Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
 
  24#include <linux/io.h>
  25#include <linux/kexec.h>
  26#include <linux/platform_device.h>
  27#include <linux/random.h>
  28#include <linux/reboot.h>
  29#include <linux/slab.h>
  30#include <linux/acpi.h>
  31#include <linux/ucs2_string.h>
  32#include <linux/memblock.h>
  33#include <linux/security.h>
  34
  35#include <asm/early_ioremap.h>
  36
  37struct efi __read_mostly efi = {
  38	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  39	.acpi			= EFI_INVALID_TABLE_ADDR,
  40	.acpi20			= EFI_INVALID_TABLE_ADDR,
  41	.smbios			= EFI_INVALID_TABLE_ADDR,
  42	.smbios3		= EFI_INVALID_TABLE_ADDR,
  43	.esrt			= EFI_INVALID_TABLE_ADDR,
  44	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  45	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
 
 
 
 
 
 
  46};
  47EXPORT_SYMBOL(efi);
  48
  49unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  50static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  51static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
 
 
 
  52
  53struct mm_struct efi_mm = {
  54	.mm_rb			= RB_ROOT,
  55	.mm_users		= ATOMIC_INIT(2),
  56	.mm_count		= ATOMIC_INIT(1),
 
  57	MMAP_LOCK_INITIALIZER(efi_mm)
  58	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  59	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  60	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  61};
  62
  63struct workqueue_struct *efi_rts_wq;
  64
  65static bool disable_runtime;
  66static int __init setup_noefi(char *arg)
  67{
  68	disable_runtime = true;
  69	return 0;
  70}
  71early_param("noefi", setup_noefi);
  72
  73bool efi_runtime_disabled(void)
  74{
  75	return disable_runtime;
  76}
  77
  78bool __pure __efi_soft_reserve_enabled(void)
  79{
  80	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  81}
  82
  83static int __init parse_efi_cmdline(char *str)
  84{
  85	if (!str) {
  86		pr_warn("need at least one option\n");
  87		return -EINVAL;
  88	}
  89
  90	if (parse_option_str(str, "debug"))
  91		set_bit(EFI_DBG, &efi.flags);
  92
  93	if (parse_option_str(str, "noruntime"))
  94		disable_runtime = true;
  95
 
 
 
  96	if (parse_option_str(str, "nosoftreserve"))
  97		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
  98
  99	return 0;
 100}
 101early_param("efi", parse_efi_cmdline);
 102
 103struct kobject *efi_kobj;
 104
 105/*
 106 * Let's not leave out systab information that snuck into
 107 * the efivars driver
 108 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 109 * one value per file rule!
 110 */
 111static ssize_t systab_show(struct kobject *kobj,
 112			   struct kobj_attribute *attr, char *buf)
 113{
 114	char *str = buf;
 115
 116	if (!kobj || !buf)
 117		return -EINVAL;
 118
 119	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 120		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 121	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 122		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 123	/*
 124	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 125	 * SMBIOS3 entry point shall be preferred, so we list it first to
 126	 * let applications stop parsing after the first match.
 127	 */
 128	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 129		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 130	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 131		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 132
 133	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 134		str = efi_systab_show_arch(str);
 135
 136	return str - buf;
 137}
 138
 139static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 140
 141static ssize_t fw_platform_size_show(struct kobject *kobj,
 142				     struct kobj_attribute *attr, char *buf)
 143{
 144	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 145}
 146
 147extern __weak struct kobj_attribute efi_attr_fw_vendor;
 148extern __weak struct kobj_attribute efi_attr_runtime;
 149extern __weak struct kobj_attribute efi_attr_config_table;
 150static struct kobj_attribute efi_attr_fw_platform_size =
 151	__ATTR_RO(fw_platform_size);
 152
 153static struct attribute *efi_subsys_attrs[] = {
 154	&efi_attr_systab.attr,
 155	&efi_attr_fw_platform_size.attr,
 156	&efi_attr_fw_vendor.attr,
 157	&efi_attr_runtime.attr,
 158	&efi_attr_config_table.attr,
 159	NULL,
 160};
 161
 162umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 163				   int n)
 164{
 165	return attr->mode;
 166}
 167
 168static const struct attribute_group efi_subsys_attr_group = {
 169	.attrs = efi_subsys_attrs,
 170	.is_visible = efi_attr_is_visible,
 171};
 172
 173static struct efivars generic_efivars;
 174static struct efivar_operations generic_ops;
 175
 176static int generic_ops_register(void)
 177{
 178	generic_ops.get_variable = efi.get_variable;
 179	generic_ops.get_next_variable = efi.get_next_variable;
 180	generic_ops.query_variable_store = efi_query_variable_store;
 181
 182	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 183		generic_ops.set_variable = efi.set_variable;
 184		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 185	}
 186	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 187}
 188
 189static void generic_ops_unregister(void)
 190{
 191	efivars_unregister(&generic_efivars);
 192}
 193
 194#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 195#define EFIVAR_SSDT_NAME_MAX	16
 196static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 197static int __init efivar_ssdt_setup(char *str)
 198{
 199	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 200
 201	if (ret)
 202		return ret;
 203
 204	if (strlen(str) < sizeof(efivar_ssdt))
 205		memcpy(efivar_ssdt, str, strlen(str));
 206	else
 207		pr_warn("efivar_ssdt: name too long: %s\n", str);
 208	return 0;
 209}
 210__setup("efivar_ssdt=", efivar_ssdt_setup);
 211
 212static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
 213				   unsigned long name_size, void *data)
 214{
 215	struct efivar_entry *entry;
 216	struct list_head *list = data;
 217	char utf8_name[EFIVAR_SSDT_NAME_MAX];
 218	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
 219
 220	ucs2_as_utf8(utf8_name, name, limit - 1);
 221	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 222		return 0;
 223
 224	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 225	if (!entry)
 226		return 0;
 227
 228	memcpy(entry->var.VariableName, name, name_size);
 229	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 230
 231	efivar_entry_add(entry, list);
 232
 233	return 0;
 234}
 235
 236static __init int efivar_ssdt_load(void)
 237{
 238	LIST_HEAD(entries);
 239	struct efivar_entry *entry, *aux;
 240	unsigned long size;
 241	void *data;
 242	int ret;
 243
 244	if (!efivar_ssdt[0])
 245		return 0;
 246
 247	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
 248
 249	list_for_each_entry_safe(entry, aux, &entries, list) {
 250		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
 251			&entry->var.VendorGuid);
 252
 253		list_del(&entry->list);
 
 
 
 
 254
 255		ret = efivar_entry_size(entry, &size);
 256		if (ret) {
 257			pr_err("failed to get var size\n");
 258			goto free_entry;
 
 
 
