Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha.h>
19#include <crypto/aes.h>
20#include <crypto/internal/des.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24
25#include <crypto/internal/hash.h>
26#include <crypto/internal/skcipher.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/algapi.h>
29
30#include <asm/hypervisor.h>
31#include <asm/mdesc.h>
32
33#include "n2_core.h"
34
35#define DRV_MODULE_NAME "n2_crypto"
36#define DRV_MODULE_VERSION "0.2"
37#define DRV_MODULE_RELDATE "July 28, 2011"
38
39static const char version[] =
40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43MODULE_DESCRIPTION("Niagara2 Crypto driver");
44MODULE_LICENSE("GPL");
45MODULE_VERSION(DRV_MODULE_VERSION);
46
47#define N2_CRA_PRIORITY 200
48
49static DEFINE_MUTEX(spu_lock);
50
51struct spu_queue {
52 cpumask_t sharing;
53 unsigned long qhandle;
54
55 spinlock_t lock;
56 u8 q_type;
57 void *q;
58 unsigned long head;
59 unsigned long tail;
60 struct list_head jobs;
61
62 unsigned long devino;
63
64 char irq_name[32];
65 unsigned int irq;
66
67 struct list_head list;
68};
69
70struct spu_qreg {
71 struct spu_queue *queue;
72 unsigned long type;
73};
74
75static struct spu_queue **cpu_to_cwq;
76static struct spu_queue **cpu_to_mau;
77
78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79{
80 if (q->q_type == HV_NCS_QTYPE_MAU) {
81 off += MAU_ENTRY_SIZE;
82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 off = 0;
84 } else {
85 off += CWQ_ENTRY_SIZE;
86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 off = 0;
88 }
89 return off;
90}
91
92struct n2_request_common {
93 struct list_head entry;
94 unsigned int offset;
95};
96#define OFFSET_NOT_RUNNING (~(unsigned int)0)
97
98/* An async job request records the final tail value it used in
99 * n2_request_common->offset, test to see if that offset is in
100 * the range old_head, new_head, inclusive.
101 */
102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 unsigned long old_head, unsigned long new_head)
104{
105 if (old_head <= new_head) {
106 if (offset > old_head && offset <= new_head)
107 return true;
108 } else {
109 if (offset > old_head || offset <= new_head)
110 return true;
111 }
112 return false;
113}
114
115/* When the HEAD marker is unequal to the actual HEAD, we get
116 * a virtual device INO interrupt. We should process the
117 * completed CWQ entries and adjust the HEAD marker to clear
118 * the IRQ.
119 */
120static irqreturn_t cwq_intr(int irq, void *dev_id)
121{
122 unsigned long off, new_head, hv_ret;
123 struct spu_queue *q = dev_id;
124
125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 smp_processor_id(), q->qhandle);
127
128 spin_lock(&q->lock);
129
130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 smp_processor_id(), new_head, hv_ret);
134
135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 /* XXX ... XXX */
137 }
138
139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 if (hv_ret == HV_EOK)
141 q->head = new_head;
142
143 spin_unlock(&q->lock);
144
145 return IRQ_HANDLED;
146}
147
148static irqreturn_t mau_intr(int irq, void *dev_id)
149{
150 struct spu_queue *q = dev_id;
151 unsigned long head, hv_ret;
152
153 spin_lock(&q->lock);
154
155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 smp_processor_id(), q->qhandle);
157
158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 smp_processor_id(), head, hv_ret);
162
163 sun4v_ncs_sethead_marker(q->qhandle, head);
164
165 spin_unlock(&q->lock);
166
167 return IRQ_HANDLED;
168}
169
170static void *spu_queue_next(struct spu_queue *q, void *cur)
171{
172 return q->q + spu_next_offset(q, cur - q->q);
173}
174
175static int spu_queue_num_free(struct spu_queue *q)
176{
177 unsigned long head = q->head;
178 unsigned long tail = q->tail;
179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 unsigned long diff;
181
182 if (head > tail)
183 diff = head - tail;
184 else
185 diff = (end - tail) + head;
186
187 return (diff / CWQ_ENTRY_SIZE) - 1;
188}
189
190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191{
192 int avail = spu_queue_num_free(q);
193
194 if (avail >= num_entries)
195 return q->q + q->tail;
196
197 return NULL;
198}
199
200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201{
202 unsigned long hv_ret, new_tail;
203
204 new_tail = spu_next_offset(q, last - q->q);
205
206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 if (hv_ret == HV_EOK)
208 q->tail = new_tail;
209 return hv_ret;
210}
211
212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 int enc_type, int auth_type,
214 unsigned int hash_len,
215 bool sfas, bool sob, bool eob, bool encrypt,
216 int opcode)
217{
218 u64 word = (len - 1) & CONTROL_LEN;
219
220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 if (sfas)
224 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 if (sob)
226 word |= CONTROL_START_OF_BLOCK;
227 if (eob)
228 word |= CONTROL_END_OF_BLOCK;
229 if (encrypt)
230 word |= CONTROL_ENCRYPT;
231 if (hmac_key_len)
232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 if (hash_len)
234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236 return word;
237}
238
239#if 0
240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241{
242 if (this_len >= 64 ||
243 qp->head != qp->tail)
244 return true;
245 return false;
246}
247#endif
248
249struct n2_ahash_alg {
250 struct list_head entry;
251 const u8 *hash_zero;
252 const u32 *hash_init;
253 u8 hw_op_hashsz;
254 u8 digest_size;
255 u8 auth_type;
256 u8 hmac_type;
257 struct ahash_alg alg;
258};
259
260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261{
262 struct crypto_alg *alg = tfm->__crt_alg;
263 struct ahash_alg *ahash_alg;
264
265 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267 return container_of(ahash_alg, struct n2_ahash_alg, alg);
268}
269
270struct n2_hmac_alg {
271 const char *child_alg;
272 struct n2_ahash_alg derived;
273};
274
275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276{
277 struct crypto_alg *alg = tfm->__crt_alg;
278 struct ahash_alg *ahash_alg;
279
280 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283}
284
285struct n2_hash_ctx {
286 struct crypto_ahash *fallback_tfm;
287};
288
289#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290
291struct n2_hmac_ctx {
292 struct n2_hash_ctx base;
293
294 struct crypto_shash *child_shash;
295
296 int hash_key_len;
297 unsigned char hash_key[N2_HASH_KEY_MAX];
298};
299
300struct n2_hash_req_ctx {
301 union {
302 struct md5_state md5;
303 struct sha1_state sha1;
304 struct sha256_state sha256;
305 } u;
306
307 struct ahash_request fallback_req;
308};
309
310static int n2_hash_async_init(struct ahash_request *req)
311{
312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319 return crypto_ahash_init(&rctx->fallback_req);
320}
321
322static int n2_hash_async_update(struct ahash_request *req)
323{
324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 rctx->fallback_req.nbytes = req->nbytes;
331 rctx->fallback_req.src = req->src;
332
333 return crypto_ahash_update(&rctx->fallback_req);
334}
335
336static int n2_hash_async_final(struct ahash_request *req)
337{
338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 rctx->fallback_req.result = req->result;
345
346 return crypto_ahash_final(&rctx->fallback_req);
347}
348
349static int n2_hash_async_finup(struct ahash_request *req)
350{
351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 rctx->fallback_req.nbytes = req->nbytes;
358 rctx->fallback_req.src = req->src;
359 rctx->fallback_req.result = req->result;
360
361 return crypto_ahash_finup(&rctx->fallback_req);
362}
363
364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365{
366 return -ENOSYS;
367}
368
369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370{
371 return -ENOSYS;
372}
373
374static int n2_hash_cra_init(struct crypto_tfm *tfm)
375{
376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 struct crypto_ahash *fallback_tfm;
380 int err;
381
382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 CRYPTO_ALG_NEED_FALLBACK);
384 if (IS_ERR(fallback_tfm)) {
385 pr_warn("Fallback driver '%s' could not be loaded!\n",
386 fallback_driver_name);
387 err = PTR_ERR(fallback_tfm);
388 goto out;
389 }
390
391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 crypto_ahash_reqsize(fallback_tfm)));
393
394 ctx->fallback_tfm = fallback_tfm;
395 return 0;
396
397out:
398 return err;
399}
400
401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402{
403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406 crypto_free_ahash(ctx->fallback_tfm);
407}
408
409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410{
411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 struct crypto_ahash *fallback_tfm;
416 struct crypto_shash *child_shash;
417 int err;
418
419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 CRYPTO_ALG_NEED_FALLBACK);
421 if (IS_ERR(fallback_tfm)) {
422 pr_warn("Fallback driver '%s' could not be loaded!\n",
423 fallback_driver_name);
424 err = PTR_ERR(fallback_tfm);
425 goto out;
426 }
427
428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 if (IS_ERR(child_shash)) {
430 pr_warn("Child shash '%s' could not be loaded!\n",
431 n2alg->child_alg);
432 err = PTR_ERR(child_shash);
433 goto out_free_fallback;
434 }
435
436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 crypto_ahash_reqsize(fallback_tfm)));
438
439 ctx->child_shash = child_shash;
440 ctx->base.fallback_tfm = fallback_tfm;
441 return 0;
442
443out_free_fallback:
444 crypto_free_ahash(fallback_tfm);
445
446out:
447 return err;
448}
449
450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451{
452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455 crypto_free_ahash(ctx->base.fallback_tfm);
456 crypto_free_shash(ctx->child_shash);
457}
458
459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 unsigned int keylen)
461{
462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 struct crypto_shash *child_shash = ctx->child_shash;
464 struct crypto_ahash *fallback_tfm;
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 bs = crypto_shash_blocksize(child_shash);
473 ds = crypto_shash_digestsize(child_shash);
474 BUG_ON(ds > N2_HASH_KEY_MAX);
475 if (keylen > bs) {
476 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 ctx->hash_key);
478 if (err)
479 return err;
480 keylen = ds;
481 } else if (keylen <= N2_HASH_KEY_MAX)
482 memcpy(ctx->hash_key, key, keylen);
483
484 ctx->hash_key_len = keylen;
485
486 return err;
487}
488
489static unsigned long wait_for_tail(struct spu_queue *qp)
490{
491 unsigned long head, hv_ret;
492
493 do {
494 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 if (hv_ret != HV_EOK) {
496 pr_err("Hypervisor error on gethead\n");
497 break;
498 }
499 if (head == qp->tail) {
500 qp->head = head;
501 break;
502 }
503 } while (1);
504 return hv_ret;
505}
506
507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 struct cwq_initial_entry *ent)
509{
510 unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512 if (hv_ret == HV_EOK)
513 hv_ret = wait_for_tail(qp);
514
515 return hv_ret;
516}
517
518static int n2_do_async_digest(struct ahash_request *req,
519 unsigned int auth_type, unsigned int digest_size,
520 unsigned int result_size, void *hash_loc,
521 unsigned long auth_key, unsigned int auth_key_len)
522{
523 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 struct cwq_initial_entry *ent;
525 struct crypto_hash_walk walk;
526 struct spu_queue *qp;
527 unsigned long flags;
528 int err = -ENODEV;
529 int nbytes, cpu;
530
531 /* The total effective length of the operation may not
532 * exceed 2^16.
533 */
534 if (unlikely(req->nbytes > (1 << 16))) {
535 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 rctx->fallback_req.base.flags =
540 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 rctx->fallback_req.nbytes = req->nbytes;
542 rctx->fallback_req.src = req->src;
543 rctx->fallback_req.result = req->result;
544
545 return crypto_ahash_digest(&rctx->fallback_req);
546 }
547
548 nbytes = crypto_hash_walk_first(req, &walk);
549
550 cpu = get_cpu();
551 qp = cpu_to_cwq[cpu];
552 if (!qp)
553 goto out;
554
555 spin_lock_irqsave(&qp->lock, flags);
556
557 /* XXX can do better, improve this later by doing a by-hand scatterlist
558 * XXX walk, etc.
