Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha.h>
19#include <crypto/aes.h>
20#include <crypto/internal/des.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24
25#include <crypto/internal/hash.h>
26#include <crypto/internal/skcipher.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/algapi.h>
29
30#include <asm/hypervisor.h>
31#include <asm/mdesc.h>
32
33#include "n2_core.h"
34
35#define DRV_MODULE_NAME "n2_crypto"
36#define DRV_MODULE_VERSION "0.2"
37#define DRV_MODULE_RELDATE "July 28, 2011"
38
39static const char version[] =
40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43MODULE_DESCRIPTION("Niagara2 Crypto driver");
44MODULE_LICENSE("GPL");
45MODULE_VERSION(DRV_MODULE_VERSION);
46
47#define N2_CRA_PRIORITY 200
48
49static DEFINE_MUTEX(spu_lock);
50
51struct spu_queue {
52 cpumask_t sharing;
53 unsigned long qhandle;
54
55 spinlock_t lock;
56 u8 q_type;
57 void *q;
58 unsigned long head;
59 unsigned long tail;
60 struct list_head jobs;
61
62 unsigned long devino;
63
64 char irq_name[32];
65 unsigned int irq;
66
67 struct list_head list;
68};
69
70struct spu_qreg {
71 struct spu_queue *queue;
72 unsigned long type;
73};
74
75static struct spu_queue **cpu_to_cwq;
76static struct spu_queue **cpu_to_mau;
77
78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79{
80 if (q->q_type == HV_NCS_QTYPE_MAU) {
81 off += MAU_ENTRY_SIZE;
82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 off = 0;
84 } else {
85 off += CWQ_ENTRY_SIZE;
86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 off = 0;
88 }
89 return off;
90}
91
92struct n2_request_common {
93 struct list_head entry;
94 unsigned int offset;
95};
96#define OFFSET_NOT_RUNNING (~(unsigned int)0)
97
98/* An async job request records the final tail value it used in
99 * n2_request_common->offset, test to see if that offset is in
100 * the range old_head, new_head, inclusive.
101 */
102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 unsigned long old_head, unsigned long new_head)
104{
105 if (old_head <= new_head) {
106 if (offset > old_head && offset <= new_head)
107 return true;
108 } else {
109 if (offset > old_head || offset <= new_head)
110 return true;
111 }
112 return false;
113}
114
115/* When the HEAD marker is unequal to the actual HEAD, we get
116 * a virtual device INO interrupt. We should process the
117 * completed CWQ entries and adjust the HEAD marker to clear
118 * the IRQ.
119 */
120static irqreturn_t cwq_intr(int irq, void *dev_id)
121{
122 unsigned long off, new_head, hv_ret;
123 struct spu_queue *q = dev_id;
124
125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 smp_processor_id(), q->qhandle);
127
128 spin_lock(&q->lock);
129
130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 smp_processor_id(), new_head, hv_ret);
134
135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 /* XXX ... XXX */
137 }
138
139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 if (hv_ret == HV_EOK)
141 q->head = new_head;
142
143 spin_unlock(&q->lock);
144
145 return IRQ_HANDLED;
146}
147
148static irqreturn_t mau_intr(int irq, void *dev_id)
149{
150 struct spu_queue *q = dev_id;
151 unsigned long head, hv_ret;
152
153 spin_lock(&q->lock);
154
155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 smp_processor_id(), q->qhandle);
157
158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 smp_processor_id(), head, hv_ret);
162
163 sun4v_ncs_sethead_marker(q->qhandle, head);
164
165 spin_unlock(&q->lock);
166
167 return IRQ_HANDLED;
168}
169
170static void *spu_queue_next(struct spu_queue *q, void *cur)
171{
172 return q->q + spu_next_offset(q, cur - q->q);
173}
174
175static int spu_queue_num_free(struct spu_queue *q)
176{
177 unsigned long head = q->head;
178 unsigned long tail = q->tail;
179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 unsigned long diff;
181
182 if (head > tail)
183 diff = head - tail;
184 else
185 diff = (end - tail) + head;
186
187 return (diff / CWQ_ENTRY_SIZE) - 1;
188}
189
190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191{
192 int avail = spu_queue_num_free(q);
193
194 if (avail >= num_entries)
195 return q->q + q->tail;
196
197 return NULL;
198}
199
200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201{
202 unsigned long hv_ret, new_tail;
203
204 new_tail = spu_next_offset(q, last - q->q);
205
206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 if (hv_ret == HV_EOK)
208 q->tail = new_tail;
209 return hv_ret;
210}
211
212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 int enc_type, int auth_type,
214 unsigned int hash_len,
215 bool sfas, bool sob, bool eob, bool encrypt,
216 int opcode)
217{
218 u64 word = (len - 1) & CONTROL_LEN;
219
220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 if (sfas)
224 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 if (sob)
226 word |= CONTROL_START_OF_BLOCK;
227 if (eob)
228 word |= CONTROL_END_OF_BLOCK;
229 if (encrypt)
230 word |= CONTROL_ENCRYPT;
231 if (hmac_key_len)
232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 if (hash_len)
234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236 return word;
237}
238
239#if 0
240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241{
242 if (this_len >= 64 ||
243 qp->head != qp->tail)
244 return true;
245 return false;
246}
247#endif
248
249struct n2_ahash_alg {
250 struct list_head entry;
251 const u8 *hash_zero;
252 const u32 *hash_init;
253 u8 hw_op_hashsz;
254 u8 digest_size;
255 u8 auth_type;
256 u8 hmac_type;
257 struct ahash_alg alg;
258};
259
260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261{
262 struct crypto_alg *alg = tfm->__crt_alg;
263 struct ahash_alg *ahash_alg;
264
265 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267 return container_of(ahash_alg, struct n2_ahash_alg, alg);
268}
269
270struct n2_hmac_alg {
271 const char *child_alg;
272 struct n2_ahash_alg derived;
273};
274
275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276{
277 struct crypto_alg *alg = tfm->__crt_alg;
278 struct ahash_alg *ahash_alg;
279
280 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283}
284
285struct n2_hash_ctx {
286 struct crypto_ahash *fallback_tfm;
287};
288
289#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290
291struct n2_hmac_ctx {
292 struct n2_hash_ctx base;
293
294 struct crypto_shash *child_shash;
295
296 int hash_key_len;
297 unsigned char hash_key[N2_HASH_KEY_MAX];
298};
299
300struct n2_hash_req_ctx {
301 union {
302 struct md5_state md5;
303 struct sha1_state sha1;
304 struct sha256_state sha256;
305 } u;
306
307 struct ahash_request fallback_req;
308};
309
310static int n2_hash_async_init(struct ahash_request *req)
311{
312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319 return crypto_ahash_init(&rctx->fallback_req);
320}
321
322static int n2_hash_async_update(struct ahash_request *req)
323{
324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 rctx->fallback_req.nbytes = req->nbytes;
331 rctx->fallback_req.src = req->src;
332
333 return crypto_ahash_update(&rctx->fallback_req);
334}
335
336static int n2_hash_async_final(struct ahash_request *req)
337{
338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 rctx->fallback_req.result = req->result;
345
346 return crypto_ahash_final(&rctx->fallback_req);
347}
348
349static int n2_hash_async_finup(struct ahash_request *req)
350{
351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 rctx->fallback_req.nbytes = req->nbytes;
358 rctx->fallback_req.src = req->src;
359 rctx->fallback_req.result = req->result;
360
361 return crypto_ahash_finup(&rctx->fallback_req);
362}
363
364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365{
366 return -ENOSYS;
367}
368
369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370{
371 return -ENOSYS;
372}
373
374static int n2_hash_cra_init(struct crypto_tfm *tfm)
375{
376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 struct crypto_ahash *fallback_tfm;
380 int err;
381
382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 CRYPTO_ALG_NEED_FALLBACK);
384 if (IS_ERR(fallback_tfm)) {
385 pr_warn("Fallback driver '%s' could not be loaded!\n",
386 fallback_driver_name);
387 err = PTR_ERR(fallback_tfm);
388 goto out;
389 }
390
391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 crypto_ahash_reqsize(fallback_tfm)));
393
394 ctx->fallback_tfm = fallback_tfm;
395 return 0;
396
397out:
398 return err;
399}
400
401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402{
403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406 crypto_free_ahash(ctx->fallback_tfm);
407}
408
409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410{
411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 struct crypto_ahash *fallback_tfm;
416 struct crypto_shash *child_shash;
417 int err;
418
419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 CRYPTO_ALG_NEED_FALLBACK);
421 if (IS_ERR(fallback_tfm)) {
422 pr_warn("Fallback driver '%s' could not be loaded!\n",
423 fallback_driver_name);
424 err = PTR_ERR(fallback_tfm);
425 goto out;
426 }
427
428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 if (IS_ERR(child_shash)) {
430 pr_warn("Child shash '%s' could not be loaded!\n",
431 n2alg->child_alg);
432 err = PTR_ERR(child_shash);
433 goto out_free_fallback;
434 }
435
436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 crypto_ahash_reqsize(fallback_tfm)));
438
439 ctx->child_shash = child_shash;
440 ctx->base.fallback_tfm = fallback_tfm;
441 return 0;
442
443out_free_fallback:
444 crypto_free_ahash(fallback_tfm);
445
446out:
447 return err;
448}
449
450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451{
452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455 crypto_free_ahash(ctx->base.fallback_tfm);
456 crypto_free_shash(ctx->child_shash);
457}
458
459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 unsigned int keylen)
461{
462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 struct crypto_shash *child_shash = ctx->child_shash;
464 struct crypto_ahash *fallback_tfm;
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 bs = crypto_shash_blocksize(child_shash);
473 ds = crypto_shash_digestsize(child_shash);
474 BUG_ON(ds > N2_HASH_KEY_MAX);
475 if (keylen > bs) {
476 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 ctx->hash_key);
478 if (err)
479 return err;
480 keylen = ds;
481 } else if (keylen <= N2_HASH_KEY_MAX)
482 memcpy(ctx->hash_key, key, keylen);
483
484 ctx->hash_key_len = keylen;
485
486 return err;
487}
488
489static unsigned long wait_for_tail(struct spu_queue *qp)
490{
491 unsigned long head, hv_ret;
492
493 do {
494 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 if (hv_ret != HV_EOK) {
496 pr_err("Hypervisor error on gethead\n");
497 break;
498 }
499 if (head == qp->tail) {
500 qp->head = head;
501 break;
502 }
503 } while (1);
504 return hv_ret;
505}
506
507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 struct cwq_initial_entry *ent)
509{
510 unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512 if (hv_ret == HV_EOK)
513 hv_ret = wait_for_tail(qp);
514
515 return hv_ret;
516}
517
518static int n2_do_async_digest(struct ahash_request *req,
519 unsigned int auth_type, unsigned int digest_size,
520 unsigned int result_size, void *hash_loc,
521 unsigned long auth_key, unsigned int auth_key_len)
522{
523 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 struct cwq_initial_entry *ent;
525 struct crypto_hash_walk walk;
526 struct spu_queue *qp;
527 unsigned long flags;
528 int err = -ENODEV;
529 int nbytes, cpu;
530
531 /* The total effective length of the operation may not
532 * exceed 2^16.
533 */
534 if (unlikely(req->nbytes > (1 << 16))) {
535 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 rctx->fallback_req.base.flags =
540 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 rctx->fallback_req.nbytes = req->nbytes;
542 rctx->fallback_req.src = req->src;
543 rctx->fallback_req.result = req->result;
544
545 return crypto_ahash_digest(&rctx->fallback_req);
546 }
547
548 nbytes = crypto_hash_walk_first(req, &walk);
549
550 cpu = get_cpu();
551 qp = cpu_to_cwq[cpu];
552 if (!qp)
553 goto out;
554
555 spin_lock_irqsave(&qp->lock, flags);
556
557 /* XXX can do better, improve this later by doing a by-hand scatterlist
558 * XXX walk, etc.
559 */
560 ent = qp->q + qp->tail;
561
562 ent->control = control_word_base(nbytes, auth_key_len, 0,
563 auth_type, digest_size,
564 false, true, false, false,
565 OPCODE_INPLACE_BIT |
566 OPCODE_AUTH_MAC);
567 ent->src_addr = __pa(walk.data);
568 ent->auth_key_addr = auth_key;
569 ent->auth_iv_addr = __pa(hash_loc);
570 ent->final_auth_state_addr = 0UL;
571 ent->enc_key_addr = 0UL;
572 ent->enc_iv_addr = 0UL;
573 ent->dest_addr = __pa(hash_loc);
574
575 nbytes = crypto_hash_walk_done(&walk, 0);
576 while (nbytes > 0) {
577 ent = spu_queue_next(qp, ent);
578
579 ent->control = (nbytes - 1);
580 ent->src_addr = __pa(walk.data);
581 ent->auth_key_addr = 0UL;
582 ent->auth_iv_addr = 0UL;
583 ent->final_auth_state_addr = 0UL;
584 ent->enc_key_addr = 0UL;
585 ent->enc_iv_addr = 0UL;
586 ent->dest_addr = 0UL;
587
588 nbytes = crypto_hash_walk_done(&walk, 0);
589 }
590 ent->control |= CONTROL_END_OF_BLOCK;
591
592 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 err = -EINVAL;
594 else
595 err = 0;
596
597 spin_unlock_irqrestore(&qp->lock, flags);
598
599 if (!err)
600 memcpy(req->result, hash_loc, result_size);
601out:
602 put_cpu();
603
604 return err;
605}
606
607static int n2_hash_async_digest(struct ahash_request *req)
608{
609 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 int ds;
612
613 ds = n2alg->digest_size;
614 if (unlikely(req->nbytes == 0)) {
615 memcpy(req->result, n2alg->hash_zero, ds);
616 return 0;
617 }
618 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620 return n2_do_async_digest(req, n2alg->auth_type,
621 n2alg->hw_op_hashsz, ds,
622 &rctx->u, 0UL, 0);
623}
624
625static int n2_hmac_async_digest(struct ahash_request *req)
626{
627 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 int ds;
632
633 ds = n2alg->derived.digest_size;
634 if (unlikely(req->nbytes == 0) ||
635 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 rctx->fallback_req.base.flags =
641 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 rctx->fallback_req.nbytes = req->nbytes;
643 rctx->fallback_req.src = req->src;
644 rctx->fallback_req.result = req->result;
645
646 return crypto_ahash_digest(&rctx->fallback_req);
647 }
648 memcpy(&rctx->u, n2alg->derived.hash_init,
649 n2alg->derived.hw_op_hashsz);
650
651 return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 n2alg->derived.hw_op_hashsz, ds,
653 &rctx->u,
654 __pa(&ctx->hash_key),
655 ctx->hash_key_len);
656}
657
658struct n2_skcipher_context {
659 int key_len;
660 int enc_type;
661 union {
662 u8 aes[AES_MAX_KEY_SIZE];
663 u8 des[DES_KEY_SIZE];
664 u8 des3[3 * DES_KEY_SIZE];
665 u8 arc4[258]; /* S-box, X, Y */
666 } key;
667};
668
669#define N2_CHUNK_ARR_LEN 16
670
671struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
677 struct {
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
681};
682
683struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
687 u8 temp_iv[16];
688};
689
690/* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
692 *
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
699 *
700 * 0xe --> 0xa --> 0x8
701 *
702 * is a valid length sequence, whereas:
703 *
704 * 0xe --> 0xb --> 0x7
705 *
706 * is not a valid sequence.
