Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_device.h>
  13#include <linux/cpumask.h>
  14#include <linux/slab.h>
  15#include <linux/interrupt.h>
  16#include <linux/crypto.h>
  17#include <crypto/md5.h>
  18#include <crypto/sha.h>
  19#include <crypto/aes.h>
  20#include <crypto/internal/des.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/sched.h>
  24
  25#include <crypto/internal/hash.h>
  26#include <crypto/internal/skcipher.h>
  27#include <crypto/scatterwalk.h>
  28#include <crypto/algapi.h>
  29
  30#include <asm/hypervisor.h>
  31#include <asm/mdesc.h>
  32
  33#include "n2_core.h"
  34
  35#define DRV_MODULE_NAME		"n2_crypto"
  36#define DRV_MODULE_VERSION	"0.2"
  37#define DRV_MODULE_RELDATE	"July 28, 2011"
  38
  39static const char version[] =
  40	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  41
  42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  43MODULE_DESCRIPTION("Niagara2 Crypto driver");
  44MODULE_LICENSE("GPL");
  45MODULE_VERSION(DRV_MODULE_VERSION);
  46
  47#define N2_CRA_PRIORITY		200
  48
  49static DEFINE_MUTEX(spu_lock);
  50
  51struct spu_queue {
  52	cpumask_t		sharing;
  53	unsigned long		qhandle;
  54
  55	spinlock_t		lock;
  56	u8			q_type;
  57	void			*q;
  58	unsigned long		head;
  59	unsigned long		tail;
  60	struct list_head	jobs;
  61
  62	unsigned long		devino;
  63
  64	char			irq_name[32];
  65	unsigned int		irq;
  66
  67	struct list_head	list;
  68};
  69
  70struct spu_qreg {
  71	struct spu_queue	*queue;
  72	unsigned long		type;
  73};
  74
  75static struct spu_queue **cpu_to_cwq;
  76static struct spu_queue **cpu_to_mau;
  77
  78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  79{
  80	if (q->q_type == HV_NCS_QTYPE_MAU) {
  81		off += MAU_ENTRY_SIZE;
  82		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  83			off = 0;
  84	} else {
  85		off += CWQ_ENTRY_SIZE;
  86		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  87			off = 0;
  88	}
  89	return off;
  90}
  91
  92struct n2_request_common {
  93	struct list_head	entry;
  94	unsigned int		offset;
  95};
  96#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  97
  98/* An async job request records the final tail value it used in
  99 * n2_request_common->offset, test to see if that offset is in
 100 * the range old_head, new_head, inclusive.
 101 */
 102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 103				unsigned long old_head, unsigned long new_head)
 104{
 105	if (old_head <= new_head) {
 106		if (offset > old_head && offset <= new_head)
 107			return true;
 108	} else {
 109		if (offset > old_head || offset <= new_head)
 110			return true;
 111	}
 112	return false;
 113}
 114
 115/* When the HEAD marker is unequal to the actual HEAD, we get
 116 * a virtual device INO interrupt.  We should process the
 117 * completed CWQ entries and adjust the HEAD marker to clear
 118 * the IRQ.
 119 */
 120static irqreturn_t cwq_intr(int irq, void *dev_id)
 121{
 122	unsigned long off, new_head, hv_ret;
 123	struct spu_queue *q = dev_id;
 124
 125	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 126	       smp_processor_id(), q->qhandle);
 127
 128	spin_lock(&q->lock);
 129
 130	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 131
 132	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 133	       smp_processor_id(), new_head, hv_ret);
 134
 135	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 136		/* XXX ... XXX */
 137	}
 138
 139	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 140	if (hv_ret == HV_EOK)
 141		q->head = new_head;
 142
 143	spin_unlock(&q->lock);
 144
 145	return IRQ_HANDLED;
 146}
 147
 148static irqreturn_t mau_intr(int irq, void *dev_id)
 149{
 150	struct spu_queue *q = dev_id;
 151	unsigned long head, hv_ret;
 152
 153	spin_lock(&q->lock);
 154
 155	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 156	       smp_processor_id(), q->qhandle);
 157
 158	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 159
 160	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 161	       smp_processor_id(), head, hv_ret);
 162
 163	sun4v_ncs_sethead_marker(q->qhandle, head);
 164
 165	spin_unlock(&q->lock);
 166
 167	return IRQ_HANDLED;
 168}
 169
 170static void *spu_queue_next(struct spu_queue *q, void *cur)
 171{
 172	return q->q + spu_next_offset(q, cur - q->q);
 173}
 174
 175static int spu_queue_num_free(struct spu_queue *q)
 176{
 177	unsigned long head = q->head;
 178	unsigned long tail = q->tail;
 179	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 180	unsigned long diff;
 181
 182	if (head > tail)
 183		diff = head - tail;
 184	else
 185		diff = (end - tail) + head;
 186
 187	return (diff / CWQ_ENTRY_SIZE) - 1;
 188}
 189
 190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 191{
 192	int avail = spu_queue_num_free(q);
 193
 194	if (avail >= num_entries)
 195		return q->q + q->tail;
 196
 197	return NULL;
 198}
 199
 200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 201{
 202	unsigned long hv_ret, new_tail;
 203
 204	new_tail = spu_next_offset(q, last - q->q);
 205
 206	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 207	if (hv_ret == HV_EOK)
 208		q->tail = new_tail;
 209	return hv_ret;
 210}
 211
 212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 213			     int enc_type, int auth_type,
 214			     unsigned int hash_len,
 215			     bool sfas, bool sob, bool eob, bool encrypt,
 216			     int opcode)
 217{
 218	u64 word = (len - 1) & CONTROL_LEN;
 219
 220	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 221	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 222	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 223	if (sfas)
 224		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 225	if (sob)
 226		word |= CONTROL_START_OF_BLOCK;
 227	if (eob)
 228		word |= CONTROL_END_OF_BLOCK;
 229	if (encrypt)
 230		word |= CONTROL_ENCRYPT;
 231	if (hmac_key_len)
 232		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 233	if (hash_len)
 234		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 235
 236	return word;
 237}
 238
 239#if 0
 240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 241{
 242	if (this_len >= 64 ||
 243	    qp->head != qp->tail)
 244		return true;
 245	return false;
 246}
 247#endif
 248
 249struct n2_ahash_alg {
 250	struct list_head	entry;
 251	const u8		*hash_zero;
 252	const u32		*hash_init;
 253	u8			hw_op_hashsz;
 254	u8			digest_size;
 255	u8			auth_type;
 256	u8			hmac_type;
 257	struct ahash_alg	alg;
 258};
 259
 260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 261{
 262	struct crypto_alg *alg = tfm->__crt_alg;
 263	struct ahash_alg *ahash_alg;
 264
 265	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 266
 267	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 268}
 269
 270struct n2_hmac_alg {
 271	const char		*child_alg;
 272	struct n2_ahash_alg	derived;
 273};
 274
 275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 276{
 277	struct crypto_alg *alg = tfm->__crt_alg;
 278	struct ahash_alg *ahash_alg;
 279
 280	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 281
 282	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 283}
 284
 285struct n2_hash_ctx {
 286	struct crypto_ahash		*fallback_tfm;
 287};
 288
 289#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 290
 291struct n2_hmac_ctx {
 292	struct n2_hash_ctx		base;
 293
 294	struct crypto_shash		*child_shash;
 295
 296	int				hash_key_len;
 297	unsigned char			hash_key[N2_HASH_KEY_MAX];
 298};
 299
 300struct n2_hash_req_ctx {
 301	union {
 302		struct md5_state	md5;
 303		struct sha1_state	sha1;
 304		struct sha256_state	sha256;
 305	} u;
 306
 307	struct ahash_request		fallback_req;
 308};
 309
 310static int n2_hash_async_init(struct ahash_request *req)
 311{
 312	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 313	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 314	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 315
 316	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 317	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 318
 319	return crypto_ahash_init(&rctx->fallback_req);
 320}
 321
 322static int n2_hash_async_update(struct ahash_request *req)
 323{
 324	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 325	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 326	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 327
 328	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 329	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 330	rctx->fallback_req.nbytes = req->nbytes;
 331	rctx->fallback_req.src = req->src;
 332
 333	return crypto_ahash_update(&rctx->fallback_req);
 334}
 335
 336static int n2_hash_async_final(struct ahash_request *req)
 337{
 338	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 339	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 340	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 341
 342	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 343	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 344	rctx->fallback_req.result = req->result;
 345
 346	return crypto_ahash_final(&rctx->fallback_req);
 347}
 348
 349static int n2_hash_async_finup(struct ahash_request *req)
 350{
 351	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 352	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 353	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 354
 355	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 356	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 357	rctx->fallback_req.nbytes = req->nbytes;
 358	rctx->fallback_req.src = req->src;
 359	rctx->fallback_req.result = req->result;
 360
 361	return crypto_ahash_finup(&rctx->fallback_req);
 362}
 363
 364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 365{
 366	return -ENOSYS;
 367}
 368
 369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 370{
 371	return -ENOSYS;
 372}
 373
 374static int n2_hash_cra_init(struct crypto_tfm *tfm)
 375{
 376	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 377	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 378	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 379	struct crypto_ahash *fallback_tfm;
 380	int err;
 381
 382	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 383					  CRYPTO_ALG_NEED_FALLBACK);
 384	if (IS_ERR(fallback_tfm)) {
 385		pr_warn("Fallback driver '%s' could not be loaded!\n",
 386			fallback_driver_name);
 387		err = PTR_ERR(fallback_tfm);
 388		goto out;
 389	}
 390
 391	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 392					 crypto_ahash_reqsize(fallback_tfm)));
 393
 394	ctx->fallback_tfm = fallback_tfm;
 395	return 0;
 396
 397out:
 398	return err;
 399}
 400
 401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 402{
 403	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 404	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 405
 406	crypto_free_ahash(ctx->fallback_tfm);
 407}
 408
 409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 410{
 411	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 412	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 413	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 414	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 415	struct crypto_ahash *fallback_tfm;
 416	struct crypto_shash *child_shash;
 417	int err;
 418
 419	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 420					  CRYPTO_ALG_NEED_FALLBACK);
 421	if (IS_ERR(fallback_tfm)) {
 422		pr_warn("Fallback driver '%s' could not be loaded!\n",
 423			fallback_driver_name);
 424		err = PTR_ERR(fallback_tfm);
 425		goto out;
 426	}
 427
 428	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 429	if (IS_ERR(child_shash)) {
 430		pr_warn("Child shash '%s' could not be loaded!\n",
 431			n2alg->child_alg);
 432		err = PTR_ERR(child_shash);
 433		goto out_free_fallback;
 434	}
 435
 436	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 437					 crypto_ahash_reqsize(fallback_tfm)));
 438
 439	ctx->child_shash = child_shash;
 440	ctx->base.fallback_tfm = fallback_tfm;
 441	return 0;
 442
 443out_free_fallback:
 444	crypto_free_ahash(fallback_tfm);
 445
 446out:
 447	return err;
 448}
 449
 450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 451{
 452	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 453	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 454
 455	crypto_free_ahash(ctx->base.fallback_tfm);
 456	crypto_free_shash(ctx->child_shash);
 457}
 458
 459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 460				unsigned int keylen)
 461{
 462	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 463	struct crypto_shash *child_shash = ctx->child_shash;
 464	struct crypto_ahash *fallback_tfm;
 
 465	int err, bs, ds;
 466
 467	fallback_tfm = ctx->base.fallback_tfm;
 468	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 469	if (err)
 470		return err;
 471
 
 
 