559 */
560 ent = qp->q + qp->tail;
561
562 ent->control = control_word_base(nbytes, auth_key_len, 0,
563 auth_type, digest_size,
564 false, true, false, false,
565 OPCODE_INPLACE_BIT |
566 OPCODE_AUTH_MAC);
567 ent->src_addr = __pa(walk.data);
568 ent->auth_key_addr = auth_key;
569 ent->auth_iv_addr = __pa(hash_loc);
570 ent->final_auth_state_addr = 0UL;
571 ent->enc_key_addr = 0UL;
572 ent->enc_iv_addr = 0UL;
573 ent->dest_addr = __pa(hash_loc);
574
575 nbytes = crypto_hash_walk_done(&walk, 0);
576 while (nbytes > 0) {
577 ent = spu_queue_next(qp, ent);
578
579 ent->control = (nbytes - 1);
580 ent->src_addr = __pa(walk.data);
581 ent->auth_key_addr = 0UL;
582 ent->auth_iv_addr = 0UL;
583 ent->final_auth_state_addr = 0UL;
584 ent->enc_key_addr = 0UL;
585 ent->enc_iv_addr = 0UL;
586 ent->dest_addr = 0UL;
587
588 nbytes = crypto_hash_walk_done(&walk, 0);
589 }
590 ent->control |= CONTROL_END_OF_BLOCK;
591
592 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 err = -EINVAL;
594 else
595 err = 0;
596
597 spin_unlock_irqrestore(&qp->lock, flags);
598
599 if (!err)
600 memcpy(req->result, hash_loc, result_size);
601out:
602 put_cpu();
603
604 return err;
605}
606
607static int n2_hash_async_digest(struct ahash_request *req)
608{
609 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 int ds;
612
613 ds = n2alg->digest_size;
614 if (unlikely(req->nbytes == 0)) {
615 memcpy(req->result, n2alg->hash_zero, ds);
616 return 0;
617 }
618 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620 return n2_do_async_digest(req, n2alg->auth_type,
621 n2alg->hw_op_hashsz, ds,
622 &rctx->u, 0UL, 0);
623}
624
625static int n2_hmac_async_digest(struct ahash_request *req)
626{
627 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 int ds;
632
633 ds = n2alg->derived.digest_size;
634 if (unlikely(req->nbytes == 0) ||
635 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 rctx->fallback_req.base.flags =
641 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 rctx->fallback_req.nbytes = req->nbytes;
643 rctx->fallback_req.src = req->src;
644 rctx->fallback_req.result = req->result;
645
646 return crypto_ahash_digest(&rctx->fallback_req);
647 }
648 memcpy(&rctx->u, n2alg->derived.hash_init,
649 n2alg->derived.hw_op_hashsz);
650
651 return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 n2alg->derived.hw_op_hashsz, ds,
653 &rctx->u,
654 __pa(&ctx->hash_key),
655 ctx->hash_key_len);
656}
657
658struct n2_skcipher_context {
659 int key_len;
660 int enc_type;
661 union {
662 u8 aes[AES_MAX_KEY_SIZE];
663 u8 des[DES_KEY_SIZE];
664 u8 des3[3 * DES_KEY_SIZE];
665 u8 arc4[258]; /* S-box, X, Y */
666 } key;
667};
668
669#define N2_CHUNK_ARR_LEN 16
670
671struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
677 struct {
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
681};
682
683struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
687 u8 temp_iv[16];
688};
689
690/* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
692 *
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
699 *
700 * 0xe --> 0xa --> 0x8
701 *
702 * is a valid length sequence, whereas:
703 *
704 * 0xe --> 0xb --> 0x7
705 *
706 * is not a valid sequence.
707 */
708
709struct n2_skcipher_alg {
710 struct list_head entry;
711 u8 enc_type;
712 struct skcipher_alg skcipher;
713};
714
715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716{
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
720}
721
722struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
724};
725
726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 unsigned int keylen)
728{
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735 switch (keylen) {
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 break;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 break;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
751 return 0;
752}
753
754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 unsigned int keylen)
756{
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 int err;
761
762 err = verify_skcipher_des_key(skcipher, key);
763 if (err)
764 return err;
765
766 ctx->enc_type = n2alg->enc_type;
767
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
770 return 0;
771}
772
773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 unsigned int keylen)
775{
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 int err;
780
781 err = verify_skcipher_des3_key(skcipher, key);
782 if (err)
783 return err;
784
785 ctx->enc_type = n2alg->enc_type;
786
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
789 return 0;
790}
791
792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
793 unsigned int keylen)
794{
795 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
796 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
797 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
798 u8 *s = ctx->key.arc4;
799 u8 *x = s + 256;
800 u8 *y = x + 1;
801 int i, j, k;
802
803 ctx->enc_type = n2alg->enc_type;
804
805 j = k = 0;
806 *x = 0;
807 *y = 0;
808 for (i = 0; i < 256; i++)
809 s[i] = i;
810 for (i = 0; i < 256; i++) {
811 u8 a = s[i];
812 j = (j + key[k] + a) & 0xff;
813 s[i] = s[j];
814 s[j] = a;
815 if (++k >= keylen)
816 k = 0;
817 }
818
819 return 0;
820}
821
822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
823{
824 int this_len = nbytes;
825
826 this_len -= (nbytes & (block_size - 1));
827 return this_len > (1 << 16) ? (1 << 16) : this_len;
828}
829
830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
831 struct n2_crypto_chunk *cp,
832 struct spu_queue *qp, bool encrypt)
833{
834 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
835 struct cwq_initial_entry *ent;
836 bool in_place;
837 int i;
838
839 ent = spu_queue_alloc(qp, cp->arr_len);
840 if (!ent) {
841 pr_info("queue_alloc() of %d fails\n",
842 cp->arr_len);
843 return -EBUSY;
844 }
845
846 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848 ent->control = control_word_base(cp->arr[0].src_len,
849 0, ctx->enc_type, 0, 0,
850 false, true, false, encrypt,
851 OPCODE_ENCRYPT |
852 (in_place ? OPCODE_INPLACE_BIT : 0));
853 ent->src_addr = cp->arr[0].src_paddr;
854 ent->auth_key_addr = 0UL;
855 ent->auth_iv_addr = 0UL;
856 ent->final_auth_state_addr = 0UL;
857 ent->enc_key_addr = __pa(&ctx->key);
858 ent->enc_iv_addr = cp->iv_paddr;
859 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861 for (i = 1; i < cp->arr_len; i++) {
862 ent = spu_queue_next(qp, ent);
863
864 ent->control = cp->arr[i].src_len - 1;
865 ent->src_addr = cp->arr[i].src_paddr;
866 ent->auth_key_addr = 0UL;
867 ent->auth_iv_addr = 0UL;
868 ent->final_auth_state_addr = 0UL;
869 ent->enc_key_addr = 0UL;
870 ent->enc_iv_addr = 0UL;
871 ent->dest_addr = 0UL;
872 }
873 ent->control |= CONTROL_END_OF_BLOCK;
874
875 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876}
877
878static int n2_compute_chunks(struct skcipher_request *req)
879{
880 struct n2_request_context *rctx = skcipher_request_ctx(req);
881 struct skcipher_walk *walk = &rctx->walk;
882 struct n2_crypto_chunk *chunk;
883 unsigned long dest_prev;
884 unsigned int tot_len;
885 bool prev_in_place;
886 int err, nbytes;
887
888 err = skcipher_walk_async(walk, req);
889 if (err)
890 return err;
891
892 INIT_LIST_HEAD(&rctx->chunk_list);
893
894 chunk = &rctx->chunk;
895 INIT_LIST_HEAD(&chunk->entry);
896
897 chunk->iv_paddr = 0UL;
898 chunk->arr_len = 0;
899 chunk->dest_paddr = 0UL;
900
901 prev_in_place = false;
902 dest_prev = ~0UL;
903 tot_len = 0;
904
905 while ((nbytes = walk->nbytes) != 0) {
906 unsigned long dest_paddr, src_paddr;
907 bool in_place;
908 int this_len;
909
910 src_paddr = (page_to_phys(walk->src.phys.page) +
911 walk->src.phys.offset);
912 dest_paddr = (page_to_phys(walk->dst.phys.page) +
913 walk->dst.phys.offset);
914 in_place = (src_paddr == dest_paddr);
915 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
916
917 if (chunk->arr_len != 0) {
918 if (in_place != prev_in_place ||
919 (!prev_in_place &&
920 dest_paddr != dest_prev) ||
921 chunk->arr_len == N2_CHUNK_ARR_LEN ||
922 tot_len + this_len > (1 << 16)) {
923 chunk->dest_final = dest_prev;
924 list_add_tail(&chunk->entry,
925 &rctx->chunk_list);
926 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
927 if (!chunk) {
928 err = -ENOMEM;
929 break;
930 }
931 INIT_LIST_HEAD(&chunk->entry);
932 }
933 }
934 if (chunk->arr_len == 0) {
935 chunk->dest_paddr = dest_paddr;
936 tot_len = 0;
937 }
938 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
939 chunk->arr[chunk->arr_len].src_len = this_len;
940 chunk->arr_len++;
941
942 dest_prev = dest_paddr + this_len;
943 prev_in_place = in_place;
944 tot_len += this_len;
945
946 err = skcipher_walk_done(walk, nbytes - this_len);
947 if (err)
948 break;
949 }
950 if (!err && chunk->arr_len != 0) {
951 chunk->dest_final = dest_prev;
952 list_add_tail(&chunk->entry, &rctx->chunk_list);
953 }
954
955 return err;
956}
957
958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
959{
960 struct n2_request_context *rctx = skcipher_request_ctx(req);
961 struct n2_crypto_chunk *c, *tmp;
962
963 if (final_iv)
964 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965
966 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967 list_del(&c->entry);
968 if (unlikely(c != &rctx->chunk))
969 kfree(c);
970 }
971
972}
973
974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
975{
976 struct n2_request_context *rctx = skcipher_request_ctx(req);
977 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
978 int err = n2_compute_chunks(req);
979 struct n2_crypto_chunk *c, *tmp;
980 unsigned long flags, hv_ret;
981 struct spu_queue *qp;
982
983 if (err)
984 return err;
985
986 qp = cpu_to_cwq[get_cpu()];
987 err = -ENODEV;
988 if (!qp)
989 goto out;
990
991 spin_lock_irqsave(&qp->lock, flags);
992
993 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995 if (err)
996 break;
997 list_del(&c->entry);
998 if (unlikely(c != &rctx->chunk))
999 kfree(c);
1000 }
1001 if (!err) {
1002 hv_ret = wait_for_tail(qp);
1003 if (hv_ret != HV_EOK)
1004 err = -EINVAL;
1005 }
1006
1007 spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010 put_cpu();
1011
1012 n2_chunk_complete(req, NULL);
1013 return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018 return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023 return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028 struct n2_request_context *rctx = skcipher_request_ctx(req);
1029 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030 unsigned long flags, hv_ret, iv_paddr;
1031 int err = n2_compute_chunks(req);
1032 struct n2_crypto_chunk *c, *tmp;
1033 struct spu_queue *qp;
1034 void *final_iv_addr;
1035
1036 final_iv_addr = NULL;
1037
1038 if (err)
1039 return err;
1040
1041 qp = cpu_to_cwq[get_cpu()];
1042 err = -ENODEV;
1043 if (!qp)
1044 goto out;
1045
1046 spin_lock_irqsave(&qp->lock, flags);
1047
1048 if (encrypt) {
1049 iv_paddr = __pa(rctx->walk.iv);
1050 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051 entry) {
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, true);
1054 if (err)
1055 break;
1056 iv_paddr = c->dest_final - rctx->walk.blocksize;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1059 kfree(c);
1060 }
1061 final_iv_addr = __va(iv_paddr);
1062 } else {
1063 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064 entry) {
1065 if (c == &rctx->chunk) {
1066 iv_paddr = __pa(rctx->walk.iv);
1067 } else {
1068 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069 tmp->arr[tmp->arr_len-1].src_len -
1070 rctx->walk.blocksize);
1071 }
1072 if (!final_iv_addr) {
1073 unsigned long pa;
1074
1075 pa = (c->arr[c->arr_len-1].src_paddr +
1076 c->arr[c->arr_len-1].src_len -
1077 rctx->walk.blocksize);
1078 final_iv_addr = rctx->temp_iv;
1079 memcpy(rctx->temp_iv, __va(pa),
1080 rctx->walk.blocksize);
1081 }
1082 c->iv_paddr = iv_paddr;
1083 err = __n2_crypt_chunk(tfm, c, qp, false);
1084 if (err)
1085 break;
1086 list_del(&c->entry);
1087 if (unlikely(c != &rctx->chunk))
1088 kfree(c);
1089 }
1090 }
1091 if (!err) {
1092 hv_ret = wait_for_tail(qp);
1093 if (hv_ret != HV_EOK)
1094 err = -EINVAL;
1095 }
1096
1097 spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100 put_cpu();
1101
1102 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103 return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108 return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113 return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117 const char *name;
1118 const char *drv_name;
1119 u8 block_size;
1120 u8 enc_type;
1121 struct skcipher_alg skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125 /* ARC4: only ECB is supported (chaining bits ignored) */
1126 { .name = "ecb(arc4)",
1127 .drv_name = "ecb-arc4",
1128 .block_size = 1,
1129 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1130 ENC_TYPE_CHAINING_ECB),
1131 .skcipher = {
1132 .min_keysize = 1,
1133 .max_keysize = 256,
1134 .setkey = n2_arc4_setkey,
1135 .encrypt = n2_encrypt_ecb,
