Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/io.h>
  25#include <linux/kexec.h>
  26#include <linux/platform_device.h>
  27#include <linux/random.h>
  28#include <linux/reboot.h>
  29#include <linux/slab.h>
  30#include <linux/acpi.h>
  31#include <linux/ucs2_string.h>
  32#include <linux/memblock.h>
  33#include <linux/security.h>
  34
  35#include <asm/early_ioremap.h>
  36
  37struct efi __read_mostly efi = {
  38	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  39	.acpi			= EFI_INVALID_TABLE_ADDR,
  40	.acpi20			= EFI_INVALID_TABLE_ADDR,
  41	.smbios			= EFI_INVALID_TABLE_ADDR,
  42	.smbios3		= EFI_INVALID_TABLE_ADDR,
  43	.esrt			= EFI_INVALID_TABLE_ADDR,
  44	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  45	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
 
 
 
  46};
  47EXPORT_SYMBOL(efi);
  48
  49unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  50static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  51static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  52
  53struct mm_struct efi_mm = {
  54	.mm_rb			= RB_ROOT,
  55	.mm_users		= ATOMIC_INIT(2),
  56	.mm_count		= ATOMIC_INIT(1),
 
  57	MMAP_LOCK_INITIALIZER(efi_mm)
  58	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  59	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  60	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  61};
  62
  63struct workqueue_struct *efi_rts_wq;
  64
  65static bool disable_runtime;
  66static int __init setup_noefi(char *arg)
  67{
  68	disable_runtime = true;
  69	return 0;
  70}
  71early_param("noefi", setup_noefi);
  72
  73bool efi_runtime_disabled(void)
  74{
  75	return disable_runtime;
  76}
  77
  78bool __pure __efi_soft_reserve_enabled(void)
  79{
  80	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  81}
  82
  83static int __init parse_efi_cmdline(char *str)
  84{
  85	if (!str) {
  86		pr_warn("need at least one option\n");
  87		return -EINVAL;
  88	}
  89
  90	if (parse_option_str(str, "debug"))
  91		set_bit(EFI_DBG, &efi.flags);
  92
  93	if (parse_option_str(str, "noruntime"))
  94		disable_runtime = true;
  95
  96	if (parse_option_str(str, "nosoftreserve"))
  97		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
  98
  99	return 0;
 100}
 101early_param("efi", parse_efi_cmdline);
 102
 103struct kobject *efi_kobj;
 104
 105/*
 106 * Let's not leave out systab information that snuck into
 107 * the efivars driver
 108 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 109 * one value per file rule!
 110 */
 111static ssize_t systab_show(struct kobject *kobj,
 112			   struct kobj_attribute *attr, char *buf)
 113{
 114	char *str = buf;
 115
 116	if (!kobj || !buf)
 117		return -EINVAL;
 118
 119	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 120		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 121	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 122		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 123	/*
 124	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 125	 * SMBIOS3 entry point shall be preferred, so we list it first to
 126	 * let applications stop parsing after the first match.
 127	 */
 128	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 129		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 130	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 131		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 132
 133	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 134		str = efi_systab_show_arch(str);
 135
 136	return str - buf;
 137}
 138
 139static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 140
 141static ssize_t fw_platform_size_show(struct kobject *kobj,
 142				     struct kobj_attribute *attr, char *buf)
 143{
 144	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 145}
 146
 147extern __weak struct kobj_attribute efi_attr_fw_vendor;
 148extern __weak struct kobj_attribute efi_attr_runtime;
 149extern __weak struct kobj_attribute efi_attr_config_table;
 150static struct kobj_attribute efi_attr_fw_platform_size =
 151	__ATTR_RO(fw_platform_size);
 152
 153static struct attribute *efi_subsys_attrs[] = {
 154	&efi_attr_systab.attr,
 155	&efi_attr_fw_platform_size.attr,
 156	&efi_attr_fw_vendor.attr,
 157	&efi_attr_runtime.attr,
 158	&efi_attr_config_table.attr,
 159	NULL,
 160};
 161
 162umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 163				   int n)
 164{
 165	return attr->mode;
 166}
 167
 168static const struct attribute_group efi_subsys_attr_group = {
 169	.attrs = efi_subsys_attrs,
 170	.is_visible = efi_attr_is_visible,
 171};
 172
 173static struct efivars generic_efivars;
 174static struct efivar_operations generic_ops;
 175
 176static int generic_ops_register(void)
 177{
 178	generic_ops.get_variable = efi.get_variable;
 179	generic_ops.get_next_variable = efi.get_next_variable;
 180	generic_ops.query_variable_store = efi_query_variable_store;
 181
 182	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 183		generic_ops.set_variable = efi.set_variable;
 184		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 185	}
 186	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 187}
 188
 189static void generic_ops_unregister(void)
 190{
 191	efivars_unregister(&generic_efivars);
 192}
 193
 194#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 195#define EFIVAR_SSDT_NAME_MAX	16
 196static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 197static int __init efivar_ssdt_setup(char *str)
 198{
 199	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 200
 201	if (ret)
 202		return ret;
 203
 204	if (strlen(str) < sizeof(efivar_ssdt))
 205		memcpy(efivar_ssdt, str, strlen(str));
 206	else
 207		pr_warn("efivar_ssdt: name too long: %s\n", str);
 208	return 0;
 209}
 210__setup("efivar_ssdt=", efivar_ssdt_setup);
 211
 212static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
 213				   unsigned long name_size, void *data)
 214{
 215	struct efivar_entry *entry;
 216	struct list_head *list = data;
 217	char utf8_name[EFIVAR_SSDT_NAME_MAX];
 218	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
 219
 220	ucs2_as_utf8(utf8_name, name, limit - 1);
 221	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 222		return 0;
 223
 224	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 225	if (!entry)
 226		return 0;
 227
 228	memcpy(entry->var.VariableName, name, name_size);
 229	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 230
 231	efivar_entry_add(entry, list);
 232
 233	return 0;
 234}
 235
 236static __init int efivar_ssdt_load(void)
 237{
 238	LIST_HEAD(entries);
 239	struct efivar_entry *entry, *aux;
 240	unsigned long size;
 241	void *data;
 242	int ret;
 243
 244	if (!efivar_ssdt[0])
 245		return 0;
 246
 247	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
 248
 249	list_for_each_entry_safe(entry, aux, &entries, list) {
 250		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
 251			&entry->var.VendorGuid);
 252
 253		list_del(&entry->list);
 254
 255		ret = efivar_entry_size(entry, &size);
 256		if (ret) {
 257			pr_err("failed to get var size\n");
 258			goto free_entry;
 259		}
 260
 261		data = kmalloc(size, GFP_KERNEL);
 262		if (!data) {
 263			ret = -ENOMEM;
 264			goto free_entry;
 265		}
 266
 267		ret = efivar_entry_get(entry, NULL, &size, data);
 268		if (ret) {
 269			pr_err("failed to get var data\n");
 270			goto free_data;
 271		}
 272
 273		ret = acpi_load_table(data, NULL);
 274		if (ret) {
 275			pr_err("failed to load table: %d\n", ret);
 276			goto free_data;
 277		}
 278
 279		goto free_entry;
 280
 281free_data:
 282		kfree(data);
 283
 284free_entry:
 285		kfree(entry);
 286	}
 287
 288	return ret;
 289}
 290#else
 291static inline int efivar_ssdt_load(void) { return 0; }
 292#endif
 293
 294#ifdef CONFIG_DEBUG_FS
 295
 296#define EFI_DEBUGFS_MAX_BLOBS 32
 297
 298static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 299
 300static void __init efi_debugfs_init(void)
 301{
 302	struct dentry *efi_debugfs;
 303	efi_memory_desc_t *md;
 304	char name[32];
 305	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 306	int i = 0;
 307
 308	efi_debugfs = debugfs_create_dir("efi", NULL);
 309	if (IS_ERR_OR_NULL(efi_debugfs))
 310		return;
 311
 312	for_each_efi_memory_desc(md) {
 313		switch (md->type) {
 314		case EFI_BOOT_SERVICES_CODE:
 315			snprintf(name, sizeof(name), "boot_services_code%d",
 316				 type_count[md->type]++);
 317			break;
 318		case EFI_BOOT_SERVICES_DATA:
 319			snprintf(name, sizeof(name), "boot_services_data%d",
 320				 type_count[md->type]++);
 321			break;
 322		default:
 323			continue;
 324		}
 325
 326		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 327			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 328				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 329			break;
 330		}
 331
 332		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 333		debugfs_blob[i].data = memremap(md->phys_addr,
 334						debugfs_blob[i].size,
 335						MEMREMAP_WB);
 336		if (!debugfs_blob[i].data)
 337			continue;
 338
 339		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 340		i++;
 341	}
 342}
 343#else
 344static inline void efi_debugfs_init(void) {}
 345#endif
 346
 347/*
 348 * We register the efi subsystem with the firmware subsystem and the
 349 * efivars subsystem with the efi subsystem, if the system was booted with
 350 * EFI.
