1456
1457 vcc->itf = vcc->dev->number;
1458
1459 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1460 set_bit(ATM_VF_ADDR, &vcc->flags);
1461
1462 vcc->dev_data = fore200e_vcc;
1463
1464 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1465
1466 vc_map->vcc = NULL;
1467
1468 clear_bit(ATM_VF_ADDR, &vcc->flags);
1469 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1470
1471 vcc->dev_data = NULL;
1472
1473 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1474
1475 kfree(fore200e_vcc);
1476 return -EINVAL;
1477 }
1478
1479 /* compute rate control parameters */
1480 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1481
1482 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1483 set_bit(ATM_VF_HASQOS, &vcc->flags);
1484
1485 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1486 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1487 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1488 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1489 }
1490
1491 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1492 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1493 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1494
1495 /* new incarnation of the vcc */
1496 vc_map->incarn = ++fore200e->incarn_count;
1497
1498 /* VC unusable before this flag is set */
1499 set_bit(ATM_VF_READY, &vcc->flags);
1500
1501 return 0;
1502}
1503
1504
1505static void
1506fore200e_close(struct atm_vcc* vcc)
1507{
1508 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1509 struct fore200e_vcc* fore200e_vcc;
1510 struct fore200e_vc_map* vc_map;
1511 unsigned long flags;
1512
1513 ASSERT(vcc);
1514 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1515 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1516
1517 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1518
1519 clear_bit(ATM_VF_READY, &vcc->flags);
1520
1521 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1522
1523 spin_lock_irqsave(&fore200e->q_lock, flags);
1524
1525 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1526
1527 /* the vc is no longer considered as "in use" by fore200e_open() */
1528 vc_map->vcc = NULL;
1529
1530 vcc->itf = vcc->vci = vcc->vpi = 0;
1531
1532 fore200e_vcc = FORE200E_VCC(vcc);
1533 vcc->dev_data = NULL;
1534
1535 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1536
1537 /* release reserved bandwidth, if any */
1538 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540 mutex_lock(&fore200e->rate_mtx);
1541 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1542 mutex_unlock(&fore200e->rate_mtx);
1543
1544 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1545 }
1546
1547 clear_bit(ATM_VF_ADDR, &vcc->flags);
1548 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1549
1550 ASSERT(fore200e_vcc);
1551 kfree(fore200e_vcc);
1552}
1553
1554
1555static int
1556fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1557{
1558 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1559 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1560 struct fore200e_vc_map* vc_map;
1561 struct host_txq* txq = &fore200e->host_txq;
1562 struct host_txq_entry* entry;
1563 struct tpd* tpd;
1564 struct tpd_haddr tpd_haddr;
1565 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1566 int tx_copy = 0;
1567 int tx_len = skb->len;
1568 u32* cell_header = NULL;
1569 unsigned char* skb_data;
1570 int skb_len;
1571 unsigned char* data;
1572 unsigned long flags;
1573
1574 ASSERT(vcc);
1575 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1576 ASSERT(fore200e);
1577 ASSERT(fore200e_vcc);
1578
1579 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1580 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1581 dev_kfree_skb_any(skb);
1582 return -EINVAL;
1583 }
1584
1585#ifdef FORE200E_52BYTE_AAL0_SDU
1586 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1587 cell_header = (u32*) skb->data;
1588 skb_data = skb->data + 4; /* skip 4-byte cell header */
1589 skb_len = tx_len = skb->len - 4;
1590
1591 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1592 }
1593 else
1594#endif
1595 {
1596 skb_data = skb->data;
1597 skb_len = skb->len;
1598 }
1599
1600 if (((unsigned long)skb_data) & 0x3) {
1601
1602 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1603 tx_copy = 1;
1604 tx_len = skb_len;
1605 }
1606
1607 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1608
1609 /* this simply NUKES the PCA board */
1610 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1611 tx_copy = 1;
1612 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1613 }
1614
1615 if (tx_copy) {
1616 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1617 if (data == NULL) {
1618 if (vcc->pop) {
1619 vcc->pop(vcc, skb);
1620 }
1621 else {
1622 dev_kfree_skb_any(skb);
1623 }
1624 return -ENOMEM;
1625 }
1626
1627 memcpy(data, skb_data, skb_len);
1628 if (skb_len < tx_len)
1629 memset(data + skb_len, 0x00, tx_len - skb_len);
1630 }
1631 else {
1632 data = skb_data;
1633 }
1634
1635 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1636 ASSERT(vc_map->vcc == vcc);
1637
1638 retry_here:
1639
1640 spin_lock_irqsave(&fore200e->q_lock, flags);
1641
1642 entry = &txq->host_entry[ txq->head ];
1643
1644 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1645
1646 /* try to free completed tx queue entries */
1647 fore200e_tx_irq(fore200e);
1648
1649 if (*entry->status != STATUS_FREE) {
1650
1651 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653 /* retry once again? */
1654 if (--retry > 0) {
1655 udelay(50);
1656 goto retry_here;
1657 }
1658
1659 atomic_inc(&vcc->stats->tx_err);
1660
1661 fore200e->tx_sat++;
1662 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1663 fore200e->name, fore200e->cp_queues->heartbeat);
1664 if (vcc->pop) {
1665 vcc->pop(vcc, skb);
1666 }
1667 else {
1668 dev_kfree_skb_any(skb);
1669 }
1670
1671 if (tx_copy)
1672 kfree(data);
1673
1674 return -ENOBUFS;
1675 }
1676 }
1677
1678 entry->incarn = vc_map->incarn;
1679 entry->vc_map = vc_map;
1680 entry->skb = skb;
1681 entry->data = tx_copy ? data : NULL;
1682
1683 tpd = entry->tpd;
1684 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1685 tpd->tsd[ 0 ].length = tx_len;
1686
1687 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1688 txq->txing++;
1689
1690 /* The dma_map call above implies a dma_sync so the device can use it,
1691 * thus no explicit dma_sync call is necessary here.