 
 472	bs = crypto_shash_blocksize(child_shash);
 473	ds = crypto_shash_digestsize(child_shash);
 474	BUG_ON(ds > N2_HASH_KEY_MAX);
 475	if (keylen > bs) {
 476		err = crypto_shash_tfm_digest(child_shash, key, keylen,
 477					      ctx->hash_key);
 478		if (err)
 479			return err;
 480		keylen = ds;
 481	} else if (keylen <= N2_HASH_KEY_MAX)
 482		memcpy(ctx->hash_key, key, keylen);
 483
 484	ctx->hash_key_len = keylen;
 485
 486	return err;
 487}
 488
 489static unsigned long wait_for_tail(struct spu_queue *qp)
 490{
 491	unsigned long head, hv_ret;
 492
 493	do {
 494		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 495		if (hv_ret != HV_EOK) {
 496			pr_err("Hypervisor error on gethead\n");
 497			break;
 498		}
 499		if (head == qp->tail) {
 500			qp->head = head;
 501			break;
 502		}
 503	} while (1);
 504	return hv_ret;
 505}
 506
 507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 508					      struct cwq_initial_entry *ent)
 509{
 510	unsigned long hv_ret = spu_queue_submit(qp, ent);
 511
 512	if (hv_ret == HV_EOK)
 513		hv_ret = wait_for_tail(qp);
 514
 515	return hv_ret;
 516}
 517
 518static int n2_do_async_digest(struct ahash_request *req,
 519			      unsigned int auth_type, unsigned int digest_size,
 520			      unsigned int result_size, void *hash_loc,
 521			      unsigned long auth_key, unsigned int auth_key_len)
 522{
 523	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 524	struct cwq_initial_entry *ent;
 525	struct crypto_hash_walk walk;
 526	struct spu_queue *qp;
 527	unsigned long flags;
 528	int err = -ENODEV;
 529	int nbytes, cpu;
 530
 531	/* The total effective length of the operation may not
 532	 * exceed 2^16.
 533	 */
 534	if (unlikely(req->nbytes > (1 << 16))) {
 535		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 536		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 537
 538		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 539		rctx->fallback_req.base.flags =
 540			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 541		rctx->fallback_req.nbytes = req->nbytes;
 542		rctx->fallback_req.src = req->src;
 543		rctx->fallback_req.result = req->result;
 544
 545		return crypto_ahash_digest(&rctx->fallback_req);
 546	}
 547
 548	nbytes = crypto_hash_walk_first(req, &walk);
 549
 550	cpu = get_cpu();
 551	qp = cpu_to_cwq[cpu];
 552	if (!qp)
 553		goto out;
 554
 555	spin_lock_irqsave(&qp->lock, flags);
 556
 557	/* XXX can do better, improve this later by doing a by-hand scatterlist
 558	 * XXX walk, etc.
 559	 */
 560	ent = qp->q + qp->tail;
 561
 562	ent->control = control_word_base(nbytes, auth_key_len, 0,
 563					 auth_type, digest_size,
 564					 false, true, false, false,
 565					 OPCODE_INPLACE_BIT |
 566					 OPCODE_AUTH_MAC);
 567	ent->src_addr = __pa(walk.data);
 568	ent->auth_key_addr = auth_key;
 569	ent->auth_iv_addr = __pa(hash_loc);
 570	ent->final_auth_state_addr = 0UL;
 571	ent->enc_key_addr = 0UL;
 572	ent->enc_iv_addr = 0UL;
 573	ent->dest_addr = __pa(hash_loc);
 574
 575	nbytes = crypto_hash_walk_done(&walk, 0);
 576	while (nbytes > 0) {
 577		ent = spu_queue_next(qp, ent);
 578
 579		ent->control = (nbytes - 1);
 580		ent->src_addr = __pa(walk.data);
 581		ent->auth_key_addr = 0UL;
 582		ent->auth_iv_addr = 0UL;
 583		ent->final_auth_state_addr = 0UL;
 584		ent->enc_key_addr = 0UL;
 585		ent->enc_iv_addr = 0UL;
 586		ent->dest_addr = 0UL;
 587
 588		nbytes = crypto_hash_walk_done(&walk, 0);
 589	}
 590	ent->control |= CONTROL_END_OF_BLOCK;
 591
 592	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 593		err = -EINVAL;
 594	else
 595		err = 0;
 596
 597	spin_unlock_irqrestore(&qp->lock, flags);
 598
 599	if (!err)
 600		memcpy(req->result, hash_loc, result_size);
 601out:
 602	put_cpu();
 603
 604	return err;
 605}
 606
 607static int n2_hash_async_digest(struct ahash_request *req)
 608{
 609	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 610	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 611	int ds;
 612
 613	ds = n2alg->digest_size;
 614	if (unlikely(req->nbytes == 0)) {
 615		memcpy(req->result, n2alg->hash_zero, ds);
 616		return 0;
 617	}
 618	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 619
 620	return n2_do_async_digest(req, n2alg->auth_type,
 621				  n2alg->hw_op_hashsz, ds,
 622				  &rctx->u, 0UL, 0);
 623}
 624
 625static int n2_hmac_async_digest(struct ahash_request *req)
 626{
 627	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 628	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 629	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 630	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 631	int ds;
 632
 633	ds = n2alg->derived.digest_size;
 634	if (unlikely(req->nbytes == 0) ||
 635	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 636		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 637		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 638
 639		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 640		rctx->fallback_req.base.flags =
 641			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 642		rctx->fallback_req.nbytes = req->nbytes;
 643		rctx->fallback_req.src = req->src;
 644		rctx->fallback_req.result = req->result;
 645
 646		return crypto_ahash_digest(&rctx->fallback_req);
 647	}
 648	memcpy(&rctx->u, n2alg->derived.hash_init,
 649	       n2alg->derived.hw_op_hashsz);
 650
 651	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 652				  n2alg->derived.hw_op_hashsz, ds,
 653				  &rctx->u,
 654				  __pa(&ctx->hash_key),
 655				  ctx->hash_key_len);
 656}
 657
 658struct n2_skcipher_context {
 659	int			key_len;
 660	int			enc_type;
 661	union {
 662		u8		aes[AES_MAX_KEY_SIZE];
 663		u8		des[DES_KEY_SIZE];
 664		u8		des3[3 * DES_KEY_SIZE];
 665		u8		arc4[258]; /* S-box, X, Y */
 666	} key;
 667};
 668
 669#define N2_CHUNK_ARR_LEN	16
 670
 671struct n2_crypto_chunk {
 672	struct list_head	entry;
 673	unsigned long		iv_paddr : 44;
 674	unsigned long		arr_len : 20;
 675	unsigned long		dest_paddr;
 676	unsigned long		dest_final;
 677	struct {
 678		unsigned long	src_paddr : 44;
 679		unsigned long	src_len : 20;
 680	} arr[N2_CHUNK_ARR_LEN];
 681};
 682
 683struct n2_request_context {
 684	struct skcipher_walk	walk;
 685	struct list_head	chunk_list;
 686	struct n2_crypto_chunk	chunk;
 687	u8			temp_iv[16];
 688};
 689
 690/* The SPU allows some level of flexibility for partial cipher blocks
 691 * being specified in a descriptor.
 692 *
 693 * It merely requires that every descriptor's length field is at least
 694 * as large as the cipher block size.  This means that a cipher block
 695 * can span at most 2 descriptors.  However, this does not allow a
 696 * partial block to span into the final descriptor as that would
 697 * violate the rule (since every descriptor's length must be at lest
 698 * the block size).  So, for example, assuming an 8 byte block size:
 699 *
 700 *	0xe --> 0xa --> 0x8
 701 *
 702 * is a valid length sequence, whereas:
 703 *
 704 *	0xe --> 0xb --> 0x7
 705 *
 706 * is not a valid sequence.
 707 */
 708
 709struct n2_skcipher_alg {
 710	struct list_head	entry;
 711	u8			enc_type;
 712	struct skcipher_alg	skcipher;
 713};
 714
 715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
 716{
 717	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 718
 719	return container_of(alg, struct n2_skcipher_alg, skcipher);
 720}
 721
 722struct n2_skcipher_request_context {
 723	struct skcipher_walk	walk;
 724};
 725
 726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 727			 unsigned int keylen)
 728{
 729	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 730	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 731	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 732
 733	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 734
 735	switch (keylen) {
 736	case AES_KEYSIZE_128:
 737		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 738		break;
 739	case AES_KEYSIZE_192:
 740		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 741		break;
 742	case AES_KEYSIZE_256:
 743		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 744		break;
 745	default:
 
 746		return -EINVAL;
 747	}
 748
 749	ctx->key_len = keylen;
 750	memcpy(ctx->key.aes, key, keylen);
 751	return 0;
 752}
 753
 754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 755			 unsigned int keylen)
 756{
 757	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 758	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 759	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 
 760	int err;
 761
 762	err = verify_skcipher_des_key(skcipher, key);
 763	if (err)
 764		return err;
 765
 766	ctx->enc_type = n2alg->enc_type;
 767
 
 
 
 
 
 
 
 
 
 
 
 768	ctx->key_len = keylen;
 769	memcpy(ctx->key.des, key, keylen);
 770	return 0;
 771}
 772
 773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 774			  unsigned int keylen)
 775{
 776	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 777	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 778	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 779	int err;
 780
 781	err = verify_skcipher_des3_key(skcipher, key);
 782	if (err)
 783		return err;
 784
 785	ctx->enc_type = n2alg->enc_type;
 786
 
 
 
 
 787	ctx->key_len = keylen;
 788	memcpy(ctx->key.des3, key, keylen);
 789	return 0;
 790}
 791
 792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 793			  unsigned int keylen)
 794{
 795	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 796	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 797	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 798	u8 *s = ctx->key.arc4;
 799	u8 *x = s + 256;
 800	u8 *y = x + 1;
 801	int i, j, k;
 802
 803	ctx->enc_type = n2alg->enc_type;
 804
 805	j = k = 0;
 806	*x = 0;
 807	*y = 0;
 808	for (i = 0; i < 256; i++)
 809		s[i] = i;
 810	for (i = 0; i < 256; i++) {
 811		u8 a = s[i];
 812		j = (j + key[k] + a) & 0xff;
 813		s[i] = s[j];
 814		s[j] = a;
 815		if (++k >= keylen)
 816			k = 0;
 817	}
 818
 819	return 0;
 820}
 821
 822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
 823{
 824	int this_len = nbytes;
 825
 826	this_len -= (nbytes & (block_size - 1));
 827	return this_len > (1 << 16) ? (1 << 16) : this_len;
 828}
 829
 830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
 831			    struct n2_crypto_chunk *cp,
 832			    struct spu_queue *qp, bool encrypt)
 833{
 834	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
 835	struct cwq_initial_entry *ent;
 836	bool in_place;
 837	int i;
 838
 839	ent = spu_queue_alloc(qp, cp->arr_len);
 840	if (!ent) {
 841		pr_info("queue_alloc() of %d fails\n",
 842			cp->arr_len);
 843		return -EBUSY;
 844	}
 845
 846	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 847
 848	ent->control = control_word_base(cp->arr[0].src_len,
 849					 0, ctx->enc_type, 0, 0,
 850					 false, true, false, encrypt,
 851					 OPCODE_ENCRYPT |
 852					 (in_place ? OPCODE_INPLACE_BIT : 0));
 853	ent->src_addr = cp->arr[0].src_paddr;
 854	ent->auth_key_addr = 0UL;
 855	ent->auth_iv_addr = 0UL;
 856	ent->final_auth_state_addr = 0UL;
 857	ent->enc_key_addr = __pa(&ctx->key);
 858	ent->enc_iv_addr = cp->iv_paddr;
 859	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 860
 861	for (i = 1; i < cp->arr_len; i++) {
 862		ent = spu_queue_next(qp, ent);
 863
 864		ent->control = cp->arr[i].src_len - 1;
 865		ent->src_addr = cp->arr[i].src_paddr;
 866		ent->auth_key_addr = 0UL;
 867		ent->auth_iv_addr = 0UL;
 868		ent->final_auth_state_addr = 0UL;
 869		ent->enc_key_addr = 0UL;
 870		ent->enc_iv_addr = 0UL;
 871		ent->dest_addr = 0UL;
 872	}
 873	ent->control |= CONTROL_END_OF_BLOCK;
 874
 875	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 876}
 877
 878static int n2_compute_chunks(struct skcipher_request *req)
 879{
 880	struct n2_request_context *rctx = skcipher_request_ctx(req);
 881	struct skcipher_walk *walk = &rctx->walk;
 882	struct n2_crypto_chunk *chunk;
 883	unsigned long dest_prev;
 884	unsigned int tot_len;
 885	bool prev_in_place;
 886	int err, nbytes;
 887
 888	err = skcipher_walk_async(walk, req);
 
 889	if (err)
 890		return err;
 891
 892	INIT_LIST_HEAD(&rctx->chunk_list);
 893
 894	chunk = &rctx->chunk;
 895	INIT_LIST_HEAD(&chunk->entry);
 896
 897	chunk->iv_paddr = 0UL;
 898	chunk->arr_len = 0;
 899	chunk->dest_paddr = 0UL;
 900
 901	prev_in_place = false;
 902	dest_prev = ~0UL;
 903	tot_len = 0;
 904
 905	while ((nbytes = walk->nbytes) != 0) {
 906		unsigned long dest_paddr, src_paddr;
 907		bool in_place;
 908		int this_len;
 909
 910		src_paddr = (page_to_phys(walk->src.phys.page) +
 911			     walk->src.phys.offset);
 912		dest_paddr = (page_to_phys(walk->dst.phys.page) +
 913			      walk->dst.phys.offset);
 914		in_place = (src_paddr == dest_paddr);
 915		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
 916
 917		if (chunk->arr_len != 0) {
 918			if (in_place != prev_in_place ||
 919			    (!prev_in_place &&
 920			     dest_paddr != dest_prev) ||
 921			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 922			    tot_len + this_len > (1 << 16)) {
 923				chunk->dest_final = dest_prev;
 924				list_add_tail(&chunk->entry,
 925					      &rctx->chunk_list);
 926				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 927				if (!chunk) {
 928					err = -ENOMEM;
 929					break;
 930				}
 931				INIT_LIST_HEAD(&chunk->entry);
 932			}
 933		}
 934		if (chunk->arr_len == 0) {
 935			chunk->dest_paddr = dest_paddr;
 936			tot_len = 0;
 937		}
 938		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 939		chunk->arr[chunk->arr_len].src_len = this_len;
 940		chunk->arr_len++;
 941
 942		dest_prev = dest_paddr + this_len;
 943		prev_in_place = in_place;
 944		tot_len += this_len;
 945
 946		err = skcipher_walk_done(walk, nbytes - this_len);
 947		if (err)
 948			break;
 949	}
 950	if (!err && chunk->arr_len != 0) {
 951		chunk->dest_final = dest_prev;
 952		list_add_tail(&chunk->entry, &rctx->chunk_list);
 953	}
 954
 955	return err;
 956}
 957
 958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
 959{
 960	struct n2_request_context *rctx = skcipher_request_ctx(req);
 961	struct n2_crypto_chunk *c, *tmp;
 962
 963	if (final_iv)
 964		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 965
 