1136 .decrypt = n2_decrypt_ecb,
1137 },
1138 },
1139
1140 /* DES: ECB CBC and CFB are supported */
1141 { .name = "ecb(des)",
1142 .drv_name = "ecb-des",
1143 .block_size = DES_BLOCK_SIZE,
1144 .enc_type = (ENC_TYPE_ALG_DES |
1145 ENC_TYPE_CHAINING_ECB),
1146 .skcipher = {
1147 .min_keysize = DES_KEY_SIZE,
1148 .max_keysize = DES_KEY_SIZE,
1149 .setkey = n2_des_setkey,
1150 .encrypt = n2_encrypt_ecb,
1151 .decrypt = n2_decrypt_ecb,
1152 },
1153 },
1154 { .name = "cbc(des)",
1155 .drv_name = "cbc-des",
1156 .block_size = DES_BLOCK_SIZE,
1157 .enc_type = (ENC_TYPE_ALG_DES |
1158 ENC_TYPE_CHAINING_CBC),
1159 .skcipher = {
1160 .ivsize = DES_BLOCK_SIZE,
1161 .min_keysize = DES_KEY_SIZE,
1162 .max_keysize = DES_KEY_SIZE,
1163 .setkey = n2_des_setkey,
1164 .encrypt = n2_encrypt_chaining,
1165 .decrypt = n2_decrypt_chaining,
1166 },
1167 },
1168 { .name = "cfb(des)",
1169 .drv_name = "cfb-des",
1170 .block_size = DES_BLOCK_SIZE,
1171 .enc_type = (ENC_TYPE_ALG_DES |
1172 ENC_TYPE_CHAINING_CFB),
1173 .skcipher = {
1174 .min_keysize = DES_KEY_SIZE,
1175 .max_keysize = DES_KEY_SIZE,
1176 .setkey = n2_des_setkey,
1177 .encrypt = n2_encrypt_chaining,
1178 .decrypt = n2_decrypt_chaining,
1179 },
1180 },
1181
1182 /* 3DES: ECB CBC and CFB are supported */
1183 { .name = "ecb(des3_ede)",
1184 .drv_name = "ecb-3des",
1185 .block_size = DES_BLOCK_SIZE,
1186 .enc_type = (ENC_TYPE_ALG_3DES |
1187 ENC_TYPE_CHAINING_ECB),
1188 .skcipher = {
1189 .min_keysize = 3 * DES_KEY_SIZE,
1190 .max_keysize = 3 * DES_KEY_SIZE,
1191 .setkey = n2_3des_setkey,
1192 .encrypt = n2_encrypt_ecb,
1193 .decrypt = n2_decrypt_ecb,
1194 },
1195 },
1196 { .name = "cbc(des3_ede)",
1197 .drv_name = "cbc-3des",
1198 .block_size = DES_BLOCK_SIZE,
1199 .enc_type = (ENC_TYPE_ALG_3DES |
1200 ENC_TYPE_CHAINING_CBC),
1201 .skcipher = {
1202 .ivsize = DES_BLOCK_SIZE,
1203 .min_keysize = 3 * DES_KEY_SIZE,
1204 .max_keysize = 3 * DES_KEY_SIZE,
1205 .setkey = n2_3des_setkey,
1206 .encrypt = n2_encrypt_chaining,
1207 .decrypt = n2_decrypt_chaining,
1208 },
1209 },
1210 { .name = "cfb(des3_ede)",
1211 .drv_name = "cfb-3des",
1212 .block_size = DES_BLOCK_SIZE,
1213 .enc_type = (ENC_TYPE_ALG_3DES |
1214 ENC_TYPE_CHAINING_CFB),
1215 .skcipher = {
1216 .min_keysize = 3 * DES_KEY_SIZE,
1217 .max_keysize = 3 * DES_KEY_SIZE,
1218 .setkey = n2_3des_setkey,
1219 .encrypt = n2_encrypt_chaining,
1220 .decrypt = n2_decrypt_chaining,
1221 },
1222 },
1223 /* AES: ECB CBC and CTR are supported */
1224 { .name = "ecb(aes)",
1225 .drv_name = "ecb-aes",
1226 .block_size = AES_BLOCK_SIZE,
1227 .enc_type = (ENC_TYPE_ALG_AES128 |
1228 ENC_TYPE_CHAINING_ECB),
1229 .skcipher = {
1230 .min_keysize = AES_MIN_KEY_SIZE,
1231 .max_keysize = AES_MAX_KEY_SIZE,
1232 .setkey = n2_aes_setkey,
1233 .encrypt = n2_encrypt_ecb,
1234 .decrypt = n2_decrypt_ecb,
1235 },
1236 },
1237 { .name = "cbc(aes)",
1238 .drv_name = "cbc-aes",
1239 .block_size = AES_BLOCK_SIZE,
1240 .enc_type = (ENC_TYPE_ALG_AES128 |
1241 ENC_TYPE_CHAINING_CBC),
1242 .skcipher = {
1243 .ivsize = AES_BLOCK_SIZE,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .setkey = n2_aes_setkey,
1247 .encrypt = n2_encrypt_chaining,
1248 .decrypt = n2_decrypt_chaining,
1249 },
1250 },
1251 { .name = "ctr(aes)",
1252 .drv_name = "ctr-aes",
1253 .block_size = AES_BLOCK_SIZE,
1254 .enc_type = (ENC_TYPE_ALG_AES128 |
1255 ENC_TYPE_CHAINING_COUNTER),
1256 .skcipher = {
1257 .ivsize = AES_BLOCK_SIZE,
1258 .min_keysize = AES_MIN_KEY_SIZE,
1259 .max_keysize = AES_MAX_KEY_SIZE,
1260 .setkey = n2_aes_setkey,
1261 .encrypt = n2_encrypt_chaining,
1262 .decrypt = n2_encrypt_chaining,
1263 },
1264 },
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272 const char *name;
1273 const u8 *hash_zero;
1274 const u32 *hash_init;
1275 u8 hw_op_hashsz;
1276 u8 digest_size;
1277 u8 block_size;
1278 u8 auth_type;
1279 u8 hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283 cpu_to_le32(MD5_H0),
1284 cpu_to_le32(MD5_H1),
1285 cpu_to_le32(MD5_H2),
1286 cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301 { .name = "md5",
1302 .hash_zero = md5_zero_message_hash,
1303 .hash_init = n2_md5_init,
1304 .auth_type = AUTH_TYPE_MD5,
1305 .hmac_type = AUTH_TYPE_HMAC_MD5,
1306 .hw_op_hashsz = MD5_DIGEST_SIZE,
1307 .digest_size = MD5_DIGEST_SIZE,
1308 .block_size = MD5_HMAC_BLOCK_SIZE },
1309 { .name = "sha1",
1310 .hash_zero = sha1_zero_message_hash,
1311 .hash_init = n2_sha1_init,
1312 .auth_type = AUTH_TYPE_SHA1,
1313 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1314 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1315 .digest_size = SHA1_DIGEST_SIZE,
1316 .block_size = SHA1_BLOCK_SIZE },
1317 { .name = "sha256",
1318 .hash_zero = sha256_zero_message_hash,
1319 .hash_init = n2_sha256_init,
1320 .auth_type = AUTH_TYPE_SHA256,
1321 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1322 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1323 .digest_size = SHA256_DIGEST_SIZE,
1324 .block_size = SHA256_BLOCK_SIZE },
1325 { .name = "sha224",
1326 .hash_zero = sha224_zero_message_hash,
1327 .hash_init = n2_sha224_init,
1328 .auth_type = AUTH_TYPE_SHA256,
1329 .hmac_type = AUTH_TYPE_RESERVED,
1330 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1331 .digest_size = SHA224_DIGEST_SIZE,
1332 .block_size = SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344 struct n2_ahash_alg *alg, *alg_tmp;
1345 struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348 crypto_unregister_skcipher(&skcipher->skcipher);
1349 list_del(&skcipher->entry);
1350 kfree(skcipher);
1351 }
1352 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353 crypto_unregister_ahash(&hmac->derived.alg);
1354 list_del(&hmac->derived.entry);
1355 kfree(hmac);
1356 }
1357 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358 crypto_unregister_ahash(&alg->alg);
1359 list_del(&alg->entry);
1360 kfree(alg);
1361 }
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367 return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373 struct skcipher_alg *alg;
1374 int err;
1375
1376 if (!p)
1377 return -ENOMEM;
1378
1379 alg = &p->skcipher;
1380 *alg = tmpl->skcipher;
1381
1382 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384 alg->base.cra_priority = N2_CRA_PRIORITY;
1385 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386 CRYPTO_ALG_ALLOCATES_MEMORY;
1387 alg->base.cra_blocksize = tmpl->block_size;
1388 p->enc_type = tmpl->enc_type;
1389 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390 alg->base.cra_module = THIS_MODULE;
1391 alg->init = n2_skcipher_init_tfm;
1392
1393 list_add(&p->entry, &skcipher_algs);
1394 err = crypto_register_skcipher(alg);
1395 if (err) {
1396 pr_err("%s alg registration failed\n", alg->base.cra_name);
1397 list_del(&p->entry);
1398 kfree(p);
1399 } else {
1400 pr_info("%s alg registered\n", alg->base.cra_name);
1401 }
1402 return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408 struct ahash_alg *ahash;
1409 struct crypto_alg *base;
1410 int err;
1411
1412 if (!p)
1413 return -ENOMEM;
1414
1415 p->child_alg = n2ahash->alg.halg.base.cra_name;
1416 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417 INIT_LIST_HEAD(&p->derived.entry);
1418
1419 ahash = &p->derived.alg;
1420 ahash->digest = n2_hmac_async_digest;
1421 ahash->setkey = n2_hmac_async_setkey;
1422
1423 base = &ahash->halg.base;
1424 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428 base->cra_init = n2_hmac_cra_init;
1429 base->cra_exit = n2_hmac_cra_exit;
1430
1431 list_add(&p->derived.entry, &hmac_algs);
1432 err = crypto_register_ahash(ahash);
1433 if (err) {
1434 pr_err("%s alg registration failed\n", base->cra_name);
1435 list_del(&p->derived.entry);
1436 kfree(p);
1437 } else {
1438 pr_info("%s alg registered\n", base->cra_name);
1439 }
1440 return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446 struct hash_alg_common *halg;
1447 struct crypto_alg *base;
1448 struct ahash_alg *ahash;
1449 int err;
1450
1451 if (!p)
1452 return -ENOMEM;
1453
1454 p->hash_zero = tmpl->hash_zero;
1455 p->hash_init = tmpl->hash_init;
1456 p->auth_type = tmpl->auth_type;
1457 p->hmac_type = tmpl->hmac_type;
1458 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459 p->digest_size = tmpl->digest_size;
1460
1461 ahash = &p->alg;
1462 ahash->init = n2_hash_async_init;
1463 ahash->update = n2_hash_async_update;
1464 ahash->final = n2_hash_async_final;
1465 ahash->finup = n2_hash_async_finup;
1466 ahash->digest = n2_hash_async_digest;
1467 ahash->export = n2_hash_async_noexport;
1468 ahash->import = n2_hash_async_noimport;
1469
1470 halg = &ahash->halg;
1471 halg->digestsize = tmpl->digest_size;
1472
1473 base = &halg->base;
1474 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476 base->cra_priority = N2_CRA_PRIORITY;
1477 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478 CRYPTO_ALG_NEED_FALLBACK;
1479 base->cra_blocksize = tmpl->block_size;
1480 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481 base->cra_module = THIS_MODULE;
1482 base->cra_init = n2_hash_cra_init;
1483 base->cra_exit = n2_hash_cra_exit;
1484
1485 list_add(&p->entry, &ahash_algs);
1486 err = crypto_register_ahash(ahash);
1487 if (err) {
1488 pr_err("%s alg registration failed\n", base->cra_name);
1489 list_del(&p->entry);
1490 kfree(p);
1491 } else {
1492 pr_info("%s alg registered\n", base->cra_name);
1493 }
1494 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495 err = __n2_register_one_hmac(p);
1496 return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501 int i, err = 0;
1502
1503 mutex_lock(&spu_lock);
1504 if (algs_registered++)
1505 goto out;
1506
1507 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508 err = __n2_register_one_ahash(&hash_tmpls[i]);
1509 if (err) {
1510 __n2_unregister_algs();
1511 goto out;
1512 }
1513 }
1514 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516 if (err) {
1517 __n2_unregister_algs();
1518 goto out;
1519 }
1520 }
1521
1522out:
1523 mutex_unlock(&spu_lock);
1524 return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529 mutex_lock(&spu_lock);
1530 if (!--algs_registered)
1531 __n2_unregister_algs();
1532 mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino. This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546 unsigned long dev_ino)
1547{
1548 const unsigned int *dev_intrs;
1549 unsigned int intr;
1550 int i;
1551
1552 for (i = 0; i < ip->num_intrs; i++) {
1553 if (ip->ino_table[i].ino == dev_ino)
1554 break;
1555 }
1556 if (i == ip->num_intrs)
1557 return -ENODEV;
1558
1559 intr = ip->ino_table[i].intr;
1560
1561 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562 if (!dev_intrs)
1563 return -ENODEV;
1564
1565 for (i = 0; i < dev->archdata.num_irqs; i++) {
1566 if (dev_intrs[i] == intr)
1567 return i;
1568 }
1569
1570 return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574 const char *irq_name, struct spu_queue *p,
1575 irq_handler_t handler)
1576{
1577 unsigned long herr;
1578 int index;
1579
1580 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581 if (herr)
1582 return -EINVAL;
1583
1584 index = find_devino_index(dev, ip, p->devino);
1585 if (index < 0)
1586 return index;
1587
1588 p->irq = dev->archdata.irqs[index];
1589
1590 sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592 return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604 kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611 kmem_cache_create("mau_queue",
1612 (MAU_NUM_ENTRIES *
1613 MAU_ENTRY_SIZE),
1614 MAU_ENTRY_SIZE, 0, NULL);
1615 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616 return -ENOMEM;
1617
1618 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620 kmem_cache_create("cwq_queue",
1621 (CWQ_NUM_ENTRIES *
1622 CWQ_ENTRY_SIZE),
1623 CWQ_ENTRY_SIZE, 0, NULL);
1624 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627 return -ENOMEM;
1628 }
1629 return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642 struct spu_qreg *qr = arg;
1643 struct spu_queue *p = qr->queue;
1644 unsigned long q_type = qr->type;
1645 unsigned long hv_ret;
1646
1647 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648 CWQ_NUM_ENTRIES, &p->qhandle);
1649 if (!hv_ret)
1650 sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652 return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658 struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665 int err;
1666
1667 p->q = new_queue(p->q_type);
1668 if (!p->q)
1669 return -ENOMEM;
1670
1671 err = spu_queue_register(p, p->q_type);
1672 if (err) {
1673 free_queue(p->q, p->q_type);
1674 p->q = NULL;
1675 }
1676
1677 return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682 unsigned long hv_ret;
1683
1684 if (!p->q)
1685 return;
1686
1687 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689 if (!hv_ret)
1690 free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695 struct spu_queue *p, *n;
1696
1697 list_for_each_entry_safe(p, n, list, list) {
1698 int i;
1699
1700 for (i = 0; i < NR_CPUS; i++) {
1701 if (cpu_to_cwq[i] == p)