 
 259		}
 260
 261		data = kmalloc(size, GFP_KERNEL);
 262		if (!data) {
 263			ret = -ENOMEM;
 264			goto free_entry;
 265		}
 266
 267		ret = efivar_entry_get(entry, NULL, &size, data);
 268		if (ret) {
 269			pr_err("failed to get var data\n");
 270			goto free_data;
 271		}
 272
 273		ret = acpi_load_table(data, NULL);
 274		if (ret) {
 275			pr_err("failed to load table: %d\n", ret);
 276			goto free_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 277		}
 278
 279		goto free_entry;
 280
 281free_data:
 282		kfree(data);
 283
 284free_entry:
 285		kfree(entry);
 286	}
 287
 288	return ret;
 289}
 290#else
 291static inline int efivar_ssdt_load(void) { return 0; }
 292#endif
 293
 294#ifdef CONFIG_DEBUG_FS
 295
 296#define EFI_DEBUGFS_MAX_BLOBS 32
 297
 298static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 299
 300static void __init efi_debugfs_init(void)
 301{
 302	struct dentry *efi_debugfs;
 303	efi_memory_desc_t *md;
 304	char name[32];
 305	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 306	int i = 0;
 307
 308	efi_debugfs = debugfs_create_dir("efi", NULL);
 309	if (IS_ERR_OR_NULL(efi_debugfs))
 310		return;
 311
 312	for_each_efi_memory_desc(md) {
 313		switch (md->type) {
 314		case EFI_BOOT_SERVICES_CODE:
 315			snprintf(name, sizeof(name), "boot_services_code%d",
 316				 type_count[md->type]++);
 317			break;
 318		case EFI_BOOT_SERVICES_DATA:
 319			snprintf(name, sizeof(name), "boot_services_data%d",
 320				 type_count[md->type]++);
 321			break;
 322		default:
 323			continue;
 324		}
 325
 326		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 327			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 328				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 329			break;
 330		}
 331
 332		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 333		debugfs_blob[i].data = memremap(md->phys_addr,
 334						debugfs_blob[i].size,
 335						MEMREMAP_WB);
 336		if (!debugfs_blob[i].data)
 337			continue;
 338
 339		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 340		i++;
 341	}
 342}
 343#else
 344static inline void efi_debugfs_init(void) {}
 345#endif
 346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347/*
 348 * We register the efi subsystem with the firmware subsystem and the
 349 * efivars subsystem with the efi subsystem, if the system was booted with
 350 * EFI.
 351 */
 352static int __init efisubsys_init(void)
 353{
 354	int error;
 355
 356	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 357		efi.runtime_supported_mask = 0;
 358
 359	if (!efi_enabled(EFI_BOOT))
 360		return 0;
 361
 362	if (efi.runtime_supported_mask) {
 363		/*
 364		 * Since we process only one efi_runtime_service() at a time, an
 365		 * ordered workqueue (which creates only one execution context)
 366		 * should suffice for all our needs.
 367		 */
 368		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 369		if (!efi_rts_wq) {
 370			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 371			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 372			efi.runtime_supported_mask = 0;
 373			return 0;
 374		}
 375	}
 376
 377	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 378		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 379
 380	/* We register the efi directory at /sys/firmware/efi */
 381	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 382	if (!efi_kobj) {
 383		pr_err("efi: Firmware registration failed.\n");
 384		destroy_workqueue(efi_rts_wq);
 385		return -ENOMEM;
 386	}
 387
 388	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 389				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 390		efivar_ssdt_load();
 391		error = generic_ops_register();
 392		if (error)
 393			goto err_put;
 
 394		platform_device_register_simple("efivars", 0, NULL, 0);
 395	}
 396
 397	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 398	if (error) {
 399		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 400		       error);
 401		goto err_unregister;
 402	}
 403
 404	error = efi_runtime_map_init(efi_kobj);
 405	if (error)
 406		goto err_remove_group;
 407
 408	/* and the standard mountpoint for efivarfs */
 409	error = sysfs_create_mount_point(efi_kobj, "efivars");
 410	if (error) {
 411		pr_err("efivars: Subsystem registration failed.\n");
 412		goto err_remove_group;
 413	}
 414
 415	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 416		efi_debugfs_init();
 417
 
 
 
 
 
 
 
 
 418	return 0;
 419
 420err_remove_group:
 421	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 422err_unregister:
 423	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 424				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 425		generic_ops_unregister();
 426err_put:
 427	kobject_put(efi_kobj);
 428	destroy_workqueue(efi_rts_wq);
 
 
 
 
 429	return error;
 430}
 431
 432subsys_initcall(efisubsys_init);
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434/*
 435 * Find the efi memory descriptor for a given physical address.  Given a
 436 * physical address, determine if it exists within an EFI Memory Map entry,
 437 * and if so, populate the supplied memory descriptor with the appropriate
 438 * data.
 439 */
 440int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 441{
 442	efi_memory_desc_t *md;
 443
 444	if (!efi_enabled(EFI_MEMMAP)) {
 445		pr_err_once("EFI_MEMMAP is not enabled.\n");
 446		return -EINVAL;
 447	}
 448
 449	if (!out_md) {
 450		pr_err_once("out_md is null.\n");
 451		return -EINVAL;
 452        }
 453
 454	for_each_efi_memory_desc(md) {
 455		u64 size;
 456		u64 end;
 457
 458		size = md->num_pages << EFI_PAGE_SHIFT;
 459		end = md->phys_addr + size;
 460		if (phys_addr >= md->phys_addr && phys_addr < end) {
 461			memcpy(out_md, md, sizeof(*out_md));
 462			return 0;
 463		}
 464	}
 465	return -ENOENT;
 466}
 467
 468/*
 469 * Calculate the highest address of an efi memory descriptor.
 470 */
 471u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 472{
 473	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 474	u64 end = md->phys_addr + size;
 475	return end;
 476}
 477
 478void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 479
 480/**
 481 * efi_mem_reserve - Reserve an EFI memory region
 482 * @addr: Physical address to reserve
 483 * @size: Size of reservation
 484 *
 485 * Mark a region as reserved from general kernel allocation and
 486 * prevent it being released by efi_free_boot_services().
 487 *
 488 * This function should be called drivers once they've parsed EFI
 489 * configuration tables to figure out where their data lives, e.g.
 490 * efi_esrt_init().
 491 */
 492void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 493{
 494	if (!memblock_is_region_reserved(addr, size))
 495		memblock_reserve(addr, size);
 496
 497	/*
 498	 * Some architectures (x86) reserve all boot services ranges
 499	 * until efi_free_boot_services() because of buggy firmware
 500	 * implementations. This means the above memblock_reserve() is
 501	 * superfluous on x86 and instead what it needs to do is
 502	 * ensure the @start, @size is not freed.
 503	 */
 504	efi_arch_mem_reserve(addr, size);
 505}
 506
 507static const efi_config_table_type_t common_tables[] __initconst = {
 508	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 509	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 510	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 511	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 512	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 513	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 514	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 515	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 516	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 517	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 
 518	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 519#ifdef CONFIG_EFI_RCI2_TABLE
 520	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 521#endif
 
 
 
 
 
 
 
 
 