 351 */
 352static int __init efisubsys_init(void)
 353{
 354	int error;
 355
 356	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 357		efi.runtime_supported_mask = 0;
 358
 359	if (!efi_enabled(EFI_BOOT))
 360		return 0;
 361
 362	if (efi.runtime_supported_mask) {
 363		/*
 364		 * Since we process only one efi_runtime_service() at a time, an
 365		 * ordered workqueue (which creates only one execution context)
 366		 * should suffice for all our needs.
 367		 */
 368		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 369		if (!efi_rts_wq) {
 370			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 371			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 372			efi.runtime_supported_mask = 0;
 373			return 0;
 374		}
 375	}
 376
 377	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 378		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 379
 380	/* We register the efi directory at /sys/firmware/efi */
 381	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 382	if (!efi_kobj) {
 383		pr_err("efi: Firmware registration failed.\n");
 384		destroy_workqueue(efi_rts_wq);
 385		return -ENOMEM;
 386	}
 387
 388	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 389				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 390		efivar_ssdt_load();
 391		error = generic_ops_register();
 392		if (error)
 393			goto err_put;
 
 394		platform_device_register_simple("efivars", 0, NULL, 0);
 395	}
 396
 397	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 398	if (error) {
 399		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 400		       error);
 401		goto err_unregister;
 402	}
 403
 404	error = efi_runtime_map_init(efi_kobj);
 405	if (error)
 406		goto err_remove_group;
 407
 408	/* and the standard mountpoint for efivarfs */
 409	error = sysfs_create_mount_point(efi_kobj, "efivars");
 410	if (error) {
 411		pr_err("efivars: Subsystem registration failed.\n");
 412		goto err_remove_group;
 413	}
 414
 415	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 416		efi_debugfs_init();
 417
 418	return 0;
 419
 420err_remove_group:
 421	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 422err_unregister:
 423	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 424				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 425		generic_ops_unregister();
 426err_put:
 427	kobject_put(efi_kobj);
 428	destroy_workqueue(efi_rts_wq);
 429	return error;
 430}
 431
 432subsys_initcall(efisubsys_init);
 433
 434/*
 435 * Find the efi memory descriptor for a given physical address.  Given a
 436 * physical address, determine if it exists within an EFI Memory Map entry,
 437 * and if so, populate the supplied memory descriptor with the appropriate
 438 * data.
 439 */
 440int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 441{
 442	efi_memory_desc_t *md;
 443
 444	if (!efi_enabled(EFI_MEMMAP)) {
 445		pr_err_once("EFI_MEMMAP is not enabled.\n");
 446		return -EINVAL;
 447	}
 448
 449	if (!out_md) {
 450		pr_err_once("out_md is null.\n");
 451		return -EINVAL;
 452        }
 453
 454	for_each_efi_memory_desc(md) {
 455		u64 size;
 456		u64 end;
 457
 458		size = md->num_pages << EFI_PAGE_SHIFT;
 459		end = md->phys_addr + size;
 460		if (phys_addr >= md->phys_addr && phys_addr < end) {
 461			memcpy(out_md, md, sizeof(*out_md));
 462			return 0;
 463		}
 464	}
 465	return -ENOENT;
 466}
 467
 468/*
 469 * Calculate the highest address of an efi memory descriptor.
 470 */
 471u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 472{
 473	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 474	u64 end = md->phys_addr + size;
 475	return end;
 476}
 477
 478void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 479
 480/**
 481 * efi_mem_reserve - Reserve an EFI memory region
 482 * @addr: Physical address to reserve
 483 * @size: Size of reservation
 484 *
 485 * Mark a region as reserved from general kernel allocation and
 486 * prevent it being released by efi_free_boot_services().
 487 *
 488 * This function should be called drivers once they've parsed EFI
 489 * configuration tables to figure out where their data lives, e.g.
 490 * efi_esrt_init().
 491 */
 492void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 493{
 494	if (!memblock_is_region_reserved(addr, size))
 495		memblock_reserve(addr, size);
 496
 497	/*
 498	 * Some architectures (x86) reserve all boot services ranges
 499	 * until efi_free_boot_services() because of buggy firmware
 500	 * implementations. This means the above memblock_reserve() is
 501	 * superfluous on x86 and instead what it needs to do is
 502	 * ensure the @start, @size is not freed.
