Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_device.h>
  13#include <linux/cpumask.h>
  14#include <linux/slab.h>
  15#include <linux/interrupt.h>
  16#include <linux/crypto.h>
  17#include <crypto/md5.h>
  18#include <crypto/sha.h>
  19#include <crypto/aes.h>
  20#include <crypto/internal/des.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/sched.h>
  24
  25#include <crypto/internal/hash.h>
  26#include <crypto/internal/skcipher.h>
  27#include <crypto/scatterwalk.h>
  28#include <crypto/algapi.h>
  29
  30#include <asm/hypervisor.h>
  31#include <asm/mdesc.h>
  32
  33#include "n2_core.h"
  34
  35#define DRV_MODULE_NAME		"n2_crypto"
  36#define DRV_MODULE_VERSION	"0.2"
  37#define DRV_MODULE_RELDATE	"July 28, 2011"
  38
  39static const char version[] =
  40	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  41
  42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  43MODULE_DESCRIPTION("Niagara2 Crypto driver");
  44MODULE_LICENSE("GPL");
  45MODULE_VERSION(DRV_MODULE_VERSION);
  46
  47#define N2_CRA_PRIORITY		200
  48
  49static DEFINE_MUTEX(spu_lock);
  50
  51struct spu_queue {
  52	cpumask_t		sharing;
  53	unsigned long		qhandle;
  54
  55	spinlock_t		lock;
  56	u8			q_type;
  57	void			*q;
  58	unsigned long		head;
  59	unsigned long		tail;
  60	struct list_head	jobs;
  61
  62	unsigned long		devino;
  63
  64	char			irq_name[32];
  65	unsigned int		irq;
  66
  67	struct list_head	list;
  68};
  69
  70struct spu_qreg {
  71	struct spu_queue	*queue;
  72	unsigned long		type;
  73};
  74
  75static struct spu_queue **cpu_to_cwq;
  76static struct spu_queue **cpu_to_mau;
  77
  78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  79{
  80	if (q->q_type == HV_NCS_QTYPE_MAU) {
  81		off += MAU_ENTRY_SIZE;
  82		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  83			off = 0;
  84	} else {
  85		off += CWQ_ENTRY_SIZE;
  86		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  87			off = 0;
  88	}
  89	return off;
  90}
  91
  92struct n2_request_common {
  93	struct list_head	entry;
  94	unsigned int		offset;
  95};
  96#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  97
  98/* An async job request records the final tail value it used in
  99 * n2_request_common->offset, test to see if that offset is in
 100 * the range old_head, new_head, inclusive.
 101 */
 102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 103				unsigned long old_head, unsigned long new_head)
 104{
 105	if (old_head <= new_head) {
 106		if (offset > old_head && offset <= new_head)
 107			return true;
 108	} else {
 109		if (offset > old_head || offset <= new_head)
 110			return true;
 111	}
 112	return false;
 113}
 114
 115/* When the HEAD marker is unequal to the actual HEAD, we get
 116 * a virtual device INO interrupt.  We should process the
 117 * completed CWQ entries and adjust the HEAD marker to clear
 118 * the IRQ.
 119 */
 120static irqreturn_t cwq_intr(int irq, void *dev_id)
 121{
 122	unsigned long off, new_head, hv_ret;
 123	struct spu_queue *q = dev_id;
 124
 125	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 126	       smp_processor_id(), q->qhandle);
 127
 128	spin_lock(&q->lock);
 129
 130	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 131
 132	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 133	       smp_processor_id(), new_head, hv_ret);
 134
 135	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 136		/* XXX ... XXX */
 137	}
 138
 139	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 140	if (hv_ret == HV_EOK)
 141		q->head = new_head;
 142
 143	spin_unlock(&q->lock);
 144
 145	return IRQ_HANDLED;
 146}
 147
 148static irqreturn_t mau_intr(int irq, void *dev_id)
 149{
 150	struct spu_queue *q = dev_id;
 151	unsigned long head, hv_ret;
 152
 153	spin_lock(&q->lock);
 154
 155	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 156	       smp_processor_id(), q->qhandle);
 157
 158	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 159
 160	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 161	       smp_processor_id(), head, hv_ret);
 162
 163	sun4v_ncs_sethead_marker(q->qhandle, head);
 164
 165	spin_unlock(&q->lock);
 166
 167	return IRQ_HANDLED;
 168}
 169
 170static void *spu_queue_next(struct spu_queue *q, void *cur)
 171{
 172	return q->q + spu_next_offset(q, cur - q->q);
 173}
 174
 175static int spu_queue_num_free(struct spu_queue *q)
 176{
 177	unsigned long head = q->head;
 178	unsigned long tail = q->tail;
 179	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 180	unsigned long diff;
 181
 182	if (head > tail)
 183		diff = head - tail;
 184	else
 185		diff = (end - tail) + head;
 186
 187	return (diff / CWQ_ENTRY_SIZE) - 1;
 188}
 189
 190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 191{
 192	int avail = spu_queue_num_free(q);
 193
 194	if (avail >= num_entries)
 195		return q->q + q->tail;
 196
 197	return NULL;
 198}
 199
 200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 201{
 202	unsigned long hv_ret, new_tail;
 203
 204	new_tail = spu_next_offset(q, last - q->q);
 205
 206	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 207	if (hv_ret == HV_EOK)
 208		q->tail = new_tail;
 209	return hv_ret;
 210}
 211
 212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 213			     int enc_type, int auth_type,
 214			     unsigned int hash_len,
 215			     bool sfas, bool sob, bool eob, bool encrypt,
 216			     int opcode)
 217{
 218	u64 word = (len - 1) & CONTROL_LEN;
 219
 220	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 221	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 222	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 223	if (sfas)
 224		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 225	if (sob)
 226		word |= CONTROL_START_OF_BLOCK;
 227	if (eob)
 228		word |= CONTROL_END_OF_BLOCK;
 229	if (encrypt)
 230		word |= CONTROL_ENCRYPT;
 231	if (hmac_key_len)
 232		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 233	if (hash_len)
 234		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 235
 236	return word;
 237}
 238
 239#if 0
 240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 241{
 242	if (this_len >= 64 ||
 243	    qp->head != qp->tail)
 244		return true;
 245	return false;
 246}
 247#endif
 248
 249struct n2_ahash_alg {
 250	struct list_head	entry;
 251	const u8		*hash_zero;
 252	const u32		*hash_init;
 253	u8			hw_op_hashsz;
 254	u8			digest_size;
 255	u8			auth_type;
 256	u8			hmac_type;
 257	struct ahash_alg	alg;
 258};
 259
 260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 261{
 262	struct crypto_alg *alg = tfm->__crt_alg;
 263	struct ahash_alg *ahash_alg;
 264
 265	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 266
 267	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 268}
 269
 270struct n2_hmac_alg {
 271	const char		*child_alg;
 272	struct n2_ahash_alg	derived;
 273};
 274
 275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 276{
 277	struct crypto_alg *alg = tfm->__crt_alg;
 278	struct ahash_alg *ahash_alg;
 279
 280	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 281
 282	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 283}
 284
 285struct n2_hash_ctx {
 286	struct crypto_ahash		*fallback_tfm;
 287};
 288
 289#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 290
 291struct n2_hmac_ctx {
 292	struct n2_hash_ctx		base;
 293
 294	struct crypto_shash		*child_shash;
 295
 296	int				hash_key_len;
 297	unsigned char			hash_key[N2_HASH_KEY_MAX];
 298};
 299
 300struct n2_hash_req_ctx {
 301	union {
 302		struct md5_state	md5;
 303		struct sha1_state	sha1;
 304		struct sha256_state	sha256;
 305	} u;
 306
 307	struct ahash_request		fallback_req;
 308};
 309
 310static int n2_hash_async_init(struct ahash_request *req)
 311{
 312	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 313	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 314	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 315
 316	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 317	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 318
 319	return crypto_ahash_init(&rctx->fallback_req);
 320}
 321
 322static int n2_hash_async_update(struct ahash_request *req)
 323{
 324	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 325	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 326	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 327
 328	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 329	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 330	rctx->fallback_req.nbytes = req->nbytes;
 331	rctx->fallback_req.src = req->src;
 332
 333	return crypto_ahash_update(&rctx->fallback_req);
 334}
 335
 336static int n2_hash_async_final(struct ahash_request *req)
 337{
 338	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 339	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 340	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 341
 342	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 343	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 344	rctx->fallback_req.result = req->result;
 345
 346	return crypto_ahash_final(&rctx->fallback_req);
 347}
 348
 349static int n2_hash_async_finup(struct ahash_request *req)
 350{
 351	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 352	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 353	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 354
 355	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 356	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 357	rctx->fallback_req.nbytes = req->nbytes;
 358	rctx->fallback_req.src = req->src;
 359	rctx->fallback_req.result = req->result;
 360
 361	return crypto_ahash_finup(&rctx->fallback_req);
 362}
 363
 364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 365{
 366	return -ENOSYS;
 367}
 368
 369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 370{
 371	return -ENOSYS;
 372}
 373
 374static int n2_hash_cra_init(struct crypto_tfm *tfm)
 375{
 376	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 377	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 378	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 379	struct crypto_ahash *fallback_tfm;
 380	int err;
 381
 382	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 383					  CRYPTO_ALG_NEED_FALLBACK);
 384	if (IS_ERR(fallback_tfm)) {
 385		pr_warn("Fallback driver '%s' could not be loaded!\n",
 386			fallback_driver_name);
 387		err = PTR_ERR(fallback_tfm);
 388		goto out;
 389	}
 390
 391	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 392					 crypto_ahash_reqsize(fallback_tfm)));
 393
 394	ctx->fallback_tfm = fallback_tfm;
 395	return 0;
 396
 397out:
 398	return err;
 399}
 400
 401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 402{
 403	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 404	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 405
 406	crypto_free_ahash(ctx->fallback_tfm);
 407}
 408
 409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 410{
 411	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 412	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 413	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 414	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 415	struct crypto_ahash *fallback_tfm;
 416	struct crypto_shash *child_shash;
 417	int err;
 418
 419	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 420					  CRYPTO_ALG_NEED_FALLBACK);
 421	if (IS_ERR(fallback_tfm)) {
 422		pr_warn("Fallback driver '%s' could not be loaded!\n",
 423			fallback_driver_name);
 424		err = PTR_ERR(fallback_tfm);
 425		goto out;
 426	}
 427
 428	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 429	if (IS_ERR(child_shash)) {
 430		pr_warn("Child shash '%s' could not be loaded!\n",
 431			n2alg->child_alg);
 432		err = PTR_ERR(child_shash);
 433		goto out_free_fallback;
 434	}
 435
 436	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 437					 crypto_ahash_reqsize(fallback_tfm)));
 438
 439	ctx->child_shash = child_shash;
 440	ctx->base.fallback_tfm = fallback_tfm;
 441	return 0;
 442
 443out_free_fallback:
 444	crypto_free_ahash(fallback_tfm);
 445
 446out:
 447	return err;
 448}
 449
 450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 451{
 452	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 453	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 454
 455	crypto_free_ahash(ctx->base.fallback_tfm);
 456	crypto_free_shash(ctx->child_shash);
 457}
 458
 459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 460				unsigned int keylen)
 461{
 462	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 463	struct crypto_shash *child_shash = ctx->child_shash;
 464	struct crypto_ahash *fallback_tfm;
 
 465	int err, bs, ds;
 466
 467	fallback_tfm = ctx->base.fallback_tfm;
 468	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 469	if (err)
 470		return err;
 471
 
 
 472	bs = crypto_shash_blocksize(child_shash);
 473	ds = crypto_shash_digestsize(child_shash);
 474	BUG_ON(ds > N2_HASH_KEY_MAX);
 475	if (keylen > bs) {
 476		err = crypto_shash_tfm_digest(child_shash, key, keylen,
 477					      ctx->hash_key);
 478		if (err)
 479			return err;
 480		keylen = ds;
 481	} else if (keylen <= N2_HASH_KEY_MAX)
 482		memcpy(ctx->hash_key, key, keylen);
 483
 484	ctx->hash_key_len = keylen;
 485
 486	return err;
 487}
 488
 489static unsigned long wait_for_tail(struct spu_queue *qp)
 490{
 491	unsigned long head, hv_ret;
 492
 493	do {
 494		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 495		if (hv_ret != HV_EOK) {
 496			pr_err("Hypervisor error on gethead\n");
 497			break;
 498		}
 499		if (head == qp->tail) {
 500			qp->head = head;
 501			break;
 502		}
 503	} while (1);
 504	return hv_ret;
 505}
 506
 507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 508					      struct cwq_initial_entry *ent)
 509{
 510	unsigned long hv_ret = spu_queue_submit(qp, ent);
 511
 512	if (hv_ret == HV_EOK)
 513		hv_ret = wait_for_tail(qp);
 514
 515	return hv_ret;
 516}
 517
 518static int n2_do_async_digest(struct ahash_request *req,
 519			      unsigned int auth_type, unsigned int digest_size,
 520			      unsigned int result_size, void *hash_loc,
 521			      unsigned long auth_key, unsigned int auth_key_len)
 522{
 523	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 524	struct cwq_initial_entry *ent;
 525	struct crypto_hash_walk walk;
 526	struct spu_queue *qp;
 527	unsigned long flags;
 528	int err = -ENODEV;
 529	int nbytes, cpu;
 530
 531	/* The total effective length of the operation may not
 532	 * exceed 2^16.
 533	 */
 534	if (unlikely(req->nbytes > (1 << 16))) {
 535		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 536		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 537
 538		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 539		rctx->fallback_req.base.flags =
 540			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 541		rctx->fallback_req.nbytes = req->nbytes;
 542		rctx->fallback_req.src = req->src;
 543		rctx->fallback_req.result = req->result;
 544
 545		return crypto_ahash_digest(&rctx->fallback_req);
 546	}
 547
 548	nbytes = crypto_hash_walk_first(req, &walk);
 549
 550	cpu = get_cpu();
 551	qp = cpu_to_cwq[cpu];
 552	if (!qp)
 553		goto out;
 554
 555	spin_lock_irqsave(&qp->lock, flags);
 556
 557	/* XXX can do better, improve this later by doing a by-hand scatterlist
 558	 * XXX walk, etc.