1702 cpu_to_cwq[i] = NULL;
1703 }
1704
1705 if (p->irq) {
1706 free_irq(p->irq, p);
1707 p->irq = 0;
1708 }
1709 spu_queue_destroy(p);
1710 list_del(&p->list);
1711 kfree(p);
1712 }
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719 struct platform_device *dev,
1720 u64 node, struct spu_queue *p,
1721 struct spu_queue **table)
1722{
1723 u64 arc;
1724
1725 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726 u64 tgt = mdesc_arc_target(mdesc, arc);
1727 const char *name = mdesc_node_name(mdesc, tgt);
1728 const u64 *id;
1729
1730 if (strcmp(name, "cpu"))
1731 continue;
1732 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733 if (table[*id] != NULL) {
1734 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735 dev->dev.of_node);
1736 return -EINVAL;
1737 }
1738 cpumask_set_cpu(*id, &p->sharing);
1739 table[*id] = p;
1740 }
1741 return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746 struct platform_device *dev, struct mdesc_handle *mdesc,
1747 u64 node, const char *iname, unsigned long q_type,
1748 irq_handler_t handler, struct spu_queue **table)
1749{
1750 struct spu_queue *p;
1751 int err;
1752
1753 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754 if (!p) {
1755 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756 dev->dev.of_node);
1757 return -ENOMEM;
1758 }
1759
1760 cpumask_clear(&p->sharing);
1761 spin_lock_init(&p->lock);
1762 p->q_type = q_type;
1763 INIT_LIST_HEAD(&p->jobs);
1764 list_add(&p->list, list);
1765
1766 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767 if (err)
1768 return err;
1769
1770 err = spu_queue_setup(p);
1771 if (err)
1772 return err;
1773
1774 return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778 struct spu_mdesc_info *ip, struct list_head *list,
1779 const char *exec_name, unsigned long q_type,
1780 irq_handler_t handler, struct spu_queue **table)
1781{
1782 int err = 0;
1783 u64 node;
1784
1785 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786 const char *type;
1787
1788 type = mdesc_get_property(mdesc, node, "type", NULL);
1789 if (!type || strcmp(type, exec_name))
1790 continue;
1791
1792 err = handle_exec_unit(ip, list, dev, mdesc, node,
1793 exec_name, q_type, handler, table);
1794 if (err) {
1795 spu_list_destroy(list);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804 struct spu_mdesc_info *ip)
1805{
1806 const u64 *ino;
1807 int ino_len;
1808 int i;
1809
1810 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811 if (!ino) {
1812 printk("NO 'ino'\n");
1813 return -ENODEV;
1814 }
1815
1816 ip->num_intrs = ino_len / sizeof(u64);
1817 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818 ip->num_intrs),
1819 GFP_KERNEL);
1820 if (!ip->ino_table)
1821 return -ENOMEM;
1822
1823 for (i = 0; i < ip->num_intrs; i++) {
1824 struct ino_blob *b = &ip->ino_table[i];
1825 b->intr = i + 1;
1826 b->ino = ino[i];
1827 }
1828
1829 return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833 struct platform_device *dev,
1834 struct spu_mdesc_info *ip,
1835 const char *node_name)
1836{
1837 const unsigned int *reg;
1838 u64 node;
1839
1840 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841 if (!reg)
1842 return -ENODEV;
1843
1844 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845 const char *name;
1846 const u64 *chdl;
1847
1848 name = mdesc_get_property(mdesc, node, "name", NULL);
1849 if (!name || strcmp(name, node_name))
1850 continue;
1851 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852 if (!chdl || (*chdl != *reg))
1853 continue;
1854 ip->cfg_handle = *chdl;
1855 return get_irq_props(mdesc, node, ip);
1856 }
1857
1858 return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866 int err;
1867
1868 n2_spu_hvapi_major = 2;
1869 n2_spu_hvapi_minor = 0;
1870
1871 err = sun4v_hvapi_register(HV_GRP_NCS,
1872 n2_spu_hvapi_major,
1873 &n2_spu_hvapi_minor);
1874
1875 if (!err)
1876 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877 n2_spu_hvapi_major,
1878 n2_spu_hvapi_minor);
1879
1880 return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885 sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892 int err = 0;
1893
1894 mutex_lock(&spu_lock);
1895
1896 if (global_ref++)
1897 goto out;
1898
1899 err = n2_spu_hvapi_register();
1900 if (err)
1901 goto out;
1902
1903 err = queue_cache_init();
1904 if (err)
1905 goto out_hvapi_release;
1906
1907 err = -ENOMEM;
1908 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909 GFP_KERNEL);
1910 if (!cpu_to_cwq)
1911 goto out_queue_cache_destroy;
1912
1913 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914 GFP_KERNEL);
1915 if (!cpu_to_mau)
1916 goto out_free_cwq_table;
1917
1918 err = 0;
1919
1920out:
1921 if (err)
1922 global_ref--;
1923 mutex_unlock(&spu_lock);
1924 return err;
1925
1926out_free_cwq_table:
1927 kfree(cpu_to_cwq);
1928 cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931 queue_cache_destroy();
1932
1933out_hvapi_release:
1934 n2_spu_hvapi_unregister();
1935 goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940 mutex_lock(&spu_lock);
1941 if (!--global_ref) {
1942 kfree(cpu_to_cwq);
1943 cpu_to_cwq = NULL;
1944
1945 kfree(cpu_to_mau);
1946 cpu_to_mau = NULL;
1947
1948 queue_cache_destroy();
1949 n2_spu_hvapi_unregister();
1950 }
1951 mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958 if (np)
1959 INIT_LIST_HEAD(&np->cwq_list);
1960
1961 return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966 kfree(np->cwq_info.ino_table);
1967 np->cwq_info.ino_table = NULL;
1968
1969 kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974 static int n2_spu_version_printed;
1975
1976 if (n2_spu_version_printed++ == 0)
1977 pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982 struct mdesc_handle *mdesc;
1983 struct n2_crypto *np;
1984 int err;
1985
1986 n2_spu_driver_version();
1987
1988 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990 np = alloc_n2cp();
1991 if (!np) {
1992 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993 dev->dev.of_node);
1994 return -ENOMEM;
1995 }
1996
1997 err = grab_global_resources();
1998 if (err) {
1999 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000 dev->dev.of_node);
2001 goto out_free_n2cp;
2002 }
2003
2004 mdesc = mdesc_grab();
2005
2006 if (!mdesc) {
2007 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008 dev->dev.of_node);
2009 err = -ENODEV;
2010 goto out_free_global;
2011 }
2012 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013 if (err) {
2014 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015 dev->dev.of_node);
2016 mdesc_release(mdesc);
2017 goto out_free_global;
2018 }
2019
2020 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022 cpu_to_cwq);
2023 mdesc_release(mdesc);
2024
2025 if (err) {
2026 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027 dev->dev.of_node);
2028 goto out_free_global;
2029 }
2030
2031 err = n2_register_algs();
2032 if (err) {
2033 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034 dev->dev.of_node);
2035 goto out_free_spu_list;
2036 }
2037
2038 dev_set_drvdata(&dev->dev, np);
2039
2040 return 0;
2041
2042out_free_spu_list:
2043 spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046 release_global_resources();
2047
2048out_free_n2cp:
2049 free_n2cp(np);
2050
2051 return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058 n2_unregister_algs();
2059
2060 spu_list_destroy(&np->cwq_list);
2061
2062 release_global_resources();
2063
2064 free_n2cp(np);
2065
2066 return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073 if (mp)
2074 INIT_LIST_HEAD(&mp->mau_list);
2075
2076 return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081 kfree(mp->mau_info.ino_table);
2082 mp->mau_info.ino_table = NULL;
2083
2084 kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089 struct mdesc_handle *mdesc;
2090 struct n2_mau *mp;
2091 int err;
2092
2093 n2_spu_driver_version();
2094
2095 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097 mp = alloc_ncp();
2098 if (!mp) {
2099 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100 dev->dev.of_node);
2101 return -ENOMEM;
2102 }
2103
2104 err = grab_global_resources();
2105 if (err) {
2106 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107 dev->dev.of_node);
2108 goto out_free_ncp;
2109 }
2110
2111 mdesc = mdesc_grab();
2112
2113 if (!mdesc) {
2114 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115 dev->dev.of_node);
2116 err = -ENODEV;
2117 goto out_free_global;
2118 }
2119
2120 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121 if (err) {
2122 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123 dev->dev.of_node);
2124 mdesc_release(mdesc);
2125 goto out_free_global;
2126 }
2127
2128 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130 cpu_to_mau);
2131 mdesc_release(mdesc);
2132
2133 if (err) {
2134 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135 dev->dev.of_node);
2136 goto out_free_global;
2137 }
2138
2139 dev_set_drvdata(&dev->dev, mp);
2140
2141 return 0;
2142
2143out_free_global:
2144 release_global_resources();
2145
2146out_free_ncp:
2147 free_ncp(mp);
2148
2149 return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156 spu_list_destroy(&mp->mau_list);
2157
2158 release_global_resources();
2159
2160 free_ncp(mp);
2161
2162 return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166 {
2167 .name = "n2cp",
2168 .compatible = "SUNW,n2-cwq",
2169 },
2170 {
2171 .name = "n2cp",
2172 .compatible = "SUNW,vf-cwq",
2173 },
2174 {
2175 .name = "n2cp",
2176 .compatible = "SUNW,kt-cwq",
2177 },
2178 {},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184 .driver = {
2185 .name = "n2cp",
2186 .of_match_table = n2_crypto_match,
2187 },
2188 .probe = n2_crypto_probe,
2189 .remove = n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193 {
2194 .name = "ncp",
2195 .compatible = "SUNW,n2-mau",
2196 },
2197 {
2198 .name = "ncp",
2199 .compatible = "SUNW,vf-mau",
2200 },
2201 {
2202 .name = "ncp",
2203 .compatible = "SUNW,kt-mau",
2204 },
2205 {},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211 .driver = {
2212 .name = "ncp",
2213 .of_match_table = n2_mau_match,
2214 },
2215 .probe = n2_mau_probe,
2216 .remove = n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220 &n2_crypto_driver,
2221 &n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_address.h>
13#include <linux/platform_device.h>
14#include <linux/cpumask.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/crypto.h>
18#include <crypto/md5.h>
19#include <crypto/sha1.h>
20#include <crypto/sha2.h>
21#include <crypto/aes.h>
22#include <crypto/internal/des.h>
23#include <linux/mutex.h>
24#include <linux/delay.h>
25#include <linux/sched.h>
26
27#include <crypto/internal/hash.h>
28#include <crypto/internal/skcipher.h>
29#include <crypto/scatterwalk.h>
30#include <crypto/algapi.h>
31
32#include <asm/hypervisor.h>
33#include <asm/mdesc.h>
34
35#include "n2_core.h"
36
37#define DRV_MODULE_NAME "n2_crypto"
38#define DRV_MODULE_VERSION "0.2"
39#define DRV_MODULE_RELDATE "July 28, 2011"
40
41static const char version[] =
42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43
44MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
45MODULE_DESCRIPTION("Niagara2 Crypto driver");
46MODULE_LICENSE("GPL");
47MODULE_VERSION(DRV_MODULE_VERSION);
48
49#define N2_CRA_PRIORITY 200
50
51static DEFINE_MUTEX(spu_lock);
52
53struct spu_queue {
54 cpumask_t sharing;
55 unsigned long qhandle;
56
57 spinlock_t lock;
58 u8 q_type;
59 void *q;
60 unsigned long head;
61 unsigned long tail;
62 struct list_head jobs;
63
64 unsigned long devino;
65
66 char irq_name[32];
67 unsigned int irq;
68
69 struct list_head list;
70};
71
72struct spu_qreg {
73 struct spu_queue *queue;
74 unsigned long type;
75};
76
77static struct spu_queue **cpu_to_cwq;
78static struct spu_queue **cpu_to_mau;
79
80static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81{
82 if (q->q_type == HV_NCS_QTYPE_MAU) {
83 off += MAU_ENTRY_SIZE;
84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85 off = 0;
86 } else {
87 off += CWQ_ENTRY_SIZE;
88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89 off = 0;
90 }
91 return off;
92}
93
94struct n2_request_common {
95 struct list_head entry;
96 unsigned int offset;
97};
98#define OFFSET_NOT_RUNNING (~(unsigned int)0)
99
100/* An async job request records the final tail value it used in
101 * n2_request_common->offset, test to see if that offset is in
102 * the range old_head, new_head, inclusive.
103 */
104static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105 unsigned long old_head, unsigned long new_head)
106{
107 if (old_head <= new_head) {
108 if (offset > old_head && offset <= new_head)
109 return true;
110 } else {
111 if (offset > old_head || offset <= new_head)
112 return true;
113 }
114 return false;
115}
116
117/* When the HEAD marker is unequal to the actual HEAD, we get
118 * a virtual device INO interrupt. We should process the
119 * completed CWQ entries and adjust the HEAD marker to clear
120 * the IRQ.