 522	{},
 523};
 524
 525static __init int match_config_table(const efi_guid_t *guid,
 526				     unsigned long table,
 527				     const efi_config_table_type_t *table_types)
 528{
 529	int i;
 530
 531	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 532		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 533			*(table_types[i].ptr) = table;
 534			if (table_types[i].name[0])
 535				pr_cont("%s=0x%lx ",
 536					table_types[i].name, table);
 537			return 1;
 538		}
 539	}
 540
 541	return 0;
 542}
 543
 544int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 545				   int count,
 546				   const efi_config_table_type_t *arch_tables)
 547{
 548	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 549	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 550	const efi_guid_t *guid;
 551	unsigned long table;
 552	int i;
 553
 554	pr_info("");
 555	for (i = 0; i < count; i++) {
 556		if (!IS_ENABLED(CONFIG_X86)) {
 557			guid = &config_tables[i].guid;
 558			table = (unsigned long)config_tables[i].table;
 559		} else if (efi_enabled(EFI_64BIT)) {
 560			guid = &tbl64[i].guid;
 561			table = tbl64[i].table;
 562
 563			if (IS_ENABLED(CONFIG_X86_32) &&
 564			    tbl64[i].table > U32_MAX) {
 565				pr_cont("\n");
 566				pr_err("Table located above 4GB, disabling EFI.\n");
 567				return -EINVAL;
 568			}
 569		} else {
 570			guid = &tbl32[i].guid;
 571			table = tbl32[i].table;
 572		}
 573
 574		if (!match_config_table(guid, table, common_tables) && arch_tables)
 575			match_config_table(guid, table, arch_tables);
 576	}
 577	pr_cont("\n");
 578	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 579
 580	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 581		struct linux_efi_random_seed *seed;
 582		u32 size = 0;
 583
 584		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 585		if (seed != NULL) {
 586			size = READ_ONCE(seed->size);
 587			early_memunmap(seed, sizeof(*seed));
 588		} else {
 589			pr_err("Could not map UEFI random seed!\n");
 590		}
 591		if (size > 0) {
 592			seed = early_memremap(efi_rng_seed,
 593					      sizeof(*seed) + size);
 594			if (seed != NULL) {
 595				pr_notice("seeding entropy pool\n");
 596				add_bootloader_randomness(seed->bits, size);
 
 597				early_memunmap(seed, sizeof(*seed) + size);
 598			} else {
 599				pr_err("Could not map UEFI random seed!\n");
 600			}
 601		}
 602	}
 603
 604	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 605		efi_memattr_init();
 606
 607	efi_tpm_eventlog_init();
 608
 609	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 610		unsigned long prsv = mem_reserve;
 611
 612		while (prsv) {
 613			struct linux_efi_memreserve *rsv;
 614			u8 *p;
 615
 616			/*
 617			 * Just map a full page: that is what we will get
 618			 * anyway, and it permits us to map the entire entry
 619			 * before knowing its size.
 620			 */
 621			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 622					   PAGE_SIZE);
 623			if (p == NULL) {
 624				pr_err("Could not map UEFI memreserve entry!\n");
 625				return -ENOMEM;
 626			}
 627
 628			rsv = (void *)(p + prsv % PAGE_SIZE);
 629
 630			/* reserve the entry itself */
 631			memblock_reserve(prsv,
 632					 struct_size(rsv, entry, rsv->size));
 633
 634			for (i = 0; i < atomic_read(&rsv->count); i++) {
 635				memblock_reserve(rsv->entry[i].base,
 636						 rsv->entry[i].size);
 637			}
 638
 639			prsv = rsv->next;
 640			early_memunmap(p, PAGE_SIZE);
 641		}
 642	}
 643
 644	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 645		efi_rt_properties_table_t *tbl;
 646
 647		tbl = early_memremap(rt_prop, sizeof(*tbl));
 648		if (tbl) {
 649			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 650			early_memunmap(tbl, sizeof(*tbl));
 651		}
 652	}
 653
 
 
 
 
 
 
 
 
 
 
 
 
 654	return 0;
 655}
 656
 657int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 658				   int min_major_version)
 659{
 660	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 661		pr_err("System table signature incorrect!\n");
 662		return -EINVAL;
 663	}
 664
 665	if ((systab_hdr->revision >> 16) < min_major_version)
 666		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 667		       systab_hdr->revision >> 16,
 668		       systab_hdr->revision & 0xffff,
 669		       min_major_version);
 670
 671	return 0;
 672}
 673
 674#ifndef CONFIG_IA64
 675static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 676						size_t size)
 677{
 678	const efi_char16_t *ret;
 679
 680	ret = early_memremap_ro(fw_vendor, size);
 681	if (!ret)
 682		pr_err("Could not map the firmware vendor!\n");
 683	return ret;
 684}
 685
 686static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 687{
 688	early_memunmap((void *)fw_vendor, size);
 689}
 690#else
 691#define map_fw_vendor(p, s)	__va(p)
 692#define unmap_fw_vendor(v, s)
 693#endif
 694
 695void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 696				     unsigned long fw_vendor)
 697{
 698	char vendor[100] = "unknown";
 699	const efi_char16_t *c16;
 700	size_t i;
 701
 702	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 703	if (c16) {
 704		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 705			vendor[i] = c16[i];
 706		vendor[i] = '\0';
 707
 708		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 709	}
 710
 711	pr_info("EFI v%u.%.02u by %s\n",
 712		systab_hdr->revision >> 16,
 713		systab_hdr->revision & 0xffff,
 714		vendor);
 
 
 
 
 
 
 
 715}
 716
 717static __initdata char memory_type_name[][20] = {
 718	"Reserved",
 719	"Loader Code",
 720	"Loader Data",
 721	"Boot Code",
 722	"Boot Data",
 723	"Runtime Code",
 724	"Runtime Data",
 725	"Conventional Memory",
 726	"Unusable Memory",
 727	"ACPI Reclaim Memory",
 728	"ACPI Memory NVS",
 729	"Memory Mapped I/O",
 730	"MMIO Port Space",
 731	"PAL Code",
 732	"Persistent Memory",
 733};
 734
 735char * __init efi_md_typeattr_format(char *buf, size_t size,
 736				     const efi_memory_desc_t *md)
 737{
 738	char *pos;
 739	int type_len;
 740	u64 attr;
 741
 742	pos = buf;
 743	if (md->type >= ARRAY_SIZE(memory_type_name))
 744		type_len = snprintf(pos, size, "[type=%u", md->type);
 745	else
 746		type_len = snprintf(pos, size, "[%-*s",
 747				    (int)(sizeof(memory_type_name[0]) - 1),
 748				    memory_type_name[md->type]);
 749	if (type_len >= size)
 750		return buf;
 751
 752	pos += type_len;
 753	size -= type_len;
 754
 755	attr = md->attribute;
 756	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 757		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 758		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 759		     EFI_MEMORY_NV | EFI_MEMORY_SP |
 760		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 761		snprintf(pos, size, "|attr=0x%016llx]",
 762			 (unsigned long long)attr);
 763	else
 764		snprintf(pos, size,
 765			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 766			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
 767			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
 768			 attr & EFI_MEMORY_SP      ? "SP"  : "",
 769			 attr & EFI_MEMORY_NV      ? "NV"  : "",
 770			 attr & EFI_MEMORY_XP      ? "XP"  : "",
 771			 attr & EFI_MEMORY_RP      ? "RP"  : "",
 772			 attr & EFI_MEMORY_WP      ? "WP"  : "",
 773			 attr & EFI_MEMORY_RO      ? "RO"  : "",
 774			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
 775			 attr & EFI_MEMORY_WB      ? "WB"  : "",
 776			 attr & EFI_MEMORY_WT      ? "WT"  : "",
 777			 attr & EFI_MEMORY_WC      ? "WC"  : "",
 778			 attr & EFI_MEMORY_UC      ? "UC"  : "");
 