 559	 */
 560	ent = qp->q + qp->tail;
 561
 562	ent->control = control_word_base(nbytes, auth_key_len, 0,
 563					 auth_type, digest_size,
 564					 false, true, false, false,
 565					 OPCODE_INPLACE_BIT |
 566					 OPCODE_AUTH_MAC);
 567	ent->src_addr = __pa(walk.data);
 568	ent->auth_key_addr = auth_key;
 569	ent->auth_iv_addr = __pa(hash_loc);
 570	ent->final_auth_state_addr = 0UL;
 571	ent->enc_key_addr = 0UL;
 572	ent->enc_iv_addr = 0UL;
 573	ent->dest_addr = __pa(hash_loc);
 574
 575	nbytes = crypto_hash_walk_done(&walk, 0);
 576	while (nbytes > 0) {
 577		ent = spu_queue_next(qp, ent);
 578
 579		ent->control = (nbytes - 1);
 580		ent->src_addr = __pa(walk.data);
 581		ent->auth_key_addr = 0UL;
 582		ent->auth_iv_addr = 0UL;
 583		ent->final_auth_state_addr = 0UL;
 584		ent->enc_key_addr = 0UL;
 585		ent->enc_iv_addr = 0UL;
 586		ent->dest_addr = 0UL;
 587
 588		nbytes = crypto_hash_walk_done(&walk, 0);
 589	}
 590	ent->control |= CONTROL_END_OF_BLOCK;
 591
 592	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 593		err = -EINVAL;
 594	else
 595		err = 0;
 596
 597	spin_unlock_irqrestore(&qp->lock, flags);
 598
 599	if (!err)
 600		memcpy(req->result, hash_loc, result_size);
 601out:
 602	put_cpu();
 603
 604	return err;
 605}
 606
 607static int n2_hash_async_digest(struct ahash_request *req)
 608{
 609	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 610	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 611	int ds;
 612
 613	ds = n2alg->digest_size;
 614	if (unlikely(req->nbytes == 0)) {
 615		memcpy(req->result, n2alg->hash_zero, ds);
 616		return 0;
 617	}
 618	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 619
 620	return n2_do_async_digest(req, n2alg->auth_type,
 621				  n2alg->hw_op_hashsz, ds,
 622				  &rctx->u, 0UL, 0);
 623}
 624
 625static int n2_hmac_async_digest(struct ahash_request *req)
 626{
 627	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 628	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 629	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 630	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 631	int ds;
 632
 633	ds = n2alg->derived.digest_size;
 634	if (unlikely(req->nbytes == 0) ||
 635	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 636		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 637		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 638
 639		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 640		rctx->fallback_req.base.flags =
 641			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 642		rctx->fallback_req.nbytes = req->nbytes;
 643		rctx->fallback_req.src = req->src;
 644		rctx->fallback_req.result = req->result;
 645
 646		return crypto_ahash_digest(&rctx->fallback_req);
 647	}
 648	memcpy(&rctx->u, n2alg->derived.hash_init,
 649	       n2alg->derived.hw_op_hashsz);
 650
 651	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 652				  n2alg->derived.hw_op_hashsz, ds,
 653				  &rctx->u,
 654				  __pa(&ctx->hash_key),
 655				  ctx->hash_key_len);
 656}
 657
 658struct n2_skcipher_context {
 659	int			key_len;
 660	int			enc_type;
 661	union {
 662		u8		aes[AES_MAX_KEY_SIZE];
 663		u8		des[DES_KEY_SIZE];
 664		u8		des3[3 * DES_KEY_SIZE];
 665		u8		arc4[258]; /* S-box, X, Y */
 666	} key;
 667};
 668
 669#define N2_CHUNK_ARR_LEN	16
 670
 671struct n2_crypto_chunk {
 672	struct list_head	entry;
 673	unsigned long		iv_paddr : 44;
 674	unsigned long		arr_len : 20;
 675	unsigned long		dest_paddr;
 676	unsigned long		dest_final;
 677	struct {
 678		unsigned long	src_paddr : 44;
 679		unsigned long	src_len : 20;
 680	} arr[N2_CHUNK_ARR_LEN];
 681};
 682
 683struct n2_request_context {
 684	struct skcipher_walk	walk;
 685	struct list_head	chunk_list;
 686	struct n2_crypto_chunk	chunk;
 687	u8			temp_iv[16];
 688};
 689
 690/* The SPU allows some level of flexibility for partial cipher blocks
 691 * being specified in a descriptor.
 692 *
 693 * It merely requires that every descriptor's length field is at least
 694 * as large as the cipher block size.  This means that a cipher block
 695 * can span at most 2 descriptors.  However, this does not allow a
 696 * partial block to span into the final descriptor as that would
 697 * violate the rule (since every descriptor's length must be at lest
 698 * the block size).  So, for example, assuming an 8 byte block size:
 699 *
 700 *	0xe --> 0xa --> 0x8
 701 *
 702 * is a valid length sequence, whereas:
 703 *
 704 *	0xe --> 0xb --> 0x7
 705 *
 706 * is not a valid sequence.
 707 */
 708
 709struct n2_skcipher_alg {
 710	struct list_head	entry;
 711	u8			enc_type;
 712	struct skcipher_alg	skcipher;
 713};
 714
 715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
 716{
 717	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 718
 719	return container_of(alg, struct n2_skcipher_alg, skcipher);
 720}
 721
 722struct n2_skcipher_request_context {
 723	struct skcipher_walk	walk;
 724};
 725
 726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 727			 unsigned int keylen)
 728{
 729	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 730	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 731	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 732
 733	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 734
 735	switch (keylen) {
 736	case AES_KEYSIZE_128:
 737		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 738		break;
 739	case AES_KEYSIZE_192:
 740		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 741		break;
 742	case AES_KEYSIZE_256:
 743		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 744		break;
 745	default:
 
 746		return -EINVAL;
 747	}
 748
 749	ctx->key_len = keylen;
 750	memcpy(ctx->key.aes, key, keylen);
 751	return 0;
 752}
 753
 754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 755			 unsigned int keylen)
 756{
 757	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 758	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 759	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 760	int err;
 761
 762	err = verify_skcipher_des_key(skcipher, key);
 763	if (err)
 764		return err;
 765
 766	ctx->enc_type = n2alg->enc_type;
 767
 768	ctx->key_len = keylen;
 769	memcpy(ctx->key.des, key, keylen);
 770	return 0;
 771}
 772
 773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 774			  unsigned int keylen)
 775{
 776	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 777	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 778	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 779	int err;
 780
 781	err = verify_skcipher_des3_key(skcipher, key);
 782	if (err)
 783		return err;
 784
 785	ctx->enc_type = n2alg->enc_type;
 786
 787	ctx->key_len = keylen;
 788	memcpy(ctx->key.des3, key, keylen);
 789	return 0;
 790}
 791
 792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 793			  unsigned int keylen)
 794{
 795	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 796	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 797	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 798	u8 *s = ctx->key.arc4;
 799	u8 *x = s + 256;
 800	u8 *y = x + 1;
 801	int i, j, k;
 802
 803	ctx->enc_type = n2alg->enc_type;
 804
 805	j = k = 0;
 806	*x = 0;
 807	*y = 0;
 808	for (i = 0; i < 256; i++)
 809		s[i] = i;
 810	for (i = 0; i < 256; i++) {
 811		u8 a = s[i];
 812		j = (j + key[k] + a) & 0xff;
 813		s[i] = s[j];
 814		s[j] = a;
 815		if (++k >= keylen)
 816			k = 0;
 817	}
 818
 819	return 0;
 820}
 821
 822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
 823{
 824	int this_len = nbytes;
 825
 826	this_len -= (nbytes & (block_size - 1));
 827	return this_len > (1 << 16) ? (1 << 16) : this_len;
 828}
 829
 830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
 831			    struct n2_crypto_chunk *cp,
 832			    struct spu_queue *qp, bool encrypt)
 833{
 834	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
 835	struct cwq_initial_entry *ent;
 836	bool in_place;
 837	int i;
 838
 839	ent = spu_queue_alloc(qp, cp->arr_len);
 840	if (!ent) {
 841		pr_info("queue_alloc() of %d fails\n",
 842			cp->arr_len);
 843		return -EBUSY;
 844	}
 845
 846	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 847
 848	ent->control = control_word_base(cp->arr[0].src_len,
 849					 0, ctx->enc_type, 0, 0,
 850					 false, true, false, encrypt,
 851					 OPCODE_ENCRYPT |
 852					 (in_place ? OPCODE_INPLACE_BIT : 0));
 853	ent->src_addr = cp->arr[0].src_paddr;
 854	ent->auth_key_addr = 0UL;
 855	ent->auth_iv_addr = 0UL;
 856	ent->final_auth_state_addr = 0UL;
 857	ent->enc_key_addr = __pa(&ctx->key);
 858	ent->enc_iv_addr = cp->iv_paddr;
 859	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 860
 861	for (i = 1; i < cp->arr_len; i++) {
 862		ent = spu_queue_next(qp, ent);
 863
 864		ent->control = cp->arr[i].src_len - 1;
 865		ent->src_addr = cp->arr[i].src_paddr;
 866		ent->auth_key_addr = 0UL;
 867		ent->auth_iv_addr = 0UL;
 868		ent->final_auth_state_addr = 0UL;
 869		ent->enc_key_addr = 0UL;
 870		ent->enc_iv_addr = 0UL;
 871		ent->dest_addr = 0UL;
 872	}
 873	ent->control |= CONTROL_END_OF_BLOCK;
 874
 875	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 876}
 877
 878static int n2_compute_chunks(struct skcipher_request *req)
 879{
 880	struct n2_request_context *rctx = skcipher_request_ctx(req);
 881	struct skcipher_walk *walk = &rctx->walk;
 882	struct n2_crypto_chunk *chunk;
 883	unsigned long dest_prev;
 884	unsigned int tot_len;
 885	bool prev_in_place;
 886	int err, nbytes;
 887
 888	err = skcipher_walk_async(walk, req);
 
 889	if (err)
 890		return err;
 891
 892	INIT_LIST_HEAD(&rctx->chunk_list);
 893
 894	chunk = &rctx->chunk;
 895	INIT_LIST_HEAD(&chunk->entry);
 896
 897	chunk->iv_paddr = 0UL;
 898	chunk->arr_len = 0;
 899	chunk->dest_paddr = 0UL;
 900
 901	prev_in_place = false;
 902	dest_prev = ~0UL;
 903	tot_len = 0;
 904
 905	while ((nbytes = walk->nbytes) != 0) {
 906		unsigned long dest_paddr, src_paddr;
 907		bool in_place;
 908		int this_len;
 909
 910		src_paddr = (page_to_phys(walk->src.phys.page) +
 911			     walk->src.phys.offset);
 912		dest_paddr = (page_to_phys(walk->dst.phys.page) +
 913			      walk->dst.phys.offset);
 914		in_place = (src_paddr == dest_paddr);
 915		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
 916
 917		if (chunk->arr_len != 0) {
 918			if (in_place != prev_in_place ||
 919			    (!prev_in_place &&
 920			     dest_paddr != dest_prev) ||
 921			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 922			    tot_len + this_len > (1 << 16)) {
 923				chunk->dest_final = dest_prev;
 924				list_add_tail(&chunk->entry,
 925					      &rctx->chunk_list);
 926				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 927				if (!chunk) {
 928					err = -ENOMEM;
 929					break;
 930				}
 931				INIT_LIST_HEAD(&chunk->entry);
 932			}
 933		}
 934		if (chunk->arr_len == 0) {
 935			chunk->dest_paddr = dest_paddr;
 936			tot_len = 0;
 937		}
 938		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 939		chunk->arr[chunk->arr_len].src_len = this_len;
 940		chunk->arr_len++;
 941
 942		dest_prev = dest_paddr + this_len;
 943		prev_in_place = in_place;
 944		tot_len += this_len;
 945
 946		err = skcipher_walk_done(walk, nbytes - this_len);
 947		if (err)
 948			break;
 949	}
 950	if (!err && chunk->arr_len != 0) {
 951		chunk->dest_final = dest_prev;
 952		list_add_tail(&chunk->entry, &rctx->chunk_list);
 953	}
 954
 955	return err;
 956}
 957
 958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
 959{
 960	struct n2_request_context *rctx = skcipher_request_ctx(req);
 961	struct n2_crypto_chunk *c, *tmp;
 962
 963	if (final_iv)
 964		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 965
 
 966	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 967		list_del(&c->entry);
 968		if (unlikely(c != &rctx->chunk))
 969			kfree(c);
 970	}
 971
 972}
 973
 974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
 975{
 976	struct n2_request_context *rctx = skcipher_request_ctx(req);
 977	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 978	int err = n2_compute_chunks(req);
 979	struct n2_crypto_chunk *c, *tmp;
 980	unsigned long flags, hv_ret;
 981	struct spu_queue *qp;
 982
 983	if (err)
 984		return err;
 985
 986	qp = cpu_to_cwq[get_cpu()];
 987	err = -ENODEV;
 988	if (!qp)
 989		goto out;
 990
 991	spin_lock_irqsave(&qp->lock, flags);
 992
 993	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 994		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 995		if (err)
 996			break;
 997		list_del(&c->entry);
 998		if (unlikely(c != &rctx->chunk))
 999			kfree(c);
1000	}
1001	if (!err) {
1002		hv_ret = wait_for_tail(qp);
1003		if (hv_ret != HV_EOK)
1004			err = -EINVAL;
1005	}
1006
1007	spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010	put_cpu();
1011
1012	n2_chunk_complete(req, NULL);
1013	return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018	return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023	return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028	struct n2_request_context *rctx = skcipher_request_ctx(req);
1029	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030	unsigned long flags, hv_ret, iv_paddr;
1031	int err = n2_compute_chunks(req);
1032	struct n2_crypto_chunk *c, *tmp;
1033	struct spu_queue *qp;
1034	void *final_iv_addr;
1035
1036	final_iv_addr = NULL;
1037
1038	if (err)
1039		return err;
1040
1041	qp = cpu_to_cwq[get_cpu()];
1042	err = -ENODEV;
1043	if (!qp)
1044		goto out;
1045
1046	spin_lock_irqsave(&qp->lock, flags);
1047
1048	if (encrypt) {
1049		iv_paddr = __pa(rctx->walk.iv);
1050		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051					 entry) {
1052			c->iv_paddr = iv_paddr;
1053			err = __n2_crypt_chunk(tfm, c, qp, true);
1054			if (err)
1055				break;
1056			iv_paddr = c->dest_final - rctx->walk.blocksize;
1057			list_del(&c->entry);
1058			if (unlikely(c != &rctx->chunk))
1059				kfree(c);
1060		}
1061		final_iv_addr = __va(iv_paddr);
1062	} else {
1063		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064						 entry) {
1065			if (c == &rctx->chunk) {
1066				iv_paddr = __pa(rctx->walk.iv);
1067			} else {
1068				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069					    tmp->arr[tmp->arr_len-1].src_len -