121 */
122static irqreturn_t cwq_intr(int irq, void *dev_id)
123{
124 unsigned long off, new_head, hv_ret;
125 struct spu_queue *q = dev_id;
126
127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 smp_processor_id(), q->qhandle);
129
130 spin_lock(&q->lock);
131
132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133
134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 smp_processor_id(), new_head, hv_ret);
136
137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138 /* XXX ... XXX */
139 }
140
141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142 if (hv_ret == HV_EOK)
143 q->head = new_head;
144
145 spin_unlock(&q->lock);
146
147 return IRQ_HANDLED;
148}
149
150static irqreturn_t mau_intr(int irq, void *dev_id)
151{
152 struct spu_queue *q = dev_id;
153 unsigned long head, hv_ret;
154
155 spin_lock(&q->lock);
156
157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 smp_processor_id(), q->qhandle);
159
160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161
162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 smp_processor_id(), head, hv_ret);
164
165 sun4v_ncs_sethead_marker(q->qhandle, head);
166
167 spin_unlock(&q->lock);
168
169 return IRQ_HANDLED;
170}
171
172static void *spu_queue_next(struct spu_queue *q, void *cur)
173{
174 return q->q + spu_next_offset(q, cur - q->q);
175}
176
177static int spu_queue_num_free(struct spu_queue *q)
178{
179 unsigned long head = q->head;
180 unsigned long tail = q->tail;
181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182 unsigned long diff;
183
184 if (head > tail)
185 diff = head - tail;
186 else
187 diff = (end - tail) + head;
188
189 return (diff / CWQ_ENTRY_SIZE) - 1;
190}
191
192static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193{
194 int avail = spu_queue_num_free(q);
195
196 if (avail >= num_entries)
197 return q->q + q->tail;
198
199 return NULL;
200}
201
202static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203{
204 unsigned long hv_ret, new_tail;
205
206 new_tail = spu_next_offset(q, last - q->q);
207
208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209 if (hv_ret == HV_EOK)
210 q->tail = new_tail;
211 return hv_ret;
212}
213
214static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215 int enc_type, int auth_type,
216 unsigned int hash_len,
217 bool sfas, bool sob, bool eob, bool encrypt,
218 int opcode)
219{
220 u64 word = (len - 1) & CONTROL_LEN;
221
222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225 if (sfas)
226 word |= CONTROL_STORE_FINAL_AUTH_STATE;
227 if (sob)
228 word |= CONTROL_START_OF_BLOCK;
229 if (eob)
230 word |= CONTROL_END_OF_BLOCK;
231 if (encrypt)
232 word |= CONTROL_ENCRYPT;
233 if (hmac_key_len)
234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235 if (hash_len)
236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237
238 return word;
239}
240
241#if 0
242static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243{
244 if (this_len >= 64 ||
245 qp->head != qp->tail)
246 return true;
247 return false;
248}
249#endif
250
251struct n2_ahash_alg {
252 struct list_head entry;
253 const u8 *hash_zero;
254 const u8 *hash_init;
255 u8 hw_op_hashsz;
256 u8 digest_size;
257 u8 auth_type;
258 u8 hmac_type;
259 struct ahash_alg alg;
260};
261
262static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263{
264 struct crypto_alg *alg = tfm->__crt_alg;
265 struct ahash_alg *ahash_alg;
266
267 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268
269 return container_of(ahash_alg, struct n2_ahash_alg, alg);
270}
271
272struct n2_hmac_alg {
273 const char *child_alg;
274 struct n2_ahash_alg derived;
275};
276
277static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278{
279 struct crypto_alg *alg = tfm->__crt_alg;
280 struct ahash_alg *ahash_alg;
281
282 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283
284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285}
286
287struct n2_hash_ctx {
288 struct crypto_ahash *fallback_tfm;
289};
290
291#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
292
293struct n2_hmac_ctx {
294 struct n2_hash_ctx base;
295
296 struct crypto_shash *child_shash;
297
298 int hash_key_len;
299 unsigned char hash_key[N2_HASH_KEY_MAX];
300};
301
302struct n2_hash_req_ctx {
303 union {
304 struct md5_state md5;
305 struct sha1_state sha1;
306 struct sha256_state sha256;
307 } u;
308
309 struct ahash_request fallback_req;
310};
311
312static int n2_hash_async_init(struct ahash_request *req)
313{
314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317
318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320
321 return crypto_ahash_init(&rctx->fallback_req);
322}
323
324static int n2_hash_async_update(struct ahash_request *req)
325{
326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329
330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332 rctx->fallback_req.nbytes = req->nbytes;
333 rctx->fallback_req.src = req->src;
334
335 return crypto_ahash_update(&rctx->fallback_req);
336}
337
338static int n2_hash_async_final(struct ahash_request *req)
339{
340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343
344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346 rctx->fallback_req.result = req->result;
347
348 return crypto_ahash_final(&rctx->fallback_req);
349}
350
351static int n2_hash_async_finup(struct ahash_request *req)
352{
353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356
357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359 rctx->fallback_req.nbytes = req->nbytes;
360 rctx->fallback_req.src = req->src;
361 rctx->fallback_req.result = req->result;
362
363 return crypto_ahash_finup(&rctx->fallback_req);
364}
365
366static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367{
368 return -ENOSYS;
369}
370
371static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372{
373 return -ENOSYS;
374}
375
376static int n2_hash_cra_init(struct crypto_tfm *tfm)
377{
378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381 struct crypto_ahash *fallback_tfm;
382 int err;
383
384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385 CRYPTO_ALG_NEED_FALLBACK);
386 if (IS_ERR(fallback_tfm)) {
387 pr_warn("Fallback driver '%s' could not be loaded!\n",
388 fallback_driver_name);
389 err = PTR_ERR(fallback_tfm);
390 goto out;
391 }
392
393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394 crypto_ahash_reqsize(fallback_tfm)));
395
396 ctx->fallback_tfm = fallback_tfm;
397 return 0;
398
399out:
400 return err;
401}
402
403static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404{
405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407
408 crypto_free_ahash(ctx->fallback_tfm);
409}
410
411static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412{
413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417 struct crypto_ahash *fallback_tfm;
418 struct crypto_shash *child_shash;
419 int err;
420
421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422 CRYPTO_ALG_NEED_FALLBACK);
423 if (IS_ERR(fallback_tfm)) {
424 pr_warn("Fallback driver '%s' could not be loaded!\n",
425 fallback_driver_name);
426 err = PTR_ERR(fallback_tfm);
427 goto out;
428 }
429
430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431 if (IS_ERR(child_shash)) {
432 pr_warn("Child shash '%s' could not be loaded!\n",
433 n2alg->child_alg);
434 err = PTR_ERR(child_shash);
435 goto out_free_fallback;
436 }
437
438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439 crypto_ahash_reqsize(fallback_tfm)));
440
441 ctx->child_shash = child_shash;
442 ctx->base.fallback_tfm = fallback_tfm;
443 return 0;
444
445out_free_fallback:
446 crypto_free_ahash(fallback_tfm);
447
448out:
449 return err;
450}
451
452static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453{
454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456
457 crypto_free_ahash(ctx->base.fallback_tfm);
458 crypto_free_shash(ctx->child_shash);
459}
460
461static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462 unsigned int keylen)
463{
464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465 struct crypto_shash *child_shash = ctx->child_shash;
466 struct crypto_ahash *fallback_tfm;
467 int err, bs, ds;
468
469 fallback_tfm = ctx->base.fallback_tfm;
470 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471 if (err)
472 return err;
473
474 bs = crypto_shash_blocksize(child_shash);
475 ds = crypto_shash_digestsize(child_shash);
476 BUG_ON(ds > N2_HASH_KEY_MAX);
477 if (keylen > bs) {
478 err = crypto_shash_tfm_digest(child_shash, key, keylen,
479 ctx->hash_key);
480 if (err)
481 return err;
482 keylen = ds;
483 } else if (keylen <= N2_HASH_KEY_MAX)
484 memcpy(ctx->hash_key, key, keylen);
485
486 ctx->hash_key_len = keylen;
487
488 return err;
489}
490
491static unsigned long wait_for_tail(struct spu_queue *qp)
492{
493 unsigned long head, hv_ret;
494
495 do {
496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 if (hv_ret != HV_EOK) {
498 pr_err("Hypervisor error on gethead\n");
499 break;
500 }
501 if (head == qp->tail) {
502 qp->head = head;
503 break;
504 }
505 } while (1);
506 return hv_ret;
507}
508
509static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 struct cwq_initial_entry *ent)
511{
512 unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514 if (hv_ret == HV_EOK)
515 hv_ret = wait_for_tail(qp);
516
517 return hv_ret;
518}
519
520static int n2_do_async_digest(struct ahash_request *req,
521 unsigned int auth_type, unsigned int digest_size,
522 unsigned int result_size, void *hash_loc,
523 unsigned long auth_key, unsigned int auth_key_len)
524{
525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 struct cwq_initial_entry *ent;
527 struct crypto_hash_walk walk;
528 struct spu_queue *qp;
529 unsigned long flags;
530 int err = -ENODEV;
531 int nbytes, cpu;
532
533 /* The total effective length of the operation may not
534 * exceed 2^16.
535 */
536 if (unlikely(req->nbytes > (1 << 16))) {
537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 rctx->fallback_req.base.flags =
542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 rctx->fallback_req.nbytes = req->nbytes;
544 rctx->fallback_req.src = req->src;
545 rctx->fallback_req.result = req->result;
546
547 return crypto_ahash_digest(&rctx->fallback_req);
548 }
549
550 nbytes = crypto_hash_walk_first(req, &walk);
551
552 cpu = get_cpu();
553 qp = cpu_to_cwq[cpu];
554 if (!qp)
555 goto out;
556
557 spin_lock_irqsave(&qp->lock, flags);
558
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
560 * XXX walk, etc.
561 */
562 ent = qp->q + qp->tail;
563
564 ent->control = control_word_base(nbytes, auth_key_len, 0,
565 auth_type, digest_size,
566 false, true, false, false,
567 OPCODE_INPLACE_BIT |
568 OPCODE_AUTH_MAC);
569 ent->src_addr = __pa(walk.data);
570 ent->auth_key_addr = auth_key;
571 ent->auth_iv_addr = __pa(hash_loc);
572 ent->final_auth_state_addr = 0UL;
573 ent->enc_key_addr = 0UL;
574 ent->enc_iv_addr = 0UL;
575 ent->dest_addr = __pa(hash_loc);
576
577 nbytes = crypto_hash_walk_done(&walk, 0);
578 while (nbytes > 0) {
579 ent = spu_queue_next(qp, ent);
580
581 ent->control = (nbytes - 1);
582 ent->src_addr = __pa(walk.data);
583 ent->auth_key_addr = 0UL;
584 ent->auth_iv_addr = 0UL;
585 ent->final_auth_state_addr = 0UL;
586 ent->enc_key_addr = 0UL;
587 ent->enc_iv_addr = 0UL;
588 ent->dest_addr = 0UL;
589
590 nbytes = crypto_hash_walk_done(&walk, 0);
591 }
592 ent->control |= CONTROL_END_OF_BLOCK;
593
594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 err = -EINVAL;
596 else
597 err = 0;
598
599 spin_unlock_irqrestore(&qp->lock, flags);
600
601 if (!err)
602 memcpy(req->result, hash_loc, result_size);
603out:
604 put_cpu();
605
606 return err;
607}
608
609static int n2_hash_async_digest(struct ahash_request *req)
610{
611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 int ds;
614
615 ds = n2alg->digest_size;
616 if (unlikely(req->nbytes == 0)) {
617 memcpy(req->result, n2alg->hash_zero, ds);
618 return 0;
619 }
620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622 return n2_do_async_digest(req, n2alg->auth_type,
623 n2alg->hw_op_hashsz, ds,
624 &rctx->u, 0UL, 0);
625}
626
627static int n2_hmac_async_digest(struct ahash_request *req)
628{
629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 int ds;
634
635 ds = n2alg->derived.digest_size;
636 if (unlikely(req->nbytes == 0) ||
637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 rctx->fallback_req.base.flags =
643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 rctx->fallback_req.nbytes = req->nbytes;
645 rctx->fallback_req.src = req->src;
646 rctx->fallback_req.result = req->result;
647
648 return crypto_ahash_digest(&rctx->fallback_req);
649 }
650 memcpy(&rctx->u, n2alg->derived.hash_init,
651 n2alg->derived.hw_op_hashsz);
652
653 return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 n2alg->derived.hw_op_hashsz, ds,
655 &rctx->u,
656 __pa(&ctx->hash_key),
657 ctx->hash_key_len);
658}
659
660struct n2_skcipher_context {
661 int key_len;
662 int enc_type;
663 union {
664 u8 aes[AES_MAX_KEY_SIZE];
665 u8 des[DES_KEY_SIZE];
666 u8 des3[3 * DES_KEY_SIZE];
667 } key;
668};
669
670#define N2_CHUNK_ARR_LEN 16
671
672struct n2_crypto_chunk {
673 struct list_head entry;
674 unsigned long iv_paddr : 44;
675 unsigned long arr_len : 20;
676 unsigned long dest_paddr;
677 unsigned long dest_final;
678 struct {
679 unsigned long src_paddr : 44;
680 unsigned long src_len : 20;
681 } arr[N2_CHUNK_ARR_LEN];
682};
683
684struct n2_request_context {
685 struct skcipher_walk walk;
686 struct list_head chunk_list;
687 struct n2_crypto_chunk chunk;
688 u8 temp_iv[16];
689};
690
691/* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
693 *
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size. This means that a cipher block
696 * can span at most 2 descriptors. However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size). So, for example, assuming an 8 byte block size:
700 *
701 * 0xe --> 0xa --> 0x8
702 *
703 * is a valid length sequence, whereas:
704 *
705 * 0xe --> 0xb --> 0x7
706 *
707 * is not a valid sequence.