 779	return buf;
 780}
 781
 782/*
 783 * IA64 has a funky EFI memory map that doesn't work the same way as
 784 * other architectures.
 785 */
 786#ifndef CONFIG_IA64
 787/*
 788 * efi_mem_attributes - lookup memmap attributes for physical address
 789 * @phys_addr: the physical address to lookup
 790 *
 791 * Search in the EFI memory map for the region covering
 792 * @phys_addr. Returns the EFI memory attributes if the region
 793 * was found in the memory map, 0 otherwise.
 794 */
 795u64 efi_mem_attributes(unsigned long phys_addr)
 796{
 797	efi_memory_desc_t *md;
 798
 799	if (!efi_enabled(EFI_MEMMAP))
 800		return 0;
 801
 802	for_each_efi_memory_desc(md) {
 803		if ((md->phys_addr <= phys_addr) &&
 804		    (phys_addr < (md->phys_addr +
 805		    (md->num_pages << EFI_PAGE_SHIFT))))
 806			return md->attribute;
 807	}
 808	return 0;
 809}
 810
 811/*
 812 * efi_mem_type - lookup memmap type for physical address
 813 * @phys_addr: the physical address to lookup
 814 *
 815 * Search in the EFI memory map for the region covering @phys_addr.
 816 * Returns the EFI memory type if the region was found in the memory
 817 * map, -EINVAL otherwise.
 818 */
 819int efi_mem_type(unsigned long phys_addr)
 820{
 821	const efi_memory_desc_t *md;
 822
 823	if (!efi_enabled(EFI_MEMMAP))
 824		return -ENOTSUPP;
 825
 826	for_each_efi_memory_desc(md) {
 827		if ((md->phys_addr <= phys_addr) &&
 828		    (phys_addr < (md->phys_addr +
 829				  (md->num_pages << EFI_PAGE_SHIFT))))
 830			return md->type;
 831	}
 832	return -EINVAL;
 833}
 834#endif
 835
 836int efi_status_to_err(efi_status_t status)
 837{
 838	int err;
 839
 840	switch (status) {
 841	case EFI_SUCCESS:
 842		err = 0;
 843		break;
 844	case EFI_INVALID_PARAMETER:
 845		err = -EINVAL;
 846		break;
 847	case EFI_OUT_OF_RESOURCES:
 848		err = -ENOSPC;
 849		break;
 850	case EFI_DEVICE_ERROR:
 851		err = -EIO;
 852		break;
 853	case EFI_WRITE_PROTECTED:
 854		err = -EROFS;
 855		break;
 856	case EFI_SECURITY_VIOLATION:
 857		err = -EACCES;
 858		break;
 859	case EFI_NOT_FOUND:
 860		err = -ENOENT;
 861		break;
 862	case EFI_ABORTED:
 863		err = -EINTR;
 864		break;
 865	default:
 866		err = -EINVAL;
 867	}
 868
 869	return err;
 870}
 
 871
 872static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 873static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 874
 875static int __init efi_memreserve_map_root(void)
 876{
 877	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 878		return -ENODEV;
 879
 880	efi_memreserve_root = memremap(mem_reserve,
 881				       sizeof(*efi_memreserve_root),
 882				       MEMREMAP_WB);
 883	if (WARN_ON_ONCE(!efi_memreserve_root))
 884		return -ENOMEM;
 885	return 0;
 886}
 887
 888static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 889{
 890	struct resource *res, *parent;
 
 891
 892	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 893	if (!res)
 894		return -ENOMEM;
 895
 896	res->name	= "reserved";
 897	res->flags	= IORESOURCE_MEM;
 898	res->start	= addr;
 899	res->end	= addr + size - 1;
 900
 901	/* we expect a conflict with a 'System RAM' region */
 902	parent = request_resource_conflict(&iomem_resource, res);
 903	return parent ? request_resource(parent, res) : 0;
 
 
 
 
 
 
 
 
 
 
 904}
 905
 906int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 907{
 908	struct linux_efi_memreserve *rsv;
 909	unsigned long prsv;
 910	int rc, index;
 911
 912	if (efi_memreserve_root == (void *)ULONG_MAX)
 913		return -ENODEV;
 914
 915	if (!efi_memreserve_root) {
 916		rc = efi_memreserve_map_root();
 917		if (rc)
 918			return rc;
 919	}
 920
 921	/* first try to find a slot in an existing linked list entry */
 922	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
 923		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
 
 
 924		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
 925		if (index < rsv->size) {
 926			rsv->entry[index].base = addr;
 927			rsv->entry[index].size = size;
 928
 929			memunmap(rsv);
 930			return efi_mem_reserve_iomem(addr, size);
 931		}
 