707 */
708
709struct n2_skcipher_alg {
710 struct list_head entry;
711 u8 enc_type;
712 struct skcipher_alg skcipher;
713};
714
715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716{
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
720}
721
722struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
724};
725
726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 unsigned int keylen)
728{
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735 switch (keylen) {
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 break;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 break;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
751 return 0;
752}
753
754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 unsigned int keylen)
756{
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 int err;
761
762 err = verify_skcipher_des_key(skcipher, key);
763 if (err)
764 return err;
765
766 ctx->enc_type = n2alg->enc_type;
767
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
770 return 0;
771}
772
773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 unsigned int keylen)
775{
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 int err;
780
781 err = verify_skcipher_des3_key(skcipher, key);
782 if (err)
783 return err;
784
785 ctx->enc_type = n2alg->enc_type;
786
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
789 return 0;
790}
791
792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
793 unsigned int keylen)
794{
795 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
796 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
797 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
798 u8 *s = ctx->key.arc4;
799 u8 *x = s + 256;
800 u8 *y = x + 1;
801 int i, j, k;
802
803 ctx->enc_type = n2alg->enc_type;
804
805 j = k = 0;
806 *x = 0;
807 *y = 0;
808 for (i = 0; i < 256; i++)
809 s[i] = i;
810 for (i = 0; i < 256; i++) {
811 u8 a = s[i];
812 j = (j + key[k] + a) & 0xff;
813 s[i] = s[j];
814 s[j] = a;
815 if (++k >= keylen)
816 k = 0;
817 }
818
819 return 0;
820}
821
822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
823{
824 int this_len = nbytes;
825
826 this_len -= (nbytes & (block_size - 1));
827 return this_len > (1 << 16) ? (1 << 16) : this_len;
828}
829
830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
831 struct n2_crypto_chunk *cp,
832 struct spu_queue *qp, bool encrypt)
833{
834 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
835 struct cwq_initial_entry *ent;
836 bool in_place;
837 int i;
838
839 ent = spu_queue_alloc(qp, cp->arr_len);
840 if (!ent) {
841 pr_info("queue_alloc() of %d fails\n",
842 cp->arr_len);
843 return -EBUSY;
844 }
845
846 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848 ent->control = control_word_base(cp->arr[0].src_len,
849 0, ctx->enc_type, 0, 0,
850 false, true, false, encrypt,
851 OPCODE_ENCRYPT |
852 (in_place ? OPCODE_INPLACE_BIT : 0));
853 ent->src_addr = cp->arr[0].src_paddr;
854 ent->auth_key_addr = 0UL;
855 ent->auth_iv_addr = 0UL;
856 ent->final_auth_state_addr = 0UL;
857 ent->enc_key_addr = __pa(&ctx->key);
858 ent->enc_iv_addr = cp->iv_paddr;
859 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861 for (i = 1; i < cp->arr_len; i++) {
862 ent = spu_queue_next(qp, ent);
863
864 ent->control = cp->arr[i].src_len - 1;
865 ent->src_addr = cp->arr[i].src_paddr;
866 ent->auth_key_addr = 0UL;
867 ent->auth_iv_addr = 0UL;
868 ent->final_auth_state_addr = 0UL;
869 ent->enc_key_addr = 0UL;
870 ent->enc_iv_addr = 0UL;
871 ent->dest_addr = 0UL;
872 }
873 ent->control |= CONTROL_END_OF_BLOCK;
874
875 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876}
877
878static int n2_compute_chunks(struct skcipher_request *req)
879{
880 struct n2_request_context *rctx = skcipher_request_ctx(req);
881 struct skcipher_walk *walk = &rctx->walk;
882 struct n2_crypto_chunk *chunk;
883 unsigned long dest_prev;
884 unsigned int tot_len;
885 bool prev_in_place;
886 int err, nbytes;
887
888 err = skcipher_walk_async(walk, req);
889 if (err)
890 return err;
891
892 INIT_LIST_HEAD(&rctx->chunk_list);
893
894 chunk = &rctx->chunk;
895 INIT_LIST_HEAD(&chunk->entry);
896
897 chunk->iv_paddr = 0UL;
898 chunk->arr_len = 0;
899 chunk->dest_paddr = 0UL;
900
901 prev_in_place = false;
902 dest_prev = ~0UL;
903 tot_len = 0;
904
905 while ((nbytes = walk->nbytes) != 0) {
906 unsigned long dest_paddr, src_paddr;
907 bool in_place;
908 int this_len;
909
910 src_paddr = (page_to_phys(walk->src.phys.page) +
911 walk->src.phys.offset);
912 dest_paddr = (page_to_phys(walk->dst.phys.page) +
913 walk->dst.phys.offset);
914 in_place = (src_paddr == dest_paddr);
915 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
916
917 if (chunk->arr_len != 0) {
918 if (in_place != prev_in_place ||
919 (!prev_in_place &&
920 dest_paddr != dest_prev) ||
921 chunk->arr_len == N2_CHUNK_ARR_LEN ||
922 tot_len + this_len > (1 << 16)) {
923 chunk->dest_final = dest_prev;
924 list_add_tail(&chunk->entry,
925 &rctx->chunk_list);
926 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
927 if (!chunk) {
928 err = -ENOMEM;
929 break;
930 }
931 INIT_LIST_HEAD(&chunk->entry);
932 }
933 }
934 if (chunk->arr_len == 0) {
935 chunk->dest_paddr = dest_paddr;
936 tot_len = 0;
937 }
938 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
939 chunk->arr[chunk->arr_len].src_len = this_len;
940 chunk->arr_len++;
941
942 dest_prev = dest_paddr + this_len;
943 prev_in_place = in_place;
944 tot_len += this_len;
945
946 err = skcipher_walk_done(walk, nbytes - this_len);
947 if (err)
948 break;
949 }
950 if (!err && chunk->arr_len != 0) {
951 chunk->dest_final = dest_prev;
952 list_add_tail(&chunk->entry, &rctx->chunk_list);
953 }
954
955 return err;
956}
957
958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
959{
960 struct n2_request_context *rctx = skcipher_request_ctx(req);
961 struct n2_crypto_chunk *c, *tmp;
962
963 if (final_iv)
964 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965
966 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967 list_del(&c->entry);
968 if (unlikely(c != &rctx->chunk))
969 kfree(c);
970 }
971
972}
973
974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
975{
976 struct n2_request_context *rctx = skcipher_request_ctx(req);
977 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
978 int err = n2_compute_chunks(req);
979 struct n2_crypto_chunk *c, *tmp;
980 unsigned long flags, hv_ret;
981 struct spu_queue *qp;
982
983 if (err)
984 return err;
985
986 qp = cpu_to_cwq[get_cpu()];
987 err = -ENODEV;
988 if (!qp)
989 goto out;
990
991 spin_lock_irqsave(&qp->lock, flags);
992
993 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995 if (err)
996 break;
997 list_del(&c->entry);
998 if (unlikely(c != &rctx->chunk))
999 kfree(c);
1000 }
1001 if (!err) {
1002 hv_ret = wait_for_tail(qp);
1003 if (hv_ret != HV_EOK)
1004 err = -EINVAL;
1005 }
1006
1007 spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010 put_cpu();
1011
1012 n2_chunk_complete(req, NULL);
1013 return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018 return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023 return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028 struct n2_request_context *rctx = skcipher_request_ctx(req);
1029 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030 unsigned long flags, hv_ret, iv_paddr;
1031 int err = n2_compute_chunks(req);
1032 struct n2_crypto_chunk *c, *tmp;
1033 struct spu_queue *qp;
1034 void *final_iv_addr;
1035
1036 final_iv_addr = NULL;
1037
1038 if (err)
1039 return err;
1040
1041 qp = cpu_to_cwq[get_cpu()];
1042 err = -ENODEV;
1043 if (!qp)
1044 goto out;
1045
1046 spin_lock_irqsave(&qp->lock, flags);
1047
1048 if (encrypt) {
1049 iv_paddr = __pa(rctx->walk.iv);
1050 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051 entry) {
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, true);
1054 if (err)
1055 break;
1056 iv_paddr = c->dest_final - rctx->walk.blocksize;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1059 kfree(c);
1060 }
1061 final_iv_addr = __va(iv_paddr);
1062 } else {
1063 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064 entry) {
1065 if (c == &rctx->chunk) {
1066 iv_paddr = __pa(rctx->walk.iv);
1067 } else {
1068 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069 tmp->arr[tmp->arr_len-1].src_len -
1070 rctx->walk.blocksize);
1071 }
1072 if (!final_iv_addr) {
1073 unsigned long pa;
1074
1075 pa = (c->arr[c->arr_len-1].src_paddr +
1076 c->arr[c->arr_len-1].src_len -
1077 rctx->walk.blocksize);
1078 final_iv_addr = rctx->temp_iv;
1079 memcpy(rctx->temp_iv, __va(pa),
1080 rctx->walk.blocksize);
1081 }
1082 c->iv_paddr = iv_paddr;
1083 err = __n2_crypt_chunk(tfm, c, qp, false);
1084 if (err)
1085 break;
1086 list_del(&c->entry);
1087 if (unlikely(c != &rctx->chunk))
1088 kfree(c);
1089 }
1090 }
1091 if (!err) {
1092 hv_ret = wait_for_tail(qp);
1093 if (hv_ret != HV_EOK)
1094 err = -EINVAL;
1095 }
1096
1097 spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100 put_cpu();
1101
1102 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103 return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108 return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113 return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117 const char *name;
1118 const char *drv_name;
1119 u8 block_size;
1120 u8 enc_type;
1121 struct skcipher_alg skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125 /* ARC4: only ECB is supported (chaining bits ignored) */
1126 { .name = "ecb(arc4)",
1127 .drv_name = "ecb-arc4",
1128 .block_size = 1,
1129 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1130 ENC_TYPE_CHAINING_ECB),
1131 .skcipher = {
1132 .min_keysize = 1,
1133 .max_keysize = 256,
1134 .setkey = n2_arc4_setkey,
1135 .encrypt = n2_encrypt_ecb,
1136 .decrypt = n2_decrypt_ecb,
1137 },
1138 },
1139
1140 /* DES: ECB CBC and CFB are supported */
1141 { .name = "ecb(des)",
1142 .drv_name = "ecb-des",
1143 .block_size = DES_BLOCK_SIZE,
1144 .enc_type = (ENC_TYPE_ALG_DES |
1145 ENC_TYPE_CHAINING_ECB),
1146 .skcipher = {
1147 .min_keysize = DES_KEY_SIZE,
1148 .max_keysize = DES_KEY_SIZE,
1149 .setkey = n2_des_setkey,
1150 .encrypt = n2_encrypt_ecb,
1151 .decrypt = n2_decrypt_ecb,
1152 },
1153 },
1154 { .name = "cbc(des)",
1155 .drv_name = "cbc-des",
1156 .block_size = DES_BLOCK_SIZE,
1157 .enc_type = (ENC_TYPE_ALG_DES |
1158 ENC_TYPE_CHAINING_CBC),
1159 .skcipher = {
1160 .ivsize = DES_BLOCK_SIZE,
1161 .min_keysize = DES_KEY_SIZE,
1162 .max_keysize = DES_KEY_SIZE,
1163 .setkey = n2_des_setkey,
1164 .encrypt = n2_encrypt_chaining,
1165 .decrypt = n2_decrypt_chaining,
1166 },
1167 },
1168 { .name = "cfb(des)",
1169 .drv_name = "cfb-des",
1170 .block_size = DES_BLOCK_SIZE,
1171 .enc_type = (ENC_TYPE_ALG_DES |
1172 ENC_TYPE_CHAINING_CFB),
1173 .skcipher = {
1174 .min_keysize = DES_KEY_SIZE,
1175 .max_keysize = DES_KEY_SIZE,
1176 .setkey = n2_des_setkey,
1177 .encrypt = n2_encrypt_chaining,
1178 .decrypt = n2_decrypt_chaining,
1179 },
1180 },
1181
1182 /* 3DES: ECB CBC and CFB are supported */
1183 { .name = "ecb(des3_ede)",
1184 .drv_name = "ecb-3des",
1185 .block_size = DES_BLOCK_SIZE,
1186 .enc_type = (ENC_TYPE_ALG_3DES |
1187 ENC_TYPE_CHAINING_ECB),
1188 .skcipher = {
1189 .min_keysize = 3 * DES_KEY_SIZE,
1190 .max_keysize = 3 * DES_KEY_SIZE,
1191 .setkey = n2_3des_setkey,
1192 .encrypt = n2_encrypt_ecb,
1193 .decrypt = n2_decrypt_ecb,
1194 },
1195 },
1196 { .name = "cbc(des3_ede)",
1197 .drv_name = "cbc-3des",
1198 .block_size = DES_BLOCK_SIZE,
1199 .enc_type = (ENC_TYPE_ALG_3DES |
1200 ENC_TYPE_CHAINING_CBC),
1201 .skcipher = {
1202 .ivsize = DES_BLOCK_SIZE,
1203 .min_keysize = 3 * DES_KEY_SIZE,
1204 .max_keysize = 3 * DES_KEY_SIZE,
1205 .setkey = n2_3des_setkey,
1206 .encrypt = n2_encrypt_chaining,
1207 .decrypt = n2_decrypt_chaining,