1070					    rctx->walk.blocksize);
1071			}
1072			if (!final_iv_addr) {
1073				unsigned long pa;
1074
1075				pa = (c->arr[c->arr_len-1].src_paddr +
1076				      c->arr[c->arr_len-1].src_len -
1077				      rctx->walk.blocksize);
1078				final_iv_addr = rctx->temp_iv;
1079				memcpy(rctx->temp_iv, __va(pa),
1080				       rctx->walk.blocksize);
1081			}
1082			c->iv_paddr = iv_paddr;
1083			err = __n2_crypt_chunk(tfm, c, qp, false);
1084			if (err)
1085				break;
1086			list_del(&c->entry);
1087			if (unlikely(c != &rctx->chunk))
1088				kfree(c);
1089		}
1090	}
1091	if (!err) {
1092		hv_ret = wait_for_tail(qp);
1093		if (hv_ret != HV_EOK)
1094			err = -EINVAL;
1095	}
1096
1097	spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100	put_cpu();
1101
1102	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103	return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108	return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113	return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117	const char		*name;
1118	const char		*drv_name;
1119	u8			block_size;
1120	u8			enc_type;
1121	struct skcipher_alg	skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125	/* ARC4: only ECB is supported (chaining bits ignored) */
1126	{	.name		= "ecb(arc4)",
1127		.drv_name	= "ecb-arc4",
1128		.block_size	= 1,
1129		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1130				   ENC_TYPE_CHAINING_ECB),
1131		.skcipher	= {
1132			.min_keysize	= 1,
1133			.max_keysize	= 256,
1134			.setkey		= n2_arc4_setkey,
1135			.encrypt	= n2_encrypt_ecb,
1136			.decrypt	= n2_decrypt_ecb,
1137		},
1138	},
1139
1140	/* DES: ECB CBC and CFB are supported */
1141	{	.name		= "ecb(des)",
1142		.drv_name	= "ecb-des",
1143		.block_size	= DES_BLOCK_SIZE,
1144		.enc_type	= (ENC_TYPE_ALG_DES |
1145				   ENC_TYPE_CHAINING_ECB),
1146		.skcipher	= {
1147			.min_keysize	= DES_KEY_SIZE,
1148			.max_keysize	= DES_KEY_SIZE,
1149			.setkey		= n2_des_setkey,
1150			.encrypt	= n2_encrypt_ecb,
1151			.decrypt	= n2_decrypt_ecb,
1152		},
1153	},
1154	{	.name		= "cbc(des)",
1155		.drv_name	= "cbc-des",
1156		.block_size	= DES_BLOCK_SIZE,
1157		.enc_type	= (ENC_TYPE_ALG_DES |
1158				   ENC_TYPE_CHAINING_CBC),
1159		.skcipher	= {
1160			.ivsize		= DES_BLOCK_SIZE,
1161			.min_keysize	= DES_KEY_SIZE,
1162			.max_keysize	= DES_KEY_SIZE,
1163			.setkey		= n2_des_setkey,
1164			.encrypt	= n2_encrypt_chaining,
1165			.decrypt	= n2_decrypt_chaining,
1166		},
1167	},
1168	{	.name		= "cfb(des)",
1169		.drv_name	= "cfb-des",
1170		.block_size	= DES_BLOCK_SIZE,
1171		.enc_type	= (ENC_TYPE_ALG_DES |
1172				   ENC_TYPE_CHAINING_CFB),
1173		.skcipher	= {
1174			.min_keysize	= DES_KEY_SIZE,
1175			.max_keysize	= DES_KEY_SIZE,
1176			.setkey		= n2_des_setkey,
1177			.encrypt	= n2_encrypt_chaining,
1178			.decrypt	= n2_decrypt_chaining,
1179		},
1180	},
1181
1182	/* 3DES: ECB CBC and CFB are supported */
1183	{	.name		= "ecb(des3_ede)",
1184		.drv_name	= "ecb-3des",
1185		.block_size	= DES_BLOCK_SIZE,
1186		.enc_type	= (ENC_TYPE_ALG_3DES |
1187				   ENC_TYPE_CHAINING_ECB),
1188		.skcipher	= {
1189			.min_keysize	= 3 * DES_KEY_SIZE,
1190			.max_keysize	= 3 * DES_KEY_SIZE,
1191			.setkey		= n2_3des_setkey,
1192			.encrypt	= n2_encrypt_ecb,
1193			.decrypt	= n2_decrypt_ecb,
1194		},
1195	},
1196	{	.name		= "cbc(des3_ede)",
1197		.drv_name	= "cbc-3des",
1198		.block_size	= DES_BLOCK_SIZE,
1199		.enc_type	= (ENC_TYPE_ALG_3DES |
1200				   ENC_TYPE_CHAINING_CBC),
1201		.skcipher	= {
1202			.ivsize		= DES_BLOCK_SIZE,
1203			.min_keysize	= 3 * DES_KEY_SIZE,
1204			.max_keysize	= 3 * DES_KEY_SIZE,
1205			.setkey		= n2_3des_setkey,
1206			.encrypt	= n2_encrypt_chaining,
1207			.decrypt	= n2_decrypt_chaining,
1208		},
1209	},
1210	{	.name		= "cfb(des3_ede)",
1211		.drv_name	= "cfb-3des",
1212		.block_size	= DES_BLOCK_SIZE,
1213		.enc_type	= (ENC_TYPE_ALG_3DES |
1214				   ENC_TYPE_CHAINING_CFB),
1215		.skcipher	= {
1216			.min_keysize	= 3 * DES_KEY_SIZE,
1217			.max_keysize	= 3 * DES_KEY_SIZE,
1218			.setkey		= n2_3des_setkey,
1219			.encrypt	= n2_encrypt_chaining,
1220			.decrypt	= n2_decrypt_chaining,
1221		},
1222	},
1223	/* AES: ECB CBC and CTR are supported */
1224	{	.name		= "ecb(aes)",
1225		.drv_name	= "ecb-aes",
1226		.block_size	= AES_BLOCK_SIZE,
1227		.enc_type	= (ENC_TYPE_ALG_AES128 |
1228				   ENC_TYPE_CHAINING_ECB),
1229		.skcipher	= {
1230			.min_keysize	= AES_MIN_KEY_SIZE,
1231			.max_keysize	= AES_MAX_KEY_SIZE,
1232			.setkey		= n2_aes_setkey,
1233			.encrypt	= n2_encrypt_ecb,
1234			.decrypt	= n2_decrypt_ecb,
1235		},
1236	},
1237	{	.name		= "cbc(aes)",
1238		.drv_name	= "cbc-aes",
1239		.block_size	= AES_BLOCK_SIZE,
1240		.enc_type	= (ENC_TYPE_ALG_AES128 |
1241				   ENC_TYPE_CHAINING_CBC),
1242		.skcipher	= {
1243			.ivsize		= AES_BLOCK_SIZE,
1244			.min_keysize	= AES_MIN_KEY_SIZE,
1245			.max_keysize	= AES_MAX_KEY_SIZE,
1246			.setkey		= n2_aes_setkey,
1247			.encrypt	= n2_encrypt_chaining,
1248			.decrypt	= n2_decrypt_chaining,
1249		},
1250	},
1251	{	.name		= "ctr(aes)",
1252		.drv_name	= "ctr-aes",
1253		.block_size	= AES_BLOCK_SIZE,
1254		.enc_type	= (ENC_TYPE_ALG_AES128 |
1255				   ENC_TYPE_CHAINING_COUNTER),
1256		.skcipher	= {
1257			.ivsize		= AES_BLOCK_SIZE,
1258			.min_keysize	= AES_MIN_KEY_SIZE,
1259			.max_keysize	= AES_MAX_KEY_SIZE,
1260			.setkey		= n2_aes_setkey,
1261			.encrypt	= n2_encrypt_chaining,
1262			.decrypt	= n2_encrypt_chaining,
1263		},
1264	},
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272	const char	*name;
1273	const u8	*hash_zero;
1274	const u32	*hash_init;
1275	u8		hw_op_hashsz;
1276	u8		digest_size;
1277	u8		block_size;
1278	u8		auth_type;
1279	u8		hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283	cpu_to_le32(MD5_H0),
1284	cpu_to_le32(MD5_H1),
1285	cpu_to_le32(MD5_H2),
1286	cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301	{ .name		= "md5",
1302	  .hash_zero	= md5_zero_message_hash,
1303	  .hash_init	= n2_md5_init,
1304	  .auth_type	= AUTH_TYPE_MD5,
1305	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1306	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1307	  .digest_size	= MD5_DIGEST_SIZE,
1308	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1309	{ .name		= "sha1",
1310	  .hash_zero	= sha1_zero_message_hash,
1311	  .hash_init	= n2_sha1_init,
1312	  .auth_type	= AUTH_TYPE_SHA1,
1313	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1314	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1315	  .digest_size	= SHA1_DIGEST_SIZE,
1316	  .block_size	= SHA1_BLOCK_SIZE },
1317	{ .name		= "sha256",
1318	  .hash_zero	= sha256_zero_message_hash,
1319	  .hash_init	= n2_sha256_init,
1320	  .auth_type	= AUTH_TYPE_SHA256,
1321	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1322	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1323	  .digest_size	= SHA256_DIGEST_SIZE,
1324	  .block_size	= SHA256_BLOCK_SIZE },
1325	{ .name		= "sha224",
1326	  .hash_zero	= sha224_zero_message_hash,
1327	  .hash_init	= n2_sha224_init,
1328	  .auth_type	= AUTH_TYPE_SHA256,
1329	  .hmac_type	= AUTH_TYPE_RESERVED,
1330	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1331	  .digest_size	= SHA224_DIGEST_SIZE,
1332	  .block_size	= SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344	struct n2_ahash_alg *alg, *alg_tmp;
1345	struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348		crypto_unregister_skcipher(&skcipher->skcipher);
1349		list_del(&skcipher->entry);
1350		kfree(skcipher);
1351	}
1352	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353		crypto_unregister_ahash(&hmac->derived.alg);
1354		list_del(&hmac->derived.entry);
1355		kfree(hmac);
1356	}
1357	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358		crypto_unregister_ahash(&alg->alg);
1359		list_del(&alg->entry);
1360		kfree(alg);
1361	}
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367	return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373	struct skcipher_alg *alg;
1374	int err;
1375
1376	if (!p)
1377		return -ENOMEM;
1378
1379	alg = &p->skcipher;
1380	*alg = tmpl->skcipher;
1381
1382	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384	alg->base.cra_priority = N2_CRA_PRIORITY;
1385	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386			      CRYPTO_ALG_ALLOCATES_MEMORY;
1387	alg->base.cra_blocksize = tmpl->block_size;
1388	p->enc_type = tmpl->enc_type;
1389	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390	alg->base.cra_module = THIS_MODULE;
1391	alg->init = n2_skcipher_init_tfm;
 
 
1392
1393	list_add(&p->entry, &skcipher_algs);
1394	err = crypto_register_skcipher(alg);
1395	if (err) {
1396		pr_err("%s alg registration failed\n", alg->base.cra_name);
1397		list_del(&p->entry);
1398		kfree(p);
1399	} else {
1400		pr_info("%s alg registered\n", alg->base.cra_name);
1401	}
1402	return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408	struct ahash_alg *ahash;
1409	struct crypto_alg *base;
1410	int err;
1411
1412	if (!p)
1413		return -ENOMEM;
1414
1415	p->child_alg = n2ahash->alg.halg.base.cra_name;
1416	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417	INIT_LIST_HEAD(&p->derived.entry);
1418
1419	ahash = &p->derived.alg;
1420	ahash->digest = n2_hmac_async_digest;
1421	ahash->setkey = n2_hmac_async_setkey;
1422
1423	base = &ahash->halg.base;
1424	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428	base->cra_init = n2_hmac_cra_init;
1429	base->cra_exit = n2_hmac_cra_exit;
1430
1431	list_add(&p->derived.entry, &hmac_algs);
1432	err = crypto_register_ahash(ahash);
1433	if (err) {
1434		pr_err("%s alg registration failed\n", base->cra_name);
1435		list_del(&p->derived.entry);
1436		kfree(p);
1437	} else {
1438		pr_info("%s alg registered\n", base->cra_name);
1439	}
1440	return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446	struct hash_alg_common *halg;
1447	struct crypto_alg *base;
1448	struct ahash_alg *ahash;
1449	int err;
1450
1451	if (!p)
1452		return -ENOMEM;
1453
1454	p->hash_zero = tmpl->hash_zero;
1455	p->hash_init = tmpl->hash_init;
1456	p->auth_type = tmpl->auth_type;
1457	p->hmac_type = tmpl->hmac_type;
1458	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459	p->digest_size = tmpl->digest_size;
1460
1461	ahash = &p->alg;
1462	ahash->init = n2_hash_async_init;
1463	ahash->update = n2_hash_async_update;
1464	ahash->final = n2_hash_async_final;
1465	ahash->finup = n2_hash_async_finup;
1466	ahash->digest = n2_hash_async_digest;
1467	ahash->export = n2_hash_async_noexport;
1468	ahash->import = n2_hash_async_noimport;
1469
1470	halg = &ahash->halg;
1471	halg->digestsize = tmpl->digest_size;
1472
1473	base = &halg->base;
1474	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476	base->cra_priority = N2_CRA_PRIORITY;
1477	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478			  CRYPTO_ALG_NEED_FALLBACK;
1479	base->cra_blocksize = tmpl->block_size;
1480	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481	base->cra_module = THIS_MODULE;
1482	base->cra_init = n2_hash_cra_init;
1483	base->cra_exit = n2_hash_cra_exit;
1484
1485	list_add(&p->entry, &ahash_algs);
1486	err = crypto_register_ahash(ahash);
1487	if (err) {
1488		pr_err("%s alg registration failed\n", base->cra_name);
1489		list_del(&p->entry);
1490		kfree(p);
1491	} else {
1492		pr_info("%s alg registered\n", base->cra_name);
1493	}
1494	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495		err = __n2_register_one_hmac(p);
1496	return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501	int i, err = 0;
1502
1503	mutex_lock(&spu_lock);
1504	if (algs_registered++)
1505		goto out;
1506
1507	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508		err = __n2_register_one_ahash(&hash_tmpls[i]);
1509		if (err) {
1510			__n2_unregister_algs();
1511			goto out;
1512		}
1513	}
1514	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516		if (err) {
1517			__n2_unregister_algs();
1518			goto out;
1519		}
1520	}
1521
1522out:
1523	mutex_unlock(&spu_lock);
1524	return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529	mutex_lock(&spu_lock);
1530	if (!--algs_registered)
1531		__n2_unregister_algs();
1532	mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino.  This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546			     unsigned long dev_ino)
1547{
1548	const unsigned int *dev_intrs;
1549	unsigned int intr;
1550	int i;
1551
1552	for (i = 0; i < ip->num_intrs; i++) {
1553		if (ip->ino_table[i].ino == dev_ino)
1554			break;
1555	}
1556	if (i == ip->num_intrs)
1557		return -ENODEV;
1558
1559	intr = ip->ino_table[i].intr;
1560
1561	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562	if (!dev_intrs)
1563		return -ENODEV;
1564
1565	for (i = 0; i < dev->archdata.num_irqs; i++) {
1566		if (dev_intrs[i] == intr)
1567			return i;
1568	}
1569
1570	return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574		       const char *irq_name, struct spu_queue *p,
1575		       irq_handler_t handler)
1576{
1577	unsigned long herr;
1578	int index;
1579
1580	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581	if (herr)
1582		return -EINVAL;
1583
1584	index = find_devino_index(dev, ip, p->devino);
1585	if (index < 0)
1586		return index;
1587
1588	p->irq = dev->archdata.irqs[index];
1589
1590	sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592	return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604	kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611			kmem_cache_create("mau_queue",
1612					  (MAU_NUM_ENTRIES *
1613					   MAU_ENTRY_SIZE),
1614					  MAU_ENTRY_SIZE, 0, NULL);
1615	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616		return -ENOMEM;
1617
1618	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620			kmem_cache_create("cwq_queue",
1621					  (CWQ_NUM_ENTRIES *
1622					   CWQ_ENTRY_SIZE),
1623					  CWQ_ENTRY_SIZE, 0, NULL);
1624	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627		return -ENOMEM;
1628	}
1629	return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642	struct spu_qreg *qr = arg;
1643	struct spu_queue *p = qr->queue;
1644	unsigned long q_type = qr->type;
1645	unsigned long hv_ret;
1646
1647	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648				 CWQ_NUM_ENTRIES, &p->qhandle);
1649	if (!hv_ret)
