Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
 
  24#include <linux/io.h>
  25#include <linux/kexec.h>
  26#include <linux/platform_device.h>
  27#include <linux/random.h>
  28#include <linux/reboot.h>
  29#include <linux/slab.h>
  30#include <linux/acpi.h>
  31#include <linux/ucs2_string.h>
  32#include <linux/memblock.h>
  33#include <linux/security.h>
  34
  35#include <asm/early_ioremap.h>
  36
  37struct efi __read_mostly efi = {
  38	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  39	.acpi			= EFI_INVALID_TABLE_ADDR,
  40	.acpi20			= EFI_INVALID_TABLE_ADDR,
  41	.smbios			= EFI_INVALID_TABLE_ADDR,
  42	.smbios3		= EFI_INVALID_TABLE_ADDR,
 
 
 
 
 
 
 
 
  43	.esrt			= EFI_INVALID_TABLE_ADDR,
  44	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  45	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
 
  46};
  47EXPORT_SYMBOL(efi);
  48
  49unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  50static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  51static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  52
  53struct mm_struct efi_mm = {
  54	.mm_rb			= RB_ROOT,
  55	.mm_users		= ATOMIC_INIT(2),
  56	.mm_count		= ATOMIC_INIT(1),
  57	MMAP_LOCK_INITIALIZER(efi_mm)
  58	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  59	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  60	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  61};
  62
  63struct workqueue_struct *efi_rts_wq;
  64
  65static bool disable_runtime;
  66static int __init setup_noefi(char *arg)
  67{
  68	disable_runtime = true;
  69	return 0;
  70}
  71early_param("noefi", setup_noefi);
  72
  73bool efi_runtime_disabled(void)
  74{
  75	return disable_runtime;
  76}
  77
  78bool __pure __efi_soft_reserve_enabled(void)
  79{
  80	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  81}
  82
  83static int __init parse_efi_cmdline(char *str)
  84{
  85	if (!str) {
  86		pr_warn("need at least one option\n");
  87		return -EINVAL;
  88	}
  89
  90	if (parse_option_str(str, "debug"))
  91		set_bit(EFI_DBG, &efi.flags);
  92
  93	if (parse_option_str(str, "noruntime"))
  94		disable_runtime = true;
  95
  96	if (parse_option_str(str, "nosoftreserve"))
  97		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
  98
  99	return 0;
 100}
 101early_param("efi", parse_efi_cmdline);
 102
 103struct kobject *efi_kobj;
 104
 105/*
 106 * Let's not leave out systab information that snuck into
 107 * the efivars driver
 108 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 109 * one value per file rule!
 110 */
 111static ssize_t systab_show(struct kobject *kobj,
 112			   struct kobj_attribute *attr, char *buf)
 113{
 114	char *str = buf;
 115
 116	if (!kobj || !buf)
 117		return -EINVAL;
 118
 
 
 119	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 120		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 121	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 122		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 123	/*
 124	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 125	 * SMBIOS3 entry point shall be preferred, so we list it first to
 126	 * let applications stop parsing after the first match.
 127	 */
 128	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 129		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 130	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 131		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 132
 133	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 134		str = efi_systab_show_arch(str);
 
 
 
 135
 136	return str - buf;
 137}
 138
 139static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140
 141static ssize_t fw_platform_size_show(struct kobject *kobj,
 142				     struct kobj_attribute *attr, char *buf)
 143{
 144	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 145}
 146
 147extern __weak struct kobj_attribute efi_attr_fw_vendor;
 148extern __weak struct kobj_attribute efi_attr_runtime;
 149extern __weak struct kobj_attribute efi_attr_config_table;
 150static struct kobj_attribute efi_attr_fw_platform_size =
 151	__ATTR_RO(fw_platform_size);
 152
 153static struct attribute *efi_subsys_attrs[] = {
 154	&efi_attr_systab.attr,
 155	&efi_attr_fw_platform_size.attr,
 156	&efi_attr_fw_vendor.attr,
 157	&efi_attr_runtime.attr,
 158	&efi_attr_config_table.attr,
 
 159	NULL,
 160};
 161
 162umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 163				   int n)
 164{
 
 
 
 
 
 
 
 
 
 
 
 
 165	return attr->mode;
 166}
 167
 168static const struct attribute_group efi_subsys_attr_group = {
 169	.attrs = efi_subsys_attrs,
 170	.is_visible = efi_attr_is_visible,
 171};
 172
 173static struct efivars generic_efivars;
 174static struct efivar_operations generic_ops;
 175
 176static int generic_ops_register(void)
 177{
 178	generic_ops.get_variable = efi.get_variable;
 