1208 },
1209 },
1210 { .name = "cfb(des3_ede)",
1211 .drv_name = "cfb-3des",
1212 .block_size = DES_BLOCK_SIZE,
1213 .enc_type = (ENC_TYPE_ALG_3DES |
1214 ENC_TYPE_CHAINING_CFB),
1215 .skcipher = {
1216 .min_keysize = 3 * DES_KEY_SIZE,
1217 .max_keysize = 3 * DES_KEY_SIZE,
1218 .setkey = n2_3des_setkey,
1219 .encrypt = n2_encrypt_chaining,
1220 .decrypt = n2_decrypt_chaining,
1221 },
1222 },
1223 /* AES: ECB CBC and CTR are supported */
1224 { .name = "ecb(aes)",
1225 .drv_name = "ecb-aes",
1226 .block_size = AES_BLOCK_SIZE,
1227 .enc_type = (ENC_TYPE_ALG_AES128 |
1228 ENC_TYPE_CHAINING_ECB),
1229 .skcipher = {
1230 .min_keysize = AES_MIN_KEY_SIZE,
1231 .max_keysize = AES_MAX_KEY_SIZE,
1232 .setkey = n2_aes_setkey,
1233 .encrypt = n2_encrypt_ecb,
1234 .decrypt = n2_decrypt_ecb,
1235 },
1236 },
1237 { .name = "cbc(aes)",
1238 .drv_name = "cbc-aes",
1239 .block_size = AES_BLOCK_SIZE,
1240 .enc_type = (ENC_TYPE_ALG_AES128 |
1241 ENC_TYPE_CHAINING_CBC),
1242 .skcipher = {
1243 .ivsize = AES_BLOCK_SIZE,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .setkey = n2_aes_setkey,
1247 .encrypt = n2_encrypt_chaining,
1248 .decrypt = n2_decrypt_chaining,
1249 },
1250 },
1251 { .name = "ctr(aes)",
1252 .drv_name = "ctr-aes",
1253 .block_size = AES_BLOCK_SIZE,
1254 .enc_type = (ENC_TYPE_ALG_AES128 |
1255 ENC_TYPE_CHAINING_COUNTER),
1256 .skcipher = {
1257 .ivsize = AES_BLOCK_SIZE,
1258 .min_keysize = AES_MIN_KEY_SIZE,
1259 .max_keysize = AES_MAX_KEY_SIZE,
1260 .setkey = n2_aes_setkey,
1261 .encrypt = n2_encrypt_chaining,
1262 .decrypt = n2_encrypt_chaining,
1263 },
1264 },
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272 const char *name;
1273 const u8 *hash_zero;
1274 const u32 *hash_init;
1275 u8 hw_op_hashsz;
1276 u8 digest_size;
1277 u8 block_size;
1278 u8 auth_type;
1279 u8 hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283 cpu_to_le32(MD5_H0),
1284 cpu_to_le32(MD5_H1),
1285 cpu_to_le32(MD5_H2),
1286 cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301 { .name = "md5",
1302 .hash_zero = md5_zero_message_hash,
1303 .hash_init = n2_md5_init,
1304 .auth_type = AUTH_TYPE_MD5,
1305 .hmac_type = AUTH_TYPE_HMAC_MD5,
1306 .hw_op_hashsz = MD5_DIGEST_SIZE,
1307 .digest_size = MD5_DIGEST_SIZE,
1308 .block_size = MD5_HMAC_BLOCK_SIZE },
1309 { .name = "sha1",
1310 .hash_zero = sha1_zero_message_hash,
1311 .hash_init = n2_sha1_init,
1312 .auth_type = AUTH_TYPE_SHA1,
1313 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1314 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1315 .digest_size = SHA1_DIGEST_SIZE,
1316 .block_size = SHA1_BLOCK_SIZE },
1317 { .name = "sha256",
1318 .hash_zero = sha256_zero_message_hash,
1319 .hash_init = n2_sha256_init,
1320 .auth_type = AUTH_TYPE_SHA256,
1321 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1322 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1323 .digest_size = SHA256_DIGEST_SIZE,
1324 .block_size = SHA256_BLOCK_SIZE },
1325 { .name = "sha224",
1326 .hash_zero = sha224_zero_message_hash,
1327 .hash_init = n2_sha224_init,
1328 .auth_type = AUTH_TYPE_SHA256,
1329 .hmac_type = AUTH_TYPE_RESERVED,
1330 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1331 .digest_size = SHA224_DIGEST_SIZE,
1332 .block_size = SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344 struct n2_ahash_alg *alg, *alg_tmp;
1345 struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348 crypto_unregister_skcipher(&skcipher->skcipher);
1349 list_del(&skcipher->entry);
1350 kfree(skcipher);
1351 }
1352 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353 crypto_unregister_ahash(&hmac->derived.alg);
1354 list_del(&hmac->derived.entry);
1355 kfree(hmac);
1356 }
1357 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358 crypto_unregister_ahash(&alg->alg);
1359 list_del(&alg->entry);
1360 kfree(alg);
1361 }
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367 return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373 struct skcipher_alg *alg;
1374 int err;
1375
1376 if (!p)
1377 return -ENOMEM;
1378
1379 alg = &p->skcipher;
1380 *alg = tmpl->skcipher;
1381
1382 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384 alg->base.cra_priority = N2_CRA_PRIORITY;
1385 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386 CRYPTO_ALG_ALLOCATES_MEMORY;
1387 alg->base.cra_blocksize = tmpl->block_size;
1388 p->enc_type = tmpl->enc_type;
1389 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390 alg->base.cra_module = THIS_MODULE;
1391 alg->init = n2_skcipher_init_tfm;
1392
1393 list_add(&p->entry, &skcipher_algs);
1394 err = crypto_register_skcipher(alg);
1395 if (err) {
1396 pr_err("%s alg registration failed\n", alg->base.cra_name);
1397 list_del(&p->entry);
1398 kfree(p);
1399 } else {
1400 pr_info("%s alg registered\n", alg->base.cra_name);
1401 }
1402 return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408 struct ahash_alg *ahash;
1409 struct crypto_alg *base;
1410 int err;
1411
1412 if (!p)
1413 return -ENOMEM;
1414
1415 p->child_alg = n2ahash->alg.halg.base.cra_name;
1416 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417 INIT_LIST_HEAD(&p->derived.entry);
1418
1419 ahash = &p->derived.alg;
1420 ahash->digest = n2_hmac_async_digest;
1421 ahash->setkey = n2_hmac_async_setkey;
1422
1423 base = &ahash->halg.base;
1424 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428 base->cra_init = n2_hmac_cra_init;
1429 base->cra_exit = n2_hmac_cra_exit;
1430
1431 list_add(&p->derived.entry, &hmac_algs);
1432 err = crypto_register_ahash(ahash);
1433 if (err) {
1434 pr_err("%s alg registration failed\n", base->cra_name);
1435 list_del(&p->derived.entry);
1436 kfree(p);
1437 } else {
1438 pr_info("%s alg registered\n", base->cra_name);
1439 }
1440 return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446 struct hash_alg_common *halg;
1447 struct crypto_alg *base;
1448 struct ahash_alg *ahash;
1449 int err;
1450
1451 if (!p)
1452 return -ENOMEM;
1453
1454 p->hash_zero = tmpl->hash_zero;
1455 p->hash_init = tmpl->hash_init;
1456 p->auth_type = tmpl->auth_type;
1457 p->hmac_type = tmpl->hmac_type;
1458 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459 p->digest_size = tmpl->digest_size;
1460
1461 ahash = &p->alg;
1462 ahash->init = n2_hash_async_init;
1463 ahash->update = n2_hash_async_update;
1464 ahash->final = n2_hash_async_final;
1465 ahash->finup = n2_hash_async_finup;
1466 ahash->digest = n2_hash_async_digest;
1467 ahash->export = n2_hash_async_noexport;
1468 ahash->import = n2_hash_async_noimport;
1469
1470 halg = &ahash->halg;
1471 halg->digestsize = tmpl->digest_size;
1472
1473 base = &halg->base;
1474 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476 base->cra_priority = N2_CRA_PRIORITY;
1477 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478 CRYPTO_ALG_NEED_FALLBACK;
1479 base->cra_blocksize = tmpl->block_size;
1480 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481 base->cra_module = THIS_MODULE;
1482 base->cra_init = n2_hash_cra_init;
1483 base->cra_exit = n2_hash_cra_exit;
1484
1485 list_add(&p->entry, &ahash_algs);
1486 err = crypto_register_ahash(ahash);
1487 if (err) {
1488 pr_err("%s alg registration failed\n", base->cra_name);
1489 list_del(&p->entry);
1490 kfree(p);
1491 } else {
1492 pr_info("%s alg registered\n", base->cra_name);
1493 }
1494 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495 err = __n2_register_one_hmac(p);
1496 return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501 int i, err = 0;
1502
1503 mutex_lock(&spu_lock);
1504 if (algs_registered++)
1505 goto out;
1506
1507 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508 err = __n2_register_one_ahash(&hash_tmpls[i]);
1509 if (err) {
1510 __n2_unregister_algs();
1511 goto out;
1512 }
1513 }
1514 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516 if (err) {
1517 __n2_unregister_algs();
1518 goto out;
1519 }
1520 }
1521
1522out:
1523 mutex_unlock(&spu_lock);
1524 return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529 mutex_lock(&spu_lock);
1530 if (!--algs_registered)
1531 __n2_unregister_algs();
1532 mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino. This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546 unsigned long dev_ino)
1547{
1548 const unsigned int *dev_intrs;
1549 unsigned int intr;
1550 int i;
1551
1552 for (i = 0; i < ip->num_intrs; i++) {
1553 if (ip->ino_table[i].ino == dev_ino)
1554 break;
1555 }
1556 if (i == ip->num_intrs)
1557 return -ENODEV;
1558
1559 intr = ip->ino_table[i].intr;
1560
1561 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562 if (!dev_intrs)
1563 return -ENODEV;
1564
1565 for (i = 0; i < dev->archdata.num_irqs; i++) {
1566 if (dev_intrs[i] == intr)
1567 return i;
1568 }
1569
1570 return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574 const char *irq_name, struct spu_queue *p,
1575 irq_handler_t handler)
1576{
1577 unsigned long herr;
1578 int index;
1579
1580 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581 if (herr)
1582 return -EINVAL;
1583
1584 index = find_devino_index(dev, ip, p->devino);
1585 if (index < 0)
1586 return index;
1587
1588 p->irq = dev->archdata.irqs[index];
1589
1590 sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592 return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604 kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611 kmem_cache_create("mau_queue",
1612 (MAU_NUM_ENTRIES *
1613 MAU_ENTRY_SIZE),
1614 MAU_ENTRY_SIZE, 0, NULL);
1615 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616 return -ENOMEM;
1617
1618 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620 kmem_cache_create("cwq_queue",
1621 (CWQ_NUM_ENTRIES *
1622 CWQ_ENTRY_SIZE),
1623 CWQ_ENTRY_SIZE, 0, NULL);
1624 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627 return -ENOMEM;
1628 }
1629 return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642 struct spu_qreg *qr = arg;
1643 struct spu_queue *p = qr->queue;
1644 unsigned long q_type = qr->type;
1645 unsigned long hv_ret;
1646
1647 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648 CWQ_NUM_ENTRIES, &p->qhandle);
1649 if (!hv_ret)
1650 sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652 return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658 struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665 int err;
1666
1667 p->q = new_queue(p->q_type);
1668 if (!p->q)
1669 return -ENOMEM;
1670
1671 err = spu_queue_register(p, p->q_type);
1672 if (err) {
1673 free_queue(p->q, p->q_type);
1674 p->q = NULL;
1675 }
1676
1677 return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682 unsigned long hv_ret;
1683
1684 if (!p->q)
1685 return;
1686
1687 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689 if (!hv_ret)
1690 free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695 struct spu_queue *p, *n;
1696
1697 list_for_each_entry_safe(p, n, list, list) {
1698 int i;
1699
1700 for (i = 0; i < NR_CPUS; i++) {
1701 if (cpu_to_cwq[i] == p)
1702 cpu_to_cwq[i] = NULL;
1703 }
1704
1705 if (p->irq) {
1706 free_irq(p->irq, p);
1707 p->irq = 0;
1708 }
1709 spu_queue_destroy(p);
1710 list_del(&p->list);
1711 kfree(p);
1712 }
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719 struct platform_device *dev,
1720 u64 node, struct spu_queue *p,
1721 struct spu_queue **table)
1722{
1723 u64 arc;
1724
1725 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726 u64 tgt = mdesc_arc_target(mdesc, arc);
1727 const char *name = mdesc_node_name(mdesc, tgt);
1728 const u64 *id;
1729
1730 if (strcmp(name, "cpu"))
1731 continue;
1732 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733 if (table[*id] != NULL) {
1734 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735 dev->dev.of_node);
1736 return -EINVAL;
1737 }
1738 cpumask_set_cpu(*id, &p->sharing);
1739 table[*id] = p;
1740 }