708 */
709
710struct n2_skcipher_alg {
711 struct list_head entry;
712 u8 enc_type;
713 struct skcipher_alg skcipher;
714};
715
716static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717{
718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719
720 return container_of(alg, struct n2_skcipher_alg, skcipher);
721}
722
723struct n2_skcipher_request_context {
724 struct skcipher_walk walk;
725};
726
727static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
728 unsigned int keylen)
729{
730 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733
734 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735
736 switch (keylen) {
737 case AES_KEYSIZE_128:
738 ctx->enc_type |= ENC_TYPE_ALG_AES128;
739 break;
740 case AES_KEYSIZE_192:
741 ctx->enc_type |= ENC_TYPE_ALG_AES192;
742 break;
743 case AES_KEYSIZE_256:
744 ctx->enc_type |= ENC_TYPE_ALG_AES256;
745 break;
746 default:
747 return -EINVAL;
748 }
749
750 ctx->key_len = keylen;
751 memcpy(ctx->key.aes, key, keylen);
752 return 0;
753}
754
755static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
756 unsigned int keylen)
757{
758 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
761 int err;
762
763 err = verify_skcipher_des_key(skcipher, key);
764 if (err)
765 return err;
766
767 ctx->enc_type = n2alg->enc_type;
768
769 ctx->key_len = keylen;
770 memcpy(ctx->key.des, key, keylen);
771 return 0;
772}
773
774static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
775 unsigned int keylen)
776{
777 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
780 int err;
781
782 err = verify_skcipher_des3_key(skcipher, key);
783 if (err)
784 return err;
785
786 ctx->enc_type = n2alg->enc_type;
787
788 ctx->key_len = keylen;
789 memcpy(ctx->key.des3, key, keylen);
790 return 0;
791}
792
793static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794{
795 int this_len = nbytes;
796
797 this_len -= (nbytes & (block_size - 1));
798 return this_len > (1 << 16) ? (1 << 16) : this_len;
799}
800
801static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802 struct n2_crypto_chunk *cp,
803 struct spu_queue *qp, bool encrypt)
804{
805 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806 struct cwq_initial_entry *ent;
807 bool in_place;
808 int i;
809
810 ent = spu_queue_alloc(qp, cp->arr_len);
811 if (!ent) {
812 pr_info("queue_alloc() of %d fails\n",
813 cp->arr_len);
814 return -EBUSY;
815 }
816
817 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818
819 ent->control = control_word_base(cp->arr[0].src_len,
820 0, ctx->enc_type, 0, 0,
821 false, true, false, encrypt,
822 OPCODE_ENCRYPT |
823 (in_place ? OPCODE_INPLACE_BIT : 0));
824 ent->src_addr = cp->arr[0].src_paddr;
825 ent->auth_key_addr = 0UL;
826 ent->auth_iv_addr = 0UL;
827 ent->final_auth_state_addr = 0UL;
828 ent->enc_key_addr = __pa(&ctx->key);
829 ent->enc_iv_addr = cp->iv_paddr;
830 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831
832 for (i = 1; i < cp->arr_len; i++) {
833 ent = spu_queue_next(qp, ent);
834
835 ent->control = cp->arr[i].src_len - 1;
836 ent->src_addr = cp->arr[i].src_paddr;
837 ent->auth_key_addr = 0UL;
838 ent->auth_iv_addr = 0UL;
839 ent->final_auth_state_addr = 0UL;
840 ent->enc_key_addr = 0UL;
841 ent->enc_iv_addr = 0UL;
842 ent->dest_addr = 0UL;
843 }
844 ent->control |= CONTROL_END_OF_BLOCK;
845
846 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
847}
848
849static int n2_compute_chunks(struct skcipher_request *req)
850{
851 struct n2_request_context *rctx = skcipher_request_ctx(req);
852 struct skcipher_walk *walk = &rctx->walk;
853 struct n2_crypto_chunk *chunk;
854 unsigned long dest_prev;
855 unsigned int tot_len;
856 bool prev_in_place;
857 int err, nbytes;
858
859 err = skcipher_walk_async(walk, req);
860 if (err)
861 return err;
862
863 INIT_LIST_HEAD(&rctx->chunk_list);
864
865 chunk = &rctx->chunk;
866 INIT_LIST_HEAD(&chunk->entry);
867
868 chunk->iv_paddr = 0UL;
869 chunk->arr_len = 0;
870 chunk->dest_paddr = 0UL;
871
872 prev_in_place = false;
873 dest_prev = ~0UL;
874 tot_len = 0;
875
876 while ((nbytes = walk->nbytes) != 0) {
877 unsigned long dest_paddr, src_paddr;
878 bool in_place;
879 int this_len;
880
881 src_paddr = (page_to_phys(walk->src.phys.page) +
882 walk->src.phys.offset);
883 dest_paddr = (page_to_phys(walk->dst.phys.page) +
884 walk->dst.phys.offset);
885 in_place = (src_paddr == dest_paddr);
886 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887
888 if (chunk->arr_len != 0) {
889 if (in_place != prev_in_place ||
890 (!prev_in_place &&
891 dest_paddr != dest_prev) ||
892 chunk->arr_len == N2_CHUNK_ARR_LEN ||
893 tot_len + this_len > (1 << 16)) {
894 chunk->dest_final = dest_prev;
895 list_add_tail(&chunk->entry,
896 &rctx->chunk_list);
897 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
898 if (!chunk) {
899 err = -ENOMEM;
900 break;
901 }
902 INIT_LIST_HEAD(&chunk->entry);
903 }
904 }
905 if (chunk->arr_len == 0) {
906 chunk->dest_paddr = dest_paddr;
907 tot_len = 0;
908 }
909 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910 chunk->arr[chunk->arr_len].src_len = this_len;
911 chunk->arr_len++;
912
913 dest_prev = dest_paddr + this_len;
914 prev_in_place = in_place;
915 tot_len += this_len;
916
917 err = skcipher_walk_done(walk, nbytes - this_len);
918 if (err)
919 break;
920 }
921 if (!err && chunk->arr_len != 0) {
922 chunk->dest_final = dest_prev;
923 list_add_tail(&chunk->entry, &rctx->chunk_list);
924 }
925
926 return err;
927}
928
929static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930{
931 struct n2_request_context *rctx = skcipher_request_ctx(req);
932 struct n2_crypto_chunk *c, *tmp;
933
934 if (final_iv)
935 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936
937 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938 list_del(&c->entry);
939 if (unlikely(c != &rctx->chunk))
940 kfree(c);
941 }
942
943}
944
945static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946{
947 struct n2_request_context *rctx = skcipher_request_ctx(req);
948 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949 int err = n2_compute_chunks(req);
950 struct n2_crypto_chunk *c, *tmp;
951 unsigned long flags, hv_ret;
952 struct spu_queue *qp;
953
954 if (err)
955 return err;
956
957 qp = cpu_to_cwq[get_cpu()];
958 err = -ENODEV;
959 if (!qp)
960 goto out;
961
962 spin_lock_irqsave(&qp->lock, flags);
963
964 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
966 if (err)
967 break;
968 list_del(&c->entry);
969 if (unlikely(c != &rctx->chunk))
970 kfree(c);
971 }
972 if (!err) {
973 hv_ret = wait_for_tail(qp);
974 if (hv_ret != HV_EOK)
975 err = -EINVAL;
976 }
977
978 spin_unlock_irqrestore(&qp->lock, flags);
979
980out:
981 put_cpu();
982
983 n2_chunk_complete(req, NULL);
984 return err;
985}
986
987static int n2_encrypt_ecb(struct skcipher_request *req)
988{
989 return n2_do_ecb(req, true);
990}
991
992static int n2_decrypt_ecb(struct skcipher_request *req)
993{
994 return n2_do_ecb(req, false);
995}
996
997static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998{
999 struct n2_request_context *rctx = skcipher_request_ctx(req);
1000 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001 unsigned long flags, hv_ret, iv_paddr;
1002 int err = n2_compute_chunks(req);
1003 struct n2_crypto_chunk *c, *tmp;
1004 struct spu_queue *qp;
1005 void *final_iv_addr;
1006
1007 final_iv_addr = NULL;
1008
1009 if (err)
1010 return err;
1011
1012 qp = cpu_to_cwq[get_cpu()];
1013 err = -ENODEV;
1014 if (!qp)
1015 goto out;
1016
1017 spin_lock_irqsave(&qp->lock, flags);
1018
1019 if (encrypt) {
1020 iv_paddr = __pa(rctx->walk.iv);
1021 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022 entry) {
1023 c->iv_paddr = iv_paddr;
1024 err = __n2_crypt_chunk(tfm, c, qp, true);
1025 if (err)
1026 break;
1027 iv_paddr = c->dest_final - rctx->walk.blocksize;
1028 list_del(&c->entry);
1029 if (unlikely(c != &rctx->chunk))
1030 kfree(c);
1031 }
1032 final_iv_addr = __va(iv_paddr);
1033 } else {
1034 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035 entry) {
1036 if (c == &rctx->chunk) {
1037 iv_paddr = __pa(rctx->walk.iv);
1038 } else {
1039 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040 tmp->arr[tmp->arr_len-1].src_len -
1041 rctx->walk.blocksize);
1042 }
1043 if (!final_iv_addr) {
1044 unsigned long pa;
1045
1046 pa = (c->arr[c->arr_len-1].src_paddr +
1047 c->arr[c->arr_len-1].src_len -
1048 rctx->walk.blocksize);
1049 final_iv_addr = rctx->temp_iv;
1050 memcpy(rctx->temp_iv, __va(pa),
1051 rctx->walk.blocksize);
1052 }
1053 c->iv_paddr = iv_paddr;
1054 err = __n2_crypt_chunk(tfm, c, qp, false);
1055 if (err)
1056 break;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1059 kfree(c);
1060 }
1061 }
1062 if (!err) {
1063 hv_ret = wait_for_tail(qp);
1064 if (hv_ret != HV_EOK)
1065 err = -EINVAL;
1066 }
1067
1068 spin_unlock_irqrestore(&qp->lock, flags);
1069
1070out:
1071 put_cpu();
1072
1073 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074 return err;
1075}
1076
1077static int n2_encrypt_chaining(struct skcipher_request *req)
1078{
1079 return n2_do_chaining(req, true);
1080}
1081
1082static int n2_decrypt_chaining(struct skcipher_request *req)
1083{
1084 return n2_do_chaining(req, false);
1085}
1086
1087struct n2_skcipher_tmpl {
1088 const char *name;
1089 const char *drv_name;
1090 u8 block_size;
1091 u8 enc_type;
1092 struct skcipher_alg skcipher;
1093};
1094
1095static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096 /* DES: ECB CBC and CFB are supported */
1097 { .name = "ecb(des)",
1098 .drv_name = "ecb-des",
1099 .block_size = DES_BLOCK_SIZE,
1100 .enc_type = (ENC_TYPE_ALG_DES |
1101 ENC_TYPE_CHAINING_ECB),
1102 .skcipher = {
1103 .min_keysize = DES_KEY_SIZE,
1104 .max_keysize = DES_KEY_SIZE,
1105 .setkey = n2_des_setkey,
1106 .encrypt = n2_encrypt_ecb,
1107 .decrypt = n2_decrypt_ecb,
1108 },
1109 },
1110 { .name = "cbc(des)",
1111 .drv_name = "cbc-des",
1112 .block_size = DES_BLOCK_SIZE,
1113 .enc_type = (ENC_TYPE_ALG_DES |
1114 ENC_TYPE_CHAINING_CBC),
1115 .skcipher = {
1116 .ivsize = DES_BLOCK_SIZE,
1117 .min_keysize = DES_KEY_SIZE,
1118 .max_keysize = DES_KEY_SIZE,
1119 .setkey = n2_des_setkey,
1120 .encrypt = n2_encrypt_chaining,
1121 .decrypt = n2_decrypt_chaining,
1122 },
1123 },
1124
1125 /* 3DES: ECB CBC and CFB are supported */
1126 { .name = "ecb(des3_ede)",
1127 .drv_name = "ecb-3des",
1128 .block_size = DES_BLOCK_SIZE,
1129 .enc_type = (ENC_TYPE_ALG_3DES |
1130 ENC_TYPE_CHAINING_ECB),
1131 .skcipher = {
1132 .min_keysize = 3 * DES_KEY_SIZE,
1133 .max_keysize = 3 * DES_KEY_SIZE,
1134 .setkey = n2_3des_setkey,
1135 .encrypt = n2_encrypt_ecb,
1136 .decrypt = n2_decrypt_ecb,
1137 },
1138 },
1139 { .name = "cbc(des3_ede)",
1140 .drv_name = "cbc-3des",
1141 .block_size = DES_BLOCK_SIZE,
1142 .enc_type = (ENC_TYPE_ALG_3DES |
1143 ENC_TYPE_CHAINING_CBC),
1144 .skcipher = {
1145 .ivsize = DES_BLOCK_SIZE,
1146 .min_keysize = 3 * DES_KEY_SIZE,
1147 .max_keysize = 3 * DES_KEY_SIZE,
1148 .setkey = n2_3des_setkey,
1149 .encrypt = n2_encrypt_chaining,
1150 .decrypt = n2_decrypt_chaining,
1151 },
1152 },
1153
1154 /* AES: ECB CBC and CTR are supported */
1155 { .name = "ecb(aes)",
1156 .drv_name = "ecb-aes",
1157 .block_size = AES_BLOCK_SIZE,
1158 .enc_type = (ENC_TYPE_ALG_AES128 |
1159 ENC_TYPE_CHAINING_ECB),
1160 .skcipher = {
1161 .min_keysize = AES_MIN_KEY_SIZE,
1162 .max_keysize = AES_MAX_KEY_SIZE,
1163 .setkey = n2_aes_setkey,
1164 .encrypt = n2_encrypt_ecb,
1165 .decrypt = n2_decrypt_ecb,
1166 },
1167 },
1168 { .name = "cbc(aes)",
1169 .drv_name = "cbc-aes",
1170 .block_size = AES_BLOCK_SIZE,
1171 .enc_type = (ENC_TYPE_ALG_AES128 |
1172 ENC_TYPE_CHAINING_CBC),
1173 .skcipher = {
1174 .ivsize = AES_BLOCK_SIZE,
1175 .min_keysize = AES_MIN_KEY_SIZE,
1176 .max_keysize = AES_MAX_KEY_SIZE,
1177 .setkey = n2_aes_setkey,
1178 .encrypt = n2_encrypt_chaining,
1179 .decrypt = n2_decrypt_chaining,
1180 },
1181 },
1182 { .name = "ctr(aes)",
1183 .drv_name = "ctr-aes",
1184 .block_size = AES_BLOCK_SIZE,
1185 .enc_type = (ENC_TYPE_ALG_AES128 |
1186 ENC_TYPE_CHAINING_COUNTER),
1187 .skcipher = {
1188 .ivsize = AES_BLOCK_SIZE,
1189 .min_keysize = AES_MIN_KEY_SIZE,
1190 .max_keysize = AES_MAX_KEY_SIZE,
1191 .setkey = n2_aes_setkey,
1192 .encrypt = n2_encrypt_chaining,
1193 .decrypt = n2_encrypt_chaining,
1194 },
1195 },
1196
1197};
1198#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1199
1200static LIST_HEAD(skcipher_algs);
1201
1202struct n2_hash_tmpl {
1203 const char *name;
1204 const u8 *hash_zero;
1205 const u8 *hash_init;
1206 u8 hw_op_hashsz;
1207 u8 digest_size;
1208 u8 statesize;
1209 u8 block_size;
1210 u8 auth_type;
1211 u8 hmac_type;
1212};
1213
1214static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1215 cpu_to_le32(MD5_H0),
1216 cpu_to_le32(MD5_H1),
1217 cpu_to_le32(MD5_H2),
1218 cpu_to_le32(MD5_H3),
1219};