1692 */
1693
1694 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1695 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1696 tpd->tsd[0].length, skb_len);
1697
1698 if (skb_len < fore200e_vcc->tx_min_pdu)
1699 fore200e_vcc->tx_min_pdu = skb_len;
1700 if (skb_len > fore200e_vcc->tx_max_pdu)
1701 fore200e_vcc->tx_max_pdu = skb_len;
1702 fore200e_vcc->tx_pdu++;
1703
1704 /* set tx rate control information */
1705 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1706 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1707
1708 if (cell_header) {
1709 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1710 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1711 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1712 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1713 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1714 }
1715 else {
1716 /* set the ATM header, common to all cells conveying the PDU */
1717 tpd->atm_header.clp = 0;
1718 tpd->atm_header.plt = 0;
1719 tpd->atm_header.vci = vcc->vci;
1720 tpd->atm_header.vpi = vcc->vpi;
1721 tpd->atm_header.gfc = 0;
1722 }
1723
1724 tpd->spec.length = tx_len;
1725 tpd->spec.nseg = 1;
1726 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1727 tpd->spec.intr = 1;
1728
1729 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1730 tpd_haddr.pad = 0;
1731 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1732
1733 *entry->status = STATUS_PENDING;
1734 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1735
1736 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1737
1738 return 0;
1739}
1740
1741
1742static int
1743fore200e_getstats(struct fore200e* fore200e)
1744{
1745 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1746 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1747 struct stats_opcode opcode;
1748 int ok;
1749 u32 stats_dma_addr;
1750
1751 if (fore200e->stats == NULL) {
1752 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1753 if (fore200e->stats == NULL)
1754 return -ENOMEM;
1755 }
1756
1757 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1758 sizeof(struct stats), DMA_FROM_DEVICE);
1759
1760 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1761
1762 opcode.opcode = OPCODE_GET_STATS;
1763 opcode.pad = 0;
1764
1765 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1766
1767 *entry->status = STATUS_PENDING;
1768
1769 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1770
1771 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1772
1773 *entry->status = STATUS_FREE;
1774
1775 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1776
1777 if (ok == 0) {
1778 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1779 return -EIO;
1780 }
1781
1782 return 0;
1783}
1784
1785
1786static int
1787fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1788{
1789 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1790
1791 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1792 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1793
1794 return -EINVAL;
1795}
1796
1797
1798static int
1799fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1800{
1801 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1802
1803 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1804 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1805
1806 return -EINVAL;
1807}
1808
1809
1810#if 0 /* currently unused */
1811static int
1812fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1813{
1814 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1815 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1816 struct oc3_opcode opcode;
1817 int ok;
1818 u32 oc3_regs_dma_addr;
1819
1820 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1821
1822 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1823
1824 opcode.opcode = OPCODE_GET_OC3;
1825 opcode.reg = 0;
1826 opcode.value = 0;
1827 opcode.mask = 0;
1828
1829 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1830
1831 *entry->status = STATUS_PENDING;
1832
1833 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1834
1835 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1836
1837 *entry->status = STATUS_FREE;
1838
1839 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1840
1841 if (ok == 0) {
1842 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1843 return -EIO;
1844 }
1845
1846 return 0;
1847}
1848#endif
1849
1850
1851static int
1852fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1853{
1854 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1855 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1856 struct oc3_opcode opcode;
1857 int ok;
1858
1859 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1860
1861 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1862
1863 opcode.opcode = OPCODE_SET_OC3;
1864 opcode.reg = reg;
1865 opcode.value = value;
1866 opcode.mask = mask;
1867
1868 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1869
1870 *entry->status = STATUS_PENDING;
1871
1872 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1873
1874 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1875
1876 *entry->status = STATUS_FREE;
1877
1878 if (ok == 0) {
1879 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1880 return -EIO;
1881 }
1882
1883 return 0;
1884}
1885
1886
1887static int
1888fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1889{
1890 u32 mct_value, mct_mask;
1891 int error;
1892
1893 if (!capable(CAP_NET_ADMIN))
1894 return -EPERM;
1895
1896 switch (loop_mode) {
1897
1898 case ATM_LM_NONE:
1899 mct_value = 0;
1900 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1901 break;
1902
1903 case ATM_LM_LOC_PHY:
1904 mct_value = mct_mask = SUNI_MCT_DLE;
1905 break;
1906
1907 case ATM_LM_RMT_PHY:
1908 mct_value = mct_mask = SUNI_MCT_LLE;