1741 return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746 struct platform_device *dev, struct mdesc_handle *mdesc,
1747 u64 node, const char *iname, unsigned long q_type,
1748 irq_handler_t handler, struct spu_queue **table)
1749{
1750 struct spu_queue *p;
1751 int err;
1752
1753 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754 if (!p) {
1755 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756 dev->dev.of_node);
1757 return -ENOMEM;
1758 }
1759
1760 cpumask_clear(&p->sharing);
1761 spin_lock_init(&p->lock);
1762 p->q_type = q_type;
1763 INIT_LIST_HEAD(&p->jobs);
1764 list_add(&p->list, list);
1765
1766 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767 if (err)
1768 return err;
1769
1770 err = spu_queue_setup(p);
1771 if (err)
1772 return err;
1773
1774 return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778 struct spu_mdesc_info *ip, struct list_head *list,
1779 const char *exec_name, unsigned long q_type,
1780 irq_handler_t handler, struct spu_queue **table)
1781{
1782 int err = 0;
1783 u64 node;
1784
1785 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786 const char *type;
1787
1788 type = mdesc_get_property(mdesc, node, "type", NULL);
1789 if (!type || strcmp(type, exec_name))
1790 continue;
1791
1792 err = handle_exec_unit(ip, list, dev, mdesc, node,
1793 exec_name, q_type, handler, table);
1794 if (err) {
1795 spu_list_destroy(list);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804 struct spu_mdesc_info *ip)
1805{
1806 const u64 *ino;
1807 int ino_len;
1808 int i;
1809
1810 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811 if (!ino) {
1812 printk("NO 'ino'\n");
1813 return -ENODEV;
1814 }
1815
1816 ip->num_intrs = ino_len / sizeof(u64);
1817 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818 ip->num_intrs),
1819 GFP_KERNEL);
1820 if (!ip->ino_table)
1821 return -ENOMEM;
1822
1823 for (i = 0; i < ip->num_intrs; i++) {
1824 struct ino_blob *b = &ip->ino_table[i];
1825 b->intr = i + 1;
1826 b->ino = ino[i];
1827 }
1828
1829 return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833 struct platform_device *dev,
1834 struct spu_mdesc_info *ip,
1835 const char *node_name)
1836{
1837 const unsigned int *reg;
1838 u64 node;
1839
1840 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841 if (!reg)
1842 return -ENODEV;
1843
1844 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845 const char *name;
1846 const u64 *chdl;
1847
1848 name = mdesc_get_property(mdesc, node, "name", NULL);
1849 if (!name || strcmp(name, node_name))
1850 continue;
1851 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852 if (!chdl || (*chdl != *reg))
1853 continue;
1854 ip->cfg_handle = *chdl;
1855 return get_irq_props(mdesc, node, ip);
1856 }
1857
1858 return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866 int err;
1867
1868 n2_spu_hvapi_major = 2;
1869 n2_spu_hvapi_minor = 0;
1870
1871 err = sun4v_hvapi_register(HV_GRP_NCS,
1872 n2_spu_hvapi_major,
1873 &n2_spu_hvapi_minor);
1874
1875 if (!err)
1876 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877 n2_spu_hvapi_major,
1878 n2_spu_hvapi_minor);
1879
1880 return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885 sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892 int err = 0;
1893
1894 mutex_lock(&spu_lock);
1895
1896 if (global_ref++)
1897 goto out;
1898
1899 err = n2_spu_hvapi_register();
1900 if (err)
1901 goto out;
1902
1903 err = queue_cache_init();
1904 if (err)
1905 goto out_hvapi_release;
1906
1907 err = -ENOMEM;
1908 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909 GFP_KERNEL);
1910 if (!cpu_to_cwq)
1911 goto out_queue_cache_destroy;
1912
1913 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914 GFP_KERNEL);
1915 if (!cpu_to_mau)
1916 goto out_free_cwq_table;
1917
1918 err = 0;
1919
1920out:
1921 if (err)
1922 global_ref--;
1923 mutex_unlock(&spu_lock);
1924 return err;
1925
1926out_free_cwq_table:
1927 kfree(cpu_to_cwq);
1928 cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931 queue_cache_destroy();
1932
1933out_hvapi_release:
1934 n2_spu_hvapi_unregister();
1935 goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940 mutex_lock(&spu_lock);
1941 if (!--global_ref) {
1942 kfree(cpu_to_cwq);
1943 cpu_to_cwq = NULL;
1944
1945 kfree(cpu_to_mau);
1946 cpu_to_mau = NULL;
1947
1948 queue_cache_destroy();
1949 n2_spu_hvapi_unregister();
1950 }
1951 mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958 if (np)
1959 INIT_LIST_HEAD(&np->cwq_list);
1960
1961 return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966 kfree(np->cwq_info.ino_table);
1967 np->cwq_info.ino_table = NULL;
1968
1969 kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974 static int n2_spu_version_printed;
1975
1976 if (n2_spu_version_printed++ == 0)
1977 pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982 struct mdesc_handle *mdesc;
1983 struct n2_crypto *np;
1984 int err;
1985
1986 n2_spu_driver_version();
1987
1988 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990 np = alloc_n2cp();
1991 if (!np) {
1992 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993 dev->dev.of_node);
1994 return -ENOMEM;
1995 }
1996
1997 err = grab_global_resources();
1998 if (err) {
1999 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000 dev->dev.of_node);
2001 goto out_free_n2cp;
2002 }
2003
2004 mdesc = mdesc_grab();
2005
2006 if (!mdesc) {
2007 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008 dev->dev.of_node);
2009 err = -ENODEV;
2010 goto out_free_global;
2011 }
2012 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013 if (err) {
2014 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015 dev->dev.of_node);
2016 mdesc_release(mdesc);
2017 goto out_free_global;
2018 }
2019
2020 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022 cpu_to_cwq);
2023 mdesc_release(mdesc);
2024
2025 if (err) {
2026 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027 dev->dev.of_node);
2028 goto out_free_global;
2029 }
2030
2031 err = n2_register_algs();
2032 if (err) {
2033 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034 dev->dev.of_node);
2035 goto out_free_spu_list;
2036 }
2037
2038 dev_set_drvdata(&dev->dev, np);
2039
2040 return 0;
2041
2042out_free_spu_list:
2043 spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046 release_global_resources();
2047
2048out_free_n2cp:
2049 free_n2cp(np);
2050
2051 return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058 n2_unregister_algs();
2059
2060 spu_list_destroy(&np->cwq_list);
2061
2062 release_global_resources();
2063
2064 free_n2cp(np);
2065
2066 return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073 if (mp)
2074 INIT_LIST_HEAD(&mp->mau_list);
2075
2076 return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081 kfree(mp->mau_info.ino_table);
2082 mp->mau_info.ino_table = NULL;
2083
2084 kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089 struct mdesc_handle *mdesc;
2090 struct n2_mau *mp;
2091 int err;
2092
2093 n2_spu_driver_version();
2094
2095 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097 mp = alloc_ncp();
2098 if (!mp) {
2099 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100 dev->dev.of_node);
2101 return -ENOMEM;
2102 }
2103
2104 err = grab_global_resources();
2105 if (err) {
2106 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107 dev->dev.of_node);
2108 goto out_free_ncp;
2109 }
2110
2111 mdesc = mdesc_grab();
2112
2113 if (!mdesc) {
2114 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115 dev->dev.of_node);
2116 err = -ENODEV;
2117 goto out_free_global;
2118 }
2119
2120 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121 if (err) {
2122 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123 dev->dev.of_node);
2124 mdesc_release(mdesc);
2125 goto out_free_global;
2126 }
2127
2128 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130 cpu_to_mau);
2131 mdesc_release(mdesc);
2132
2133 if (err) {
2134 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135 dev->dev.of_node);
2136 goto out_free_global;
2137 }
2138
2139 dev_set_drvdata(&dev->dev, mp);
2140
2141 return 0;
2142
2143out_free_global:
2144 release_global_resources();
2145
2146out_free_ncp:
2147 free_ncp(mp);
2148
2149 return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156 spu_list_destroy(&mp->mau_list);
2157
2158 release_global_resources();
2159
2160 free_ncp(mp);
2161
2162 return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166 {
2167 .name = "n2cp",
2168 .compatible = "SUNW,n2-cwq",
2169 },
2170 {
2171 .name = "n2cp",
2172 .compatible = "SUNW,vf-cwq",
2173 },
2174 {
2175 .name = "n2cp",
2176 .compatible = "SUNW,kt-cwq",
2177 },
2178 {},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184 .driver = {
2185 .name = "n2cp",
2186 .of_match_table = n2_crypto_match,
2187 },
2188 .probe = n2_crypto_probe,
2189 .remove = n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193 {
2194 .name = "ncp",
2195 .compatible = "SUNW,n2-mau",
2196 },
2197 {
2198 .name = "ncp",
2199 .compatible = "SUNW,vf-mau",
2200 },
2201 {
2202 .name = "ncp",
2203 .compatible = "SUNW,kt-mau",
2204 },
2205 {},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211 .driver = {
2212 .name = "ncp",
2213 .of_match_table = n2_mau_match,
2214 },
2215 .probe = n2_mau_probe,
2216 .remove = n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220 &n2_crypto_driver,
2221 &n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha.h>
19#include <crypto/aes.h>
20#include <crypto/internal/des.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24
25#include <crypto/internal/hash.h>
26#include <crypto/scatterwalk.h>
27#include <crypto/algapi.h>
28
29#include <asm/hypervisor.h>
30#include <asm/mdesc.h>
31
32#include "n2_core.h"
33
34#define DRV_MODULE_NAME "n2_crypto"
35#define DRV_MODULE_VERSION "0.2"
36#define DRV_MODULE_RELDATE "July 28, 2011"
37
38static const char version[] =
39 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40
41MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
42MODULE_DESCRIPTION("Niagara2 Crypto driver");
43MODULE_LICENSE("GPL");
44MODULE_VERSION(DRV_MODULE_VERSION);
45
46#define N2_CRA_PRIORITY 200
47
48static DEFINE_MUTEX(spu_lock);
49
50struct spu_queue {
51 cpumask_t sharing;
52 unsigned long qhandle;
53
54 spinlock_t lock;
55 u8 q_type;
56 void *q;
57 unsigned long head;
58 unsigned long tail;
59 struct list_head jobs;
60
61 unsigned long devino;
62
63 char irq_name[32];
64 unsigned int irq;
65
66 struct list_head list;
67};
68
69struct spu_qreg {
70 struct spu_queue *queue;
71 unsigned long type;
72};
73
74static struct spu_queue **cpu_to_cwq;
75static struct spu_queue **cpu_to_mau;
76
77static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78{
79 if (q->q_type == HV_NCS_QTYPE_MAU) {
80 off += MAU_ENTRY_SIZE;
81 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
82 off = 0;
83 } else {
84 off += CWQ_ENTRY_SIZE;
85 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
86 off = 0;
87 }
88 return off;
89}
90
91struct n2_request_common {
92 struct list_head entry;
93 unsigned int offset;
94};
95#define OFFSET_NOT_RUNNING (~(unsigned int)0)
96
97/* An async job request records the final tail value it used in
98 * n2_request_common->offset, test to see if that offset is in
99 * the range old_head, new_head, inclusive.
100 */
101static inline bool job_finished(struct spu_queue *q, unsigned int offset,
102 unsigned long old_head, unsigned long new_head)
103{
104 if (old_head <= new_head) {
105 if (offset > old_head && offset <= new_head)
106 return true;
107 } else {
108 if (offset > old_head || offset <= new_head)
109 return true;
110 }
111 return false;
112}
113
114/* When the HEAD marker is unequal to the actual HEAD, we get
115 * a virtual device INO interrupt. We should process the
116 * completed CWQ entries and adjust the HEAD marker to clear
117 * the IRQ.