 503	 */
 504	efi_arch_mem_reserve(addr, size);
 505}
 506
 507static const efi_config_table_type_t common_tables[] __initconst = {
 508	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 509	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 510	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 511	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 512	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 513	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 514	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 515	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 516	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 517	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 518	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 519#ifdef CONFIG_EFI_RCI2_TABLE
 520	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 521#endif
 
 
 
 522	{},
 523};
 524
 525static __init int match_config_table(const efi_guid_t *guid,
 526				     unsigned long table,
 527				     const efi_config_table_type_t *table_types)
 528{
 529	int i;
 530
 531	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 532		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 533			*(table_types[i].ptr) = table;
 534			if (table_types[i].name[0])
 535				pr_cont("%s=0x%lx ",
 536					table_types[i].name, table);
 537			return 1;
 538		}
 539	}
 540
 541	return 0;
 542}
 543
 544int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 545				   int count,
 546				   const efi_config_table_type_t *arch_tables)
 547{
 548	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 549	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 550	const efi_guid_t *guid;
 551	unsigned long table;
 552	int i;
 553
 554	pr_info("");
 555	for (i = 0; i < count; i++) {
 556		if (!IS_ENABLED(CONFIG_X86)) {
 557			guid = &config_tables[i].guid;
 558			table = (unsigned long)config_tables[i].table;
 559		} else if (efi_enabled(EFI_64BIT)) {
 560			guid = &tbl64[i].guid;
 561			table = tbl64[i].table;
 562
 563			if (IS_ENABLED(CONFIG_X86_32) &&
 564			    tbl64[i].table > U32_MAX) {
 565				pr_cont("\n");
 566				pr_err("Table located above 4GB, disabling EFI.\n");
 567				return -EINVAL;
 568			}
 569		} else {
 570			guid = &tbl32[i].guid;
 571			table = tbl32[i].table;
 572		}
 573
 574		if (!match_config_table(guid, table, common_tables) && arch_tables)
 575			match_config_table(guid, table, arch_tables);
 576	}
 577	pr_cont("\n");
 578	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 579
 580	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 581		struct linux_efi_random_seed *seed;
 582		u32 size = 0;
 583
 584		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 585		if (seed != NULL) {
 586			size = READ_ONCE(seed->size);
 587			early_memunmap(seed, sizeof(*seed));
 588		} else {
 589			pr_err("Could not map UEFI random seed!\n");
 590		}
 591		if (size > 0) {
 592			seed = early_memremap(efi_rng_seed,
 593					      sizeof(*seed) + size);
 594			if (seed != NULL) {
 595				pr_notice("seeding entropy pool\n");
 596				add_bootloader_randomness(seed->bits, size);
 597				early_memunmap(seed, sizeof(*seed) + size);
 598			} else {
 599				pr_err("Could not map UEFI random seed!\n");
 600			}
 601		}
 602	}
 603
 604	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 605		efi_memattr_init();
 606
 607	efi_tpm_eventlog_init();
 608
 609	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 610		unsigned long prsv = mem_reserve;
 611
 612		while (prsv) {
 613			struct linux_efi_memreserve *rsv;
 614			u8 *p;
 615
 616			/*
 617			 * Just map a full page: that is what we will get
 618			 * anyway, and it permits us to map the entire entry
 619			 * before knowing its size.
 620			 */
 621			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 622					   PAGE_SIZE);
 623			if (p == NULL) {
 624				pr_err("Could not map UEFI memreserve entry!\n");
 625				return -ENOMEM;
 626			}
 627
 628			rsv = (void *)(p + prsv % PAGE_SIZE);
 629
 630			/* reserve the entry itself */
 631			memblock_reserve(prsv,
 632					 struct_size(rsv, entry, rsv->size));
 633
 634			for (i = 0; i < atomic_read(&rsv->count); i++) {
 635				memblock_reserve(rsv->entry[i].base,
 636						 rsv->entry[i].size);
 637			}
 638
 639			prsv = rsv->next;
 640			early_memunmap(p, PAGE_SIZE);
 641		}
 642	}
 643
 644	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 645		efi_rt_properties_table_t *tbl;
 646
 647		tbl = early_memremap(rt_prop, sizeof(*tbl));
 648		if (tbl) {
 649			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 650			early_memunmap(tbl, sizeof(*tbl));
 651		}
 652	}
 653
 654	return 0;
 655}
 656
 657int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 658				   int min_major_version)
 659{
 660	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 661		pr_err("System table signature incorrect!\n");
 662		return -EINVAL;
 663	}
 664
 665	if ((systab_hdr->revision >> 16) < min_major_version)
 666		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 667		       systab_hdr->revision >> 16,
 668		       systab_hdr->revision & 0xffff,
 669		       min_major_version);
 670
 671	return 0;
 672}
 673
 674#ifndef CONFIG_IA64
 675static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 676						size_t size)
 677{
 678	const efi_char16_t *ret;
 679
 680	ret = early_memremap_ro(fw_vendor, size);
 681	if (!ret)
 682		pr_err("Could not map the firmware vendor!\n");
 683	return ret;
 684}
 685
 686static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 687{
 688	early_memunmap((void *)fw_vendor, size);
 689}
 690#else
 691#define map_fw_vendor(p, s)	__va(p)
 692#define unmap_fw_vendor(v, s)
 693#endif
 694
 695void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 696				     unsigned long fw_vendor)
 697{
 698	char vendor[100] = "unknown";
 699	const efi_char16_t *c16;
 700	size_t i;
 701
 702	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 703	if (c16) {
 704		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 705			vendor[i] = c16[i];
 706		vendor[i] = '\0';
 707
 708		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 709	}
 710
 711	pr_info("EFI v%u.%.02u by %s\n",
 712		systab_hdr->revision >> 16,
 713		systab_hdr->revision & 0xffff,
 714		vendor);
 715}
 716
 717static __initdata char memory_type_name[][20] = {
 718	"Reserved",
 719	"Loader Code",
 720	"Loader Data",
 721	"Boot Code",
 722	"Boot Data",
 723	"Runtime Code",
 724	"Runtime Data",
 725	"Conventional Memory",
 726	"Unusable Memory",
 727	"ACPI Reclaim Memory",
 728	"ACPI Memory NVS",
 729	"Memory Mapped I/O",
 730	"MMIO Port Space",
 731	"PAL Code",
 732	"Persistent Memory",
 733};
 734
 735char * __init efi_md_typeattr_format(char *buf, size_t size,
 736				     const efi_memory_desc_t *md)
 737{
 738	char *pos;
 739	int type_len;
 740	u64 attr;
 741
 742	pos = buf;
 743	if (md->type >= ARRAY_SIZE(memory_type_name))
 744		type_len = snprintf(pos, size, "[type=%u", md->type);
 745	else
 746		type_len = snprintf(pos, size, "[%-*s",
 747				    (int)(sizeof(memory_type_name[0]) - 1),
 748				    memory_type_name[md->type]);
 749	if (type_len >= size)
 750		return buf;
 751
 752	pos += type_len;
 753	size -= type_len;
 754
 755	attr = md->attribute;
 756	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 757		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 758		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 759		     EFI_MEMORY_NV | EFI_MEMORY_SP |
 760		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 761		snprintf(pos, size, "|attr=0x%016llx]",
 762			 (unsigned long long)attr);
 763	else
 764		snprintf(pos, size,
 765			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 766			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
 767			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
 768			 attr & EFI_MEMORY_SP      ? "SP"  : "",
 769			 attr & EFI_MEMORY_NV      ? "NV"  : "",
 770			 attr & EFI_MEMORY_XP      ? "XP"  : "",
 771			 attr & EFI_MEMORY_RP      ? "RP"  : "",
 772			 attr & EFI_MEMORY_WP      ? "WP"  : "",
 773			 attr & EFI_MEMORY_RO      ? "RO"  : "",
 774			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
 775			 attr & EFI_MEMORY_WB      ? "WB"  : "",
 776			 attr & EFI_MEMORY_WT      ? "WT"  : "",
 777			 attr & EFI_MEMORY_WC      ? "WC"  : "",
 778			 attr & EFI_MEMORY_UC      ? "UC"  : "");
 
 779	return buf;
 780}
 781
 782/*
 783 * IA64 has a funky EFI memory map that doesn't work the same way as
 784 * other architectures.
