Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * efi.c - EFI subsystem
4 *
5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8 *
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/kobject.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/efi.h>
23#include <linux/of.h>
24#include <linux/io.h>
25#include <linux/kexec.h>
26#include <linux/platform_device.h>
27#include <linux/random.h>
28#include <linux/reboot.h>
29#include <linux/slab.h>
30#include <linux/acpi.h>
31#include <linux/ucs2_string.h>
32#include <linux/memblock.h>
33#include <linux/security.h>
34
35#include <asm/early_ioremap.h>
36
37struct efi __read_mostly efi = {
38 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .esrt = EFI_INVALID_TABLE_ADDR,
44 .tpm_log = EFI_INVALID_TABLE_ADDR,
45 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
46};
47EXPORT_SYMBOL(efi);
48
49unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
50static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
51static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
52
53struct mm_struct efi_mm = {
54 .mm_rb = RB_ROOT,
55 .mm_users = ATOMIC_INIT(2),
56 .mm_count = ATOMIC_INIT(1),
57 MMAP_LOCK_INITIALIZER(efi_mm)
58 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
59 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
60 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
61};
62
63struct workqueue_struct *efi_rts_wq;
64
65static bool disable_runtime;
66static int __init setup_noefi(char *arg)
67{
68 disable_runtime = true;
69 return 0;
70}
71early_param("noefi", setup_noefi);
72
73bool efi_runtime_disabled(void)
74{
75 return disable_runtime;
76}
77
78bool __pure __efi_soft_reserve_enabled(void)
79{
80 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
81}
82
83static int __init parse_efi_cmdline(char *str)
84{
85 if (!str) {
86 pr_warn("need at least one option\n");
87 return -EINVAL;
88 }
89
90 if (parse_option_str(str, "debug"))
91 set_bit(EFI_DBG, &efi.flags);
92
93 if (parse_option_str(str, "noruntime"))
94 disable_runtime = true;
95
96 if (parse_option_str(str, "nosoftreserve"))
97 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
98
99 return 0;
100}
101early_param("efi", parse_efi_cmdline);
102
103struct kobject *efi_kobj;
104
105/*
106 * Let's not leave out systab information that snuck into
107 * the efivars driver
108 * Note, do not add more fields in systab sysfs file as it breaks sysfs
109 * one value per file rule!
110 */
111static ssize_t systab_show(struct kobject *kobj,
112 struct kobj_attribute *attr, char *buf)
113{
114 char *str = buf;
115
116 if (!kobj || !buf)
117 return -EINVAL;
118
119 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
120 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
121 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
122 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
123 /*
124 * If both SMBIOS and SMBIOS3 entry points are implemented, the
125 * SMBIOS3 entry point shall be preferred, so we list it first to
126 * let applications stop parsing after the first match.
127 */
128 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
129 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
131 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
132
133 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
134 str = efi_systab_show_arch(str);
135
136 return str - buf;
137}
138
139static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
140
141static ssize_t fw_platform_size_show(struct kobject *kobj,
142 struct kobj_attribute *attr, char *buf)
143{
144 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
145}
146
147extern __weak struct kobj_attribute efi_attr_fw_vendor;
148extern __weak struct kobj_attribute efi_attr_runtime;
149extern __weak struct kobj_attribute efi_attr_config_table;
150static struct kobj_attribute efi_attr_fw_platform_size =
151 __ATTR_RO(fw_platform_size);
152
153static struct attribute *efi_subsys_attrs[] = {
154 &efi_attr_systab.attr,
155 &efi_attr_fw_platform_size.attr,
156 &efi_attr_fw_vendor.attr,
157 &efi_attr_runtime.attr,
158 &efi_attr_config_table.attr,
159 NULL,
160};
161
162umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
163 int n)
164{
165 return attr->mode;
166}
167
168static const struct attribute_group efi_subsys_attr_group = {
169 .attrs = efi_subsys_attrs,
170 .is_visible = efi_attr_is_visible,
171};
172
173static struct efivars generic_efivars;
174static struct efivar_operations generic_ops;
175
176static int generic_ops_register(void)
177{
178 generic_ops.get_variable = efi.get_variable;
179 generic_ops.get_next_variable = efi.get_next_variable;
180 generic_ops.query_variable_store = efi_query_variable_store;
181
182 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
183 generic_ops.set_variable = efi.set_variable;
184 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
185 }
186 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
187}
188
189static void generic_ops_unregister(void)
190{
191 efivars_unregister(&generic_efivars);
192}
193
194#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
195#define EFIVAR_SSDT_NAME_MAX 16
196static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
197static int __init efivar_ssdt_setup(char *str)
198{
199 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
200
201 if (ret)
202 return ret;
203
204 if (strlen(str) < sizeof(efivar_ssdt))
205 memcpy(efivar_ssdt, str, strlen(str));
206 else
207 pr_warn("efivar_ssdt: name too long: %s\n", str);
208 return 0;
209}
210__setup("efivar_ssdt=", efivar_ssdt_setup);
211
212static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
213 unsigned long name_size, void *data)
214{
215 struct efivar_entry *entry;
216 struct list_head *list = data;
217 char utf8_name[EFIVAR_SSDT_NAME_MAX];
218 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
219
220 ucs2_as_utf8(utf8_name, name, limit - 1);
221 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
222 return 0;
223
224 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
225 if (!entry)
226 return 0;
227
228 memcpy(entry->var.VariableName, name, name_size);
229 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
230
231 efivar_entry_add(entry, list);
232
233 return 0;
234}
235
236static __init int efivar_ssdt_load(void)
237{
238 LIST_HEAD(entries);
239 struct efivar_entry *entry, *aux;
240 unsigned long size;
241 void *data;
242 int ret;
243
244 if (!efivar_ssdt[0])
245 return 0;
246
247 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
248
249 list_for_each_entry_safe(entry, aux, &entries, list) {
250 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
251 &entry->var.VendorGuid);
252
253 list_del(&entry->list);
254
255 ret = efivar_entry_size(entry, &size);
256 if (ret) {
257 pr_err("failed to get var size\n");
258 goto free_entry;
259 }
260
261 data = kmalloc(size, GFP_KERNEL);
262 if (!data) {
263 ret = -ENOMEM;
264 goto free_entry;
265 }
266
267 ret = efivar_entry_get(entry, NULL, &size, data);
268 if (ret) {
269 pr_err("failed to get var data\n");
270 goto free_data;
271 }
272
273 ret = acpi_load_table(data, NULL);
274 if (ret) {
275 pr_err("failed to load table: %d\n", ret);
276 goto free_data;
277 }
278
279 goto free_entry;
280
281free_data:
282 kfree(data);
283
284free_entry:
285 kfree(entry);
286 }
287
288 return ret;
289}
290#else
291static inline int efivar_ssdt_load(void) { return 0; }
292#endif
293
294#ifdef CONFIG_DEBUG_FS
295
296#define EFI_DEBUGFS_MAX_BLOBS 32
297
298static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
299
300static void __init efi_debugfs_init(void)
301{
302 struct dentry *efi_debugfs;
303 efi_memory_desc_t *md;
304 char name[32];
305 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
306 int i = 0;
307
308 efi_debugfs = debugfs_create_dir("efi", NULL);
309 if (IS_ERR_OR_NULL(efi_debugfs))
310 return;
311
312 for_each_efi_memory_desc(md) {
313 switch (md->type) {
314 case EFI_BOOT_SERVICES_CODE:
315 snprintf(name, sizeof(name), "boot_services_code%d",
316 type_count[md->type]++);
317 break;
318 case EFI_BOOT_SERVICES_DATA:
319 snprintf(name, sizeof(name), "boot_services_data%d",
320 type_count[md->type]++);
321 break;
322 default:
323 continue;
324 }
325
326 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
327 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
328 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
329 break;
330 }
331
332 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
333 debugfs_blob[i].data = memremap(md->phys_addr,
334 debugfs_blob[i].size,
335 MEMREMAP_WB);
336 if (!debugfs_blob[i].data)
337 continue;
338
339 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
340 i++;
341 }
342}
343#else
344static inline void efi_debugfs_init(void) {}
345#endif
346
347/*
348 * We register the efi subsystem with the firmware subsystem and the
349 * efivars subsystem with the efi subsystem, if the system was booted with
350 * EFI.