1650		sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652	return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658	struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665	int err;
1666
1667	p->q = new_queue(p->q_type);
1668	if (!p->q)
1669		return -ENOMEM;
1670
1671	err = spu_queue_register(p, p->q_type);
1672	if (err) {
1673		free_queue(p->q, p->q_type);
1674		p->q = NULL;
1675	}
1676
1677	return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682	unsigned long hv_ret;
1683
1684	if (!p->q)
1685		return;
1686
1687	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689	if (!hv_ret)
1690		free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695	struct spu_queue *p, *n;
1696
1697	list_for_each_entry_safe(p, n, list, list) {
1698		int i;
1699
1700		for (i = 0; i < NR_CPUS; i++) {
1701			if (cpu_to_cwq[i] == p)
1702				cpu_to_cwq[i] = NULL;
1703		}
1704
1705		if (p->irq) {
1706			free_irq(p->irq, p);
1707			p->irq = 0;
1708		}
1709		spu_queue_destroy(p);
1710		list_del(&p->list);
1711		kfree(p);
1712	}
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719			       struct platform_device *dev,
1720			       u64 node, struct spu_queue *p,
1721			       struct spu_queue **table)
1722{
1723	u64 arc;
1724
1725	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726		u64 tgt = mdesc_arc_target(mdesc, arc);
1727		const char *name = mdesc_node_name(mdesc, tgt);
1728		const u64 *id;
1729
1730		if (strcmp(name, "cpu"))
1731			continue;
1732		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733		if (table[*id] != NULL) {
1734			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735				dev->dev.of_node);
1736			return -EINVAL;
1737		}
1738		cpumask_set_cpu(*id, &p->sharing);
1739		table[*id] = p;
1740	}
1741	return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746			    struct platform_device *dev, struct mdesc_handle *mdesc,
1747			    u64 node, const char *iname, unsigned long q_type,
1748			    irq_handler_t handler, struct spu_queue **table)
1749{
1750	struct spu_queue *p;
1751	int err;
1752
1753	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754	if (!p) {
1755		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756			dev->dev.of_node);
1757		return -ENOMEM;
1758	}
1759
1760	cpumask_clear(&p->sharing);
1761	spin_lock_init(&p->lock);
1762	p->q_type = q_type;
1763	INIT_LIST_HEAD(&p->jobs);
1764	list_add(&p->list, list);
1765
1766	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767	if (err)
1768		return err;
1769
1770	err = spu_queue_setup(p);
1771	if (err)
1772		return err;
1773
1774	return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778			  struct spu_mdesc_info *ip, struct list_head *list,
1779			  const char *exec_name, unsigned long q_type,
1780			  irq_handler_t handler, struct spu_queue **table)
1781{
1782	int err = 0;
1783	u64 node;
1784
1785	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786		const char *type;
1787
1788		type = mdesc_get_property(mdesc, node, "type", NULL);
1789		if (!type || strcmp(type, exec_name))
1790			continue;
1791
1792		err = handle_exec_unit(ip, list, dev, mdesc, node,
1793				       exec_name, q_type, handler, table);
1794		if (err) {
1795			spu_list_destroy(list);
1796			break;
1797		}
1798	}
1799
1800	return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804			 struct spu_mdesc_info *ip)
1805{
1806	const u64 *ino;
1807	int ino_len;
1808	int i;
1809
1810	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811	if (!ino) {
1812		printk("NO 'ino'\n");
1813		return -ENODEV;
1814	}
1815
1816	ip->num_intrs = ino_len / sizeof(u64);
1817	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818				 ip->num_intrs),
1819				GFP_KERNEL);
1820	if (!ip->ino_table)
1821		return -ENOMEM;
1822
1823	for (i = 0; i < ip->num_intrs; i++) {
1824		struct ino_blob *b = &ip->ino_table[i];
1825		b->intr = i + 1;
1826		b->ino = ino[i];
1827	}
1828
1829	return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833				struct platform_device *dev,
1834				struct spu_mdesc_info *ip,
1835				const char *node_name)
1836{
1837	const unsigned int *reg;
1838	u64 node;
1839
1840	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841	if (!reg)
1842		return -ENODEV;
1843
1844	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845		const char *name;
1846		const u64 *chdl;
1847
1848		name = mdesc_get_property(mdesc, node, "name", NULL);
1849		if (!name || strcmp(name, node_name))
1850			continue;
1851		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852		if (!chdl || (*chdl != *reg))
1853			continue;
1854		ip->cfg_handle = *chdl;
1855		return get_irq_props(mdesc, node, ip);
1856	}
1857
1858	return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866	int err;
1867
1868	n2_spu_hvapi_major = 2;
1869	n2_spu_hvapi_minor = 0;
1870
1871	err = sun4v_hvapi_register(HV_GRP_NCS,
1872				   n2_spu_hvapi_major,
1873				   &n2_spu_hvapi_minor);
1874
1875	if (!err)
1876		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877			n2_spu_hvapi_major,
1878			n2_spu_hvapi_minor);
1879
1880	return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885	sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892	int err = 0;
1893
1894	mutex_lock(&spu_lock);
1895
1896	if (global_ref++)
1897		goto out;
1898
1899	err = n2_spu_hvapi_register();
1900	if (err)
1901		goto out;
1902
1903	err = queue_cache_init();
1904	if (err)
1905		goto out_hvapi_release;
1906
1907	err = -ENOMEM;
1908	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909			     GFP_KERNEL);
1910	if (!cpu_to_cwq)
1911		goto out_queue_cache_destroy;
1912
1913	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914			     GFP_KERNEL);
1915	if (!cpu_to_mau)
1916		goto out_free_cwq_table;
1917
1918	err = 0;
1919
1920out:
1921	if (err)
1922		global_ref--;
1923	mutex_unlock(&spu_lock);
1924	return err;
1925
1926out_free_cwq_table:
1927	kfree(cpu_to_cwq);
1928	cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931	queue_cache_destroy();
1932
1933out_hvapi_release:
1934	n2_spu_hvapi_unregister();
1935	goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940	mutex_lock(&spu_lock);
1941	if (!--global_ref) {
1942		kfree(cpu_to_cwq);
1943		cpu_to_cwq = NULL;
1944
1945		kfree(cpu_to_mau);
1946		cpu_to_mau = NULL;
1947
1948		queue_cache_destroy();
1949		n2_spu_hvapi_unregister();
1950	}
1951	mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958	if (np)
1959		INIT_LIST_HEAD(&np->cwq_list);
1960
1961	return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966	kfree(np->cwq_info.ino_table);
1967	np->cwq_info.ino_table = NULL;
1968
1969	kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974	static int n2_spu_version_printed;
1975
1976	if (n2_spu_version_printed++ == 0)
1977		pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982	struct mdesc_handle *mdesc;
1983	struct n2_crypto *np;
1984	int err;
1985
1986	n2_spu_driver_version();
1987
1988	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990	np = alloc_n2cp();
1991	if (!np) {
1992		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993			dev->dev.of_node);
1994		return -ENOMEM;
1995	}
1996
1997	err = grab_global_resources();
1998	if (err) {
1999		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000			dev->dev.of_node);
2001		goto out_free_n2cp;
2002	}
2003
2004	mdesc = mdesc_grab();
2005
2006	if (!mdesc) {
2007		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008			dev->dev.of_node);
2009		err = -ENODEV;
2010		goto out_free_global;
2011	}
2012	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013	if (err) {
2014		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015			dev->dev.of_node);
2016		mdesc_release(mdesc);
2017		goto out_free_global;
2018	}
2019
2020	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022			     cpu_to_cwq);
2023	mdesc_release(mdesc);
2024
2025	if (err) {
2026		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027			dev->dev.of_node);
2028		goto out_free_global;
2029	}
2030
2031	err = n2_register_algs();
2032	if (err) {
2033		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034			dev->dev.of_node);
2035		goto out_free_spu_list;
2036	}
2037
2038	dev_set_drvdata(&dev->dev, np);
2039
2040	return 0;
2041
2042out_free_spu_list:
2043	spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046	release_global_resources();
2047
2048out_free_n2cp:
2049	free_n2cp(np);
2050
2051	return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058	n2_unregister_algs();
2059
2060	spu_list_destroy(&np->cwq_list);
2061
2062	release_global_resources();
2063
2064	free_n2cp(np);
2065
2066	return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073	if (mp)
2074		INIT_LIST_HEAD(&mp->mau_list);
2075
2076	return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081	kfree(mp->mau_info.ino_table);
2082	mp->mau_info.ino_table = NULL;
2083
2084	kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089	struct mdesc_handle *mdesc;
2090	struct n2_mau *mp;
2091	int err;
2092
2093	n2_spu_driver_version();
2094
2095	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097	mp = alloc_ncp();
2098	if (!mp) {
2099		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100			dev->dev.of_node);
2101		return -ENOMEM;
2102	}
2103
2104	err = grab_global_resources();
2105	if (err) {
2106		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107			dev->dev.of_node);
2108		goto out_free_ncp;
2109	}
2110
2111	mdesc = mdesc_grab();
2112
2113	if (!mdesc) {
2114		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115			dev->dev.of_node);
2116		err = -ENODEV;
2117		goto out_free_global;
2118	}
2119
2120	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121	if (err) {
2122		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123			dev->dev.of_node);
2124		mdesc_release(mdesc);
2125		goto out_free_global;
2126	}
2127
2128	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130			     cpu_to_mau);
2131	mdesc_release(mdesc);
2132
2133	if (err) {
2134		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135			dev->dev.of_node);
2136		goto out_free_global;
2137	}
2138
2139	dev_set_drvdata(&dev->dev, mp);
2140
2141	return 0;
2142
2143out_free_global:
2144	release_global_resources();
2145
2146out_free_ncp:
2147	free_ncp(mp);
2148
2149	return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156	spu_list_destroy(&mp->mau_list);
2157
2158	release_global_resources();
2159
2160	free_ncp(mp);
2161
2162	return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166	{
2167		.name = "n2cp",
2168		.compatible = "SUNW,n2-cwq",
2169	},
2170	{
2171		.name = "n2cp",
2172		.compatible = "SUNW,vf-cwq",
2173	},
2174	{
2175		.name = "n2cp",
2176		.compatible = "SUNW,kt-cwq",
2177	},
2178	{},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184	.driver = {
2185		.name		=	"n2cp",
2186		.of_match_table	=	n2_crypto_match,
2187	},
2188	.probe		=	n2_crypto_probe,
2189	.remove		=	n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193	{
2194		.name = "ncp",
2195		.compatible = "SUNW,n2-mau",
2196	},
2197	{
2198		.name = "ncp",
2199		.compatible = "SUNW,vf-mau",
2200	},
2201	{
2202		.name = "ncp",
2203		.compatible = "SUNW,kt-mau",
2204	},
2205	{},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211	.driver = {
2212		.name		=	"ncp",
2213		.of_match_table	=	n2_mau_match,
2214	},
2215	.probe		=	n2_mau_probe,
2216	.remove		=	n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220	&n2_crypto_driver,
2221	&n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_device.h>
  13#include <linux/cpumask.h>
  14#include <linux/slab.h>
  15#include <linux/interrupt.h>
  16#include <linux/crypto.h>
  17#include <crypto/md5.h>
  18#include <crypto/sha.h>
  19#include <crypto/aes.h>
  20#include <crypto/internal/des.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/sched.h>
  24
  25#include <crypto/internal/hash.h>
 
  26#include <crypto/scatterwalk.h>
  27#include <crypto/algapi.h>
  28
  29#include <asm/hypervisor.h>
  30#include <asm/mdesc.h>
  31
  32#include "n2_core.h"
  33
  34#define DRV_MODULE_NAME		"n2_crypto"
  35#define DRV_MODULE_VERSION	"0.2"
  36#define DRV_MODULE_RELDATE	"July 28, 2011"
  37
  38static const char version[] =
  39	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  40
  41MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  42MODULE_DESCRIPTION("Niagara2 Crypto driver");
  43MODULE_LICENSE("GPL");
  44MODULE_VERSION(DRV_MODULE_VERSION);
  45
  46#define N2_CRA_PRIORITY		200
  47
  48static DEFINE_MUTEX(spu_lock);
  49
  50struct spu_queue {
  51	cpumask_t		sharing;
  52	unsigned long		qhandle;
  53
  54	spinlock_t		lock;
  55	u8			q_type;
  56	void			*q;
  57	unsigned long		head;
  58	unsigned long		tail;
  59	struct list_head	jobs;
  60
  61	unsigned long		devino;
  62
  63	char			irq_name[32];
  64	unsigned int		irq;
  65
  66	struct list_head	list;
  67};
  68
  69struct spu_qreg {
  70	struct spu_queue	*queue;
  71	unsigned long		type;
  72};
  73
  74static struct spu_queue **cpu_to_cwq;
  75static struct spu_queue **cpu_to_mau;
  76
  77static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  78{
  79	if (q->q_type == HV_NCS_QTYPE_MAU) {
  80		off += MAU_ENTRY_SIZE;
  81		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  82			off = 0;
  83	} else {
  84		off += CWQ_ENTRY_SIZE;
  85		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  86			off = 0;
  87	}
  88	return off;
  89}
  90
  91struct n2_request_common {
  92	struct list_head	entry;
  93	unsigned int		offset;
  94};
  95#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  96
  97/* An async job request records the final tail value it used in
  98 * n2_request_common->offset, test to see if that offset is in
  99 * the range old_head, new_head, inclusive.
 100 */
 101static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 102				unsigned long old_head, unsigned long new_head)
 103{
 104	if (old_head <= new_head) {
 105		if (offset > old_head && offset <= new_head)
 106			return true;
 107	} else {
 108		if (offset > old_head || offset <= new_head)
 109			return true;
 110	}
 111	return false;
 112}
 113
 114/* When the HEAD marker is unequal to the actual HEAD, we get
 115 * a virtual device INO interrupt.  We should process the
 116 * completed CWQ entries and adjust the HEAD marker to clear
 117 * the IRQ.