 932		memunmap(rsv);
 933	}
 934
 935	/* no slot found - allocate a new linked list entry */
 936	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
 937	if (!rsv)
 938		return -ENOMEM;
 939
 940	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
 941	if (rc) {
 942		free_page((unsigned long)rsv);
 943		return rc;
 944	}
 945
 946	/*
 947	 * The memremap() call above assumes that a linux_efi_memreserve entry
 948	 * never crosses a page boundary, so let's ensure that this remains true
 949	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
 950	 * using SZ_4K explicitly in the size calculation below.
 951	 */
 952	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
 953	atomic_set(&rsv->count, 1);
 954	rsv->entry[0].base = addr;
 955	rsv->entry[0].size = size;
 956
 957	spin_lock(&efi_mem_reserve_persistent_lock);
 958	rsv->next = efi_memreserve_root->next;
 959	efi_memreserve_root->next = __pa(rsv);
 960	spin_unlock(&efi_mem_reserve_persistent_lock);
 961
 962	return efi_mem_reserve_iomem(addr, size);
 963}
 964
 965static int __init efi_memreserve_root_init(void)
 966{
 967	if (efi_memreserve_root)
 968		return 0;
 969	if (efi_memreserve_map_root())
 970		efi_memreserve_root = (void *)ULONG_MAX;
 971	return 0;
 972}
 973early_initcall(efi_memreserve_root_init);
 974
 975#ifdef CONFIG_KEXEC
 976static int update_efi_random_seed(struct notifier_block *nb,
 977				  unsigned long code, void *unused)
 978{
 979	struct linux_efi_random_seed *seed;
 980	u32 size = 0;
 981
 982	if (!kexec_in_progress)
 983		return NOTIFY_DONE;
 984
 985	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
 986	if (seed != NULL) {
 987		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
 988		memunmap(seed);
 989	} else {
 990		pr_err("Could not map UEFI random seed!\n");
 991	}
 992	if (size > 0) {
 993		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
 994				MEMREMAP_WB);
 995		if (seed != NULL) {
 996			seed->size = size;
 997			get_random_bytes(seed->bits, seed->size);
 998			memunmap(seed);
 999		} else {
1000			pr_err("Could not map UEFI random seed!\n");
1001		}
1002	}
1003	return NOTIFY_DONE;
1004}
1005
1006static struct notifier_block efi_random_seed_nb = {
1007	.notifier_call = update_efi_random_seed,
1008};
1009
1010static int __init register_update_efi_random_seed(void)
1011{
1012	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1013		return 0;
1014	return register_reboot_notifier(&efi_random_seed_nb);
1015}
1016late_initcall(register_update_efi_random_seed);
1017#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35
  36#include <asm/early_ioremap.h>
  37
  38struct efi __read_mostly efi = {
  39	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  40	.acpi			= EFI_INVALID_TABLE_ADDR,
  41	.acpi20			= EFI_INVALID_TABLE_ADDR,
  42	.smbios			= EFI_INVALID_TABLE_ADDR,
  43	.smbios3		= EFI_INVALID_TABLE_ADDR,
  44	.esrt			= EFI_INVALID_TABLE_ADDR,
  45	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  46	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  47#ifdef CONFIG_LOAD_UEFI_KEYS
  48	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  49#endif
  50#ifdef CONFIG_EFI_COCO_SECRET
  51	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  52#endif
  53};
  54EXPORT_SYMBOL(efi);
  55
  56unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  57static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  58static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  59static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  60
  61extern unsigned long screen_info_table;
  62
  63struct mm_struct efi_mm = {
  64	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  65	.mm_users		= ATOMIC_INIT(2),
  66	.mm_count		= ATOMIC_INIT(1),
  67	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  68	MMAP_LOCK_INITIALIZER(efi_mm)
  69	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  70	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  71	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  72};
  73
  74struct workqueue_struct *efi_rts_wq;
  75
  76static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  77static int __init setup_noefi(char *arg)
  78{
  79	disable_runtime = true;
  80	return 0;
  81}
  82early_param("noefi", setup_noefi);
  83
  84bool efi_runtime_disabled(void)
  85{
  86	return disable_runtime;
  87}
  88
  89bool __pure __efi_soft_reserve_enabled(void)
  90{
  91	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  92}
  93
  94static int __init parse_efi_cmdline(char *str)
  95{
  96	if (!str) {
  97		pr_warn("need at least one option\n");
  98		return -EINVAL;
  99	}
 100
 101	if (parse_option_str(str, "debug"))
 102		set_bit(EFI_DBG, &efi.flags);
 103
 104	if (parse_option_str(str, "noruntime"))
 105		disable_runtime = true;
 106
 107	if (parse_option_str(str, "runtime"))
 108		disable_runtime = false;
 109
 110	if (parse_option_str(str, "nosoftreserve"))
 111		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 112
 113	return 0;
 114}
 115early_param("efi", parse_efi_cmdline);
 116
 117struct kobject *efi_kobj;
 118
 119/*
 120 * Let's not leave out systab information that snuck into
 121 * the efivars driver
 122 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 123 * one value per file rule!
 124 */
 125static ssize_t systab_show(struct kobject *kobj,
 126			   struct kobj_attribute *attr, char *buf)
 127{
 128	char *str = buf;
 129
 130	if (!kobj || !buf)
 131		return -EINVAL;
 132
 133	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 134		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 135	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 136		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 137	/*
 138	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 139	 * SMBIOS3 entry point shall be preferred, so we list it first to
 140	 * let applications stop parsing after the first match.
 141	 */
 142	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 143		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 144	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 145		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 146
 147	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 148		str = efi_systab_show_arch(str);
 149
 150	return str - buf;
 151}
 152
 153static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 154
 155static ssize_t fw_platform_size_show(struct kobject *kobj,
 156				     struct kobj_attribute *attr, char *buf)
 157{
 158	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 159}
 160
 161extern __weak struct kobj_attribute efi_attr_fw_vendor;
 162extern __weak struct kobj_attribute efi_attr_runtime;
 163extern __weak struct kobj_attribute efi_attr_config_table;
 164static struct kobj_attribute efi_attr_fw_platform_size =
 165	__ATTR_RO(fw_platform_size);
 166
 167static struct attribute *efi_subsys_attrs[] = {
 168	&efi_attr_systab.attr,
 169	&efi_attr_fw_platform_size.attr,
 170	&efi_attr_fw_vendor.attr,
 171	&efi_attr_runtime.attr,
 172	&efi_attr_config_table.attr,
 173	NULL,
 174};
 175
 176umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 177				   int n)
 178{
 179	return attr->mode;
 180}
 181
 182static const struct attribute_group efi_subsys_attr_group = {
 183	.attrs = efi_subsys_attrs,
 184	.is_visible = efi_attr_is_visible,
 185};
 186
 187static struct efivars generic_efivars;
 188static struct efivar_operations generic_ops;
 189
 190static int generic_ops_register(void)
 191{
 192	generic_ops.get_variable = efi.get_variable;
 193	generic_ops.get_next_variable = efi.get_next_variable;
 194	generic_ops.query_variable_store = efi_query_variable_store;
 195
 196	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 197		generic_ops.set_variable = efi.set_variable;
 198		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 199	}
 200	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 201}
 202
 203static void generic_ops_unregister(void)
 204{
 205	efivars_unregister(&generic_efivars);
 206}
 207
 208#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 209#define EFIVAR_SSDT_NAME_MAX	16UL
 210static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 211static int __init efivar_ssdt_setup(char *str)
 212{
 213	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 214
 215	if (ret)
 216		return ret;
 217
 218	if (strlen(str) < sizeof(efivar_ssdt))
 219		memcpy(efivar_ssdt, str, strlen(str));
 220	else
 221		pr_warn("efivar_ssdt: name too long: %s\n", str);
 222	return 1;
 223}
 224__setup("efivar_ssdt=", efivar_ssdt_setup);
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226static __init int efivar_ssdt_load(void)
 227{
 228	unsigned long name_size = 256;
 229	efi_char16_t *name = NULL;
 230	efi_status_t status;
 231	efi_guid_t guid;
 
 232
 233	if (!efivar_ssdt[0])
 234		return 0;
 235
 236	name = kzalloc(name_size, GFP_KERNEL);
 237	if (!name)
 238		return -ENOMEM;
 
 
 239
 240	for (;;) {
 241		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 242		unsigned long data_size = 0;
 243		void *data;
 244		int limit;
 245
 246		status = efi.get_next_variable(&name_size, name, &guid);
 247		if (status == EFI_NOT_FOUND) {
 248			break;
 249		} else if (status == EFI_BUFFER_TOO_SMALL) {
 250			name = krealloc(name, name_size, GFP_KERNEL);
 251			if (!name)
 252				return -ENOMEM;
 253			continue;
 254		}
 255
 256		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 257		ucs2_as_utf8(utf8_name, name, limit - 1);
 258		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 259			continue;
 
 260
 261		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 
 
 
 
 262
 263		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 264		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 265			return -EIO;
 266
 267		data = kmalloc(data_size, GFP_KERNEL);
 268		if (!data)
 269			return -ENOMEM;
 270
 271		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 272		if (status == EFI_SUCCESS) {
 273			acpi_status ret = acpi_load_table(data, NULL);
 274			if (ret)
 275				pr_err("failed to load table: %u\n", ret);
 276			else
 277				continue;
 278		} else {
 279			pr_err("failed to get var data: 0x%lx\n", status);
 280		}
 
 
 
 
 281		kfree(data);
 
 
 
 282	}
 283	return 0;
 