118 */
119static irqreturn_t cwq_intr(int irq, void *dev_id)
120{
121 unsigned long off, new_head, hv_ret;
122 struct spu_queue *q = dev_id;
123
124 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
125 smp_processor_id(), q->qhandle);
126
127 spin_lock(&q->lock);
128
129 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130
131 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
132 smp_processor_id(), new_head, hv_ret);
133
134 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
135 /* XXX ... XXX */
136 }
137
138 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
139 if (hv_ret == HV_EOK)
140 q->head = new_head;
141
142 spin_unlock(&q->lock);
143
144 return IRQ_HANDLED;
145}
146
147static irqreturn_t mau_intr(int irq, void *dev_id)
148{
149 struct spu_queue *q = dev_id;
150 unsigned long head, hv_ret;
151
152 spin_lock(&q->lock);
153
154 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
155 smp_processor_id(), q->qhandle);
156
157 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158
159 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
160 smp_processor_id(), head, hv_ret);
161
162 sun4v_ncs_sethead_marker(q->qhandle, head);
163
164 spin_unlock(&q->lock);
165
166 return IRQ_HANDLED;
167}
168
169static void *spu_queue_next(struct spu_queue *q, void *cur)
170{
171 return q->q + spu_next_offset(q, cur - q->q);
172}
173
174static int spu_queue_num_free(struct spu_queue *q)
175{
176 unsigned long head = q->head;
177 unsigned long tail = q->tail;
178 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
179 unsigned long diff;
180
181 if (head > tail)
182 diff = head - tail;
183 else
184 diff = (end - tail) + head;
185
186 return (diff / CWQ_ENTRY_SIZE) - 1;
187}
188
189static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190{
191 int avail = spu_queue_num_free(q);
192
193 if (avail >= num_entries)
194 return q->q + q->tail;
195
196 return NULL;
197}
198
199static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200{
201 unsigned long hv_ret, new_tail;
202
203 new_tail = spu_next_offset(q, last - q->q);
204
205 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
206 if (hv_ret == HV_EOK)
207 q->tail = new_tail;
208 return hv_ret;
209}
210
211static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
212 int enc_type, int auth_type,
213 unsigned int hash_len,
214 bool sfas, bool sob, bool eob, bool encrypt,
215 int opcode)
216{
217 u64 word = (len - 1) & CONTROL_LEN;
218
219 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
220 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
221 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222 if (sfas)
223 word |= CONTROL_STORE_FINAL_AUTH_STATE;
224 if (sob)
225 word |= CONTROL_START_OF_BLOCK;
226 if (eob)
227 word |= CONTROL_END_OF_BLOCK;
228 if (encrypt)
229 word |= CONTROL_ENCRYPT;
230 if (hmac_key_len)
231 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232 if (hash_len)
233 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
234
235 return word;
236}
237
238#if 0
239static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240{
241 if (this_len >= 64 ||
242 qp->head != qp->tail)
243 return true;
244 return false;
245}
246#endif
247
248struct n2_ahash_alg {
249 struct list_head entry;
250 const u8 *hash_zero;
251 const u32 *hash_init;
252 u8 hw_op_hashsz;
253 u8 digest_size;
254 u8 auth_type;
255 u8 hmac_type;
256 struct ahash_alg alg;
257};
258
259static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260{
261 struct crypto_alg *alg = tfm->__crt_alg;
262 struct ahash_alg *ahash_alg;
263
264 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265
266 return container_of(ahash_alg, struct n2_ahash_alg, alg);
267}
268
269struct n2_hmac_alg {
270 const char *child_alg;
271 struct n2_ahash_alg derived;
272};
273
274static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275{
276 struct crypto_alg *alg = tfm->__crt_alg;
277 struct ahash_alg *ahash_alg;
278
279 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280
281 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
282}
283
284struct n2_hash_ctx {
285 struct crypto_ahash *fallback_tfm;
286};
287
288#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
289
290struct n2_hmac_ctx {
291 struct n2_hash_ctx base;
292
293 struct crypto_shash *child_shash;
294
295 int hash_key_len;
296 unsigned char hash_key[N2_HASH_KEY_MAX];
297};
298
299struct n2_hash_req_ctx {
300 union {
301 struct md5_state md5;
302 struct sha1_state sha1;
303 struct sha256_state sha256;
304 } u;
305
306 struct ahash_request fallback_req;
307};
308
309static int n2_hash_async_init(struct ahash_request *req)
310{
311 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
312 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
313 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314
315 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
316 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317
318 return crypto_ahash_init(&rctx->fallback_req);
319}
320
321static int n2_hash_async_update(struct ahash_request *req)
322{
323 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
324 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326
327 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
328 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
329 rctx->fallback_req.nbytes = req->nbytes;
330 rctx->fallback_req.src = req->src;
331
332 return crypto_ahash_update(&rctx->fallback_req);
333}
334
335static int n2_hash_async_final(struct ahash_request *req)
336{
337 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
338 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
339 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340
341 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
342 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
343 rctx->fallback_req.result = req->result;
344
345 return crypto_ahash_final(&rctx->fallback_req);
346}
347
348static int n2_hash_async_finup(struct ahash_request *req)
349{
350 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
351 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353
354 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
355 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
356 rctx->fallback_req.nbytes = req->nbytes;
357 rctx->fallback_req.src = req->src;
358 rctx->fallback_req.result = req->result;
359
360 return crypto_ahash_finup(&rctx->fallback_req);
361}
362
363static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
364{
365 return -ENOSYS;
366}
367
368static int n2_hash_async_noexport(struct ahash_request *req, void *out)
369{
370 return -ENOSYS;
371}
372
373static int n2_hash_cra_init(struct crypto_tfm *tfm)
374{
375 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
376 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
377 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
378 struct crypto_ahash *fallback_tfm;
379 int err;
380
381 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
382 CRYPTO_ALG_NEED_FALLBACK);
383 if (IS_ERR(fallback_tfm)) {
384 pr_warning("Fallback driver '%s' could not be loaded!\n",
385 fallback_driver_name);
386 err = PTR_ERR(fallback_tfm);
387 goto out;
388 }
389
390 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
391 crypto_ahash_reqsize(fallback_tfm)));
392
393 ctx->fallback_tfm = fallback_tfm;
394 return 0;
395
396out:
397 return err;
398}
399
400static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401{
402 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
403 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404
405 crypto_free_ahash(ctx->fallback_tfm);
406}
407
408static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409{
410 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
411 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
412 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
413 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
414 struct crypto_ahash *fallback_tfm;
415 struct crypto_shash *child_shash;
416 int err;
417
418 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
419 CRYPTO_ALG_NEED_FALLBACK);
420 if (IS_ERR(fallback_tfm)) {
421 pr_warning("Fallback driver '%s' could not be loaded!\n",
422 fallback_driver_name);
423 err = PTR_ERR(fallback_tfm);
424 goto out;
425 }
426
427 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
428 if (IS_ERR(child_shash)) {
429 pr_warning("Child shash '%s' could not be loaded!\n",
430 n2alg->child_alg);
431 err = PTR_ERR(child_shash);
432 goto out_free_fallback;
433 }
434
435 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
436 crypto_ahash_reqsize(fallback_tfm)));
437
438 ctx->child_shash = child_shash;
439 ctx->base.fallback_tfm = fallback_tfm;
440 return 0;
441
442out_free_fallback:
443 crypto_free_ahash(fallback_tfm);
444
445out:
446 return err;
447}
448
449static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450{
451 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
452 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453
454 crypto_free_ahash(ctx->base.fallback_tfm);
455 crypto_free_shash(ctx->child_shash);
456}
457
458static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
459 unsigned int keylen)
460{
461 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
462 struct crypto_shash *child_shash = ctx->child_shash;
463 struct crypto_ahash *fallback_tfm;
464 SHASH_DESC_ON_STACK(shash, child_shash);
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 shash->tfm = child_shash;
473
474 bs = crypto_shash_blocksize(child_shash);
475 ds = crypto_shash_digestsize(child_shash);
476 BUG_ON(ds > N2_HASH_KEY_MAX);
477 if (keylen > bs) {
478 err = crypto_shash_digest(shash, key, keylen,
479 ctx->hash_key);
480 if (err)
481 return err;
482 keylen = ds;
483 } else if (keylen <= N2_HASH_KEY_MAX)
484 memcpy(ctx->hash_key, key, keylen);
485
486 ctx->hash_key_len = keylen;
487
488 return err;
489}
490
491static unsigned long wait_for_tail(struct spu_queue *qp)
492{
493 unsigned long head, hv_ret;
494
495 do {
496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 if (hv_ret != HV_EOK) {
498 pr_err("Hypervisor error on gethead\n");
499 break;
500 }
501 if (head == qp->tail) {
502 qp->head = head;
503 break;
504 }
505 } while (1);
506 return hv_ret;
507}
508
509static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 struct cwq_initial_entry *ent)
511{
512 unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514 if (hv_ret == HV_EOK)
515 hv_ret = wait_for_tail(qp);
516
517 return hv_ret;
518}
519
520static int n2_do_async_digest(struct ahash_request *req,
521 unsigned int auth_type, unsigned int digest_size,
522 unsigned int result_size, void *hash_loc,
523 unsigned long auth_key, unsigned int auth_key_len)
524{
525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 struct cwq_initial_entry *ent;
527 struct crypto_hash_walk walk;
528 struct spu_queue *qp;
529 unsigned long flags;
530 int err = -ENODEV;
531 int nbytes, cpu;
532
533 /* The total effective length of the operation may not
534 * exceed 2^16.
535 */
536 if (unlikely(req->nbytes > (1 << 16))) {
537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 rctx->fallback_req.base.flags =
542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 rctx->fallback_req.nbytes = req->nbytes;
544 rctx->fallback_req.src = req->src;
545 rctx->fallback_req.result = req->result;
546
547 return crypto_ahash_digest(&rctx->fallback_req);
548 }
549
550 nbytes = crypto_hash_walk_first(req, &walk);
551
552 cpu = get_cpu();
553 qp = cpu_to_cwq[cpu];
554 if (!qp)
555 goto out;
556
557 spin_lock_irqsave(&qp->lock, flags);
558
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
560 * XXX walk, etc.
561 */
562 ent = qp->q + qp->tail;
563
564 ent->control = control_word_base(nbytes, auth_key_len, 0,
565 auth_type, digest_size,
566 false, true, false, false,
567 OPCODE_INPLACE_BIT |
568 OPCODE_AUTH_MAC);
569 ent->src_addr = __pa(walk.data);
570 ent->auth_key_addr = auth_key;
571 ent->auth_iv_addr = __pa(hash_loc);
572 ent->final_auth_state_addr = 0UL;
573 ent->enc_key_addr = 0UL;
574 ent->enc_iv_addr = 0UL;
575 ent->dest_addr = __pa(hash_loc);
576
577 nbytes = crypto_hash_walk_done(&walk, 0);
578 while (nbytes > 0) {
579 ent = spu_queue_next(qp, ent);
580
581 ent->control = (nbytes - 1);
582 ent->src_addr = __pa(walk.data);
583 ent->auth_key_addr = 0UL;
584 ent->auth_iv_addr = 0UL;
585 ent->final_auth_state_addr = 0UL;
586 ent->enc_key_addr = 0UL;
587 ent->enc_iv_addr = 0UL;
588 ent->dest_addr = 0UL;
589
590 nbytes = crypto_hash_walk_done(&walk, 0);
591 }
592 ent->control |= CONTROL_END_OF_BLOCK;
593
594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 err = -EINVAL;
596 else
597 err = 0;
598
599 spin_unlock_irqrestore(&qp->lock, flags);
600
601 if (!err)
602 memcpy(req->result, hash_loc, result_size);
603out:
604 put_cpu();
605
606 return err;
607}
608
609static int n2_hash_async_digest(struct ahash_request *req)
610{
611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 int ds;
614
615 ds = n2alg->digest_size;
616 if (unlikely(req->nbytes == 0)) {
617 memcpy(req->result, n2alg->hash_zero, ds);
618 return 0;
619 }
620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622 return n2_do_async_digest(req, n2alg->auth_type,
623 n2alg->hw_op_hashsz, ds,
624 &rctx->u, 0UL, 0);
625}
626
627static int n2_hmac_async_digest(struct ahash_request *req)
628{
629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 int ds;
634
635 ds = n2alg->derived.digest_size;
636 if (unlikely(req->nbytes == 0) ||
637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 rctx->fallback_req.base.flags =
643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 rctx->fallback_req.nbytes = req->nbytes;
645 rctx->fallback_req.src = req->src;
646 rctx->fallback_req.result = req->result;
647
648 return crypto_ahash_digest(&rctx->fallback_req);
649 }
650 memcpy(&rctx->u, n2alg->derived.hash_init,
651 n2alg->derived.hw_op_hashsz);
652
653 return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 n2alg->derived.hw_op_hashsz, ds,
655 &rctx->u,
656 __pa(&ctx->hash_key),
657 ctx->hash_key_len);
658}
659
660struct n2_cipher_context {
661 int key_len;
662 int enc_type;
663 union {
664 u8 aes[AES_MAX_KEY_SIZE];
665 u8 des[DES_KEY_SIZE];
666 u8 des3[3 * DES_KEY_SIZE];
667 u8 arc4[258]; /* S-box, X, Y */
668 } key;
669};
670
671#define N2_CHUNK_ARR_LEN 16
672
673struct n2_crypto_chunk {
674 struct list_head entry;
675 unsigned long iv_paddr : 44;
676 unsigned long arr_len : 20;
677 unsigned long dest_paddr;
678 unsigned long dest_final;
679 struct {
680 unsigned long src_paddr : 44;
681 unsigned long src_len : 20;
682 } arr[N2_CHUNK_ARR_LEN];
683};
684
685struct n2_request_context {
686 struct ablkcipher_walk walk;
687 struct list_head chunk_list;
688 struct n2_crypto_chunk chunk;
689 u8 temp_iv[16];
690};
691
692/* The SPU allows some level of flexibility for partial cipher blocks
693 * being specified in a descriptor.
694 *
695 * It merely requires that every descriptor's length field is at least
696 * as large as the cipher block size. This means that a cipher block
697 * can span at most 2 descriptors. However, this does not allow a
698 * partial block to span into the final descriptor as that would
699 * violate the rule (since every descriptor's length must be at lest
700 * the block size). So, for example, assuming an 8 byte block size:
701 *
702 * 0xe --> 0xa --> 0x8
703 *
704 * is a valid length sequence, whereas:
705 *
706 * 0xe --> 0xb --> 0x7
707 *
708 * is not a valid sequence.