 118 */
 119static irqreturn_t cwq_intr(int irq, void *dev_id)
 120{
 121	unsigned long off, new_head, hv_ret;
 122	struct spu_queue *q = dev_id;
 123
 124	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 125	       smp_processor_id(), q->qhandle);
 126
 127	spin_lock(&q->lock);
 128
 129	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 130
 131	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 132	       smp_processor_id(), new_head, hv_ret);
 133
 134	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 135		/* XXX ... XXX */
 136	}
 137
 138	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 139	if (hv_ret == HV_EOK)
 140		q->head = new_head;
 141
 142	spin_unlock(&q->lock);
 143
 144	return IRQ_HANDLED;
 145}
 146
 147static irqreturn_t mau_intr(int irq, void *dev_id)
 148{
 149	struct spu_queue *q = dev_id;
 150	unsigned long head, hv_ret;
 151
 152	spin_lock(&q->lock);
 153
 154	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 155	       smp_processor_id(), q->qhandle);
 156
 157	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 158
 159	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 160	       smp_processor_id(), head, hv_ret);
 161
 162	sun4v_ncs_sethead_marker(q->qhandle, head);
 163
 164	spin_unlock(&q->lock);
 165
 166	return IRQ_HANDLED;
 167}
 168
 169static void *spu_queue_next(struct spu_queue *q, void *cur)
 170{
 171	return q->q + spu_next_offset(q, cur - q->q);
 172}
 173
 174static int spu_queue_num_free(struct spu_queue *q)
 175{
 176	unsigned long head = q->head;
 177	unsigned long tail = q->tail;
 178	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 179	unsigned long diff;
 180
 181	if (head > tail)
 182		diff = head - tail;
 183	else
 184		diff = (end - tail) + head;
 185
 186	return (diff / CWQ_ENTRY_SIZE) - 1;
 187}
 188
 189static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 190{
 191	int avail = spu_queue_num_free(q);
 192
 193	if (avail >= num_entries)
 194		return q->q + q->tail;
 195
 196	return NULL;
 197}
 198
 199static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 200{
 201	unsigned long hv_ret, new_tail;
 202
 203	new_tail = spu_next_offset(q, last - q->q);
 204
 205	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 206	if (hv_ret == HV_EOK)
 207		q->tail = new_tail;
 208	return hv_ret;
 209}
 210
 211static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 212			     int enc_type, int auth_type,
 213			     unsigned int hash_len,
 214			     bool sfas, bool sob, bool eob, bool encrypt,
 215			     int opcode)
 216{
 217	u64 word = (len - 1) & CONTROL_LEN;
 218
 219	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 220	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 221	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 222	if (sfas)
 223		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 224	if (sob)
 225		word |= CONTROL_START_OF_BLOCK;
 226	if (eob)
 227		word |= CONTROL_END_OF_BLOCK;
 228	if (encrypt)
 229		word |= CONTROL_ENCRYPT;
 230	if (hmac_key_len)
 231		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 232	if (hash_len)
 233		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 234
 235	return word;
 236}
 237
 238#if 0
 239static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 240{
 241	if (this_len >= 64 ||
 242	    qp->head != qp->tail)
 243		return true;
 244	return false;
 245}
 246#endif
 247
 248struct n2_ahash_alg {
 249	struct list_head	entry;
 250	const u8		*hash_zero;
 251	const u32		*hash_init;
 252	u8			hw_op_hashsz;
 253	u8			digest_size;
 254	u8			auth_type;
 255	u8			hmac_type;
 256	struct ahash_alg	alg;
 257};
 258
 259static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 260{
 261	struct crypto_alg *alg = tfm->__crt_alg;
 262	struct ahash_alg *ahash_alg;
 263
 264	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 265
 266	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 267}
 268
 269struct n2_hmac_alg {
 270	const char		*child_alg;
 271	struct n2_ahash_alg	derived;
 272};
 273
 274static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 275{
 276	struct crypto_alg *alg = tfm->__crt_alg;
 277	struct ahash_alg *ahash_alg;
 278
 279	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 280
 281	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 282}
 283
 284struct n2_hash_ctx {
 285	struct crypto_ahash		*fallback_tfm;
 286};
 287
 288#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 289
 290struct n2_hmac_ctx {
 291	struct n2_hash_ctx		base;
 292
 293	struct crypto_shash		*child_shash;
 294
 295	int				hash_key_len;
 296	unsigned char			hash_key[N2_HASH_KEY_MAX];
 297};
 298
 299struct n2_hash_req_ctx {
 300	union {
 301		struct md5_state	md5;
 302		struct sha1_state	sha1;
 303		struct sha256_state	sha256;
 304	} u;
 305
 306	struct ahash_request		fallback_req;
 307};
 308
 309static int n2_hash_async_init(struct ahash_request *req)
 310{
 311	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 312	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 313	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 314
 315	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 316	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 317
 318	return crypto_ahash_init(&rctx->fallback_req);
 319}
 320
 321static int n2_hash_async_update(struct ahash_request *req)
 322{
 323	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 324	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 325	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 326
 327	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 328	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 329	rctx->fallback_req.nbytes = req->nbytes;
 330	rctx->fallback_req.src = req->src;
 331
 332	return crypto_ahash_update(&rctx->fallback_req);
 333}
 334
 335static int n2_hash_async_final(struct ahash_request *req)
 336{
 337	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 338	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 339	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 340
 341	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 342	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 343	rctx->fallback_req.result = req->result;
 344
 345	return crypto_ahash_final(&rctx->fallback_req);
 346}
 347
 348static int n2_hash_async_finup(struct ahash_request *req)
 349{
 350	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 351	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 352	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 353
 354	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 355	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 356	rctx->fallback_req.nbytes = req->nbytes;
 357	rctx->fallback_req.src = req->src;
 358	rctx->fallback_req.result = req->result;
 359
 360	return crypto_ahash_finup(&rctx->fallback_req);
 361}
 362
 363static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 364{
 365	return -ENOSYS;
 366}
 367
 368static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 369{
 370	return -ENOSYS;
 371}
 372
 373static int n2_hash_cra_init(struct crypto_tfm *tfm)
 374{
 375	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 376	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 377	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 378	struct crypto_ahash *fallback_tfm;
 379	int err;
 380
 381	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 382					  CRYPTO_ALG_NEED_FALLBACK);
 383	if (IS_ERR(fallback_tfm)) {
 384		pr_warning("Fallback driver '%s' could not be loaded!\n",
 385			   fallback_driver_name);
 386		err = PTR_ERR(fallback_tfm);
 387		goto out;
 388	}
 389
 390	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 391					 crypto_ahash_reqsize(fallback_tfm)));
 392
 393	ctx->fallback_tfm = fallback_tfm;
 394	return 0;
 395
 396out:
 397	return err;
 398}
 399
 400static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 401{
 402	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 403	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 404
 405	crypto_free_ahash(ctx->fallback_tfm);
 406}
 407
 408static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 409{
 410	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 411	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 412	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 413	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 414	struct crypto_ahash *fallback_tfm;
 415	struct crypto_shash *child_shash;
 416	int err;
 417
 418	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 419					  CRYPTO_ALG_NEED_FALLBACK);
 420	if (IS_ERR(fallback_tfm)) {
 421		pr_warning("Fallback driver '%s' could not be loaded!\n",
 422			   fallback_driver_name);
 423		err = PTR_ERR(fallback_tfm);
 424		goto out;
 425	}
 426
 427	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 428	if (IS_ERR(child_shash)) {
 429		pr_warning("Child shash '%s' could not be loaded!\n",
 430			   n2alg->child_alg);
 431		err = PTR_ERR(child_shash);
 432		goto out_free_fallback;
 433	}
 434
 435	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 436					 crypto_ahash_reqsize(fallback_tfm)));
 437
 438	ctx->child_shash = child_shash;
 439	ctx->base.fallback_tfm = fallback_tfm;
 440	return 0;
 441
 442out_free_fallback:
 443	crypto_free_ahash(fallback_tfm);
 444
 445out:
 446	return err;
 447}
 448
 449static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 450{
 451	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 452	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 453
 454	crypto_free_ahash(ctx->base.fallback_tfm);
 455	crypto_free_shash(ctx->child_shash);
 456}
 457
 458static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 459				unsigned int keylen)
 460{
 461	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 462	struct crypto_shash *child_shash = ctx->child_shash;
 463	struct crypto_ahash *fallback_tfm;
 464	SHASH_DESC_ON_STACK(shash, child_shash);
 465	int err, bs, ds;
 466
 467	fallback_tfm = ctx->base.fallback_tfm;
 468	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 469	if (err)
 470		return err;
 471
 472	shash->tfm = child_shash;
 473
 474	bs = crypto_shash_blocksize(child_shash);
 475	ds = crypto_shash_digestsize(child_shash);
 476	BUG_ON(ds > N2_HASH_KEY_MAX);
 477	if (keylen > bs) {
 478		err = crypto_shash_digest(shash, key, keylen,
 479					  ctx->hash_key);
 480		if (err)
 481			return err;
 482		keylen = ds;
 483	} else if (keylen <= N2_HASH_KEY_MAX)
 484		memcpy(ctx->hash_key, key, keylen);
 485
 486	ctx->hash_key_len = keylen;
 487
 488	return err;
 489}
 490
 491static unsigned long wait_for_tail(struct spu_queue *qp)
 492{
 493	unsigned long head, hv_ret;
 494
 495	do {
 496		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 497		if (hv_ret != HV_EOK) {
 498			pr_err("Hypervisor error on gethead\n");
 499			break;
 500		}
 501		if (head == qp->tail) {
 502			qp->head = head;
 503			break;
 504		}
 505	} while (1);
 506	return hv_ret;
 507}
 508
 509static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 510					      struct cwq_initial_entry *ent)
 511{
 512	unsigned long hv_ret = spu_queue_submit(qp, ent);
 513
 514	if (hv_ret == HV_EOK)
 515		hv_ret = wait_for_tail(qp);
 516
 517	return hv_ret;
 518}
 519
 520static int n2_do_async_digest(struct ahash_request *req,
 521			      unsigned int auth_type, unsigned int digest_size,
 522			      unsigned int result_size, void *hash_loc,
 523			      unsigned long auth_key, unsigned int auth_key_len)
 524{
 525	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 526	struct cwq_initial_entry *ent;
 527	struct crypto_hash_walk walk;
 528	struct spu_queue *qp;
 529	unsigned long flags;
 530	int err = -ENODEV;
 531	int nbytes, cpu;
 532
 533	/* The total effective length of the operation may not
 534	 * exceed 2^16.
 535	 */
 536	if (unlikely(req->nbytes > (1 << 16))) {
 537		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 538		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 539
 540		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 541		rctx->fallback_req.base.flags =
 542			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 543		rctx->fallback_req.nbytes = req->nbytes;
 544		rctx->fallback_req.src = req->src;
 545		rctx->fallback_req.result = req->result;
 546
 547		return crypto_ahash_digest(&rctx->fallback_req);
 548	}
 549
 550	nbytes = crypto_hash_walk_first(req, &walk);
 551
 552	cpu = get_cpu();
 553	qp = cpu_to_cwq[cpu];
 554	if (!qp)
 555		goto out;
 556
 557	spin_lock_irqsave(&qp->lock, flags);
 558
 559	/* XXX can do better, improve this later by doing a by-hand scatterlist
 560	 * XXX walk, etc.
 561	 */
 562	ent = qp->q + qp->tail;
 563
 564	ent->control = control_word_base(nbytes, auth_key_len, 0,
 565					 auth_type, digest_size,
 566					 false, true, false, false,
 567					 OPCODE_INPLACE_BIT |
 568					 OPCODE_AUTH_MAC);
 569	ent->src_addr = __pa(walk.data);
 570	ent->auth_key_addr = auth_key;
 571	ent->auth_iv_addr = __pa(hash_loc);
 572	ent->final_auth_state_addr = 0UL;
 573	ent->enc_key_addr = 0UL;
 574	ent->enc_iv_addr = 0UL;
 575	ent->dest_addr = __pa(hash_loc);
 576
 577	nbytes = crypto_hash_walk_done(&walk, 0);
 578	while (nbytes > 0) {
 579		ent = spu_queue_next(qp, ent);
 580
 581		ent->control = (nbytes - 1);
 582		ent->src_addr = __pa(walk.data);
 583		ent->auth_key_addr = 0UL;
 584		ent->auth_iv_addr = 0UL;
 585		ent->final_auth_state_addr = 0UL;
 586		ent->enc_key_addr = 0UL;
 587		ent->enc_iv_addr = 0UL;
 588		ent->dest_addr = 0UL;
 589
 590		nbytes = crypto_hash_walk_done(&walk, 0);
 591	}
 592	ent->control |= CONTROL_END_OF_BLOCK;
 593
 594	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 595		err = -EINVAL;
 596	else
 597		err = 0;
 598
 599	spin_unlock_irqrestore(&qp->lock, flags);
 600
 601	if (!err)
 602		memcpy(req->result, hash_loc, result_size);
 603out:
 604	put_cpu();
 605
 606	return err;
 607}
 608
 609static int n2_hash_async_digest(struct ahash_request *req)
 610{
 611	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 612	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 613	int ds;
 614
 615	ds = n2alg->digest_size;
 616	if (unlikely(req->nbytes == 0)) {
 617		memcpy(req->result, n2alg->hash_zero, ds);
 618		return 0;
 619	}
 620	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 621
 622	return n2_do_async_digest(req, n2alg->auth_type,
 623				  n2alg->hw_op_hashsz, ds,
 624				  &rctx->u, 0UL, 0);
 625}
 626
 627static int n2_hmac_async_digest(struct ahash_request *req)
 628{
 629	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 630	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 631	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 632	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 633	int ds;
 634
 635	ds = n2alg->derived.digest_size;
 636	if (unlikely(req->nbytes == 0) ||
 637	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 638		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 639		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 640
 641		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 642		rctx->fallback_req.base.flags =
 643			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 644		rctx->fallback_req.nbytes = req->nbytes;
 645		rctx->fallback_req.src = req->src;
 646		rctx->fallback_req.result = req->result;
 647
 648		return crypto_ahash_digest(&rctx->fallback_req);
 649	}
 650	memcpy(&rctx->u, n2alg->derived.hash_init,
 651	       n2alg->derived.hw_op_hashsz);
 652
 653	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 654				  n2alg->derived.hw_op_hashsz, ds,
 655				  &rctx->u,
 656				  __pa(&ctx->hash_key),
 657				  ctx->hash_key_len);
 658}
 659
 660struct n2_cipher_context {
 661	int			key_len;
 662	int			enc_type;
 663	union {
 664		u8		aes[AES_MAX_KEY_SIZE];
 665		u8		des[DES_KEY_SIZE];
 666		u8		des3[3 * DES_KEY_SIZE];
 667		u8		arc4[258]; /* S-box, X, Y */
 668	} key;
 669};
 670
 671#define N2_CHUNK_ARR_LEN	16
 672
 673struct n2_crypto_chunk {
 674	struct list_head	entry;
 675	unsigned long		iv_paddr : 44;
 676	unsigned long		arr_len : 20;
 677	unsigned long		dest_paddr;
 678	unsigned long		dest_final;
 679	struct {
 680		unsigned long	src_paddr : 44;
 681		unsigned long	src_len : 20;
 682	} arr[N2_CHUNK_ARR_LEN];
 683};
 684
 685struct n2_request_context {
 686	struct ablkcipher_walk	walk;
 687	struct list_head	chunk_list;
 688	struct n2_crypto_chunk	chunk;
 689	u8			temp_iv[16];
 690};
 691
 692/* The SPU allows some level of flexibility for partial cipher blocks
 693 * being specified in a descriptor.