1909 break;
1910
1911 default:
1912 return -EINVAL;
1913 }
1914
1915 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1916 if (error == 0)
1917 fore200e->loop_mode = loop_mode;
1918
1919 return error;
1920}
1921
1922
1923static int
1924fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1925{
1926 struct sonet_stats tmp;
1927
1928 if (fore200e_getstats(fore200e) < 0)
1929 return -EIO;
1930
1931 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1932 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1933 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1934 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1935 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1936 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1937 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1938 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1939 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1940 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1941 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1942 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1943 be32_to_cpu(fore200e->stats->aal5.cells_received);
1944
1945 if (arg)
1946 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1947
1948 return 0;
1949}
1950
1951
1952static int
1953fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1954{
1955 struct fore200e* fore200e = FORE200E_DEV(dev);
1956
1957 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1958
1959 switch (cmd) {
1960
1961 case SONET_GETSTAT:
1962 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1963
1964 case SONET_GETDIAG:
1965 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1966
1967 case ATM_SETLOOP:
1968 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1969
1970 case ATM_GETLOOP:
1971 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1972
1973 case ATM_QUERYLOOP:
1974 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1975 }
1976
1977 return -ENOSYS; /* not implemented */
1978}
1979
1980
1981static int
1982fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1983{
1984 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1985 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1986
1987 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1988 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1989 return -EINVAL;
1990 }
1991
1992 DPRINTK(2, "change_qos %d.%d.%d, "
1993 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1994 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1995 "available_cell_rate = %u",
1996 vcc->itf, vcc->vpi, vcc->vci,
1997 fore200e_traffic_class[ qos->txtp.traffic_class ],
1998 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1999 fore200e_traffic_class[ qos->rxtp.traffic_class ],
2000 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2001 flags, fore200e->available_cell_rate);
2002
2003 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2004
2005 mutex_lock(&fore200e->rate_mtx);
2006 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2007 mutex_unlock(&fore200e->rate_mtx);
2008 return -EAGAIN;
2009 }
2010
2011 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2012 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2013
2014 mutex_unlock(&fore200e->rate_mtx);
2015
2016 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2017
2018 /* update rate control parameters */
2019 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2020
2021 set_bit(ATM_VF_HASQOS, &vcc->flags);
2022
2023 return 0;
2024 }
2025
2026 return -EINVAL;
2027}
2028
2029
2030static int fore200e_irq_request(struct fore200e *fore200e)
2031{
2032 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033
2034 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036 return -EBUSY;
2037 }
2038
2039 printk(FORE200E "IRQ %s reserved for device %s\n",
2040 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041
2042#ifdef FORE200E_USE_TASKLET
2043 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045#endif
2046
2047 fore200e->state = FORE200E_STATE_IRQ;
2048 return 0;
2049}
2050
2051
2052static int fore200e_get_esi(struct fore200e *fore200e)
2053{
2054 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2055 int ok, i;
2056
2057 if (!prom)
2058 return -ENOMEM;
2059
2060 ok = fore200e->bus->prom_read(fore200e, prom);
2061 if (ok < 0) {
2062 kfree(prom);
2063 return -EBUSY;
2064 }
2065
2066 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2067 fore200e->name,
2068 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
2069 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2070
2071 for (i = 0; i < ESI_LEN; i++) {
2072 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2073 }
2074
2075 kfree(prom);
2076
2077 return 0;
2078}
2079
2080
2081static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2082{
2083 int scheme, magn, nbr, size, i;
2084
2085 struct host_bsq* bsq;
2086 struct buffer* buffer;
2087
2088 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2089 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2090
2091 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2092
2093 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2094 size = fore200e_rx_buf_size[ scheme ][ magn ];
2095
2096 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2097
2098 /* allocate the array of receive buffers */
2099 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2100
2101 if (buffer == NULL)
2102 return -ENOMEM;
2103
2104 bsq->freebuf = NULL;
2105
2106 for (i = 0; i < nbr; i++) {
2107
2108 buffer[ i ].scheme = scheme;
2109 buffer[ i ].magn = magn;
2110#ifdef FORE200E_BSQ_DEBUG
2111 buffer[ i ].index = i;
2112 buffer[ i ].supplied = 0;
2113#endif
2114
2115 /* allocate the receive buffer body */
2116 if (fore200e_chunk_alloc(fore200e,