709 */
710
711struct n2_cipher_alg {
712 struct list_head entry;
713 u8 enc_type;
714 struct crypto_alg alg;
715};
716
717static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
718{
719 struct crypto_alg *alg = tfm->__crt_alg;
720
721 return container_of(alg, struct n2_cipher_alg, alg);
722}
723
724struct n2_cipher_request_context {
725 struct ablkcipher_walk walk;
726};
727
728static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
729 unsigned int keylen)
730{
731 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
732 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
733 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
734
735 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736
737 switch (keylen) {
738 case AES_KEYSIZE_128:
739 ctx->enc_type |= ENC_TYPE_ALG_AES128;
740 break;
741 case AES_KEYSIZE_192:
742 ctx->enc_type |= ENC_TYPE_ALG_AES192;
743 break;
744 case AES_KEYSIZE_256:
745 ctx->enc_type |= ENC_TYPE_ALG_AES256;
746 break;
747 default:
748 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
749 return -EINVAL;
750 }
751
752 ctx->key_len = keylen;
753 memcpy(ctx->key.aes, key, keylen);
754 return 0;
755}
756
757static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
758 unsigned int keylen)
759{
760 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
761 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
762 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
763 int err;
764
765 err = verify_ablkcipher_des_key(cipher, key);
766 if (err)
767 return err;
768
769 ctx->enc_type = n2alg->enc_type;
770
771 ctx->key_len = keylen;
772 memcpy(ctx->key.des, key, keylen);
773 return 0;
774}
775
776static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
777 unsigned int keylen)
778{
779 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
780 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
781 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
782 int err;
783
784 err = verify_ablkcipher_des3_key(cipher, key);
785 if (err)
786 return err;
787
788 ctx->enc_type = n2alg->enc_type;
789
790 ctx->key_len = keylen;
791 memcpy(ctx->key.des3, key, keylen);
792 return 0;
793}
794
795static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
796 unsigned int keylen)
797{
798 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
799 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
800 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
801 u8 *s = ctx->key.arc4;
802 u8 *x = s + 256;
803 u8 *y = x + 1;
804 int i, j, k;
805
806 ctx->enc_type = n2alg->enc_type;
807
808 j = k = 0;
809 *x = 0;
810 *y = 0;
811 for (i = 0; i < 256; i++)
812 s[i] = i;
813 for (i = 0; i < 256; i++) {
814 u8 a = s[i];
815 j = (j + key[k] + a) & 0xff;
816 s[i] = s[j];
817 s[j] = a;
818 if (++k >= keylen)
819 k = 0;
820 }
821
822 return 0;
823}
824
825static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
826{
827 int this_len = nbytes;
828
829 this_len -= (nbytes & (block_size - 1));
830 return this_len > (1 << 16) ? (1 << 16) : this_len;
831}
832
833static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
834 struct spu_queue *qp, bool encrypt)
835{
836 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
837 struct cwq_initial_entry *ent;
838 bool in_place;
839 int i;
840
841 ent = spu_queue_alloc(qp, cp->arr_len);
842 if (!ent) {
843 pr_info("queue_alloc() of %d fails\n",
844 cp->arr_len);
845 return -EBUSY;
846 }
847
848 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
849
850 ent->control = control_word_base(cp->arr[0].src_len,
851 0, ctx->enc_type, 0, 0,
852 false, true, false, encrypt,
853 OPCODE_ENCRYPT |
854 (in_place ? OPCODE_INPLACE_BIT : 0));
855 ent->src_addr = cp->arr[0].src_paddr;
856 ent->auth_key_addr = 0UL;
857 ent->auth_iv_addr = 0UL;
858 ent->final_auth_state_addr = 0UL;
859 ent->enc_key_addr = __pa(&ctx->key);
860 ent->enc_iv_addr = cp->iv_paddr;
861 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
862
863 for (i = 1; i < cp->arr_len; i++) {
864 ent = spu_queue_next(qp, ent);
865
866 ent->control = cp->arr[i].src_len - 1;
867 ent->src_addr = cp->arr[i].src_paddr;
868 ent->auth_key_addr = 0UL;
869 ent->auth_iv_addr = 0UL;
870 ent->final_auth_state_addr = 0UL;
871 ent->enc_key_addr = 0UL;
872 ent->enc_iv_addr = 0UL;
873 ent->dest_addr = 0UL;
874 }
875 ent->control |= CONTROL_END_OF_BLOCK;
876
877 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
878}
879
880static int n2_compute_chunks(struct ablkcipher_request *req)
881{
882 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
883 struct ablkcipher_walk *walk = &rctx->walk;
884 struct n2_crypto_chunk *chunk;
885 unsigned long dest_prev;
886 unsigned int tot_len;
887 bool prev_in_place;
888 int err, nbytes;
889
890 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
891 err = ablkcipher_walk_phys(req, walk);
892 if (err)
893 return err;
894
895 INIT_LIST_HEAD(&rctx->chunk_list);
896
897 chunk = &rctx->chunk;
898 INIT_LIST_HEAD(&chunk->entry);
899
900 chunk->iv_paddr = 0UL;
901 chunk->arr_len = 0;
902 chunk->dest_paddr = 0UL;
903
904 prev_in_place = false;
905 dest_prev = ~0UL;
906 tot_len = 0;
907
908 while ((nbytes = walk->nbytes) != 0) {
909 unsigned long dest_paddr, src_paddr;
910 bool in_place;
911 int this_len;
912
913 src_paddr = (page_to_phys(walk->src.page) +
914 walk->src.offset);
915 dest_paddr = (page_to_phys(walk->dst.page) +
916 walk->dst.offset);
917 in_place = (src_paddr == dest_paddr);
918 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
919
920 if (chunk->arr_len != 0) {
921 if (in_place != prev_in_place ||
922 (!prev_in_place &&
923 dest_paddr != dest_prev) ||
924 chunk->arr_len == N2_CHUNK_ARR_LEN ||
925 tot_len + this_len > (1 << 16)) {
926 chunk->dest_final = dest_prev;
927 list_add_tail(&chunk->entry,
928 &rctx->chunk_list);
929 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930 if (!chunk) {
931 err = -ENOMEM;
932 break;
933 }
934 INIT_LIST_HEAD(&chunk->entry);
935 }
936 }
937 if (chunk->arr_len == 0) {
938 chunk->dest_paddr = dest_paddr;
939 tot_len = 0;
940 }
941 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
942 chunk->arr[chunk->arr_len].src_len = this_len;
943 chunk->arr_len++;
944
945 dest_prev = dest_paddr + this_len;
946 prev_in_place = in_place;
947 tot_len += this_len;
948
949 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
950 if (err)
951 break;
952 }
953 if (!err && chunk->arr_len != 0) {
954 chunk->dest_final = dest_prev;
955 list_add_tail(&chunk->entry, &rctx->chunk_list);
956 }
957
958 return err;
959}
960
961static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
962{
963 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
964 struct n2_crypto_chunk *c, *tmp;
965
966 if (final_iv)
967 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
968
969 ablkcipher_walk_complete(&rctx->walk);
970 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
971 list_del(&c->entry);
972 if (unlikely(c != &rctx->chunk))
973 kfree(c);
974 }
975
976}
977
978static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
979{
980 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
981 struct crypto_tfm *tfm = req->base.tfm;
982 int err = n2_compute_chunks(req);
983 struct n2_crypto_chunk *c, *tmp;
984 unsigned long flags, hv_ret;
985 struct spu_queue *qp;
986
987 if (err)
988 return err;
989
990 qp = cpu_to_cwq[get_cpu()];
991 err = -ENODEV;
992 if (!qp)
993 goto out;
994
995 spin_lock_irqsave(&qp->lock, flags);
996
997 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
998 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
999 if (err)
1000 break;
1001 list_del(&c->entry);
1002 if (unlikely(c != &rctx->chunk))
1003 kfree(c);
1004 }
1005 if (!err) {
1006 hv_ret = wait_for_tail(qp);
1007 if (hv_ret != HV_EOK)
1008 err = -EINVAL;
1009 }
1010
1011 spin_unlock_irqrestore(&qp->lock, flags);
1012
1013out:
1014 put_cpu();
1015
1016 n2_chunk_complete(req, NULL);
1017 return err;
1018}
1019
1020static int n2_encrypt_ecb(struct ablkcipher_request *req)
1021{
1022 return n2_do_ecb(req, true);
1023}
1024
1025static int n2_decrypt_ecb(struct ablkcipher_request *req)
1026{
1027 return n2_do_ecb(req, false);
1028}
1029
1030static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1031{
1032 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1033 struct crypto_tfm *tfm = req->base.tfm;
1034 unsigned long flags, hv_ret, iv_paddr;
1035 int err = n2_compute_chunks(req);
1036 struct n2_crypto_chunk *c, *tmp;
1037 struct spu_queue *qp;
1038 void *final_iv_addr;
1039
1040 final_iv_addr = NULL;
1041
1042 if (err)
1043 return err;
1044
1045 qp = cpu_to_cwq[get_cpu()];
1046 err = -ENODEV;
1047 if (!qp)
1048 goto out;
1049
1050 spin_lock_irqsave(&qp->lock, flags);
1051
1052 if (encrypt) {
1053 iv_paddr = __pa(rctx->walk.iv);
1054 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055 entry) {
1056 c->iv_paddr = iv_paddr;
1057 err = __n2_crypt_chunk(tfm, c, qp, true);
1058 if (err)
1059 break;
1060 iv_paddr = c->dest_final - rctx->walk.blocksize;
1061 list_del(&c->entry);
1062 if (unlikely(c != &rctx->chunk))
1063 kfree(c);
1064 }
1065 final_iv_addr = __va(iv_paddr);
1066 } else {
1067 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068 entry) {
1069 if (c == &rctx->chunk) {
1070 iv_paddr = __pa(rctx->walk.iv);
1071 } else {
1072 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073 tmp->arr[tmp->arr_len-1].src_len -
1074 rctx->walk.blocksize);
1075 }
1076 if (!final_iv_addr) {
1077 unsigned long pa;
1078
1079 pa = (c->arr[c->arr_len-1].src_paddr +
1080 c->arr[c->arr_len-1].src_len -
1081 rctx->walk.blocksize);
1082 final_iv_addr = rctx->temp_iv;
1083 memcpy(rctx->temp_iv, __va(pa),
1084 rctx->walk.blocksize);
1085 }
1086 c->iv_paddr = iv_paddr;
1087 err = __n2_crypt_chunk(tfm, c, qp, false);
1088 if (err)
1089 break;
1090 list_del(&c->entry);
1091 if (unlikely(c != &rctx->chunk))
1092 kfree(c);
1093 }
1094 }
1095 if (!err) {
1096 hv_ret = wait_for_tail(qp);
1097 if (hv_ret != HV_EOK)
1098 err = -EINVAL;
1099 }
1100
1101 spin_unlock_irqrestore(&qp->lock, flags);
1102
1103out:
1104 put_cpu();
1105
1106 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107 return err;
1108}
1109
1110static int n2_encrypt_chaining(struct ablkcipher_request *req)
1111{
1112 return n2_do_chaining(req, true);
1113}
1114
1115static int n2_decrypt_chaining(struct ablkcipher_request *req)
1116{
1117 return n2_do_chaining(req, false);
1118}
1119
1120struct n2_cipher_tmpl {
1121 const char *name;
1122 const char *drv_name;
1123 u8 block_size;
1124 u8 enc_type;
1125 struct ablkcipher_alg ablkcipher;
1126};
1127
1128static const struct n2_cipher_tmpl cipher_tmpls[] = {
1129 /* ARC4: only ECB is supported (chaining bits ignored) */
1130 { .name = "ecb(arc4)",
1131 .drv_name = "ecb-arc4",
1132 .block_size = 1,
1133 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1134 ENC_TYPE_CHAINING_ECB),
1135 .ablkcipher = {
1136 .min_keysize = 1,
1137 .max_keysize = 256,
1138 .setkey = n2_arc4_setkey,
1139 .encrypt = n2_encrypt_ecb,
1140 .decrypt = n2_decrypt_ecb,
1141 },
1142 },
1143
1144 /* DES: ECB CBC and CFB are supported */
1145 { .name = "ecb(des)",
1146 .drv_name = "ecb-des",
1147 .block_size = DES_BLOCK_SIZE,
1148 .enc_type = (ENC_TYPE_ALG_DES |
1149 ENC_TYPE_CHAINING_ECB),
1150 .ablkcipher = {
1151 .min_keysize = DES_KEY_SIZE,
1152 .max_keysize = DES_KEY_SIZE,
1153 .setkey = n2_des_setkey,
1154 .encrypt = n2_encrypt_ecb,
1155 .decrypt = n2_decrypt_ecb,
1156 },
1157 },
1158 { .name = "cbc(des)",
1159 .drv_name = "cbc-des",
1160 .block_size = DES_BLOCK_SIZE,
1161 .enc_type = (ENC_TYPE_ALG_DES |
1162 ENC_TYPE_CHAINING_CBC),
1163 .ablkcipher = {
1164 .ivsize = DES_BLOCK_SIZE,
1165 .min_keysize = DES_KEY_SIZE,
1166 .max_keysize = DES_KEY_SIZE,
1167 .setkey = n2_des_setkey,
1168 .encrypt = n2_encrypt_chaining,
1169 .decrypt = n2_decrypt_chaining,
1170 },
1171 },
1172 { .name = "cfb(des)",
1173 .drv_name = "cfb-des",
1174 .block_size = DES_BLOCK_SIZE,
1175 .enc_type = (ENC_TYPE_ALG_DES |
1176 ENC_TYPE_CHAINING_CFB),
1177 .ablkcipher = {
1178 .min_keysize = DES_KEY_SIZE,
1179 .max_keysize = DES_KEY_SIZE,
1180 .setkey = n2_des_setkey,
1181 .encrypt = n2_encrypt_chaining,
1182 .decrypt = n2_decrypt_chaining,
1183 },
1184 },
1185
1186 /* 3DES: ECB CBC and CFB are supported */
1187 { .name = "ecb(des3_ede)",
1188 .drv_name = "ecb-3des",
1189 .block_size = DES_BLOCK_SIZE,
1190 .enc_type = (ENC_TYPE_ALG_3DES |
1191 ENC_TYPE_CHAINING_ECB),
1192 .ablkcipher = {
1193 .min_keysize = 3 * DES_KEY_SIZE,
1194 .max_keysize = 3 * DES_KEY_SIZE,
1195 .setkey = n2_3des_setkey,
1196 .encrypt = n2_encrypt_ecb,
1197 .decrypt = n2_decrypt_ecb,
1198 },
1199 },
1200 { .name = "cbc(des3_ede)",
1201 .drv_name = "cbc-3des",
1202 .block_size = DES_BLOCK_SIZE,
1203 .enc_type = (ENC_TYPE_ALG_3DES |
1204 ENC_TYPE_CHAINING_CBC),
1205 .ablkcipher = {
1206 .ivsize = DES_BLOCK_SIZE,
1207 .min_keysize = 3 * DES_KEY_SIZE,
1208 .max_keysize = 3 * DES_KEY_SIZE,
1209 .setkey = n2_3des_setkey,
1210 .encrypt = n2_encrypt_chaining,
1211 .decrypt = n2_decrypt_chaining,
1212 },
1213 },
1214 { .name = "cfb(des3_ede)",
1215 .drv_name = "cfb-3des",
1216 .block_size = DES_BLOCK_SIZE,
1217 .enc_type = (ENC_TYPE_ALG_3DES |
1218 ENC_TYPE_CHAINING_CFB),
1219 .ablkcipher = {
1220 .min_keysize = 3 * DES_KEY_SIZE,
1221 .max_keysize = 3 * DES_KEY_SIZE,
1222 .setkey = n2_3des_setkey,
1223 .encrypt = n2_encrypt_chaining,
1224 .decrypt = n2_decrypt_chaining,
1225 },
1226 },
1227 /* AES: ECB CBC and CTR are supported */
1228 { .name = "ecb(aes)",
1229 .drv_name = "ecb-aes",
1230 .block_size = AES_BLOCK_SIZE,
1231 .enc_type = (ENC_TYPE_ALG_AES128 |
1232 ENC_TYPE_CHAINING_ECB),
1233 .ablkcipher = {
1234 .min_keysize = AES_MIN_KEY_SIZE,
1235 .max_keysize = AES_MAX_KEY_SIZE,
1236 .setkey = n2_aes_setkey,