 284}
 285#else
 286static inline int efivar_ssdt_load(void) { return 0; }
 287#endif
 288
 289#ifdef CONFIG_DEBUG_FS
 290
 291#define EFI_DEBUGFS_MAX_BLOBS 32
 292
 293static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 294
 295static void __init efi_debugfs_init(void)
 296{
 297	struct dentry *efi_debugfs;
 298	efi_memory_desc_t *md;
 299	char name[32];
 300	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 301	int i = 0;
 302
 303	efi_debugfs = debugfs_create_dir("efi", NULL);
 304	if (IS_ERR_OR_NULL(efi_debugfs))
 305		return;
 306
 307	for_each_efi_memory_desc(md) {
 308		switch (md->type) {
 309		case EFI_BOOT_SERVICES_CODE:
 310			snprintf(name, sizeof(name), "boot_services_code%d",
 311				 type_count[md->type]++);
 312			break;
 313		case EFI_BOOT_SERVICES_DATA:
 314			snprintf(name, sizeof(name), "boot_services_data%d",
 315				 type_count[md->type]++);
 316			break;
 317		default:
 318			continue;
 319		}
 320
 321		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 322			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 323				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 324			break;
 325		}
 326
 327		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 328		debugfs_blob[i].data = memremap(md->phys_addr,
 329						debugfs_blob[i].size,
 330						MEMREMAP_WB);
 331		if (!debugfs_blob[i].data)
 332			continue;
 333
 334		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 335		i++;
 336	}
 337}
 338#else
 339static inline void efi_debugfs_init(void) {}
 340#endif
 341
 342static void refresh_nv_rng_seed(struct work_struct *work)
 343{
 344	u8 seed[EFI_RANDOM_SEED_SIZE];
 345
 346	get_random_bytes(seed, sizeof(seed));
 347	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
 348			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
 349			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
 350	memzero_explicit(seed, sizeof(seed));
 351}
 352static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
 353{
 354	static DECLARE_WORK(work, refresh_nv_rng_seed);
 355	schedule_work(&work);
 356	return NOTIFY_DONE;
 357}
 358static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
 359
 360/*
 361 * We register the efi subsystem with the firmware subsystem and the
 362 * efivars subsystem with the efi subsystem, if the system was booted with
 363 * EFI.
 364 */
 365static int __init efisubsys_init(void)
 366{
 367	int error;
 368
 369	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 370		efi.runtime_supported_mask = 0;
 371
 372	if (!efi_enabled(EFI_BOOT))
 373		return 0;
 374
 375	if (efi.runtime_supported_mask) {
 376		/*
 377		 * Since we process only one efi_runtime_service() at a time, an
 378		 * ordered workqueue (which creates only one execution context)
 379		 * should suffice for all our needs.
 380		 */
 381		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 382		if (!efi_rts_wq) {
 383			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 384			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 385			efi.runtime_supported_mask = 0;
 386			return 0;
 387		}
 388	}
 389
 390	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 391		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 392
 393	/* We register the efi directory at /sys/firmware/efi */
 394	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 395	if (!efi_kobj) {
 396		pr_err("efi: Firmware registration failed.\n");
 397		error = -ENOMEM;
 398		goto err_destroy_wq;
 399	}
 400
 401	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 402				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 
 403		error = generic_ops_register();
 404		if (error)
 405			goto err_put;
 406		efivar_ssdt_load();
 407		platform_device_register_simple("efivars", 0, NULL, 0);
 408	}
 409
 410	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 411	if (error) {
 412		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 413		       error);
 414		goto err_unregister;
 415	}
 416
 
 
 
 
 417	/* and the standard mountpoint for efivarfs */
 418	error = sysfs_create_mount_point(efi_kobj, "efivars");
 419	if (error) {
 420		pr_err("efivars: Subsystem registration failed.\n");
 421		goto err_remove_group;
 422	}
 423
 424	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 425		efi_debugfs_init();
 426
 427#ifdef CONFIG_EFI_COCO_SECRET
 428	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 429		platform_device_register_simple("efi_secret", 0, NULL, 0);
 430#endif
 431
 432	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE))
 433		execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
 434
 435	return 0;
 436
 437err_remove_group:
 438	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 439err_unregister:
 440	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 441				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 442		generic_ops_unregister();
 443err_put:
 444	kobject_put(efi_kobj);
 445	efi_kobj = NULL;
 446err_destroy_wq:
 447	if (efi_rts_wq)
 448		destroy_workqueue(efi_rts_wq);
 449
 450	return error;
 451}
 452
 453subsys_initcall(efisubsys_init);
 454
 455void __init efi_find_mirror(void)
 456{
 457	efi_memory_desc_t *md;
 458	u64 mirror_size = 0, total_size = 0;
 459
 460	if (!efi_enabled(EFI_MEMMAP))
 461		return;
 462
 463	for_each_efi_memory_desc(md) {
 464		unsigned long long start = md->phys_addr;
 465		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 466
 467		total_size += size;
 468		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 469			memblock_mark_mirror(start, size);
 470			mirror_size += size;
 471		}
 472	}
 473	if (mirror_size)
 474		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 475			mirror_size>>20, total_size>>20);
 476}
 477
 478/*
 479 * Find the efi memory descriptor for a given physical address.  Given a
 480 * physical address, determine if it exists within an EFI Memory Map entry,
 481 * and if so, populate the supplied memory descriptor with the appropriate
 482 * data.
 483 */
 484int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 485{
 486	efi_memory_desc_t *md;
 487
 488	if (!efi_enabled(EFI_MEMMAP)) {
 489		pr_err_once("EFI_MEMMAP is not enabled.\n");
 490		return -EINVAL;
 491	}
 492
 493	if (!out_md) {
 494		pr_err_once("out_md is null.\n");
 495		return -EINVAL;
 496        }
 497
 498	for_each_efi_memory_desc(md) {
 499		u64 size;
 500		u64 end;
 501
 502		size = md->num_pages << EFI_PAGE_SHIFT;
 503		end = md->phys_addr + size;
 504		if (phys_addr >= md->phys_addr && phys_addr < end) {
 505			memcpy(out_md, md, sizeof(*out_md));
 506			return 0;
 507		}
 508	}
 509	return -ENOENT;
 510}
 511
 512/*
 513 * Calculate the highest address of an efi memory descriptor.
 514 */
 515u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 516{
 517	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 518	u64 end = md->phys_addr + size;
 519	return end;
 520}
 521
 522void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 523
 524/**
 525 * efi_mem_reserve - Reserve an EFI memory region
 526 * @addr: Physical address to reserve
 527 * @size: Size of reservation
 528 *
 529 * Mark a region as reserved from general kernel allocation and
 530 * prevent it being released by efi_free_boot_services().
 531 *
 532 * This function should be called drivers once they've parsed EFI
 533 * configuration tables to figure out where their data lives, e.g.
 534 * efi_esrt_init().
 535 */
 536void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 537{
 538	if (!memblock_is_region_reserved(addr, size))
 539		memblock_reserve(addr, size);
 540
 541	/*
 542	 * Some architectures (x86) reserve all boot services ranges
 543	 * until efi_free_boot_services() because of buggy firmware
 544	 * implementations. This means the above memblock_reserve() is
 545	 * superfluous on x86 and instead what it needs to do is
 546	 * ensure the @start, @size is not freed.
 547	 */
 548	efi_arch_mem_reserve(addr, size);
 549}
 550
 551static const efi_config_table_type_t common_tables[] __initconst = {
 552	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 553	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 554	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 555	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 556	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 557	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 558	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 559	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 560	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 561	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 562	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 563	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 564#ifdef CONFIG_EFI_RCI2_TABLE
 565	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 566#endif
 567#ifdef CONFIG_LOAD_UEFI_KEYS
 568	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 569#endif
 570#ifdef CONFIG_EFI_COCO_SECRET
 571	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 572#endif
 573#ifdef CONFIG_EFI_GENERIC_STUB
 574	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 575#endif
 576	{},
 577};
 578
 579static __init int match_config_table(const efi_guid_t *guid,
 580				     unsigned long table,
 581				     const efi_config_table_type_t *table_types)
 582{
 583	int i;
 584
 585	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 586		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 587			*(table_types[i].ptr) = table;
 588			if (table_types[i].name[0])
 589				pr_cont("%s=0x%lx ",
 590					table_types[i].name, table);
 591			return 1;
 592		}
 593	}
 594
 595	return 0;
 596}
 597
 598int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 599				   int count,
 600				   const efi_config_table_type_t *arch_tables)
 601{
 602	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 603	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 604	const efi_guid_t *guid;
 605	unsigned long table;
 606	int i;
 607
 608	pr_info("");
 609	for (i = 0; i < count; i++) {
 610		if (!IS_ENABLED(CONFIG_X86)) {
 611			guid = &config_tables[i].guid;
 612			table = (unsigned long)config_tables[i].table;
 613		} else if (efi_enabled(EFI_64BIT)) {
 614			guid = &tbl64[i].guid;
 615			table = tbl64[i].table;
 616
 617			if (IS_ENABLED(CONFIG_X86_32) &&
 618			    tbl64[i].table > U32_MAX) {
 619				pr_cont("\n");
 620				pr_err("Table located above 4GB, disabling EFI.\n");
 621				return -EINVAL;
 622			}
 623		} else {
 624			guid = &tbl32[i].guid;
 625			table = tbl32[i].table;
 626		}
 627
 628		if (!match_config_table(guid, table, common_tables) && arch_tables)
 629			match_config_table(guid, table, arch_tables);
 630	}
 631	pr_cont("\n");
 632	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 633
 634	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 635		struct linux_efi_random_seed *seed;
 636		u32 size = 0;
 637
 638		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 639		if (seed != NULL) {
 640			size = min_t(u32, seed->size, SZ_1K); // sanity check
 641			early_memunmap(seed, sizeof(*seed));
 642		} else {
 643			pr_err("Could not map UEFI random seed!\n");
 644		}
 645		if (size > 0) {
 646			seed = early_memremap(efi_rng_seed,
 647					      sizeof(*seed) + size);
 648			if (seed != NULL) {
 