 785 */
 786#ifndef CONFIG_IA64
 787/*
 788 * efi_mem_attributes - lookup memmap attributes for physical address
 789 * @phys_addr: the physical address to lookup
 790 *
 791 * Search in the EFI memory map for the region covering
 792 * @phys_addr. Returns the EFI memory attributes if the region
 793 * was found in the memory map, 0 otherwise.
 794 */
 795u64 efi_mem_attributes(unsigned long phys_addr)
 796{
 797	efi_memory_desc_t *md;
 798
 799	if (!efi_enabled(EFI_MEMMAP))
 800		return 0;
 801
 802	for_each_efi_memory_desc(md) {
 803		if ((md->phys_addr <= phys_addr) &&
 804		    (phys_addr < (md->phys_addr +
 805		    (md->num_pages << EFI_PAGE_SHIFT))))
 806			return md->attribute;
 807	}
 808	return 0;
 809}
 810
 811/*
 812 * efi_mem_type - lookup memmap type for physical address
 813 * @phys_addr: the physical address to lookup
 814 *
 815 * Search in the EFI memory map for the region covering @phys_addr.
 816 * Returns the EFI memory type if the region was found in the memory
 817 * map, -EINVAL otherwise.
 818 */
 819int efi_mem_type(unsigned long phys_addr)
 820{
 821	const efi_memory_desc_t *md;
 822
 823	if (!efi_enabled(EFI_MEMMAP))
 824		return -ENOTSUPP;
 825
 826	for_each_efi_memory_desc(md) {
 827		if ((md->phys_addr <= phys_addr) &&
 828		    (phys_addr < (md->phys_addr +
 829				  (md->num_pages << EFI_PAGE_SHIFT))))
 830			return md->type;
 831	}
 832	return -EINVAL;
 833}
 834#endif
 835
 836int efi_status_to_err(efi_status_t status)
 837{
 838	int err;
 839
 840	switch (status) {
 841	case EFI_SUCCESS:
 842		err = 0;
 843		break;
 844	case EFI_INVALID_PARAMETER:
 845		err = -EINVAL;
 846		break;
 847	case EFI_OUT_OF_RESOURCES:
 848		err = -ENOSPC;
 849		break;
 850	case EFI_DEVICE_ERROR:
 851		err = -EIO;
 852		break;
 853	case EFI_WRITE_PROTECTED:
 854		err = -EROFS;
 855		break;
 856	case EFI_SECURITY_VIOLATION:
 857		err = -EACCES;
 858		break;
 859	case EFI_NOT_FOUND:
 860		err = -ENOENT;
 861		break;
 862	case EFI_ABORTED:
 863		err = -EINTR;
 864		break;
 865	default:
 866		err = -EINVAL;
 867	}
 868
 869	return err;
 870}
 871
 872static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 873static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 874
 875static int __init efi_memreserve_map_root(void)
 876{
 877	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 878		return -ENODEV;
 879
 880	efi_memreserve_root = memremap(mem_reserve,
 881				       sizeof(*efi_memreserve_root),
 882				       MEMREMAP_WB);
 883	if (WARN_ON_ONCE(!efi_memreserve_root))
 884		return -ENOMEM;
 885	return 0;
 886}
 887
 888static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 889{
 890	struct resource *res, *parent;
 
 891
 892	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 893	if (!res)
 894		return -ENOMEM;
 895
 896	res->name	= "reserved";
 897	res->flags	= IORESOURCE_MEM;
 898	res->start	= addr;
 899	res->end	= addr + size - 1;
 900
 901	/* we expect a conflict with a 'System RAM' region */
 902	parent = request_resource_conflict(&iomem_resource, res);
 903	return parent ? request_resource(parent, res) : 0;
 
 
 
 
 
 
 
 
 
 
 904}
 905
 906int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 907{
 908	struct linux_efi_memreserve *rsv;
 909	unsigned long prsv;
 910	int rc, index;
 911
 912	if (efi_memreserve_root == (void *)ULONG_MAX)
 913		return -ENODEV;
 914
 915	if (!efi_memreserve_root) {
 916		rc = efi_memreserve_map_root();
 917		if (rc)
 918			return rc;
 919	}
 920
 921	/* first try to find a slot in an existing linked list entry */
 922	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
 923		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
 924		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
 925		if (index < rsv->size) {
 926			rsv->entry[index].base = addr;
 927			rsv->entry[index].size = size;
 928
 929			memunmap(rsv);
 930			return efi_mem_reserve_iomem(addr, size);
 931		}
 
 932		memunmap(rsv);
 933	}
 934
 935	/* no slot found - allocate a new linked list entry */
 936	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
 937	if (!rsv)
 938		return -ENOMEM;
 939
 940	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
 941	if (rc) {
 942		free_page((unsigned long)rsv);
 943		return rc;
 944	}
 945
 946	/*
 947	 * The memremap() call above assumes that a linux_efi_memreserve entry
 948	 * never crosses a page boundary, so let's ensure that this remains true
 949	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
 950	 * using SZ_4K explicitly in the size calculation below.
 951	 */
 952	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
 953	atomic_set(&rsv->count, 1);
 954	rsv->entry[0].base = addr;
 955	rsv->entry[0].size = size;
 956
 957	spin_lock(&efi_mem_reserve_persistent_lock);
 958	rsv->next = efi_memreserve_root->next;
 959	efi_memreserve_root->next = __pa(rsv);
 960	spin_unlock(&efi_mem_reserve_persistent_lock);
 961
 962	return efi_mem_reserve_iomem(addr, size);
 963}
 964
 965static int __init efi_memreserve_root_init(void)
 966{
 967	if (efi_memreserve_root)
 968		return 0;
 969	if (efi_memreserve_map_root())
 970		efi_memreserve_root = (void *)ULONG_MAX;
 971	return 0;
 972}
 973early_initcall(efi_memreserve_root_init);
 974
 975#ifdef CONFIG_KEXEC
 976static int update_efi_random_seed(struct notifier_block *nb,
 977				  unsigned long code, void *unused)
 978{
 979	struct linux_efi_random_seed *seed;
 980	u32 size = 0;
 981
 982	if (!kexec_in_progress)
 983		return NOTIFY_DONE;
 984
 985	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
 986	if (seed != NULL) {
 987		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
 988		memunmap(seed);
 989	} else {
 990		pr_err("Could not map UEFI random seed!\n");
 991	}
 992	if (size > 0) {
 993		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
 994				MEMREMAP_WB);
 995		if (seed != NULL) {
 996			seed->size = size;
 997			get_random_bytes(seed->bits, seed->size);
 998			memunmap(seed);
 999		} else {
1000			pr_err("Could not map UEFI random seed!\n");
1001		}
1002	}
1003	return NOTIFY_DONE;
1004}
1005
1006static struct notifier_block efi_random_seed_nb = {
1007	.notifier_call = update_efi_random_seed,
1008};
1009
1010static int __init register_update_efi_random_seed(void)
1011{
1012	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1013		return 0;
1014	return register_reboot_notifier(&efi_random_seed_nb);
1015}
1016late_initcall(register_update_efi_random_seed);
1017#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/io.h>
  25#include <linux/kexec.h>
  26#include <linux/platform_device.h>
  27#include <linux/random.h>
  28#include <linux/reboot.h>
  29#include <linux/slab.h>
  30#include <linux/acpi.h>
  31#include <linux/ucs2_string.h>
  32#include <linux/memblock.h>
  33#include <linux/security.h>
  34
  35#include <asm/early_ioremap.h>
  36
  37struct efi __read_mostly efi = {
  38	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  39	.acpi			= EFI_INVALID_TABLE_ADDR,
  40	.acpi20			= EFI_INVALID_TABLE_ADDR,
  41	.smbios			= EFI_INVALID_TABLE_ADDR,
  42	.smbios3		= EFI_INVALID_TABLE_ADDR,
  43	.esrt			= EFI_INVALID_TABLE_ADDR,
  44	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  45	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  46#ifdef CONFIG_LOAD_UEFI_KEYS
  47	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  48#endif
  49};
  50EXPORT_SYMBOL(efi);
  51
  52unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  53static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  54static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  55
  56struct mm_struct efi_mm = {
  57	.mm_rb			= RB_ROOT,
  58	.mm_users		= ATOMIC_INIT(2),
  59	.mm_count		= ATOMIC_INIT(1),
  60	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  61	MMAP_LOCK_INITIALIZER(efi_mm)
  62	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  63	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  64	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  65};
  66