1237 .encrypt = n2_encrypt_ecb,
1238 .decrypt = n2_decrypt_ecb,
1239 },
1240 },
1241 { .name = "cbc(aes)",
1242 .drv_name = "cbc-aes",
1243 .block_size = AES_BLOCK_SIZE,
1244 .enc_type = (ENC_TYPE_ALG_AES128 |
1245 ENC_TYPE_CHAINING_CBC),
1246 .ablkcipher = {
1247 .ivsize = AES_BLOCK_SIZE,
1248 .min_keysize = AES_MIN_KEY_SIZE,
1249 .max_keysize = AES_MAX_KEY_SIZE,
1250 .setkey = n2_aes_setkey,
1251 .encrypt = n2_encrypt_chaining,
1252 .decrypt = n2_decrypt_chaining,
1253 },
1254 },
1255 { .name = "ctr(aes)",
1256 .drv_name = "ctr-aes",
1257 .block_size = AES_BLOCK_SIZE,
1258 .enc_type = (ENC_TYPE_ALG_AES128 |
1259 ENC_TYPE_CHAINING_COUNTER),
1260 .ablkcipher = {
1261 .ivsize = AES_BLOCK_SIZE,
1262 .min_keysize = AES_MIN_KEY_SIZE,
1263 .max_keysize = AES_MAX_KEY_SIZE,
1264 .setkey = n2_aes_setkey,
1265 .encrypt = n2_encrypt_chaining,
1266 .decrypt = n2_encrypt_chaining,
1267 },
1268 },
1269
1270};
1271#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1272
1273static LIST_HEAD(cipher_algs);
1274
1275struct n2_hash_tmpl {
1276 const char *name;
1277 const u8 *hash_zero;
1278 const u32 *hash_init;
1279 u8 hw_op_hashsz;
1280 u8 digest_size;
1281 u8 block_size;
1282 u8 auth_type;
1283 u8 hmac_type;
1284};
1285
1286static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1287 cpu_to_le32(MD5_H0),
1288 cpu_to_le32(MD5_H1),
1289 cpu_to_le32(MD5_H2),
1290 cpu_to_le32(MD5_H3),
1291};
1292static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1293 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1294};
1295static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1296 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1297 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1298};
1299static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1300 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1301 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1302};
1303
1304static const struct n2_hash_tmpl hash_tmpls[] = {
1305 { .name = "md5",
1306 .hash_zero = md5_zero_message_hash,
1307 .hash_init = n2_md5_init,
1308 .auth_type = AUTH_TYPE_MD5,
1309 .hmac_type = AUTH_TYPE_HMAC_MD5,
1310 .hw_op_hashsz = MD5_DIGEST_SIZE,
1311 .digest_size = MD5_DIGEST_SIZE,
1312 .block_size = MD5_HMAC_BLOCK_SIZE },
1313 { .name = "sha1",
1314 .hash_zero = sha1_zero_message_hash,
1315 .hash_init = n2_sha1_init,
1316 .auth_type = AUTH_TYPE_SHA1,
1317 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1318 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1319 .digest_size = SHA1_DIGEST_SIZE,
1320 .block_size = SHA1_BLOCK_SIZE },
1321 { .name = "sha256",
1322 .hash_zero = sha256_zero_message_hash,
1323 .hash_init = n2_sha256_init,
1324 .auth_type = AUTH_TYPE_SHA256,
1325 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1326 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1327 .digest_size = SHA256_DIGEST_SIZE,
1328 .block_size = SHA256_BLOCK_SIZE },
1329 { .name = "sha224",
1330 .hash_zero = sha224_zero_message_hash,
1331 .hash_init = n2_sha224_init,
1332 .auth_type = AUTH_TYPE_SHA256,
1333 .hmac_type = AUTH_TYPE_RESERVED,
1334 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1335 .digest_size = SHA224_DIGEST_SIZE,
1336 .block_size = SHA224_BLOCK_SIZE },
1337};
1338#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1339
1340static LIST_HEAD(ahash_algs);
1341static LIST_HEAD(hmac_algs);
1342
1343static int algs_registered;
1344
1345static void __n2_unregister_algs(void)
1346{
1347 struct n2_cipher_alg *cipher, *cipher_tmp;
1348 struct n2_ahash_alg *alg, *alg_tmp;
1349 struct n2_hmac_alg *hmac, *hmac_tmp;
1350
1351 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1352 crypto_unregister_alg(&cipher->alg);
1353 list_del(&cipher->entry);
1354 kfree(cipher);
1355 }
1356 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1357 crypto_unregister_ahash(&hmac->derived.alg);
1358 list_del(&hmac->derived.entry);
1359 kfree(hmac);
1360 }
1361 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1362 crypto_unregister_ahash(&alg->alg);
1363 list_del(&alg->entry);
1364 kfree(alg);
1365 }
1366}
1367
1368static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1369{
1370 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1371 return 0;
1372}
1373
1374static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1375{
1376 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1377 struct crypto_alg *alg;
1378 int err;
1379
1380 if (!p)
1381 return -ENOMEM;
1382
1383 alg = &p->alg;
1384
1385 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387 alg->cra_priority = N2_CRA_PRIORITY;
1388 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1389 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1390 alg->cra_blocksize = tmpl->block_size;
1391 p->enc_type = tmpl->enc_type;
1392 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1393 alg->cra_type = &crypto_ablkcipher_type;
1394 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1395 alg->cra_init = n2_cipher_cra_init;
1396 alg->cra_module = THIS_MODULE;
1397
1398 list_add(&p->entry, &cipher_algs);
1399 err = crypto_register_alg(alg);
1400 if (err) {
1401 pr_err("%s alg registration failed\n", alg->cra_name);
1402 list_del(&p->entry);
1403 kfree(p);
1404 } else {
1405 pr_info("%s alg registered\n", alg->cra_name);
1406 }
1407 return err;
1408}
1409
1410static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1411{
1412 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1413 struct ahash_alg *ahash;
1414 struct crypto_alg *base;
1415 int err;
1416
1417 if (!p)
1418 return -ENOMEM;
1419
1420 p->child_alg = n2ahash->alg.halg.base.cra_name;
1421 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1422 INIT_LIST_HEAD(&p->derived.entry);
1423
1424 ahash = &p->derived.alg;
1425 ahash->digest = n2_hmac_async_digest;
1426 ahash->setkey = n2_hmac_async_setkey;
1427
1428 base = &ahash->halg.base;
1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1431
1432 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1433 base->cra_init = n2_hmac_cra_init;
1434 base->cra_exit = n2_hmac_cra_exit;
1435
1436 list_add(&p->derived.entry, &hmac_algs);
1437 err = crypto_register_ahash(ahash);
1438 if (err) {
1439 pr_err("%s alg registration failed\n", base->cra_name);
1440 list_del(&p->derived.entry);
1441 kfree(p);
1442 } else {
1443 pr_info("%s alg registered\n", base->cra_name);
1444 }
1445 return err;
1446}
1447
1448static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1449{
1450 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1451 struct hash_alg_common *halg;
1452 struct crypto_alg *base;
1453 struct ahash_alg *ahash;
1454 int err;
1455
1456 if (!p)
1457 return -ENOMEM;
1458
1459 p->hash_zero = tmpl->hash_zero;
1460 p->hash_init = tmpl->hash_init;
1461 p->auth_type = tmpl->auth_type;
1462 p->hmac_type = tmpl->hmac_type;
1463 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1464 p->digest_size = tmpl->digest_size;
1465
1466 ahash = &p->alg;
1467 ahash->init = n2_hash_async_init;
1468 ahash->update = n2_hash_async_update;
1469 ahash->final = n2_hash_async_final;
1470 ahash->finup = n2_hash_async_finup;
1471 ahash->digest = n2_hash_async_digest;
1472 ahash->export = n2_hash_async_noexport;
1473 ahash->import = n2_hash_async_noimport;
1474
1475 halg = &ahash->halg;
1476 halg->digestsize = tmpl->digest_size;
1477
1478 base = &halg->base;
1479 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1480 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1481 base->cra_priority = N2_CRA_PRIORITY;
1482 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1483 CRYPTO_ALG_NEED_FALLBACK;
1484 base->cra_blocksize = tmpl->block_size;
1485 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1486 base->cra_module = THIS_MODULE;
1487 base->cra_init = n2_hash_cra_init;
1488 base->cra_exit = n2_hash_cra_exit;
1489
1490 list_add(&p->entry, &ahash_algs);
1491 err = crypto_register_ahash(ahash);
1492 if (err) {
1493 pr_err("%s alg registration failed\n", base->cra_name);
1494 list_del(&p->entry);
1495 kfree(p);
1496 } else {
1497 pr_info("%s alg registered\n", base->cra_name);
1498 }
1499 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1500 err = __n2_register_one_hmac(p);
1501 return err;
1502}
1503
1504static int n2_register_algs(void)
1505{
1506 int i, err = 0;
1507
1508 mutex_lock(&spu_lock);
1509 if (algs_registered++)
1510 goto out;
1511
1512 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1513 err = __n2_register_one_ahash(&hash_tmpls[i]);
1514 if (err) {
1515 __n2_unregister_algs();
1516 goto out;
1517 }
1518 }
1519 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1520 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1521 if (err) {
1522 __n2_unregister_algs();
1523 goto out;
1524 }
1525 }
1526
1527out:
1528 mutex_unlock(&spu_lock);
1529 return err;
1530}
1531
1532static void n2_unregister_algs(void)
1533{
1534 mutex_lock(&spu_lock);
1535 if (!--algs_registered)
1536 __n2_unregister_algs();
1537 mutex_unlock(&spu_lock);
1538}
1539
1540/* To map CWQ queues to interrupt sources, the hypervisor API provides
1541 * a devino. This isn't very useful to us because all of the
1542 * interrupts listed in the device_node have been translated to
1543 * Linux virtual IRQ cookie numbers.
1544 *
1545 * So we have to back-translate, going through the 'intr' and 'ino'
1546 * property tables of the n2cp MDESC node, matching it with the OF
1547 * 'interrupts' property entries, in order to to figure out which
1548 * devino goes to which already-translated IRQ.
1549 */
1550static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1551 unsigned long dev_ino)
1552{
1553 const unsigned int *dev_intrs;
1554 unsigned int intr;
1555 int i;
1556
1557 for (i = 0; i < ip->num_intrs; i++) {
1558 if (ip->ino_table[i].ino == dev_ino)
1559 break;
1560 }
1561 if (i == ip->num_intrs)
1562 return -ENODEV;
1563
1564 intr = ip->ino_table[i].intr;
1565
1566 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1567 if (!dev_intrs)
1568 return -ENODEV;
1569
1570 for (i = 0; i < dev->archdata.num_irqs; i++) {
1571 if (dev_intrs[i] == intr)
1572 return i;
1573 }
1574
1575 return -ENODEV;
1576}
1577
1578static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1579 const char *irq_name, struct spu_queue *p,
1580 irq_handler_t handler)
1581{
1582 unsigned long herr;
1583 int index;
1584
1585 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1586 if (herr)
1587 return -EINVAL;
1588
1589 index = find_devino_index(dev, ip, p->devino);
1590 if (index < 0)
1591 return index;
1592
1593 p->irq = dev->archdata.irqs[index];
1594
1595 sprintf(p->irq_name, "%s-%d", irq_name, index);
1596
1597 return request_irq(p->irq, handler, 0, p->irq_name, p);
1598}
1599
1600static struct kmem_cache *queue_cache[2];
1601
1602static void *new_queue(unsigned long q_type)
1603{
1604 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1605}
1606
1607static void free_queue(void *p, unsigned long q_type)
1608{
1609 kmem_cache_free(queue_cache[q_type - 1], p);
1610}
1611
1612static int queue_cache_init(void)
1613{
1614 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1615 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1616 kmem_cache_create("mau_queue",
1617 (MAU_NUM_ENTRIES *
1618 MAU_ENTRY_SIZE),
1619 MAU_ENTRY_SIZE, 0, NULL);
1620 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1621 return -ENOMEM;
1622
1623 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1624 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1625 kmem_cache_create("cwq_queue",
1626 (CWQ_NUM_ENTRIES *
1627 CWQ_ENTRY_SIZE),
1628 CWQ_ENTRY_SIZE, 0, NULL);
1629 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1630 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1632 return -ENOMEM;
1633 }
1634 return 0;
1635}
1636
1637static void queue_cache_destroy(void)
1638{
1639 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1641 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1642 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1643}
1644
1645static long spu_queue_register_workfn(void *arg)
1646{
1647 struct spu_qreg *qr = arg;
1648 struct spu_queue *p = qr->queue;
1649 unsigned long q_type = qr->type;
1650 unsigned long hv_ret;
1651
1652 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1653 CWQ_NUM_ENTRIES, &p->qhandle);
1654 if (!hv_ret)
1655 sun4v_ncs_sethead_marker(p->qhandle, 0);
1656
1657 return hv_ret ? -EINVAL : 0;
1658}
1659
1660static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1661{
1662 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1663 struct spu_qreg qr = { .queue = p, .type = q_type };
1664
1665 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1666}
1667
1668static int spu_queue_setup(struct spu_queue *p)
1669{
1670 int err;
1671
1672 p->q = new_queue(p->q_type);
1673 if (!p->q)
1674 return -ENOMEM;
1675
1676 err = spu_queue_register(p, p->q_type);
1677 if (err) {
1678 free_queue(p->q, p->q_type);
1679 p->q = NULL;
1680 }
1681
1682 return err;
1683}
1684
1685static void spu_queue_destroy(struct spu_queue *p)
1686{
1687 unsigned long hv_ret;
1688
1689 if (!p->q)
1690 return;
1691
1692 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1693
1694 if (!hv_ret)
1695 free_queue(p->q, p->q_type);
1696}
1697
1698static void spu_list_destroy(struct list_head *list)
1699{
1700 struct spu_queue *p, *n;
1701
1702 list_for_each_entry_safe(p, n, list, list) {
1703 int i;
1704
1705 for (i = 0; i < NR_CPUS; i++) {
1706 if (cpu_to_cwq[i] == p)
1707 cpu_to_cwq[i] = NULL;
1708 }
1709
1710 if (p->irq) {
1711 free_irq(p->irq, p);
1712 p->irq = 0;
1713 }
1714 spu_queue_destroy(p);
1715 list_del(&p->list);
1716 kfree(p);
1717 }
1718}
1719
1720/* Walk the backward arcs of a CWQ 'exec-unit' node,
1721 * gathering cpu membership information.