2117 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2118 DMA_FROM_DEVICE) < 0) {
2119
2120 while (i > 0)
2121 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2122 kfree(buffer);
2123
2124 return -ENOMEM;
2125 }
2126
2127 /* insert the buffer into the free buffer list */
2128 buffer[ i ].next = bsq->freebuf;
2129 bsq->freebuf = &buffer[ i ];
2130 }
2131 /* all the buffers are free, initially */
2132 bsq->freebuf_count = nbr;
2133
2134#ifdef FORE200E_BSQ_DEBUG
2135 bsq_audit(3, bsq, scheme, magn);
2136#endif
2137 }
2138 }
2139
2140 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2141 return 0;
2142}
2143
2144
2145static int fore200e_init_bs_queue(struct fore200e *fore200e)
2146{
2147 int scheme, magn, i;
2148
2149 struct host_bsq* bsq;
2150 struct cp_bsq_entry __iomem * cp_entry;
2151
2152 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2153 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2154
2155 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2156
2157 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2158
2159 /* allocate and align the array of status words */
2160 if (fore200e->bus->dma_chunk_alloc(fore200e,
2161 &bsq->status,
2162 sizeof(enum status),
2163 QUEUE_SIZE_BS,
2164 fore200e->bus->status_alignment) < 0) {
2165 return -ENOMEM;
2166 }
2167
2168 /* allocate and align the array of receive buffer descriptors */
2169 if (fore200e->bus->dma_chunk_alloc(fore200e,
2170 &bsq->rbd_block,
2171 sizeof(struct rbd_block),
2172 QUEUE_SIZE_BS,
2173 fore200e->bus->descr_alignment) < 0) {
2174
2175 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2176 return -ENOMEM;
2177 }
2178
2179 /* get the base address of the cp resident buffer supply queue entries */
2180 cp_entry = fore200e->virt_base +
2181 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2182
2183 /* fill the host resident and cp resident buffer supply queue entries */
2184 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2185
2186 bsq->host_entry[ i ].status =
2187 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2188 bsq->host_entry[ i ].rbd_block =
2189 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2190 bsq->host_entry[ i ].rbd_block_dma =
2191 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2192 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2193
2194 *bsq->host_entry[ i ].status = STATUS_FREE;
2195
2196 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2197 &cp_entry[ i ].status_haddr);
2198 }
2199 }
2200 }
2201
2202 fore200e->state = FORE200E_STATE_INIT_BSQ;
2203 return 0;
2204}
2205
2206
2207static int fore200e_init_rx_queue(struct fore200e *fore200e)
2208{
2209 struct host_rxq* rxq = &fore200e->host_rxq;
2210 struct cp_rxq_entry __iomem * cp_entry;
2211 int i;
2212
2213 DPRINTK(2, "receive queue is being initialized\n");
2214
2215 /* allocate and align the array of status words */
2216 if (fore200e->bus->dma_chunk_alloc(fore200e,
2217 &rxq->status,
2218 sizeof(enum status),
2219 QUEUE_SIZE_RX,
2220 fore200e->bus->status_alignment) < 0) {
2221 return -ENOMEM;
2222 }
2223
2224 /* allocate and align the array of receive PDU descriptors */
2225 if (fore200e->bus->dma_chunk_alloc(fore200e,
2226 &rxq->rpd,
2227 sizeof(struct rpd),
2228 QUEUE_SIZE_RX,
2229 fore200e->bus->descr_alignment) < 0) {
2230
2231 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2232 return -ENOMEM;
2233 }
2234
2235 /* get the base address of the cp resident rx queue entries */
2236 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2237
2238 /* fill the host resident and cp resident rx entries */
2239 for (i=0; i < QUEUE_SIZE_RX; i++) {
2240
2241 rxq->host_entry[ i ].status =
2242 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2243 rxq->host_entry[ i ].rpd =
2244 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2245 rxq->host_entry[ i ].rpd_dma =
2246 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2247 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2248
2249 *rxq->host_entry[ i ].status = STATUS_FREE;
2250
2251 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2252 &cp_entry[ i ].status_haddr);
2253
2254 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2255 &cp_entry[ i ].rpd_haddr);
2256 }
2257
2258 /* set the head entry of the queue */
2259 rxq->head = 0;
2260
2261 fore200e->state = FORE200E_STATE_INIT_RXQ;
2262 return 0;
2263}
2264
2265
2266static int fore200e_init_tx_queue(struct fore200e *fore200e)
2267{
2268 struct host_txq* txq = &fore200e->host_txq;
2269 struct cp_txq_entry __iomem * cp_entry;
2270 int i;
2271
2272 DPRINTK(2, "transmit queue is being initialized\n");
2273
2274 /* allocate and align the array of status words */
2275 if (fore200e->bus->dma_chunk_alloc(fore200e,
2276 &txq->status,
2277 sizeof(enum status),
2278 QUEUE_SIZE_TX,
2279 fore200e->bus->status_alignment) < 0) {
2280 return -ENOMEM;
2281 }
2282
2283 /* allocate and align the array of transmit PDU descriptors */
2284 if (fore200e->bus->dma_chunk_alloc(fore200e,
2285 &txq->tpd,
2286 sizeof(struct tpd),
2287 QUEUE_SIZE_TX,
2288 fore200e->bus->descr_alignment) < 0) {
2289
2290 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2291 return -ENOMEM;
2292 }
2293
2294 /* get the base address of the cp resident tx queue entries */
2295 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2296
2297 /* fill the host resident and cp resident tx entries */
2298 for (i=0; i < QUEUE_SIZE_TX; i++) {
2299
2300 txq->host_entry[ i ].status =
2301 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2302 txq->host_entry[ i ].tpd =
2303 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2304 txq->host_entry[ i ].tpd_dma =
2305 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2306 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2307