351 */
352static int __init efisubsys_init(void)
353{
354 int error;
355
356 if (!efi_enabled(EFI_RUNTIME_SERVICES))
357 efi.runtime_supported_mask = 0;
358
359 if (!efi_enabled(EFI_BOOT))
360 return 0;
361
362 if (efi.runtime_supported_mask) {
363 /*
364 * Since we process only one efi_runtime_service() at a time, an
365 * ordered workqueue (which creates only one execution context)
366 * should suffice for all our needs.
367 */
368 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
369 if (!efi_rts_wq) {
370 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
371 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
372 efi.runtime_supported_mask = 0;
373 return 0;
374 }
375 }
376
377 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
378 platform_device_register_simple("rtc-efi", 0, NULL, 0);
379
380 /* We register the efi directory at /sys/firmware/efi */
381 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
382 if (!efi_kobj) {
383 pr_err("efi: Firmware registration failed.\n");
384 destroy_workqueue(efi_rts_wq);
385 return -ENOMEM;
386 }
387
388 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
389 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
390 efivar_ssdt_load();
391 error = generic_ops_register();
392 if (error)
393 goto err_put;
394 platform_device_register_simple("efivars", 0, NULL, 0);
395 }
396
397 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
398 if (error) {
399 pr_err("efi: Sysfs attribute export failed with error %d.\n",
400 error);
401 goto err_unregister;
402 }
403
404 error = efi_runtime_map_init(efi_kobj);
405 if (error)
406 goto err_remove_group;
407
408 /* and the standard mountpoint for efivarfs */
409 error = sysfs_create_mount_point(efi_kobj, "efivars");
410 if (error) {
411 pr_err("efivars: Subsystem registration failed.\n");
412 goto err_remove_group;
413 }
414
415 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
416 efi_debugfs_init();
417
418 return 0;
419
420err_remove_group:
421 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
422err_unregister:
423 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
424 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
425 generic_ops_unregister();
426err_put:
427 kobject_put(efi_kobj);
428 destroy_workqueue(efi_rts_wq);
429 return error;
430}
431
432subsys_initcall(efisubsys_init);
433
434/*
435 * Find the efi memory descriptor for a given physical address. Given a
436 * physical address, determine if it exists within an EFI Memory Map entry,
437 * and if so, populate the supplied memory descriptor with the appropriate
438 * data.
439 */
440int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
441{
442 efi_memory_desc_t *md;
443
444 if (!efi_enabled(EFI_MEMMAP)) {
445 pr_err_once("EFI_MEMMAP is not enabled.\n");
446 return -EINVAL;
447 }
448
449 if (!out_md) {
450 pr_err_once("out_md is null.\n");
451 return -EINVAL;
452 }
453
454 for_each_efi_memory_desc(md) {
455 u64 size;
456 u64 end;
457
458 size = md->num_pages << EFI_PAGE_SHIFT;
459 end = md->phys_addr + size;
460 if (phys_addr >= md->phys_addr && phys_addr < end) {
461 memcpy(out_md, md, sizeof(*out_md));
462 return 0;
463 }
464 }
465 return -ENOENT;
466}
467
468/*
469 * Calculate the highest address of an efi memory descriptor.
470 */
471u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
472{
473 u64 size = md->num_pages << EFI_PAGE_SHIFT;
474 u64 end = md->phys_addr + size;
475 return end;
476}
477
478void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
479
480/**
481 * efi_mem_reserve - Reserve an EFI memory region
482 * @addr: Physical address to reserve
483 * @size: Size of reservation
484 *
485 * Mark a region as reserved from general kernel allocation and
486 * prevent it being released by efi_free_boot_services().
487 *
488 * This function should be called drivers once they've parsed EFI
489 * configuration tables to figure out where their data lives, e.g.
490 * efi_esrt_init().
491 */
492void __init efi_mem_reserve(phys_addr_t addr, u64 size)
493{
494 if (!memblock_is_region_reserved(addr, size))
495 memblock_reserve(addr, size);
496
497 /*
498 * Some architectures (x86) reserve all boot services ranges
499 * until efi_free_boot_services() because of buggy firmware
500 * implementations. This means the above memblock_reserve() is
501 * superfluous on x86 and instead what it needs to do is
502 * ensure the @start, @size is not freed.
503 */
504 efi_arch_mem_reserve(addr, size);
505}
506
507static const efi_config_table_type_t common_tables[] __initconst = {
508 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
509 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
510 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
511 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
512 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
513 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
514 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
515 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
516 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
517 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
518 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
519#ifdef CONFIG_EFI_RCI2_TABLE
520 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
521#endif
522 {},
523};
524
525static __init int match_config_table(const efi_guid_t *guid,
526 unsigned long table,
527 const efi_config_table_type_t *table_types)
528{
529 int i;
530
531 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
532 if (!efi_guidcmp(*guid, table_types[i].guid)) {
533 *(table_types[i].ptr) = table;
534 if (table_types[i].name[0])
535 pr_cont("%s=0x%lx ",
536 table_types[i].name, table);
537 return 1;
538 }
539 }
540
541 return 0;
542}
543
544int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
545 int count,
546 const efi_config_table_type_t *arch_tables)
547{
548 const efi_config_table_64_t *tbl64 = (void *)config_tables;
549 const efi_config_table_32_t *tbl32 = (void *)config_tables;
550 const efi_guid_t *guid;
551 unsigned long table;
552 int i;
553
554 pr_info("");
555 for (i = 0; i < count; i++) {
556 if (!IS_ENABLED(CONFIG_X86)) {
557 guid = &config_tables[i].guid;
558 table = (unsigned long)config_tables[i].table;
559 } else if (efi_enabled(EFI_64BIT)) {
560 guid = &tbl64[i].guid;
561 table = tbl64[i].table;
562
563 if (IS_ENABLED(CONFIG_X86_32) &&
564 tbl64[i].table > U32_MAX) {
565 pr_cont("\n");
566 pr_err("Table located above 4GB, disabling EFI.\n");
567 return -EINVAL;
568 }
569 } else {
570 guid = &tbl32[i].guid;
571 table = tbl32[i].table;
572 }
573
574 if (!match_config_table(guid, table, common_tables) && arch_tables)
575 match_config_table(guid, table, arch_tables);
576 }
577 pr_cont("\n");
578 set_bit(EFI_CONFIG_TABLES, &efi.flags);
579
580 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
581 struct linux_efi_random_seed *seed;
582 u32 size = 0;
583
584 seed = early_memremap(efi_rng_seed, sizeof(*seed));
585 if (seed != NULL) {
586 size = READ_ONCE(seed->size);
587 early_memunmap(seed, sizeof(*seed));
588 } else {
589 pr_err("Could not map UEFI random seed!\n");
590 }
591 if (size > 0) {
592 seed = early_memremap(efi_rng_seed,
593 sizeof(*seed) + size);
594 if (seed != NULL) {
595 pr_notice("seeding entropy pool\n");
596 add_bootloader_randomness(seed->bits, size);
597 early_memunmap(seed, sizeof(*seed) + size);
598 } else {
599 pr_err("Could not map UEFI random seed!\n");
600 }
601 }
602 }
603
604 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
605 efi_memattr_init();
606
607 efi_tpm_eventlog_init();
608
609 if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
610 unsigned long prsv = mem_reserve;
611
612 while (prsv) {
613 struct linux_efi_memreserve *rsv;
614 u8 *p;
615
616 /*
617 * Just map a full page: that is what we will get
618 * anyway, and it permits us to map the entire entry
619 * before knowing its size.
