Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
  28#include <linux/pgtable.h>
  29#include <asm/io.h>
  30#include <asm/string.h>
  31#include <asm/page.h>
  32#include <asm/irq.h>
  33#include <asm/dma.h>
  34#include <asm/byteorder.h>
  35#include <linux/uaccess.h>
  36#include <linux/atomic.h>
  37
  38#ifdef CONFIG_SBUS
  39#include <linux/of.h>
  40#include <linux/of_device.h>
  41#include <asm/idprom.h>
  42#include <asm/openprom.h>
  43#include <asm/oplib.h>
 
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88				    __func__, __LINE__, #expr); \
  89			     panic(FORE200E "%s", __func__); \
  90			 }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
 
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170	alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177	return -ENOMEM;
 178
 179    if (alignment > 0)
 180	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185				     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187	kfree(chunk->alloc_addr);
 188	return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200		     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211		int size, int nbr, int alignment)
 212{
 213	/* returned chunks are page-aligned */
 214	chunk->alloc_size = size * nbr;
 215	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216					       &chunk->dma_addr, GFP_KERNEL);
 217	if (!chunk->alloc_addr)
 218		return -ENOMEM;
 219	chunk->align_addr = chunk->alloc_addr;
 220	return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230			  chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250	    break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257	       *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272	if ((ok = (fore200e->bus->read(addr) == val)))
 273	    break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280	       fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301		    struct chunk* data = &buffer[ nbr ].data;
 302
 303		    if (data->alloc_addr != NULL)
 304			fore200e_chunk_free(fore200e, data);
 305		}
 306	    }
 307	}
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322	    
 323	    if (status->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, status);
 325	    
 326	    if (rbd_block->alloc_addr)
 327		fore200e_dma_chunk_free(fore200e, rbd_block);
 328	}
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346	if (ok == 0) {
 347	    
 348	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349	    return -ENODEV;
 350	}
 351
 352	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353	
 354	fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365	   fore200e->name, fore200e->phys_base, 
 366	   fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369	/* first, reset the board to prevent further interrupts or data transfers */
 370	fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377	kfree(fore200e->stats);
 378
 379	fallthrough;
 380    case FORE200E_STATE_IRQ:
 381	free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383	fallthrough;
 384    case FORE200E_STATE_ALLOC_BUF:
 385	fore200e_free_rx_buf(fore200e);
 386
 387	fallthrough;
 388    case FORE200E_STATE_INIT_BSQ:
 389	fore200e_uninit_bs_queue(fore200e);
 390
 391	fallthrough;
 392    case FORE200E_STATE_INIT_RXQ:
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396	fallthrough;
 397    case FORE200E_STATE_INIT_TXQ:
 398	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401	fallthrough;
 402    case FORE200E_STATE_INIT_CMDQ:
 403	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405	fallthrough;
 406    case FORE200E_STATE_INITIALIZE:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413	/* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416	fore200e->bus->unmap(fore200e);
 417
 418	fallthrough;
 419    case FORE200E_STATE_CONFIGURE:
 420	/* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423	/* XXX shouldn't we *start* by deregistering the device? */
 424	atm_dev_deregister(fore200e->atm_dev);
 425
 426    case FORE200E_STATE_BLANK:
 427	/* nothing to do for that state */
 428	break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489	printk(FORE200E "can't map device %s\n", fore200e->name);
 490	return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511	iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524	return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531	/* request the PCA board to convert the endianess of slave RAM accesses */
 532	| PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570			      DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572	return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588	return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614	.model_name		= "PCA-200E",
 615	.proc_name		= "pca200e",
 616	.descr_alignment	= 32,
 617	.buffer_alignment	= 4,
 618	.status_alignment	= 32,
 619	.read			= fore200e_pca_read,
 620	.write			= fore200e_pca_write,
 621	.configure		= fore200e_pca_configure,
 622	.map			= fore200e_pca_map,
 623	.reset			= fore200e_pca_reset,
 624	.prom_read		= fore200e_pca_prom_read,
 625	.unmap			= fore200e_pca_unmap,
 626	.irq_check		= fore200e_pca_irq_check,
 627	.irq_ack		= fore200e_pca_irq_ack,
 628	.proc_read		= fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664	fore200e_spin(10);
 665	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670	struct platform_device *op = to_platform_device(fore200e->dev);
 671	unsigned int bursts;
 672
 673	/* gain access to the SBA specific registers  */
 674	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679	if (!fore200e->virt_base) {
 680		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681		return -EFAULT;
 682	}
 683
 684	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688	/* get the supported DVMA burst sizes */
 689	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691	if (sbus_can_dma_64bit())
 692		sbus_set_sbus64(&op->dev, bursts);
 693
 694	fore200e->state = FORE200E_STATE_MAP;
 695	return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700	struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710	fore200e->state = FORE200E_STATE_CONFIGURE;
 711	return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716	struct platform_device *op = to_platform_device(fore200e->dev);
 717	const u8 *prop;
 718	int len;
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[4], prop, 4);
 724
 725	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726	if (!prop)
 727		return -ENODEV;
 728	memcpy(&prom->mac_addr[2], prop, 4);
 729
 730	prom->serial_number = of_getintprop_default(op->dev.of_node,
 731						    "serialnumber", 0);
 732	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733						  "promversion", 0);
 734    
 735	return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740	struct platform_device *op = to_platform_device(fore200e->dev);
 741	const struct linux_prom_registers *regs;
 742
 743	regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746		       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750	.model_name		= "SBA-200E",
 751	.proc_name		= "sba200e",
 752	.descr_alignment	= 32,
 753	.buffer_alignment	= 64,
 754	.status_alignment	= 32,
 755	.read			= fore200e_sba_read,
 756	.write			= fore200e_sba_write,
 757	.configure		= fore200e_sba_configure,
 758	.map			= fore200e_sba_map,
 759	.reset			= fore200e_sba_reset,
 760	.prom_read		= fore200e_sba_prom_read,
 761	.unmap			= fore200e_sba_unmap,
 762	.irq_enable		= fore200e_sba_irq_enable,
 763	.irq_check		= fore200e_sba_irq_check,
 764	.irq_ack		= fore200e_sba_irq_ack,
 765	.proc_read		= fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778	return;
 779
 780    for (;;) {
 781	
 782	entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785	    break;
 786	}
 787
 788	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789		entry, txq->tail, entry->vc_map, entry->skb);
 790
 791	/* free copy of misaligned data */
 792	kfree(entry->data);
 793	
 794	/* remove DMA mapping */
 795	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796				 DMA_TO_DEVICE);
 797
 798	vc_map = entry->vc_map;
 799
 800	/* vcc closed since the time the entry was submitted for tx? */
 801	if ((vc_map->vcc == NULL) ||
 802	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805		    fore200e->atm_dev->number);
 806
 807	    dev_kfree_skb_any(entry->skb);
 808	}
 809	else {
 810	    ASSERT(vc_map->vcc);
 811
 812	    /* vcc closed then immediately re-opened? */
 813	    if (vc_map->incarn != entry->incarn) {
 814
 815		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816		   if the same vcc is immediately re-opened, those pending PDUs must
 817		   not be popped after the completion of their emission, as they refer
 818		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819		   would be decremented by the size of the (unrelated) skb, possibly
 820		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821		   we thus bind the tx entry to the current incarnation of the vcc
 822		   when the entry is submitted for tx. When the tx later completes,
 823		   if the incarnation number of the tx entry does not match the one
 824		   of the vcc, then this implies that the vcc has been closed then re-opened.
 825		   we thus just drop the skb here. */
 826
 827		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828			fore200e->atm_dev->number);
 829
 830		dev_kfree_skb_any(entry->skb);
 831	    }
 832	    else {
 833		vcc = vc_map->vcc;
 834		ASSERT(vcc);
 835
 836		/* notify tx completion */
 837		if (vcc->pop) {
 838		    vcc->pop(vcc, entry->skb);
 839		}
 840		else {
 841		    dev_kfree_skb_any(entry->skb);
 842		}
 843
 
 
 
 
 
 844		/* check error condition */
 845		if (*entry->status & STATUS_ERROR)
 846		    atomic_inc(&vcc->stats->tx_err);
 847		else
 848		    atomic_inc(&vcc->stats->tx);
 849	    }
 850	}
 851
 852	*entry->status = STATUS_FREE;
 853
 854	fore200e->host_txq.txing--;
 855
 856	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870	if (buffer->supplied) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872		   where, scheme, magn, buffer->index);
 873	}
 874
 875	if (buffer->magn != magn) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->magn);
 878	}
 879
 880	if (buffer->scheme != scheme) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882		   where, scheme, magn, buffer->index, buffer->scheme);
 883	}
 884
 885	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887		   where, scheme, magn, buffer->index);
 888	}
 889
 890	count++;
 891	buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896	       where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918	    bsq_audit(1, bsq, scheme, magn);
 919#endif
 920	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925		entry = &bsq->host_entry[ bsq->head ];
 926
 927		for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929		    /* take the first buffer in the free buffer list */
 930		    buffer = bsq->freebuf;
 931		    if (!buffer) {
 932			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933			       scheme, magn, bsq->freebuf_count);
 934			return;
 935		    }
 936		    bsq->freebuf = buffer->next;
 937		    
 938#ifdef FORE200E_BSQ_DEBUG
 939		    if (buffer->supplied)
 940			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941			       scheme, magn, buffer->index);
 942		    buffer->supplied = 1;
 943#endif
 944		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946		}
 947
 948		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950 		/* decrease accordingly the number of free rx buffers */
 951		bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953		*entry->status = STATUS_PENDING;
 954		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955	    }
 956	}
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985	pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991	pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997	atomic_inc(&vcc->stats->rx_drop);
 998	return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005	*((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011	
1012	/* rebuild rx buffer address from rsd handle */
1013	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014	
1015	/* Make device DMA transfer visible to CPU.  */
1016	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018	
1019	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021	/* Now let the device get at it again.  */
1022	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029	fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031	fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038		vcc->itf, vcc->vpi, vcc->vci);
1039
1040	dev_kfree_skb_any(skb);
1041
1042	atomic_inc(&vcc->stats->rx_drop);
1043	return -ENOMEM;
1044    }
1045
 
 
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
 
 
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062	/* rebuild rx buffer address from rsd handle */
1063	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070	if (buffer->supplied == 0)
1071	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072		   buffer->scheme, buffer->magn, buffer->index);
1073	buffer->supplied = 0;
1074#endif
1075
1076	/* re-insert the buffer into the free buffer list */
1077	buffer->next = bsq->freebuf;
1078	bsq->freebuf = buffer;
1079
1080	/* then increment the number of free rx buffers */
1081	bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095	
1096	entry = &rxq->host_entry[ rxq->head ];
1097
1098	/* no more received PDUs */
1099	if ((*entry->status & STATUS_COMPLETE) == 0)
1100	    break;
1101
1102	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104	if ((vc_map->vcc == NULL) ||
1105	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108		    fore200e->atm_dev->number,
1109		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110	}
1111	else {
1112	    vcc = vc_map->vcc;
1113	    ASSERT(vcc);
1114
1115	    if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118	    }
1119	    else {
1120		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121			fore200e->atm_dev->number,
1122			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123		atomic_inc(&vcc->stats->rx_err);
1124	    }
1125	}
1126
1127	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129	fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131	/* rewrite the rpd address to ack the received PDU */
1132	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133	*entry->status = STATUS_FREE;
1134
1135	fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163	
1164	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165	return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239	
1240	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241	activ_opcode.aal    = aal;
1242	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243	activ_opcode.pad    = 0;
1244    }
1245    else {
1246	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247	deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258	mtu = 48;
1259#endif
1260	/* the MTU is not used by the cp, except in the case of AAL0 */
1261	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277	return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281	    activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294	/* compute the data cells to idle cells ratio from the tx PCR */
1295	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299	/* disable rate control */
1300	rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long	    flags;
1312    int			    vci = vcc->vci;
1313    short		    vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325	printk(FORE200E "VC %d.%d.%d already in use\n",
1326	       fore200e->atm_dev->number, vpi, vci);
1327
1328	return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337	vc_map->vcc = NULL;
1338	return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351	
1352	mutex_lock(&fore200e->rate_mtx);
1353	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354	    mutex_unlock(&fore200e->rate_mtx);
1355
1356	    kfree(fore200e_vcc);
1357	    vc_map->vcc = NULL;
1358	    return -EAGAIN;
1359	}
1360
1361	/* reserve bandwidth */
1362	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363	mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375	vc_map->vcc = NULL;
1376
1377	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380	vcc->dev_data = NULL;
1381
1382	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384	kfree(fore200e_vcc);
1385	return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390	
1391	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
 