2308 *txq->host_entry[ i ].status = STATUS_FREE;
2309
2310 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2311 &cp_entry[ i ].status_haddr);
2312
2313 /* although there is a one-to-one mapping of tx queue entries and tpds,
2314 we do not write here the DMA (physical) base address of each tpd into
2315 the related cp resident entry, because the cp relies on this write
2316 operation to detect that a new pdu has been submitted for tx */
2317 }
2318
2319 /* set the head and tail entries of the queue */
2320 txq->head = 0;
2321 txq->tail = 0;
2322
2323 fore200e->state = FORE200E_STATE_INIT_TXQ;
2324 return 0;
2325}
2326
2327
2328static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2329{
2330 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2331 struct cp_cmdq_entry __iomem * cp_entry;
2332 int i;
2333
2334 DPRINTK(2, "command queue is being initialized\n");
2335
2336 /* allocate and align the array of status words */
2337 if (fore200e->bus->dma_chunk_alloc(fore200e,
2338 &cmdq->status,
2339 sizeof(enum status),
2340 QUEUE_SIZE_CMD,
2341 fore200e->bus->status_alignment) < 0) {
2342 return -ENOMEM;
2343 }
2344
2345 /* get the base address of the cp resident cmd queue entries */
2346 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2347
2348 /* fill the host resident and cp resident cmd entries */
2349 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2350
2351 cmdq->host_entry[ i ].status =
2352 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2353 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2354
2355 *cmdq->host_entry[ i ].status = STATUS_FREE;
2356
2357 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2358 &cp_entry[ i ].status_haddr);
2359 }
2360
2361 /* set the head entry of the queue */
2362 cmdq->head = 0;
2363
2364 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2365 return 0;
2366}
2367
2368
2369static void fore200e_param_bs_queue(struct fore200e *fore200e,
2370 enum buffer_scheme scheme,
2371 enum buffer_magn magn, int queue_length,
2372 int pool_size, int supply_blksize)
2373{
2374 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2375
2376 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2377 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2378 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2379 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2380}
2381
2382
2383static int fore200e_initialize(struct fore200e *fore200e)
2384{
2385 struct cp_queues __iomem * cpq;
2386 int ok, scheme, magn;
2387
2388 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2389
2390 mutex_init(&fore200e->rate_mtx);
2391 spin_lock_init(&fore200e->q_lock);
2392
2393 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2394
2395 /* enable cp to host interrupts */
2396 fore200e->bus->write(1, &cpq->imask);
2397
2398 if (fore200e->bus->irq_enable)
2399 fore200e->bus->irq_enable(fore200e);
2400
2401 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2402
2403 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2404 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2405 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2406
2407 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2408 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2409
2410 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2411 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2412 fore200e_param_bs_queue(fore200e, scheme, magn,
2413 QUEUE_SIZE_BS,
2414 fore200e_rx_buf_nbr[ scheme ][ magn ],
2415 RBD_BLK_SIZE);
2416
2417 /* issue the initialize command */
2418 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2419 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2420
2421 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2422 if (ok == 0) {
2423 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2424 return -ENODEV;
2425 }
2426
2427 printk(FORE200E "device %s initialized\n", fore200e->name);
2428
2429 fore200e->state = FORE200E_STATE_INITIALIZE;
2430 return 0;
2431}
2432
2433
2434static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2435{
2436 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2437
2438#if 0
2439 printk("%c", c);
2440#endif
2441 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2442}
2443
2444
2445static int fore200e_monitor_getc(struct fore200e *fore200e)
2446{
2447 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2448 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2449 int c;
2450
2451 while (time_before(jiffies, timeout)) {
2452
2453 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2454
2455 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2456
2457 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2458#if 0
2459 printk("%c", c & 0xFF);
2460#endif
2461 return c & 0xFF;
2462 }
2463 }
2464
2465 return -1;
2466}
2467
2468
2469static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2470{
2471 while (*str) {
2472
2473 /* the i960 monitor doesn't accept any new character if it has something to say */
2474 while (fore200e_monitor_getc(fore200e) >= 0);
2475
2476 fore200e_monitor_putc(fore200e, *str++);
2477 }
2478
2479 while (fore200e_monitor_getc(fore200e) >= 0);
2480}
2481
2482#ifdef __LITTLE_ENDIAN
2483#define FW_EXT ".bin"
2484#else
2485#define FW_EXT "_ecd.bin2"
2486#endif
2487
2488static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2489{
2490 const struct firmware *firmware;
2491 struct device *device;
2492 struct fw_header *fw_header;
2493 const __le32 *fw_data;
2494 u32 fw_size;
2495 u32 __iomem *load_addr;
2496 char buf[48];
2497 int err = -ENODEV;
2498
2499 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2500 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2501#ifdef CONFIG_SBUS