  67struct workqueue_struct *efi_rts_wq;
  68
  69static bool disable_runtime;
  70static int __init setup_noefi(char *arg)
  71{
  72	disable_runtime = true;
  73	return 0;
  74}
  75early_param("noefi", setup_noefi);
  76
  77bool efi_runtime_disabled(void)
  78{
  79	return disable_runtime;
  80}
  81
  82bool __pure __efi_soft_reserve_enabled(void)
  83{
  84	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  85}
  86
  87static int __init parse_efi_cmdline(char *str)
  88{
  89	if (!str) {
  90		pr_warn("need at least one option\n");
  91		return -EINVAL;
  92	}
  93
  94	if (parse_option_str(str, "debug"))
  95		set_bit(EFI_DBG, &efi.flags);
  96
  97	if (parse_option_str(str, "noruntime"))
  98		disable_runtime = true;
  99
 100	if (parse_option_str(str, "nosoftreserve"))
 101		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 102
 103	return 0;
 104}
 105early_param("efi", parse_efi_cmdline);
 106
 107struct kobject *efi_kobj;
 108
 109/*
 110 * Let's not leave out systab information that snuck into
 111 * the efivars driver
 112 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 113 * one value per file rule!
 114 */
 115static ssize_t systab_show(struct kobject *kobj,
 116			   struct kobj_attribute *attr, char *buf)
 117{
 118	char *str = buf;
 119
 120	if (!kobj || !buf)
 121		return -EINVAL;
 122
 123	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 124		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 125	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 126		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 127	/*
 128	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 129	 * SMBIOS3 entry point shall be preferred, so we list it first to
 130	 * let applications stop parsing after the first match.
 131	 */
 132	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 133		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 134	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 135		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 136
 137	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 138		str = efi_systab_show_arch(str);
 139
 140	return str - buf;
 141}
 142
 143static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 144
 145static ssize_t fw_platform_size_show(struct kobject *kobj,
 146				     struct kobj_attribute *attr, char *buf)
 147{
 148	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 149}
 150
 151extern __weak struct kobj_attribute efi_attr_fw_vendor;
 152extern __weak struct kobj_attribute efi_attr_runtime;
 153extern __weak struct kobj_attribute efi_attr_config_table;
 154static struct kobj_attribute efi_attr_fw_platform_size =
 155	__ATTR_RO(fw_platform_size);
 156
 157static struct attribute *efi_subsys_attrs[] = {
 158	&efi_attr_systab.attr,
 159	&efi_attr_fw_platform_size.attr,
 160	&efi_attr_fw_vendor.attr,
 161	&efi_attr_runtime.attr,
 162	&efi_attr_config_table.attr,
 163	NULL,
 164};
 165
 166umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 167				   int n)
 168{
 169	return attr->mode;
 170}
 171
 172static const struct attribute_group efi_subsys_attr_group = {
 173	.attrs = efi_subsys_attrs,
 174	.is_visible = efi_attr_is_visible,
 175};
 176
 177static struct efivars generic_efivars;
 178static struct efivar_operations generic_ops;
 179
 180static int generic_ops_register(void)
 181{
 182	generic_ops.get_variable = efi.get_variable;
 183	generic_ops.get_next_variable = efi.get_next_variable;
 184	generic_ops.query_variable_store = efi_query_variable_store;
 185
 186	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 187		generic_ops.set_variable = efi.set_variable;
 188		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 189	}
 190	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 191}
 192
 193static void generic_ops_unregister(void)
 194{
 195	efivars_unregister(&generic_efivars);
 196}
 197
 198#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 199#define EFIVAR_SSDT_NAME_MAX	16
 200static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 201static int __init efivar_ssdt_setup(char *str)
 202{
 203	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 204
 205	if (ret)
 206		return ret;
 207
 208	if (strlen(str) < sizeof(efivar_ssdt))
 209		memcpy(efivar_ssdt, str, strlen(str));
 210	else
 211		pr_warn("efivar_ssdt: name too long: %s\n", str);
 212	return 0;
 213}
 214__setup("efivar_ssdt=", efivar_ssdt_setup);
 215
 216static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
 217				   unsigned long name_size, void *data)
 218{
 219	struct efivar_entry *entry;
 220	struct list_head *list = data;
 221	char utf8_name[EFIVAR_SSDT_NAME_MAX];
 222	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
 223
 224	ucs2_as_utf8(utf8_name, name, limit - 1);
 225	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 226		return 0;
 227
 228	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 229	if (!entry)
 230		return 0;
 231
 232	memcpy(entry->var.VariableName, name, name_size);
 233	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 234
 235	efivar_entry_add(entry, list);
 236
 237	return 0;
 238}
 239
 240static __init int efivar_ssdt_load(void)
 241{
 242	LIST_HEAD(entries);
 243	struct efivar_entry *entry, *aux;
 244	unsigned long size;
 245	void *data;
 246	int ret;
 247
 248	if (!efivar_ssdt[0])
 249		return 0;
 250
 251	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
 252
 253	list_for_each_entry_safe(entry, aux, &entries, list) {
 254		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
 255			&entry->var.VendorGuid);
 256
 257		list_del(&entry->list);
 258
 259		ret = efivar_entry_size(entry, &size);
 260		if (ret) {
 261			pr_err("failed to get var size\n");
 262			goto free_entry;
 263		}
 264
 265		data = kmalloc(size, GFP_KERNEL);
 266		if (!data) {
 267			ret = -ENOMEM;
 268			goto free_entry;
 269		}
 270
 271		ret = efivar_entry_get(entry, NULL, &size, data);
 272		if (ret) {
 273			pr_err("failed to get var data\n");
 274			goto free_data;
 275		}
 276
 277		ret = acpi_load_table(data, NULL);
 278		if (ret) {
 279			pr_err("failed to load table: %d\n", ret);
 280			goto free_data;
 281		}
 282
 283		goto free_entry;
 284
 285free_data:
 286		kfree(data);
 287
 288free_entry:
 289		kfree(entry);
 290	}
 291
 292	return ret;
 293}
 294#else
 295static inline int efivar_ssdt_load(void) { return 0; }
 296#endif
 297
 298#ifdef CONFIG_DEBUG_FS
 299
 300#define EFI_DEBUGFS_MAX_BLOBS 32
 301
 302static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 303
 304static void __init efi_debugfs_init(void)
 305{
 306	struct dentry *efi_debugfs;
 307	efi_memory_desc_t *md;
 308	char name[32];
 309	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 310	int i = 0;
 311
 312	efi_debugfs = debugfs_create_dir("efi", NULL);
 313	if (IS_ERR_OR_NULL(efi_debugfs))
 314		return;
 315
 316	for_each_efi_memory_desc(md) {
 317		switch (md->type) {
 318		case EFI_BOOT_SERVICES_CODE:
 319			snprintf(name, sizeof(name), "boot_services_code%d",
 320				 type_count[md->type]++);
 321			break;
 322		case EFI_BOOT_SERVICES_DATA:
 323			snprintf(name, sizeof(name), "boot_services_data%d",
 324				 type_count[md->type]++);
 325			break;
 326		default:
 327			continue;
 328		}
 329
 330		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 331			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 332				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 333			break;
 334		}
 335
 336		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 337		debugfs_blob[i].data = memremap(md->phys_addr,
 338						debugfs_blob[i].size,
 339						MEMREMAP_WB);
 340		if (!debugfs_blob[i].data)
 341			continue;
 342
 343		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 344		i++;
 345	}
 346}
 347#else
 348static inline void efi_debugfs_init(void) {}
 349#endif
 350
 351/*
 352 * We register the efi subsystem with the firmware subsystem and the
 353 * efivars subsystem with the efi subsystem, if the system was booted with
 354 * EFI.