 649				add_bootloader_randomness(seed->bits, size);
 650				memzero_explicit(seed->bits, size);
 651				early_memunmap(seed, sizeof(*seed) + size);
 652			} else {
 653				pr_err("Could not map UEFI random seed!\n");
 654			}
 655		}
 656	}
 657
 658	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 659		efi_memattr_init();
 660
 661	efi_tpm_eventlog_init();
 662
 663	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 664		unsigned long prsv = mem_reserve;
 665
 666		while (prsv) {
 667			struct linux_efi_memreserve *rsv;
 668			u8 *p;
 669
 670			/*
 671			 * Just map a full page: that is what we will get
 672			 * anyway, and it permits us to map the entire entry
 673			 * before knowing its size.
 674			 */
 675			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 676					   PAGE_SIZE);
 677			if (p == NULL) {
 678				pr_err("Could not map UEFI memreserve entry!\n");
 679				return -ENOMEM;
 680			}
 681
 682			rsv = (void *)(p + prsv % PAGE_SIZE);
 683
 684			/* reserve the entry itself */
 685			memblock_reserve(prsv,
 686					 struct_size(rsv, entry, rsv->size));
 687
 688			for (i = 0; i < atomic_read(&rsv->count); i++) {
 689				memblock_reserve(rsv->entry[i].base,
 690						 rsv->entry[i].size);
 691			}
 692
 693			prsv = rsv->next;
 694			early_memunmap(p, PAGE_SIZE);
 695		}
 696	}
 697
 698	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 699		efi_rt_properties_table_t *tbl;
 700
 701		tbl = early_memremap(rt_prop, sizeof(*tbl));
 702		if (tbl) {
 703			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 704			early_memunmap(tbl, sizeof(*tbl));
 705		}
 706	}
 707
 708	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 709	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 710		struct linux_efi_initrd *tbl;
 711
 712		tbl = early_memremap(initrd, sizeof(*tbl));
 713		if (tbl) {
 714			phys_initrd_start = tbl->base;
 715			phys_initrd_size = tbl->size;
 716			early_memunmap(tbl, sizeof(*tbl));
 717		}
 718	}
 719
 720	return 0;
 721}
 722
 723int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 724				   int min_major_version)
 725{
 726	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 727		pr_err("System table signature incorrect!\n");
 728		return -EINVAL;
 729	}
 730
 731	if ((systab_hdr->revision >> 16) < min_major_version)
 732		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 733		       systab_hdr->revision >> 16,
 734		       systab_hdr->revision & 0xffff,
 735		       min_major_version);
 736
 737	return 0;
 738}
 739
 740#ifndef CONFIG_IA64
 741static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 742						size_t size)
 743{
 744	const efi_char16_t *ret;
 745
 746	ret = early_memremap_ro(fw_vendor, size);
 747	if (!ret)
 748		pr_err("Could not map the firmware vendor!\n");
 749	return ret;
 750}
 751
 752static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 753{
 754	early_memunmap((void *)fw_vendor, size);
 755}
 756#else
 757#define map_fw_vendor(p, s)	__va(p)
 758#define unmap_fw_vendor(v, s)
 759#endif
 760
 761void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 762				     unsigned long fw_vendor)
 763{
 764	char vendor[100] = "unknown";
 765	const efi_char16_t *c16;
 766	size_t i;
 767
 768	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 769	if (c16) {
 770		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 771			vendor[i] = c16[i];
 772		vendor[i] = '\0';
 773
 774		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 775	}
 776
 777	pr_info("EFI v%u.%.02u by %s\n",
 778		systab_hdr->revision >> 16,
 779		systab_hdr->revision & 0xffff,
 780		vendor);
 781
 782	if (IS_ENABLED(CONFIG_X86_64) &&
 783	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 784	    !strcmp(vendor, "Apple")) {
 785		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 786		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 787	}
 788}
 789
 790static __initdata char memory_type_name[][13] = {
 791	"Reserved",
 792	"Loader Code",
 793	"Loader Data",
 794	"Boot Code",
 795	"Boot Data",
 796	"Runtime Code",
 797	"Runtime Data",
 798	"Conventional",
 799	"Unusable",
 800	"ACPI Reclaim",
 801	"ACPI Mem NVS",
 802	"MMIO",
 803	"MMIO Port",
 804	"PAL Code",
 805	"Persistent",
 806};
 807
 808char * __init efi_md_typeattr_format(char *buf, size_t size,
 809				     const efi_memory_desc_t *md)
 810{
 811	char *pos;
 812	int type_len;
 813	u64 attr;
 814
 815	pos = buf;
 816	if (md->type >= ARRAY_SIZE(memory_type_name))
 817		type_len = snprintf(pos, size, "[type=%u", md->type);
 818	else
 819		type_len = snprintf(pos, size, "[%-*s",
 820				    (int)(sizeof(memory_type_name[0]) - 1),
 821				    memory_type_name[md->type]);
 822	if (type_len >= size)
 823		return buf;
 824
 825	pos += type_len;
 826	size -= type_len;
 827
 828	attr = md->attribute;
 829	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 830		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 831		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 832		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 833		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 834		snprintf(pos, size, "|attr=0x%016llx]",
 835			 (unsigned long long)attr);
 836	else
 837		snprintf(pos, size,
 838			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 839			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 840			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 841			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 842			 attr & EFI_MEMORY_SP			? "SP"  : "",
 843			 attr & EFI_MEMORY_NV			? "NV"  : "",
 844			 attr & EFI_MEMORY_XP			? "XP"  : "",
 845			 attr & EFI_MEMORY_RP			? "RP"  : "",
 846			 attr & EFI_MEMORY_WP			? "WP"  : "",
 847			 attr & EFI_MEMORY_RO			? "RO"  : "",
 848			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 849			 attr & EFI_MEMORY_WB			? "WB"  : "",
 850			 attr & EFI_MEMORY_WT			? "WT"  : "",
 851			 attr & EFI_MEMORY_WC			? "WC"  : "",
 852			 attr & EFI_MEMORY_UC			? "UC"  : "");
 853	return buf;
 854}
 855
 856/*
 857 * IA64 has a funky EFI memory map that doesn't work the same way as
 858 * other architectures.
 859 */
 860#ifndef CONFIG_IA64
 861/*
 862 * efi_mem_attributes - lookup memmap attributes for physical address
 863 * @phys_addr: the physical address to lookup
 864 *
 865 * Search in the EFI memory map for the region covering
 866 * @phys_addr. Returns the EFI memory attributes if the region
 867 * was found in the memory map, 0 otherwise.
 868 */