620 */
621 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
622 PAGE_SIZE);
623 if (p == NULL) {
624 pr_err("Could not map UEFI memreserve entry!\n");
625 return -ENOMEM;
626 }
627
628 rsv = (void *)(p + prsv % PAGE_SIZE);
629
630 /* reserve the entry itself */
631 memblock_reserve(prsv,
632 struct_size(rsv, entry, rsv->size));
633
634 for (i = 0; i < atomic_read(&rsv->count); i++) {
635 memblock_reserve(rsv->entry[i].base,
636 rsv->entry[i].size);
637 }
638
639 prsv = rsv->next;
640 early_memunmap(p, PAGE_SIZE);
641 }
642 }
643
644 if (rt_prop != EFI_INVALID_TABLE_ADDR) {
645 efi_rt_properties_table_t *tbl;
646
647 tbl = early_memremap(rt_prop, sizeof(*tbl));
648 if (tbl) {
649 efi.runtime_supported_mask &= tbl->runtime_services_supported;
650 early_memunmap(tbl, sizeof(*tbl));
651 }
652 }
653
654 return 0;
655}
656
657int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
658 int min_major_version)
659{
660 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
661 pr_err("System table signature incorrect!\n");
662 return -EINVAL;
663 }
664
665 if ((systab_hdr->revision >> 16) < min_major_version)
666 pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
667 systab_hdr->revision >> 16,
668 systab_hdr->revision & 0xffff,
669 min_major_version);
670
671 return 0;
672}
673
674#ifndef CONFIG_IA64
675static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
676 size_t size)
677{
678 const efi_char16_t *ret;
679
680 ret = early_memremap_ro(fw_vendor, size);
681 if (!ret)
682 pr_err("Could not map the firmware vendor!\n");
683 return ret;
684}
685
686static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
687{
688 early_memunmap((void *)fw_vendor, size);
689}
690#else
691#define map_fw_vendor(p, s) __va(p)
692#define unmap_fw_vendor(v, s)
693#endif
694
695void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
696 unsigned long fw_vendor)
697{
698 char vendor[100] = "unknown";
699 const efi_char16_t *c16;
700 size_t i;
701
702 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
703 if (c16) {
704 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
705 vendor[i] = c16[i];
706 vendor[i] = '\0';
707
708 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
709 }
710
711 pr_info("EFI v%u.%.02u by %s\n",
712 systab_hdr->revision >> 16,
713 systab_hdr->revision & 0xffff,
714 vendor);
715}
716
717static __initdata char memory_type_name[][20] = {
718 "Reserved",
719 "Loader Code",
720 "Loader Data",
721 "Boot Code",
722 "Boot Data",
723 "Runtime Code",
724 "Runtime Data",
725 "Conventional Memory",
726 "Unusable Memory",
727 "ACPI Reclaim Memory",
728 "ACPI Memory NVS",
729 "Memory Mapped I/O",
730 "MMIO Port Space",
731 "PAL Code",
732 "Persistent Memory",
733};
734
735char * __init efi_md_typeattr_format(char *buf, size_t size,
736 const efi_memory_desc_t *md)
737{
738 char *pos;
739 int type_len;
740 u64 attr;
741
742 pos = buf;
743 if (md->type >= ARRAY_SIZE(memory_type_name))
744 type_len = snprintf(pos, size, "[type=%u", md->type);
745 else
746 type_len = snprintf(pos, size, "[%-*s",
747 (int)(sizeof(memory_type_name[0]) - 1),
748 memory_type_name[md->type]);
749 if (type_len >= size)
750 return buf;
751
752 pos += type_len;
753 size -= type_len;
754
755 attr = md->attribute;
756 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
757 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
758 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
759 EFI_MEMORY_NV | EFI_MEMORY_SP |
760 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
761 snprintf(pos, size, "|attr=0x%016llx]",
762 (unsigned long long)attr);
763 else
764 snprintf(pos, size,
765 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
766 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
767 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
768 attr & EFI_MEMORY_SP ? "SP" : "",
769 attr & EFI_MEMORY_NV ? "NV" : "",
770 attr & EFI_MEMORY_XP ? "XP" : "",
771 attr & EFI_MEMORY_RP ? "RP" : "",
772 attr & EFI_MEMORY_WP ? "WP" : "",
773 attr & EFI_MEMORY_RO ? "RO" : "",
774 attr & EFI_MEMORY_UCE ? "UCE" : "",
775 attr & EFI_MEMORY_WB ? "WB" : "",
776 attr & EFI_MEMORY_WT ? "WT" : "",
777 attr & EFI_MEMORY_WC ? "WC" : "",
778 attr & EFI_MEMORY_UC ? "UC" : "");
779 return buf;
780}
781
782/*
783 * IA64 has a funky EFI memory map that doesn't work the same way as
784 * other architectures.
785 */
786#ifndef CONFIG_IA64
787/*
788 * efi_mem_attributes - lookup memmap attributes for physical address
789 * @phys_addr: the physical address to lookup
790 *
791 * Search in the EFI memory map for the region covering
792 * @phys_addr. Returns the EFI memory attributes if the region
793 * was found in the memory map, 0 otherwise.
794 */
795u64 efi_mem_attributes(unsigned long phys_addr)
796{
797 efi_memory_desc_t *md;
798
799 if (!efi_enabled(EFI_MEMMAP))
800 return 0;
801
802 for_each_efi_memory_desc(md) {
803 if ((md->phys_addr <= phys_addr) &&
804 (phys_addr < (md->phys_addr +
805 (md->num_pages << EFI_PAGE_SHIFT))))
806 return md->attribute;
807 }
808 return 0;
809}
810
811/*
812 * efi_mem_type - lookup memmap type for physical address
813 * @phys_addr: the physical address to lookup
814 *
815 * Search in the EFI memory map for the region covering @phys_addr.