 
 179	generic_ops.get_next_variable = efi.get_next_variable;
 180	generic_ops.query_variable_store = efi_query_variable_store;
 181
 182	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 183		generic_ops.set_variable = efi.set_variable;
 184		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 185	}
 186	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 187}
 188
 189static void generic_ops_unregister(void)
 190{
 191	efivars_unregister(&generic_efivars);
 192}
 193
 194#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 195#define EFIVAR_SSDT_NAME_MAX	16
 196static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 197static int __init efivar_ssdt_setup(char *str)
 198{
 199	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 200
 201	if (ret)
 202		return ret;
 203
 204	if (strlen(str) < sizeof(efivar_ssdt))
 205		memcpy(efivar_ssdt, str, strlen(str));
 206	else
 207		pr_warn("efivar_ssdt: name too long: %s\n", str);
 208	return 0;
 209}
 210__setup("efivar_ssdt=", efivar_ssdt_setup);
 211
 212static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
 213				   unsigned long name_size, void *data)
 214{
 215	struct efivar_entry *entry;
 216	struct list_head *list = data;
 217	char utf8_name[EFIVAR_SSDT_NAME_MAX];
 218	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
 219
 220	ucs2_as_utf8(utf8_name, name, limit - 1);
 221	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 222		return 0;
 223
 224	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 225	if (!entry)
 226		return 0;
 227
 228	memcpy(entry->var.VariableName, name, name_size);
 229	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 230
 231	efivar_entry_add(entry, list);
 232
 233	return 0;
 234}
 235
 236static __init int efivar_ssdt_load(void)
 237{
 238	LIST_HEAD(entries);
 239	struct efivar_entry *entry, *aux;
 240	unsigned long size;
 241	void *data;
 242	int ret;
 243
 244	if (!efivar_ssdt[0])
 245		return 0;
 246
 247	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
 248
 249	list_for_each_entry_safe(entry, aux, &entries, list) {
 250		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
 251			&entry->var.VendorGuid);
 252
 253		list_del(&entry->list);
 254
 255		ret = efivar_entry_size(entry, &size);
 256		if (ret) {
 257			pr_err("failed to get var size\n");
 258			goto free_entry;
 259		}
 260
 261		data = kmalloc(size, GFP_KERNEL);
 262		if (!data) {
 263			ret = -ENOMEM;
 264			goto free_entry;
 265		}
 266
 267		ret = efivar_entry_get(entry, NULL, &size, data);
 268		if (ret) {
 269			pr_err("failed to get var data\n");
 270			goto free_data;
 271		}
 272
 273		ret = acpi_load_table(data, NULL);
 274		if (ret) {
 275			pr_err("failed to load table: %d\n", ret);
 276			goto free_data;
 277		}
 278
 279		goto free_entry;
 280
 281free_data:
 282		kfree(data);
 283
 284free_entry:
 285		kfree(entry);
 286	}
 287
 288	return ret;
 289}
 290#else
 291static inline int efivar_ssdt_load(void) { return 0; }
 292#endif
 293
 294#ifdef CONFIG_DEBUG_FS
 295
 296#define EFI_DEBUGFS_MAX_BLOBS 32
 297
 298static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 299
 300static void __init efi_debugfs_init(void)
 301{
 302	struct dentry *efi_debugfs;
 303	efi_memory_desc_t *md;
 304	char name[32];
 305	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 306	int i = 0;
 307
 308	efi_debugfs = debugfs_create_dir("efi", NULL);
 309	if (IS_ERR_OR_NULL(efi_debugfs))
 310		return;
 311
 312	for_each_efi_memory_desc(md) {
 313		switch (md->type) {
 314		case EFI_BOOT_SERVICES_CODE:
 315			snprintf(name, sizeof(name), "boot_services_code%d",
 316				 type_count[md->type]++);
 317			break;
 318		case EFI_BOOT_SERVICES_DATA:
 319			snprintf(name, sizeof(name), "boot_services_data%d",
 320				 type_count[md->type]++);
 321			break;
 322		default:
 323			continue;
 324		}
 325
 326		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 327			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 328				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 329			break;
 330		}
 331
 332		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 333		debugfs_blob[i].data = memremap(md->phys_addr,
 334						debugfs_blob[i].size,
 335						MEMREMAP_WB);
 336		if (!debugfs_blob[i].data)
 337			continue;
 338
 339		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 340		i++;
 341	}
 342}
 343#else
 344static inline void efi_debugfs_init(void) {}
 345#endif
 346
 347/*
 348 * We register the efi subsystem with the firmware subsystem and the
 349 * efivars subsystem with the efi subsystem, if the system was booted with
 350 * EFI.
 351 */
 352static int __init efisubsys_init(void)
 353{
 354	int error;
 355
 356	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 357		efi.runtime_supported_mask = 0;
 358
 359	if (!efi_enabled(EFI_BOOT))
 360		return 0;
 361
 362	if (efi.runtime_supported_mask) {
 363		/*
 364		 * Since we process only one efi_runtime_service() at a time, an
 365		 * ordered workqueue (which creates only one execution context)
 366		 * should suffice for all our needs.
 367		 */
 368		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 369		if (!efi_rts_wq) {
 370			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 371			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 372			efi.runtime_supported_mask = 0;
 373			return 0;
 374		}
 375	}
 376
 377	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 378		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 379
 380	/* We register the efi directory at /sys/firmware/efi */
 381	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 382	if (!efi_kobj) {
 383		pr_err("efi: Firmware registration failed.\n");
 384		destroy_workqueue(efi_rts_wq);
 385		return -ENOMEM;
 386	}
 387
 388	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 389				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 
 
 
 390		efivar_ssdt_load();
 391		error = generic_ops_register();
 392		if (error)
 393			goto err_put;
 394		platform_device_register_simple("efivars", 0, NULL, 0);
 395	}
 396
 397	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 398	if (error) {
 399		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 400		       error);
 401		goto err_unregister;
 402	}
 403
 404	error = efi_runtime_map_init(efi_kobj);
 405	if (error)
 406		goto err_remove_group;
 407
 408	/* and the standard mountpoint for efivarfs */
 409	error = sysfs_create_mount_point(efi_kobj, "efivars");
 410	if (error) {
 411		pr_err("efivars: Subsystem registration failed.\n");
 412		goto err_remove_group;
 413	}
 414
 415	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 416		efi_debugfs_init();
 417
 418	return 0;
 419
 420err_remove_group:
 421	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 422err_unregister:
 423	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 424				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 425		generic_ops_unregister();
 426err_put:
 427	kobject_put(efi_kobj);
 428	destroy_workqueue(efi_rts_wq);
 429	return error;
 430}
 431
 432subsys_initcall(efisubsys_init);
 433
 434/*
 435 * Find the efi memory descriptor for a given physical address.  Given a
 436 * physical address, determine if it exists within an EFI Memory Map entry,
 437 * and if so, populate the supplied memory descriptor with the appropriate
 438 * data.
 439 */
 440int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 441{
 442	efi_memory_desc_t *md;
 443
 444	if (!efi_enabled(EFI_MEMMAP)) {
 445		pr_err_once("EFI_MEMMAP is not enabled.\n");
 446		return -EINVAL;
 447	}
 448
 449	if (!out_md) {
 450		pr_err_once("out_md is null.\n");
 451		return -EINVAL;
 452        }
 453
 454	for_each_efi_memory_desc(md) {
 455		u64 size;
 456		u64 end;
 457
 
 
 
 
 
 
 458		size = md->num_pages << EFI_PAGE_SHIFT;
 459		end = md->phys_addr + size;
 460		if (phys_addr >= md->phys_addr && phys_addr < end) {
 461			memcpy(out_md, md, sizeof(*out_md));
 462			return 0;
 463		}
 464	}
 
 465	return -ENOENT;
 466}
 467
 468/*
 469 * Calculate the highest address of an efi memory descriptor.
 470 */
 471u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 472{
 473	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 474	u64 end = md->phys_addr + size;
 475	return end;
 476}
 477
 478void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 479
 480/**
 481 * efi_mem_reserve - Reserve an EFI memory region
 482 * @addr: Physical address to reserve
 483 * @size: Size of reservation
 484 *
 485 * Mark a region as reserved from general kernel allocation and
 486 * prevent it being released by efi_free_boot_services().
 487 *
 488 * This function should be called drivers once they've parsed EFI
 489 * configuration tables to figure out where their data lives, e.g.
 490 * efi_esrt_init().
 491 */
 492void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 493{
 494	if (!memblock_is_region_reserved(addr, size))
 495		memblock_reserve(addr, size);
 496
 497	/*
 498	 * Some architectures (x86) reserve all boot services ranges
 499	 * until efi_free_boot_services() because of buggy firmware
 500	 * implementations. This means the above memblock_reserve() is
 501	 * superfluous on x86 and instead what it needs to do is
 502	 * ensure the @start, @size is not freed.
 503	 */
 504	efi_arch_mem_reserve(addr, size);
 505}
 506
 507static const efi_config_table_type_t common_tables[] __initconst = {
 508	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 509	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 510	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 511	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 512	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 513	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 514	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 515	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 516	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 517	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 518	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 519#ifdef CONFIG_EFI_RCI2_TABLE
 520	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 521#endif
 522	{},
 523};
 524
 525static __init int match_config_table(const efi_guid_t *guid,
 526				     unsigned long table,
 527				     const efi_config_table_type_t *table_types)
 528{
 529	int i;
 530
 531	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 532		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 533			*(table_types[i].ptr) = table;
 534			if (table_types[i].name[0])
 535				pr_cont("%s=0x%lx ",
 536					table_types[i].name, table);
 537			return 1;
 