 355 */
 356static int __init efisubsys_init(void)
 357{
 358	int error;
 359
 360	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 361		efi.runtime_supported_mask = 0;
 362
 363	if (!efi_enabled(EFI_BOOT))
 364		return 0;
 365
 366	if (efi.runtime_supported_mask) {
 367		/*
 368		 * Since we process only one efi_runtime_service() at a time, an
 369		 * ordered workqueue (which creates only one execution context)
 370		 * should suffice for all our needs.
 371		 */
 372		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 373		if (!efi_rts_wq) {
 374			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 375			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 376			efi.runtime_supported_mask = 0;
 377			return 0;
 378		}
 379	}
 380
 381	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 382		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 383
 384	/* We register the efi directory at /sys/firmware/efi */
 385	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 386	if (!efi_kobj) {
 387		pr_err("efi: Firmware registration failed.\n");
 388		destroy_workqueue(efi_rts_wq);
 389		return -ENOMEM;
 390	}
 391
 392	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 393				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 
 394		error = generic_ops_register();
 395		if (error)
 396			goto err_put;
 397		efivar_ssdt_load();
 398		platform_device_register_simple("efivars", 0, NULL, 0);
 399	}
 400
 401	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 402	if (error) {
 403		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 404		       error);
 405		goto err_unregister;
 406	}
 407
 408	error = efi_runtime_map_init(efi_kobj);
 409	if (error)
 410		goto err_remove_group;
 411
 412	/* and the standard mountpoint for efivarfs */
 413	error = sysfs_create_mount_point(efi_kobj, "efivars");
 414	if (error) {
 415		pr_err("efivars: Subsystem registration failed.\n");
 416		goto err_remove_group;
 417	}
 418
 419	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 420		efi_debugfs_init();
 421
 422	return 0;
 423
 424err_remove_group:
 425	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 426err_unregister:
 427	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 428				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 429		generic_ops_unregister();
 430err_put:
 431	kobject_put(efi_kobj);
 432	destroy_workqueue(efi_rts_wq);
 433	return error;
 434}
 435
 436subsys_initcall(efisubsys_init);
 437
 438/*
 439 * Find the efi memory descriptor for a given physical address.  Given a
 440 * physical address, determine if it exists within an EFI Memory Map entry,
 441 * and if so, populate the supplied memory descriptor with the appropriate
 442 * data.
 443 */
 444int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 445{
 446	efi_memory_desc_t *md;
 447
 448	if (!efi_enabled(EFI_MEMMAP)) {
 449		pr_err_once("EFI_MEMMAP is not enabled.\n");
 450		return -EINVAL;
 451	}
 452
 453	if (!out_md) {
 454		pr_err_once("out_md is null.\n");
 455		return -EINVAL;
 456        }
 457
 458	for_each_efi_memory_desc(md) {
 459		u64 size;
 460		u64 end;
 461
 462		size = md->num_pages << EFI_PAGE_SHIFT;
 463		end = md->phys_addr + size;
 464		if (phys_addr >= md->phys_addr && phys_addr < end) {
 465			memcpy(out_md, md, sizeof(*out_md));
 466			return 0;
 467		}
 468	}
 469	return -ENOENT;
 470}
 471
 472/*
 473 * Calculate the highest address of an efi memory descriptor.
 474 */
 475u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 476{
 477	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 478	u64 end = md->phys_addr + size;
 479	return end;
 480}
 481
 482void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 483
 484/**
 485 * efi_mem_reserve - Reserve an EFI memory region
 486 * @addr: Physical address to reserve
 487 * @size: Size of reservation
 488 *
 489 * Mark a region as reserved from general kernel allocation and
 490 * prevent it being released by efi_free_boot_services().
 491 *
 492 * This function should be called drivers once they've parsed EFI
 493 * configuration tables to figure out where their data lives, e.g.
 494 * efi_esrt_init().
 495 */
 496void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 497{
 498	if (!memblock_is_region_reserved(addr, size))
 499		memblock_reserve(addr, size);
 500
 501	/*
 502	 * Some architectures (x86) reserve all boot services ranges
 503	 * until efi_free_boot_services() because of buggy firmware
 504	 * implementations. This means the above memblock_reserve() is
 505	 * superfluous on x86 and instead what it needs to do is
 506	 * ensure the @start, @size is not freed.