2502 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2503 device = &((struct platform_device *) fore200e->bus_dev)->dev;
2504#endif
2505 else
2506 return err;
2507
2508 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2509 if ((err = request_firmware(&firmware, buf, device)) < 0) {
2510 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2511 return err;
2512 }
2513
2514 fw_data = (__le32 *) firmware->data;
2515 fw_size = firmware->size / sizeof(u32);
2516 fw_header = (struct fw_header *) firmware->data;
2517 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2518
2519 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2520 fore200e->name, load_addr, fw_size);
2521
2522 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2523 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2524 goto release;
2525 }
2526
2527 for (; fw_size--; fw_data++, load_addr++)
2528 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2529
2530 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2531
2532#if defined(__sparc_v9__)
2533 /* reported to be required by SBA cards on some sparc64 hosts */
2534 fore200e_spin(100);
2535#endif
2536
2537 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2538 fore200e_monitor_puts(fore200e, buf);
2539
2540 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2541 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2542 goto release;
2543 }
2544
2545 printk(FORE200E "device %s firmware started\n", fore200e->name);
2546
2547 fore200e->state = FORE200E_STATE_START_FW;
2548 err = 0;
2549
2550release:
2551 release_firmware(firmware);
2552 return err;
2553}
2554
2555
2556static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2557{
2558 struct atm_dev* atm_dev;
2559
2560 DPRINTK(2, "device %s being registered\n", fore200e->name);
2561
2562 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2563 -1, NULL);
2564 if (atm_dev == NULL) {
2565 printk(FORE200E "unable to register device %s\n", fore200e->name);
2566 return -ENODEV;
2567 }
2568
2569 atm_dev->dev_data = fore200e;
2570 fore200e->atm_dev = atm_dev;
2571
2572 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2573 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2574
2575 fore200e->available_cell_rate = ATM_OC3_PCR;
2576
2577 fore200e->state = FORE200E_STATE_REGISTER;
2578 return 0;
2579}
2580
2581
2582static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2583{
2584 if (fore200e_register(fore200e, parent) < 0)
2585 return -ENODEV;
2586
2587 if (fore200e->bus->configure(fore200e) < 0)
2588 return -ENODEV;
2589
2590 if (fore200e->bus->map(fore200e) < 0)
2591 return -ENODEV;
2592
2593 if (fore200e_reset(fore200e, 1) < 0)
2594 return -ENODEV;
2595
2596 if (fore200e_load_and_start_fw(fore200e) < 0)
2597 return -ENODEV;
2598
2599 if (fore200e_initialize(fore200e) < 0)
2600 return -ENODEV;
2601
2602 if (fore200e_init_cmd_queue(fore200e) < 0)
2603 return -ENOMEM;
2604
2605 if (fore200e_init_tx_queue(fore200e) < 0)
2606 return -ENOMEM;
2607
2608 if (fore200e_init_rx_queue(fore200e) < 0)
2609 return -ENOMEM;
2610
2611 if (fore200e_init_bs_queue(fore200e) < 0)
2612 return -ENOMEM;
2613
2614 if (fore200e_alloc_rx_buf(fore200e) < 0)
2615 return -ENOMEM;
2616
2617 if (fore200e_get_esi(fore200e) < 0)
2618 return -EIO;
2619
2620 if (fore200e_irq_request(fore200e) < 0)
2621 return -EBUSY;
2622
2623 fore200e_supply(fore200e);
2624
2625 /* all done, board initialization is now complete */
2626 fore200e->state = FORE200E_STATE_COMPLETE;
2627 return 0;
2628}
2629
2630#ifdef CONFIG_SBUS
2631static const struct of_device_id fore200e_sba_match[];
2632static int fore200e_sba_probe(struct platform_device *op)
2633{
2634 const struct of_device_id *match;
2635 const struct fore200e_bus *bus;
2636 struct fore200e *fore200e;
2637 static int index = 0;
2638 int err;
2639
2640 match = of_match_device(fore200e_sba_match, &op->dev);
2641 if (!match)
2642 return -EINVAL;
2643 bus = match->data;
2644
2645 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2646 if (!fore200e)
2647 return -ENOMEM;
2648
2649 fore200e->bus = bus;
2650 fore200e->bus_dev = op;
2651 fore200e->irq = op->archdata.irqs[0];
2652 fore200e->phys_base = op->resource[0].start;
2653
2654 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2655
2656 err = fore200e_init(fore200e, &op->dev);
2657 if (err < 0) {
2658 fore200e_shutdown(fore200e);
2659 kfree(fore200e);
2660 return err;
2661 }
2662
2663 index++;
2664 dev_set_drvdata(&op->dev, fore200e);
2665
2666 return 0;
2667}
2668
2669static int fore200e_sba_remove(struct platform_device *op)
2670{
2671 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2672
2673 fore200e_shutdown(fore200e);
2674 kfree(fore200e);
2675
2676 return 0;
2677}
2678
2679static const struct of_device_id fore200e_sba_match[] = {
2680 {
2681 .name = SBA200E_PROM_NAME,
2682 .data = (void *) &fore200e_bus[1],
2683 },
2684 {},
2685};
2686MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2687
2688static struct platform_driver fore200e_sba_driver = {
2689 .driver = {
2690 .name = "fore_200e",
2691 .of_match_table = fore200e_sba_match,
2692 },
2693 .probe = fore200e_sba_probe,
2694 .remove = fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700 const struct pci_device_id *pci_ent)
2701{
2702 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703 struct fore200e* fore200e;
2704 int err = 0;
2705 static int index = 0;
2706
2707 if (pci_enable_device(pci_dev)) {
2708 err = -EINVAL;
2709 goto out;
2710 }
2711
2712 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2713 err = -EINVAL;
2714 goto out;
2715 }
2716
2717 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718 if (fore200e == NULL) {
2719 err = -ENOMEM;
2720 goto out_disable;
2721 }
2722