 
 538		}
 539	}
 540
 541	return 0;
 542}
 543
 544int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 545				   int count,
 546				   const efi_config_table_type_t *arch_tables)
 547{
 548	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 549	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 550	const efi_guid_t *guid;
 551	unsigned long table;
 552	int i;
 553
 
 554	pr_info("");
 555	for (i = 0; i < count; i++) {
 556		if (!IS_ENABLED(CONFIG_X86)) {
 557			guid = &config_tables[i].guid;
 558			table = (unsigned long)config_tables[i].table;
 559		} else if (efi_enabled(EFI_64BIT)) {
 560			guid = &tbl64[i].guid;
 561			table = tbl64[i].table;
 562
 563			if (IS_ENABLED(CONFIG_X86_32) &&
 564			    tbl64[i].table > U32_MAX) {
 
 
 
 
 
 565				pr_cont("\n");
 566				pr_err("Table located above 4GB, disabling EFI.\n");
 567				return -EINVAL;
 568			}
 
 569		} else {
 570			guid = &tbl32[i].guid;
 571			table = tbl32[i].table;
 572		}
 573
 574		if (!match_config_table(guid, table, common_tables) && arch_tables)
 575			match_config_table(guid, table, arch_tables);
 
 
 576	}
 577	pr_cont("\n");
 578	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 579
 580	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 581		struct linux_efi_random_seed *seed;
 582		u32 size = 0;
 583
 584		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 585		if (seed != NULL) {
 586			size = READ_ONCE(seed->size);
 587			early_memunmap(seed, sizeof(*seed));
 588		} else {
 589			pr_err("Could not map UEFI random seed!\n");
 590		}
 591		if (size > 0) {
 592			seed = early_memremap(efi_rng_seed,
 593					      sizeof(*seed) + size);
 594			if (seed != NULL) {
 595				pr_notice("seeding entropy pool\n");
 596				add_bootloader_randomness(seed->bits, size);
 597				early_memunmap(seed, sizeof(*seed) + size);
 598			} else {
 599				pr_err("Could not map UEFI random seed!\n");
 600			}
 601		}
 602	}
 603
 604	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 605		efi_memattr_init();
 606
 607	efi_tpm_eventlog_init();
 608
 609	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 610		unsigned long prsv = mem_reserve;
 
 
 
 611
 612		while (prsv) {
 613			struct linux_efi_memreserve *rsv;
 614			u8 *p;
 615
 616			/*
 617			 * Just map a full page: that is what we will get
 618			 * anyway, and it permits us to map the entire entry
 619			 * before knowing its size.
 620			 */
 621			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 622					   PAGE_SIZE);
 623			if (p == NULL) {
 624				pr_err("Could not map UEFI memreserve entry!\n");
 625				return -ENOMEM;
 626			}
 627
 628			rsv = (void *)(p + prsv % PAGE_SIZE);
 
 629
 630			/* reserve the entry itself */
 631			memblock_reserve(prsv,
 632					 struct_size(rsv, entry, rsv->size));
 633
 634			for (i = 0; i < atomic_read(&rsv->count); i++) {
 635				memblock_reserve(rsv->entry[i].base,
 636						 rsv->entry[i].size);
 637			}
 638
 639			prsv = rsv->next;
 640			early_memunmap(p, PAGE_SIZE);
 641		}
 642	}
 643
 644	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 645		efi_rt_properties_table_t *tbl;
 
 
 646
 647		tbl = early_memremap(rt_prop, sizeof(*tbl));
 648		if (tbl) {
 649			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 650			early_memunmap(tbl, sizeof(*tbl));
 651		}
 
 
 
 652	}
 653
 654	return 0;
 
 
 
 
 655}
 656
 657int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 658				   int min_major_version)
 659{
 660	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 661		pr_err("System table signature incorrect!\n");
 662		return -EINVAL;
 663	}
 664
 665	if ((systab_hdr->revision >> 16) < min_major_version)
 666		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 667		       systab_hdr->revision >> 16,
 668		       systab_hdr->revision & 0xffff,
 669		       min_major_version);
 670
 671	return 0;
 
 672}
 
 
 673
 674#ifndef CONFIG_IA64
 675static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 676						size_t size)
 677{
 678	const efi_char16_t *ret;
 679
 680	ret = early_memremap_ro(fw_vendor, size);
 681	if (!ret)
 682		pr_err("Could not map the firmware vendor!\n");
 683	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684}
 685
 686static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 
 687{
 688	early_memunmap((void *)fw_vendor, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690#else
 691#define map_fw_vendor(p, s)	__va(p)
 692#define unmap_fw_vendor(v, s)
 693#endif
 694
 695void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 696				     unsigned long fw_vendor)
 697{
 698	char vendor[100] = "unknown";
 699	const efi_char16_t *c16;
 700	size_t i;
 701
 702	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 703	if (c16) {
 704		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 705			vendor[i] = c16[i];
 706		vendor[i] = '\0';
 707
 708		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 709	}
 710
 711	pr_info("EFI v%u.%.02u by %s\n",
 712		systab_hdr->revision >> 16,
 713		systab_hdr->revision & 0xffff,
 714		vendor);
 715}
 