1417    struct fore200e_vcc*    fore200e_vcc;
1418    struct fore200e*        fore200e;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    fore200e = FORE200E_DEV(vcc->dev);
1424
1425    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430    clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434    spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438    /* the vc is no longer considered as "in use" by fore200e_open() */
1439    vc_map->vcc = NULL;
1440
1441    vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443    fore200e_vcc = FORE200E_VCC(vcc);
1444    vcc->dev_data = NULL;
1445
1446    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448    /* release reserved bandwidth, if any */
1449    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451	mutex_lock(&fore200e->rate_mtx);
1452	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454
1455	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456    }
1457
1458    clear_bit(ATM_VF_ADDR, &vcc->flags);
1459    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461    ASSERT(fore200e_vcc);
1462    kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469    struct fore200e*        fore200e;
1470    struct fore200e_vcc*    fore200e_vcc;
1471    struct fore200e_vc_map* vc_map;
1472    struct host_txq*        txq;
1473    struct host_txq_entry*  entry;
1474    struct tpd*             tpd;
1475    struct tpd_haddr        tpd_haddr;
1476    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477    int                     tx_copy      = 0;
1478    int                     tx_len       = skb->len;
1479    u32*                    cell_header  = NULL;
1480    unsigned char*          skb_data;
1481    int                     skb_len;
1482    unsigned char*          data;
1483    unsigned long           flags;
1484
1485    if (!vcc)
1486        return -EINVAL;
1487
1488    fore200e = FORE200E_DEV(vcc->dev);
1489    fore200e_vcc = FORE200E_VCC(vcc);
1490
1491    if (!fore200e)
1492        return -EINVAL;
1493
1494    txq = &fore200e->host_txq;
1495    if (!fore200e_vcc)
1496        return -EINVAL;
1497
1498    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500	dev_kfree_skb_any(skb);
1501	return -EINVAL;
1502    }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506	cell_header = (u32*) skb->data;
1507	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508	skb_len     = tx_len = skb->len  - 4;
1509
1510	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511    }
1512    else 
1513#endif
1514    {
1515	skb_data = skb->data;
1516	skb_len  = skb->len;
1517    }
1518    
1519    if (((unsigned long)skb_data) & 0x3) {
1520
1521	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522	tx_copy = 1;
1523	tx_len  = skb_len;
1524    }
1525
1526    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528        /* this simply NUKES the PCA board */
1529	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530	tx_copy = 1;
1531	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532    }
1533    
1534    if (tx_copy) {
1535	data = kmalloc(tx_len, GFP_ATOMIC);
1536	if (data == NULL) {
1537	    if (vcc->pop) {
1538		vcc->pop(vcc, skb);
1539	    }
1540	    else {
1541		dev_kfree_skb_any(skb);
1542	    }
1543	    return -ENOMEM;
1544	}
1545
1546	memcpy(data, skb_data, skb_len);
1547	if (skb_len < tx_len)
1548	    memset(data + skb_len, 0x00, tx_len - skb_len);
1549    }
1550    else {
1551	data = skb_data;
1552    }
1553
1554    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555    ASSERT(vc_map->vcc == vcc);
1556
1557  retry_here:
1558
1559    spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561    entry = &txq->host_entry[ txq->head ];
1562
1563    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565	/* try to free completed tx queue entries */
1566	fore200e_tx_irq(fore200e);
1567
1568	if (*entry->status != STATUS_FREE) {
1569
1570	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572	    /* retry once again? */
1573	    if (--retry > 0) {
1574		udelay(50);
1575		goto retry_here;
1576	    }
1577
1578	    atomic_inc(&vcc->stats->tx_err);
1579
1580	    fore200e->tx_sat++;
1581	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582		    fore200e->name, fore200e->cp_queues->heartbeat);
1583	    if (vcc->pop) {
1584		vcc->pop(vcc, skb);
1585	    }
1586	    else {
1587		dev_kfree_skb_any(skb);
1588	    }
1589
1590	    if (tx_copy)
1591		kfree(data);
1592
1593	    return -ENOBUFS;
1594	}
1595    }
1596
1597    entry->incarn = vc_map->incarn;
1598    entry->vc_map = vc_map;
1599    entry->skb    = skb;
1600    entry->data   = tx_copy ? data : NULL;
1601
1602    tpd = entry->tpd;
1603    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604					  DMA_TO_DEVICE);
1605    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606	if (tx_copy)
1607	    kfree(data);
1608	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609	return -ENOMEM;
1610    }
1611    tpd->tsd[ 0 ].length = tx_len;
1612
1613    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614    txq->txing++;
1615
1616    /* The dma_map call above implies a dma_sync so the device can use it,
1617     * thus no explicit dma_sync call is necessary here.
1618     */
1619    
1620    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1621	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622	    tpd->tsd[0].length, skb_len);
1623
1624    if (skb_len < fore200e_vcc->tx_min_pdu)
1625	fore200e_vcc->tx_min_pdu = skb_len;
1626    if (skb_len > fore200e_vcc->tx_max_pdu)
1627	fore200e_vcc->tx_max_pdu = skb_len;
1628    fore200e_vcc->tx_pdu++;
1629
1630    /* set tx rate control information */
1631    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634    if (cell_header) {
1635	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640    }
1641    else {
1642	/* set the ATM header, common to all cells conveying the PDU */
1643	tpd->atm_header.clp = 0;
1644	tpd->atm_header.plt = 0;
1645	tpd->atm_header.vci = vcc->vci;
1646	tpd->atm_header.vpi = vcc->vpi;
1647	tpd->atm_header.gfc = 0;
1648    }
1649
1650    tpd->spec.length = tx_len;
1651    tpd->spec.nseg   = 1;
1652    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653    tpd->spec.intr   = 1;
1654
1655    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656    tpd_haddr.pad   = 0;
1657    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659    *entry->status = STATUS_PENDING;
1660    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664    return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673    struct stats_opcode     opcode;
1674    int                     ok;
1675    u32                     stats_dma_addr;
1676
1677    if (fore200e->stats == NULL) {
1678	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679	if (fore200e->stats == NULL)
1680	    return -ENOMEM;
1681    }
1682    
1683    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684				    sizeof(struct stats), DMA_FROM_DEVICE);
1685    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686    	return -ENOMEM;
1687    
1688    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690    opcode.opcode = OPCODE_GET_STATS;
1691    opcode.pad    = 0;
1692
1693    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694    
1695    *entry->status = STATUS_PENDING;
1696
1697    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701    *entry->status = STATUS_FREE;
1702
1703    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704    
1705    if (ok == 0) {
1706	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707	return -EIO;
1708    }
1709
1710    return 0;
1711}
1712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719    struct oc3_opcode       opcode;
1720    int                     ok;
1721    u32                     oc3_regs_dma_addr;
1722
1723    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727    opcode.opcode = OPCODE_GET_OC3;
1728    opcode.reg    = 0;
1729    opcode.value  = 0;
1730    opcode.mask   = 0;
1731
1732    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733    
1734    *entry->status = STATUS_PENDING;
1735
1736    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740    *entry->status = STATUS_FREE;
1741
1742    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743    
1744    if (ok == 0) {
1745	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746	return -EIO;
1747    }
1748
1749    return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759    struct oc3_opcode       opcode;
1760    int                     ok;
1761
1762    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766    opcode.opcode = OPCODE_SET_OC3;
1767    opcode.reg    = reg;
1768    opcode.value  = value;
1769    opcode.mask   = mask;
1770
1771    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772    
1773    *entry->status = STATUS_PENDING;
1774
1775    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779    *entry->status = STATUS_FREE;
1780
1781    if (ok == 0) {
1782	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783	return -EIO;
1784    }
1785
1786    return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793    u32 mct_value, mct_mask;
1794    int error;
1795
1796    if (!capable(CAP_NET_ADMIN))
1797	return -EPERM;
1798    
1799    switch (loop_mode) {
1800
1801    case ATM_LM_NONE:
1802	mct_value = 0; 
1803	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804	break;
1805	
1806    case ATM_LM_LOC_PHY:
1807	mct_value = mct_mask = SUNI_MCT_DLE;
1808	break;
1809
1810    case ATM_LM_RMT_PHY:
1811	mct_value = mct_mask = SUNI_MCT_LLE;
1812	break;
1813
1814    default:
1815	return -EINVAL;
1816    }
1817
1818    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819    if (error == 0)
1820	fore200e->loop_mode = loop_mode;
1821
1822    return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829    struct sonet_stats tmp;
1830
1831    if (fore200e_getstats(fore200e) < 0)
1832	return -EIO;
1833
1834    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848    if (arg)
1849	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1850    
1851    return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858    struct fore200e* fore200e = FORE200E_DEV(dev);
1859    
1860    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862    switch (cmd) {
1863
1864    case SONET_GETSTAT:
1865	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867    case SONET_GETDIAG:
1868	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870    case ATM_SETLOOP:
1871	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873    case ATM_GETLOOP:
1874	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876    case ATM_QUERYLOOP:
1877	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878    }
1879
1880    return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892	return -EINVAL;
1893    }
1894
1895    DPRINTK(2, "change_qos %d.%d.%d, "
1896	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898	    "available_cell_rate = %u",
1899	    vcc->itf, vcc->vpi, vcc->vci,
1900	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1901	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904	    flags, fore200e->available_cell_rate);
1905
1906    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908	mutex_lock(&fore200e->rate_mtx);
1909	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910	    mutex_unlock(&fore200e->rate_mtx);
1911	    return -EAGAIN;
1912	}
1913
1914	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917	mutex_unlock(&fore200e->rate_mtx);
1918	
1919	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920	
1921	/* update rate control parameters */
1922	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924	set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926	return 0;
1927    }
1928    
1929    return -EINVAL;
1930}
1931    
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939	return -EBUSY;
1940    }
1941
1942    printk(FORE200E "IRQ %s reserved for device %s\n",
1943	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950    fore200e->state = FORE200E_STATE_IRQ;
1951    return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958    int ok, i;
1959
1960    if (!prom)
1961	return -ENOMEM;
1962
1963    ok = fore200e->bus->prom_read(fore200e, prom);
1964    if (ok < 0) {
1965	kfree(prom);
1966	return -EBUSY;
1967    }
1968	
1969    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970	   fore200e->name, 
1971	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973	
1974    for (i = 0; i < ESI_LEN; i++) {
1975	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976    }
1977    
1978    kfree(prom);
1979
1980    return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986    int scheme, magn, nbr, size, i;
1987
1988    struct host_bsq* bsq;
1989    struct buffer*   buffer;
1990
1991    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001	    /* allocate the array of receive buffers */
2002	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                           GFP_KERNEL);
2004
2005	    if (buffer == NULL)
2006		return -ENOMEM;
2007
2008	    bsq->freebuf = NULL;
2009
2010	    for (i = 0; i < nbr; i++) {
2011
2012		buffer[ i ].scheme = scheme;
2013		buffer[ i ].magn   = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015		buffer[ i ].index  = i;
2016		buffer[ i ].supplied = 0;
2017#endif
2018
2019		/* allocate the receive buffer body */
2020		if (fore200e_chunk_alloc(fore200e,
2021					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022					 DMA_FROM_DEVICE) < 0) {
2023		    
2024		    while (i > 0)
2025			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026		    kfree(buffer);
2027		    
2028		    return -ENOMEM;
2029		}
2030
2031		/* insert the buffer into the free buffer list */
2032		buffer[ i ].next = bsq->freebuf;
2033		bsq->freebuf = &buffer[ i ];
2034	    }
2035	    /* all the buffers are free, initially */
2036	    bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039	    bsq_audit(3, bsq, scheme, magn);
2040#endif
2041	}
2042    }
2043
2044    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045    return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051    int scheme, magn, i;
2052
2053    struct host_bsq*     bsq;
2054    struct cp_bsq_entry __iomem * cp_entry;
2055
2056    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063	    /* allocate and align the array of status words */
2064	    if (fore200e_dma_chunk_alloc(fore200e,
2065					       &bsq->status,
2066					       sizeof(enum status), 
2067					       QUEUE_SIZE_BS,
2068					       fore200e->bus->status_alignment) < 0) {
2069		return -ENOMEM;
2070	    }
2071
2072	    /* allocate and align the array of receive buffer descriptors */
2073	    if (fore200e_dma_chunk_alloc(fore200e,
2074					       &bsq->rbd_block,
2075					       sizeof(struct rbd_block),
2076					       QUEUE_SIZE_BS,
2077					       fore200e->bus->descr_alignment) < 0) {
2078		
2079		fore200e_dma_chunk_free(fore200e, &bsq->status);
2080		return -ENOMEM;
2081	    }
2082	    
2083	    /* get the base address of the cp resident buffer supply queue entries */
2084	    cp_entry = fore200e->virt_base + 
2085		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086	    
2087	    /* fill the host resident and cp resident buffer supply queue entries */
2088	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089		
2090		bsq->host_entry[ i ].status = 
2091		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092	        bsq->host_entry[ i ].rbd_block =
2093		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].rbd_block_dma =
2095		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097		
2098		*bsq->host_entry[ i ].status = STATUS_FREE;
2099		
2100		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2101				     &cp_entry[ i ].status_haddr);
2102	    }
2103	}
2104    }
2105
2106    fore200e->state = FORE200E_STATE_INIT_BSQ;
2107    return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113    struct host_rxq*     rxq =  &fore200e->host_rxq;
2114    struct cp_rxq_entry __iomem * cp_entry;
2115    int i;
2116
2117    DPRINTK(2, "receive queue is being initialized\n");
2118
2119    /* allocate and align the array of status words */
2120    if (fore200e_dma_chunk_alloc(fore200e,
2121				       &rxq->status,
2122				       sizeof(enum status), 
2123				       QUEUE_SIZE_RX,
2124				       fore200e->bus->status_alignment) < 0) {
2125	return -ENOMEM;
2126    }
2127
2128    /* allocate and align the array of receive PDU descriptors */
2129    if (fore200e_dma_chunk_alloc(fore200e,
2130				       &rxq->rpd,
2131				       sizeof(struct rpd), 
2132				       QUEUE_SIZE_RX,
2133				       fore200e->bus->descr_alignment) < 0) {
2134	
2135	fore200e_dma_chunk_free(fore200e, &rxq->status);
2136	return -ENOMEM;
2137    }
2138
2139    /* get the base address of the cp resident rx queue entries */
2140    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142    /* fill the host resident and cp resident rx entries */
2143    for (i=0; i < QUEUE_SIZE_RX; i++) {
2144	
2145	rxq->host_entry[ i ].status = 
2146	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147	rxq->host_entry[ i ].rpd = 
2148	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149	rxq->host_entry[ i ].rpd_dma = 
2150	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153	*rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2156			     &cp_entry[ i ].status_haddr);
2157
2158	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159			     &cp_entry[ i ].rpd_haddr);
2160    }
2161
2162    /* set the head entry of the queue */
2163    rxq->head = 0;
2164
2165    fore200e->state = FORE200E_STATE_INIT_RXQ;
2166    return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172    struct host_txq*     txq =  &fore200e->host_txq;
2173    struct cp_txq_entry __iomem * cp_entry;
2174    int i;
2175
2176    DPRINTK(2, "transmit queue is being initialized\n");
2177
2178    /* allocate and align the array of status words */
2179    if (fore200e_dma_chunk_alloc(fore200e,
2180				       &txq->status,
2181				       sizeof(enum status), 
2182				       QUEUE_SIZE_TX,
2183				       fore200e->bus->status_alignment) < 0) {
2184	return -ENOMEM;
2185    }
2186
2187    /* allocate and align the array of transmit PDU descriptors */
2188    if (fore200e_dma_chunk_alloc(fore200e,
2189				       &txq->tpd,
2190				       sizeof(struct tpd), 
2191				       QUEUE_SIZE_TX,
2192				       fore200e->bus->descr_alignment) < 0) {
2193	
2194	fore200e_dma_chunk_free(fore200e, &txq->status);
2195	return -ENOMEM;
2196    }
2197
2198    /* get the base address of the cp resident tx queue entries */
2199    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201    /* fill the host resident and cp resident tx entries */
2202    for (i=0; i < QUEUE_SIZE_TX; i++) {
2203	
2204	txq->host_entry[ i ].status = 
2205	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206	txq->host_entry[ i ].tpd = 
2207	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208	txq->host_entry[ i ].tpd_dma  = 
2209                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212	*txq->host_entry[ i ].status = STATUS_FREE;
2213	
2214	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2215			     &cp_entry[ i ].status_haddr);
2216	
2217        /* although there is a one-to-one mapping of tx queue entries and tpds,
2218	   we do not write here the DMA (physical) base address of each tpd into
2219	   the related cp resident entry, because the cp relies on this write
2220	   operation to detect that a new pdu has been submitted for tx */
2221    }
2222
2223    /* set the head and tail entries of the queue */
2224    txq->head = 0;
2225    txq->tail = 0;
2226
2227    fore200e->state = FORE200E_STATE_INIT_TXQ;
2228    return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235    struct cp_cmdq_entry __iomem * cp_entry;
2236    int i;
2237
2238    DPRINTK(2, "command queue is being initialized\n");
2239
2240    /* allocate and align the array of status words */
2241    if (fore200e_dma_chunk_alloc(fore200e,
2242				       &cmdq->status,
2243				       sizeof(enum status), 
2244				       QUEUE_SIZE_CMD,
2245				       fore200e->bus->status_alignment) < 0) {
2246	return -ENOMEM;
2247    }
2248    
2249    /* get the base address of the cp resident cmd queue entries */
2250    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252    /* fill the host resident and cp resident cmd entries */
2253    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254	
2255	cmdq->host_entry[ i ].status   = 
2256                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259	*cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2262                             &cp_entry[ i ].status_haddr);
2263    }
2264
2265    /* set the head entry of the queue */
2266    cmdq->head = 0;
2267
2268    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269    return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274				    enum buffer_scheme scheme,
2275				    enum buffer_magn magn, int queue_length,
2276				    int pool_size, int supply_blksize)
2277{
2278    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289    struct cp_queues __iomem * cpq;
2290    int               ok, scheme, magn;
2291
2292    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294    mutex_init(&fore200e->rate_mtx);
2295    spin_lock_init(&fore200e->q_lock);
2296
2297    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299    /* enable cp to host interrupts */
2300    fore200e->bus->write(1, &cpq->imask);
2301
2302    if (fore200e->bus->irq_enable)
2303	fore200e->bus->irq_enable(fore200e);
2304    
2305    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316	    fore200e_param_bs_queue(fore200e, scheme, magn,
2317				    QUEUE_SIZE_BS, 
2318				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319				    RBD_BLK_SIZE);
2320
2321    /* issue the initialize command */
2322    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326    if (ok == 0) {
2327	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328	return -ENODEV;
2329    }
2330
2331    printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333    fore200e->state = FORE200E_STATE_INITIALIZE;
2334    return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343    printk("%c", c);
2344#endif
2345    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353    int                c;
2354
2355    while (time_before(jiffies, timeout)) {
2356
2357	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363	    printk("%c", c & 0xFF);
2364#endif
2365	    return c & 0xFF;
2366	}
2367    }
2368
2369    return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375    while (*str) {
2376
2377	/* the i960 monitor doesn't accept any new character if it has something to say */
2378	while (fore200e_monitor_getc(fore200e) >= 0);
2379	
2380	fore200e_monitor_putc(fore200e, *str++);
2381    }
2382
2383    while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394    const struct firmware *firmware;
2395    const struct fw_header *fw_header;
 