 966	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 967		list_del(&c->entry);
 968		if (unlikely(c != &rctx->chunk))
 969			kfree(c);
 970	}
 971
 972}
 973
 974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
 975{
 976	struct n2_request_context *rctx = skcipher_request_ctx(req);
 977	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 978	int err = n2_compute_chunks(req);
 979	struct n2_crypto_chunk *c, *tmp;
 980	unsigned long flags, hv_ret;
 981	struct spu_queue *qp;
 982
 983	if (err)
 984		return err;
 985
 986	qp = cpu_to_cwq[get_cpu()];
 987	err = -ENODEV;
 988	if (!qp)
 989		goto out;
 990
 991	spin_lock_irqsave(&qp->lock, flags);
 992
 993	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 994		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 995		if (err)
 996			break;
 997		list_del(&c->entry);
 998		if (unlikely(c != &rctx->chunk))
 999			kfree(c);
1000	}
1001	if (!err) {
1002		hv_ret = wait_for_tail(qp);
1003		if (hv_ret != HV_EOK)
1004			err = -EINVAL;
1005	}
1006
1007	spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010	put_cpu();
1011
1012	n2_chunk_complete(req, NULL);
1013	return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018	return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023	return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028	struct n2_request_context *rctx = skcipher_request_ctx(req);
1029	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030	unsigned long flags, hv_ret, iv_paddr;
1031	int err = n2_compute_chunks(req);
1032	struct n2_crypto_chunk *c, *tmp;
1033	struct spu_queue *qp;
1034	void *final_iv_addr;
1035
1036	final_iv_addr = NULL;
1037
1038	if (err)
1039		return err;
1040
1041	qp = cpu_to_cwq[get_cpu()];
1042	err = -ENODEV;
1043	if (!qp)
1044		goto out;
1045
1046	spin_lock_irqsave(&qp->lock, flags);
1047
1048	if (encrypt) {
1049		iv_paddr = __pa(rctx->walk.iv);
1050		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051					 entry) {
1052			c->iv_paddr = iv_paddr;
1053			err = __n2_crypt_chunk(tfm, c, qp, true);
1054			if (err)
1055				break;
1056			iv_paddr = c->dest_final - rctx->walk.blocksize;
1057			list_del(&c->entry);
1058			if (unlikely(c != &rctx->chunk))
1059				kfree(c);
1060		}
1061		final_iv_addr = __va(iv_paddr);
1062	} else {
1063		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064						 entry) {
1065			if (c == &rctx->chunk) {
1066				iv_paddr = __pa(rctx->walk.iv);
1067			} else {
1068				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069					    tmp->arr[tmp->arr_len-1].src_len -
1070					    rctx->walk.blocksize);
1071			}
1072			if (!final_iv_addr) {
1073				unsigned long pa;
1074
1075				pa = (c->arr[c->arr_len-1].src_paddr +
1076				      c->arr[c->arr_len-1].src_len -
1077				      rctx->walk.blocksize);
1078				final_iv_addr = rctx->temp_iv;
1079				memcpy(rctx->temp_iv, __va(pa),
1080				       rctx->walk.blocksize);
1081			}
1082			c->iv_paddr = iv_paddr;
1083			err = __n2_crypt_chunk(tfm, c, qp, false);
1084			if (err)
1085				break;
1086			list_del(&c->entry);
1087			if (unlikely(c != &rctx->chunk))
1088				kfree(c);
1089		}
1090	}
1091	if (!err) {
1092		hv_ret = wait_for_tail(qp);
1093		if (hv_ret != HV_EOK)
1094			err = -EINVAL;
1095	}
1096
1097	spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100	put_cpu();
1101
1102	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103	return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108	return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113	return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117	const char		*name;
1118	const char		*drv_name;
1119	u8			block_size;
1120	u8			enc_type;
1121	struct skcipher_alg	skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125	/* ARC4: only ECB is supported (chaining bits ignored) */
1126	{	.name		= "ecb(arc4)",
1127		.drv_name	= "ecb-arc4",
1128		.block_size	= 1,
1129		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1130				   ENC_TYPE_CHAINING_ECB),
1131		.skcipher	= {
1132			.min_keysize	= 1,
1133			.max_keysize	= 256,
1134			.setkey		= n2_arc4_setkey,
1135			.encrypt	= n2_encrypt_ecb,
1136			.decrypt	= n2_decrypt_ecb,
1137		},
1138	},
1139
1140	/* DES: ECB CBC and CFB are supported */
1141	{	.name		= "ecb(des)",
1142		.drv_name	= "ecb-des",
1143		.block_size	= DES_BLOCK_SIZE,
1144		.enc_type	= (ENC_TYPE_ALG_DES |
1145				   ENC_TYPE_CHAINING_ECB),
1146		.skcipher	= {
1147			.min_keysize	= DES_KEY_SIZE,
1148			.max_keysize	= DES_KEY_SIZE,
1149			.setkey		= n2_des_setkey,
1150			.encrypt	= n2_encrypt_ecb,
1151			.decrypt	= n2_decrypt_ecb,
1152		},
1153	},
1154	{	.name		= "cbc(des)",
1155		.drv_name	= "cbc-des",
1156		.block_size	= DES_BLOCK_SIZE,
1157		.enc_type	= (ENC_TYPE_ALG_DES |
1158				   ENC_TYPE_CHAINING_CBC),
1159		.skcipher	= {
1160			.ivsize		= DES_BLOCK_SIZE,
1161			.min_keysize	= DES_KEY_SIZE,
1162			.max_keysize	= DES_KEY_SIZE,
1163			.setkey		= n2_des_setkey,
1164			.encrypt	= n2_encrypt_chaining,
1165			.decrypt	= n2_decrypt_chaining,
1166		},
1167	},
1168	{	.name		= "cfb(des)",
1169		.drv_name	= "cfb-des",
1170		.block_size	= DES_BLOCK_SIZE,
1171		.enc_type	= (ENC_TYPE_ALG_DES |
1172				   ENC_TYPE_CHAINING_CFB),
1173		.skcipher	= {
1174			.min_keysize	= DES_KEY_SIZE,
1175			.max_keysize	= DES_KEY_SIZE,
1176			.setkey		= n2_des_setkey,
1177			.encrypt	= n2_encrypt_chaining,
1178			.decrypt	= n2_decrypt_chaining,
1179		},
1180	},
1181
1182	/* 3DES: ECB CBC and CFB are supported */
1183	{	.name		= "ecb(des3_ede)",
1184		.drv_name	= "ecb-3des",
1185		.block_size	= DES_BLOCK_SIZE,
1186		.enc_type	= (ENC_TYPE_ALG_3DES |
1187				   ENC_TYPE_CHAINING_ECB),
1188		.skcipher	= {
1189			.min_keysize	= 3 * DES_KEY_SIZE,
1190			.max_keysize	= 3 * DES_KEY_SIZE,
1191			.setkey		= n2_3des_setkey,
1192			.encrypt	= n2_encrypt_ecb,
1193			.decrypt	= n2_decrypt_ecb,
1194		},
1195	},
1196	{	.name		= "cbc(des3_ede)",
1197		.drv_name	= "cbc-3des",
1198		.block_size	= DES_BLOCK_SIZE,
1199		.enc_type	= (ENC_TYPE_ALG_3DES |
1200				   ENC_TYPE_CHAINING_CBC),
1201		.skcipher	= {
1202			.ivsize		= DES_BLOCK_SIZE,
1203			.min_keysize	= 3 * DES_KEY_SIZE,
1204			.max_keysize	= 3 * DES_KEY_SIZE,
1205			.setkey		= n2_3des_setkey,
1206			.encrypt	= n2_encrypt_chaining,
1207			.decrypt	= n2_decrypt_chaining,
1208		},
1209	},
1210	{	.name		= "cfb(des3_ede)",
1211		.drv_name	= "cfb-3des",
1212		.block_size	= DES_BLOCK_SIZE,
1213		.enc_type	= (ENC_TYPE_ALG_3DES |
1214				   ENC_TYPE_CHAINING_CFB),
1215		.skcipher	= {
1216			.min_keysize	= 3 * DES_KEY_SIZE,
1217			.max_keysize	= 3 * DES_KEY_SIZE,
1218			.setkey		= n2_3des_setkey,
1219			.encrypt	= n2_encrypt_chaining,
1220			.decrypt	= n2_decrypt_chaining,
1221		},
1222	},
1223	/* AES: ECB CBC and CTR are supported */
1224	{	.name		= "ecb(aes)",
1225		.drv_name	= "ecb-aes",
1226		.block_size	= AES_BLOCK_SIZE,
1227		.enc_type	= (ENC_TYPE_ALG_AES128 |
1228				   ENC_TYPE_CHAINING_ECB),
1229		.skcipher	= {
1230			.min_keysize	= AES_MIN_KEY_SIZE,
1231			.max_keysize	= AES_MAX_KEY_SIZE,
1232			.setkey		= n2_aes_setkey,
1233			.encrypt	= n2_encrypt_ecb,
1234			.decrypt	= n2_decrypt_ecb,
1235		},
1236	},
1237	{	.name		= "cbc(aes)",
1238		.drv_name	= "cbc-aes",
1239		.block_size	= AES_BLOCK_SIZE,
1240		.enc_type	= (ENC_TYPE_ALG_AES128 |
1241				   ENC_TYPE_CHAINING_CBC),
1242		.skcipher	= {
1243			.ivsize		= AES_BLOCK_SIZE,
1244			.min_keysize	= AES_MIN_KEY_SIZE,
1245			.max_keysize	= AES_MAX_KEY_SIZE,
1246			.setkey		= n2_aes_setkey,
1247			.encrypt	= n2_encrypt_chaining,
1248			.decrypt	= n2_decrypt_chaining,
1249		},
1250	},
1251	{	.name		= "ctr(aes)",
1252		.drv_name	= "ctr-aes",
1253		.block_size	= AES_BLOCK_SIZE,
1254		.enc_type	= (ENC_TYPE_ALG_AES128 |
1255				   ENC_TYPE_CHAINING_COUNTER),
1256		.skcipher	= {
1257			.ivsize		= AES_BLOCK_SIZE,
1258			.min_keysize	= AES_MIN_KEY_SIZE,
1259			.max_keysize	= AES_MAX_KEY_SIZE,
1260			.setkey		= n2_aes_setkey,
1261			.encrypt	= n2_encrypt_chaining,
1262			.decrypt	= n2_encrypt_chaining,
1263		},
1264	},
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272	const char	*name;
1273	const u8	*hash_zero;
1274	const u32	*hash_init;
1275	u8		hw_op_hashsz;
1276	u8		digest_size;
1277	u8		block_size;
1278	u8		auth_type;
1279	u8		hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283	cpu_to_le32(MD5_H0),
1284	cpu_to_le32(MD5_H1),
1285	cpu_to_le32(MD5_H2),
1286	cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301	{ .name		= "md5",
1302	  .hash_zero	= md5_zero_message_hash,
1303	  .hash_init	= n2_md5_init,
1304	  .auth_type	= AUTH_TYPE_MD5,
1305	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1306	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1307	  .digest_size	= MD5_DIGEST_SIZE,
1308	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1309	{ .name		= "sha1",
1310	  .hash_zero	= sha1_zero_message_hash,
1311	  .hash_init	= n2_sha1_init,
1312	  .auth_type	= AUTH_TYPE_SHA1,
1313	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1314	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1315	  .digest_size	= SHA1_DIGEST_SIZE,
1316	  .block_size	= SHA1_BLOCK_SIZE },
1317	{ .name		= "sha256",
1318	  .hash_zero	= sha256_zero_message_hash,
1319	  .hash_init	= n2_sha256_init,
1320	  .auth_type	= AUTH_TYPE_SHA256,
1321	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1322	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1323	  .digest_size	= SHA256_DIGEST_SIZE,
1324	  .block_size	= SHA256_BLOCK_SIZE },
1325	{ .name		= "sha224",
1326	  .hash_zero	= sha224_zero_message_hash,
1327	  .hash_init	= n2_sha224_init,
1328	  .auth_type	= AUTH_TYPE_SHA256,
1329	  .hmac_type	= AUTH_TYPE_RESERVED,
1330	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1331	  .digest_size	= SHA224_DIGEST_SIZE,
1332	  .block_size	= SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344	struct n2_ahash_alg *alg, *alg_tmp;
1345	struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348		crypto_unregister_skcipher(&skcipher->skcipher);
1349		list_del(&skcipher->entry);
1350		kfree(skcipher);
1351	}
1352	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353		crypto_unregister_ahash(&hmac->derived.alg);
1354		list_del(&hmac->derived.entry);
1355		kfree(hmac);
1356	}
1357	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358		crypto_unregister_ahash(&alg->alg);
1359		list_del(&alg->entry);
1360		kfree(alg);
1361	}
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367	return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373	struct skcipher_alg *alg;
1374	int err;
1375
1376	if (!p)
1377		return -ENOMEM;
1378
1379	alg = &p->skcipher;
1380	*alg = tmpl->skcipher;
1381
1382	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384	alg->base.cra_priority = N2_CRA_PRIORITY;
1385	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386			      CRYPTO_ALG_ALLOCATES_MEMORY;
1387	alg->base.cra_blocksize = tmpl->block_size;
1388	p->enc_type = tmpl->enc_type;
1389	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390	alg->base.cra_module = THIS_MODULE;
1391	alg->init = n2_skcipher_init_tfm;
 
 
1392
1393	list_add(&p->entry, &skcipher_algs);
1394	err = crypto_register_skcipher(alg);
1395	if (err) {
1396		pr_err("%s alg registration failed\n", alg->base.cra_name);
1397		list_del(&p->entry);
1398		kfree(p);
1399	} else {
1400		pr_info("%s alg registered\n", alg->base.cra_name);
1401	}
1402	return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408	struct ahash_alg *ahash;
1409	struct crypto_alg *base;
1410	int err;
1411
1412	if (!p)
1413		return -ENOMEM;
1414
1415	p->child_alg = n2ahash->alg.halg.base.cra_name;
1416	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417	INIT_LIST_HEAD(&p->derived.entry);
1418
1419	ahash = &p->derived.alg;
1420	ahash->digest = n2_hmac_async_digest;
1421	ahash->setkey = n2_hmac_async_setkey;
1422
1423	base = &ahash->halg.base;
1424	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428	base->cra_init = n2_hmac_cra_init;
1429	base->cra_exit = n2_hmac_cra_exit;
1430
1431	list_add(&p->derived.entry, &hmac_algs);
1432	err = crypto_register_ahash(ahash);
1433	if (err) {
1434		pr_err("%s alg registration failed\n", base->cra_name);
1435		list_del(&p->derived.entry);
1436		kfree(p);
1437	} else {
1438		pr_info("%s alg registered\n", base->cra_name);
1439	}
1440	return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446	struct hash_alg_common *halg;
1447	struct crypto_alg *base;
1448	struct ahash_alg *ahash;
1449	int err;
1450
1451	if (!p)
1452		return -ENOMEM;
1453
1454	p->hash_zero = tmpl->hash_zero;
1455	p->hash_init = tmpl->hash_init;
1456	p->auth_type = tmpl->auth_type;
1457	p->hmac_type = tmpl->hmac_type;
1458	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459	p->digest_size = tmpl->digest_size;
1460
1461	ahash = &p->alg;
1462	ahash->init = n2_hash_async_init;
1463	ahash->update = n2_hash_async_update;
1464	ahash->final = n2_hash_async_final;
1465	ahash->finup = n2_hash_async_finup;
1466	ahash->digest = n2_hash_async_digest;
1467	ahash->export = n2_hash_async_noexport;
1468	ahash->import = n2_hash_async_noimport;
1469
1470	halg = &ahash->halg;
1471	halg->digestsize = tmpl->digest_size;
1472
1473	base = &halg->base;
1474	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476	base->cra_priority = N2_CRA_PRIORITY;
1477	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
 