1722 */
1723static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1724 struct platform_device *dev,
1725 u64 node, struct spu_queue *p,
1726 struct spu_queue **table)
1727{
1728 u64 arc;
1729
1730 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1731 u64 tgt = mdesc_arc_target(mdesc, arc);
1732 const char *name = mdesc_node_name(mdesc, tgt);
1733 const u64 *id;
1734
1735 if (strcmp(name, "cpu"))
1736 continue;
1737 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1738 if (table[*id] != NULL) {
1739 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1740 dev->dev.of_node);
1741 return -EINVAL;
1742 }
1743 cpumask_set_cpu(*id, &p->sharing);
1744 table[*id] = p;
1745 }
1746 return 0;
1747}
1748
1749/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1750static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1751 struct platform_device *dev, struct mdesc_handle *mdesc,
1752 u64 node, const char *iname, unsigned long q_type,
1753 irq_handler_t handler, struct spu_queue **table)
1754{
1755 struct spu_queue *p;
1756 int err;
1757
1758 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1759 if (!p) {
1760 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1761 dev->dev.of_node);
1762 return -ENOMEM;
1763 }
1764
1765 cpumask_clear(&p->sharing);
1766 spin_lock_init(&p->lock);
1767 p->q_type = q_type;
1768 INIT_LIST_HEAD(&p->jobs);
1769 list_add(&p->list, list);
1770
1771 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1772 if (err)
1773 return err;
1774
1775 err = spu_queue_setup(p);
1776 if (err)
1777 return err;
1778
1779 return spu_map_ino(dev, ip, iname, p, handler);
1780}
1781
1782static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1783 struct spu_mdesc_info *ip, struct list_head *list,
1784 const char *exec_name, unsigned long q_type,
1785 irq_handler_t handler, struct spu_queue **table)
1786{
1787 int err = 0;
1788 u64 node;
1789
1790 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1791 const char *type;
1792
1793 type = mdesc_get_property(mdesc, node, "type", NULL);
1794 if (!type || strcmp(type, exec_name))
1795 continue;
1796
1797 err = handle_exec_unit(ip, list, dev, mdesc, node,
1798 exec_name, q_type, handler, table);
1799 if (err) {
1800 spu_list_destroy(list);
1801 break;
1802 }
1803 }
1804
1805 return err;
1806}
1807
1808static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1809 struct spu_mdesc_info *ip)
1810{
1811 const u64 *ino;
1812 int ino_len;
1813 int i;
1814
1815 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1816 if (!ino) {
1817 printk("NO 'ino'\n");
1818 return -ENODEV;
1819 }
1820
1821 ip->num_intrs = ino_len / sizeof(u64);
1822 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1823 ip->num_intrs),
1824 GFP_KERNEL);
1825 if (!ip->ino_table)
1826 return -ENOMEM;
1827
1828 for (i = 0; i < ip->num_intrs; i++) {
1829 struct ino_blob *b = &ip->ino_table[i];
1830 b->intr = i + 1;
1831 b->ino = ino[i];
1832 }
1833
1834 return 0;
1835}
1836
1837static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1838 struct platform_device *dev,
1839 struct spu_mdesc_info *ip,
1840 const char *node_name)
1841{
1842 const unsigned int *reg;
1843 u64 node;
1844
1845 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1846 if (!reg)
1847 return -ENODEV;
1848
1849 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1850 const char *name;
1851 const u64 *chdl;
1852
1853 name = mdesc_get_property(mdesc, node, "name", NULL);
1854 if (!name || strcmp(name, node_name))
1855 continue;
1856 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1857 if (!chdl || (*chdl != *reg))
1858 continue;
1859 ip->cfg_handle = *chdl;
1860 return get_irq_props(mdesc, node, ip);
1861 }
1862
1863 return -ENODEV;
1864}
1865
1866static unsigned long n2_spu_hvapi_major;
1867static unsigned long n2_spu_hvapi_minor;
1868
1869static int n2_spu_hvapi_register(void)
1870{
1871 int err;
1872
1873 n2_spu_hvapi_major = 2;
1874 n2_spu_hvapi_minor = 0;
1875
1876 err = sun4v_hvapi_register(HV_GRP_NCS,
1877 n2_spu_hvapi_major,
1878 &n2_spu_hvapi_minor);
1879
1880 if (!err)
1881 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1882 n2_spu_hvapi_major,
1883 n2_spu_hvapi_minor);
1884
1885 return err;
1886}
1887
1888static void n2_spu_hvapi_unregister(void)
1889{
1890 sun4v_hvapi_unregister(HV_GRP_NCS);
1891}
1892
1893static int global_ref;
1894
1895static int grab_global_resources(void)
1896{
1897 int err = 0;
1898
1899 mutex_lock(&spu_lock);
1900
1901 if (global_ref++)
1902 goto out;
1903
1904 err = n2_spu_hvapi_register();
1905 if (err)
1906 goto out;
1907
1908 err = queue_cache_init();
1909 if (err)
1910 goto out_hvapi_release;
1911
1912 err = -ENOMEM;
1913 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914 GFP_KERNEL);
1915 if (!cpu_to_cwq)
1916 goto out_queue_cache_destroy;
1917
1918 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1919 GFP_KERNEL);
1920 if (!cpu_to_mau)
1921 goto out_free_cwq_table;
1922
1923 err = 0;
1924
1925out:
1926 if (err)
1927 global_ref--;
1928 mutex_unlock(&spu_lock);
1929 return err;
1930
1931out_free_cwq_table:
1932 kfree(cpu_to_cwq);
1933 cpu_to_cwq = NULL;
1934
1935out_queue_cache_destroy:
1936 queue_cache_destroy();
1937
1938out_hvapi_release:
1939 n2_spu_hvapi_unregister();
1940 goto out;
1941}
1942
1943static void release_global_resources(void)
1944{
1945 mutex_lock(&spu_lock);
1946 if (!--global_ref) {
1947 kfree(cpu_to_cwq);
1948 cpu_to_cwq = NULL;
1949
1950 kfree(cpu_to_mau);
1951 cpu_to_mau = NULL;
1952
1953 queue_cache_destroy();
1954 n2_spu_hvapi_unregister();
1955 }
1956 mutex_unlock(&spu_lock);
1957}
1958
1959static struct n2_crypto *alloc_n2cp(void)
1960{
1961 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1962
1963 if (np)
1964 INIT_LIST_HEAD(&np->cwq_list);
1965
1966 return np;
1967}
1968
1969static void free_n2cp(struct n2_crypto *np)
1970{
1971 kfree(np->cwq_info.ino_table);
1972 np->cwq_info.ino_table = NULL;
1973
1974 kfree(np);
1975}
1976
1977static void n2_spu_driver_version(void)
1978{
1979 static int n2_spu_version_printed;
1980
1981 if (n2_spu_version_printed++ == 0)
1982 pr_info("%s", version);
1983}
1984
1985static int n2_crypto_probe(struct platform_device *dev)
1986{
1987 struct mdesc_handle *mdesc;
1988 struct n2_crypto *np;
1989 int err;
1990
1991 n2_spu_driver_version();
1992
1993 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1994
1995 np = alloc_n2cp();
1996 if (!np) {
1997 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1998 dev->dev.of_node);
1999 return -ENOMEM;
2000 }
2001
2002 err = grab_global_resources();
2003 if (err) {
2004 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2005 dev->dev.of_node);
2006 goto out_free_n2cp;
2007 }
2008
2009 mdesc = mdesc_grab();
2010
2011 if (!mdesc) {
2012 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2013 dev->dev.of_node);
2014 err = -ENODEV;
2015 goto out_free_global;
2016 }
2017 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2018 if (err) {
2019 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2020 dev->dev.of_node);
2021 mdesc_release(mdesc);
2022 goto out_free_global;
2023 }
2024
2025 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2026 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2027 cpu_to_cwq);
2028 mdesc_release(mdesc);
2029
2030 if (err) {
2031 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2032 dev->dev.of_node);
2033 goto out_free_global;
2034 }
2035
2036 err = n2_register_algs();
2037 if (err) {
2038 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2039 dev->dev.of_node);
2040 goto out_free_spu_list;
2041 }
2042
2043 dev_set_drvdata(&dev->dev, np);
2044
2045 return 0;
2046
2047out_free_spu_list:
2048 spu_list_destroy(&np->cwq_list);
2049
2050out_free_global:
2051 release_global_resources();
2052
2053out_free_n2cp:
2054 free_n2cp(np);
2055
2056 return err;
2057}
2058
2059static int n2_crypto_remove(struct platform_device *dev)
2060{
2061 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2062
2063 n2_unregister_algs();
2064
2065 spu_list_destroy(&np->cwq_list);
2066
2067 release_global_resources();
2068
2069 free_n2cp(np);
2070
2071 return 0;
2072}
2073
2074static struct n2_mau *alloc_ncp(void)
2075{
2076 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2077
2078 if (mp)
2079 INIT_LIST_HEAD(&mp->mau_list);
2080
2081 return mp;
2082}
2083
2084static void free_ncp(struct n2_mau *mp)
2085{
2086 kfree(mp->mau_info.ino_table);
2087 mp->mau_info.ino_table = NULL;
2088
2089 kfree(mp);
2090}
2091
2092static int n2_mau_probe(struct platform_device *dev)
2093{
2094 struct mdesc_handle *mdesc;
2095 struct n2_mau *mp;
2096 int err;
2097
2098 n2_spu_driver_version();
2099
2100 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2101
2102 mp = alloc_ncp();
2103 if (!mp) {
2104 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2105 dev->dev.of_node);
2106 return -ENOMEM;
2107 }
2108
2109 err = grab_global_resources();
2110 if (err) {
2111 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2112 dev->dev.of_node);
2113 goto out_free_ncp;
2114 }
2115
2116 mdesc = mdesc_grab();
2117
2118 if (!mdesc) {
2119 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2120 dev->dev.of_node);
2121 err = -ENODEV;
2122 goto out_free_global;
2123 }
2124
2125 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2126 if (err) {
2127 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2128 dev->dev.of_node);
2129 mdesc_release(mdesc);
2130 goto out_free_global;
2131 }
2132
2133 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2134 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2135 cpu_to_mau);
2136 mdesc_release(mdesc);
2137
2138 if (err) {
2139 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2140 dev->dev.of_node);
2141 goto out_free_global;
2142 }
2143
2144 dev_set_drvdata(&dev->dev, mp);
2145
2146 return 0;
2147
2148out_free_global:
2149 release_global_resources();
2150
2151out_free_ncp:
2152 free_ncp(mp);
2153
2154 return err;
2155}
2156
2157static int n2_mau_remove(struct platform_device *dev)
2158{
2159 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2160
2161 spu_list_destroy(&mp->mau_list);
2162
2163 release_global_resources();
2164
2165 free_ncp(mp);
2166
2167 return 0;
2168}
2169
2170static const struct of_device_id n2_crypto_match[] = {
2171 {
2172 .name = "n2cp",
2173 .compatible = "SUNW,n2-cwq",
2174 },
2175 {
2176 .name = "n2cp",
2177 .compatible = "SUNW,vf-cwq",
2178 },
2179 {
2180 .name = "n2cp",
2181 .compatible = "SUNW,kt-cwq",
2182 },
2183 {},
2184};
2185
2186MODULE_DEVICE_TABLE(of, n2_crypto_match);
2187
2188static struct platform_driver n2_crypto_driver = {
2189 .driver = {
2190 .name = "n2cp",
2191 .of_match_table = n2_crypto_match,
2192 },
2193 .probe = n2_crypto_probe,
2194 .remove = n2_crypto_remove,
2195};
2196
2197static const struct of_device_id n2_mau_match[] = {
2198 {
2199 .name = "ncp",
2200 .compatible = "SUNW,n2-mau",
2201 },
2202 {
2203 .name = "ncp",
2204 .compatible = "SUNW,vf-mau",
2205 },
2206 {
2207 .name = "ncp",
2208 .compatible = "SUNW,kt-mau",
2209 },
2210 {},
2211};
2212
2213MODULE_DEVICE_TABLE(of, n2_mau_match);
2214
2215static struct platform_driver n2_mau_driver = {
2216 .driver = {
2217 .name = "ncp",
2218 .of_match_table = n2_mau_match,
2219 },
2220 .probe = n2_mau_probe,
2221 .remove = n2_mau_remove,
2222};
2223
2224static struct platform_driver * const drivers[] = {
2225 &n2_crypto_driver,
2226 &n2_mau_driver,
2227};
2228
2229static int __init n2_init(void)
2230{
2231 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234static void __exit n2_exit(void)
2235{
2236 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2237}
2238
2239module_init(n2_init);
2240module_exit(n2_exit);