2396    const __le32 *fw_data;
2397    u32 fw_size;
2398    u32 __iomem *load_addr;
2399    char buf[48];
2400    int err;
 
 
 
 
 
 
 
 
 
2401
2402    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405	return err;
2406    }
2407
2408    fw_data = (const __le32 *)firmware->data;
2409    fw_size = firmware->size / sizeof(u32);
2410    fw_header = (const struct fw_header *)firmware->data;
2411    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414	    fore200e->name, load_addr, fw_size);
2415
2416    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418	goto release;
2419    }
2420
2421    for (; fw_size--; fw_data++, load_addr++)
2422	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427    /* reported to be required by SBA cards on some sparc64 hosts */
2428    fore200e_spin(100);
2429#endif
2430
2431    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432    fore200e_monitor_puts(fore200e, buf);
2433
2434    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436	goto release;
2437    }
2438
2439    printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441    fore200e->state = FORE200E_STATE_START_FW;
2442    err = 0;
2443
2444release:
2445    release_firmware(firmware);
2446    return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452    struct atm_dev* atm_dev;
2453
2454    DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                               -1, NULL);
2458    if (atm_dev == NULL) {
2459	printk(FORE200E "unable to register device %s\n", fore200e->name);
2460	return -ENODEV;
2461    }
2462
2463    atm_dev->dev_data = fore200e;
2464    fore200e->atm_dev = atm_dev;
2465
2466    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469    fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471    fore200e->state = FORE200E_STATE_REGISTER;
2472    return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478    if (fore200e_register(fore200e, parent) < 0)
2479	return -ENODEV;
2480    
2481    if (fore200e->bus->configure(fore200e) < 0)
2482	return -ENODEV;
2483
2484    if (fore200e->bus->map(fore200e) < 0)
2485	return -ENODEV;
2486
2487    if (fore200e_reset(fore200e, 1) < 0)
2488	return -ENODEV;
2489
2490    if (fore200e_load_and_start_fw(fore200e) < 0)
2491	return -ENODEV;
2492
2493    if (fore200e_initialize(fore200e) < 0)
2494	return -ENODEV;
2495
2496    if (fore200e_init_cmd_queue(fore200e) < 0)
2497	return -ENOMEM;
2498
2499    if (fore200e_init_tx_queue(fore200e) < 0)
2500	return -ENOMEM;
2501
2502    if (fore200e_init_rx_queue(fore200e) < 0)
2503	return -ENOMEM;
2504
2505    if (fore200e_init_bs_queue(fore200e) < 0)
2506	return -ENOMEM;
2507
2508    if (fore200e_alloc_rx_buf(fore200e) < 0)
2509	return -ENOMEM;
2510
2511    if (fore200e_get_esi(fore200e) < 0)
2512	return -EIO;
2513
2514    if (fore200e_irq_request(fore200e) < 0)
2515	return -EBUSY;
2516
2517    fore200e_supply(fore200e);
2518
2519    /* all done, board initialization is now complete */
2520    fore200e->state = FORE200E_STATE_COMPLETE;
2521    return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528	const struct of_device_id *match;
 
2529	struct fore200e *fore200e;
2530	static int index = 0;
2531	int err;
2532
2533	match = of_match_device(fore200e_sba_match, &op->dev);
2534	if (!match)
2535		return -EINVAL;
 
2536
2537	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538	if (!fore200e)
2539		return -ENOMEM;
2540
2541	fore200e->bus = &fore200e_sbus_ops;
2542	fore200e->dev = &op->dev;
2543	fore200e->irq = op->archdata.irqs[0];
2544	fore200e->phys_base = op->resource[0].start;
2545
2546	sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548	err = fore200e_init(fore200e, &op->dev);
2549	if (err < 0) {
2550		fore200e_shutdown(fore200e);
2551		kfree(fore200e);
2552		return err;
2553	}
2554
2555	index++;
2556	dev_set_drvdata(&op->dev, fore200e);
2557
2558	return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565	fore200e_shutdown(fore200e);
2566	kfree(fore200e);
2567
2568	return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572	{
2573		.name = SBA200E_PROM_NAME,
 
2574	},
2575	{},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580	.driver = {
2581		.name = "fore_200e",
2582		.of_match_table = fore200e_sba_match,
2583	},
2584	.probe		= fore200e_sba_probe,
2585	.remove		= fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591			       const struct pci_device_id *pci_ent)
2592{
 
2593    struct fore200e* fore200e;
2594    int err = 0;
2595    static int index = 0;
2596
2597    if (pci_enable_device(pci_dev)) {
2598	err = -EINVAL;
2599	goto out;
2600    }
2601
2602    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603	err = -EINVAL;
2604	goto out;
2605    }
2606    
2607    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608    if (fore200e == NULL) {
2609	err = -ENOMEM;
2610	goto out_disable;
2611    }
2612
2613    fore200e->bus       = &fore200e_pci_ops;
2614    fore200e->dev	= &pci_dev->dev;
2615    fore200e->irq       = pci_dev->irq;
2616    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620    pci_set_master(pci_dev);
2621
2622    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2623	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625    sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627    err = fore200e_init(fore200e, &pci_dev->dev);
2628    if (err < 0) {
2629	fore200e_shutdown(fore200e);
2630	goto out_free;
2631    }
2632
2633    ++index;
2634    pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637    return err;
2638
2639out_free:
2640    kfree(fore200e);
2641out_disable:
2642    pci_disable_device(pci_dev);
2643    goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649    struct fore200e *fore200e;
2650
2651    fore200e = pci_get_drvdata(pci_dev);
2652
2653    fore200e_shutdown(fore200e);
2654    kfree(fore200e);
2655    pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2661    { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667    .name =     "fore_200e",
2668    .probe =    fore200e_pca_detect,
2669    .remove =   fore200e_pca_remove_one,
2670    .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676	int err = 0;
2677
2678	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681	err = platform_driver_register(&fore200e_sba_driver);
2682	if (err)
2683		return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687	err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691	if (err)
2692		platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695	return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701	pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704	platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712    struct fore200e_vcc* fore200e_vcc;
2713    struct atm_vcc*      vcc;
2714    int                  i, len, left = *pos;
2715    unsigned long        flags;
2716
2717    if (!left--) {
2718
2719	if (fore200e_getstats(fore200e) < 0)
2720	    return -EIO;
2721
2722	len = sprintf(page,"\n"
2723		       " device:\n"
2724		       "   internal name:\t\t%s\n", fore200e->name);
2725
2726	/* print bus-specific information */
2727	if (fore200e->bus->proc_read)
2728	    len += fore200e->bus->proc_read(fore200e, page + len);
2729	
2730	len += sprintf(page + len,
2731		"   interrupt line:\t\t%s\n"
2732		"   physical base address:\t0x%p\n"
2733		"   virtual base address:\t0x%p\n"
2734		"   factory address (ESI):\t%pM\n"
2735		"   board serial number:\t\t%d\n\n",
2736		fore200e_irq_itoa(fore200e->irq),
2737		(void*)fore200e->phys_base,
2738		fore200e->virt_base,
2739		fore200e->esi,
2740		fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742	return len;
2743    }
2744
2745    if (!left--)
2746	return sprintf(page,
2747		       "   free small bufs, scheme 1:\t%d\n"
2748		       "   free large bufs, scheme 1:\t%d\n"
2749		       "   free small bufs, scheme 2:\t%d\n"
2750		       "   free large bufs, scheme 2:\t%d\n",
2751		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756    if (!left--) {
2757	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759	len = sprintf(page,"\n\n"
2760		      " cell processor:\n"
2761		      "   heartbeat state:\t\t");
2762	
2763	if (hb >> 16 != 0xDEAD)
2764	    len += sprintf(page + len, "0x%08x\n", hb);
2765	else
2766	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768	return len;
2769    }
2770
2771    if (!left--) {
2772	static const char* media_name[] = {
2773	    "unshielded twisted pair",
2774	    "multimode optical fiber ST",
2775	    "multimode optical fiber SC",
2776	    "single-mode optical fiber ST",
2777	    "single-mode optical fiber SC",
2778	    "unknown"
2779	};
2780
2781	static const char* oc3_mode[] = {
2782	    "normal operation",
2783	    "diagnostic loopback",
2784	    "line loopback",
2785	    "unknown"
2786	};
2787
2788	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792	u32 oc3_index;
2793
2794	if (media_index > 4)
2795		media_index = 5;
2796	
2797	switch (fore200e->loop_mode) {
2798	    case ATM_LM_NONE:    oc3_index = 0;
2799		                 break;
2800	    case ATM_LM_LOC_PHY: oc3_index = 1;
2801		                 break;
2802	    case ATM_LM_RMT_PHY: oc3_index = 2;
2803		                 break;
2804	    default:             oc3_index = 3;
2805	}
2806
2807	return sprintf(page,
2808		       "   firmware release:\t\t%d.%d.%d\n"
2809		       "   monitor release:\t\t%d.%d\n"
2810		       "   media type:\t\t\t%s\n"
2811		       "   OC-3 revision:\t\t0x%x\n"
2812                       "   OC-3 mode:\t\t\t%s",
2813		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814		       mon960_release >> 16, mon960_release << 16 >> 16,
2815		       media_name[ media_index ],
2816		       oc3_revision,
2817		       oc3_mode[ oc3_index ]);
2818    }
2819
2820    if (!left--) {
2821	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823	return sprintf(page,
2824		       "\n\n"
2825		       " monitor:\n"
2826		       "   version number:\t\t%d\n"
2827		       "   boot status word:\t\t0x%08x\n",
2828		       fore200e->bus->read(&cp_monitor->mon_version),
2829		       fore200e->bus->read(&cp_monitor->bstat));
2830    }
2831
2832    if (!left--)
2833	return sprintf(page,
2834		       "\n"
2835		       " device statistics:\n"
2836		       "  4b5b:\n"
2837		       "     crc_header_errors:\t\t%10u\n"
2838		       "     framing_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841    
2842    if (!left--)
2843	return sprintf(page, "\n"
2844		       "  OC-3:\n"
2845		       "     section_bip8_errors:\t%10u\n"
2846		       "     path_bip8_errors:\t\t%10u\n"
2847		       "     line_bip24_errors:\t\t%10u\n"
2848		       "     line_febe_errors:\t\t%10u\n"
2849		       "     path_febe_errors:\t\t%10u\n"
2850		       "     corr_hcs_errors:\t\t%10u\n"
2851		       "     ucorr_hcs_errors:\t\t%10u\n",
2852		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860    if (!left--)
2861	return sprintf(page,"\n"
2862		       "   ATM:\t\t\t\t     cells\n"
2863		       "     TX:\t\t\t%10u\n"
2864		       "     RX:\t\t\t%10u\n"
2865		       "     vpi out of range:\t\t%10u\n"
2866		       "     vpi no conn:\t\t%10u\n"
2867		       "     vci out of range:\t\t%10u\n"
2868		       "     vci no conn:\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->atm.cells_received),
2871		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875    
2876    if (!left--)
2877	return sprintf(page,"\n"
2878		       "   AAL0:\t\t\t     cells\n"
2879		       "     TX:\t\t\t%10u\n"
2880		       "     RX:\t\t\t%10u\n"
2881		       "     dropped:\t\t\t%10u\n",
2882		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885    
2886    if (!left--)
2887	return sprintf(page,"\n"
2888		       "   AAL3/4:\n"
2889		       "     SAR sublayer:\t\t     cells\n"
2890		       "       TX:\t\t\t%10u\n"
2891		       "       RX:\t\t\t%10u\n"
2892		       "       dropped:\t\t\t%10u\n"
2893		       "       CRC errors:\t\t%10u\n"
2894		       "       protocol errors:\t\t%10u\n\n"
2895		       "     CS  sublayer:\t\t      PDUs\n"
2896		       "       TX:\t\t\t%10u\n"
2897		       "       RX:\t\t\t%10u\n"
2898		       "       dropped:\t\t\t%10u\n"
2899		       "       protocol errors:\t\t%10u\n",
2900		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909    
2910    if (!left--)
2911	return sprintf(page,"\n"
2912		       "   AAL5:\n"
2913		       "     SAR sublayer:\t\t     cells\n"
2914		       "       TX:\t\t\t%10u\n"
2915		       "       RX:\t\t\t%10u\n"
2916		       "       dropped:\t\t\t%10u\n"
2917		       "       congestions:\t\t%10u\n\n"
2918		       "     CS  sublayer:\t\t      PDUs\n"
2919		       "       TX:\t\t\t%10u\n"
2920		       "       RX:\t\t\t%10u\n"
2921		       "       dropped:\t\t\t%10u\n"
2922		       "       CRC errors:\t\t%10u\n"
2923		       "       protocol errors:\t\t%10u\n",
2924		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933    
2934    if (!left--)
2935	return sprintf(page,"\n"
2936		       "   AUX:\t\t       allocation failures\n"
2937		       "     small b1:\t\t\t%10u\n"
2938		       "     large b1:\t\t\t%10u\n"
2939		       "     small b2:\t\t\t%10u\n"
2940		       "     large b2:\t\t\t%10u\n"
2941		       "     RX PDUs:\t\t\t%10u\n"
2942		       "     TX PDUs:\t\t\t%10lu\n",
2943		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948		       fore200e->tx_sat);
2949    
2950    if (!left--)
2951	return sprintf(page,"\n"
2952		       " receive carrier:\t\t\t%s\n",
2953		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954    
2955    if (!left--) {
2956        return sprintf(page,"\n"
2957		       " VCCs:\n  address   VPI VCI   AAL "
2958		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959    }
2960
2961    for (i = 0; i < NBR_CONNECT; i++) {
2962
2963	vcc = fore200e->vc_map[i].vcc;
2964
2965	if (vcc == NULL)
2966	    continue;
2967
2968	spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972	    fore200e_vcc = FORE200E_VCC(vcc);
2973	    ASSERT(fore200e_vcc);
2974
2975	    len = sprintf(page,
2976			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977			  vcc,
2978			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979			  fore200e_vcc->tx_pdu,
2980			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981			  fore200e_vcc->tx_max_pdu,
2982			  fore200e_vcc->rx_pdu,
2983			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984			  fore200e_vcc->rx_max_pdu);
2985
2986	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987	    return len;
2988	}
2989
2990	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991    }
2992    
2993    return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
 