2723 fore200e->bus = bus;
2724 fore200e->bus_dev = pci_dev;
2725 fore200e->irq = pci_dev->irq;
2726 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727
2728 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729
2730 pci_set_master(pci_dev);
2731
2732 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733 fore200e->bus->model_name,
2734 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735
2736 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737
2738 err = fore200e_init(fore200e, &pci_dev->dev);
2739 if (err < 0) {
2740 fore200e_shutdown(fore200e);
2741 goto out_free;
2742 }
2743
2744 ++index;
2745 pci_set_drvdata(pci_dev, fore200e);
2746
2747out:
2748 return err;
2749
2750out_free:
2751 kfree(fore200e);
2752out_disable:
2753 pci_disable_device(pci_dev);
2754 goto out;
2755}
2756
2757
2758static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759{
2760 struct fore200e *fore200e;
2761
2762 fore200e = pci_get_drvdata(pci_dev);
2763
2764 fore200e_shutdown(fore200e);
2765 kfree(fore200e);
2766 pci_disable_device(pci_dev);
2767}
2768
2769
2770static struct pci_device_id fore200e_pca_tbl[] = {
2771 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772 0, 0, (unsigned long) &fore200e_bus[0] },
2773 { 0, }
2774};
2775
2776MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777
2778static struct pci_driver fore200e_pca_driver = {
2779 .name = "fore_200e",
2780 .probe = fore200e_pca_detect,
2781 .remove = fore200e_pca_remove_one,
2782 .id_table = fore200e_pca_tbl,
2783};
2784#endif
2785
2786static int __init fore200e_module_init(void)
2787{
2788 int err = 0;
2789
2790 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791
2792#ifdef CONFIG_SBUS
2793 err = platform_driver_register(&fore200e_sba_driver);
2794 if (err)
2795 return err;
2796#endif
2797
2798#ifdef CONFIG_PCI
2799 err = pci_register_driver(&fore200e_pca_driver);
2800#endif
2801
2802#ifdef CONFIG_SBUS
2803 if (err)
2804 platform_driver_unregister(&fore200e_sba_driver);
2805#endif
2806
2807 return err;
2808}
2809
2810static void __exit fore200e_module_cleanup(void)
2811{
2812#ifdef CONFIG_PCI
2813 pci_unregister_driver(&fore200e_pca_driver);
2814#endif
2815#ifdef CONFIG_SBUS
2816 platform_driver_unregister(&fore200e_sba_driver);
2817#endif
2818}
2819
2820static int
2821fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822{
2823 struct fore200e* fore200e = FORE200E_DEV(dev);
2824 struct fore200e_vcc* fore200e_vcc;
2825 struct atm_vcc* vcc;
2826 int i, len, left = *pos;
2827 unsigned long flags;
2828
2829 if (!left--) {
2830
2831 if (fore200e_getstats(fore200e) < 0)
2832 return -EIO;
2833
2834 len = sprintf(page,"\n"
2835 " device:\n"
2836 " internal name:\t\t%s\n", fore200e->name);
2837
2838 /* print bus-specific information */
2839 if (fore200e->bus->proc_read)
2840 len += fore200e->bus->proc_read(fore200e, page + len);
2841
2842 len += sprintf(page + len,
2843 " interrupt line:\t\t%s\n"
2844 " physical base address:\t0x%p\n"
2845 " virtual base address:\t0x%p\n"
2846 " factory address (ESI):\t%pM\n"
2847 " board serial number:\t\t%d\n\n",
2848 fore200e_irq_itoa(fore200e->irq),
2849 (void*)fore200e->phys_base,
2850 fore200e->virt_base,
2851 fore200e->esi,
2852 fore200e->esi[4] * 256 + fore200e->esi[5]);
2853
2854 return len;
2855 }
2856
2857 if (!left--)
2858 return sprintf(page,
2859 " free small bufs, scheme 1:\t%d\n"
2860 " free large bufs, scheme 1:\t%d\n"
2861 " free small bufs, scheme 2:\t%d\n"
2862 " free large bufs, scheme 2:\t%d\n",
2863 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867
2868 if (!left--) {
2869 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870
2871 len = sprintf(page,"\n\n"
2872 " cell processor:\n"
2873 " heartbeat state:\t\t");
2874
2875 if (hb >> 16 != 0xDEAD)
2876 len += sprintf(page + len, "0x%08x\n", hb);
2877 else
2878 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879
2880 return len;
2881 }
2882
2883 if (!left--) {
2884 static const char* media_name[] = {
2885 "unshielded twisted pair",
2886 "multimode optical fiber ST",
2887 "multimode optical fiber SC",
2888 "single-mode optical fiber ST",
2889 "single-mode optical fiber SC",
2890 "unknown"
2891 };
2892
2893 static const char* oc3_mode[] = {
2894 "normal operation",
2895 "diagnostic loopback",
2896 "line loopback",
2897 "unknown"
2898 };
2899
2900 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904 u32 oc3_index;
2905
2906 if (media_index > 4)
2907 media_index = 5;
2908
2909 switch (fore200e->loop_mode) {
2910 case ATM_LM_NONE: oc3_index = 0;
2911 break;
2912 case ATM_LM_LOC_PHY: oc3_index = 1;
2913 break;
2914 case ATM_LM_RMT_PHY: oc3_index = 2;
2915 break;
2916 default: oc3_index = 3;
2917 }
2918
2919 return sprintf(page,
2920 " firmware release:\t\t%d.%d.%d\n"
2921 " monitor release:\t\t%d.%d\n"
2922 " media type:\t\t\t%s\n"
2923 " OC-3 revision:\t\t0x%x\n"
2924 " OC-3 mode:\t\t\t%s",
2925 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2926 mon960_release >> 16, mon960_release << 16 >> 16,
2927 media_name[ media_index ],
2928 oc3_revision,
2929 oc3_mode[ oc3_index ]);
2930 }
2931
2932 if (!left--) {
2933 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934
2935 return sprintf(page,
2936 "\n\n"
2937 " monitor:\n"
2938 " version number:\t\t%d\n"
2939 " boot status word:\t\t0x%08x\n",
2940 fore200e->bus->read(&cp_monitor->mon_version),
2941 fore200e->bus->read(&cp_monitor->bstat));
2942 }
2943
2944 if (!left--)
2945 return sprintf(page,
2946 "\n"
2947 " device statistics:\n"
2948 " 4b5b:\n"
2949 " crc_header_errors:\t\t%10u\n"
2950 " framing_errors:\t\t%10u\n",
2951 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952 be32_to_cpu(fore200e->stats->phy.framing_errors));
2953
2954 if (!left--)
2955 return sprintf(page, "\n"