1478			  CRYPTO_ALG_NEED_FALLBACK;
1479	base->cra_blocksize = tmpl->block_size;
1480	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481	base->cra_module = THIS_MODULE;
1482	base->cra_init = n2_hash_cra_init;
1483	base->cra_exit = n2_hash_cra_exit;
1484
1485	list_add(&p->entry, &ahash_algs);
1486	err = crypto_register_ahash(ahash);
1487	if (err) {
1488		pr_err("%s alg registration failed\n", base->cra_name);
1489		list_del(&p->entry);
1490		kfree(p);
1491	} else {
1492		pr_info("%s alg registered\n", base->cra_name);
1493	}
1494	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495		err = __n2_register_one_hmac(p);
1496	return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501	int i, err = 0;
1502
1503	mutex_lock(&spu_lock);
1504	if (algs_registered++)
1505		goto out;
1506
1507	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508		err = __n2_register_one_ahash(&hash_tmpls[i]);
1509		if (err) {
1510			__n2_unregister_algs();
1511			goto out;
1512		}
1513	}
1514	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516		if (err) {
1517			__n2_unregister_algs();
1518			goto out;
1519		}
1520	}
1521
1522out:
1523	mutex_unlock(&spu_lock);
1524	return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529	mutex_lock(&spu_lock);
1530	if (!--algs_registered)
1531		__n2_unregister_algs();
1532	mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino.  This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546			     unsigned long dev_ino)
1547{
1548	const unsigned int *dev_intrs;
1549	unsigned int intr;
1550	int i;
1551
1552	for (i = 0; i < ip->num_intrs; i++) {
1553		if (ip->ino_table[i].ino == dev_ino)
1554			break;
1555	}
1556	if (i == ip->num_intrs)
1557		return -ENODEV;
1558
1559	intr = ip->ino_table[i].intr;
1560
1561	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562	if (!dev_intrs)
1563		return -ENODEV;
1564
1565	for (i = 0; i < dev->archdata.num_irqs; i++) {
1566		if (dev_intrs[i] == intr)
1567			return i;
1568	}
1569
1570	return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574		       const char *irq_name, struct spu_queue *p,
1575		       irq_handler_t handler)
1576{
1577	unsigned long herr;
1578	int index;
1579
1580	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581	if (herr)
1582		return -EINVAL;
1583
1584	index = find_devino_index(dev, ip, p->devino);
1585	if (index < 0)
1586		return index;
1587
1588	p->irq = dev->archdata.irqs[index];
1589
1590	sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592	return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604	kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611			kmem_cache_create("mau_queue",
1612					  (MAU_NUM_ENTRIES *
1613					   MAU_ENTRY_SIZE),
1614					  MAU_ENTRY_SIZE, 0, NULL);
1615	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616		return -ENOMEM;
1617
1618	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620			kmem_cache_create("cwq_queue",
1621					  (CWQ_NUM_ENTRIES *
1622					   CWQ_ENTRY_SIZE),
1623					  CWQ_ENTRY_SIZE, 0, NULL);
1624	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627		return -ENOMEM;
1628	}
1629	return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642	struct spu_qreg *qr = arg;
1643	struct spu_queue *p = qr->queue;
1644	unsigned long q_type = qr->type;
1645	unsigned long hv_ret;
1646
1647	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648				 CWQ_NUM_ENTRIES, &p->qhandle);
1649	if (!hv_ret)
1650		sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652	return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658	struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665	int err;
1666
1667	p->q = new_queue(p->q_type);
1668	if (!p->q)
1669		return -ENOMEM;
1670
1671	err = spu_queue_register(p, p->q_type);
1672	if (err) {
1673		free_queue(p->q, p->q_type);
1674		p->q = NULL;
1675	}
1676
1677	return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682	unsigned long hv_ret;
1683
1684	if (!p->q)
1685		return;
1686
1687	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689	if (!hv_ret)
1690		free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695	struct spu_queue *p, *n;
1696
1697	list_for_each_entry_safe(p, n, list, list) {
1698		int i;
1699
1700		for (i = 0; i < NR_CPUS; i++) {
1701			if (cpu_to_cwq[i] == p)
1702				cpu_to_cwq[i] = NULL;
1703		}
1704
1705		if (p->irq) {
1706			free_irq(p->irq, p);
1707			p->irq = 0;
1708		}
1709		spu_queue_destroy(p);
1710		list_del(&p->list);
1711		kfree(p);
1712	}
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719			       struct platform_device *dev,
1720			       u64 node, struct spu_queue *p,
1721			       struct spu_queue **table)
1722{
1723	u64 arc;
1724
1725	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726		u64 tgt = mdesc_arc_target(mdesc, arc);
1727		const char *name = mdesc_node_name(mdesc, tgt);
1728		const u64 *id;
1729
1730		if (strcmp(name, "cpu"))
1731			continue;
1732		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733		if (table[*id] != NULL) {
1734			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735				dev->dev.of_node);
1736			return -EINVAL;
1737		}
1738		cpumask_set_cpu(*id, &p->sharing);
1739		table[*id] = p;
1740	}
1741	return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746			    struct platform_device *dev, struct mdesc_handle *mdesc,
1747			    u64 node, const char *iname, unsigned long q_type,
1748			    irq_handler_t handler, struct spu_queue **table)
1749{
1750	struct spu_queue *p;
1751	int err;
1752
1753	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754	if (!p) {
1755		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756			dev->dev.of_node);
1757		return -ENOMEM;
1758	}
1759
1760	cpumask_clear(&p->sharing);
1761	spin_lock_init(&p->lock);
1762	p->q_type = q_type;
1763	INIT_LIST_HEAD(&p->jobs);
1764	list_add(&p->list, list);
1765
1766	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767	if (err)
1768		return err;
1769
1770	err = spu_queue_setup(p);
1771	if (err)
1772		return err;
1773
1774	return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778			  struct spu_mdesc_info *ip, struct list_head *list,
1779			  const char *exec_name, unsigned long q_type,
1780			  irq_handler_t handler, struct spu_queue **table)
1781{
1782	int err = 0;
1783	u64 node;
1784
1785	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786		const char *type;
1787
1788		type = mdesc_get_property(mdesc, node, "type", NULL);
1789		if (!type || strcmp(type, exec_name))
1790			continue;
1791
1792		err = handle_exec_unit(ip, list, dev, mdesc, node,
1793				       exec_name, q_type, handler, table);
1794		if (err) {
1795			spu_list_destroy(list);
1796			break;
1797		}
1798	}
1799
1800	return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804			 struct spu_mdesc_info *ip)
1805{
1806	const u64 *ino;
1807	int ino_len;
1808	int i;
1809
1810	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811	if (!ino) {
1812		printk("NO 'ino'\n");
1813		return -ENODEV;
1814	}
1815
1816	ip->num_intrs = ino_len / sizeof(u64);
1817	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818				 ip->num_intrs),
1819				GFP_KERNEL);
1820	if (!ip->ino_table)
1821		return -ENOMEM;
1822
1823	for (i = 0; i < ip->num_intrs; i++) {
1824		struct ino_blob *b = &ip->ino_table[i];
1825		b->intr = i + 1;
1826		b->ino = ino[i];
1827	}
1828
1829	return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833				struct platform_device *dev,
1834				struct spu_mdesc_info *ip,
1835				const char *node_name)
1836{
1837	const unsigned int *reg;
1838	u64 node;
1839
1840	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841	if (!reg)
1842		return -ENODEV;
1843
1844	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845		const char *name;
1846		const u64 *chdl;
1847
1848		name = mdesc_get_property(mdesc, node, "name", NULL);
1849		if (!name || strcmp(name, node_name))
1850			continue;
1851		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852		if (!chdl || (*chdl != *reg))
1853			continue;
1854		ip->cfg_handle = *chdl;
1855		return get_irq_props(mdesc, node, ip);
1856	}
1857
1858	return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866	int err;
1867
1868	n2_spu_hvapi_major = 2;
1869	n2_spu_hvapi_minor = 0;
1870
1871	err = sun4v_hvapi_register(HV_GRP_NCS,
1872				   n2_spu_hvapi_major,
1873				   &n2_spu_hvapi_minor);
1874
1875	if (!err)
1876		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877			n2_spu_hvapi_major,
1878			n2_spu_hvapi_minor);
1879
1880	return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885	sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892	int err = 0;
1893
1894	mutex_lock(&spu_lock);
1895
1896	if (global_ref++)
1897		goto out;
1898
1899	err = n2_spu_hvapi_register();
1900	if (err)
1901		goto out;
1902
1903	err = queue_cache_init();
1904	if (err)
1905		goto out_hvapi_release;
1906
1907	err = -ENOMEM;
1908	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909			     GFP_KERNEL);
1910	if (!cpu_to_cwq)
1911		goto out_queue_cache_destroy;
1912
1913	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914			     GFP_KERNEL);
1915	if (!cpu_to_mau)
1916		goto out_free_cwq_table;
1917
1918	err = 0;
1919
1920out:
1921	if (err)
1922		global_ref--;
1923	mutex_unlock(&spu_lock);
1924	return err;
1925
1926out_free_cwq_table:
1927	kfree(cpu_to_cwq);
1928	cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931	queue_cache_destroy();
1932
1933out_hvapi_release:
1934	n2_spu_hvapi_unregister();
1935	goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940	mutex_lock(&spu_lock);
1941	if (!--global_ref) {
1942		kfree(cpu_to_cwq);
1943		cpu_to_cwq = NULL;
1944
1945		kfree(cpu_to_mau);
1946		cpu_to_mau = NULL;
1947
1948		queue_cache_destroy();
1949		n2_spu_hvapi_unregister();
1950	}
1951	mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958	if (np)
1959		INIT_LIST_HEAD(&np->cwq_list);
1960
1961	return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966	kfree(np->cwq_info.ino_table);
1967	np->cwq_info.ino_table = NULL;
1968
1969	kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974	static int n2_spu_version_printed;
1975
1976	if (n2_spu_version_printed++ == 0)
1977		pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982	struct mdesc_handle *mdesc;
1983	struct n2_crypto *np;
1984	int err;
1985
1986	n2_spu_driver_version();
1987
1988	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990	np = alloc_n2cp();
1991	if (!np) {
1992		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993			dev->dev.of_node);
1994		return -ENOMEM;
1995	}
1996
1997	err = grab_global_resources();
1998	if (err) {
1999		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000			dev->dev.of_node);
2001		goto out_free_n2cp;
2002	}
2003
2004	mdesc = mdesc_grab();
2005
2006	if (!mdesc) {
2007		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008			dev->dev.of_node);
2009		err = -ENODEV;
2010		goto out_free_global;
2011	}
2012	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013	if (err) {
2014		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015			dev->dev.of_node);
2016		mdesc_release(mdesc);
2017		goto out_free_global;
2018	}
2019
2020	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022			     cpu_to_cwq);
2023	mdesc_release(mdesc);
2024
2025	if (err) {
2026		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027			dev->dev.of_node);
2028		goto out_free_global;
2029	}
2030
2031	err = n2_register_algs();
2032	if (err) {
2033		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034			dev->dev.of_node);
2035		goto out_free_spu_list;
2036	}
2037
2038	dev_set_drvdata(&dev->dev, np);
2039
2040	return 0;
2041
2042out_free_spu_list:
2043	spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046	release_global_resources();
2047
2048out_free_n2cp:
2049	free_n2cp(np);
2050
2051	return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058	n2_unregister_algs();
2059
2060	spu_list_destroy(&np->cwq_list);
2061
2062	release_global_resources();
2063
2064	free_n2cp(np);
2065
2066	return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073	if (mp)
2074		INIT_LIST_HEAD(&mp->mau_list);
2075
2076	return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081	kfree(mp->mau_info.ino_table);
2082	mp->mau_info.ino_table = NULL;
2083
2084	kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089	struct mdesc_handle *mdesc;
2090	struct n2_mau *mp;
2091	int err;
2092
2093	n2_spu_driver_version();
2094
2095	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097	mp = alloc_ncp();
2098	if (!mp) {
2099		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100			dev->dev.of_node);
2101		return -ENOMEM;
2102	}
2103
2104	err = grab_global_resources();
2105	if (err) {
2106		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107			dev->dev.of_node);
2108		goto out_free_ncp;
2109	}
2110
2111	mdesc = mdesc_grab();
2112
2113	if (!mdesc) {
2114		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115			dev->dev.of_node);
2116		err = -ENODEV;
2117		goto out_free_global;
2118	}
2119
2120	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121	if (err) {
2122		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123			dev->dev.of_node);
2124		mdesc_release(mdesc);
2125		goto out_free_global;
2126	}
2127
2128	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130			     cpu_to_mau);
2131	mdesc_release(mdesc);
2132
2133	if (err) {
2134		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135			dev->dev.of_node);
2136		goto out_free_global;
2137	}
2138
2139	dev_set_drvdata(&dev->dev, mp);
2140
2141	return 0;
2142
2143out_free_global:
2144	release_global_resources();
2145
2146out_free_ncp:
2147	free_ncp(mp);
2148
2149	return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156	spu_list_destroy(&mp->mau_list);
2157
2158	release_global_resources();
2159
2160	free_ncp(mp);
2161
2162	return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166	{
2167		.name = "n2cp",
2168		.compatible = "SUNW,n2-cwq",
2169	},
2170	{
2171		.name = "n2cp",
2172		.compatible = "SUNW,vf-cwq",
2173	},
2174	{
2175		.name = "n2cp",
2176		.compatible = "SUNW,kt-cwq",
2177	},
2178	{},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184	.driver = {
2185		.name		=	"n2cp",
2186		.of_match_table	=	n2_crypto_match,
2187	},
2188	.probe		=	n2_crypto_probe,
2189	.remove		=	n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193	{
2194		.name = "ncp",
2195		.compatible = "SUNW,n2-mau",
2196	},
2197	{
2198		.name = "ncp",
2199		.compatible = "SUNW,vf-mau",
2200	},
2201	{
2202		.name = "ncp",
2203		.compatible = "SUNW,kt-mau",
2204	},
2205	{},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211	.driver = {
2212		.name		=	"ncp",
2213		.of_match_table	=	n2_mau_match,
2214	},
2215	.probe		=	n2_mau_probe,
2216	.remove		=	n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220	&n2_crypto_driver,
2221	&n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
v4.17
 