1220static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1221 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1222};
1223static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1224 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1225 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1226};
1227static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1228 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1229 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1230};
1231
1232static const struct n2_hash_tmpl hash_tmpls[] = {
1233 { .name = "md5",
1234 .hash_zero = md5_zero_message_hash,
1235 .hash_init = (u8 *)n2_md5_init,
1236 .auth_type = AUTH_TYPE_MD5,
1237 .hmac_type = AUTH_TYPE_HMAC_MD5,
1238 .hw_op_hashsz = MD5_DIGEST_SIZE,
1239 .digest_size = MD5_DIGEST_SIZE,
1240 .statesize = sizeof(struct md5_state),
1241 .block_size = MD5_HMAC_BLOCK_SIZE },
1242 { .name = "sha1",
1243 .hash_zero = sha1_zero_message_hash,
1244 .hash_init = (u8 *)n2_sha1_init,
1245 .auth_type = AUTH_TYPE_SHA1,
1246 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1247 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1248 .digest_size = SHA1_DIGEST_SIZE,
1249 .statesize = sizeof(struct sha1_state),
1250 .block_size = SHA1_BLOCK_SIZE },
1251 { .name = "sha256",
1252 .hash_zero = sha256_zero_message_hash,
1253 .hash_init = (u8 *)n2_sha256_init,
1254 .auth_type = AUTH_TYPE_SHA256,
1255 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1256 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1257 .digest_size = SHA256_DIGEST_SIZE,
1258 .statesize = sizeof(struct sha256_state),
1259 .block_size = SHA256_BLOCK_SIZE },
1260 { .name = "sha224",
1261 .hash_zero = sha224_zero_message_hash,
1262 .hash_init = (u8 *)n2_sha224_init,
1263 .auth_type = AUTH_TYPE_SHA256,
1264 .hmac_type = AUTH_TYPE_RESERVED,
1265 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1266 .digest_size = SHA224_DIGEST_SIZE,
1267 .statesize = sizeof(struct sha256_state),
1268 .block_size = SHA224_BLOCK_SIZE },
1269};
1270#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1271
1272static LIST_HEAD(ahash_algs);
1273static LIST_HEAD(hmac_algs);
1274
1275static int algs_registered;
1276
1277static void __n2_unregister_algs(void)
1278{
1279 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1280 struct n2_ahash_alg *alg, *alg_tmp;
1281 struct n2_hmac_alg *hmac, *hmac_tmp;
1282
1283 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1284 crypto_unregister_skcipher(&skcipher->skcipher);
1285 list_del(&skcipher->entry);
1286 kfree(skcipher);
1287 }
1288 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1289 crypto_unregister_ahash(&hmac->derived.alg);
1290 list_del(&hmac->derived.entry);
1291 kfree(hmac);
1292 }
1293 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1294 crypto_unregister_ahash(&alg->alg);
1295 list_del(&alg->entry);
1296 kfree(alg);
1297 }
1298}
1299
1300static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1301{
1302 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1303 return 0;
1304}
1305
1306static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1307{
1308 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1309 struct skcipher_alg *alg;
1310 int err;
1311
1312 if (!p)
1313 return -ENOMEM;
1314
1315 alg = &p->skcipher;
1316 *alg = tmpl->skcipher;
1317
1318 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1319 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1320 alg->base.cra_priority = N2_CRA_PRIORITY;
1321 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1322 CRYPTO_ALG_ALLOCATES_MEMORY;
1323 alg->base.cra_blocksize = tmpl->block_size;
1324 p->enc_type = tmpl->enc_type;
1325 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1326 alg->base.cra_module = THIS_MODULE;
1327 alg->init = n2_skcipher_init_tfm;
1328
1329 list_add(&p->entry, &skcipher_algs);
1330 err = crypto_register_skcipher(alg);
1331 if (err) {
1332 pr_err("%s alg registration failed\n", alg->base.cra_name);
1333 list_del(&p->entry);
1334 kfree(p);
1335 } else {
1336 pr_info("%s alg registered\n", alg->base.cra_name);
1337 }
1338 return err;
1339}
1340
1341static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1342{
1343 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1344 struct ahash_alg *ahash;
1345 struct crypto_alg *base;
1346 int err;
1347
1348 if (!p)
1349 return -ENOMEM;
1350
1351 p->child_alg = n2ahash->alg.halg.base.cra_name;
1352 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1353 INIT_LIST_HEAD(&p->derived.entry);
1354
1355 ahash = &p->derived.alg;
1356 ahash->digest = n2_hmac_async_digest;
1357 ahash->setkey = n2_hmac_async_setkey;
1358
1359 base = &ahash->halg.base;
1360 if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
1361 p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1362 goto out_free_p;
1363 if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2",
1364 p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1365 goto out_free_p;
1366
1367 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1368 base->cra_init = n2_hmac_cra_init;
1369 base->cra_exit = n2_hmac_cra_exit;
1370
1371 list_add(&p->derived.entry, &hmac_algs);
1372 err = crypto_register_ahash(ahash);
1373 if (err) {
1374 pr_err("%s alg registration failed\n", base->cra_name);
1375 list_del(&p->derived.entry);
1376out_free_p:
1377 kfree(p);
1378 } else {
1379 pr_info("%s alg registered\n", base->cra_name);
1380 }
1381 return err;
1382}
1383
1384static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1385{
1386 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1387 struct hash_alg_common *halg;
1388 struct crypto_alg *base;
1389 struct ahash_alg *ahash;
1390 int err;
1391
1392 if (!p)
1393 return -ENOMEM;
1394
1395 p->hash_zero = tmpl->hash_zero;
1396 p->hash_init = tmpl->hash_init;
1397 p->auth_type = tmpl->auth_type;
1398 p->hmac_type = tmpl->hmac_type;
1399 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1400 p->digest_size = tmpl->digest_size;
1401
1402 ahash = &p->alg;
1403 ahash->init = n2_hash_async_init;
1404 ahash->update = n2_hash_async_update;
1405 ahash->final = n2_hash_async_final;
1406 ahash->finup = n2_hash_async_finup;
1407 ahash->digest = n2_hash_async_digest;
1408 ahash->export = n2_hash_async_noexport;
1409 ahash->import = n2_hash_async_noimport;
1410
1411 halg = &ahash->halg;
1412 halg->digestsize = tmpl->digest_size;
1413 halg->statesize = tmpl->statesize;
1414
1415 base = &halg->base;
1416 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1417 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1418 base->cra_priority = N2_CRA_PRIORITY;
1419 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1420 CRYPTO_ALG_NEED_FALLBACK;
1421 base->cra_blocksize = tmpl->block_size;
1422 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1423 base->cra_module = THIS_MODULE;
1424 base->cra_init = n2_hash_cra_init;
1425 base->cra_exit = n2_hash_cra_exit;
1426
1427 list_add(&p->entry, &ahash_algs);
1428 err = crypto_register_ahash(ahash);
1429 if (err) {
1430 pr_err("%s alg registration failed\n", base->cra_name);
1431 list_del(&p->entry);
1432 kfree(p);
1433 } else {
1434 pr_info("%s alg registered\n", base->cra_name);
1435 }
1436 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1437 err = __n2_register_one_hmac(p);
1438 return err;
1439}
1440
1441static int n2_register_algs(void)
1442{
1443 int i, err = 0;
1444
1445 mutex_lock(&spu_lock);
1446 if (algs_registered++)
1447 goto out;
1448
1449 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1450 err = __n2_register_one_ahash(&hash_tmpls[i]);
1451 if (err) {
1452 __n2_unregister_algs();
1453 goto out;
1454 }
1455 }
1456 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1457 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1458 if (err) {
1459 __n2_unregister_algs();
1460 goto out;
1461 }
1462 }
1463
1464out:
1465 mutex_unlock(&spu_lock);
1466 return err;
1467}
1468
1469static void n2_unregister_algs(void)
1470{
1471 mutex_lock(&spu_lock);
1472 if (!--algs_registered)
1473 __n2_unregister_algs();
1474 mutex_unlock(&spu_lock);
1475}
1476
1477/* To map CWQ queues to interrupt sources, the hypervisor API provides
1478 * a devino. This isn't very useful to us because all of the
1479 * interrupts listed in the device_node have been translated to
1480 * Linux virtual IRQ cookie numbers.
1481 *
1482 * So we have to back-translate, going through the 'intr' and 'ino'
1483 * property tables of the n2cp MDESC node, matching it with the OF
1484 * 'interrupts' property entries, in order to figure out which
1485 * devino goes to which already-translated IRQ.
1486 */
1487static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1488 unsigned long dev_ino)
1489{
1490 const unsigned int *dev_intrs;
1491 unsigned int intr;
1492 int i;
1493
1494 for (i = 0; i < ip->num_intrs; i++) {
1495 if (ip->ino_table[i].ino == dev_ino)
1496 break;
1497 }
1498 if (i == ip->num_intrs)
1499 return -ENODEV;
1500
1501 intr = ip->ino_table[i].intr;
1502
1503 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1504 if (!dev_intrs)
1505 return -ENODEV;
1506
1507 for (i = 0; i < dev->archdata.num_irqs; i++) {
1508 if (dev_intrs[i] == intr)
1509 return i;
1510 }
1511
1512 return -ENODEV;
1513}
1514
1515static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1516 const char *irq_name, struct spu_queue *p,
1517 irq_handler_t handler)
1518{
1519 unsigned long herr;
1520 int index;
1521
1522 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1523 if (herr)
1524 return -EINVAL;
1525
1526 index = find_devino_index(dev, ip, p->devino);
1527 if (index < 0)
1528 return index;
1529
1530 p->irq = dev->archdata.irqs[index];
1531
1532 sprintf(p->irq_name, "%s-%d", irq_name, index);
1533
1534 return request_irq(p->irq, handler, 0, p->irq_name, p);
1535}
1536
1537static struct kmem_cache *queue_cache[2];
1538
1539static void *new_queue(unsigned long q_type)
1540{
1541 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1542}
1543
1544static void free_queue(void *p, unsigned long q_type)
1545{
1546 kmem_cache_free(queue_cache[q_type - 1], p);
1547}
1548
1549static int queue_cache_init(void)
1550{
1551 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1552 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1553 kmem_cache_create("mau_queue",
1554 (MAU_NUM_ENTRIES *
1555 MAU_ENTRY_SIZE),
1556 MAU_ENTRY_SIZE, 0, NULL);
1557 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1558 return -ENOMEM;
1559
1560 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1561 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1562 kmem_cache_create("cwq_queue",
1563 (CWQ_NUM_ENTRIES *
1564 CWQ_ENTRY_SIZE),
1565 CWQ_ENTRY_SIZE, 0, NULL);
1566 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1567 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1568 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1569 return -ENOMEM;
1570 }
1571 return 0;
1572}
1573
1574static void queue_cache_destroy(void)
1575{
1576 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1577 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1578 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1579 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1580}
1581
1582static long spu_queue_register_workfn(void *arg)
1583{
1584 struct spu_qreg *qr = arg;
1585 struct spu_queue *p = qr->queue;
1586 unsigned long q_type = qr->type;
1587 unsigned long hv_ret;
1588
1589 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1590 CWQ_NUM_ENTRIES, &p->qhandle);
1591 if (!hv_ret)
1592 sun4v_ncs_sethead_marker(p->qhandle, 0);
1593
1594 return hv_ret ? -EINVAL : 0;
1595}
1596
1597static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1598{
1599 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1600 struct spu_qreg qr = { .queue = p, .type = q_type };
1601
1602 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1603}
1604
1605static int spu_queue_setup(struct spu_queue *p)
1606{
1607 int err;
1608
1609 p->q = new_queue(p->q_type);
1610 if (!p->q)
1611 return -ENOMEM;
1612
1613 err = spu_queue_register(p, p->q_type);
1614 if (err) {
1615 free_queue(p->q, p->q_type);
1616 p->q = NULL;
1617 }
1618
1619 return err;
1620}
1621
1622static void spu_queue_destroy(struct spu_queue *p)
1623{
1624 unsigned long hv_ret;
1625
1626 if (!p->q)
1627 return;
1628
1629 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1630
1631 if (!hv_ret)
1632 free_queue(p->q, p->q_type);
1633}
1634
1635static void spu_list_destroy(struct list_head *list)
1636{
1637 struct spu_queue *p, *n;
1638
1639 list_for_each_entry_safe(p, n, list, list) {
1640 int i;
1641
1642 for (i = 0; i < NR_CPUS; i++) {
1643 if (cpu_to_cwq[i] == p)
1644 cpu_to_cwq[i] = NULL;
1645 }
1646
1647 if (p->irq) {
1648 free_irq(p->irq, p);
1649 p->irq = 0;
1650 }
1651 spu_queue_destroy(p);
1652 list_del(&p->list);
1653 kfree(p);
1654 }
1655}
1656
1657/* Walk the backward arcs of a CWQ 'exec-unit' node,
1658 * gathering cpu membership information.