3001	.open       = fore200e_open,
3002	.close      = fore200e_close,
3003	.ioctl      = fore200e_ioctl,
 
 
3004	.send       = fore200e_send,
3005	.change_qos = fore200e_change_qos,
3006	.proc_read  = fore200e_proc_read,
3007	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
v4.6
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 
 
 
 210
 211    kfree(chunk->alloc_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 474					   chunk->alloc_size,
 475					   &chunk->dma_addr,
 476					   GFP_KERNEL);
 477    
 478    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 479	return -ENOMEM;
 480
 481    chunk->align_addr = chunk->alloc_addr;
 482    
 483    return 0;
 484}
 485
 486
 487/* free a DMA consistent chunk of memory */
 488
 489static void
 490fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 491{
 492    dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 493			chunk->alloc_size,
 494			chunk->alloc_addr,
 495			chunk->dma_addr);
 496}
 497
 498
 499static int
 500fore200e_pca_irq_check(struct fore200e* fore200e)
 501{
 502    /* this is a 1 bit register */
 503    int irq_posted = readl(fore200e->regs.pca.psr);
 504
 505#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 506    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 507	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 508    }
 509#endif
 510
 511    return irq_posted;
 512}
 513
 514
 515static void
 516fore200e_pca_irq_ack(struct fore200e* fore200e)
 517{
 518    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 519}
 520
 521
 522static void
 523fore200e_pca_reset(struct fore200e* fore200e)
 524{
 525    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 526    fore200e_spin(10);
 527    writel(0, fore200e->regs.pca.hcr);
 528}
 529
 530
 531static int fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int fore200e_pca_configure(struct fore200e *fore200e)
 565{
 566    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 567    u8              master_ctrl, latency;
 568
 569    DPRINTK(2, "device %s being configured\n", fore200e->name);
 570
 571    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 572	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 573	return -EIO;
 574    }
 575
 576    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 577
 578    master_ctrl = master_ctrl
 579#if defined(__BIG_ENDIAN)
 580	/* request the PCA board to convert the endianess of slave RAM accesses */
 581	| PCA200E_CTRL_CONVERT_ENDIAN
 582#endif
 583#if 0
 584        | PCA200E_CTRL_DIS_CACHE_RD
 585        | PCA200E_CTRL_DIS_WRT_INVAL
 586        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 587        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 588#endif
 589	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 590    
 591    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 592
 593    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 594       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 595       this may impact the performances of other PCI devices on the same bus, though */
 596    latency = 192;
 597    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 598
 599    fore200e->state = FORE200E_STATE_CONFIGURE;
 600    return 0;
 601}
 602
 603
 604static int __init
 605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 606{
 607    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 608    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 609    struct prom_opcode      opcode;
 610    int                     ok;
 611    u32                     prom_dma;
 612
 613    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 614
 615    opcode.opcode = OPCODE_GET_PROM;
 616    opcode.pad    = 0;
 617
 618    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 619
 620    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 621    
 622    *entry->status = STATUS_PENDING;
 623
 624    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 625
 626    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 627
 628    *entry->status = STATUS_FREE;
 629
 630    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 631
 632    if (ok == 0) {
 633	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 634	return -EIO;
 635    }
 636
 637#if defined(__BIG_ENDIAN)
 638    
 639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 640
 641    /* MAC address is stored as little-endian */
 642    swap_here(&prom->mac_addr[0]);
 643    swap_here(&prom->mac_addr[4]);
 644#endif
 645    
 646    return 0;
 647}
 648
 649
 650static int
 651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 652{
 653    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 654
 655    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 656		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659#endif /* CONFIG_PCI */
 660
 661
 662#ifdef CONFIG_SBUS
 663
 664static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 665{
 666    return sbus_readl(addr);
 667}
 668
 669static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 670{
 671    sbus_writel(val, addr);
 672}
 673
 674static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 675{
 676	struct platform_device *op = fore200e->bus_dev;
 677	u32 dma_addr;
 678
 679	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 680
 681	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 682		virt_addr, size, direction, dma_addr);
 683    
 684	return dma_addr;
 685}
 686
 687static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 688{
 689	struct platform_device *op = fore200e->bus_dev;
 690
 691	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 692		dma_addr, size, direction);
 693
 694	dma_unmap_single(&op->dev, dma_addr, size, direction);
 695}
 696
 697static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 698{
 699	struct platform_device *op = fore200e->bus_dev;
 700
 701	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 702    
 703	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 704}
 705
 706static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 707{
 708	struct platform_device *op = fore200e->bus_dev;
 709
 710	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 711
 712	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 713}
 714
 715/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 717 */
 718static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 719					int size, int nbr, int alignment)
 720{
 721	struct platform_device *op = fore200e->bus_dev;
 722
 723	chunk->alloc_size = chunk->align_size = size * nbr;
 724
 725	/* returned chunks are page-aligned */
 726	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 727					       &chunk->dma_addr, GFP_ATOMIC);
 728
 729	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 730		return -ENOMEM;
 731
 732	chunk->align_addr = chunk->alloc_addr;
 733    
 734	return 0;
 735}
 736
 737/* free a DVMA consistent chunk of memory */
 738static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 739{
 740	struct platform_device *op = fore200e->bus_dev;
 741
 742	dma_free_coherent(&op->dev, chunk->alloc_size,
 743			  chunk->alloc_addr, chunk->dma_addr);
 744}
 745
 746static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 747{
 748	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 749	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 750}
 751
 752static int fore200e_sba_irq_check(struct fore200e *fore200e)
 753{
 754	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 755}
 756
 757static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 758{
 759	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 760	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 761}
 762
 763static void fore200e_sba_reset(struct fore200e *fore200e)
 764{
 765	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 766	fore200e_spin(10);
 767	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 768}
 769
 770static int __init fore200e_sba_map(struct fore200e *fore200e)
 771{
 772	struct platform_device *op = fore200e->bus_dev;
 773	unsigned int bursts;
 774
 775	/* gain access to the SBA specific registers  */
 776	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 777	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 778	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 779	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 780
 781	if (!fore200e->virt_base) {
 782		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 783		return -EFAULT;
 784	}
 785
 786	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 787    
 788	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 789
 790	/* get the supported DVMA burst sizes */
 791	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 792
 793	if (sbus_can_dma_64bit())
 794		sbus_set_sbus64(&op->dev, bursts);
 795
 796	fore200e->state = FORE200E_STATE_MAP;
 797	return 0;
 798}
 799
 800static void fore200e_sba_unmap(struct fore200e *fore200e)
 801{
 802	struct platform_device *op = fore200e->bus_dev;
 803
 804	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 805	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 806	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 807	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 808}
 809
 810static int __init fore200e_sba_configure(struct fore200e *fore200e)
 811{
 812	fore200e->state = FORE200E_STATE_CONFIGURE;
 813	return 0;
 814}
 815
 816static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 817{
 818	struct platform_device *op = fore200e->bus_dev;
 819	const u8 *prop;
 820	int len;
 821
 822	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 823	if (!prop)
 824		return -ENODEV;
 825	memcpy(&prom->mac_addr[4], prop, 4);
 826
 827	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 828	if (!prop)
 829		return -ENODEV;
 830	memcpy(&prom->mac_addr[2], prop, 4);
 831
 832	prom->serial_number = of_getintprop_default(op->dev.of_node,
 833						    "serialnumber", 0);
 834	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 835						  "promversion", 0);
 836    
 837	return 0;
 838}
 839
 840static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 841{
 842	struct platform_device *op = fore200e->bus_dev;
 843	const struct linux_prom_registers *regs;
 844
 845	regs = of_get_property(op->dev.of_node, "reg", NULL);
 846
 847	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 848		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 849}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850#endif /* CONFIG_SBUS */
 851
 852
 853static void
 854fore200e_tx_irq(struct fore200e* fore200e)
 855{
 856    struct host_txq*        txq = &fore200e->host_txq;
 857    struct host_txq_entry*  entry;
 858    struct atm_vcc*         vcc;
 859    struct fore200e_vc_map* vc_map;
 860
 861    if (fore200e->host_txq.txing == 0)
 862	return;
 863
 864    for (;;) {
 865	
 866	entry = &txq->host_entry[ txq->tail ];
 867
 868        if ((*entry->status & STATUS_COMPLETE) == 0) {
 869	    break;
 870	}
 871
 872	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 873		entry, txq->tail, entry->vc_map, entry->skb);
 874
 875	/* free copy of misaligned data */
 876	kfree(entry->data);
 877	
 878	/* remove DMA mapping */
 879	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 880				 DMA_TO_DEVICE);
 881
 882	vc_map = entry->vc_map;
 883
 884	/* vcc closed since the time the entry was submitted for tx? */
 885	if ((vc_map->vcc == NULL) ||
 886	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 887
 888	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 889		    fore200e->atm_dev->number);
 890
 891	    dev_kfree_skb_any(entry->skb);
 892	}
 893	else {
 894	    ASSERT(vc_map->vcc);
 895
 896	    /* vcc closed then immediately re-opened? */
 897	    if (vc_map->incarn != entry->incarn) {
 898
 899		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 900		   if the same vcc is immediately re-opened, those pending PDUs must
 901		   not be popped after the completion of their emission, as they refer
 902		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 903		   would be decremented by the size of the (unrelated) skb, possibly
 904		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 905		   we thus bind the tx entry to the current incarnation of the vcc
 906		   when the entry is submitted for tx. When the tx later completes,
 907		   if the incarnation number of the tx entry does not match the one
 908		   of the vcc, then this implies that the vcc has been closed then re-opened.
 909		   we thus just drop the skb here. */
 910
 911		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 912			fore200e->atm_dev->number);
 913
 914		dev_kfree_skb_any(entry->skb);
 915	    }
 916	    else {
 917		vcc = vc_map->vcc;
 918		ASSERT(vcc);
 919
 920		/* notify tx completion */
 921		if (vcc->pop) {
 922		    vcc->pop(vcc, entry->skb);
 923		}
 924		else {
 925		    dev_kfree_skb_any(entry->skb);
 926		}
 927#if 1
 928		/* race fixed by the above incarnation mechanism, but... */
 929		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 930		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 931		}
 932#endif
 933		/* check error condition */
 934		if (*entry->status & STATUS_ERROR)
 935		    atomic_inc(&vcc->stats->tx_err);
 936		else
 937		    atomic_inc(&vcc->stats->tx);
 938	    }
 939	}
 940
 941	*entry->status = STATUS_FREE;
 942
 943	fore200e->host_txq.txing--;
 944
 945	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 946    }
 947}
 948
 949
 950#ifdef FORE200E_BSQ_DEBUG
 951int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 952{
 953    struct buffer* buffer;
 954    int count = 0;
 955
 956    buffer = bsq->freebuf;
 957    while (buffer) {
 958
 959	if (buffer->supplied) {
 960	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 961		   where, scheme, magn, buffer->index);
 962	}
 963
 964	if (buffer->magn != magn) {
 965	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 966		   where, scheme, magn, buffer->index, buffer->magn);
 967	}
 968
 969	if (buffer->scheme != scheme) {
 970	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 971		   where, scheme, magn, buffer->index, buffer->scheme);
 972	}
 973
 974	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 975	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 976		   where, scheme, magn, buffer->index);
 977	}
 978
 979	count++;
 980	buffer = buffer->next;
 981    }
 982
 983    if (count != bsq->freebuf_count) {
 984	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 985	       where, scheme, magn, count, bsq->freebuf_count);
 986    }
 987    return 0;
 988}
 989#endif
 990
 991
 992static void
 993fore200e_supply(struct fore200e* fore200e)
 994{
 995    int  scheme, magn, i;
 996
 997    struct host_bsq*       bsq;
 998    struct host_bsq_entry* entry;
 999    struct buffer*         buffer;
1000
1001    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1002	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1003