 507	 */
 508	efi_arch_mem_reserve(addr, size);
 509}
 510
 511static const efi_config_table_type_t common_tables[] __initconst = {
 512	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 513	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 514	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 515	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 516	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 517	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 518	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 519	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 520	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 521	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 522	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 523#ifdef CONFIG_EFI_RCI2_TABLE
 524	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 525#endif
 526#ifdef CONFIG_LOAD_UEFI_KEYS
 527	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 528#endif
 529	{},
 530};
 531
 532static __init int match_config_table(const efi_guid_t *guid,
 533				     unsigned long table,
 534				     const efi_config_table_type_t *table_types)
 535{
 536	int i;
 537
 538	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 539		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 540			*(table_types[i].ptr) = table;
 541			if (table_types[i].name[0])
 542				pr_cont("%s=0x%lx ",
 543					table_types[i].name, table);
 544			return 1;
 545		}
 546	}
 547
 548	return 0;
 549}
 550
 551int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 552				   int count,
 553				   const efi_config_table_type_t *arch_tables)
 554{
 555	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 556	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 557	const efi_guid_t *guid;
 558	unsigned long table;
 559	int i;
 560
 561	pr_info("");
 562	for (i = 0; i < count; i++) {
 563		if (!IS_ENABLED(CONFIG_X86)) {
 564			guid = &config_tables[i].guid;
 565			table = (unsigned long)config_tables[i].table;
 566		} else if (efi_enabled(EFI_64BIT)) {
 567			guid = &tbl64[i].guid;
 568			table = tbl64[i].table;
 569
 570			if (IS_ENABLED(CONFIG_X86_32) &&
 571			    tbl64[i].table > U32_MAX) {
 572				pr_cont("\n");
 573				pr_err("Table located above 4GB, disabling EFI.\n");
 574				return -EINVAL;
 575			}
 576		} else {
 577			guid = &tbl32[i].guid;
 578			table = tbl32[i].table;
 579		}
 580
 581		if (!match_config_table(guid, table, common_tables) && arch_tables)
 582			match_config_table(guid, table, arch_tables);
 583	}
 584	pr_cont("\n");
 585	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 586
 587	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 588		struct linux_efi_random_seed *seed;
 589		u32 size = 0;
 590
 591		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 592		if (seed != NULL) {
 593			size = READ_ONCE(seed->size);
 594			early_memunmap(seed, sizeof(*seed));
 595		} else {
 596			pr_err("Could not map UEFI random seed!\n");
 597		}
 598		if (size > 0) {
 599			seed = early_memremap(efi_rng_seed,
 600					      sizeof(*seed) + size);
 601			if (seed != NULL) {
 602				pr_notice("seeding entropy pool\n");
 603				add_bootloader_randomness(seed->bits, size);
 604				early_memunmap(seed, sizeof(*seed) + size);
 605			} else {
 606				pr_err("Could not map UEFI random seed!\n");
 607			}
 608		}
 609	}
 610
 611	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 612		efi_memattr_init();
 613
 614	efi_tpm_eventlog_init();
 615
 616	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 617		unsigned long prsv = mem_reserve;
 618
 619		while (prsv) {
 620			struct linux_efi_memreserve *rsv;
 621			u8 *p;
 622
 623			/*
 624			 * Just map a full page: that is what we will get
 625			 * anyway, and it permits us to map the entire entry
 626			 * before knowing its size.
 627			 */
 628			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 629					   PAGE_SIZE);
 630			if (p == NULL) {
 631				pr_err("Could not map UEFI memreserve entry!\n");
 632				return -ENOMEM;
 633			}
 634
 635			rsv = (void *)(p + prsv % PAGE_SIZE);
 636
 637			/* reserve the entry itself */
 638			memblock_reserve(prsv,
 639					 struct_size(rsv, entry, rsv->size));
 640
 641			for (i = 0; i < atomic_read(&rsv->count); i++) {
 642				memblock_reserve(rsv->entry[i].base,
 643						 rsv->entry[i].size);
 644			}
 645
 646			prsv = rsv->next;
 647			early_memunmap(p, PAGE_SIZE);
 648		}
 649	}
 650
 651	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 652		efi_rt_properties_table_t *tbl;
 653
 654		tbl = early_memremap(rt_prop, sizeof(*tbl));
 655		if (tbl) {
 656			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 657			early_memunmap(tbl, sizeof(*tbl));
 658		}
 659	}
 660
 661	return 0;
 662}
 663
 664int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 665				   int min_major_version)
 666{
 667	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 668		pr_err("System table signature incorrect!\n");
 669		return -EINVAL;
 670	}
 671
 672	if ((systab_hdr->revision >> 16) < min_major_version)
 673		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 674		       systab_hdr->revision >> 16,
 675		       systab_hdr->revision & 0xffff,
 676		       min_major_version);
 677
 678	return 0;
 679}
 680
 681#ifndef CONFIG_IA64
 682static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 683						size_t size)
 684{
 685	const efi_char16_t *ret;
 686
 687	ret = early_memremap_ro(fw_vendor, size);
 688	if (!ret)
 689		pr_err("Could not map the firmware vendor!\n");
 690	return ret;
 691}
 692
 693static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 694{
 695	early_memunmap((void *)fw_vendor, size);
 696}
 697#else
 698#define map_fw_vendor(p, s)	__va(p)
 699#define unmap_fw_vendor(v, s)
 700#endif
 701
 702void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 703				     unsigned long fw_vendor)
 704{
 705	char vendor[100] = "unknown";
 706	const efi_char16_t *c16;
 707	size_t i;
 708
 709	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 710	if (c16) {
 711		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 712			vendor[i] = c16[i];
 713		vendor[i] = '\0';
 714
 715		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 716	}
 717
 718	pr_info("EFI v%u.%.02u by %s\n",
 719		systab_hdr->revision >> 16,
 720		systab_hdr->revision & 0xffff,
 721		vendor);
 722}
 723
 724static __initdata char memory_type_name[][13] = {
 725	"Reserved",
 726	"Loader Code",
 727	"Loader Data",
 728	"Boot Code",
 729	"Boot Data",
 730	"Runtime Code",
 731	"Runtime Data",
 732	"Conventional",
 733	"Unusable",
 734	"ACPI Reclaim",
 735	"ACPI Mem NVS",
 736	"MMIO",
 737	"MMIO Port",
 738	"PAL Code",
 739	"Persistent",
 740};
 741
 742char * __init efi_md_typeattr_format(char *buf, size_t size,
 743				     const efi_memory_desc_t *md)
 744{
 745	char *pos;
 746	int type_len;
 747	u64 attr;
 748
 749	pos = buf;
 750	if (md->type >= ARRAY_SIZE(memory_type_name))
 751		type_len = snprintf(pos, size, "[type=%u", md->type);
 752	else
 753		type_len = snprintf(pos, size, "[%-*s",
 754				    (int)(sizeof(memory_type_name[0]) - 1),
 755				    memory_type_name[md->type]);
 756	if (type_len >= size)
 757		return buf;
 758
 759	pos += type_len;
 760	size -= type_len;
 761
 762	attr = md->attribute;
 763	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 764		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 765		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 766		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 767		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 768		snprintf(pos, size, "|attr=0x%016llx]",
 769			 (unsigned long long)attr);
 770	else
 771		snprintf(pos, size,
 772			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 773			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 774			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 775			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 776			 attr & EFI_MEMORY_SP			? "SP"  : "",
 777			 attr & EFI_MEMORY_NV			? "NV"  : "",
 778			 attr & EFI_MEMORY_XP			? "XP"  : "",
 779			 attr & EFI_MEMORY_RP			? "RP"  : "",
 780			 attr & EFI_MEMORY_WP			? "WP"  : "",
 781			 attr & EFI_MEMORY_RO			? "RO"  : "",
 782			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 783			 attr & EFI_MEMORY_WB			? "WB"  : "",
 784			 attr & EFI_MEMORY_WT			? "WT"  : "",
 785			 attr & EFI_MEMORY_WC			? "WC"  : "",
 786			 attr & EFI_MEMORY_UC			? "UC"  : "");
 787	return buf;
 788}
 789
 790/*
 791 * IA64 has a funky EFI memory map that doesn't work the same way as
 792 * other architectures.
 793 */
 794#ifndef CONFIG_IA64
 795/*
 796 * efi_mem_attributes - lookup memmap attributes for physical address
 797 * @phys_addr: the physical address to lookup
 798 *
 799 * Search in the EFI memory map for the region covering
 800 * @phys_addr. Returns the EFI memory attributes if the region
 801 * was found in the memory map, 0 otherwise.