1659 */
1660static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1661 struct platform_device *dev,
1662 u64 node, struct spu_queue *p,
1663 struct spu_queue **table)
1664{
1665 u64 arc;
1666
1667 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1668 u64 tgt = mdesc_arc_target(mdesc, arc);
1669 const char *name = mdesc_node_name(mdesc, tgt);
1670 const u64 *id;
1671
1672 if (strcmp(name, "cpu"))
1673 continue;
1674 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1675 if (table[*id] != NULL) {
1676 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1677 dev->dev.of_node);
1678 return -EINVAL;
1679 }
1680 cpumask_set_cpu(*id, &p->sharing);
1681 table[*id] = p;
1682 }
1683 return 0;
1684}
1685
1686/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1687static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1688 struct platform_device *dev, struct mdesc_handle *mdesc,
1689 u64 node, const char *iname, unsigned long q_type,
1690 irq_handler_t handler, struct spu_queue **table)
1691{
1692 struct spu_queue *p;
1693 int err;
1694
1695 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1696 if (!p) {
1697 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1698 dev->dev.of_node);
1699 return -ENOMEM;
1700 }
1701
1702 cpumask_clear(&p->sharing);
1703 spin_lock_init(&p->lock);
1704 p->q_type = q_type;
1705 INIT_LIST_HEAD(&p->jobs);
1706 list_add(&p->list, list);
1707
1708 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1709 if (err)
1710 return err;
1711
1712 err = spu_queue_setup(p);
1713 if (err)
1714 return err;
1715
1716 return spu_map_ino(dev, ip, iname, p, handler);
1717}
1718
1719static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1720 struct spu_mdesc_info *ip, struct list_head *list,
1721 const char *exec_name, unsigned long q_type,
1722 irq_handler_t handler, struct spu_queue **table)
1723{
1724 int err = 0;
1725 u64 node;
1726
1727 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1728 const char *type;
1729
1730 type = mdesc_get_property(mdesc, node, "type", NULL);
1731 if (!type || strcmp(type, exec_name))
1732 continue;
1733
1734 err = handle_exec_unit(ip, list, dev, mdesc, node,
1735 exec_name, q_type, handler, table);
1736 if (err) {
1737 spu_list_destroy(list);
1738 break;
1739 }
1740 }
1741
1742 return err;
1743}
1744
1745static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1746 struct spu_mdesc_info *ip)
1747{
1748 const u64 *ino;
1749 int ino_len;
1750 int i;
1751
1752 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1753 if (!ino) {
1754 printk("NO 'ino'\n");
1755 return -ENODEV;
1756 }
1757
1758 ip->num_intrs = ino_len / sizeof(u64);
1759 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1760 ip->num_intrs),
1761 GFP_KERNEL);
1762 if (!ip->ino_table)
1763 return -ENOMEM;
1764
1765 for (i = 0; i < ip->num_intrs; i++) {
1766 struct ino_blob *b = &ip->ino_table[i];
1767 b->intr = i + 1;
1768 b->ino = ino[i];
1769 }
1770
1771 return 0;
1772}
1773
1774static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1775 struct platform_device *dev,
1776 struct spu_mdesc_info *ip,
1777 const char *node_name)
1778{
1779 u64 node, reg;
1780
1781 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0)
1782 return -ENODEV;
1783
1784 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1785 const char *name;
1786 const u64 *chdl;
1787
1788 name = mdesc_get_property(mdesc, node, "name", NULL);
1789 if (!name || strcmp(name, node_name))
1790 continue;
1791 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1792 if (!chdl || (*chdl != reg))
1793 continue;
1794 ip->cfg_handle = *chdl;
1795 return get_irq_props(mdesc, node, ip);
1796 }
1797
1798 return -ENODEV;
1799}
1800
1801static unsigned long n2_spu_hvapi_major;
1802static unsigned long n2_spu_hvapi_minor;
1803
1804static int n2_spu_hvapi_register(void)
1805{
1806 int err;
1807
1808 n2_spu_hvapi_major = 2;
1809 n2_spu_hvapi_minor = 0;
1810
1811 err = sun4v_hvapi_register(HV_GRP_NCS,
1812 n2_spu_hvapi_major,
1813 &n2_spu_hvapi_minor);
1814
1815 if (!err)
1816 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1817 n2_spu_hvapi_major,
1818 n2_spu_hvapi_minor);
1819
1820 return err;
1821}
1822
1823static void n2_spu_hvapi_unregister(void)
1824{
1825 sun4v_hvapi_unregister(HV_GRP_NCS);
1826}
1827
1828static int global_ref;
1829
1830static int grab_global_resources(void)
1831{
1832 int err = 0;
1833
1834 mutex_lock(&spu_lock);
1835
1836 if (global_ref++)
1837 goto out;
1838
1839 err = n2_spu_hvapi_register();
1840 if (err)
1841 goto out;
1842
1843 err = queue_cache_init();
1844 if (err)
1845 goto out_hvapi_release;
1846
1847 err = -ENOMEM;
1848 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1849 GFP_KERNEL);
1850 if (!cpu_to_cwq)
1851 goto out_queue_cache_destroy;
1852
1853 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1854 GFP_KERNEL);
1855 if (!cpu_to_mau)
1856 goto out_free_cwq_table;
1857
1858 err = 0;
1859
1860out:
1861 if (err)
1862 global_ref--;
1863 mutex_unlock(&spu_lock);
1864 return err;
1865
1866out_free_cwq_table:
1867 kfree(cpu_to_cwq);
1868 cpu_to_cwq = NULL;
1869
1870out_queue_cache_destroy:
1871 queue_cache_destroy();
1872
1873out_hvapi_release:
1874 n2_spu_hvapi_unregister();
1875 goto out;
1876}
1877
1878static void release_global_resources(void)
1879{
1880 mutex_lock(&spu_lock);
1881 if (!--global_ref) {
1882 kfree(cpu_to_cwq);
1883 cpu_to_cwq = NULL;
1884
1885 kfree(cpu_to_mau);
1886 cpu_to_mau = NULL;
1887
1888 queue_cache_destroy();
1889 n2_spu_hvapi_unregister();
1890 }
1891 mutex_unlock(&spu_lock);
1892}
1893
1894static struct n2_crypto *alloc_n2cp(void)
1895{
1896 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1897
1898 if (np)
1899 INIT_LIST_HEAD(&np->cwq_list);
1900
1901 return np;
1902}
1903
1904static void free_n2cp(struct n2_crypto *np)
1905{
1906 kfree(np->cwq_info.ino_table);
1907 np->cwq_info.ino_table = NULL;
1908
1909 kfree(np);
1910}
1911
1912static void n2_spu_driver_version(void)
1913{
1914 static int n2_spu_version_printed;
1915
1916 if (n2_spu_version_printed++ == 0)
1917 pr_info("%s", version);
1918}
1919
1920static int n2_crypto_probe(struct platform_device *dev)
1921{
1922 struct mdesc_handle *mdesc;
1923 struct n2_crypto *np;
1924 int err;
1925
1926 n2_spu_driver_version();
1927
1928 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1929
1930 np = alloc_n2cp();
1931 if (!np) {
1932 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1933 dev->dev.of_node);
1934 return -ENOMEM;
1935 }
1936
1937 err = grab_global_resources();
1938 if (err) {
1939 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1940 dev->dev.of_node);
1941 goto out_free_n2cp;
1942 }
1943
1944 mdesc = mdesc_grab();
1945
1946 if (!mdesc) {
1947 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1948 dev->dev.of_node);
1949 err = -ENODEV;
1950 goto out_free_global;
1951 }
1952 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1953 if (err) {
1954 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1955 dev->dev.of_node);
1956 mdesc_release(mdesc);
1957 goto out_free_global;
1958 }
1959
1960 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1961 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1962 cpu_to_cwq);
1963 mdesc_release(mdesc);
1964
1965 if (err) {
1966 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1967 dev->dev.of_node);
1968 goto out_free_global;
1969 }
1970
1971 err = n2_register_algs();
1972 if (err) {
1973 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1974 dev->dev.of_node);
1975 goto out_free_spu_list;
1976 }
1977
1978 dev_set_drvdata(&dev->dev, np);
1979
1980 return 0;
1981
1982out_free_spu_list:
1983 spu_list_destroy(&np->cwq_list);
1984
1985out_free_global:
1986 release_global_resources();
1987
1988out_free_n2cp:
1989 free_n2cp(np);
1990
1991 return err;
1992}
1993
1994static void n2_crypto_remove(struct platform_device *dev)
1995{
1996 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
1997
1998 n2_unregister_algs();
1999
2000 spu_list_destroy(&np->cwq_list);
2001
2002 release_global_resources();
2003
2004 free_n2cp(np);
2005}
2006
2007static struct n2_mau *alloc_ncp(void)
2008{
2009 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2010
2011 if (mp)
2012 INIT_LIST_HEAD(&mp->mau_list);
2013
2014 return mp;
2015}
2016
2017static void free_ncp(struct n2_mau *mp)
2018{
2019 kfree(mp->mau_info.ino_table);
2020 mp->mau_info.ino_table = NULL;
2021
2022 kfree(mp);
2023}
2024
2025static int n2_mau_probe(struct platform_device *dev)
2026{
2027 struct mdesc_handle *mdesc;
2028 struct n2_mau *mp;
2029 int err;
2030
2031 n2_spu_driver_version();
2032
2033 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2034
2035 mp = alloc_ncp();
2036 if (!mp) {
2037 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2038 dev->dev.of_node);
2039 return -ENOMEM;
2040 }
2041
2042 err = grab_global_resources();
2043 if (err) {
2044 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2045 dev->dev.of_node);
2046 goto out_free_ncp;
2047 }
2048
2049 mdesc = mdesc_grab();
2050
2051 if (!mdesc) {
2052 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2053 dev->dev.of_node);
2054 err = -ENODEV;
2055 goto out_free_global;
2056 }
2057
2058 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2059 if (err) {
2060 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2061 dev->dev.of_node);
2062 mdesc_release(mdesc);
2063 goto out_free_global;
2064 }
2065
2066 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2067 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2068 cpu_to_mau);
2069 mdesc_release(mdesc);
2070
2071 if (err) {
2072 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2073 dev->dev.of_node);
2074 goto out_free_global;
2075 }
2076
2077 dev_set_drvdata(&dev->dev, mp);
2078
2079 return 0;
2080
2081out_free_global:
2082 release_global_resources();
2083
2084out_free_ncp:
2085 free_ncp(mp);
2086
2087 return err;
2088}
2089
2090static void n2_mau_remove(struct platform_device *dev)
2091{
2092 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2093
2094 spu_list_destroy(&mp->mau_list);
2095
2096 release_global_resources();
2097
2098 free_ncp(mp);
2099}
2100
2101static const struct of_device_id n2_crypto_match[] = {
2102 {
2103 .name = "n2cp",
2104 .compatible = "SUNW,n2-cwq",
2105 },
2106 {
2107 .name = "n2cp",
2108 .compatible = "SUNW,vf-cwq",
2109 },
2110 {
2111 .name = "n2cp",
2112 .compatible = "SUNW,kt-cwq",
2113 },
2114 {},
2115};
2116
2117MODULE_DEVICE_TABLE(of, n2_crypto_match);
2118
2119static struct platform_driver n2_crypto_driver = {
2120 .driver = {
2121 .name = "n2cp",
2122 .of_match_table = n2_crypto_match,
2123 },
2124 .probe = n2_crypto_probe,
2125 .remove_new = n2_crypto_remove,
2126};
2127
2128static const struct of_device_id n2_mau_match[] = {
2129 {
2130 .name = "ncp",
2131 .compatible = "SUNW,n2-mau",
2132 },
2133 {
2134 .name = "ncp",
2135 .compatible = "SUNW,vf-mau",
2136 },
2137 {
2138 .name = "ncp",
2139 .compatible = "SUNW,kt-mau",
2140 },
2141 {},
2142};
2143
2144MODULE_DEVICE_TABLE(of, n2_mau_match);
2145
2146static struct platform_driver n2_mau_driver = {
2147 .driver = {
2148 .name = "ncp",
2149 .of_match_table = n2_mau_match,
2150 },
2151 .probe = n2_mau_probe,
2152 .remove_new = n2_mau_remove,
2153};
2154
2155static struct platform_driver * const drivers[] = {
2156 &n2_crypto_driver,
2157 &n2_mau_driver,
2158};
2159
2160static int __init n2_init(void)
2161{
2162 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2163}
2164
2165static void __exit n2_exit(void)
2166{
2167 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2168}
2169
2170module_init(n2_init);
2171module_exit(n2_exit);