1004	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1005
1006#ifdef FORE200E_BSQ_DEBUG
1007	    bsq_audit(1, bsq, scheme, magn);
1008#endif
1009	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1010
1011		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1012			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1013
1014		entry = &bsq->host_entry[ bsq->head ];
1015
1016		for (i = 0; i < RBD_BLK_SIZE; i++) {
1017
1018		    /* take the first buffer in the free buffer list */
1019		    buffer = bsq->freebuf;
1020		    if (!buffer) {
1021			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1022			       scheme, magn, bsq->freebuf_count);
1023			return;
1024		    }
1025		    bsq->freebuf = buffer->next;
1026		    
1027#ifdef FORE200E_BSQ_DEBUG
1028		    if (buffer->supplied)
1029			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1030			       scheme, magn, buffer->index);
1031		    buffer->supplied = 1;
1032#endif
1033		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1034		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1035		}
1036
1037		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1038
1039 		/* decrease accordingly the number of free rx buffers */
1040		bsq->freebuf_count -= RBD_BLK_SIZE;
1041
1042		*entry->status = STATUS_PENDING;
1043		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1044	    }
1045	}
1046    }
1047}
1048
1049
1050static int
1051fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1052{
1053    struct sk_buff*      skb;
1054    struct buffer*       buffer;
1055    struct fore200e_vcc* fore200e_vcc;
1056    int                  i, pdu_len = 0;
1057#ifdef FORE200E_52BYTE_AAL0_SDU
1058    u32                  cell_header = 0;
1059#endif
1060
1061    ASSERT(vcc);
1062    
1063    fore200e_vcc = FORE200E_VCC(vcc);
1064    ASSERT(fore200e_vcc);
1065
1066#ifdef FORE200E_52BYTE_AAL0_SDU
1067    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1068
1069	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1070	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1071                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1072                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1073                       rpd->atm_header.clp;
1074	pdu_len = 4;
1075    }
1076#endif
1077    
1078    /* compute total PDU length */
1079    for (i = 0; i < rpd->nseg; i++)
1080	pdu_len += rpd->rsd[ i ].length;
1081    
1082    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1083    if (skb == NULL) {
1084	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1085
1086	atomic_inc(&vcc->stats->rx_drop);
1087	return -ENOMEM;
1088    } 
1089
1090    __net_timestamp(skb);
1091    
1092#ifdef FORE200E_52BYTE_AAL0_SDU
1093    if (cell_header) {
1094	*((u32*)skb_put(skb, 4)) = cell_header;
1095    }
1096#endif
1097
1098    /* reassemble segments */
1099    for (i = 0; i < rpd->nseg; i++) {
1100	
1101	/* rebuild rx buffer address from rsd handle */
1102	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1103	
1104	/* Make device DMA transfer visible to CPU.  */
1105	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1106	
1107	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1108
1109	/* Now let the device get at it again.  */
1110	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1111    }
1112
1113    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1114    
1115    if (pdu_len < fore200e_vcc->rx_min_pdu)
1116	fore200e_vcc->rx_min_pdu = pdu_len;
1117    if (pdu_len > fore200e_vcc->rx_max_pdu)
1118	fore200e_vcc->rx_max_pdu = pdu_len;
1119    fore200e_vcc->rx_pdu++;
1120
1121    /* push PDU */
1122    if (atm_charge(vcc, skb->truesize) == 0) {
1123
1124	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1125		vcc->itf, vcc->vpi, vcc->vci);
1126
1127	dev_kfree_skb_any(skb);
1128
1129	atomic_inc(&vcc->stats->rx_drop);
1130	return -ENOMEM;
1131    }
1132
1133    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1134
1135    vcc->push(vcc, skb);
1136    atomic_inc(&vcc->stats->rx);
1137
1138    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1139
1140    return 0;
1141}
1142
1143
1144static void
1145fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1146{
1147    struct host_bsq* bsq;
1148    struct buffer*   buffer;
1149    int              i;
1150    
1151    for (i = 0; i < rpd->nseg; i++) {
1152
1153	/* rebuild rx buffer address from rsd handle */
1154	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1155
1156	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1157
1158#ifdef FORE200E_BSQ_DEBUG
1159	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1160
1161	if (buffer->supplied == 0)
1162	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1163		   buffer->scheme, buffer->magn, buffer->index);
1164	buffer->supplied = 0;
1165#endif
1166
1167	/* re-insert the buffer into the free buffer list */
1168	buffer->next = bsq->freebuf;
1169	bsq->freebuf = buffer;
1170
1171	/* then increment the number of free rx buffers */
1172	bsq->freebuf_count++;
1173    }
1174}
1175
1176
1177static void
1178fore200e_rx_irq(struct fore200e* fore200e)
1179{
1180    struct host_rxq*        rxq = &fore200e->host_rxq;
1181    struct host_rxq_entry*  entry;
1182    struct atm_vcc*         vcc;
1183    struct fore200e_vc_map* vc_map;
1184
1185    for (;;) {
1186	
1187	entry = &rxq->host_entry[ rxq->head ];
1188
1189	/* no more received PDUs */
1190	if ((*entry->status & STATUS_COMPLETE) == 0)
1191	    break;
1192
1193	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1194
1195	if ((vc_map->vcc == NULL) ||
1196	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1197
1198	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1199		    fore200e->atm_dev->number,
1200		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1201	}
1202	else {
1203	    vcc = vc_map->vcc;
1204	    ASSERT(vcc);
1205
1206	    if ((*entry->status & STATUS_ERROR) == 0) {
1207
1208		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1209	    }
1210	    else {
1211		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1212			fore200e->atm_dev->number,
1213			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1214		atomic_inc(&vcc->stats->rx_err);
1215	    }
1216	}
1217
1218	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1219
1220	fore200e_collect_rpd(fore200e, entry->rpd);
1221
1222	/* rewrite the rpd address to ack the received PDU */
1223	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1224	*entry->status = STATUS_FREE;
1225
1226	fore200e_supply(fore200e);
1227    }
1228}
1229
1230
1231#ifndef FORE200E_USE_TASKLET
1232static void
1233fore200e_irq(struct fore200e* fore200e)
1234{
1235    unsigned long flags;
1236
1237    spin_lock_irqsave(&fore200e->q_lock, flags);
1238    fore200e_rx_irq(fore200e);
1239    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1240
1241    spin_lock_irqsave(&fore200e->q_lock, flags);
1242    fore200e_tx_irq(fore200e);
1243    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1244}
1245#endif
1246
1247
1248static irqreturn_t
1249fore200e_interrupt(int irq, void* dev)
1250{
1251    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1252
1253    if (fore200e->bus->irq_check(fore200e) == 0) {
1254	
1255	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1256	return IRQ_NONE;
1257    }
1258    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1259
1260#ifdef FORE200E_USE_TASKLET
1261    tasklet_schedule(&fore200e->tx_tasklet);
1262    tasklet_schedule(&fore200e->rx_tasklet);
1263#else
1264    fore200e_irq(fore200e);
1265#endif
1266    
1267    fore200e->bus->irq_ack(fore200e);
1268    return IRQ_HANDLED;
1269}
1270
1271
1272#ifdef FORE200E_USE_TASKLET
1273static void
1274fore200e_tx_tasklet(unsigned long data)
1275{
1276    struct fore200e* fore200e = (struct fore200e*) data;
1277    unsigned long flags;
1278
1279    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1280
1281    spin_lock_irqsave(&fore200e->q_lock, flags);
1282    fore200e_tx_irq(fore200e);
1283    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1284}
1285
1286
1287static void
1288fore200e_rx_tasklet(unsigned long data)
1289{
1290    struct fore200e* fore200e = (struct fore200e*) data;
1291    unsigned long    flags;
1292
1293    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1294
1295    spin_lock_irqsave(&fore200e->q_lock, flags);
1296    fore200e_rx_irq((struct fore200e*) data);
1297    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298}
1299#endif
1300
1301
1302static int
1303fore200e_select_scheme(struct atm_vcc* vcc)
1304{
1305    /* fairly balance the VCs over (identical) buffer schemes */
1306    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1307
1308    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1309	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1310
1311    return scheme;
1312}
1313
1314
1315static int 
1316fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1317{
1318    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1319    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1320    struct activate_opcode   activ_opcode;
1321    struct deactivate_opcode deactiv_opcode;
1322    struct vpvc              vpvc;
1323    int                      ok;
1324    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1325
1326    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1327    
1328    if (activate) {
1329	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1330	
1331	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1332	activ_opcode.aal    = aal;
1333	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1334	activ_opcode.pad    = 0;
1335    }
1336    else {
1337	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1338	deactiv_opcode.pad    = 0;
1339    }
1340
1341    vpvc.vci = vcc->vci;
1342    vpvc.vpi = vcc->vpi;
1343
1344    *entry->status = STATUS_PENDING;
1345
1346    if (activate) {
1347
1348#ifdef FORE200E_52BYTE_AAL0_SDU
1349	mtu = 48;
1350#endif
1351	/* the MTU is not used by the cp, except in the case of AAL0 */
1352	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1353	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1354	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1355    }
1356    else {
1357	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1358	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1359    }
1360
1361    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1362
1363    *entry->status = STATUS_FREE;
1364
1365    if (ok == 0) {
1366	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1367	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1368	return -EIO;
1369    }
1370
1371    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1372	    activate ? "open" : "clos");
1373
1374    return 0;
1375}
1376
1377
1378#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1379
1380static void
1381fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1382{
1383    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1384    
1385	/* compute the data cells to idle cells ratio from the tx PCR */
1386	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1387	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1388    }
1389    else {
1390	/* disable rate control */
1391	rate->data_cells = rate->idle_cells = 0;
1392    }
1393}
1394
1395
1396static int
1397fore200e_open(struct atm_vcc *vcc)
1398{
1399    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1400    struct fore200e_vcc*    fore200e_vcc;
1401    struct fore200e_vc_map* vc_map;
1402    unsigned long	    flags;
1403    int			    vci = vcc->vci;
1404    short		    vpi = vcc->vpi;
1405
1406    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1407    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1408
1409    spin_lock_irqsave(&fore200e->q_lock, flags);
1410
1411    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1412    if (vc_map->vcc) {
1413
1414	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1415
1416	printk(FORE200E "VC %d.%d.%d already in use\n",
1417	       fore200e->atm_dev->number, vpi, vci);
1418
1419	return -EINVAL;
1420    }
1421
1422    vc_map->vcc = vcc;
1423
1424    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1425
1426    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1427    if (fore200e_vcc == NULL) {
1428	vc_map->vcc = NULL;
1429	return -ENOMEM;
1430    }
1431
1432    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1433	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1434	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1435	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1436	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1437	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1438	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1439    
1440    /* pseudo-CBR bandwidth requested? */
1441    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1442	
1443	mutex_lock(&fore200e->rate_mtx);
1444	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1445	    mutex_unlock(&fore200e->rate_mtx);
1446
1447	    kfree(fore200e_vcc);
1448	    vc_map->vcc = NULL;
1449	    return -EAGAIN;
1450	}
1451
1452	/* reserve bandwidth */
1453	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1454	mutex_unlock(&fore200e->rate_mtx);
1455    }
1456    
1457    vcc->itf = vcc->dev->number;
1458
1459    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1460    set_bit(ATM_VF_ADDR, &vcc->flags);
1461
1462    vcc->dev_data = fore200e_vcc;
1463    
1464    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1465
1466	vc_map->vcc = NULL;
1467
1468	clear_bit(ATM_VF_ADDR, &vcc->flags);
1469	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1470
1471	vcc->dev_data = NULL;
1472
1473	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1474
1475	kfree(fore200e_vcc);
1476	return -EINVAL;
1477    }
1478    
1479    /* compute rate control parameters */
1480    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1481	
1482	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1483	set_bit(ATM_VF_HASQOS, &vcc->flags);
1484
1485	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1486		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1487		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1488		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1489    }
1490    
1491    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1492    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1493    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1494
1495    /* new incarnation of the vcc */
1496    vc_map->incarn = ++fore200e->incarn_count;
1497
1498    /* VC unusable before this flag is set */
1499    set_bit(ATM_VF_READY, &vcc->flags);
1500
1501    return 0;
1502}
1503
1504
1505static void
1506fore200e_close(struct atm_vcc* vcc)
1507{
1508    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1509    struct fore200e_vcc*    fore200e_vcc;
 
1510    struct fore200e_vc_map* vc_map;
1511    unsigned long           flags;
1512
1513    ASSERT(vcc);
 