 802 */
 803u64 efi_mem_attributes(unsigned long phys_addr)
 804{
 805	efi_memory_desc_t *md;
 806
 807	if (!efi_enabled(EFI_MEMMAP))
 808		return 0;
 809
 810	for_each_efi_memory_desc(md) {
 811		if ((md->phys_addr <= phys_addr) &&
 812		    (phys_addr < (md->phys_addr +
 813		    (md->num_pages << EFI_PAGE_SHIFT))))
 814			return md->attribute;
 815	}
 816	return 0;
 817}
 818
 819/*
 820 * efi_mem_type - lookup memmap type for physical address
 821 * @phys_addr: the physical address to lookup
 822 *
 823 * Search in the EFI memory map for the region covering @phys_addr.
 824 * Returns the EFI memory type if the region was found in the memory
 825 * map, -EINVAL otherwise.
 826 */
 827int efi_mem_type(unsigned long phys_addr)
 828{
 829	const efi_memory_desc_t *md;
 830
 831	if (!efi_enabled(EFI_MEMMAP))
 832		return -ENOTSUPP;
 833
 834	for_each_efi_memory_desc(md) {
 835		if ((md->phys_addr <= phys_addr) &&
 836		    (phys_addr < (md->phys_addr +
 837				  (md->num_pages << EFI_PAGE_SHIFT))))
 838			return md->type;
 839	}
 840	return -EINVAL;
 841}
 842#endif
 843
 844int efi_status_to_err(efi_status_t status)
 845{
 846	int err;
 847
 848	switch (status) {
 849	case EFI_SUCCESS:
 850		err = 0;
 851		break;
 852	case EFI_INVALID_PARAMETER:
 853		err = -EINVAL;
 854		break;
 855	case EFI_OUT_OF_RESOURCES:
 856		err = -ENOSPC;
 857		break;
 858	case EFI_DEVICE_ERROR:
 859		err = -EIO;
 860		break;
 861	case EFI_WRITE_PROTECTED:
 862		err = -EROFS;
 863		break;
 864	case EFI_SECURITY_VIOLATION:
 865		err = -EACCES;
 866		break;
 867	case EFI_NOT_FOUND:
 868		err = -ENOENT;
 869		break;
 870	case EFI_ABORTED:
 871		err = -EINTR;
 872		break;
 873	default:
 874		err = -EINVAL;
 875	}
 876
 877	return err;
 878}
 879
 880static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 881static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 882
 883static int __init efi_memreserve_map_root(void)
 884{
 885	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 886		return -ENODEV;
 887
 888	efi_memreserve_root = memremap(mem_reserve,
 889				       sizeof(*efi_memreserve_root),
 890				       MEMREMAP_WB);
 891	if (WARN_ON_ONCE(!efi_memreserve_root))
 892		return -ENOMEM;
 893	return 0;
 894}
 895
 896static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 897{
 898	struct resource *res, *parent;
 899	int ret;
 900
 901	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 902	if (!res)
 903		return -ENOMEM;
 904
 905	res->name	= "reserved";
 906	res->flags	= IORESOURCE_MEM;
 907	res->start	= addr;
 908	res->end	= addr + size - 1;
 909
 910	/* we expect a conflict with a 'System RAM' region */
 911	parent = request_resource_conflict(&iomem_resource, res);
 912	ret = parent ? request_resource(parent, res) : 0;
 913
 914	/*
 915	 * Given that efi_mem_reserve_iomem() can be called at any
 916	 * time, only call memblock_reserve() if the architecture
 917	 * keeps the infrastructure around.
 918	 */
 919	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 920		memblock_reserve(addr, size);
 921
 922	return ret;
 923}
 924
 925int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 926{
 927	struct linux_efi_memreserve *rsv;
 928	unsigned long prsv;
 929	int rc, index;
 930
 931	if (efi_memreserve_root == (void *)ULONG_MAX)
 932		return -ENODEV;
 933
 934	if (!efi_memreserve_root) {
 935		rc = efi_memreserve_map_root();
 936		if (rc)
 937			return rc;
 938	}
 939
 940	/* first try to find a slot in an existing linked list entry */
 941	for (prsv = efi_memreserve_root->next; prsv; ) {
 942		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
 943		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
 944		if (index < rsv->size) {
 945			rsv->entry[index].base = addr;
 946			rsv->entry[index].size = size;
 947
 948			memunmap(rsv);
 949			return efi_mem_reserve_iomem(addr, size);
 950		}
 951		prsv = rsv->next;
 952		memunmap(rsv);
 953	}
 954
 955	/* no slot found - allocate a new linked list entry */
 956	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
 957	if (!rsv)
 958		return -ENOMEM;
 959
 960	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
 961	if (rc) {
 962		free_page((unsigned long)rsv);
 963		return rc;
 964	}
 965
 966	/*
 967	 * The memremap() call above assumes that a linux_efi_memreserve entry
 968	 * never crosses a page boundary, so let's ensure that this remains true
 969	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
 970	 * using SZ_4K explicitly in the size calculation below.
 971	 */
 972	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
 973	atomic_set(&rsv->count, 1);
 974	rsv->entry[0].base = addr;
 975	rsv->entry[0].size = size;
 976
 977	spin_lock(&efi_mem_reserve_persistent_lock);
 978	rsv->next = efi_memreserve_root->next;
 979	efi_memreserve_root->next = __pa(rsv);
 980	spin_unlock(&efi_mem_reserve_persistent_lock);
 981
 982	return efi_mem_reserve_iomem(addr, size);
 983}
 984
 985static int __init efi_memreserve_root_init(void)
 986{
 987	if (efi_memreserve_root)
 988		return 0;
 989	if (efi_memreserve_map_root())
 990		efi_memreserve_root = (void *)ULONG_MAX;
 991	return 0;
 992}
 993early_initcall(efi_memreserve_root_init);
 994
 995#ifdef CONFIG_KEXEC
 996static int update_efi_random_seed(struct notifier_block *nb,
 997				  unsigned long code, void *unused)
 998{
 999	struct linux_efi_random_seed *seed;
1000	u32 size = 0;
1001
1002	if (!kexec_in_progress)
1003		return NOTIFY_DONE;
1004
1005	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1006	if (seed != NULL) {
1007		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1008		memunmap(seed);
1009	} else {
1010		pr_err("Could not map UEFI random seed!\n");
1011	}
1012	if (size > 0) {
1013		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1014				MEMREMAP_WB);
1015		if (seed != NULL) {
1016			seed->size = size;
1017			get_random_bytes(seed->bits, seed->size);
1018			memunmap(seed);
1019		} else {
1020			pr_err("Could not map UEFI random seed!\n");
1021		}
1022	}
1023	return NOTIFY_DONE;
1024}
1025
1026static struct notifier_block efi_random_seed_nb = {
1027	.notifier_call = update_efi_random_seed,
1028};
1029
1030static int __init register_update_efi_random_seed(void)
1031{
1032	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1033		return 0;
1034	return register_reboot_notifier(&efi_random_seed_nb);
1035}
1036late_initcall(register_update_efi_random_seed);
1037#endif