   1/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   2 *
   3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/of.h>
  11#include <linux/of_device.h>
  12#include <linux/cpumask.h>
  13#include <linux/slab.h>
  14#include <linux/interrupt.h>
  15#include <linux/crypto.h>
  16#include <crypto/md5.h>
  17#include <crypto/sha.h>
  18#include <crypto/aes.h>
  19#include <crypto/des.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23
  24#include <crypto/internal/hash.h>
 
  25#include <crypto/scatterwalk.h>
  26#include <crypto/algapi.h>
  27
  28#include <asm/hypervisor.h>
  29#include <asm/mdesc.h>
  30
  31#include "n2_core.h"
  32
  33#define DRV_MODULE_NAME		"n2_crypto"
  34#define DRV_MODULE_VERSION	"0.2"
  35#define DRV_MODULE_RELDATE	"July 28, 2011"
  36
  37static const char version[] =
  38	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  39
  40MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  41MODULE_DESCRIPTION("Niagara2 Crypto driver");
  42MODULE_LICENSE("GPL");
  43MODULE_VERSION(DRV_MODULE_VERSION);
  44
  45#define N2_CRA_PRIORITY		200
  46
  47static DEFINE_MUTEX(spu_lock);
  48
  49struct spu_queue {
  50	cpumask_t		sharing;
  51	unsigned long		qhandle;
  52
  53	spinlock_t		lock;
  54	u8			q_type;
  55	void			*q;
  56	unsigned long		head;
  57	unsigned long		tail;
  58	struct list_head	jobs;
  59
  60	unsigned long		devino;
  61
  62	char			irq_name[32];
  63	unsigned int		irq;
  64
  65	struct list_head	list;
  66};
  67
  68struct spu_qreg {
  69	struct spu_queue	*queue;
  70	unsigned long		type;
  71};
  72
  73static struct spu_queue **cpu_to_cwq;
  74static struct spu_queue **cpu_to_mau;
  75
  76static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  77{
  78	if (q->q_type == HV_NCS_QTYPE_MAU) {
  79		off += MAU_ENTRY_SIZE;
  80		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  81			off = 0;
  82	} else {
  83		off += CWQ_ENTRY_SIZE;
  84		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  85			off = 0;
  86	}
  87	return off;
  88}
  89
  90struct n2_request_common {
  91	struct list_head	entry;
  92	unsigned int		offset;
  93};
  94#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  95
  96/* An async job request records the final tail value it used in
  97 * n2_request_common->offset, test to see if that offset is in
  98 * the range old_head, new_head, inclusive.
  99 */
 100static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 101				unsigned long old_head, unsigned long new_head)
 102{
 103	if (old_head <= new_head) {
 104		if (offset > old_head && offset <= new_head)
 105			return true;
 106	} else {
 107		if (offset > old_head || offset <= new_head)
 108			return true;
 109	}
 110	return false;
 111}
 112
 113/* When the HEAD marker is unequal to the actual HEAD, we get
 114 * a virtual device INO interrupt.  We should process the
 115 * completed CWQ entries and adjust the HEAD marker to clear
 116 * the IRQ.
 117 */
 118static irqreturn_t cwq_intr(int irq, void *dev_id)
 119{
 120	unsigned long off, new_head, hv_ret;
 121	struct spu_queue *q = dev_id;
 122
 123	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 124	       smp_processor_id(), q->qhandle);
 125
 126	spin_lock(&q->lock);
 127
 128	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 129
 130	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 131	       smp_processor_id(), new_head, hv_ret);
 132
 133	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 134		/* XXX ... XXX */
 135	}
 136
 137	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 138	if (hv_ret == HV_EOK)
 139		q->head = new_head;
 140
 141	spin_unlock(&q->lock);
 142
 143	return IRQ_HANDLED;
 144}
 145
 146static irqreturn_t mau_intr(int irq, void *dev_id)
 147{
 148	struct spu_queue *q = dev_id;
 149	unsigned long head, hv_ret;
 150
 151	spin_lock(&q->lock);
 152
 153	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 154	       smp_processor_id(), q->qhandle);
 155
 156	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 157
 158	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 159	       smp_processor_id(), head, hv_ret);
 160
 161	sun4v_ncs_sethead_marker(q->qhandle, head);
 162
 163	spin_unlock(&q->lock);
 164
 165	return IRQ_HANDLED;
 166}
 167
 168static void *spu_queue_next(struct spu_queue *q, void *cur)
 169{
 170	return q->q + spu_next_offset(q, cur - q->q);
 171}
 172
 173static int spu_queue_num_free(struct spu_queue *q)
 174{
 175	unsigned long head = q->head;
 176	unsigned long tail = q->tail;
 177	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 178	unsigned long diff;
 179
 180	if (head > tail)
 181		diff = head - tail;
 182	else
 183		diff = (end - tail) + head;
 184
 185	return (diff / CWQ_ENTRY_SIZE) - 1;
 186}
 187
 188static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 189{
 190	int avail = spu_queue_num_free(q);
 191
 192	if (avail >= num_entries)
 193		return q->q + q->tail;
 194
 195	return NULL;
 196}
 197
 198static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 199{
 200	unsigned long hv_ret, new_tail;
 201
 202	new_tail = spu_next_offset(q, last - q->q);
 203
 204	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 205	if (hv_ret == HV_EOK)
 206		q->tail = new_tail;
 207	return hv_ret;
 208}
 209
 210static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 211			     int enc_type, int auth_type,
 212			     unsigned int hash_len,
 213			     bool sfas, bool sob, bool eob, bool encrypt,
 214			     int opcode)
 215{
 216	u64 word = (len - 1) & CONTROL_LEN;
 217
 218	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 219	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 220	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 221	if (sfas)
 222		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 223	if (sob)
 224		word |= CONTROL_START_OF_BLOCK;
 225	if (eob)
 226		word |= CONTROL_END_OF_BLOCK;
 227	if (encrypt)
 228		word |= CONTROL_ENCRYPT;
 229	if (hmac_key_len)
 230		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 231	if (hash_len)
 232		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 233
 234	return word;
 235}
 236
 237#if 0
 238static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 239{
 240	if (this_len >= 64 ||
 241	    qp->head != qp->tail)
 242		return true;
 243	return false;
 244}
 245#endif
 246
 247struct n2_ahash_alg {
 248	struct list_head	entry;
 249	const u8		*hash_zero;
 250	const u32		*hash_init;
 251	u8			hw_op_hashsz;
 252	u8			digest_size;
 253	u8			auth_type;
 254	u8			hmac_type;
 255	struct ahash_alg	alg;
 256};
 257
 258static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 259{
 260	struct crypto_alg *alg = tfm->__crt_alg;
 261	struct ahash_alg *ahash_alg;
 262
 263	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 264
 265	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 266}
 267
 268struct n2_hmac_alg {
 269	const char		*child_alg;
 270	struct n2_ahash_alg	derived;
 271};
 272
 273static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 274{
 275	struct crypto_alg *alg = tfm->__crt_alg;
 276	struct ahash_alg *ahash_alg;
 277
 278	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 279
 280	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 281}
 282
 283struct n2_hash_ctx {
 284	struct crypto_ahash		*fallback_tfm;
 285};
 286
 287#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 288
 289struct n2_hmac_ctx {
 290	struct n2_hash_ctx		base;
 291
 292	struct crypto_shash		*child_shash;
 293
 294	int				hash_key_len;
 295	unsigned char			hash_key[N2_HASH_KEY_MAX];
 296};
 297
 298struct n2_hash_req_ctx {
 299	union {
 300		struct md5_state	md5;
 301		struct sha1_state	sha1;
 302		struct sha256_state	sha256;
 303	} u;
 304
 305	struct ahash_request		fallback_req;
 306};
 307
 308static int n2_hash_async_init(struct ahash_request *req)
 309{
 310	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 311	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 312	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 313
 314	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 315	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 316
 317	return crypto_ahash_init(&rctx->fallback_req);
 318}
 319
 320static int n2_hash_async_update(struct ahash_request *req)
 321{
 322	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 323	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 324	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 325
 326	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 327	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 328	rctx->fallback_req.nbytes = req->nbytes;
 329	rctx->fallback_req.src = req->src;
 330
 331	return crypto_ahash_update(&rctx->fallback_req);
 332}
 333
 334static int n2_hash_async_final(struct ahash_request *req)
 335{
 336	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 337	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 338	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 339
 340	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 341	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 342	rctx->fallback_req.result = req->result;
 343
 344	return crypto_ahash_final(&rctx->fallback_req);
 345}
 346
 347static int n2_hash_async_finup(struct ahash_request *req)
 348{
 349	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 350	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 351	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 352
 353	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 354	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 355	rctx->fallback_req.nbytes = req->nbytes;
 356	rctx->fallback_req.src = req->src;
 357	rctx->fallback_req.result = req->result;
 358
 359	return crypto_ahash_finup(&rctx->fallback_req);
 360}
 361
 362static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 363{
 364	return -ENOSYS;
 365}
 366
 367static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 368{
 369	return -ENOSYS;
 370}
 371
 372static int n2_hash_cra_init(struct crypto_tfm *tfm)
 373{
 374	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 375	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 376	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 377	struct crypto_ahash *fallback_tfm;
 378	int err;
 379
 380	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 381					  CRYPTO_ALG_NEED_FALLBACK);
 382	if (IS_ERR(fallback_tfm)) {
 383		pr_warning("Fallback driver '%s' could not be loaded!\n",
 384			   fallback_driver_name);
 385		err = PTR_ERR(fallback_tfm);
 386		goto out;
 387	}
 388
 389	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 390					 crypto_ahash_reqsize(fallback_tfm)));
 391
 392	ctx->fallback_tfm = fallback_tfm;
 393	return 0;
 394
 395out:
 396	return err;
 397}
 398
 399static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 400{
 401	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 402	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 403
 404	crypto_free_ahash(ctx->fallback_tfm);
 405}
 406
 407static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 408{
 409	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 410	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 411	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 412	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 413	struct crypto_ahash *fallback_tfm;
 414	struct crypto_shash *child_shash;
 415	int err;
 416
 417	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 418					  CRYPTO_ALG_NEED_FALLBACK);
 419	if (IS_ERR(fallback_tfm)) {
 420		pr_warning("Fallback driver '%s' could not be loaded!\n",
 421			   fallback_driver_name);
 422		err = PTR_ERR(fallback_tfm);
 423		goto out;
 424	}
 425
 426	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 427	if (IS_ERR(child_shash)) {
 428		pr_warning("Child shash '%s' could not be loaded!\n",
 429			   n2alg->child_alg);
 430		err = PTR_ERR(child_shash);
 431		goto out_free_fallback;
 432	}
 433
 434	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 435					 crypto_ahash_reqsize(fallback_tfm)));
 436
 437	ctx->child_shash = child_shash;
 438	ctx->base.fallback_tfm = fallback_tfm;
 439	return 0;
 440
 441out_free_fallback:
 442	crypto_free_ahash(fallback_tfm);
 443
 444out:
 445	return err;
 446}
 447
 448static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 449{
 450	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 451	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 452
 453	crypto_free_ahash(ctx->base.fallback_tfm);
 454	crypto_free_shash(ctx->child_shash);
 455}
 456
 457static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 458				unsigned int keylen)
 459{
 460	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 461	struct crypto_shash *child_shash = ctx->child_shash;
 462	struct crypto_ahash *fallback_tfm;
 463	SHASH_DESC_ON_STACK(shash, child_shash);
 464	int err, bs, ds;
 465
 466	fallback_tfm = ctx->base.fallback_tfm;
 467	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 468	if (err)
 469		return err;
 470
 471	shash->tfm = child_shash;
 472	shash->flags = crypto_ahash_get_flags(tfm) &
 473		CRYPTO_TFM_REQ_MAY_SLEEP;
 474
 475	bs = crypto_shash_blocksize(child_shash);
 476	ds = crypto_shash_digestsize(child_shash);
 477	BUG_ON(ds > N2_HASH_KEY_MAX);
 478	if (keylen > bs) {
 479		err = crypto_shash_digest(shash, key, keylen,
 480					  ctx->hash_key);
 481		if (err)
 482			return err;
 483		keylen = ds;
 484	} else if (keylen <= N2_HASH_KEY_MAX)
 485		memcpy(ctx->hash_key, key, keylen);
 486
 487	ctx->hash_key_len = keylen;
 488
 489	return err;
 490}
 491
 492static unsigned long wait_for_tail(struct spu_queue *qp)
 493{
 494	unsigned long head, hv_ret;
 495
 496	do {
 497		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 498		if (hv_ret != HV_EOK) {
 499			pr_err("Hypervisor error on gethead\n");
 500			break;
 501		}
 502		if (head == qp->tail) {
 503			qp->head = head;
 504			break;
 505		}
 506	} while (1);
 507	return hv_ret;
 508}
 509
 510static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 511					      struct cwq_initial_entry *ent)
 512{
 513	unsigned long hv_ret = spu_queue_submit(qp, ent);
 514
 515	if (hv_ret == HV_EOK)
 516		hv_ret = wait_for_tail(qp);
 517
 518	return hv_ret;
 519}
 520
 521static int n2_do_async_digest(struct ahash_request *req,
 522			      unsigned int auth_type, unsigned int digest_size,
 523			      unsigned int result_size, void *hash_loc,
 524			      unsigned long auth_key, unsigned int auth_key_len)
 525{
 526	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 527	struct cwq_initial_entry *ent;
 528	struct crypto_hash_walk walk;
 529	struct spu_queue *qp;
 530	unsigned long flags;
 531	int err = -ENODEV;
 532	int nbytes, cpu;
 533
 534	/* The total effective length of the operation may not
 535	 * exceed 2^16.
 536	 */
 537	if (unlikely(req->nbytes > (1 << 16))) {
 538		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 539		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 540
 541		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 542		rctx->fallback_req.base.flags =
 543			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 544		rctx->fallback_req.nbytes = req->nbytes;
 545		rctx->fallback_req.src = req->src;
 546		rctx->fallback_req.result = req->result;
 547
 548		return crypto_ahash_digest(&rctx->fallback_req);
 549	}
 550
 551	nbytes = crypto_hash_walk_first(req, &walk);
 552
 553	cpu = get_cpu();
 554	qp = cpu_to_cwq[cpu];
 555	if (!qp)
 556		goto out;
 557
 558	spin_lock_irqsave(&qp->lock, flags);
 559
 560	/* XXX can do better, improve this later by doing a by-hand scatterlist
 561	 * XXX walk, etc.
 562	 */
 563	ent = qp->q + qp->tail;
 564
 565	ent->control = control_word_base(nbytes, auth_key_len, 0,
 566					 auth_type, digest_size,
 567					 false, true, false, false,
 568					 OPCODE_INPLACE_BIT |
 569					 OPCODE_AUTH_MAC);
 570	ent->src_addr = __pa(walk.data);
 571	ent->auth_key_addr = auth_key;
 572	ent->auth_iv_addr = __pa(hash_loc);
 573	ent->final_auth_state_addr = 0UL;
 574	ent->enc_key_addr = 0UL;
 575	ent->enc_iv_addr = 0UL;
 576	ent->dest_addr = __pa(hash_loc);
 577
 578	nbytes = crypto_hash_walk_done(&walk, 0);
 579	while (nbytes > 0) {
 580		ent = spu_queue_next(qp, ent);
 581
 582		ent->control = (nbytes - 1);
 583		ent->src_addr = __pa(walk.data);
 584		ent->auth_key_addr = 0UL;
 585		ent->auth_iv_addr = 0UL;
 586		ent->final_auth_state_addr = 0UL;
 587		ent->enc_key_addr = 0UL;
 588		ent->enc_iv_addr = 0UL;
 589		ent->dest_addr = 0UL;
 590
 591		nbytes = crypto_hash_walk_done(&walk, 0);
 592	}
 593	ent->control |= CONTROL_END_OF_BLOCK;
 594
 595	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 596		err = -EINVAL;
 597	else
 598		err = 0;
 599
 600	spin_unlock_irqrestore(&qp->lock, flags);
 601
 602	if (!err)
 603		memcpy(req->result, hash_loc, result_size);
 604out:
 605	put_cpu();
 606
 607	return err;
 608}
 609
 610static int n2_hash_async_digest(struct ahash_request *req)
 611{
 612	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 613	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 614	int ds;
 615
 616	ds = n2alg->digest_size;
 617	if (unlikely(req->nbytes == 0)) {
 618		memcpy(req->result, n2alg->hash_zero, ds);
 619		return 0;
 620	}
 621	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 622
 623	return n2_do_async_digest(req, n2alg->auth_type,
 624				  n2alg->hw_op_hashsz, ds,
 625				  &rctx->u, 0UL, 0);
 626}
 627
 628static int n2_hmac_async_digest(struct ahash_request *req)
 629{
 630	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 631	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 632	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 633	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 634	int ds;
 635
 636	ds = n2alg->derived.digest_size;
 637	if (unlikely(req->nbytes == 0) ||
 638	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 639		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 640		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 641
 642		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 643		rctx->fallback_req.base.flags =
 644			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 645		rctx->fallback_req.nbytes = req->nbytes;
 646		rctx->fallback_req.src = req->src;
 647		rctx->fallback_req.result = req->result;
 648
 649		return crypto_ahash_digest(&rctx->fallback_req);
 650	}
 651	memcpy(&rctx->u, n2alg->derived.hash_init,
 652	       n2alg->derived.hw_op_hashsz);
 653
 654	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 655				  n2alg->derived.hw_op_hashsz, ds,
 656				  &rctx->u,
 657				  __pa(&ctx->hash_key),
 658				  ctx->hash_key_len);
 659}
 660
 661struct n2_cipher_context {
 662	int			key_len;
 663	int			enc_type;
 664	union {
 665		u8		aes[AES_MAX_KEY_SIZE];
 666		u8		des[DES_KEY_SIZE];
 667		u8		des3[3 * DES_KEY_SIZE];
 668		u8		arc4[258]; /* S-box, X, Y */
 669	} key;
 670};
 671
 672#define N2_CHUNK_ARR_LEN	16
 673
 674struct n2_crypto_chunk {
 675	struct list_head	entry;
 676	unsigned long		iv_paddr : 44;
 677	unsigned long		arr_len : 20;
 678	unsigned long		dest_paddr;
 679	unsigned long		dest_final;
 680	struct {
 681		unsigned long	src_paddr : 44;
 682		unsigned long	src_len : 20;
 683	} arr[N2_CHUNK_ARR_LEN];
 684};
 685
 686struct n2_request_context {
 687	struct ablkcipher_walk	walk;
 688	struct list_head	chunk_list;
 689	struct n2_crypto_chunk	chunk;
 690	u8			temp_iv[16];
 691};
 692
 693/* The SPU allows some level of flexibility for partial cipher blocks
 694 * being specified in a descriptor.
 695 *
 696 * It merely requires that every descriptor's length field is at least
 697 * as large as the cipher block size.  This means that a cipher block
 698 * can span at most 2 descriptors.  However, this does not allow a
 699 * partial block to span into the final descriptor as that would
 700 * violate the rule (since every descriptor's length must be at lest
 701 * the block size).  So, for example, assuming an 8 byte block size:
 702 *
 703 *	0xe --> 0xa --> 0x8
 704 *
 705 * is a valid length sequence, whereas:
 706 *
 707 *	0xe --> 0xb --> 0x7
 708 *
 709 * is not a valid sequence.
 710 */
 711
 712struct n2_cipher_alg {
 713	struct list_head	entry;
 714	u8			enc_type;
 715	struct crypto_alg	alg;
 716};
 717
 718static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 719{
 720	struct crypto_alg *alg = tfm->__crt_alg;
 721
 722	return container_of(alg, struct n2_cipher_alg, alg);
 723}
 724
 725struct n2_cipher_request_context {
 726	struct ablkcipher_walk	walk;
 727};
 728
 729static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 730			 unsigned int keylen)
 731{
 732	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 733	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 734	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 735
 736	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 737
 738	switch (keylen) {
 739	case AES_KEYSIZE_128:
 740		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 741		break;
 742	case AES_KEYSIZE_192:
 743		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 744		break;
 745	case AES_KEYSIZE_256:
 746		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 747		break;
 748	default:
 749		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 750		return -EINVAL;
 751	}
 752
 753	ctx->key_len = keylen;
 754	memcpy(ctx->key.aes, key, keylen);
 755	return 0;
 756}
 757
 758static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 759			 unsigned int keylen)
 760{
 761	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 762	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 763	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 764	u32 tmp[DES_EXPKEY_WORDS];
 765	int err;
 766
 