 869u64 efi_mem_attributes(unsigned long phys_addr)
 870{
 871	efi_memory_desc_t *md;
 872
 873	if (!efi_enabled(EFI_MEMMAP))
 874		return 0;
 875
 876	for_each_efi_memory_desc(md) {
 877		if ((md->phys_addr <= phys_addr) &&
 878		    (phys_addr < (md->phys_addr +
 879		    (md->num_pages << EFI_PAGE_SHIFT))))
 880			return md->attribute;
 881	}
 882	return 0;
 883}
 884
 885/*
 886 * efi_mem_type - lookup memmap type for physical address
 887 * @phys_addr: the physical address to lookup
 888 *
 889 * Search in the EFI memory map for the region covering @phys_addr.
 890 * Returns the EFI memory type if the region was found in the memory
 891 * map, -EINVAL otherwise.
 892 */
 893int efi_mem_type(unsigned long phys_addr)
 894{
 895	const efi_memory_desc_t *md;
 896
 897	if (!efi_enabled(EFI_MEMMAP))
 898		return -ENOTSUPP;
 899
 900	for_each_efi_memory_desc(md) {
 901		if ((md->phys_addr <= phys_addr) &&
 902		    (phys_addr < (md->phys_addr +
 903				  (md->num_pages << EFI_PAGE_SHIFT))))
 904			return md->type;
 905	}
 906	return -EINVAL;
 907}
 908#endif
 909
 910int efi_status_to_err(efi_status_t status)
 911{
 912	int err;
 913
 914	switch (status) {
 915	case EFI_SUCCESS:
 916		err = 0;
 917		break;
 918	case EFI_INVALID_PARAMETER:
 919		err = -EINVAL;
 920		break;
 921	case EFI_OUT_OF_RESOURCES:
 922		err = -ENOSPC;
 923		break;
 924	case EFI_DEVICE_ERROR:
 925		err = -EIO;
 926		break;
 927	case EFI_WRITE_PROTECTED:
 928		err = -EROFS;
 929		break;
 930	case EFI_SECURITY_VIOLATION:
 931		err = -EACCES;
 932		break;
 933	case EFI_NOT_FOUND:
 934		err = -ENOENT;
 935		break;
 936	case EFI_ABORTED:
 937		err = -EINTR;
 938		break;
 939	default:
 940		err = -EINVAL;
 941	}
 942
 943	return err;
 944}
 945EXPORT_SYMBOL_GPL(efi_status_to_err);
 946
 947static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 948static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 949
 950static int __init efi_memreserve_map_root(void)
 951{
 952	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 953		return -ENODEV;
 954
 955	efi_memreserve_root = memremap(mem_reserve,
 956				       sizeof(*efi_memreserve_root),
 957				       MEMREMAP_WB);
 958	if (WARN_ON_ONCE(!efi_memreserve_root))
 959		return -ENOMEM;
 960	return 0;
 961}
 962
 963static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 964{
 965	struct resource *res, *parent;
 966	int ret;
 967
 968	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 969	if (!res)
 970		return -ENOMEM;
 971
 972	res->name	= "reserved";
 973	res->flags	= IORESOURCE_MEM;
 974	res->start	= addr;
 975	res->end	= addr + size - 1;
 976
 977	/* we expect a conflict with a 'System RAM' region */
 978	parent = request_resource_conflict(&iomem_resource, res);
 979	ret = parent ? request_resource(parent, res) : 0;
 980
 981	/*
 982	 * Given that efi_mem_reserve_iomem() can be called at any
 983	 * time, only call memblock_reserve() if the architecture
 984	 * keeps the infrastructure around.
 985	 */
 986	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 987		memblock_reserve(addr, size);
 988
 989	return ret;
 990}
 991
 992int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 993{
 994	struct linux_efi_memreserve *rsv;
 995	unsigned long prsv;
 996	int rc, index;
 997
 998	if (efi_memreserve_root == (void *)ULONG_MAX)
 999		return -ENODEV;
1000
1001	if (!efi_memreserve_root) {
1002		rc = efi_memreserve_map_root();
1003		if (rc)
1004			return rc;
1005	}
1006
1007	/* first try to find a slot in an existing linked list entry */
1008	for (prsv = efi_memreserve_root->next; prsv; ) {
1009		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1010		if (!rsv)
1011			return -ENOMEM;
1012		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1013		if (index < rsv->size) {
1014			rsv->entry[index].base = addr;
1015			rsv->entry[index].size = size;
1016
1017			memunmap(rsv);
1018			return efi_mem_reserve_iomem(addr, size);
1019		}
1020		prsv = rsv->next;
1021		memunmap(rsv);
1022	}
1023
1024	/* no slot found - allocate a new linked list entry */
1025	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1026	if (!rsv)
1027		return -ENOMEM;
1028
1029	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1030	if (rc) {
1031		free_page((unsigned long)rsv);
1032		return rc;
1033	}
1034
1035	/*
1036	 * The memremap() call above assumes that a linux_efi_memreserve entry
1037	 * never crosses a page boundary, so let's ensure that this remains true
1038	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1039	 * using SZ_4K explicitly in the size calculation below.
1040	 */
1041	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1042	atomic_set(&rsv->count, 1);
1043	rsv->entry[0].base = addr;
1044	rsv->entry[0].size = size;
1045
1046	spin_lock(&efi_mem_reserve_persistent_lock);
1047	rsv->next = efi_memreserve_root->next;
1048	efi_memreserve_root->next = __pa(rsv);
1049	spin_unlock(&efi_mem_reserve_persistent_lock);
1050
1051	return efi_mem_reserve_iomem(addr, size);
1052}
1053
1054static int __init efi_memreserve_root_init(void)
1055{
1056	if (efi_memreserve_root)
1057		return 0;
1058	if (efi_memreserve_map_root())
1059		efi_memreserve_root = (void *)ULONG_MAX;
1060	return 0;
1061}
1062early_initcall(efi_memreserve_root_init);
1063
1064#ifdef CONFIG_KEXEC
1065static int update_efi_random_seed(struct notifier_block *nb,
1066				  unsigned long code, void *unused)
1067{
1068	struct linux_efi_random_seed *seed;
1069	u32 size = 0;
1070
1071	if (!kexec_in_progress)
1072		return NOTIFY_DONE;
1073
1074	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1075	if (seed != NULL) {
1076		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1077		memunmap(seed);
1078	} else {
1079		pr_err("Could not map UEFI random seed!\n");
1080	}
1081	if (size > 0) {
1082		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1083				MEMREMAP_WB);
1084		if (seed != NULL) {
1085			seed->size = size;
1086			get_random_bytes(seed->bits, seed->size);
1087			memunmap(seed);
1088		} else {
1089			pr_err("Could not map UEFI random seed!\n");
1090		}
1091	}
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block efi_random_seed_nb = {
1096	.notifier_call = update_efi_random_seed,
1097};
1098
1099static int __init register_update_efi_random_seed(void)
1100{
1101	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1102		return 0;
1103	return register_reboot_notifier(&efi_random_seed_nb);
1104}
1105late_initcall(register_update_efi_random_seed);
1106#endif