 694 *
 695 * It merely requires that every descriptor's length field is at least
 696 * as large as the cipher block size.  This means that a cipher block
 697 * can span at most 2 descriptors.  However, this does not allow a
 698 * partial block to span into the final descriptor as that would
 699 * violate the rule (since every descriptor's length must be at lest
 700 * the block size).  So, for example, assuming an 8 byte block size:
 701 *
 702 *	0xe --> 0xa --> 0x8
 703 *
 704 * is a valid length sequence, whereas:
 705 *
 706 *	0xe --> 0xb --> 0x7
 707 *
 708 * is not a valid sequence.
 709 */
 710
 711struct n2_cipher_alg {
 712	struct list_head	entry;
 713	u8			enc_type;
 714	struct crypto_alg	alg;
 715};
 716
 717static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 718{
 719	struct crypto_alg *alg = tfm->__crt_alg;
 720
 721	return container_of(alg, struct n2_cipher_alg, alg);
 722}
 723
 724struct n2_cipher_request_context {
 725	struct ablkcipher_walk	walk;
 726};
 727
 728static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 729			 unsigned int keylen)
 730{
 731	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 732	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 733	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 734
 735	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 736
 737	switch (keylen) {
 738	case AES_KEYSIZE_128:
 739		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 740		break;
 741	case AES_KEYSIZE_192:
 742		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 743		break;
 744	case AES_KEYSIZE_256:
 745		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 746		break;
 747	default:
 748		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 749		return -EINVAL;
 750	}
 751
 752	ctx->key_len = keylen;
 753	memcpy(ctx->key.aes, key, keylen);
 754	return 0;
 755}
 756
 757static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 758			 unsigned int keylen)
 759{
 760	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 761	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 762	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 763	int err;
 764
 765	err = verify_ablkcipher_des_key(cipher, key);
 766	if (err)
 767		return err;
 768
 769	ctx->enc_type = n2alg->enc_type;
 770
 771	ctx->key_len = keylen;
 772	memcpy(ctx->key.des, key, keylen);
 773	return 0;
 774}
 775
 776static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 777			  unsigned int keylen)
 778{
 779	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 780	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 781	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 782	int err;
 783
 784	err = verify_ablkcipher_des3_key(cipher, key);
 785	if (err)
 786		return err;
 787
 788	ctx->enc_type = n2alg->enc_type;
 789
 790	ctx->key_len = keylen;
 791	memcpy(ctx->key.des3, key, keylen);
 792	return 0;
 793}
 794
 795static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 796			  unsigned int keylen)
 797{
 798	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 799	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 800	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 801	u8 *s = ctx->key.arc4;
 802	u8 *x = s + 256;
 803	u8 *y = x + 1;
 804	int i, j, k;
 805
 806	ctx->enc_type = n2alg->enc_type;
 807
 808	j = k = 0;
 809	*x = 0;
 810	*y = 0;
 811	for (i = 0; i < 256; i++)
 812		s[i] = i;
 813	for (i = 0; i < 256; i++) {
 814		u8 a = s[i];
 815		j = (j + key[k] + a) & 0xff;
 816		s[i] = s[j];
 817		s[j] = a;
 818		if (++k >= keylen)
 819			k = 0;
 820	}
 821
 822	return 0;
 823}
 824
 825static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 826{
 827	int this_len = nbytes;
 828
 829	this_len -= (nbytes & (block_size - 1));
 830	return this_len > (1 << 16) ? (1 << 16) : this_len;
 831}
 832
 833static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 
 834			    struct spu_queue *qp, bool encrypt)
 835{
 836	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 837	struct cwq_initial_entry *ent;
 838	bool in_place;
 839	int i;
 840
 841	ent = spu_queue_alloc(qp, cp->arr_len);
 842	if (!ent) {
 843		pr_info("queue_alloc() of %d fails\n",
 844			cp->arr_len);
 845		return -EBUSY;
 846	}
 847
 848	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 849
 850	ent->control = control_word_base(cp->arr[0].src_len,
 851					 0, ctx->enc_type, 0, 0,
 852					 false, true, false, encrypt,
 853					 OPCODE_ENCRYPT |
 854					 (in_place ? OPCODE_INPLACE_BIT : 0));
 855	ent->src_addr = cp->arr[0].src_paddr;
 856	ent->auth_key_addr = 0UL;
 857	ent->auth_iv_addr = 0UL;
 858	ent->final_auth_state_addr = 0UL;
 859	ent->enc_key_addr = __pa(&ctx->key);
 860	ent->enc_iv_addr = cp->iv_paddr;
 861	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 862
 863	for (i = 1; i < cp->arr_len; i++) {
 864		ent = spu_queue_next(qp, ent);
 865
 866		ent->control = cp->arr[i].src_len - 1;
 867		ent->src_addr = cp->arr[i].src_paddr;
 868		ent->auth_key_addr = 0UL;
 869		ent->auth_iv_addr = 0UL;
 870		ent->final_auth_state_addr = 0UL;
 871		ent->enc_key_addr = 0UL;
 872		ent->enc_iv_addr = 0UL;
 873		ent->dest_addr = 0UL;
 874	}
 875	ent->control |= CONTROL_END_OF_BLOCK;
 876
 877	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 878}
 879
 880static int n2_compute_chunks(struct ablkcipher_request *req)
 881{
 882	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 883	struct ablkcipher_walk *walk = &rctx->walk;
 884	struct n2_crypto_chunk *chunk;
 885	unsigned long dest_prev;
 886	unsigned int tot_len;
 887	bool prev_in_place;
 888	int err, nbytes;
 889
 890	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 891	err = ablkcipher_walk_phys(req, walk);
 892	if (err)
 893		return err;
 894
 895	INIT_LIST_HEAD(&rctx->chunk_list);
 896
 897	chunk = &rctx->chunk;
 898	INIT_LIST_HEAD(&chunk->entry);
 899
 900	chunk->iv_paddr = 0UL;
 901	chunk->arr_len = 0;
 902	chunk->dest_paddr = 0UL;
 903
 904	prev_in_place = false;
 905	dest_prev = ~0UL;
 906	tot_len = 0;
 907
 908	while ((nbytes = walk->nbytes) != 0) {
 909		unsigned long dest_paddr, src_paddr;
 910		bool in_place;
 911		int this_len;
 912
 913		src_paddr = (page_to_phys(walk->src.page) +
 914			     walk->src.offset);
 915		dest_paddr = (page_to_phys(walk->dst.page) +
 916			      walk->dst.offset);
 917		in_place = (src_paddr == dest_paddr);
 918		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 919
 920		if (chunk->arr_len != 0) {
 921			if (in_place != prev_in_place ||
 922			    (!prev_in_place &&
 923			     dest_paddr != dest_prev) ||
 924			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 925			    tot_len + this_len > (1 << 16)) {
 926				chunk->dest_final = dest_prev;
 927				list_add_tail(&chunk->entry,
 928					      &rctx->chunk_list);
 929				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 930				if (!chunk) {
 931					err = -ENOMEM;
 932					break;
 933				}
 934				INIT_LIST_HEAD(&chunk->entry);
 935			}
 936		}
 937		if (chunk->arr_len == 0) {
 938			chunk->dest_paddr = dest_paddr;
 939			tot_len = 0;
 940		}
 941		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 942		chunk->arr[chunk->arr_len].src_len = this_len;
 943		chunk->arr_len++;
 944
 945		dest_prev = dest_paddr + this_len;
 946		prev_in_place = in_place;
 947		tot_len += this_len;
 948
 949		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 950		if (err)
 951			break;
 952	}
 953	if (!err && chunk->arr_len != 0) {
 954		chunk->dest_final = dest_prev;
 955		list_add_tail(&chunk->entry, &rctx->chunk_list);
 956	}
 957
 958	return err;
 959}
 960
 961static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 962{
 963	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 964	struct n2_crypto_chunk *c, *tmp;
 965
 966	if (final_iv)
 967		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 968
 969	ablkcipher_walk_complete(&rctx->walk);
 970	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 971		list_del(&c->entry);
 972		if (unlikely(c != &rctx->chunk))
 973			kfree(c);
 974	}
 975
 976}
 977
 978static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 979{
 980	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 981	struct crypto_tfm *tfm = req->base.tfm;
 982	int err = n2_compute_chunks(req);
 983	struct n2_crypto_chunk *c, *tmp;
 984	unsigned long flags, hv_ret;
 985	struct spu_queue *qp;
 986
 987	if (err)
 988		return err;
 989
 990	qp = cpu_to_cwq[get_cpu()];
 991	err = -ENODEV;
 992	if (!qp)
 993		goto out;
 994
 995	spin_lock_irqsave(&qp->lock, flags);
 996
 997	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 998		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 999		if (err)
1000			break;
1001		list_del(&c->entry);
1002		if (unlikely(c != &rctx->chunk))
1003			kfree(c);
1004	}
1005	if (!err) {
1006		hv_ret = wait_for_tail(qp);
1007		if (hv_ret != HV_EOK)
1008			err = -EINVAL;
1009	}
1010
1011	spin_unlock_irqrestore(&qp->lock, flags);
1012
1013out:
1014	put_cpu();
1015
1016	n2_chunk_complete(req, NULL);
1017	return err;
1018}
1019
1020static int n2_encrypt_ecb(struct ablkcipher_request *req)
1021{
1022	return n2_do_ecb(req, true);
1023}
1024
1025static int n2_decrypt_ecb(struct ablkcipher_request *req)
1026{
1027	return n2_do_ecb(req, false);
1028}
1029
1030static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1031{
1032	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1033	struct crypto_tfm *tfm = req->base.tfm;
1034	unsigned long flags, hv_ret, iv_paddr;
1035	int err = n2_compute_chunks(req);
1036	struct n2_crypto_chunk *c, *tmp;
1037	struct spu_queue *qp;
1038	void *final_iv_addr;
1039
1040	final_iv_addr = NULL;
1041
1042	if (err)
1043		return err;
1044
1045	qp = cpu_to_cwq[get_cpu()];
1046	err = -ENODEV;
1047	if (!qp)
1048		goto out;
1049
1050	spin_lock_irqsave(&qp->lock, flags);
1051
1052	if (encrypt) {
1053		iv_paddr = __pa(rctx->walk.iv);
1054		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055					 entry) {
1056			c->iv_paddr = iv_paddr;
1057			err = __n2_crypt_chunk(tfm, c, qp, true);
1058			if (err)
1059				break;
1060			iv_paddr = c->dest_final - rctx->walk.blocksize;
1061			list_del(&c->entry);
1062			if (unlikely(c != &rctx->chunk))
1063				kfree(c);
1064		}
1065		final_iv_addr = __va(iv_paddr);
1066	} else {
1067		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068						 entry) {
1069			if (c == &rctx->chunk) {
1070				iv_paddr = __pa(rctx->walk.iv);
1071			} else {
1072				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073					    tmp->arr[tmp->arr_len-1].src_len -
1074					    rctx->walk.blocksize);
1075			}
1076			if (!final_iv_addr) {
1077				unsigned long pa;
1078
1079				pa = (c->arr[c->arr_len-1].src_paddr +
1080				      c->arr[c->arr_len-1].src_len -
1081				      rctx->walk.blocksize);
1082				final_iv_addr = rctx->temp_iv;
1083				memcpy(rctx->temp_iv, __va(pa),
1084				       rctx->walk.blocksize);
1085			}
1086			c->iv_paddr = iv_paddr;
1087			err = __n2_crypt_chunk(tfm, c, qp, false);
1088			if (err)
1089				break;
1090			list_del(&c->entry);
1091			if (unlikely(c != &rctx->chunk))
1092				kfree(c);
1093		}
1094	}
1095	if (!err) {
1096		hv_ret = wait_for_tail(qp);
1097		if (hv_ret != HV_EOK)
1098			err = -EINVAL;
1099	}
1100
1101	spin_unlock_irqrestore(&qp->lock, flags);
1102
1103out:
1104	put_cpu();
1105
1106	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107	return err;
1108}
1109
1110static int n2_encrypt_chaining(struct ablkcipher_request *req)
1111{
1112	return n2_do_chaining(req, true);
1113}
1114
1115static int n2_decrypt_chaining(struct ablkcipher_request *req)
1116{
1117	return n2_do_chaining(req, false);
1118}
1119
1120struct n2_cipher_tmpl {
1121	const char		*name;
1122	const char		*drv_name;
1123	u8			block_size;
1124	u8			enc_type;
1125	struct ablkcipher_alg	ablkcipher;
1126};
1127
1128static const struct n2_cipher_tmpl cipher_tmpls[] = {
1129	/* ARC4: only ECB is supported (chaining bits ignored) */
1130	{	.name		= "ecb(arc4)",
1131		.drv_name	= "ecb-arc4",
1132		.block_size	= 1,
1133		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1134				   ENC_TYPE_CHAINING_ECB),
1135		.ablkcipher	= {
1136			.min_keysize	= 1,
1137			.max_keysize	= 256,
1138			.setkey		= n2_arc4_setkey,
1139			.encrypt	= n2_encrypt_ecb,
1140			.decrypt	= n2_decrypt_ecb,
1141		},
1142	},
1143
1144	/* DES: ECB CBC and CFB are supported */
1145	{	.name		= "ecb(des)",
1146		.drv_name	= "ecb-des",
1147		.block_size	= DES_BLOCK_SIZE,
1148		.enc_type	= (ENC_TYPE_ALG_DES |