 716
 717static __initdata char memory_type_name[][20] = {
 718	"Reserved",
 719	"Loader Code",
 720	"Loader Data",
 721	"Boot Code",
 722	"Boot Data",
 723	"Runtime Code",
 724	"Runtime Data",
 725	"Conventional Memory",
 726	"Unusable Memory",
 727	"ACPI Reclaim Memory",
 728	"ACPI Memory NVS",
 729	"Memory Mapped I/O",
 730	"MMIO Port Space",
 731	"PAL Code",
 732	"Persistent Memory",
 733};
 734
 735char * __init efi_md_typeattr_format(char *buf, size_t size,
 736				     const efi_memory_desc_t *md)
 737{
 738	char *pos;
 739	int type_len;
 740	u64 attr;
 741
 742	pos = buf;
 743	if (md->type >= ARRAY_SIZE(memory_type_name))
 744		type_len = snprintf(pos, size, "[type=%u", md->type);
 745	else
 746		type_len = snprintf(pos, size, "[%-*s",
 747				    (int)(sizeof(memory_type_name[0]) - 1),
 748				    memory_type_name[md->type]);
 749	if (type_len >= size)
 750		return buf;
 751
 752	pos += type_len;
 753	size -= type_len;
 754
 755	attr = md->attribute;
 756	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 757		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 758		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 759		     EFI_MEMORY_NV | EFI_MEMORY_SP |
 760		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 761		snprintf(pos, size, "|attr=0x%016llx]",
 762			 (unsigned long long)attr);
 763	else
 764		snprintf(pos, size,
 765			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 766			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
 767			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
 768			 attr & EFI_MEMORY_SP      ? "SP"  : "",
 769			 attr & EFI_MEMORY_NV      ? "NV"  : "",
 770			 attr & EFI_MEMORY_XP      ? "XP"  : "",
 771			 attr & EFI_MEMORY_RP      ? "RP"  : "",
 772			 attr & EFI_MEMORY_WP      ? "WP"  : "",
 773			 attr & EFI_MEMORY_RO      ? "RO"  : "",
 774			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
 775			 attr & EFI_MEMORY_WB      ? "WB"  : "",
 776			 attr & EFI_MEMORY_WT      ? "WT"  : "",
 777			 attr & EFI_MEMORY_WC      ? "WC"  : "",
 778			 attr & EFI_MEMORY_UC      ? "UC"  : "");
 779	return buf;
 780}
 781
 782/*
 783 * IA64 has a funky EFI memory map that doesn't work the same way as
 784 * other architectures.
 785 */
 786#ifndef CONFIG_IA64
 787/*
 788 * efi_mem_attributes - lookup memmap attributes for physical address
 789 * @phys_addr: the physical address to lookup
 790 *
 791 * Search in the EFI memory map for the region covering
 792 * @phys_addr. Returns the EFI memory attributes if the region
 793 * was found in the memory map, 0 otherwise.
 
 
 
 
 
 794 */
 795u64 efi_mem_attributes(unsigned long phys_addr)
 796{
 797	efi_memory_desc_t *md;
 798
 799	if (!efi_enabled(EFI_MEMMAP))
 800		return 0;
 801
 802	for_each_efi_memory_desc(md) {
 803		if ((md->phys_addr <= phys_addr) &&
 804		    (phys_addr < (md->phys_addr +
 805		    (md->num_pages << EFI_PAGE_SHIFT))))
 806			return md->attribute;
 807	}
 808	return 0;
 809}
 810
 811/*
 812 * efi_mem_type - lookup memmap type for physical address
 813 * @phys_addr: the physical address to lookup
 814 *
 815 * Search in the EFI memory map for the region covering @phys_addr.
 816 * Returns the EFI memory type if the region was found in the memory
 817 * map, -EINVAL otherwise.
 818 */
 819int efi_mem_type(unsigned long phys_addr)
 820{
 821	const efi_memory_desc_t *md;
 822
 823	if (!efi_enabled(EFI_MEMMAP))
 824		return -ENOTSUPP;
 825
 826	for_each_efi_memory_desc(md) {
 827		if ((md->phys_addr <= phys_addr) &&
 828		    (phys_addr < (md->phys_addr +
 829				  (md->num_pages << EFI_PAGE_SHIFT))))
 830			return md->type;
 831	}
 832	return -EINVAL;
 833}
 834#endif
 835
 836int efi_status_to_err(efi_status_t status)
 837{
 838	int err;
 839
 840	switch (status) {
 841	case EFI_SUCCESS:
 842		err = 0;
 843		break;
 844	case EFI_INVALID_PARAMETER:
 845		err = -EINVAL;
 846		break;
 847	case EFI_OUT_OF_RESOURCES:
 848		err = -ENOSPC;
 849		break;
 850	case EFI_DEVICE_ERROR:
 851		err = -EIO;
 852		break;
 853	case EFI_WRITE_PROTECTED:
 854		err = -EROFS;
 855		break;
 856	case EFI_SECURITY_VIOLATION:
 857		err = -EACCES;
 858		break;
 859	case EFI_NOT_FOUND:
 860		err = -ENOENT;
 861		break;
 862	case EFI_ABORTED:
 863		err = -EINTR;
 864		break;
 865	default:
 866		err = -EINVAL;
 867	}
 868
 869	return err;
 870}
 871
 872static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 873static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 874
 875static int __init efi_memreserve_map_root(void)
 876{
 877	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 878		return -ENODEV;
 879
 880	efi_memreserve_root = memremap(mem_reserve,
 881				       sizeof(*efi_memreserve_root),
 882				       MEMREMAP_WB);
 883	if (WARN_ON_ONCE(!efi_memreserve_root))
 884		return -ENOMEM;
 885	return 0;
 886}
 887
 888static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 889{
 890	struct resource *res, *parent;
 891
 892	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 893	if (!res)
 894		return -ENOMEM;
 895
 896	res->name	= "reserved";
 897	res->flags	= IORESOURCE_MEM;
 898	res->start	= addr;
 899	res->end	= addr + size - 1;
 900
 901	/* we expect a conflict with a 'System RAM' region */
 902	parent = request_resource_conflict(&iomem_resource, res);
 903	return parent ? request_resource(parent, res) : 0;
 904}
 905
 906int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 907{
 908	struct linux_efi_memreserve *rsv;
 909	unsigned long prsv;
 910	int rc, index;
 911
 912	if (efi_memreserve_root == (void *)ULONG_MAX)
 913		return -ENODEV;
 914
 915	if (!efi_memreserve_root) {
 916		rc = efi_memreserve_map_root();
 917		if (rc)
 918			return rc;
 919	}
 920
 921	/* first try to find a slot in an existing linked list entry */
 922	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
 923		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
 924		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
 925		if (index < rsv->size) {
 926			rsv->entry[index].base = addr;
 927			rsv->entry[index].size = size;
 928
 929			memunmap(rsv);
 930			return efi_mem_reserve_iomem(addr, size);
 931		}
 932		memunmap(rsv);
 933	}
 934
 935	/* no slot found - allocate a new linked list entry */
 936	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
 937	if (!rsv)
 938		return -ENOMEM;
 939
 940	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
 941	if (rc) {
 942		free_page((unsigned long)rsv);
 943		return rc;
 944	}
 945
 946	/*
 947	 * The memremap() call above assumes that a linux_efi_memreserve entry
 948	 * never crosses a page boundary, so let's ensure that this remains true
 949	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
 950	 * using SZ_4K explicitly in the size calculation below.
 951	 */
 952	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
 953	atomic_set(&rsv->count, 1);
 954	rsv->entry[0].base = addr;
 955	rsv->entry[0].size = size;
 956
 957	spin_lock(&efi_mem_reserve_persistent_lock);
 958	rsv->next = efi_memreserve_root->next;
 959	efi_memreserve_root->next = __pa(rsv);
 960	spin_unlock(&efi_mem_reserve_persistent_lock);
 961
 962	return efi_mem_reserve_iomem(addr, size);
 963}
 964
 965static int __init efi_memreserve_root_init(void)
 966{
 967	if (efi_memreserve_root)
 968		return 0;
 969	if (efi_memreserve_map_root())
 970		efi_memreserve_root = (void *)ULONG_MAX;
 971	return 0;
 972}
 973early_initcall(efi_memreserve_root_init);
 974
 975#ifdef CONFIG_KEXEC
 976static int update_efi_random_seed(struct notifier_block *nb,
 977				  unsigned long code, void *unused)
 978{
 979	struct linux_efi_random_seed *seed;
 980	u32 size = 0;
 981
 982	if (!kexec_in_progress)
 983		return NOTIFY_DONE;
 984
 985	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
 986	if (seed != NULL) {
 987		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
 988		memunmap(seed);
 989	} else {
 990		pr_err("Could not map UEFI random seed!\n");
 991	}
 992	if (size > 0) {
 993		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
 994				MEMREMAP_WB);
 995		if (seed != NULL) {
 996			seed->size = size;
 997			get_random_bytes(seed->bits, seed->size);
 998			memunmap(seed);
 999		} else {
1000			pr_err("Could not map UEFI random seed!\n");
1001		}
1002	}
1003	return NOTIFY_DONE;
1004}
1005
1006static struct notifier_block efi_random_seed_nb = {
1007	.notifier_call = update_efi_random_seed,
1008};
1009
1010static int __init register_update_efi_random_seed(void)
1011{
1012	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1013		return 0;
1014	return register_reboot_notifier(&efi_random_seed_nb);
1015}
1016late_initcall(register_update_efi_random_seed);
1017#endif
v4.10.11
 