2956 " OC-3:\n"
2957 " section_bip8_errors:\t%10u\n"
2958 " path_bip8_errors:\t\t%10u\n"
2959 " line_bip24_errors:\t\t%10u\n"
2960 " line_febe_errors:\t\t%10u\n"
2961 " path_febe_errors:\t\t%10u\n"
2962 " corr_hcs_errors:\t\t%10u\n"
2963 " ucorr_hcs_errors:\t\t%10u\n",
2964 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971
2972 if (!left--)
2973 return sprintf(page,"\n"
2974 " ATM:\t\t\t\t cells\n"
2975 " TX:\t\t\t%10u\n"
2976 " RX:\t\t\t%10u\n"
2977 " vpi out of range:\t\t%10u\n"
2978 " vpi no conn:\t\t%10u\n"
2979 " vci out of range:\t\t%10u\n"
2980 " vci no conn:\t\t%10u\n",
2981 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982 be32_to_cpu(fore200e->stats->atm.cells_received),
2983 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987
2988 if (!left--)
2989 return sprintf(page,"\n"
2990 " AAL0:\t\t\t cells\n"
2991 " TX:\t\t\t%10u\n"
2992 " RX:\t\t\t%10u\n"
2993 " dropped:\t\t\t%10u\n",
2994 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995 be32_to_cpu(fore200e->stats->aal0.cells_received),
2996 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997
2998 if (!left--)
2999 return sprintf(page,"\n"
3000 " AAL3/4:\n"
3001 " SAR sublayer:\t\t cells\n"
3002 " TX:\t\t\t%10u\n"
3003 " RX:\t\t\t%10u\n"
3004 " dropped:\t\t\t%10u\n"
3005 " CRC errors:\t\t%10u\n"
3006 " protocol errors:\t\t%10u\n\n"
3007 " CS sublayer:\t\t PDUs\n"
3008 " TX:\t\t\t%10u\n"
3009 " RX:\t\t\t%10u\n"
3010 " dropped:\t\t\t%10u\n"
3011 " protocol errors:\t\t%10u\n",
3012 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013 be32_to_cpu(fore200e->stats->aal34.cells_received),
3014 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021
3022 if (!left--)
3023 return sprintf(page,"\n"
3024 " AAL5:\n"
3025 " SAR sublayer:\t\t cells\n"
3026 " TX:\t\t\t%10u\n"
3027 " RX:\t\t\t%10u\n"
3028 " dropped:\t\t\t%10u\n"
3029 " congestions:\t\t%10u\n\n"
3030 " CS sublayer:\t\t PDUs\n"
3031 " TX:\t\t\t%10u\n"
3032 " RX:\t\t\t%10u\n"
3033 " dropped:\t\t\t%10u\n"
3034 " CRC errors:\t\t%10u\n"
3035 " protocol errors:\t\t%10u\n",
3036 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037 be32_to_cpu(fore200e->stats->aal5.cells_received),
3038 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045
3046 if (!left--)
3047 return sprintf(page,"\n"
3048 " AUX:\t\t allocation failures\n"
3049 " small b1:\t\t\t%10u\n"
3050 " large b1:\t\t\t%10u\n"
3051 " small b2:\t\t\t%10u\n"
3052 " large b2:\t\t\t%10u\n"
3053 " RX PDUs:\t\t\t%10u\n"
3054 " TX PDUs:\t\t\t%10lu\n",
3055 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060 fore200e->tx_sat);
3061
3062 if (!left--)
3063 return sprintf(page,"\n"
3064 " receive carrier:\t\t\t%s\n",
3065 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066
3067 if (!left--) {
3068 return sprintf(page,"\n"
3069 " VCCs:\n address VPI VCI AAL "
3070 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3071 }
3072
3073 for (i = 0; i < NBR_CONNECT; i++) {
3074
3075 vcc = fore200e->vc_map[i].vcc;
3076
3077 if (vcc == NULL)
3078 continue;
3079
3080 spin_lock_irqsave(&fore200e->q_lock, flags);
3081
3082 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083
3084 fore200e_vcc = FORE200E_VCC(vcc);
3085 ASSERT(fore200e_vcc);
3086
3087 len = sprintf(page,
3088 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3089 (u32)(unsigned long)vcc,
3090 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091 fore200e_vcc->tx_pdu,
3092 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093 fore200e_vcc->tx_max_pdu,
3094 fore200e_vcc->rx_pdu,
3095 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096 fore200e_vcc->rx_max_pdu);
3097
3098 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099 return len;
3100 }
3101
3102 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103 }
3104
3105 return 0;
3106}
3107
3108module_init(fore200e_module_init);
3109module_exit(fore200e_module_cleanup);
3110
3111
3112static const struct atmdev_ops fore200e_ops =
3113{
3114 .open = fore200e_open,
3115 .close = fore200e_close,
3116 .ioctl = fore200e_ioctl,
3117 .getsockopt = fore200e_getsockopt,
3118 .setsockopt = fore200e_setsockopt,
3119 .send = fore200e_send,
3120 .change_qos = fore200e_change_qos,
3121 .proc_read = fore200e_proc_read,
3122 .owner = THIS_MODULE
3123};
3124
3125
3126static const struct fore200e_bus fore200e_bus[] = {
3127#ifdef CONFIG_PCI
3128 { "PCA-200E", "pca200e", 32, 4, 32,
3129 fore200e_pca_read,
3130 fore200e_pca_write,
3131 fore200e_pca_dma_map,
3132 fore200e_pca_dma_unmap,
3133 fore200e_pca_dma_sync_for_cpu,
3134 fore200e_pca_dma_sync_for_device,
3135 fore200e_pca_dma_chunk_alloc,
3136 fore200e_pca_dma_chunk_free,
3137 fore200e_pca_configure,
3138 fore200e_pca_map,
3139 fore200e_pca_reset,
3140 fore200e_pca_prom_read,
3141 fore200e_pca_unmap,
3142 NULL,
3143 fore200e_pca_irq_check,
3144 fore200e_pca_irq_ack,
3145 fore200e_pca_proc_read,
3146 },
3147#endif
3148#ifdef CONFIG_SBUS
3149 { "SBA-200E", "sba200e", 32, 64, 32,
3150 fore200e_sba_read,
3151 fore200e_sba_write,
3152 fore200e_sba_dma_map,
3153 fore200e_sba_dma_unmap,
3154 fore200e_sba_dma_sync_for_cpu,
3155 fore200e_sba_dma_sync_for_device,
3156 fore200e_sba_dma_chunk_alloc,
3157 fore200e_sba_dma_chunk_free,
3158 fore200e_sba_configure,
3159 fore200e_sba_map,
3160 fore200e_sba_reset,
3161 fore200e_sba_prom_read,
3162 fore200e_sba_unmap,
3163 fore200e_sba_irq_enable,
3164 fore200e_sba_irq_check,
3165 fore200e_sba_irq_ack,
3166 fore200e_sba_proc_read,
3167 },
3168#endif
3169 {}
3170};
3171
3172MODULE_LICENSE("GPL");
3173#ifdef CONFIG_PCI
3174#ifdef __LITTLE_ENDIAN__
3175MODULE_FIRMWARE("pca200e.bin");
3176#else
3177MODULE_FIRMWARE("pca200e_ecd.bin2");
3178#endif
3179#endif /* CONFIG_PCI */
3180#ifdef CONFIG_SBUS
3181MODULE_FIRMWARE("sba200e_ecd.bin2");
3182#endif