 
 
 
 767	ctx->enc_type = n2alg->enc_type;
 768
 769	if (keylen != DES_KEY_SIZE) {
 770		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 771		return -EINVAL;
 772	}
 773
 774	err = des_ekey(tmp, key);
 775	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
 776		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 777		return -EINVAL;
 778	}
 779
 780	ctx->key_len = keylen;
 781	memcpy(ctx->key.des, key, keylen);
 782	return 0;
 783}
 784
 785static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 786			  unsigned int keylen)
 787{
 788	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 789	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 790	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 
 
 
 
 
 791
 792	ctx->enc_type = n2alg->enc_type;
 793
 794	if (keylen != (3 * DES_KEY_SIZE)) {
 795		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 796		return -EINVAL;
 797	}
 798	ctx->key_len = keylen;
 799	memcpy(ctx->key.des3, key, keylen);
 800	return 0;
 801}
 802
 803static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 804			  unsigned int keylen)
 805{
 806	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 807	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 808	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 809	u8 *s = ctx->key.arc4;
 810	u8 *x = s + 256;
 811	u8 *y = x + 1;
 812	int i, j, k;
 813
 814	ctx->enc_type = n2alg->enc_type;
 815
 816	j = k = 0;
 817	*x = 0;
 818	*y = 0;
 819	for (i = 0; i < 256; i++)
 820		s[i] = i;
 821	for (i = 0; i < 256; i++) {
 822		u8 a = s[i];
 823		j = (j + key[k] + a) & 0xff;
 824		s[i] = s[j];
 825		s[j] = a;
 826		if (++k >= keylen)
 827			k = 0;
 828	}
 829
 830	return 0;
 831}
 832
 833static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 834{
 835	int this_len = nbytes;
 836
 837	this_len -= (nbytes & (block_size - 1));
 838	return this_len > (1 << 16) ? (1 << 16) : this_len;
 839}
 840
 841static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 
 842			    struct spu_queue *qp, bool encrypt)
 843{
 844	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 845	struct cwq_initial_entry *ent;
 846	bool in_place;
 847	int i;
 848
 849	ent = spu_queue_alloc(qp, cp->arr_len);
 850	if (!ent) {
 851		pr_info("queue_alloc() of %d fails\n",
 852			cp->arr_len);
 853		return -EBUSY;
 854	}
 855
 856	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 857
 858	ent->control = control_word_base(cp->arr[0].src_len,
 859					 0, ctx->enc_type, 0, 0,
 860					 false, true, false, encrypt,
 861					 OPCODE_ENCRYPT |
 862					 (in_place ? OPCODE_INPLACE_BIT : 0));
 863	ent->src_addr = cp->arr[0].src_paddr;
 864	ent->auth_key_addr = 0UL;
 865	ent->auth_iv_addr = 0UL;
 866	ent->final_auth_state_addr = 0UL;
 867	ent->enc_key_addr = __pa(&ctx->key);
 868	ent->enc_iv_addr = cp->iv_paddr;
 869	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 870
 871	for (i = 1; i < cp->arr_len; i++) {
 872		ent = spu_queue_next(qp, ent);
 873
 874		ent->control = cp->arr[i].src_len - 1;
 875		ent->src_addr = cp->arr[i].src_paddr;
 876		ent->auth_key_addr = 0UL;
 877		ent->auth_iv_addr = 0UL;
 878		ent->final_auth_state_addr = 0UL;
 879		ent->enc_key_addr = 0UL;
 880		ent->enc_iv_addr = 0UL;
 881		ent->dest_addr = 0UL;
 882	}
 883	ent->control |= CONTROL_END_OF_BLOCK;
 884
 885	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 886}
 887
 888static int n2_compute_chunks(struct ablkcipher_request *req)
 889{
 890	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 891	struct ablkcipher_walk *walk = &rctx->walk;
 892	struct n2_crypto_chunk *chunk;
 893	unsigned long dest_prev;
 894	unsigned int tot_len;
 895	bool prev_in_place;
 896	int err, nbytes;
 897
 898	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 899	err = ablkcipher_walk_phys(req, walk);
 900	if (err)
 901		return err;
 902
 903	INIT_LIST_HEAD(&rctx->chunk_list);
 904
 905	chunk = &rctx->chunk;
 906	INIT_LIST_HEAD(&chunk->entry);
 907
 908	chunk->iv_paddr = 0UL;
 909	chunk->arr_len = 0;
 910	chunk->dest_paddr = 0UL;
 911
 912	prev_in_place = false;
 913	dest_prev = ~0UL;
 914	tot_len = 0;
 915
 916	while ((nbytes = walk->nbytes) != 0) {
 917		unsigned long dest_paddr, src_paddr;
 918		bool in_place;
 919		int this_len;
 920
 921		src_paddr = (page_to_phys(walk->src.page) +
 922			     walk->src.offset);
 923		dest_paddr = (page_to_phys(walk->dst.page) +
 924			      walk->dst.offset);
 925		in_place = (src_paddr == dest_paddr);
 926		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 927
 928		if (chunk->arr_len != 0) {
 929			if (in_place != prev_in_place ||
 930			    (!prev_in_place &&
 931			     dest_paddr != dest_prev) ||
 932			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 933			    tot_len + this_len > (1 << 16)) {
 934				chunk->dest_final = dest_prev;
 935				list_add_tail(&chunk->entry,
 936					      &rctx->chunk_list);
 937				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 938				if (!chunk) {
 939					err = -ENOMEM;
 940					break;
 941				}
 942				INIT_LIST_HEAD(&chunk->entry);
 943			}
 944		}
 945		if (chunk->arr_len == 0) {
 946			chunk->dest_paddr = dest_paddr;
 947			tot_len = 0;
 948		}
 949		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 950		chunk->arr[chunk->arr_len].src_len = this_len;
 951		chunk->arr_len++;
 952
 953		dest_prev = dest_paddr + this_len;
 954		prev_in_place = in_place;
 955		tot_len += this_len;
 956
 957		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 958		if (err)
 959			break;
 960	}
 961	if (!err && chunk->arr_len != 0) {
 962		chunk->dest_final = dest_prev;
 963		list_add_tail(&chunk->entry, &rctx->chunk_list);
 964	}
 965
 966	return err;
 967}
 968
 969static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 970{
 971	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 972	struct n2_crypto_chunk *c, *tmp;
 973
 974	if (final_iv)
 975		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 976
 977	ablkcipher_walk_complete(&rctx->walk);
 978	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 979		list_del(&c->entry);
 980		if (unlikely(c != &rctx->chunk))
 981			kfree(c);
 982	}
 983
 984}
 985
 986static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 987{
 988	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 989	struct crypto_tfm *tfm = req->base.tfm;
 990	int err = n2_compute_chunks(req);
 991	struct n2_crypto_chunk *c, *tmp;
 992	unsigned long flags, hv_ret;
 993	struct spu_queue *qp;
 994
 995	if (err)
 996		return err;
 997
 998	qp = cpu_to_cwq[get_cpu()];
 999	err = -ENODEV;
1000	if (!qp)
1001		goto out;
1002
1003	spin_lock_irqsave(&qp->lock, flags);
1004
1005	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1006		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1007		if (err)
1008			break;
1009		list_del(&c->entry);
1010		if (unlikely(c != &rctx->chunk))
1011			kfree(c);
1012	}
1013	if (!err) {
1014		hv_ret = wait_for_tail(qp);
1015		if (hv_ret != HV_EOK)
1016			err = -EINVAL;
1017	}
1018
1019	spin_unlock_irqrestore(&qp->lock, flags);
1020
1021out:
1022	put_cpu();
1023
1024	n2_chunk_complete(req, NULL);
1025	return err;
1026}
1027
1028static int n2_encrypt_ecb(struct ablkcipher_request *req)
1029{
1030	return n2_do_ecb(req, true);
1031}
1032
1033static int n2_decrypt_ecb(struct ablkcipher_request *req)
1034{
1035	return n2_do_ecb(req, false);
1036}
1037
1038static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1039{
1040	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1041	struct crypto_tfm *tfm = req->base.tfm;
1042	unsigned long flags, hv_ret, iv_paddr;
1043	int err = n2_compute_chunks(req);
1044	struct n2_crypto_chunk *c, *tmp;
1045	struct spu_queue *qp;
1046	void *final_iv_addr;
1047
1048	final_iv_addr = NULL;
1049
1050	if (err)
1051		return err;
1052
1053	qp = cpu_to_cwq[get_cpu()];
1054	err = -ENODEV;
1055	if (!qp)
1056		goto out;
1057
1058	spin_lock_irqsave(&qp->lock, flags);
1059
1060	if (encrypt) {
1061		iv_paddr = __pa(rctx->walk.iv);
1062		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1063					 entry) {
1064			c->iv_paddr = iv_paddr;
1065			err = __n2_crypt_chunk(tfm, c, qp, true);
1066			if (err)
1067				break;
1068			iv_paddr = c->dest_final - rctx->walk.blocksize;
1069			list_del(&c->entry);
1070			if (unlikely(c != &rctx->chunk))
1071				kfree(c);
1072		}
1073		final_iv_addr = __va(iv_paddr);
1074	} else {
1075		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1076						 entry) {
1077			if (c == &rctx->chunk) {
1078				iv_paddr = __pa(rctx->walk.iv);
1079			} else {
1080				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1081					    tmp->arr[tmp->arr_len-1].src_len -
1082					    rctx->walk.blocksize);
1083			}
1084			if (!final_iv_addr) {
1085				unsigned long pa;
1086
1087				pa = (c->arr[c->arr_len-1].src_paddr +
1088				      c->arr[c->arr_len-1].src_len -
1089				      rctx->walk.blocksize);
1090				final_iv_addr = rctx->temp_iv;
1091				memcpy(rctx->temp_iv, __va(pa),