 
1514    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1515    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1516
1517    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1518
1519    clear_bit(ATM_VF_READY, &vcc->flags);
1520
1521    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1522
1523    spin_lock_irqsave(&fore200e->q_lock, flags);
1524
1525    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1526
1527    /* the vc is no longer considered as "in use" by fore200e_open() */
1528    vc_map->vcc = NULL;
1529
1530    vcc->itf = vcc->vci = vcc->vpi = 0;
1531
1532    fore200e_vcc = FORE200E_VCC(vcc);
1533    vcc->dev_data = NULL;
1534
1535    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1536
1537    /* release reserved bandwidth, if any */
1538    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540	mutex_lock(&fore200e->rate_mtx);
1541	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1542	mutex_unlock(&fore200e->rate_mtx);
1543
1544	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1545    }
1546
1547    clear_bit(ATM_VF_ADDR, &vcc->flags);
1548    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1549
1550    ASSERT(fore200e_vcc);
1551    kfree(fore200e_vcc);
1552}
1553
1554
1555static int
1556fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1557{
1558    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1559    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1560    struct fore200e_vc_map* vc_map;
1561    struct host_txq*        txq          = &fore200e->host_txq;
1562    struct host_txq_entry*  entry;
1563    struct tpd*             tpd;
1564    struct tpd_haddr        tpd_haddr;
1565    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1566    int                     tx_copy      = 0;
1567    int                     tx_len       = skb->len;
1568    u32*                    cell_header  = NULL;
1569    unsigned char*          skb_data;
1570    int                     skb_len;
1571    unsigned char*          data;
1572    unsigned long           flags;
1573
1574    ASSERT(vcc);
1575    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1576    ASSERT(fore200e);
1577    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
1578
1579    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1580	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1581	dev_kfree_skb_any(skb);
1582	return -EINVAL;
1583    }
1584
1585#ifdef FORE200E_52BYTE_AAL0_SDU
1586    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1587	cell_header = (u32*) skb->data;
1588	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1589	skb_len     = tx_len = skb->len  - 4;
1590
1591	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1592    }
1593    else 
1594#endif
1595    {
1596	skb_data = skb->data;
1597	skb_len  = skb->len;
1598    }
1599    
1600    if (((unsigned long)skb_data) & 0x3) {
1601
1602	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1603	tx_copy = 1;
1604	tx_len  = skb_len;
1605    }
1606
1607    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1608
1609        /* this simply NUKES the PCA board */
1610	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1611	tx_copy = 1;
1612	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1613    }
1614    
1615    if (tx_copy) {
1616	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1617	if (data == NULL) {
1618	    if (vcc->pop) {
1619		vcc->pop(vcc, skb);
1620	    }
1621	    else {
1622		dev_kfree_skb_any(skb);
1623	    }
1624	    return -ENOMEM;
1625	}
1626
1627	memcpy(data, skb_data, skb_len);
1628	if (skb_len < tx_len)
1629	    memset(data + skb_len, 0x00, tx_len - skb_len);
1630    }
1631    else {
1632	data = skb_data;
1633    }
1634
1635    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1636    ASSERT(vc_map->vcc == vcc);
1637
1638  retry_here:
1639
1640    spin_lock_irqsave(&fore200e->q_lock, flags);
1641
1642    entry = &txq->host_entry[ txq->head ];
1643
1644    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1645
1646	/* try to free completed tx queue entries */
1647	fore200e_tx_irq(fore200e);
1648
1649	if (*entry->status != STATUS_FREE) {
1650
1651	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653	    /* retry once again? */
1654	    if (--retry > 0) {
1655		udelay(50);
1656		goto retry_here;
1657	    }
1658
1659	    atomic_inc(&vcc->stats->tx_err);
1660
1661	    fore200e->tx_sat++;
1662	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1663		    fore200e->name, fore200e->cp_queues->heartbeat);
1664	    if (vcc->pop) {
1665		vcc->pop(vcc, skb);
1666	    }
1667	    else {
1668		dev_kfree_skb_any(skb);
1669	    }
1670
1671	    if (tx_copy)
1672		kfree(data);
1673
1674	    return -ENOBUFS;
1675	}
1676    }
1677
1678    entry->incarn = vc_map->incarn;
1679    entry->vc_map = vc_map;
1680    entry->skb    = skb;
1681    entry->data   = tx_copy ? data : NULL;
1682
1683    tpd = entry->tpd;
1684    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1685    tpd->tsd[ 0 ].length = tx_len;
1686
1687    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1688    txq->txing++;
1689
1690    /* The dma_map call above implies a dma_sync so the device can use it,
1691     * thus no explicit dma_sync call is necessary here.
1692     */
1693    
1694    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1695	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1696	    tpd->tsd[0].length, skb_len);
1697
1698    if (skb_len < fore200e_vcc->tx_min_pdu)
1699	fore200e_vcc->tx_min_pdu = skb_len;
1700    if (skb_len > fore200e_vcc->tx_max_pdu)
1701	fore200e_vcc->tx_max_pdu = skb_len;
1702    fore200e_vcc->tx_pdu++;
1703
1704    /* set tx rate control information */
1705    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1706    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1707
1708    if (cell_header) {
1709	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1710	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1711	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1712	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1713	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1714    }
1715    else {
1716	/* set the ATM header, common to all cells conveying the PDU */
1717	tpd->atm_header.clp = 0;
1718	tpd->atm_header.plt = 0;
1719	tpd->atm_header.vci = vcc->vci;
1720	tpd->atm_header.vpi = vcc->vpi;
1721	tpd->atm_header.gfc = 0;
1722    }
1723
1724    tpd->spec.length = tx_len;
1725    tpd->spec.nseg   = 1;
1726    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1727    tpd->spec.intr   = 1;
1728
1729    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1730    tpd_haddr.pad   = 0;
1731    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1732
1733    *entry->status = STATUS_PENDING;
1734    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1735
1736    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1737
1738    return 0;
1739}
1740
1741
1742static int
1743fore200e_getstats(struct fore200e* fore200e)
1744{
1745    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1746    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1747    struct stats_opcode     opcode;
1748    int                     ok;
1749    u32                     stats_dma_addr;
1750
1751    if (fore200e->stats == NULL) {
1752	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1753	if (fore200e->stats == NULL)
1754	    return -ENOMEM;
1755    }
1756    
1757    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1758					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1759    
1760    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1761
1762    opcode.opcode = OPCODE_GET_STATS;
1763    opcode.pad    = 0;
1764
1765    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1766    
1767    *entry->status = STATUS_PENDING;
1768
1769    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1770
1771    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1772
1773    *entry->status = STATUS_FREE;
1774
1775    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1776    
1777    if (ok == 0) {
1778	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1779	return -EIO;
1780    }
1781
1782    return 0;
1783}
1784
1785
1786static int
1787fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1788{
1789    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1790
1791    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1792	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1793
1794    return -EINVAL;
1795}
1796
1797
1798static int
1799fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1800{
1801    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1802    
1803    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1804	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1805    
1806    return -EINVAL;
1807}
1808
1809
1810#if 0 /* currently unused */
1811static int
1812fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1813{
1814    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1815    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1816    struct oc3_opcode       opcode;
1817    int                     ok;
1818    u32                     oc3_regs_dma_addr;
1819
1820    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1821
1822    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1823
1824    opcode.opcode = OPCODE_GET_OC3;
1825    opcode.reg    = 0;
1826    opcode.value  = 0;
1827    opcode.mask   = 0;
1828
1829    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1830    
1831    *entry->status = STATUS_PENDING;
1832
1833    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1834
1835    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1836
1837    *entry->status = STATUS_FREE;
1838
1839    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1840    
1841    if (ok == 0) {
1842	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1843	return -EIO;
1844    }
1845
1846    return 0;
1847}
1848#endif
1849
1850
1851static int
1852fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1853{
1854    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1855    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1856    struct oc3_opcode       opcode;
1857    int                     ok;
1858
1859    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1860
1861    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1862
1863    opcode.opcode = OPCODE_SET_OC3;
1864    opcode.reg    = reg;
1865    opcode.value  = value;
1866    opcode.mask   = mask;
1867
1868    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1869    
1870    *entry->status = STATUS_PENDING;
1871
1872    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1873
1874    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1875
1876    *entry->status = STATUS_FREE;
1877
1878    if (ok == 0) {
1879	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1880	return -EIO;
1881    }
1882
1883    return 0;
1884}
1885
1886
1887static int
1888fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1889{
1890    u32 mct_value, mct_mask;
1891    int error;
1892
1893    if (!capable(CAP_NET_ADMIN))
1894	return -EPERM;
1895    
1896    switch (loop_mode) {
1897
1898    case ATM_LM_NONE:
1899	mct_value = 0; 
1900	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1901	break;
1902	
1903    case ATM_LM_LOC_PHY:
1904	mct_value = mct_mask = SUNI_MCT_DLE;
1905	break;
1906
1907    case ATM_LM_RMT_PHY:
1908	mct_value = mct_mask = SUNI_MCT_LLE;
1909	break;
1910
1911    default:
1912	return -EINVAL;
1913    }
1914
1915    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1916    if (error == 0)
1917	fore200e->loop_mode = loop_mode;
1918
1919    return error;
1920}
1921
1922
1923static int
1924fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1925{
1926    struct sonet_stats tmp;
1927
1928    if (fore200e_getstats(fore200e) < 0)
1929	return -EIO;
1930
1931    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1932    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1933    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1934    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1935    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1936    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1937    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1938    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1939	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1940	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1941    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1942	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1943	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1944
1945    if (arg)
1946	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1947    
1948    return 0;
1949}
1950
1951
1952static int
1953fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1954{
1955    struct fore200e* fore200e = FORE200E_DEV(dev);
1956    
1957    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1958
1959    switch (cmd) {
1960
1961    case SONET_GETSTAT:
1962	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1963
1964    case SONET_GETDIAG:
1965	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1966
1967    case ATM_SETLOOP:
1968	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1969
1970    case ATM_GETLOOP:
1971	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1972
1973    case ATM_QUERYLOOP:
1974	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1975    }
1976
1977    return -ENOSYS; /* not implemented */
1978}
1979
1980
1981static int
1982fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1983{
1984    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1985    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1986
1987    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1988	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1989	return -EINVAL;
1990    }
1991
1992    DPRINTK(2, "change_qos %d.%d.%d, "
1993	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1994	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1995	    "available_cell_rate = %u",
1996	    vcc->itf, vcc->vpi, vcc->vci,
1997	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1998	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1999	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2000	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2001	    flags, fore200e->available_cell_rate);
2002
2003    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2004
2005	mutex_lock(&fore200e->rate_mtx);
2006	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2007	    mutex_unlock(&fore200e->rate_mtx);
2008	    return -EAGAIN;
2009	}
2010
2011	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2012	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2013
2014	mutex_unlock(&fore200e->rate_mtx);
2015	
2016	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2017	
2018	/* update rate control parameters */
2019	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2020
2021	set_bit(ATM_VF_HASQOS, &vcc->flags);
2022
2023	return 0;
2024    }
2025    
2026    return -EINVAL;
2027}
2028    
2029
2030static int fore200e_irq_request(struct fore200e *fore200e)
2031{
2032    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033
2034	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036	return -EBUSY;
2037    }
2038
2039    printk(FORE200E "IRQ %s reserved for device %s\n",
2040	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041
2042#ifdef FORE200E_USE_TASKLET
2043    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045#endif
2046
2047    fore200e->state = FORE200E_STATE_IRQ;
2048    return 0;
2049}
2050
2051
2052static int fore200e_get_esi(struct fore200e *fore200e)
2053{
2054    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2055    int ok, i;
2056
2057    if (!prom)
2058	return -ENOMEM;
2059
2060    ok = fore200e->bus->prom_read(fore200e, prom);
2061    if (ok < 0) {
2062	kfree(prom);
2063	return -EBUSY;
2064    }
2065	
2066    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2067	   fore200e->name, 