  1/*
  2 * efi.c - EFI subsystem
  3 *
  4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
  5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
  6 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
  7 *
  8 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  9 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 10 * The existance of /sys/firmware/efi may also be used by userspace to
 11 * determine that the system supports EFI.
 12 *
 13 * This file is released under the GPLv2.
 14 */
 15
 16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 17
 18#include <linux/kobject.h>
 19#include <linux/module.h>
 20#include <linux/init.h>
 
 21#include <linux/device.h>
 22#include <linux/efi.h>
 23#include <linux/of.h>
 24#include <linux/of_fdt.h>
 25#include <linux/io.h>
 26#include <linux/kexec.h>
 27#include <linux/platform_device.h>
 28#include <linux/random.h>
 29#include <linux/reboot.h>
 30#include <linux/slab.h>
 31#include <linux/acpi.h>
 32#include <linux/ucs2_string.h>
 33#include <linux/memblock.h>
 
 34
 35#include <asm/early_ioremap.h>
 36
 37struct efi __read_mostly efi = {
 38	.mps			= EFI_INVALID_TABLE_ADDR,
 39	.acpi			= EFI_INVALID_TABLE_ADDR,
 40	.acpi20			= EFI_INVALID_TABLE_ADDR,
 41	.smbios			= EFI_INVALID_TABLE_ADDR,
 42	.smbios3		= EFI_INVALID_TABLE_ADDR,
 43	.sal_systab		= EFI_INVALID_TABLE_ADDR,
 44	.boot_info		= EFI_INVALID_TABLE_ADDR,
 45	.hcdp			= EFI_INVALID_TABLE_ADDR,
 46	.uga			= EFI_INVALID_TABLE_ADDR,
 47	.uv_systab		= EFI_INVALID_TABLE_ADDR,
 48	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
 49	.runtime		= EFI_INVALID_TABLE_ADDR,
 50	.config_table		= EFI_INVALID_TABLE_ADDR,
 51	.esrt			= EFI_INVALID_TABLE_ADDR,
 52	.properties_table	= EFI_INVALID_TABLE_ADDR,
 53	.mem_attr_table		= EFI_INVALID_TABLE_ADDR,
 54	.rng_seed		= EFI_INVALID_TABLE_ADDR,
 55};
 56EXPORT_SYMBOL(efi);
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static bool disable_runtime;
 59static int __init setup_noefi(char *arg)
 60{
 61	disable_runtime = true;
 62	return 0;
 63}
 64early_param("noefi", setup_noefi);
 65
 66bool efi_runtime_disabled(void)
 67{
 68	return disable_runtime;
 69}
 70
 
 
 
 
 
 71static int __init parse_efi_cmdline(char *str)
 72{
 73	if (!str) {
 74		pr_warn("need at least one option\n");
 75		return -EINVAL;
 76	}
 77
 78	if (parse_option_str(str, "debug"))
 79		set_bit(EFI_DBG, &efi.flags);
 80
 81	if (parse_option_str(str, "noruntime"))
 82		disable_runtime = true;
 83
 
 
 
 84	return 0;
 85}
 86early_param("efi", parse_efi_cmdline);
 87
 88struct kobject *efi_kobj;
 89
 90/*
 91 * Let's not leave out systab information that snuck into
 92 * the efivars driver
 
 
 93 */
 94static ssize_t systab_show(struct kobject *kobj,
 95			   struct kobj_attribute *attr, char *buf)
 96{
 97	char *str = buf;
 98
 99	if (!kobj || !buf)
100		return -EINVAL;
101
102	if (efi.mps != EFI_INVALID_TABLE_ADDR)
103		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
104	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
105		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
106	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
107		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
108	/*
109	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
110	 * SMBIOS3 entry point shall be preferred, so we list it first to
111	 * let applications stop parsing after the first match.
112	 */
113	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
114		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
115	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
116		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
117	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
118		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
119	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
120		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
121	if (efi.uga != EFI_INVALID_TABLE_ADDR)
122		str += sprintf(str, "UGA=0x%lx\n", efi.uga);
123
124	return str - buf;
125}
126
127static struct kobj_attribute efi_attr_systab =
128			__ATTR(systab, 0400, systab_show, NULL);
129
130#define EFI_FIELD(var) efi.var
131
132#define EFI_ATTR_SHOW(name) \
133static ssize_t name##_show(struct kobject *kobj, \
134				struct kobj_attribute *attr, char *buf) \
135{ \
136	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
137}
138
139EFI_ATTR_SHOW(fw_vendor);
140EFI_ATTR_SHOW(runtime);
141EFI_ATTR_SHOW(config_table);
142
143static ssize_t fw_platform_size_show(struct kobject *kobj,
144				     struct kobj_attribute *attr, char *buf)
145{
146	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
147}
148
149static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
150static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
151static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
152static struct kobj_attribute efi_attr_fw_platform_size =
153	__ATTR_RO(fw_platform_size);
154
155static struct attribute *efi_subsys_attrs[] = {
156	&efi_attr_systab.attr,
 