1149				   ENC_TYPE_CHAINING_ECB),
1150		.ablkcipher	= {
1151			.min_keysize	= DES_KEY_SIZE,
1152			.max_keysize	= DES_KEY_SIZE,
1153			.setkey		= n2_des_setkey,
1154			.encrypt	= n2_encrypt_ecb,
1155			.decrypt	= n2_decrypt_ecb,
1156		},
1157	},
1158	{	.name		= "cbc(des)",
1159		.drv_name	= "cbc-des",
1160		.block_size	= DES_BLOCK_SIZE,
1161		.enc_type	= (ENC_TYPE_ALG_DES |
1162				   ENC_TYPE_CHAINING_CBC),
1163		.ablkcipher	= {
1164			.ivsize		= DES_BLOCK_SIZE,
1165			.min_keysize	= DES_KEY_SIZE,
1166			.max_keysize	= DES_KEY_SIZE,
1167			.setkey		= n2_des_setkey,
1168			.encrypt	= n2_encrypt_chaining,
1169			.decrypt	= n2_decrypt_chaining,
1170		},
1171	},
1172	{	.name		= "cfb(des)",
1173		.drv_name	= "cfb-des",
1174		.block_size	= DES_BLOCK_SIZE,
1175		.enc_type	= (ENC_TYPE_ALG_DES |
1176				   ENC_TYPE_CHAINING_CFB),
1177		.ablkcipher	= {
1178			.min_keysize	= DES_KEY_SIZE,
1179			.max_keysize	= DES_KEY_SIZE,
1180			.setkey		= n2_des_setkey,
1181			.encrypt	= n2_encrypt_chaining,
1182			.decrypt	= n2_decrypt_chaining,
1183		},
1184	},
1185
1186	/* 3DES: ECB CBC and CFB are supported */
1187	{	.name		= "ecb(des3_ede)",
1188		.drv_name	= "ecb-3des",
1189		.block_size	= DES_BLOCK_SIZE,
1190		.enc_type	= (ENC_TYPE_ALG_3DES |
1191				   ENC_TYPE_CHAINING_ECB),
1192		.ablkcipher	= {
1193			.min_keysize	= 3 * DES_KEY_SIZE,
1194			.max_keysize	= 3 * DES_KEY_SIZE,
1195			.setkey		= n2_3des_setkey,
1196			.encrypt	= n2_encrypt_ecb,
1197			.decrypt	= n2_decrypt_ecb,
1198		},
1199	},
1200	{	.name		= "cbc(des3_ede)",
1201		.drv_name	= "cbc-3des",
1202		.block_size	= DES_BLOCK_SIZE,
1203		.enc_type	= (ENC_TYPE_ALG_3DES |
1204				   ENC_TYPE_CHAINING_CBC),
1205		.ablkcipher	= {
1206			.ivsize		= DES_BLOCK_SIZE,
1207			.min_keysize	= 3 * DES_KEY_SIZE,
1208			.max_keysize	= 3 * DES_KEY_SIZE,
1209			.setkey		= n2_3des_setkey,
1210			.encrypt	= n2_encrypt_chaining,
1211			.decrypt	= n2_decrypt_chaining,
1212		},
1213	},
1214	{	.name		= "cfb(des3_ede)",
1215		.drv_name	= "cfb-3des",
1216		.block_size	= DES_BLOCK_SIZE,
1217		.enc_type	= (ENC_TYPE_ALG_3DES |
1218				   ENC_TYPE_CHAINING_CFB),
1219		.ablkcipher	= {
1220			.min_keysize	= 3 * DES_KEY_SIZE,
1221			.max_keysize	= 3 * DES_KEY_SIZE,
1222			.setkey		= n2_3des_setkey,
1223			.encrypt	= n2_encrypt_chaining,
1224			.decrypt	= n2_decrypt_chaining,
1225		},
1226	},
1227	/* AES: ECB CBC and CTR are supported */
1228	{	.name		= "ecb(aes)",
1229		.drv_name	= "ecb-aes",
1230		.block_size	= AES_BLOCK_SIZE,
1231		.enc_type	= (ENC_TYPE_ALG_AES128 |
1232				   ENC_TYPE_CHAINING_ECB),
1233		.ablkcipher	= {
1234			.min_keysize	= AES_MIN_KEY_SIZE,
1235			.max_keysize	= AES_MAX_KEY_SIZE,
1236			.setkey		= n2_aes_setkey,
1237			.encrypt	= n2_encrypt_ecb,
1238			.decrypt	= n2_decrypt_ecb,
1239		},
1240	},
1241	{	.name		= "cbc(aes)",
1242		.drv_name	= "cbc-aes",
1243		.block_size	= AES_BLOCK_SIZE,
1244		.enc_type	= (ENC_TYPE_ALG_AES128 |
1245				   ENC_TYPE_CHAINING_CBC),
1246		.ablkcipher	= {
1247			.ivsize		= AES_BLOCK_SIZE,
1248			.min_keysize	= AES_MIN_KEY_SIZE,
1249			.max_keysize	= AES_MAX_KEY_SIZE,
1250			.setkey		= n2_aes_setkey,
1251			.encrypt	= n2_encrypt_chaining,
1252			.decrypt	= n2_decrypt_chaining,
1253		},
1254	},
1255	{	.name		= "ctr(aes)",
1256		.drv_name	= "ctr-aes",
1257		.block_size	= AES_BLOCK_SIZE,
1258		.enc_type	= (ENC_TYPE_ALG_AES128 |
1259				   ENC_TYPE_CHAINING_COUNTER),
1260		.ablkcipher	= {
1261			.ivsize		= AES_BLOCK_SIZE,
1262			.min_keysize	= AES_MIN_KEY_SIZE,
1263			.max_keysize	= AES_MAX_KEY_SIZE,
1264			.setkey		= n2_aes_setkey,
1265			.encrypt	= n2_encrypt_chaining,
1266			.decrypt	= n2_encrypt_chaining,
1267		},
1268	},
1269
1270};
1271#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1272
1273static LIST_HEAD(cipher_algs);
1274
1275struct n2_hash_tmpl {
1276	const char	*name;
1277	const u8	*hash_zero;
1278	const u32	*hash_init;
1279	u8		hw_op_hashsz;
1280	u8		digest_size;
1281	u8		block_size;
1282	u8		auth_type;
1283	u8		hmac_type;
1284};
1285
1286static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1287	cpu_to_le32(MD5_H0),
1288	cpu_to_le32(MD5_H1),
1289	cpu_to_le32(MD5_H2),
1290	cpu_to_le32(MD5_H3),
1291};
1292static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1293	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1294};
1295static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1296	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1297	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1298};
1299static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1300	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1301	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1302};
1303
1304static const struct n2_hash_tmpl hash_tmpls[] = {
1305	{ .name		= "md5",
1306	  .hash_zero	= md5_zero_message_hash,
1307	  .hash_init	= n2_md5_init,
1308	  .auth_type	= AUTH_TYPE_MD5,
1309	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1310	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1311	  .digest_size	= MD5_DIGEST_SIZE,
1312	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1313	{ .name		= "sha1",
1314	  .hash_zero	= sha1_zero_message_hash,
1315	  .hash_init	= n2_sha1_init,
1316	  .auth_type	= AUTH_TYPE_SHA1,
1317	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1318	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1319	  .digest_size	= SHA1_DIGEST_SIZE,
1320	  .block_size	= SHA1_BLOCK_SIZE },
1321	{ .name		= "sha256",
1322	  .hash_zero	= sha256_zero_message_hash,
1323	  .hash_init	= n2_sha256_init,
1324	  .auth_type	= AUTH_TYPE_SHA256,
1325	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1326	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1327	  .digest_size	= SHA256_DIGEST_SIZE,
1328	  .block_size	= SHA256_BLOCK_SIZE },
1329	{ .name		= "sha224",
1330	  .hash_zero	= sha224_zero_message_hash,
1331	  .hash_init	= n2_sha224_init,
1332	  .auth_type	= AUTH_TYPE_SHA256,
1333	  .hmac_type	= AUTH_TYPE_RESERVED,
1334	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1335	  .digest_size	= SHA224_DIGEST_SIZE,
1336	  .block_size	= SHA224_BLOCK_SIZE },
1337};
1338#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1339
1340static LIST_HEAD(ahash_algs);
1341static LIST_HEAD(hmac_algs);
1342
1343static int algs_registered;
1344
1345static void __n2_unregister_algs(void)
1346{
1347	struct n2_cipher_alg *cipher, *cipher_tmp;
1348	struct n2_ahash_alg *alg, *alg_tmp;
1349	struct n2_hmac_alg *hmac, *hmac_tmp;
1350
1351	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1352		crypto_unregister_alg(&cipher->alg);
1353		list_del(&cipher->entry);
1354		kfree(cipher);
1355	}
1356	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1357		crypto_unregister_ahash(&hmac->derived.alg);
1358		list_del(&hmac->derived.entry);
1359		kfree(hmac);
1360	}
1361	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1362		crypto_unregister_ahash(&alg->alg);
1363		list_del(&alg->entry);
1364		kfree(alg);
1365	}
1366}
1367
1368static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1369{
1370	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1371	return 0;
1372}
1373
1374static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1375{
1376	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1377	struct crypto_alg *alg;
1378	int err;
1379
1380	if (!p)
1381		return -ENOMEM;
1382
1383	alg = &p->alg;
 
1384
1385	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387	alg->cra_priority = N2_CRA_PRIORITY;
1388	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1389			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1390	alg->cra_blocksize = tmpl->block_size;
1391	p->enc_type = tmpl->enc_type;
1392	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1393	alg->cra_type = &crypto_ablkcipher_type;
1394	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1395	alg->cra_init = n2_cipher_cra_init;
1396	alg->cra_module = THIS_MODULE;
1397
1398	list_add(&p->entry, &cipher_algs);
1399	err = crypto_register_alg(alg);
1400	if (err) {
1401		pr_err("%s alg registration failed\n", alg->cra_name);
1402		list_del(&p->entry);
1403		kfree(p);
1404	} else {
1405		pr_info("%s alg registered\n", alg->cra_name);
1406	}
1407	return err;
1408}
1409
1410static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1411{
1412	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1413	struct ahash_alg *ahash;
1414	struct crypto_alg *base;
1415	int err;
1416
1417	if (!p)
1418		return -ENOMEM;
1419
1420	p->child_alg = n2ahash->alg.halg.base.cra_name;
1421	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1422	INIT_LIST_HEAD(&p->derived.entry);
1423
1424	ahash = &p->derived.alg;
1425	ahash->digest = n2_hmac_async_digest;
1426	ahash->setkey = n2_hmac_async_setkey;
1427
1428	base = &ahash->halg.base;
1429	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1430	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1431
1432	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1433	base->cra_init = n2_hmac_cra_init;
1434	base->cra_exit = n2_hmac_cra_exit;
1435
1436	list_add(&p->derived.entry, &hmac_algs);
1437	err = crypto_register_ahash(ahash);
1438	if (err) {
1439		pr_err("%s alg registration failed\n", base->cra_name);
1440		list_del(&p->derived.entry);
1441		kfree(p);
1442	} else {
1443		pr_info("%s alg registered\n", base->cra_name);
1444	}
1445	return err;
1446}
1447
1448static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1449{
1450	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1451	struct hash_alg_common *halg;
1452	struct crypto_alg *base;
1453	struct ahash_alg *ahash;
1454	int err;
1455
1456	if (!p)
1457		return -ENOMEM;
1458
1459	p->hash_zero = tmpl->hash_zero;
1460	p->hash_init = tmpl->hash_init;
1461	p->auth_type = tmpl->auth_type;
1462	p->hmac_type = tmpl->hmac_type;
1463	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1464	p->digest_size = tmpl->digest_size;
1465
1466	ahash = &p->alg;
1467	ahash->init = n2_hash_async_init;
1468	ahash->update = n2_hash_async_update;
1469	ahash->final = n2_hash_async_final;
1470	ahash->finup = n2_hash_async_finup;
1471	ahash->digest = n2_hash_async_digest;
1472	ahash->export = n2_hash_async_noexport;
1473	ahash->import = n2_hash_async_noimport;
1474
1475	halg = &ahash->halg;
1476	halg->digestsize = tmpl->digest_size;
1477
1478	base = &halg->base;
1479	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1480	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1481	base->cra_priority = N2_CRA_PRIORITY;
1482	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1483			  CRYPTO_ALG_NEED_FALLBACK;
1484	base->cra_blocksize = tmpl->block_size;
1485	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1486	base->cra_module = THIS_MODULE;
1487	base->cra_init = n2_hash_cra_init;
1488	base->cra_exit = n2_hash_cra_exit;
1489
1490	list_add(&p->entry, &ahash_algs);
1491	err = crypto_register_ahash(ahash);
1492	if (err) {
1493		pr_err("%s alg registration failed\n", base->cra_name);
1494		list_del(&p->entry);
1495		kfree(p);
1496	} else {
1497		pr_info("%s alg registered\n", base->cra_name);
1498	}
1499	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1500		err = __n2_register_one_hmac(p);
1501	return err;
1502}
1503
1504static int n2_register_algs(void)
1505{
1506	int i, err = 0;
1507
1508	mutex_lock(&spu_lock);
1509	if (algs_registered++)
1510		goto out;
1511
1512	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1513		err = __n2_register_one_ahash(&hash_tmpls[i]);
1514		if (err) {
1515			__n2_unregister_algs();
1516			goto out;
1517		}
1518	}
1519	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1520		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1521		if (err) {
1522			__n2_unregister_algs();
1523			goto out;
1524		}
1525	}
1526
1527out:
1528	mutex_unlock(&spu_lock);
1529	return err;
1530}
1531
1532static void n2_unregister_algs(void)
1533{
1534	mutex_lock(&spu_lock);
1535	if (!--algs_registered)
1536		__n2_unregister_algs();
1537	mutex_unlock(&spu_lock);
1538}
1539
1540/* To map CWQ queues to interrupt sources, the hypervisor API provides
1541 * a devino.  This isn't very useful to us because all of the
1542 * interrupts listed in the device_node have been translated to
1543 * Linux virtual IRQ cookie numbers.
1544 *
1545 * So we have to back-translate, going through the 'intr' and 'ino'
1546 * property tables of the n2cp MDESC node, matching it with the OF
1547 * 'interrupts' property entries, in order to to figure out which
1548 * devino goes to which already-translated IRQ.