2068	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2069	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2070	
2071    for (i = 0; i < ESI_LEN; i++) {
2072	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2073    }
2074    
2075    kfree(prom);
2076
2077    return 0;
2078}
2079
2080
2081static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2082{
2083    int scheme, magn, nbr, size, i;
2084
2085    struct host_bsq* bsq;
2086    struct buffer*   buffer;
2087
2088    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2089	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2090
2091	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2092
2093	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2094	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2095
2096	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2097
2098	    /* allocate the array of receive buffers */
2099	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2100
2101	    if (buffer == NULL)
2102		return -ENOMEM;
2103
2104	    bsq->freebuf = NULL;
2105
2106	    for (i = 0; i < nbr; i++) {
2107
2108		buffer[ i ].scheme = scheme;
2109		buffer[ i ].magn   = magn;
2110#ifdef FORE200E_BSQ_DEBUG
2111		buffer[ i ].index  = i;
2112		buffer[ i ].supplied = 0;
2113#endif
2114
2115		/* allocate the receive buffer body */
2116		if (fore200e_chunk_alloc(fore200e,
2117					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2118					 DMA_FROM_DEVICE) < 0) {
2119		    
2120		    while (i > 0)
2121			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2122		    kfree(buffer);
2123		    
2124		    return -ENOMEM;
2125		}
2126
2127		/* insert the buffer into the free buffer list */
2128		buffer[ i ].next = bsq->freebuf;
2129		bsq->freebuf = &buffer[ i ];
2130	    }
2131	    /* all the buffers are free, initially */
2132	    bsq->freebuf_count = nbr;
2133
2134#ifdef FORE200E_BSQ_DEBUG
2135	    bsq_audit(3, bsq, scheme, magn);
2136#endif
2137	}
2138    }
2139
2140    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2141    return 0;
2142}
2143
2144
2145static int fore200e_init_bs_queue(struct fore200e *fore200e)
2146{
2147    int scheme, magn, i;
2148
2149    struct host_bsq*     bsq;
2150    struct cp_bsq_entry __iomem * cp_entry;
2151
2152    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2153	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2154
2155	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2156
2157	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2158
2159	    /* allocate and align the array of status words */
2160	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2161					       &bsq->status,
2162					       sizeof(enum status), 
2163					       QUEUE_SIZE_BS,
2164					       fore200e->bus->status_alignment) < 0) {
2165		return -ENOMEM;
2166	    }
2167
2168	    /* allocate and align the array of receive buffer descriptors */
2169	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2170					       &bsq->rbd_block,
2171					       sizeof(struct rbd_block),
2172					       QUEUE_SIZE_BS,
2173					       fore200e->bus->descr_alignment) < 0) {
2174		
2175		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2176		return -ENOMEM;
2177	    }
2178	    
2179	    /* get the base address of the cp resident buffer supply queue entries */
2180	    cp_entry = fore200e->virt_base + 
2181		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2182	    
2183	    /* fill the host resident and cp resident buffer supply queue entries */
2184	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2185		
2186		bsq->host_entry[ i ].status = 
2187		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2188	        bsq->host_entry[ i ].rbd_block =
2189		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2190		bsq->host_entry[ i ].rbd_block_dma =
2191		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2192		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2193		
2194		*bsq->host_entry[ i ].status = STATUS_FREE;
2195		
2196		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2197				     &cp_entry[ i ].status_haddr);
2198	    }
2199	}
2200    }
2201
2202    fore200e->state = FORE200E_STATE_INIT_BSQ;
2203    return 0;
2204}
2205
2206
2207static int fore200e_init_rx_queue(struct fore200e *fore200e)
2208{
2209    struct host_rxq*     rxq =  &fore200e->host_rxq;
2210    struct cp_rxq_entry __iomem * cp_entry;
2211    int i;
2212
2213    DPRINTK(2, "receive queue is being initialized\n");
2214
2215    /* allocate and align the array of status words */
2216    if (fore200e->bus->dma_chunk_alloc(fore200e,
2217				       &rxq->status,
2218				       sizeof(enum status), 
2219				       QUEUE_SIZE_RX,
2220				       fore200e->bus->status_alignment) < 0) {
2221	return -ENOMEM;
2222    }
2223
2224    /* allocate and align the array of receive PDU descriptors */
2225    if (fore200e->bus->dma_chunk_alloc(fore200e,
2226				       &rxq->rpd,
2227				       sizeof(struct rpd), 
2228				       QUEUE_SIZE_RX,
2229				       fore200e->bus->descr_alignment) < 0) {
2230	
2231	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2232	return -ENOMEM;
2233    }
2234
2235    /* get the base address of the cp resident rx queue entries */
2236    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2237
2238    /* fill the host resident and cp resident rx entries */
2239    for (i=0; i < QUEUE_SIZE_RX; i++) {
2240	
2241	rxq->host_entry[ i ].status = 
2242	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2243	rxq->host_entry[ i ].rpd = 
2244	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2245	rxq->host_entry[ i ].rpd_dma = 
2246	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2247	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2248
2249	*rxq->host_entry[ i ].status = STATUS_FREE;
2250
2251	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2252			     &cp_entry[ i ].status_haddr);
2253
2254	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2255			     &cp_entry[ i ].rpd_haddr);
2256    }
2257
2258    /* set the head entry of the queue */
2259    rxq->head = 0;
2260
2261    fore200e->state = FORE200E_STATE_INIT_RXQ;
2262    return 0;
2263}
2264
2265
2266static int fore200e_init_tx_queue(struct fore200e *fore200e)
2267{
2268    struct host_txq*     txq =  &fore200e->host_txq;
2269    struct cp_txq_entry __iomem * cp_entry;
2270    int i;
2271
2272    DPRINTK(2, "transmit queue is being initialized\n");
2273
2274    /* allocate and align the array of status words */
2275    if (fore200e->bus->dma_chunk_alloc(fore200e,
2276				       &txq->status,
2277				       sizeof(enum status), 
2278				       QUEUE_SIZE_TX,
2279				       fore200e->bus->status_alignment) < 0) {
2280	return -ENOMEM;
2281    }
2282
2283    /* allocate and align the array of transmit PDU descriptors */
2284    if (fore200e->bus->dma_chunk_alloc(fore200e,
2285				       &txq->tpd,
2286				       sizeof(struct tpd), 
2287				       QUEUE_SIZE_TX,
2288				       fore200e->bus->descr_alignment) < 0) {
2289	
2290	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2291	return -ENOMEM;
2292    }
2293
2294    /* get the base address of the cp resident tx queue entries */
2295    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2296
2297    /* fill the host resident and cp resident tx entries */
2298    for (i=0; i < QUEUE_SIZE_TX; i++) {
2299	
2300	txq->host_entry[ i ].status = 
2301	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2302	txq->host_entry[ i ].tpd = 
2303	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2304	txq->host_entry[ i ].tpd_dma  = 
2305                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2306	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2307
2308	*txq->host_entry[ i ].status = STATUS_FREE;
2309	
2310	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2311			     &cp_entry[ i ].status_haddr);
2312	
2313        /* although there is a one-to-one mapping of tx queue entries and tpds,
2314	   we do not write here the DMA (physical) base address of each tpd into
2315	   the related cp resident entry, because the cp relies on this write
2316	   operation to detect that a new pdu has been submitted for tx */
2317    }
2318
2319    /* set the head and tail entries of the queue */
2320    txq->head = 0;
2321    txq->tail = 0;
2322
2323    fore200e->state = FORE200E_STATE_INIT_TXQ;
2324    return 0;
2325}
2326
2327
2328static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2329{
2330    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2331    struct cp_cmdq_entry __iomem * cp_entry;
2332    int i;
2333
2334    DPRINTK(2, "command queue is being initialized\n");
2335
2336    /* allocate and align the array of status words */
2337    if (fore200e->bus->dma_chunk_alloc(fore200e,
2338				       &cmdq->status,
2339				       sizeof(enum status), 
2340				       QUEUE_SIZE_CMD,
2341				       fore200e->bus->status_alignment) < 0) {
2342	return -ENOMEM;
2343    }
2344    
2345    /* get the base address of the cp resident cmd queue entries */
2346    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2347
2348    /* fill the host resident and cp resident cmd entries */
2349    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2350	
2351	cmdq->host_entry[ i ].status   = 
2352                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2353	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2354
2355	*cmdq->host_entry[ i ].status = STATUS_FREE;
2356
2357	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2358                             &cp_entry[ i ].status_haddr);
2359    }
2360
2361    /* set the head entry of the queue */
2362    cmdq->head = 0;
2363
2364    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2365    return 0;
2366}
2367
2368
2369static void fore200e_param_bs_queue(struct fore200e *fore200e,
2370				    enum buffer_scheme scheme,
2371				    enum buffer_magn magn, int queue_length,
2372				    int pool_size, int supply_blksize)
2373{
2374    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2375
2376    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2377    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2378    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2379    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2380}
2381
2382
2383static int fore200e_initialize(struct fore200e *fore200e)
2384{
2385    struct cp_queues __iomem * cpq;
2386    int               ok, scheme, magn;
2387
2388    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2389
2390    mutex_init(&fore200e->rate_mtx);
2391    spin_lock_init(&fore200e->q_lock);
2392
2393    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2394
2395    /* enable cp to host interrupts */
2396    fore200e->bus->write(1, &cpq->imask);
2397
2398    if (fore200e->bus->irq_enable)
2399	fore200e->bus->irq_enable(fore200e);
2400    
2401    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2402
2403    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2405    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2406
2407    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2408    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2409
2410    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2411	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2412	    fore200e_param_bs_queue(fore200e, scheme, magn,
2413				    QUEUE_SIZE_BS, 
2414				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2415				    RBD_BLK_SIZE);
2416
2417    /* issue the initialize command */
2418    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2419    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2420
2421    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2422    if (ok == 0) {
2423	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2424	return -ENODEV;
2425    }
2426
2427    printk(FORE200E "device %s initialized\n", fore200e->name);
2428
2429    fore200e->state = FORE200E_STATE_INITIALIZE;
2430    return 0;
2431}
2432
2433
2434static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2435{
2436    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2437
2438#if 0
2439    printk("%c", c);
2440#endif
2441    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2442}
2443
2444
2445static int fore200e_monitor_getc(struct fore200e *fore200e)
2446{
2447    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2448    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2449    int                c;
2450
2451    while (time_before(jiffies, timeout)) {
2452
2453	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2454
2455	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2456
2457	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2458#if 0
2459	    printk("%c", c & 0xFF);
2460#endif
2461	    return c & 0xFF;
2462	}
2463    }
2464
2465    return -1;
2466}
2467
2468
2469static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2470{
2471    while (*str) {
2472
2473	/* the i960 monitor doesn't accept any new character if it has something to say */
2474	while (fore200e_monitor_getc(fore200e) >= 0);
2475	
2476	fore200e_monitor_putc(fore200e, *str++);
2477    }
2478
2479    while (fore200e_monitor_getc(fore200e) >= 0);
2480}
2481
2482#ifdef __LITTLE_ENDIAN
2483#define FW_EXT ".bin"
2484#else
2485#define FW_EXT "_ecd.bin2"
2486#endif
2487
2488static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2489{
2490    const struct firmware *firmware;
2491    struct device *device;
2492    struct fw_header *fw_header;
2493    const __le32 *fw_data;
2494    u32 fw_size;
2495    u32 __iomem *load_addr;
2496    char buf[48];
2497    int err = -ENODEV;
2498
2499    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2500	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2501#ifdef CONFIG_SBUS
2502    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2503	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2504#endif
2505    else
2506	return err;
2507
2508    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2509    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2510	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2511	return err;
2512    }
2513
2514    fw_data = (__le32 *) firmware->data;
2515    fw_size = firmware->size / sizeof(u32);
2516    fw_header = (struct fw_header *) firmware->data;
2517    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2518
2519    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2520	    fore200e->name, load_addr, fw_size);
2521
2522    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2523	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2524	goto release;
2525    }
2526
2527    for (; fw_size--; fw_data++, load_addr++)
2528	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2529
2530    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2531
2532#if defined(__sparc_v9__)
2533    /* reported to be required by SBA cards on some sparc64 hosts */
2534    fore200e_spin(100);
2535#endif
2536
2537    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2538    fore200e_monitor_puts(fore200e, buf);
2539
2540    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2541	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2542	goto release;
2543    }
2544
2545    printk(FORE200E "device %s firmware started\n", fore200e->name);
2546
2547    fore200e->state = FORE200E_STATE_START_FW;
2548    err = 0;
2549
2550release:
2551    release_firmware(firmware);
2552    return err;
2553}
2554
2555
2556static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2557{
2558    struct atm_dev* atm_dev;
2559
2560    DPRINTK(2, "device %s being registered\n", fore200e->name);
2561
2562    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2563                               -1, NULL);
2564    if (atm_dev == NULL) {
2565	printk(FORE200E "unable to register device %s\n", fore200e->name);
2566	return -ENODEV;
2567    }
2568
2569    atm_dev->dev_data = fore200e;
2570    fore200e->atm_dev = atm_dev;
2571
2572    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2573    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2574