157	&efi_attr_fw_vendor.attr,
158	&efi_attr_runtime.attr,
159	&efi_attr_config_table.attr,
160	&efi_attr_fw_platform_size.attr,
161	NULL,
162};
163
164static umode_t efi_attr_is_visible(struct kobject *kobj,
165				   struct attribute *attr, int n)
166{
167	if (attr == &efi_attr_fw_vendor.attr) {
168		if (efi_enabled(EFI_PARAVIRT) ||
169				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
170			return 0;
171	} else if (attr == &efi_attr_runtime.attr) {
172		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
173			return 0;
174	} else if (attr == &efi_attr_config_table.attr) {
175		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
176			return 0;
177	}
178
179	return attr->mode;
180}
181
182static struct attribute_group efi_subsys_attr_group = {
183	.attrs = efi_subsys_attrs,
184	.is_visible = efi_attr_is_visible,
185};
186
187static struct efivars generic_efivars;
188static struct efivar_operations generic_ops;
189
190static int generic_ops_register(void)
191{
192	generic_ops.get_variable = efi.get_variable;
193	generic_ops.set_variable = efi.set_variable;
194	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
195	generic_ops.get_next_variable = efi.get_next_variable;
196	generic_ops.query_variable_store = efi_query_variable_store;
197
 
 
 
 
198	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
199}
200
201static void generic_ops_unregister(void)
202{
203	efivars_unregister(&generic_efivars);
204}
205
206#if IS_ENABLED(CONFIG_ACPI)
207#define EFIVAR_SSDT_NAME_MAX	16
208static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
209static int __init efivar_ssdt_setup(char *str)
210{
 
 
 
 
 
211	if (strlen(str) < sizeof(efivar_ssdt))
212		memcpy(efivar_ssdt, str, strlen(str));
213	else
214		pr_warn("efivar_ssdt: name too long: %s\n", str);
215	return 0;
216}
217__setup("efivar_ssdt=", efivar_ssdt_setup);
218
219static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
220				   unsigned long name_size, void *data)
221{
222	struct efivar_entry *entry;
223	struct list_head *list = data;
224	char utf8_name[EFIVAR_SSDT_NAME_MAX];
225	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
226
227	ucs2_as_utf8(utf8_name, name, limit - 1);
228	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
229		return 0;
230
231	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
232	if (!entry)
233		return 0;
234
235	memcpy(entry->var.VariableName, name, name_size);
236	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
237
238	efivar_entry_add(entry, list);
239
240	return 0;
241}
242
243static __init int efivar_ssdt_load(void)
244{
245	LIST_HEAD(entries);
246	struct efivar_entry *entry, *aux;
247	unsigned long size;
248	void *data;
249	int ret;
250
 
 
 
251	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
252
253	list_for_each_entry_safe(entry, aux, &entries, list) {
254		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
255			&entry->var.VendorGuid);
256
257		list_del(&entry->list);
258
259		ret = efivar_entry_size(entry, &size);
260		if (ret) {
261			pr_err("failed to get var size\n");
262			goto free_entry;
263		}
264
265		data = kmalloc(size, GFP_KERNEL);
266		if (!data) {
267			ret = -ENOMEM;
268			goto free_entry;
269		}
270
271		ret = efivar_entry_get(entry, NULL, &size, data);
272		if (ret) {
273			pr_err("failed to get var data\n");
274			goto free_data;
275		}
276
277		ret = acpi_load_table(data);
278		if (ret) {
279			pr_err("failed to load table: %d\n", ret);
280			goto free_data;
281		}
282
283		goto free_entry;
284
285free_data:
286		kfree(data);
287
288free_entry:
289		kfree(entry);
290	}
291
292	return ret;
293}
294#else
295static inline int efivar_ssdt_load(void) { return 0; }
296#endif
297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298/*
299 * We register the efi subsystem with the firmware subsystem and the
300 * efivars subsystem with the efi subsystem, if the system was booted with
301 * EFI.
302 */
303static int __init efisubsys_init(void)
304{
305	int error;
306
 
 
 
307	if (!efi_enabled(EFI_BOOT))
308		return 0;
309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310	/* We register the efi directory at /sys/firmware/efi */
311	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
312	if (!efi_kobj) {
313		pr_err("efi: Firmware registration failed.\n");
 
314		return -ENOMEM;
315	}
316
317	error = generic_ops_register();
318	if (error)
319		goto err_put;
320
321	if (efi_enabled(EFI_RUNTIME_SERVICES))
322		efivar_ssdt_load();
 
 
 
 
 
323
324	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
325	if (error) {
326		pr_err("efi: Sysfs attribute export failed with error %d.\n",
327		       error);
328		goto err_unregister;
329	}
330
331	error = efi_runtime_map_init(efi_kobj);
332	if (error)
333		goto err_remove_group;
334
335	/* and the standard mountpoint for efivarfs */
336	error = sysfs_create_mount_point(efi_kobj, "efivars");
337	if (error) {
338		pr_err("efivars: Subsystem registration failed.\n");
339		goto err_remove_group;
340	}
341
 
 
 
342	return 0;
343
344err_remove_group:
345	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
346err_unregister:
347	generic_ops_unregister();
 
 
348err_put:
349	kobject_put(efi_kobj);
 
350	return error;
351}
352
353subsys_initcall(efisubsys_init);
354
355/*
356 * Find the efi memory descriptor for a given physical address.  Given a
357 * physical address, determine if it exists within an EFI Memory Map entry,
358 * and if so, populate the supplied memory descriptor with the appropriate
359 * data.
360 */
361int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
362{
363	efi_memory_desc_t *md;
364
365	if (!efi_enabled(EFI_MEMMAP)) {
366		pr_err_once("EFI_MEMMAP is not enabled.\n");
367		return -EINVAL;
368	}
369
370	if (!out_md) {
371		pr_err_once("out_md is null.\n");
372		return -EINVAL;
373        }
374
375	for_each_efi_memory_desc(md) {
376		u64 size;
377		u64 end;
378
379		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
380		    md->type != EFI_BOOT_SERVICES_DATA &&
381		    md->type != EFI_RUNTIME_SERVICES_DATA) {
382			continue;
383		}
384
385		size = md->num_pages << EFI_PAGE_SHIFT;
386		end = md->phys_addr + size;
387		if (phys_addr >= md->phys_addr && phys_addr < end) {
388			memcpy(out_md, md, sizeof(*out_md));
389			return 0;
390		}
391	}
392	pr_err_once("requested map not found.\n");
393	return -ENOENT;
394}
395
396/*
397 * Calculate the highest address of an efi memory descriptor.
398 */
399u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
400{
401	u64 size = md->num_pages << EFI_PAGE_SHIFT;
402	u64 end = md->phys_addr + size;
403	return end;
404}
405
406void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
407
408/**
409 * efi_mem_reserve - Reserve an EFI memory region
410 * @addr: Physical address to reserve
411 * @size: Size of reservation
412 *
413 * Mark a region as reserved from general kernel allocation and
414 * prevent it being released by efi_free_boot_services().
415 *
416 * This function should be called drivers once they've parsed EFI
417 * configuration tables to figure out where their data lives, e.g.
418 * efi_esrt_init().
419 */
420void __init efi_mem_reserve(phys_addr_t addr, u64 size)
421{
422	if (!memblock_is_region_reserved(addr, size))
423		memblock_reserve(addr, size);
424
425	/*
426	 * Some architectures (x86) reserve all boot services ranges
427	 * until efi_free_boot_services() because of buggy firmware
428	 * implementations. This means the above memblock_reserve() is
429	 * superfluous on x86 and instead what it needs to do is
430	 * ensure the @start, @size is not freed.
431	 */
432	efi_arch_mem_reserve(addr, size);
433}
434
435static __initdata efi_config_table_type_t common_tables[] = {
436	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
437	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
438	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
439	{MPS_TABLE_GUID, "MPS", &efi.mps},
440	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
441	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
442	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
443	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
444	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
445	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
446	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
447	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
448	{NULL_GUID, NULL, NULL},
 