816 * Returns the EFI memory type if the region was found in the memory
817 * map, -EINVAL otherwise.
818 */
819int efi_mem_type(unsigned long phys_addr)
820{
821 const efi_memory_desc_t *md;
822
823 if (!efi_enabled(EFI_MEMMAP))
824 return -ENOTSUPP;
825
826 for_each_efi_memory_desc(md) {
827 if ((md->phys_addr <= phys_addr) &&
828 (phys_addr < (md->phys_addr +
829 (md->num_pages << EFI_PAGE_SHIFT))))
830 return md->type;
831 }
832 return -EINVAL;
833}
834#endif
835
836int efi_status_to_err(efi_status_t status)
837{
838 int err;
839
840 switch (status) {
841 case EFI_SUCCESS:
842 err = 0;
843 break;
844 case EFI_INVALID_PARAMETER:
845 err = -EINVAL;
846 break;
847 case EFI_OUT_OF_RESOURCES:
848 err = -ENOSPC;
849 break;
850 case EFI_DEVICE_ERROR:
851 err = -EIO;
852 break;
853 case EFI_WRITE_PROTECTED:
854 err = -EROFS;
855 break;
856 case EFI_SECURITY_VIOLATION:
857 err = -EACCES;
858 break;
859 case EFI_NOT_FOUND:
860 err = -ENOENT;
861 break;
862 case EFI_ABORTED:
863 err = -EINTR;
864 break;
865 default:
866 err = -EINVAL;
867 }
868
869 return err;
870}
871
872static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
873static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
874
875static int __init efi_memreserve_map_root(void)
876{
877 if (mem_reserve == EFI_INVALID_TABLE_ADDR)
878 return -ENODEV;
879
880 efi_memreserve_root = memremap(mem_reserve,
881 sizeof(*efi_memreserve_root),
882 MEMREMAP_WB);
883 if (WARN_ON_ONCE(!efi_memreserve_root))
884 return -ENOMEM;
885 return 0;
886}
887
888static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
889{
890 struct resource *res, *parent;
891
892 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
893 if (!res)
894 return -ENOMEM;
895
896 res->name = "reserved";
897 res->flags = IORESOURCE_MEM;
898 res->start = addr;
899 res->end = addr + size - 1;
900
901 /* we expect a conflict with a 'System RAM' region */
902 parent = request_resource_conflict(&iomem_resource, res);
903 return parent ? request_resource(parent, res) : 0;
904}
905
906int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
907{
908 struct linux_efi_memreserve *rsv;
909 unsigned long prsv;
910 int rc, index;
911
912 if (efi_memreserve_root == (void *)ULONG_MAX)
913 return -ENODEV;
914
915 if (!efi_memreserve_root) {
916 rc = efi_memreserve_map_root();
917 if (rc)
918 return rc;
919 }
920
921 /* first try to find a slot in an existing linked list entry */
922 for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
923 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
924 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
925 if (index < rsv->size) {
926 rsv->entry[index].base = addr;
927 rsv->entry[index].size = size;
928
929 memunmap(rsv);
930 return efi_mem_reserve_iomem(addr, size);
931 }
932 memunmap(rsv);
933 }
934
935 /* no slot found - allocate a new linked list entry */
936 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
937 if (!rsv)
938 return -ENOMEM;
939
940 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
941 if (rc) {
942 free_page((unsigned long)rsv);
943 return rc;
944 }
945
946 /*
947 * The memremap() call above assumes that a linux_efi_memreserve entry
948 * never crosses a page boundary, so let's ensure that this remains true
949 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
950 * using SZ_4K explicitly in the size calculation below.
951 */
952 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
953 atomic_set(&rsv->count, 1);
954 rsv->entry[0].base = addr;
955 rsv->entry[0].size = size;
956
957 spin_lock(&efi_mem_reserve_persistent_lock);
958 rsv->next = efi_memreserve_root->next;
959 efi_memreserve_root->next = __pa(rsv);
960 spin_unlock(&efi_mem_reserve_persistent_lock);
961
962 return efi_mem_reserve_iomem(addr, size);
963}
964
965static int __init efi_memreserve_root_init(void)
966{
967 if (efi_memreserve_root)
968 return 0;
969 if (efi_memreserve_map_root())
970 efi_memreserve_root = (void *)ULONG_MAX;
971 return 0;
972}
973early_initcall(efi_memreserve_root_init);
974
975#ifdef CONFIG_KEXEC
976static int update_efi_random_seed(struct notifier_block *nb,
977 unsigned long code, void *unused)
978{
979 struct linux_efi_random_seed *seed;
980 u32 size = 0;
981
982 if (!kexec_in_progress)
983 return NOTIFY_DONE;
984
985 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
986 if (seed != NULL) {
987 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
988 memunmap(seed);
989 } else {
990 pr_err("Could not map UEFI random seed!\n");
991 }
992 if (size > 0) {
993 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
994 MEMREMAP_WB);
995 if (seed != NULL) {
996 seed->size = size;
997 get_random_bytes(seed->bits, seed->size);
998 memunmap(seed);
999 } else {
1000 pr_err("Could not map UEFI random seed!\n");
1001 }
1002 }
1003 return NOTIFY_DONE;
1004}
1005
1006static struct notifier_block efi_random_seed_nb = {
1007 .notifier_call = update_efi_random_seed,
1008};
1009
1010static int __init register_update_efi_random_seed(void)
1011{
1012 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1013 return 0;
1014 return register_reboot_notifier(&efi_random_seed_nb);
1015}
1016late_initcall(register_update_efi_random_seed);
1017#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * efi.c - EFI subsystem
4 *
5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8 *
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/kobject.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/efi.h>
22#include <linux/of.h>
23#include <linux/of_fdt.h>
24#include <linux/io.h>
25#include <linux/kexec.h>
26#include <linux/platform_device.h>
27#include <linux/random.h>
28#include <linux/reboot.h>
29#include <linux/slab.h>
30#include <linux/acpi.h>
31#include <linux/ucs2_string.h>
32#include <linux/memblock.h>
33#include <linux/security.h>
34
35#include <asm/early_ioremap.h>
36
37struct efi __read_mostly efi = {
38 .mps = EFI_INVALID_TABLE_ADDR,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .boot_info = EFI_INVALID_TABLE_ADDR,
44 .hcdp = EFI_INVALID_TABLE_ADDR,
45 .uga = EFI_INVALID_TABLE_ADDR,
46 .fw_vendor = EFI_INVALID_TABLE_ADDR,
47 .runtime = EFI_INVALID_TABLE_ADDR,
48 .config_table = EFI_INVALID_TABLE_ADDR,
49 .esrt = EFI_INVALID_TABLE_ADDR,
50 .properties_table = EFI_INVALID_TABLE_ADDR,
51 .mem_attr_table = EFI_INVALID_TABLE_ADDR,
52 .rng_seed = EFI_INVALID_TABLE_ADDR,
53 .tpm_log = EFI_INVALID_TABLE_ADDR,
54 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
55 .mem_reserve = EFI_INVALID_TABLE_ADDR,
56};
57EXPORT_SYMBOL(efi);
58
59struct mm_struct efi_mm = {
60 .mm_rb = RB_ROOT,
61 .mm_users = ATOMIC_INIT(2),
62 .mm_count = ATOMIC_INIT(1),
63 .mmap_sem = __RWSEM_INITIALIZER(efi_mm.mmap_sem),
64 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
65 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
66 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
67};
68
69struct workqueue_struct *efi_rts_wq;
70
71static bool disable_runtime;
72static int __init setup_noefi(char *arg)
73{
74 disable_runtime = true;
75 return 0;
76}
77early_param("noefi", setup_noefi);
78
79bool efi_runtime_disabled(void)
80{
81 return disable_runtime;
82}
83
84static int __init parse_efi_cmdline(char *str)
85{
86 if (!str) {
87 pr_warn("need at least one option\n");
88 return -EINVAL;
89 }
90
91 if (parse_option_str(str, "debug"))
92 set_bit(EFI_DBG, &efi.flags);
93
94 if (parse_option_str(str, "noruntime"))
95 disable_runtime = true;
96
97 return 0;
98}
99early_param("efi", parse_efi_cmdline);
100
101struct kobject *efi_kobj;
102
103/*
104 * Let's not leave out systab information that snuck into
105 * the efivars driver
106 * Note, do not add more fields in systab sysfs file as it breaks sysfs
107 * one value per file rule!