1549 */
1550static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1551			     unsigned long dev_ino)
1552{
1553	const unsigned int *dev_intrs;
1554	unsigned int intr;
1555	int i;
1556
1557	for (i = 0; i < ip->num_intrs; i++) {
1558		if (ip->ino_table[i].ino == dev_ino)
1559			break;
1560	}
1561	if (i == ip->num_intrs)
1562		return -ENODEV;
1563
1564	intr = ip->ino_table[i].intr;
1565
1566	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1567	if (!dev_intrs)
1568		return -ENODEV;
1569
1570	for (i = 0; i < dev->archdata.num_irqs; i++) {
1571		if (dev_intrs[i] == intr)
1572			return i;
1573	}
1574
1575	return -ENODEV;
1576}
1577
1578static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1579		       const char *irq_name, struct spu_queue *p,
1580		       irq_handler_t handler)
1581{
1582	unsigned long herr;
1583	int index;
1584
1585	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1586	if (herr)
1587		return -EINVAL;
1588
1589	index = find_devino_index(dev, ip, p->devino);
1590	if (index < 0)
1591		return index;
1592
1593	p->irq = dev->archdata.irqs[index];
1594
1595	sprintf(p->irq_name, "%s-%d", irq_name, index);
1596
1597	return request_irq(p->irq, handler, 0, p->irq_name, p);
1598}
1599
1600static struct kmem_cache *queue_cache[2];
1601
1602static void *new_queue(unsigned long q_type)
1603{
1604	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1605}
1606
1607static void free_queue(void *p, unsigned long q_type)
1608{
1609	kmem_cache_free(queue_cache[q_type - 1], p);
1610}
1611
1612static int queue_cache_init(void)
1613{
1614	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1615		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1616			kmem_cache_create("mau_queue",
1617					  (MAU_NUM_ENTRIES *
1618					   MAU_ENTRY_SIZE),
1619					  MAU_ENTRY_SIZE, 0, NULL);
1620	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1621		return -ENOMEM;
1622
1623	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1624		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1625			kmem_cache_create("cwq_queue",
1626					  (CWQ_NUM_ENTRIES *
1627					   CWQ_ENTRY_SIZE),
1628					  CWQ_ENTRY_SIZE, 0, NULL);
1629	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1630		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1632		return -ENOMEM;
1633	}
1634	return 0;
1635}
1636
1637static void queue_cache_destroy(void)
1638{
1639	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1641	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1642	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1643}
1644
1645static long spu_queue_register_workfn(void *arg)
1646{
1647	struct spu_qreg *qr = arg;
1648	struct spu_queue *p = qr->queue;
1649	unsigned long q_type = qr->type;
1650	unsigned long hv_ret;
1651
1652	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1653				 CWQ_NUM_ENTRIES, &p->qhandle);
1654	if (!hv_ret)
1655		sun4v_ncs_sethead_marker(p->qhandle, 0);
1656
1657	return hv_ret ? -EINVAL : 0;
1658}
1659
1660static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1661{
1662	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1663	struct spu_qreg qr = { .queue = p, .type = q_type };
1664
1665	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1666}
1667
1668static int spu_queue_setup(struct spu_queue *p)
1669{
1670	int err;
1671
1672	p->q = new_queue(p->q_type);
1673	if (!p->q)
1674		return -ENOMEM;
1675
1676	err = spu_queue_register(p, p->q_type);
1677	if (err) {
1678		free_queue(p->q, p->q_type);
1679		p->q = NULL;
1680	}
1681
1682	return err;
1683}
1684
1685static void spu_queue_destroy(struct spu_queue *p)
1686{
1687	unsigned long hv_ret;
1688
1689	if (!p->q)
1690		return;
1691
1692	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1693
1694	if (!hv_ret)
1695		free_queue(p->q, p->q_type);
1696}
1697
1698static void spu_list_destroy(struct list_head *list)
1699{
1700	struct spu_queue *p, *n;
1701
1702	list_for_each_entry_safe(p, n, list, list) {
1703		int i;
1704
1705		for (i = 0; i < NR_CPUS; i++) {
1706			if (cpu_to_cwq[i] == p)
1707				cpu_to_cwq[i] = NULL;
1708		}
1709
1710		if (p->irq) {
1711			free_irq(p->irq, p);
1712			p->irq = 0;
1713		}
1714		spu_queue_destroy(p);
1715		list_del(&p->list);
1716		kfree(p);
1717	}
1718}
1719
1720/* Walk the backward arcs of a CWQ 'exec-unit' node,
1721 * gathering cpu membership information.
1722 */
1723static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1724			       struct platform_device *dev,
1725			       u64 node, struct spu_queue *p,
1726			       struct spu_queue **table)
1727{
1728	u64 arc;
1729
1730	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1731		u64 tgt = mdesc_arc_target(mdesc, arc);
1732		const char *name = mdesc_node_name(mdesc, tgt);
1733		const u64 *id;
1734
1735		if (strcmp(name, "cpu"))
1736			continue;
1737		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1738		if (table[*id] != NULL) {
1739			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1740				dev->dev.of_node);
1741			return -EINVAL;
1742		}
1743		cpumask_set_cpu(*id, &p->sharing);
1744		table[*id] = p;
1745	}
1746	return 0;
1747}
1748
1749/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1750static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1751			    struct platform_device *dev, struct mdesc_handle *mdesc,
1752			    u64 node, const char *iname, unsigned long q_type,
1753			    irq_handler_t handler, struct spu_queue **table)
1754{
1755	struct spu_queue *p;
1756	int err;
1757
1758	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1759	if (!p) {
1760		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1761			dev->dev.of_node);
1762		return -ENOMEM;
1763	}
1764
1765	cpumask_clear(&p->sharing);
1766	spin_lock_init(&p->lock);
1767	p->q_type = q_type;
1768	INIT_LIST_HEAD(&p->jobs);
1769	list_add(&p->list, list);
1770
1771	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1772	if (err)
1773		return err;
1774
1775	err = spu_queue_setup(p);
1776	if (err)
1777		return err;
1778
1779	return spu_map_ino(dev, ip, iname, p, handler);
1780}
1781
1782static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1783			  struct spu_mdesc_info *ip, struct list_head *list,
1784			  const char *exec_name, unsigned long q_type,
1785			  irq_handler_t handler, struct spu_queue **table)
1786{
1787	int err = 0;
1788	u64 node;
1789
1790	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1791		const char *type;
1792
1793		type = mdesc_get_property(mdesc, node, "type", NULL);
1794		if (!type || strcmp(type, exec_name))
1795			continue;
1796
1797		err = handle_exec_unit(ip, list, dev, mdesc, node,
1798				       exec_name, q_type, handler, table);
1799		if (err) {
1800			spu_list_destroy(list);
1801			break;
1802		}
1803	}
1804
1805	return err;
1806}
1807
1808static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1809			 struct spu_mdesc_info *ip)
1810{
1811	const u64 *ino;
1812	int ino_len;
1813	int i;
1814
1815	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1816	if (!ino) {
1817		printk("NO 'ino'\n");
1818		return -ENODEV;
1819	}
1820
1821	ip->num_intrs = ino_len / sizeof(u64);
1822	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1823				 ip->num_intrs),
1824				GFP_KERNEL);
1825	if (!ip->ino_table)
1826		return -ENOMEM;
1827
1828	for (i = 0; i < ip->num_intrs; i++) {
1829		struct ino_blob *b = &ip->ino_table[i];
1830		b->intr = i + 1;
1831		b->ino = ino[i];
1832	}
1833
1834	return 0;
1835}
1836
1837static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1838				struct platform_device *dev,
1839				struct spu_mdesc_info *ip,
1840				const char *node_name)
1841{
1842	const unsigned int *reg;
1843	u64 node;
1844
1845	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1846	if (!reg)
1847		return -ENODEV;
1848
1849	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1850		const char *name;
1851		const u64 *chdl;
1852
1853		name = mdesc_get_property(mdesc, node, "name", NULL);
1854		if (!name || strcmp(name, node_name))
1855			continue;
1856		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1857		if (!chdl || (*chdl != *reg))
1858			continue;
1859		ip->cfg_handle = *chdl;
1860		return get_irq_props(mdesc, node, ip);
1861	}
1862
1863	return -ENODEV;
1864}
1865
1866static unsigned long n2_spu_hvapi_major;
1867static unsigned long n2_spu_hvapi_minor;
1868
1869static int n2_spu_hvapi_register(void)
1870{
1871	int err;
1872
1873	n2_spu_hvapi_major = 2;
1874	n2_spu_hvapi_minor = 0;
1875
1876	err = sun4v_hvapi_register(HV_GRP_NCS,
1877				   n2_spu_hvapi_major,
1878				   &n2_spu_hvapi_minor);
1879
1880	if (!err)
1881		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1882			n2_spu_hvapi_major,
1883			n2_spu_hvapi_minor);
1884
1885	return err;
1886}
1887
1888static void n2_spu_hvapi_unregister(void)
1889{
1890	sun4v_hvapi_unregister(HV_GRP_NCS);
1891}
1892
1893static int global_ref;
1894
1895static int grab_global_resources(void)
1896{
1897	int err = 0;
1898
1899	mutex_lock(&spu_lock);
1900
1901	if (global_ref++)
1902		goto out;
1903
1904	err = n2_spu_hvapi_register();
1905	if (err)
1906		goto out;
1907
1908	err = queue_cache_init();
1909	if (err)
1910		goto out_hvapi_release;
1911
1912	err = -ENOMEM;
1913	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914			     GFP_KERNEL);
1915	if (!cpu_to_cwq)
1916		goto out_queue_cache_destroy;
1917
1918	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1919			     GFP_KERNEL);
1920	if (!cpu_to_mau)
1921		goto out_free_cwq_table;
1922
1923	err = 0;
1924
1925out:
1926	if (err)
1927		global_ref--;
1928	mutex_unlock(&spu_lock);
1929	return err;
1930
1931out_free_cwq_table:
1932	kfree(cpu_to_cwq);
1933	cpu_to_cwq = NULL;
1934
1935out_queue_cache_destroy:
1936	queue_cache_destroy();
1937
1938out_hvapi_release:
1939	n2_spu_hvapi_unregister();
1940	goto out;
1941}
1942
1943static void release_global_resources(void)
1944{
1945	mutex_lock(&spu_lock);
1946	if (!--global_ref) {
1947		kfree(cpu_to_cwq);
1948		cpu_to_cwq = NULL;
1949
1950		kfree(cpu_to_mau);
1951		cpu_to_mau = NULL;
1952
1953		queue_cache_destroy();
1954		n2_spu_hvapi_unregister();
1955	}
1956	mutex_unlock(&spu_lock);
1957}
1958
1959static struct n2_crypto *alloc_n2cp(void)
1960{
1961	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1962
1963	if (np)
1964		INIT_LIST_HEAD(&np->cwq_list);
1965
1966	return np;
1967}
1968
1969static void free_n2cp(struct n2_crypto *np)
1970{
1971	kfree(np->cwq_info.ino_table);
1972	np->cwq_info.ino_table = NULL;
1973
1974	kfree(np);
1975}
1976
1977static void n2_spu_driver_version(void)
1978{
1979	static int n2_spu_version_printed;
1980
1981	if (n2_spu_version_printed++ == 0)
1982		pr_info("%s", version);
1983}
1984
1985static int n2_crypto_probe(struct platform_device *dev)
1986{
1987	struct mdesc_handle *mdesc;
1988	struct n2_crypto *np;
1989	int err;
1990
1991	n2_spu_driver_version();
1992
1993	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1994
1995	np = alloc_n2cp();
1996	if (!np) {
1997		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1998			dev->dev.of_node);
1999		return -ENOMEM;
2000	}
2001
2002	err = grab_global_resources();
2003	if (err) {
2004		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2005			dev->dev.of_node);
2006		goto out_free_n2cp;
2007	}
2008
2009	mdesc = mdesc_grab();
2010
2011	if (!mdesc) {
2012		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2013			dev->dev.of_node);
2014		err = -ENODEV;
2015		goto out_free_global;
2016	}
2017	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2018	if (err) {
2019		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2020			dev->dev.of_node);
2021		mdesc_release(mdesc);
2022		goto out_free_global;
2023	}
2024
2025	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2026			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2027			     cpu_to_cwq);
2028	mdesc_release(mdesc);
2029
2030	if (err) {
2031		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2032			dev->dev.of_node);
2033		goto out_free_global;
2034	}
2035
2036	err = n2_register_algs();
2037	if (err) {
2038		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2039			dev->dev.of_node);
2040		goto out_free_spu_list;
2041	}
2042
2043	dev_set_drvdata(&dev->dev, np);
2044
2045	return 0;
2046
2047out_free_spu_list:
2048	spu_list_destroy(&np->cwq_list);
2049
2050out_free_global:
2051	release_global_resources();
2052
2053out_free_n2cp:
2054	free_n2cp(np);
2055
2056	return err;
2057}
2058
2059static int n2_crypto_remove(struct platform_device *dev)
2060{
2061	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2062
2063	n2_unregister_algs();
2064
2065	spu_list_destroy(&np->cwq_list);
2066
2067	release_global_resources();
2068
2069	free_n2cp(np);
2070
2071	return 0;
2072}
2073
2074static struct n2_mau *alloc_ncp(void)
2075{
2076	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2077
2078	if (mp)
2079		INIT_LIST_HEAD(&mp->mau_list);
2080
2081	return mp;
2082}
2083
2084static void free_ncp(struct n2_mau *mp)
2085{
2086	kfree(mp->mau_info.ino_table);
2087	mp->mau_info.ino_table = NULL;
2088
2089	kfree(mp);
2090}
2091
2092static int n2_mau_probe(struct platform_device *dev)
2093{
2094	struct mdesc_handle *mdesc;
2095	struct n2_mau *mp;
2096	int err;
2097
2098	n2_spu_driver_version();
2099
2100	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2101
2102	mp = alloc_ncp();
2103	if (!mp) {
2104		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2105			dev->dev.of_node);
2106		return -ENOMEM;
2107	}
2108
2109	err = grab_global_resources();
2110	if (err) {
2111		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2112			dev->dev.of_node);
2113		goto out_free_ncp;
2114	}
2115
2116	mdesc = mdesc_grab();
2117
2118	if (!mdesc) {
2119		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2120			dev->dev.of_node);
2121		err = -ENODEV;
2122		goto out_free_global;
2123	}
2124
2125	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2126	if (err) {
2127		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2128			dev->dev.of_node);
2129		mdesc_release(mdesc);
2130		goto out_free_global;
2131	}
2132
2133	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2134			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2135			     cpu_to_mau);
2136	mdesc_release(mdesc);
2137
2138	if (err) {
2139		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2140			dev->dev.of_node);
2141		goto out_free_global;
2142	}
2143
2144	dev_set_drvdata(&dev->dev, mp);
2145
2146	return 0;
2147
2148out_free_global:
2149	release_global_resources();
2150
2151out_free_ncp:
2152	free_ncp(mp);
2153
2154	return err;
2155}
2156
2157static int n2_mau_remove(struct platform_device *dev)
2158{
2159	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2160
2161	spu_list_destroy(&mp->mau_list);
2162
2163	release_global_resources();
2164
2165	free_ncp(mp);
2166
2167	return 0;
2168}
2169
2170static const struct of_device_id n2_crypto_match[] = {
2171	{
2172		.name = "n2cp",
2173		.compatible = "SUNW,n2-cwq",
2174	},
2175	{
2176		.name = "n2cp",
2177		.compatible = "SUNW,vf-cwq",
2178	},
2179	{
2180		.name = "n2cp",
2181		.compatible = "SUNW,kt-cwq",
2182	},
2183	{},
2184};
2185
2186MODULE_DEVICE_TABLE(of, n2_crypto_match);
2187
2188static struct platform_driver n2_crypto_driver = {
2189	.driver = {
2190		.name		=	"n2cp",
2191		.of_match_table	=	n2_crypto_match,
2192	},
2193	.probe		=	n2_crypto_probe,
2194	.remove		=	n2_crypto_remove,
2195};
2196
2197static const struct of_device_id n2_mau_match[] = {
2198	{
2199		.name = "ncp",
2200		.compatible = "SUNW,n2-mau",
2201	},
2202	{
2203		.name = "ncp",
2204		.compatible = "SUNW,vf-mau",
2205	},
2206	{
2207		.name = "ncp",
2208		.compatible = "SUNW,kt-mau",
2209	},
2210	{},
2211};
2212
2213MODULE_DEVICE_TABLE(of, n2_mau_match);
2214
2215static struct platform_driver n2_mau_driver = {
2216	.driver = {
2217		.name		=	"ncp",
2218		.of_match_table	=	n2_mau_match,
2219	},
2220	.probe		=	n2_mau_probe,
2221	.remove		=	n2_mau_remove,
2222};
2223
2224static struct platform_driver * const drivers[] = {
2225	&n2_crypto_driver,
2226	&n2_mau_driver,
2227};
2228
2229static int __init n2_init(void)
2230{
2231	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234static void __exit n2_exit(void)
2235{
2236	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2237}
2238
2239module_init(n2_init);
2240module_exit(n2_exit);