1092				       rctx->walk.blocksize);
1093			}
1094			c->iv_paddr = iv_paddr;
1095			err = __n2_crypt_chunk(tfm, c, qp, false);
1096			if (err)
1097				break;
1098			list_del(&c->entry);
1099			if (unlikely(c != &rctx->chunk))
1100				kfree(c);
1101		}
1102	}
1103	if (!err) {
1104		hv_ret = wait_for_tail(qp);
1105		if (hv_ret != HV_EOK)
1106			err = -EINVAL;
1107	}
1108
1109	spin_unlock_irqrestore(&qp->lock, flags);
1110
1111out:
1112	put_cpu();
1113
1114	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1115	return err;
1116}
1117
1118static int n2_encrypt_chaining(struct ablkcipher_request *req)
1119{
1120	return n2_do_chaining(req, true);
1121}
1122
1123static int n2_decrypt_chaining(struct ablkcipher_request *req)
1124{
1125	return n2_do_chaining(req, false);
1126}
1127
1128struct n2_cipher_tmpl {
1129	const char		*name;
1130	const char		*drv_name;
1131	u8			block_size;
1132	u8			enc_type;
1133	struct ablkcipher_alg	ablkcipher;
1134};
1135
1136static const struct n2_cipher_tmpl cipher_tmpls[] = {
1137	/* ARC4: only ECB is supported (chaining bits ignored) */
1138	{	.name		= "ecb(arc4)",
1139		.drv_name	= "ecb-arc4",
1140		.block_size	= 1,
1141		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1142				   ENC_TYPE_CHAINING_ECB),
1143		.ablkcipher	= {
1144			.min_keysize	= 1,
1145			.max_keysize	= 256,
1146			.setkey		= n2_arc4_setkey,
1147			.encrypt	= n2_encrypt_ecb,
1148			.decrypt	= n2_decrypt_ecb,
1149		},
1150	},
1151
1152	/* DES: ECB CBC and CFB are supported */
1153	{	.name		= "ecb(des)",
1154		.drv_name	= "ecb-des",
1155		.block_size	= DES_BLOCK_SIZE,
1156		.enc_type	= (ENC_TYPE_ALG_DES |
1157				   ENC_TYPE_CHAINING_ECB),
1158		.ablkcipher	= {
1159			.min_keysize	= DES_KEY_SIZE,
1160			.max_keysize	= DES_KEY_SIZE,
1161			.setkey		= n2_des_setkey,
1162			.encrypt	= n2_encrypt_ecb,
1163			.decrypt	= n2_decrypt_ecb,
1164		},
1165	},
1166	{	.name		= "cbc(des)",
1167		.drv_name	= "cbc-des",
1168		.block_size	= DES_BLOCK_SIZE,
1169		.enc_type	= (ENC_TYPE_ALG_DES |
1170				   ENC_TYPE_CHAINING_CBC),
1171		.ablkcipher	= {
1172			.ivsize		= DES_BLOCK_SIZE,
1173			.min_keysize	= DES_KEY_SIZE,
1174			.max_keysize	= DES_KEY_SIZE,
1175			.setkey		= n2_des_setkey,
1176			.encrypt	= n2_encrypt_chaining,
1177			.decrypt	= n2_decrypt_chaining,
1178		},
1179	},
1180	{	.name		= "cfb(des)",
1181		.drv_name	= "cfb-des",
1182		.block_size	= DES_BLOCK_SIZE,
1183		.enc_type	= (ENC_TYPE_ALG_DES |
1184				   ENC_TYPE_CHAINING_CFB),
1185		.ablkcipher	= {
1186			.min_keysize	= DES_KEY_SIZE,
1187			.max_keysize	= DES_KEY_SIZE,
1188			.setkey		= n2_des_setkey,
1189			.encrypt	= n2_encrypt_chaining,
1190			.decrypt	= n2_decrypt_chaining,
1191		},
1192	},
1193
1194	/* 3DES: ECB CBC and CFB are supported */
1195	{	.name		= "ecb(des3_ede)",
1196		.drv_name	= "ecb-3des",
1197		.block_size	= DES_BLOCK_SIZE,
1198		.enc_type	= (ENC_TYPE_ALG_3DES |
1199				   ENC_TYPE_CHAINING_ECB),
1200		.ablkcipher	= {
1201			.min_keysize	= 3 * DES_KEY_SIZE,
1202			.max_keysize	= 3 * DES_KEY_SIZE,
1203			.setkey		= n2_3des_setkey,
1204			.encrypt	= n2_encrypt_ecb,
1205			.decrypt	= n2_decrypt_ecb,
1206		},
1207	},
1208	{	.name		= "cbc(des3_ede)",
1209		.drv_name	= "cbc-3des",
1210		.block_size	= DES_BLOCK_SIZE,
1211		.enc_type	= (ENC_TYPE_ALG_3DES |
1212				   ENC_TYPE_CHAINING_CBC),
1213		.ablkcipher	= {
1214			.ivsize		= DES_BLOCK_SIZE,
1215			.min_keysize	= 3 * DES_KEY_SIZE,
1216			.max_keysize	= 3 * DES_KEY_SIZE,
1217			.setkey		= n2_3des_setkey,
1218			.encrypt	= n2_encrypt_chaining,
1219			.decrypt	= n2_decrypt_chaining,
1220		},
1221	},
1222	{	.name		= "cfb(des3_ede)",
1223		.drv_name	= "cfb-3des",
1224		.block_size	= DES_BLOCK_SIZE,
1225		.enc_type	= (ENC_TYPE_ALG_3DES |
1226				   ENC_TYPE_CHAINING_CFB),
1227		.ablkcipher	= {
1228			.min_keysize	= 3 * DES_KEY_SIZE,
1229			.max_keysize	= 3 * DES_KEY_SIZE,
1230			.setkey		= n2_3des_setkey,
1231			.encrypt	= n2_encrypt_chaining,
1232			.decrypt	= n2_decrypt_chaining,
1233		},
1234	},
1235	/* AES: ECB CBC and CTR are supported */
1236	{	.name		= "ecb(aes)",
1237		.drv_name	= "ecb-aes",
1238		.block_size	= AES_BLOCK_SIZE,
1239		.enc_type	= (ENC_TYPE_ALG_AES128 |
1240				   ENC_TYPE_CHAINING_ECB),
1241		.ablkcipher	= {
1242			.min_keysize	= AES_MIN_KEY_SIZE,
1243			.max_keysize	= AES_MAX_KEY_SIZE,
1244			.setkey		= n2_aes_setkey,
1245			.encrypt	= n2_encrypt_ecb,
1246			.decrypt	= n2_decrypt_ecb,
1247		},
1248	},
1249	{	.name		= "cbc(aes)",
1250		.drv_name	= "cbc-aes",
1251		.block_size	= AES_BLOCK_SIZE,
1252		.enc_type	= (ENC_TYPE_ALG_AES128 |
1253				   ENC_TYPE_CHAINING_CBC),
1254		.ablkcipher	= {
1255			.ivsize		= AES_BLOCK_SIZE,
1256			.min_keysize	= AES_MIN_KEY_SIZE,
1257			.max_keysize	= AES_MAX_KEY_SIZE,
1258			.setkey		= n2_aes_setkey,
1259			.encrypt	= n2_encrypt_chaining,
1260			.decrypt	= n2_decrypt_chaining,
1261		},
1262	},
1263	{	.name		= "ctr(aes)",
1264		.drv_name	= "ctr-aes",
1265		.block_size	= AES_BLOCK_SIZE,
1266		.enc_type	= (ENC_TYPE_ALG_AES128 |
1267				   ENC_TYPE_CHAINING_COUNTER),
1268		.ablkcipher	= {
1269			.ivsize		= AES_BLOCK_SIZE,
1270			.min_keysize	= AES_MIN_KEY_SIZE,
1271			.max_keysize	= AES_MAX_KEY_SIZE,
1272			.setkey		= n2_aes_setkey,
1273			.encrypt	= n2_encrypt_chaining,
1274			.decrypt	= n2_encrypt_chaining,
1275		},
1276	},
1277
1278};
1279#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1280
1281static LIST_HEAD(cipher_algs);
1282
1283struct n2_hash_tmpl {
1284	const char	*name;
1285	const u8	*hash_zero;
1286	const u32	*hash_init;
1287	u8		hw_op_hashsz;
1288	u8		digest_size;
1289	u8		block_size;
1290	u8		auth_type;
1291	u8		hmac_type;
1292};
1293
1294static const u32 md5_init[MD5_HASH_WORDS] = {
1295	cpu_to_le32(MD5_H0),
1296	cpu_to_le32(MD5_H1),
1297	cpu_to_le32(MD5_H2),
1298	cpu_to_le32(MD5_H3),
1299};
1300static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1301	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1302};
1303static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1304	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1305	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1306};
1307static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1308	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1309	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1310};
1311
1312static const struct n2_hash_tmpl hash_tmpls[] = {
1313	{ .name		= "md5",
1314	  .hash_zero	= md5_zero_message_hash,
1315	  .hash_init	= md5_init,
1316	  .auth_type	= AUTH_TYPE_MD5,
1317	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1318	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1319	  .digest_size	= MD5_DIGEST_SIZE,
1320	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1321	{ .name		= "sha1",
1322	  .hash_zero	= sha1_zero_message_hash,
1323	  .hash_init	= sha1_init,
1324	  .auth_type	= AUTH_TYPE_SHA1,
1325	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1326	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1327	  .digest_size	= SHA1_DIGEST_SIZE,
1328	  .block_size	= SHA1_BLOCK_SIZE },
1329	{ .name		= "sha256",
1330	  .hash_zero	= sha256_zero_message_hash,
1331	  .hash_init	= sha256_init,
1332	  .auth_type	= AUTH_TYPE_SHA256,
1333	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1334	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1335	  .digest_size	= SHA256_DIGEST_SIZE,
1336	  .block_size	= SHA256_BLOCK_SIZE },
1337	{ .name		= "sha224",
1338	  .hash_zero	= sha224_zero_message_hash,
1339	  .hash_init	= sha224_init,
1340	  .auth_type	= AUTH_TYPE_SHA256,
1341	  .hmac_type	= AUTH_TYPE_RESERVED,
1342	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1343	  .digest_size	= SHA224_DIGEST_SIZE,
1344	  .block_size	= SHA224_BLOCK_SIZE },
1345};
1346#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1347
1348static LIST_HEAD(ahash_algs);
1349static LIST_HEAD(hmac_algs);
1350
1351static int algs_registered;
1352
1353static void __n2_unregister_algs(void)
1354{
1355	struct n2_cipher_alg *cipher, *cipher_tmp;
1356	struct n2_ahash_alg *alg, *alg_tmp;
1357	struct n2_hmac_alg *hmac, *hmac_tmp;
1358
1359	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1360		crypto_unregister_alg(&cipher->alg);
1361		list_del(&cipher->entry);
1362		kfree(cipher);
1363	}
1364	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1365		crypto_unregister_ahash(&hmac->derived.alg);
1366		list_del(&hmac->derived.entry);
1367		kfree(hmac);
1368	}
1369	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1370		crypto_unregister_ahash(&alg->alg);
1371		list_del(&alg->entry);
1372		kfree(alg);
1373	}
1374}
1375
1376static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1377{
1378	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1379	return 0;
1380}
1381
1382static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1383{
1384	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1385	struct crypto_alg *alg;
1386	int err;
1387
1388	if (!p)
1389		return -ENOMEM;
1390
1391	alg = &p->alg;
 