2575    fore200e->available_cell_rate = ATM_OC3_PCR;
2576
2577    fore200e->state = FORE200E_STATE_REGISTER;
2578    return 0;
2579}
2580
2581
2582static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2583{
2584    if (fore200e_register(fore200e, parent) < 0)
2585	return -ENODEV;
2586    
2587    if (fore200e->bus->configure(fore200e) < 0)
2588	return -ENODEV;
2589
2590    if (fore200e->bus->map(fore200e) < 0)
2591	return -ENODEV;
2592
2593    if (fore200e_reset(fore200e, 1) < 0)
2594	return -ENODEV;
2595
2596    if (fore200e_load_and_start_fw(fore200e) < 0)
2597	return -ENODEV;
2598
2599    if (fore200e_initialize(fore200e) < 0)
2600	return -ENODEV;
2601
2602    if (fore200e_init_cmd_queue(fore200e) < 0)
2603	return -ENOMEM;
2604
2605    if (fore200e_init_tx_queue(fore200e) < 0)
2606	return -ENOMEM;
2607
2608    if (fore200e_init_rx_queue(fore200e) < 0)
2609	return -ENOMEM;
2610
2611    if (fore200e_init_bs_queue(fore200e) < 0)
2612	return -ENOMEM;
2613
2614    if (fore200e_alloc_rx_buf(fore200e) < 0)
2615	return -ENOMEM;
2616
2617    if (fore200e_get_esi(fore200e) < 0)
2618	return -EIO;
2619
2620    if (fore200e_irq_request(fore200e) < 0)
2621	return -EBUSY;
2622
2623    fore200e_supply(fore200e);
2624
2625    /* all done, board initialization is now complete */
2626    fore200e->state = FORE200E_STATE_COMPLETE;
2627    return 0;
2628}
2629
2630#ifdef CONFIG_SBUS
2631static const struct of_device_id fore200e_sba_match[];
2632static int fore200e_sba_probe(struct platform_device *op)
2633{
2634	const struct of_device_id *match;
2635	const struct fore200e_bus *bus;
2636	struct fore200e *fore200e;
2637	static int index = 0;
2638	int err;
2639
2640	match = of_match_device(fore200e_sba_match, &op->dev);
2641	if (!match)
2642		return -EINVAL;
2643	bus = match->data;
2644
2645	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2646	if (!fore200e)
2647		return -ENOMEM;
2648
2649	fore200e->bus = bus;
2650	fore200e->bus_dev = op;
2651	fore200e->irq = op->archdata.irqs[0];
2652	fore200e->phys_base = op->resource[0].start;
2653
2654	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2655
2656	err = fore200e_init(fore200e, &op->dev);
2657	if (err < 0) {
2658		fore200e_shutdown(fore200e);
2659		kfree(fore200e);
2660		return err;
2661	}
2662
2663	index++;
2664	dev_set_drvdata(&op->dev, fore200e);
2665
2666	return 0;
2667}
2668
2669static int fore200e_sba_remove(struct platform_device *op)
2670{
2671	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2672
2673	fore200e_shutdown(fore200e);
2674	kfree(fore200e);
2675
2676	return 0;
2677}
2678
2679static const struct of_device_id fore200e_sba_match[] = {
2680	{
2681		.name = SBA200E_PROM_NAME,
2682		.data = (void *) &fore200e_bus[1],
2683	},
2684	{},
2685};
2686MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2687
2688static struct platform_driver fore200e_sba_driver = {
2689	.driver = {
2690		.name = "fore_200e",
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
2711
2712    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2713	err = -EINVAL;
2714	goto out;
2715    }
2716    
2717    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718    if (fore200e == NULL) {
2719	err = -ENOMEM;
2720	goto out_disable;
2721    }
2722
2723    fore200e->bus       = bus;
2724    fore200e->bus_dev   = pci_dev;    
2725    fore200e->irq       = pci_dev->irq;
2726    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727
2728    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729
2730    pci_set_master(pci_dev);
2731
2732    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733	   fore200e->bus->model_name, 
2734	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735
2736    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737
2738    err = fore200e_init(fore200e, &pci_dev->dev);
2739    if (err < 0) {
2740	fore200e_shutdown(fore200e);
2741	goto out_free;
2742    }
2743
2744    ++index;
2745    pci_set_drvdata(pci_dev, fore200e);
2746
2747out:
2748    return err;
2749
2750out_free:
2751    kfree(fore200e);
2752out_disable:
2753    pci_disable_device(pci_dev);
2754    goto out;
2755}
2756
2757
2758static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759{
2760    struct fore200e *fore200e;
2761
2762    fore200e = pci_get_drvdata(pci_dev);
2763
2764    fore200e_shutdown(fore200e);
2765    kfree(fore200e);
2766    pci_disable_device(pci_dev);
2767}
2768
2769
2770static struct pci_device_id fore200e_pca_tbl[] = {
2771    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772      0, 0, (unsigned long) &fore200e_bus[0] },
2773    { 0, }
2774};
2775
2776MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777
2778static struct pci_driver fore200e_pca_driver = {
2779    .name =     "fore_200e",
2780    .probe =    fore200e_pca_detect,
2781    .remove =   fore200e_pca_remove_one,
2782    .id_table = fore200e_pca_tbl,
2783};
2784#endif
2785
2786static int __init fore200e_module_init(void)
2787{
2788	int err = 0;
2789
2790	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791
2792#ifdef CONFIG_SBUS
2793	err = platform_driver_register(&fore200e_sba_driver);
2794	if (err)
2795		return err;
2796#endif
2797
2798#ifdef CONFIG_PCI
2799	err = pci_register_driver(&fore200e_pca_driver);
2800#endif
2801
2802#ifdef CONFIG_SBUS
2803	if (err)
2804		platform_driver_unregister(&fore200e_sba_driver);
2805#endif
2806
2807	return err;
2808}
2809
2810static void __exit fore200e_module_cleanup(void)
2811{
2812#ifdef CONFIG_PCI
2813	pci_unregister_driver(&fore200e_pca_driver);
2814#endif
2815#ifdef CONFIG_SBUS
2816	platform_driver_unregister(&fore200e_sba_driver);
2817#endif
2818}
2819
2820static int
2821fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822{
2823    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2824    struct fore200e_vcc* fore200e_vcc;
2825    struct atm_vcc*      vcc;
2826    int                  i, len, left = *pos;
2827    unsigned long        flags;
2828
2829    if (!left--) {
2830
2831	if (fore200e_getstats(fore200e) < 0)
2832	    return -EIO;
2833
2834	len = sprintf(page,"\n"
2835		       " device:\n"
2836		       "   internal name:\t\t%s\n", fore200e->name);
2837
2838	/* print bus-specific information */
2839	if (fore200e->bus->proc_read)
2840	    len += fore200e->bus->proc_read(fore200e, page + len);
2841	
2842	len += sprintf(page + len,
2843		"   interrupt line:\t\t%s\n"
2844		"   physical base address:\t0x%p\n"
2845		"   virtual base address:\t0x%p\n"
2846		"   factory address (ESI):\t%pM\n"
2847		"   board serial number:\t\t%d\n\n",
2848		fore200e_irq_itoa(fore200e->irq),
2849		(void*)fore200e->phys_base,
2850		fore200e->virt_base,
2851		fore200e->esi,
2852		fore200e->esi[4] * 256 + fore200e->esi[5]);
2853
2854	return len;
2855    }
2856
2857    if (!left--)
2858	return sprintf(page,
2859		       "   free small bufs, scheme 1:\t%d\n"
2860		       "   free large bufs, scheme 1:\t%d\n"
2861		       "   free small bufs, scheme 2:\t%d\n"
2862		       "   free large bufs, scheme 2:\t%d\n",
2863		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867
2868    if (!left--) {
2869	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870
2871	len = sprintf(page,"\n\n"
2872		      " cell processor:\n"
2873		      "   heartbeat state:\t\t");
2874	
2875	if (hb >> 16 != 0xDEAD)
2876	    len += sprintf(page + len, "0x%08x\n", hb);
2877	else
2878	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879
2880	return len;
2881    }
2882
2883    if (!left--) {
2884	static const char* media_name[] = {
2885	    "unshielded twisted pair",
2886	    "multimode optical fiber ST",
2887	    "multimode optical fiber SC",
2888	    "single-mode optical fiber ST",
2889	    "single-mode optical fiber SC",
2890	    "unknown"
2891	};
2892
2893	static const char* oc3_mode[] = {
2894	    "normal operation",
2895	    "diagnostic loopback",
2896	    "line loopback",
2897	    "unknown"
2898	};
2899
2900	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904	u32 oc3_index;
2905
2906	if (media_index > 4)
2907		media_index = 5;
2908	
2909	switch (fore200e->loop_mode) {
2910	    case ATM_LM_NONE:    oc3_index = 0;
2911		                 break;
2912	    case ATM_LM_LOC_PHY: oc3_index = 1;
2913		                 break;
2914	    case ATM_LM_RMT_PHY: oc3_index = 2;
2915		                 break;
2916	    default:             oc3_index = 3;
2917	}
2918
2919	return sprintf(page,
2920		       "   firmware release:\t\t%d.%d.%d\n"
2921		       "   monitor release:\t\t%d.%d\n"
2922		       "   media type:\t\t\t%s\n"
2923		       "   OC-3 revision:\t\t0x%x\n"
2924                       "   OC-3 mode:\t\t\t%s",
2925		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2926		       mon960_release >> 16, mon960_release << 16 >> 16,
2927		       media_name[ media_index ],
2928		       oc3_revision,
2929		       oc3_mode[ oc3_index ]);
2930    }
2931
2932    if (!left--) {
2933	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934
2935	return sprintf(page,
2936		       "\n\n"
2937		       " monitor:\n"
2938		       "   version number:\t\t%d\n"
2939		       "   boot status word:\t\t0x%08x\n",
2940		       fore200e->bus->read(&cp_monitor->mon_version),
2941		       fore200e->bus->read(&cp_monitor->bstat));
2942    }
2943
2944    if (!left--)
2945	return sprintf(page,
2946		       "\n"
2947		       " device statistics:\n"
2948		       "  4b5b:\n"
2949		       "     crc_header_errors:\t\t%10u\n"
2950		       "     framing_errors:\t\t%10u\n",
2951		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2953    
2954    if (!left--)
2955	return sprintf(page, "\n"
2956		       "  OC-3:\n"
2957		       "     section_bip8_errors:\t%10u\n"
2958		       "     path_bip8_errors:\t\t%10u\n"
2959		       "     line_bip24_errors:\t\t%10u\n"
2960		       "     line_febe_errors:\t\t%10u\n"
2961		       "     path_febe_errors:\t\t%10u\n"
2962		       "     corr_hcs_errors:\t\t%10u\n"
2963		       "     ucorr_hcs_errors:\t\t%10u\n",
2964		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971
2972    if (!left--)
2973	return sprintf(page,"\n"
2974		       "   ATM:\t\t\t\t     cells\n"
2975		       "     TX:\t\t\t%10u\n"
2976		       "     RX:\t\t\t%10u\n"
2977		       "     vpi out of range:\t\t%10u\n"
2978		       "     vpi no conn:\t\t%10u\n"
2979		       "     vci out of range:\t\t%10u\n"
2980		       "     vci no conn:\t\t%10u\n",
2981		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982		       be32_to_cpu(fore200e->stats->atm.cells_received),
2983		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987    
2988    if (!left--)
2989	return sprintf(page,"\n"
2990		       "   AAL0:\t\t\t     cells\n"
2991		       "     TX:\t\t\t%10u\n"
2992		       "     RX:\t\t\t%10u\n"
2993		       "     dropped:\t\t\t%10u\n",
2994		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2996		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997    
2998    if (!left--)
2999	return sprintf(page,"\n"
3000		       "   AAL3/4:\n"
3001		       "     SAR sublayer:\t\t     cells\n"
3002		       "       TX:\t\t\t%10u\n"
3003		       "       RX:\t\t\t%10u\n"
3004		       "       dropped:\t\t\t%10u\n"
3005		       "       CRC errors:\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n\n"
3007		       "     CS  sublayer:\t\t      PDUs\n"
3008		       "       TX:\t\t\t%10u\n"
3009		       "       RX:\t\t\t%10u\n"
3010		       "       dropped:\t\t\t%10u\n"
3011		       "       protocol errors:\t\t%10u\n",
3012		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021    
3022    if (!left--)
3023	return sprintf(page,"\n"
3024		       "   AAL5:\n"
3025		       "     SAR sublayer:\t\t     cells\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       congestions:\t\t%10u\n\n"
3030		       "     CS  sublayer:\t\t      PDUs\n"
3031		       "       TX:\t\t\t%10u\n"
3032		       "       RX:\t\t\t%10u\n"
3033		       "       dropped:\t\t\t%10u\n"
3034		       "       CRC errors:\t\t%10u\n"
3035		       "       protocol errors:\t\t%10u\n",
3036		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3038		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045    
3046    if (!left--)
3047	return sprintf(page,"\n"
3048		       "   AUX:\t\t       allocation failures\n"
3049		       "     small b1:\t\t\t%10u\n"
3050		       "     large b1:\t\t\t%10u\n"
3051		       "     small b2:\t\t\t%10u\n"
3052		       "     large b2:\t\t\t%10u\n"
3053		       "     RX PDUs:\t\t\t%10u\n"
3054		       "     TX PDUs:\t\t\t%10lu\n",
3055		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060		       fore200e->tx_sat);
3061    
3062    if (!left--)
3063	return sprintf(page,"\n"
3064		       " receive carrier:\t\t\t%s\n",
3065		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066    
3067    if (!left--) {
3068        return sprintf(page,"\n"
3069		       " VCCs:\n  address   VPI VCI   AAL "
3070		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3071    }
3072
3073    for (i = 0; i < NBR_CONNECT; i++) {
3074
3075	vcc = fore200e->vc_map[i].vcc;
3076
3077	if (vcc == NULL)
3078	    continue;
3079
3080	spin_lock_irqsave(&fore200e->q_lock, flags);
3081
3082	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083
3084	    fore200e_vcc = FORE200E_VCC(vcc);
3085	    ASSERT(fore200e_vcc);
3086
3087	    len = sprintf(page,
3088			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3089			  (u32)(unsigned long)vcc,
3090			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091			  fore200e_vcc->tx_pdu,
3092			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093			  fore200e_vcc->tx_max_pdu,
3094			  fore200e_vcc->rx_pdu,
3095			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096			  fore200e_vcc->rx_max_pdu);
3097
3098	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099	    return len;
3100	}
3101
3102	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103    }
3104    
3105    return 0;
3106}
3107
3108module_init(fore200e_module_init);
3109module_exit(fore200e_module_cleanup);
3110
3111
3112static const struct atmdev_ops fore200e_ops =
3113{
3114	.open       = fore200e_open,
3115	.close      = fore200e_close,
3116	.ioctl      = fore200e_ioctl,
3117	.getsockopt = fore200e_getsockopt,
3118	.setsockopt = fore200e_setsockopt,
3119	.send       = fore200e_send,
3120	.change_qos = fore200e_change_qos,
3121	.proc_read  = fore200e_proc_read,
3122	.owner      = THIS_MODULE
3123};
3124
3125
3126static const struct fore200e_bus fore200e_bus[] = {
3127#ifdef CONFIG_PCI
3128    { "PCA-200E", "pca200e", 32, 4, 32, 
3129      fore200e_pca_read,
3130      fore200e_pca_write,
3131      fore200e_pca_dma_map,
3132      fore200e_pca_dma_unmap,
3133      fore200e_pca_dma_sync_for_cpu,
3134      fore200e_pca_dma_sync_for_device,
3135      fore200e_pca_dma_chunk_alloc,
3136      fore200e_pca_dma_chunk_free,
3137      fore200e_pca_configure,
3138      fore200e_pca_map,
3139      fore200e_pca_reset,
3140      fore200e_pca_prom_read,
3141      fore200e_pca_unmap,
3142      NULL,
3143      fore200e_pca_irq_check,
3144      fore200e_pca_irq_ack,
3145      fore200e_pca_proc_read,
3146    },
3147#endif
3148#ifdef CONFIG_SBUS
3149    { "SBA-200E", "sba200e", 32, 64, 32,
3150      fore200e_sba_read,
3151      fore200e_sba_write,
3152      fore200e_sba_dma_map,
3153      fore200e_sba_dma_unmap,
3154      fore200e_sba_dma_sync_for_cpu,
3155      fore200e_sba_dma_sync_for_device,
3156      fore200e_sba_dma_chunk_alloc,
3157      fore200e_sba_dma_chunk_free,
3158      fore200e_sba_configure,
3159      fore200e_sba_map,
3160      fore200e_sba_reset,
3161      fore200e_sba_prom_read,
3162      fore200e_sba_unmap,
3163      fore200e_sba_irq_enable,
3164      fore200e_sba_irq_check,
3165      fore200e_sba_irq_ack,
3166      fore200e_sba_proc_read,
3167    },
3168#endif
3169    {}
3170};
3171
3172MODULE_LICENSE("GPL");
3173#ifdef CONFIG_PCI
3174#ifdef __LITTLE_ENDIAN__
3175MODULE_FIRMWARE("pca200e.bin");
3176#else
3177MODULE_FIRMWARE("pca200e_ecd.bin2");
3178#endif
3179#endif /* CONFIG_PCI */
3180#ifdef CONFIG_SBUS
3181MODULE_FIRMWARE("sba200e_ecd.bin2");
3182#endif