108 */
109static ssize_t systab_show(struct kobject *kobj,
110 struct kobj_attribute *attr, char *buf)
111{
112 char *str = buf;
113
114 if (!kobj || !buf)
115 return -EINVAL;
116
117 if (efi.mps != EFI_INVALID_TABLE_ADDR)
118 str += sprintf(str, "MPS=0x%lx\n", efi.mps);
119 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
120 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
121 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
122 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
123 /*
124 * If both SMBIOS and SMBIOS3 entry points are implemented, the
125 * SMBIOS3 entry point shall be preferred, so we list it first to
126 * let applications stop parsing after the first match.
127 */
128 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
129 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
131 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
132 if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
133 str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
134 if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
135 str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
136 if (efi.uga != EFI_INVALID_TABLE_ADDR)
137 str += sprintf(str, "UGA=0x%lx\n", efi.uga);
138
139 return str - buf;
140}
141
142static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
143
144#define EFI_FIELD(var) efi.var
145
146#define EFI_ATTR_SHOW(name) \
147static ssize_t name##_show(struct kobject *kobj, \
148 struct kobj_attribute *attr, char *buf) \
149{ \
150 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
151}
152
153EFI_ATTR_SHOW(fw_vendor);
154EFI_ATTR_SHOW(runtime);
155EFI_ATTR_SHOW(config_table);
156
157static ssize_t fw_platform_size_show(struct kobject *kobj,
158 struct kobj_attribute *attr, char *buf)
159{
160 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
161}
162
163static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
164static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
165static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
166static struct kobj_attribute efi_attr_fw_platform_size =
167 __ATTR_RO(fw_platform_size);
168
169static struct attribute *efi_subsys_attrs[] = {
170 &efi_attr_systab.attr,
171 &efi_attr_fw_vendor.attr,
172 &efi_attr_runtime.attr,
173 &efi_attr_config_table.attr,
174 &efi_attr_fw_platform_size.attr,
175 NULL,
176};
177
178static umode_t efi_attr_is_visible(struct kobject *kobj,
179 struct attribute *attr, int n)
180{
181 if (attr == &efi_attr_fw_vendor.attr) {
182 if (efi_enabled(EFI_PARAVIRT) ||
183 efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
184 return 0;
185 } else if (attr == &efi_attr_runtime.attr) {
186 if (efi.runtime == EFI_INVALID_TABLE_ADDR)
187 return 0;
188 } else if (attr == &efi_attr_config_table.attr) {
189 if (efi.config_table == EFI_INVALID_TABLE_ADDR)
190 return 0;
191 }
192
193 return attr->mode;
194}
195
196static const struct attribute_group efi_subsys_attr_group = {
197 .attrs = efi_subsys_attrs,
198 .is_visible = efi_attr_is_visible,
199};
200
201static struct efivars generic_efivars;
202static struct efivar_operations generic_ops;
203
204static int generic_ops_register(void)
205{
206 generic_ops.get_variable = efi.get_variable;
207 generic_ops.set_variable = efi.set_variable;
208 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
209 generic_ops.get_next_variable = efi.get_next_variable;
210 generic_ops.query_variable_store = efi_query_variable_store;
211
212 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
213}
214
215static void generic_ops_unregister(void)
216{
217 efivars_unregister(&generic_efivars);
218}
219
220#if IS_ENABLED(CONFIG_ACPI)
221#define EFIVAR_SSDT_NAME_MAX 16
222static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
223static int __init efivar_ssdt_setup(char *str)
224{
225 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
226
227 if (ret)
228 return ret;
229
230 if (strlen(str) < sizeof(efivar_ssdt))
231 memcpy(efivar_ssdt, str, strlen(str));
232 else
233 pr_warn("efivar_ssdt: name too long: %s\n", str);
234 return 0;
235}
236__setup("efivar_ssdt=", efivar_ssdt_setup);
237
238static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
239 unsigned long name_size, void *data)
240{
241 struct efivar_entry *entry;
242 struct list_head *list = data;
243 char utf8_name[EFIVAR_SSDT_NAME_MAX];
244 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
245
246 ucs2_as_utf8(utf8_name, name, limit - 1);
247 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
248 return 0;
249
250 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
251 if (!entry)
252 return 0;
253
254 memcpy(entry->var.VariableName, name, name_size);
255 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
256
257 efivar_entry_add(entry, list);
258
259 return 0;
260}
261
262static __init int efivar_ssdt_load(void)
263{
264 LIST_HEAD(entries);
265 struct efivar_entry *entry, *aux;
266 unsigned long size;
267 void *data;
268 int ret;
269
270 if (!efivar_ssdt[0])
271 return 0;
272
273 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
274
275 list_for_each_entry_safe(entry, aux, &entries, list) {
276 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
277 &entry->var.VendorGuid);
278
279 list_del(&entry->list);
280
281 ret = efivar_entry_size(entry, &size);
282 if (ret) {
283 pr_err("failed to get var size\n");
284 goto free_entry;
285 }
286
287 data = kmalloc(size, GFP_KERNEL);
288 if (!data) {
289 ret = -ENOMEM;
290 goto free_entry;
291 }
292
293 ret = efivar_entry_get(entry, NULL, &size, data);
294 if (ret) {
295 pr_err("failed to get var data\n");
296 goto free_data;
297 }
298
299 ret = acpi_load_table(data);
300 if (ret) {
301 pr_err("failed to load table: %d\n", ret);
302 goto free_data;
303 }
304
305 goto free_entry;
306
307free_data:
308 kfree(data);
309
310free_entry:
311 kfree(entry);
312 }
313
314 return ret;
315}
316#else
317static inline int efivar_ssdt_load(void) { return 0; }
318#endif
319
320/*
321 * We register the efi subsystem with the firmware subsystem and the
322 * efivars subsystem with the efi subsystem, if the system was booted with
323 * EFI.