 
449};
450
451static __init int match_config_table(efi_guid_t *guid,
452				     unsigned long table,
453				     efi_config_table_type_t *table_types)
454{
455	int i;
456
457	if (table_types) {
458		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
459			if (!efi_guidcmp(*guid, table_types[i].guid)) {
460				*(table_types[i].ptr) = table;
461				if (table_types[i].name)
462					pr_cont(" %s=0x%lx ",
463						table_types[i].name, table);
464				return 1;
465			}
466		}
467	}
468
469	return 0;
470}
471
472int __init efi_config_parse_tables(void *config_tables, int count, int sz,
473				   efi_config_table_type_t *arch_tables)
474{
475	void *tablep;
 
 
 
 
476	int i;
477
478	tablep = config_tables;
479	pr_info("");
480	for (i = 0; i < count; i++) {
481		efi_guid_t guid;
482		unsigned long table;
 
 
 
 
483
484		if (efi_enabled(EFI_64BIT)) {
485			u64 table64;
486			guid = ((efi_config_table_64_t *)tablep)->guid;
487			table64 = ((efi_config_table_64_t *)tablep)->table;
488			table = table64;
489#ifndef CONFIG_64BIT
490			if (table64 >> 32) {
491				pr_cont("\n");
492				pr_err("Table located above 4GB, disabling EFI.\n");
493				return -EINVAL;
494			}
495#endif
496		} else {
497			guid = ((efi_config_table_32_t *)tablep)->guid;
498			table = ((efi_config_table_32_t *)tablep)->table;
499		}
500
501		if (!match_config_table(&guid, table, common_tables))
502			match_config_table(&guid, table, arch_tables);
503
504		tablep += sz;
505	}
506	pr_cont("\n");
507	set_bit(EFI_CONFIG_TABLES, &efi.flags);
508
509	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
510		struct linux_efi_random_seed *seed;
511		u32 size = 0;
512
513		seed = early_memremap(efi.rng_seed, sizeof(*seed));
514		if (seed != NULL) {
515			size = seed->size;
516			early_memunmap(seed, sizeof(*seed));
517		} else {
518			pr_err("Could not map UEFI random seed!\n");
519		}
520		if (size > 0) {
521			seed = early_memremap(efi.rng_seed,
522					      sizeof(*seed) + size);
523			if (seed != NULL) {
524				add_device_randomness(seed->bits, seed->size);
 
525				early_memunmap(seed, sizeof(*seed) + size);
526			} else {
527				pr_err("Could not map UEFI random seed!\n");
528			}
529		}
530	}
531
532	/* Parse the EFI Properties table if it exists */
533	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
534		efi_properties_table_t *tbl;
 
535
536		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
537		if (tbl == NULL) {
538			pr_err("Could not map Properties table!\n");
539			return -ENOMEM;
540		}
541
542		if (tbl->memory_protection_attribute &
543		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
544			set_bit(EFI_NX_PE_DATA, &efi.flags);
 
 
 
 
 
 
 
 
 
 
 
 
545
546		early_memunmap(tbl, sizeof(*tbl));
547	}
548
549	return 0;
550}
 
 
 
 
 
 
551
552int __init efi_config_init(efi_config_table_type_t *arch_tables)
553{
554	void *config_tables;
555	int sz, ret;
556
557	if (efi_enabled(EFI_64BIT))
558		sz = sizeof(efi_config_table_64_t);
559	else
560		sz = sizeof(efi_config_table_32_t);
561
562	/*
563	 * Let's see what config tables the firmware passed to us.
564	 */
565	config_tables = early_memremap(efi.systab->tables,
566				       efi.systab->nr_tables * sz);
567	if (config_tables == NULL) {
568		pr_err("Could not map Configuration table!\n");
569		return -ENOMEM;
570	}
571
572	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
573				      arch_tables);
574
575	early_memunmap(config_tables, efi.systab->nr_tables * sz);
576	return ret;
577}
578
579#ifdef CONFIG_EFI_VARS_MODULE
580static int __init efi_load_efivars(void)
581{
582	struct platform_device *pdev;
 
 
 
583
584	if (!efi_enabled(EFI_RUNTIME_SERVICES))
585		return 0;
 
 
 
586
587	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
588	return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
589}
590device_initcall(efi_load_efivars);
591#endif
592
593#ifdef CONFIG_EFI_PARAMS_FROM_FDT
594
595#define UEFI_PARAM(name, prop, field)			   \
596	{						   \
597		{ name },				   \
598		{ prop },				   \
599		offsetof(struct efi_fdt_params, field),    \
600		FIELD_SIZEOF(struct efi_fdt_params, field) \
601	}
602
603struct params {
604	const char name[32];
605	const char propname[32];
606	int offset;
607	int size;
608};
609
610static __initdata struct params fdt_params[] = {
611	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
612	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
613	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
614	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
615	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
616};
617
618static __initdata struct params xen_fdt_params[] = {
619	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
620	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
621	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
622	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
623	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
624};
625
626#define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)
627
628static __initdata struct {
629	const char *uname;
630	const char *subnode;
631	struct params *params;
632} dt_params[] = {
633	{ "hypervisor", "uefi", xen_fdt_params },
634	{ "chosen", NULL, fdt_params },
635};
636
637struct param_info {
638	int found;
639	void *params;
640	const char *missing;
641};
642
643static int __init __find_uefi_params(unsigned long node,
644				     struct param_info *info,
645				     struct params *params)
646{
647	const void *prop;
648	void *dest;
649	u64 val;
650	int i, len;
651
652	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
653		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
654		if (!prop) {
655			info->missing = params[i].name;
656			return 0;
657		}
658
659		dest = info->params + params[i].offset;
660		info->found++;
661
662		val = of_read_number(prop, len / sizeof(u32));
663
664		if (params[i].size == sizeof(u32))
665			*(u32 *)dest = val;
666		else
667			*(u64 *)dest = val;
668
669		if (efi_enabled(EFI_DBG))
670			pr_info("  %s: 0x%0*llx\n", params[i].name,
671				params[i].size * 2, val);
672	}
673
674	return 1;
675}
676
677static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
678				       int depth, void *data)
679{
680	struct param_info *info = data;
681	int i;
682
683	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
684		const char *subnode = dt_params[i].subnode;
685
686		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
687			info->missing = dt_params[i].params[0].name;
688			continue;
689		}
690
691		if (subnode) {
692			int err = of_get_flat_dt_subnode_by_name(node, subnode);
693
694			if (err < 0)
695				return 0;
696
697			node = err;
698		}
699
700		return __find_uefi_params(node, info, dt_params[i].params);
701	}
702
703	return 0;
704}
 