324 */
325static int __init efisubsys_init(void)
326{
327 int error;
328
329 if (!efi_enabled(EFI_BOOT))
330 return 0;
331
332 /*
333 * Since we process only one efi_runtime_service() at a time, an
334 * ordered workqueue (which creates only one execution context)
335 * should suffice all our needs.
336 */
337 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
338 if (!efi_rts_wq) {
339 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
340 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
341 return 0;
342 }
343
344 /* We register the efi directory at /sys/firmware/efi */
345 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
346 if (!efi_kobj) {
347 pr_err("efi: Firmware registration failed.\n");
348 return -ENOMEM;
349 }
350
351 error = generic_ops_register();
352 if (error)
353 goto err_put;
354
355 if (efi_enabled(EFI_RUNTIME_SERVICES))
356 efivar_ssdt_load();
357
358 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
359 if (error) {
360 pr_err("efi: Sysfs attribute export failed with error %d.\n",
361 error);
362 goto err_unregister;
363 }
364
365 error = efi_runtime_map_init(efi_kobj);
366 if (error)
367 goto err_remove_group;
368
369 /* and the standard mountpoint for efivarfs */
370 error = sysfs_create_mount_point(efi_kobj, "efivars");
371 if (error) {
372 pr_err("efivars: Subsystem registration failed.\n");
373 goto err_remove_group;
374 }
375
376 return 0;
377
378err_remove_group:
379 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
380err_unregister:
381 generic_ops_unregister();
382err_put:
383 kobject_put(efi_kobj);
384 return error;
385}
386
387subsys_initcall(efisubsys_init);
388
389/*
390 * Find the efi memory descriptor for a given physical address. Given a
391 * physical address, determine if it exists within an EFI Memory Map entry,
392 * and if so, populate the supplied memory descriptor with the appropriate
393 * data.
394 */
395int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
396{
397 efi_memory_desc_t *md;
398
399 if (!efi_enabled(EFI_MEMMAP)) {
400 pr_err_once("EFI_MEMMAP is not enabled.\n");
401 return -EINVAL;
402 }
403
404 if (!out_md) {
405 pr_err_once("out_md is null.\n");
406 return -EINVAL;
407 }
408
409 for_each_efi_memory_desc(md) {
410 u64 size;
411 u64 end;
412
413 size = md->num_pages << EFI_PAGE_SHIFT;
414 end = md->phys_addr + size;
415 if (phys_addr >= md->phys_addr && phys_addr < end) {
416 memcpy(out_md, md, sizeof(*out_md));
417 return 0;
418 }
419 }
420 return -ENOENT;
421}
422
423/*
424 * Calculate the highest address of an efi memory descriptor.
425 */
426u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
427{
428 u64 size = md->num_pages << EFI_PAGE_SHIFT;
429 u64 end = md->phys_addr + size;
430 return end;
431}
432
433void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
434
435/**
436 * efi_mem_reserve - Reserve an EFI memory region
437 * @addr: Physical address to reserve
438 * @size: Size of reservation
439 *
440 * Mark a region as reserved from general kernel allocation and
441 * prevent it being released by efi_free_boot_services().
442 *
443 * This function should be called drivers once they've parsed EFI
444 * configuration tables to figure out where their data lives, e.g.
445 * efi_esrt_init().
446 */
447void __init efi_mem_reserve(phys_addr_t addr, u64 size)
448{
449 if (!memblock_is_region_reserved(addr, size))
450 memblock_reserve(addr, size);
451
452 /*
453 * Some architectures (x86) reserve all boot services ranges
454 * until efi_free_boot_services() because of buggy firmware
455 * implementations. This means the above memblock_reserve() is
456 * superfluous on x86 and instead what it needs to do is
457 * ensure the @start, @size is not freed.
458 */
459 efi_arch_mem_reserve(addr, size);
460}
461
462static __initdata efi_config_table_type_t common_tables[] = {
463 {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
464 {ACPI_TABLE_GUID, "ACPI", &efi.acpi},
465 {HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
466 {MPS_TABLE_GUID, "MPS", &efi.mps},
467 {SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
468 {SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
469 {UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
470 {EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
471 {EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
472 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
473 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
474 {LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
475 {LINUX_EFI_TPM_FINAL_LOG_GUID, "TPMFinalLog", &efi.tpm_final_log},
476 {LINUX_EFI_MEMRESERVE_TABLE_GUID, "MEMRESERVE", &efi.mem_reserve},
477#ifdef CONFIG_EFI_RCI2_TABLE
478 {DELLEMC_EFI_RCI2_TABLE_GUID, NULL, &rci2_table_phys},
479#endif
480 {NULL_GUID, NULL, NULL},
481};
482
483static __init int match_config_table(efi_guid_t *guid,
484 unsigned long table,
485 efi_config_table_type_t *table_types)
486{
487 int i;
488
489 if (table_types) {
490 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
491 if (!efi_guidcmp(*guid, table_types[i].guid)) {
492 *(table_types[i].ptr) = table;
493 if (table_types[i].name)
494 pr_cont(" %s=0x%lx ",
495 table_types[i].name, table);
496 return 1;
497 }
498 }
499 }
500
501 return 0;
502}
503
504int __init efi_config_parse_tables(void *config_tables, int count, int sz,
505 efi_config_table_type_t *arch_tables)
506{
507 void *tablep;
508 int i;
509
510 tablep = config_tables;
511 pr_info("");
512 for (i = 0; i < count; i++) {
513 efi_guid_t guid;
514 unsigned long table;
515
516 if (efi_enabled(EFI_64BIT)) {
517 u64 table64;
518 guid = ((efi_config_table_64_t *)tablep)->guid;
519 table64 = ((efi_config_table_64_t *)tablep)->table;
520 table = table64;
521#ifndef CONFIG_64BIT
522 if (table64 >> 32) {
523 pr_cont("\n");
524 pr_err("Table located above 4GB, disabling EFI.\n");
525 return -EINVAL;
526 }
527#endif
528 } else {
529 guid = ((efi_config_table_32_t *)tablep)->guid;
530 table = ((efi_config_table_32_t *)tablep)->table;
531 }
532
533 if (!match_config_table(&guid, table, common_tables))
534 match_config_table(&guid, table, arch_tables);
535
536 tablep += sz;
537 }
538 pr_cont("\n");
539 set_bit(EFI_CONFIG_TABLES, &efi.flags);
540
541 if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
542 struct linux_efi_random_seed *seed;
543 u32 size = 0;
544
545 seed = early_memremap(efi.rng_seed, sizeof(*seed));
546 if (seed != NULL) {
547 size = seed->size;
548 early_memunmap(seed, sizeof(*seed));
549 } else {
550 pr_err("Could not map UEFI random seed!\n");
551 }
552 if (size > 0) {
553 seed = early_memremap(efi.rng_seed,
554 sizeof(*seed) + size);
555 if (seed != NULL) {
556 pr_notice("seeding entropy pool\n");
557 add_bootloader_randomness(seed->bits, seed->size);
558 early_memunmap(seed, sizeof(*seed) + size);
559 } else {
560 pr_err("Could not map UEFI random seed!\n");
561 }
562 }
563 }
564
565 if (efi_enabled(EFI_MEMMAP))
566 efi_memattr_init();
567
568 efi_tpm_eventlog_init();
569
570 /* Parse the EFI Properties table if it exists */
571 if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
572 efi_properties_table_t *tbl;
573
574 tbl = early_memremap(efi.properties_table, sizeof(*tbl));
575 if (tbl == NULL) {
576 pr_err("Could not map Properties table!\n");
577 return -ENOMEM;
578 }
579
580 if (tbl->memory_protection_attribute &
581 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
582 set_bit(EFI_NX_PE_DATA, &efi.flags);
583
584 early_memunmap(tbl, sizeof(*tbl));
585 }
586
587 if (efi.mem_reserve != EFI_INVALID_TABLE_ADDR) {
588 unsigned long prsv = efi.mem_reserve;
589
590 while (prsv) {
591 struct linux_efi_memreserve *rsv;
592 u8 *p;
593 int i;
594
595 /*
596 * Just map a full page: that is what we will get
597 * anyway, and it permits us to map the entire entry
598 * before knowing its size.
599 */
600 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
601 PAGE_SIZE);
602 if (p == NULL) {
603 pr_err("Could not map UEFI memreserve entry!\n");
604 return -ENOMEM;
605 }
606
607 rsv = (void *)(p + prsv % PAGE_SIZE);
608
609 /* reserve the entry itself */
610 memblock_reserve(prsv, EFI_MEMRESERVE_SIZE(rsv->size));
611
612 for (i = 0; i < atomic_read(&rsv->count); i++) {
613 memblock_reserve(rsv->entry[i].base,
614 rsv->entry[i].size);
615 }
616
617 prsv = rsv->next;
618 early_memunmap(p, PAGE_SIZE);
619 }
620 }
621
622 return 0;
623}
624
625int __init efi_config_init(efi_config_table_type_t *arch_tables)
626{
627 void *config_tables;
628 int sz, ret;
629
630 if (efi.systab->nr_tables == 0)
631 return 0;
632
633 if (efi_enabled(EFI_64BIT))
634 sz = sizeof(efi_config_table_64_t);
635 else
636 sz = sizeof(efi_config_table_32_t);
637
638 /*
639 * Let's see what config tables the firmware passed to us.
640 */
641 config_tables = early_memremap(efi.systab->tables,
642 efi.systab->nr_tables * sz);
643 if (config_tables == NULL) {
644 pr_err("Could not map Configuration table!\n");
645 return -ENOMEM;
646 }
647
648 ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
649 arch_tables);
650
651 early_memunmap(config_tables, efi.systab->nr_tables * sz);
652 return ret;
653}
654
655#ifdef CONFIG_EFI_VARS_MODULE
656static int __init efi_load_efivars(void)
657{
658 struct platform_device *pdev;
659
660 if (!efi_enabled(EFI_RUNTIME_SERVICES))
661 return 0;
662
663 pdev = platform_device_register_simple("efivars", 0, NULL, 0);
664 return PTR_ERR_OR_ZERO(pdev);
665}
666device_initcall(efi_load_efivars);
667#endif
668
669#ifdef CONFIG_EFI_PARAMS_FROM_FDT
670
671#define UEFI_PARAM(name, prop, field) \
672 { \
673 { name }, \
674 { prop }, \
675 offsetof(struct efi_fdt_params, field), \
676 FIELD_SIZEOF(struct efi_fdt_params, field) \
677 }
678
679struct params {
680 const char name[32];
681 const char propname[32];
682 int offset;
683 int size;
684};
685
686static __initdata struct params fdt_params[] = {
687 UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
688 UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
689 UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
690 UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
691 UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
692};
693
694static __initdata struct params xen_fdt_params[] = {
695 UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
696 UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
697 UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
698 UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
699 UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
700};
701
702#define EFI_FDT_PARAMS_SIZE ARRAY_SIZE(fdt_params)
703
704static __initdata struct {
705 const char *uname;
706 const char *subnode;
707 struct params *params;
708} dt_params[] = {
709 { "hypervisor", "uefi", xen_fdt_params },
710 { "chosen", NULL, fdt_params },
711};
712
713struct param_info {
714 int found;
715 void *params;
716 const char *missing;
717};
718
719static int __init __find_uefi_params(unsigned long node,
720 struct param_info *info,
721 struct params *params)
722{
723 const void *prop;
724 void *dest;
725 u64 val;
726 int i, len;
727
728 for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
729 prop = of_get_flat_dt_prop(node, params[i].propname, &len);
730 if (!prop) {
731 info->missing = params[i].name;
732 return 0;
733 }
734
735 dest = info->params + params[i].offset;
736 info->found++;
737
738 val = of_read_number(prop, len / sizeof(u32));
739
740 if (params[i].size == sizeof(u32))
741 *(u32 *)dest = val;
742 else
743 *(u64 *)dest = val;
744
745 if (efi_enabled(EFI_DBG))
746 pr_info(" %s: 0x%0*llx\n", params[i].name,
747 params[i].size * 2, val);
748 }
749
750 return 1;
751}
752
753static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
754 int depth, void *data)
755{
756 struct param_info *info = data;
757 int i;
758
759 for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
760 const char *subnode = dt_params[i].subnode;
761
762 if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
763 info->missing = dt_params[i].params[0].name;
764 continue;
765 }
766
767 if (subnode) {
768 int err = of_get_flat_dt_subnode_by_name(node, subnode);
769
770 if (err < 0)
771 return 0;
772
773 node = err;
774 }
775
776 return __find_uefi_params(node, info, dt_params[i].params);
777 }
778
779 return 0;
780}
781
782int __init efi_get_fdt_params(struct efi_fdt_params *params)
783{
784 struct param_info info;
785 int ret;
786
787 pr_info("Getting EFI parameters from FDT:\n");
788
789 info.found = 0;
790 info.params = params;
791
792 ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
793 if (!info.found)
794 pr_info("UEFI not found.\n");
795 else if (!ret)
796 pr_err("Can't find '%s' in device tree!\n",
797 info.missing);
798
799 return ret;
800}
801#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
802
803static __initdata char memory_type_name[][20] = {
804 "Reserved",
805 "Loader Code",
806 "Loader Data",
807 "Boot Code",
808 "Boot Data",
809 "Runtime Code",
810 "Runtime Data",
811 "Conventional Memory",
812 "Unusable Memory",
813 "ACPI Reclaim Memory",
814 "ACPI Memory NVS",
815 "Memory Mapped I/O",
816 "MMIO Port Space",
817 "PAL Code",
818 "Persistent Memory",
819};
820
821char * __init efi_md_typeattr_format(char *buf, size_t size,
822 const efi_memory_desc_t *md)
823{
824 char *pos;
825 int type_len;
826 u64 attr;
827
828 pos = buf;
829 if (md->type >= ARRAY_SIZE(memory_type_name))
830 type_len = snprintf(pos, size, "[type=%u", md->type);
831 else
832 type_len = snprintf(pos, size, "[%-*s",
833 (int)(sizeof(memory_type_name[0]) - 1),
834 memory_type_name[md->type]);
835 if (type_len >= size)
836 return buf;
837
838 pos += type_len;
839 size -= type_len;
840
841 attr = md->attribute;
842 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
843 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
844 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
845 EFI_MEMORY_NV |
846 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
847 snprintf(pos, size, "|attr=0x%016llx]",
848 (unsigned long long)attr);
849 else
850 snprintf(pos, size,
851 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
852 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
853 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
854 attr & EFI_MEMORY_NV ? "NV" : "",
855 attr & EFI_MEMORY_XP ? "XP" : "",
856 attr & EFI_MEMORY_RP ? "RP" : "",
857 attr & EFI_MEMORY_WP ? "WP" : "",
858 attr & EFI_MEMORY_RO ? "RO" : "",
859 attr & EFI_MEMORY_UCE ? "UCE" : "",
860 attr & EFI_MEMORY_WB ? "WB" : "",
861 attr & EFI_MEMORY_WT ? "WT" : "",
862 attr & EFI_MEMORY_WC ? "WC" : "",
863 attr & EFI_MEMORY_UC ? "UC" : "");
864 return buf;
865}
866
867/*
868 * IA64 has a funky EFI memory map that doesn't work the same way as
869 * other architectures.