 
 
 
705
706int __init efi_get_fdt_params(struct efi_fdt_params *params)
 
707{
708	struct param_info info;
709	int ret;
710
711	pr_info("Getting EFI parameters from FDT:\n");
712
713	info.found = 0;
714	info.params = params;
715
716	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
717	if (!info.found)
718		pr_info("UEFI not found.\n");
719	else if (!ret)
720		pr_err("Can't find '%s' in device tree!\n",
721		       info.missing);
722
723	return ret;
 
724}
725#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
726
727static __initdata char memory_type_name[][20] = {
728	"Reserved",
729	"Loader Code",
730	"Loader Data",
731	"Boot Code",
732	"Boot Data",
733	"Runtime Code",
734	"Runtime Data",
735	"Conventional Memory",
736	"Unusable Memory",
737	"ACPI Reclaim Memory",
738	"ACPI Memory NVS",
739	"Memory Mapped I/O",
740	"MMIO Port Space",
741	"PAL Code",
742	"Persistent Memory",
743};
744
745char * __init efi_md_typeattr_format(char *buf, size_t size,
746				     const efi_memory_desc_t *md)
747{
748	char *pos;
749	int type_len;
750	u64 attr;
751
752	pos = buf;
753	if (md->type >= ARRAY_SIZE(memory_type_name))
754		type_len = snprintf(pos, size, "[type=%u", md->type);
755	else
756		type_len = snprintf(pos, size, "[%-*s",
757				    (int)(sizeof(memory_type_name[0]) - 1),
758				    memory_type_name[md->type]);
759	if (type_len >= size)
760		return buf;
761
762	pos += type_len;
763	size -= type_len;
764
765	attr = md->attribute;
766	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
767		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
768		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
769		     EFI_MEMORY_NV |
770		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
771		snprintf(pos, size, "|attr=0x%016llx]",
772			 (unsigned long long)attr);
773	else
774		snprintf(pos, size,
775			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
776			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
777			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
 
778			 attr & EFI_MEMORY_NV      ? "NV"  : "",
779			 attr & EFI_MEMORY_XP      ? "XP"  : "",
780			 attr & EFI_MEMORY_RP      ? "RP"  : "",
781			 attr & EFI_MEMORY_WP      ? "WP"  : "",
782			 attr & EFI_MEMORY_RO      ? "RO"  : "",
783			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
784			 attr & EFI_MEMORY_WB      ? "WB"  : "",
785			 attr & EFI_MEMORY_WT      ? "WT"  : "",
786			 attr & EFI_MEMORY_WC      ? "WC"  : "",
787			 attr & EFI_MEMORY_UC      ? "UC"  : "");
788	return buf;
789}
790
791/*
 
 
 
 
 
792 * efi_mem_attributes - lookup memmap attributes for physical address
793 * @phys_addr: the physical address to lookup
794 *
795 * Search in the EFI memory map for the region covering
796 * @phys_addr. Returns the EFI memory attributes if the region
797 * was found in the memory map, 0 otherwise.
798 *
799 * Despite being marked __weak, most architectures should *not*
800 * override this function. It is __weak solely for the benefit
801 * of ia64 which has a funky EFI memory map that doesn't work
802 * the same way as other architectures.
803 */
804u64 __weak efi_mem_attributes(unsigned long phys_addr)
805{
806	efi_memory_desc_t *md;
807
808	if (!efi_enabled(EFI_MEMMAP))
809		return 0;
810
811	for_each_efi_memory_desc(md) {
812		if ((md->phys_addr <= phys_addr) &&
813		    (phys_addr < (md->phys_addr +
814		    (md->num_pages << EFI_PAGE_SHIFT))))
815			return md->attribute;
816	}
817	return 0;
818}
819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820int efi_status_to_err(efi_status_t status)
821{
822	int err;
823
824	switch (status) {
825	case EFI_SUCCESS:
826		err = 0;
827		break;
828	case EFI_INVALID_PARAMETER:
829		err = -EINVAL;
830		break;
831	case EFI_OUT_OF_RESOURCES:
832		err = -ENOSPC;
833		break;
834	case EFI_DEVICE_ERROR:
835		err = -EIO;
836		break;
837	case EFI_WRITE_PROTECTED:
838		err = -EROFS;
839		break;
840	case EFI_SECURITY_VIOLATION:
841		err = -EACCES;
842		break;
843	case EFI_NOT_FOUND:
844		err = -ENOENT;
845		break;
846	case EFI_ABORTED:
847		err = -EINTR;
848		break;
849	default:
850		err = -EINVAL;
851	}
852
853	return err;
854}
855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856#ifdef CONFIG_KEXEC
857static int update_efi_random_seed(struct notifier_block *nb,
858				  unsigned long code, void *unused)
859{
860	struct linux_efi_random_seed *seed;
861	u32 size = 0;
862
863	if (!kexec_in_progress)
864		return NOTIFY_DONE;
865
866	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
867	if (seed != NULL) {
868		size = min(seed->size, 32U);
869		memunmap(seed);
870	} else {
871		pr_err("Could not map UEFI random seed!\n");
872	}
873	if (size > 0) {
874		seed = memremap(efi.rng_seed, sizeof(*seed) + size,
875				MEMREMAP_WB);
876		if (seed != NULL) {
877			seed->size = size;
878			get_random_bytes(seed->bits, seed->size);
879			memunmap(seed);
880		} else {
881			pr_err("Could not map UEFI random seed!\n");
882		}
883	}
884	return NOTIFY_DONE;
885}
886
887static struct notifier_block efi_random_seed_nb = {
888	.notifier_call = update_efi_random_seed,
889};
890
891static int register_update_efi_random_seed(void)
892{
893	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
894		return 0;
895	return register_reboot_notifier(&efi_random_seed_nb);
896}
897late_initcall(register_update_efi_random_seed);
898#endif