870 */
871#ifndef CONFIG_IA64
872/*
873 * efi_mem_attributes - lookup memmap attributes for physical address
874 * @phys_addr: the physical address to lookup
875 *
876 * Search in the EFI memory map for the region covering
877 * @phys_addr. Returns the EFI memory attributes if the region
878 * was found in the memory map, 0 otherwise.
879 */
880u64 efi_mem_attributes(unsigned long phys_addr)
881{
882 efi_memory_desc_t *md;
883
884 if (!efi_enabled(EFI_MEMMAP))
885 return 0;
886
887 for_each_efi_memory_desc(md) {
888 if ((md->phys_addr <= phys_addr) &&
889 (phys_addr < (md->phys_addr +
890 (md->num_pages << EFI_PAGE_SHIFT))))
891 return md->attribute;
892 }
893 return 0;
894}
895
896/*
897 * efi_mem_type - lookup memmap type for physical address
898 * @phys_addr: the physical address to lookup
899 *
900 * Search in the EFI memory map for the region covering @phys_addr.
901 * Returns the EFI memory type if the region was found in the memory
902 * map, EFI_RESERVED_TYPE (zero) otherwise.
903 */
904int efi_mem_type(unsigned long phys_addr)
905{
906 const efi_memory_desc_t *md;
907
908 if (!efi_enabled(EFI_MEMMAP))
909 return -ENOTSUPP;
910
911 for_each_efi_memory_desc(md) {
912 if ((md->phys_addr <= phys_addr) &&
913 (phys_addr < (md->phys_addr +
914 (md->num_pages << EFI_PAGE_SHIFT))))
915 return md->type;
916 }
917 return -EINVAL;
918}
919#endif
920
921int efi_status_to_err(efi_status_t status)
922{
923 int err;
924
925 switch (status) {
926 case EFI_SUCCESS:
927 err = 0;
928 break;
929 case EFI_INVALID_PARAMETER:
930 err = -EINVAL;
931 break;
932 case EFI_OUT_OF_RESOURCES:
933 err = -ENOSPC;
934 break;
935 case EFI_DEVICE_ERROR:
936 err = -EIO;
937 break;
938 case EFI_WRITE_PROTECTED:
939 err = -EROFS;
940 break;
941 case EFI_SECURITY_VIOLATION:
942 err = -EACCES;
943 break;
944 case EFI_NOT_FOUND:
945 err = -ENOENT;
946 break;
947 case EFI_ABORTED:
948 err = -EINTR;
949 break;
950 default:
951 err = -EINVAL;
952 }
953
954 return err;
955}
956
957static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
958static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
959
960static int __init efi_memreserve_map_root(void)
961{
962 if (efi.mem_reserve == EFI_INVALID_TABLE_ADDR)
963 return -ENODEV;
964
965 efi_memreserve_root = memremap(efi.mem_reserve,
966 sizeof(*efi_memreserve_root),
967 MEMREMAP_WB);
968 if (WARN_ON_ONCE(!efi_memreserve_root))
969 return -ENOMEM;
970 return 0;
971}
972
973int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
974{
975 struct linux_efi_memreserve *rsv;
976 unsigned long prsv;
977 int rc, index;
978
979 if (efi_memreserve_root == (void *)ULONG_MAX)
980 return -ENODEV;
981
982 if (!efi_memreserve_root) {
983 rc = efi_memreserve_map_root();
984 if (rc)
985 return rc;
986 }
987
988 /* first try to find a slot in an existing linked list entry */
989 for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
990 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
991 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
992 if (index < rsv->size) {
993 rsv->entry[index].base = addr;
994 rsv->entry[index].size = size;
995
996 memunmap(rsv);
997 return 0;
998 }
999 memunmap(rsv);
1000 }
1001
1002 /* no slot found - allocate a new linked list entry */
1003 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1004 if (!rsv)
1005 return -ENOMEM;
1006
1007 /*
1008 * The memremap() call above assumes that a linux_efi_memreserve entry
1009 * never crosses a page boundary, so let's ensure that this remains true
1010 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1011 * using SZ_4K explicitly in the size calculation below.
1012 */
1013 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1014 atomic_set(&rsv->count, 1);
1015 rsv->entry[0].base = addr;
1016 rsv->entry[0].size = size;
1017
1018 spin_lock(&efi_mem_reserve_persistent_lock);
1019 rsv->next = efi_memreserve_root->next;
1020 efi_memreserve_root->next = __pa(rsv);
1021 spin_unlock(&efi_mem_reserve_persistent_lock);
1022
1023 return 0;
1024}
1025
1026static int __init efi_memreserve_root_init(void)
1027{
1028 if (efi_memreserve_root)
1029 return 0;
1030 if (efi_memreserve_map_root())
1031 efi_memreserve_root = (void *)ULONG_MAX;
1032 return 0;
1033}
1034early_initcall(efi_memreserve_root_init);
1035
1036#ifdef CONFIG_KEXEC
1037static int update_efi_random_seed(struct notifier_block *nb,
1038 unsigned long code, void *unused)
1039{
1040 struct linux_efi_random_seed *seed;
1041 u32 size = 0;
1042
1043 if (!kexec_in_progress)
1044 return NOTIFY_DONE;
1045
1046 seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
1047 if (seed != NULL) {
1048 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1049 memunmap(seed);
1050 } else {
1051 pr_err("Could not map UEFI random seed!\n");
1052 }
1053 if (size > 0) {
1054 seed = memremap(efi.rng_seed, sizeof(*seed) + size,
1055 MEMREMAP_WB);
1056 if (seed != NULL) {
1057 seed->size = size;
1058 get_random_bytes(seed->bits, seed->size);
1059 memunmap(seed);
1060 } else {
1061 pr_err("Could not map UEFI random seed!\n");
1062 }
1063 }
1064 return NOTIFY_DONE;
1065}
1066
1067static struct notifier_block efi_random_seed_nb = {
1068 .notifier_call = update_efi_random_seed,
1069};
1070
1071static int register_update_efi_random_seed(void)
1072{
1073 if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
1074 return 0;
1075 return register_reboot_notifier(&efi_random_seed_nb);
1076}
1077late_initcall(register_update_efi_random_seed);
1078#endif