1392
1393	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1394	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1395	alg->cra_priority = N2_CRA_PRIORITY;
1396	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1397			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1398	alg->cra_blocksize = tmpl->block_size;
1399	p->enc_type = tmpl->enc_type;
1400	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1401	alg->cra_type = &crypto_ablkcipher_type;
1402	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1403	alg->cra_init = n2_cipher_cra_init;
1404	alg->cra_module = THIS_MODULE;
1405
1406	list_add(&p->entry, &cipher_algs);
1407	err = crypto_register_alg(alg);
1408	if (err) {
1409		pr_err("%s alg registration failed\n", alg->cra_name);
1410		list_del(&p->entry);
1411		kfree(p);
1412	} else {
1413		pr_info("%s alg registered\n", alg->cra_name);
1414	}
1415	return err;
1416}
1417
1418static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1419{
1420	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1421	struct ahash_alg *ahash;
1422	struct crypto_alg *base;
1423	int err;
1424
1425	if (!p)
1426		return -ENOMEM;
1427
1428	p->child_alg = n2ahash->alg.halg.base.cra_name;
1429	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1430	INIT_LIST_HEAD(&p->derived.entry);
1431
1432	ahash = &p->derived.alg;
1433	ahash->digest = n2_hmac_async_digest;
1434	ahash->setkey = n2_hmac_async_setkey;
1435
1436	base = &ahash->halg.base;
1437	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1438	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1439
1440	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1441	base->cra_init = n2_hmac_cra_init;
1442	base->cra_exit = n2_hmac_cra_exit;
1443
1444	list_add(&p->derived.entry, &hmac_algs);
1445	err = crypto_register_ahash(ahash);
1446	if (err) {
1447		pr_err("%s alg registration failed\n", base->cra_name);
1448		list_del(&p->derived.entry);
1449		kfree(p);
1450	} else {
1451		pr_info("%s alg registered\n", base->cra_name);
1452	}
1453	return err;
1454}
1455
1456static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1457{
1458	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1459	struct hash_alg_common *halg;
1460	struct crypto_alg *base;
1461	struct ahash_alg *ahash;
1462	int err;
1463
1464	if (!p)
1465		return -ENOMEM;
1466
1467	p->hash_zero = tmpl->hash_zero;
1468	p->hash_init = tmpl->hash_init;
1469	p->auth_type = tmpl->auth_type;
1470	p->hmac_type = tmpl->hmac_type;
1471	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1472	p->digest_size = tmpl->digest_size;
1473
1474	ahash = &p->alg;
1475	ahash->init = n2_hash_async_init;
1476	ahash->update = n2_hash_async_update;
1477	ahash->final = n2_hash_async_final;
1478	ahash->finup = n2_hash_async_finup;
1479	ahash->digest = n2_hash_async_digest;
1480	ahash->export = n2_hash_async_noexport;
1481	ahash->import = n2_hash_async_noimport;
1482
1483	halg = &ahash->halg;
1484	halg->digestsize = tmpl->digest_size;
1485
1486	base = &halg->base;
1487	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1488	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1489	base->cra_priority = N2_CRA_PRIORITY;
1490	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1491			  CRYPTO_ALG_KERN_DRIVER_ONLY |
1492			  CRYPTO_ALG_NEED_FALLBACK;
1493	base->cra_blocksize = tmpl->block_size;
1494	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1495	base->cra_module = THIS_MODULE;
1496	base->cra_init = n2_hash_cra_init;
1497	base->cra_exit = n2_hash_cra_exit;
1498
1499	list_add(&p->entry, &ahash_algs);
1500	err = crypto_register_ahash(ahash);
1501	if (err) {
1502		pr_err("%s alg registration failed\n", base->cra_name);
1503		list_del(&p->entry);
1504		kfree(p);
1505	} else {
1506		pr_info("%s alg registered\n", base->cra_name);
1507	}
1508	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1509		err = __n2_register_one_hmac(p);
1510	return err;
1511}
1512
1513static int n2_register_algs(void)
1514{
1515	int i, err = 0;
1516
1517	mutex_lock(&spu_lock);
1518	if (algs_registered++)
1519		goto out;
1520
1521	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1522		err = __n2_register_one_ahash(&hash_tmpls[i]);
1523		if (err) {
1524			__n2_unregister_algs();
1525			goto out;
1526		}
1527	}
1528	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1529		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1530		if (err) {
1531			__n2_unregister_algs();
1532			goto out;
1533		}
1534	}
1535
1536out:
1537	mutex_unlock(&spu_lock);
1538	return err;
1539}
1540
1541static void n2_unregister_algs(void)
1542{
1543	mutex_lock(&spu_lock);
1544	if (!--algs_registered)
1545		__n2_unregister_algs();
1546	mutex_unlock(&spu_lock);
1547}
1548
1549/* To map CWQ queues to interrupt sources, the hypervisor API provides
1550 * a devino.  This isn't very useful to us because all of the
1551 * interrupts listed in the device_node have been translated to
1552 * Linux virtual IRQ cookie numbers.
1553 *
1554 * So we have to back-translate, going through the 'intr' and 'ino'
1555 * property tables of the n2cp MDESC node, matching it with the OF
1556 * 'interrupts' property entries, in order to to figure out which
1557 * devino goes to which already-translated IRQ.
1558 */
1559static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1560			     unsigned long dev_ino)
1561{
1562	const unsigned int *dev_intrs;
1563	unsigned int intr;
1564	int i;
1565
1566	for (i = 0; i < ip->num_intrs; i++) {
1567		if (ip->ino_table[i].ino == dev_ino)
1568			break;
1569	}
1570	if (i == ip->num_intrs)
1571		return -ENODEV;
1572
1573	intr = ip->ino_table[i].intr;
1574
1575	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1576	if (!dev_intrs)
1577		return -ENODEV;
1578
1579	for (i = 0; i < dev->archdata.num_irqs; i++) {
1580		if (dev_intrs[i] == intr)
1581			return i;
1582	}
1583
1584	return -ENODEV;
1585}
1586
1587static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1588		       const char *irq_name, struct spu_queue *p,
1589		       irq_handler_t handler)
1590{
1591	unsigned long herr;
1592	int index;
1593
1594	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1595	if (herr)
1596		return -EINVAL;
1597
1598	index = find_devino_index(dev, ip, p->devino);
1599	if (index < 0)
1600		return index;
1601
1602	p->irq = dev->archdata.irqs[index];
1603
1604	sprintf(p->irq_name, "%s-%d", irq_name, index);
1605
1606	return request_irq(p->irq, handler, 0, p->irq_name, p);
1607}
1608
1609static struct kmem_cache *queue_cache[2];
1610
1611static void *new_queue(unsigned long q_type)
1612{
1613	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1614}
1615
1616static void free_queue(void *p, unsigned long q_type)
1617{
1618	kmem_cache_free(queue_cache[q_type - 1], p);
1619}
1620
1621static int queue_cache_init(void)
1622{
1623	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1624		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1625			kmem_cache_create("mau_queue",
1626					  (MAU_NUM_ENTRIES *
1627					   MAU_ENTRY_SIZE),
1628					  MAU_ENTRY_SIZE, 0, NULL);
1629	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1630		return -ENOMEM;
1631
1632	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1633		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1634			kmem_cache_create("cwq_queue",
1635					  (CWQ_NUM_ENTRIES *
1636					   CWQ_ENTRY_SIZE),
1637					  CWQ_ENTRY_SIZE, 0, NULL);
1638	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1639		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1641		return -ENOMEM;
1642	}
1643	return 0;
1644}
1645
1646static void queue_cache_destroy(void)
1647{
1648	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1649	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1650	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1651	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1652}
1653
1654static long spu_queue_register_workfn(void *arg)
1655{
1656	struct spu_qreg *qr = arg;
1657	struct spu_queue *p = qr->queue;
1658	unsigned long q_type = qr->type;
1659	unsigned long hv_ret;
1660
1661	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1662				 CWQ_NUM_ENTRIES, &p->qhandle);
1663	if (!hv_ret)
1664		sun4v_ncs_sethead_marker(p->qhandle, 0);
1665
1666	return hv_ret ? -EINVAL : 0;
1667}
1668
1669static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1670{
1671	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1672	struct spu_qreg qr = { .queue = p, .type = q_type };
1673
1674	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1675}
1676
1677static int spu_queue_setup(struct spu_queue *p)
1678{
1679	int err;
1680
1681	p->q = new_queue(p->q_type);
1682	if (!p->q)
1683		return -ENOMEM;
1684
1685	err = spu_queue_register(p, p->q_type);
1686	if (err) {
1687		free_queue(p->q, p->q_type);
1688		p->q = NULL;
1689	}
1690
1691	return err;
1692}
1693
1694static void spu_queue_destroy(struct spu_queue *p)
1695{
1696	unsigned long hv_ret;
1697
1698	if (!p->q)
1699		return;
1700
1701	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1702
1703	if (!hv_ret)
1704		free_queue(p->q, p->q_type);
1705}
1706
1707static void spu_list_destroy(struct list_head *list)
1708{
1709	struct spu_queue *p, *n;
1710
1711	list_for_each_entry_safe(p, n, list, list) {
1712		int i;
1713
1714		for (i = 0; i < NR_CPUS; i++) {
1715			if (cpu_to_cwq[i] == p)
1716				cpu_to_cwq[i] = NULL;
1717		}
1718
1719		if (p->irq) {
1720			free_irq(p->irq, p);
1721			p->irq = 0;
1722		}
1723		spu_queue_destroy(p);
1724		list_del(&p->list);
1725		kfree(p);
1726	}
1727}
1728
1729/* Walk the backward arcs of a CWQ 'exec-unit' node,
1730 * gathering cpu membership information.
1731 */
1732static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1733			       struct platform_device *dev,
1734			       u64 node, struct spu_queue *p,
1735			       struct spu_queue **table)
1736{
1737	u64 arc;
1738
1739	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1740		u64 tgt = mdesc_arc_target(mdesc, arc);
1741		const char *name = mdesc_node_name(mdesc, tgt);
1742		const u64 *id;
1743
1744		if (strcmp(name, "cpu"))
1745			continue;
1746		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1747		if (table[*id] != NULL) {
1748			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1749				dev->dev.of_node);
1750			return -EINVAL;
1751		}
1752		cpumask_set_cpu(*id, &p->sharing);
1753		table[*id] = p;
1754	}
1755	return 0;
1756}
1757
1758/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1759static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1760			    struct platform_device *dev, struct mdesc_handle *mdesc,
1761			    u64 node, const char *iname, unsigned long q_type,
1762			    irq_handler_t handler, struct spu_queue **table)
1763{
1764	struct spu_queue *p;
1765	int err;
1766
1767	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1768	if (!p) {
1769		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1770			dev->dev.of_node);
1771		return -ENOMEM;
1772	}
1773
1774	cpumask_clear(&p->sharing);
1775	spin_lock_init(&p->lock);
1776	p->q_type = q_type;
1777	INIT_LIST_HEAD(&p->jobs);
1778	list_add(&p->list, list);
1779
1780	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1781	if (err)
1782		return err;
1783
1784	err = spu_queue_setup(p);
1785	if (err)
1786		return err;
1787
1788	return spu_map_ino(dev, ip, iname, p, handler);
1789}
1790
1791static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1792			  struct spu_mdesc_info *ip, struct list_head *list,
1793			  const char *exec_name, unsigned long q_type,
1794			  irq_handler_t handler, struct spu_queue **table)
1795{
1796	int err = 0;
1797	u64 node;
1798
1799	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1800		const char *type;
1801
1802		type = mdesc_get_property(mdesc, node, "type", NULL);
1803		if (!type || strcmp(type, exec_name))
1804			continue;
1805
1806		err = handle_exec_unit(ip, list, dev, mdesc, node,
1807				       exec_name, q_type, handler, table);
1808		if (err) {
1809			spu_list_destroy(list);
1810			break;
1811		}
1812	}
1813
1814	return err;
1815}
1816
1817static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1818			 struct spu_mdesc_info *ip)
1819{
1820	const u64 *ino;
1821	int ino_len;
1822	int i;
1823
1824	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1825	if (!ino) {
1826		printk("NO 'ino'\n");
1827		return -ENODEV;
1828	}
1829
1830	ip->num_intrs = ino_len / sizeof(u64);
1831	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1832				 ip->num_intrs),
1833				GFP_KERNEL);
1834	if (!ip->ino_table)
1835		return -ENOMEM;
1836
1837	for (i = 0; i < ip->num_intrs; i++) {
1838		struct ino_blob *b = &ip->ino_table[i];
1839		b->intr = i + 1;
1840		b->ino = ino[i];
1841	}
1842
1843	return 0;
1844}
1845
1846static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1847				struct platform_device *dev,
1848				struct spu_mdesc_info *ip,
1849				const char *node_name)
1850{
1851	const unsigned int *reg;
1852	u64 node;
1853
1854	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1855	if (!reg)
1856		return -ENODEV;
1857
1858	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1859		const char *name;
1860		const u64 *chdl;
1861
1862		name = mdesc_get_property(mdesc, node, "name", NULL);
1863		if (!name || strcmp(name, node_name))
1864			continue;
1865		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1866		if (!chdl || (*chdl != *reg))
1867			continue;
1868		ip->cfg_handle = *chdl;
1869		return get_irq_props(mdesc, node, ip);
1870	}
1871
1872	return -ENODEV;
1873}
1874
1875static unsigned long n2_spu_hvapi_major;
1876static unsigned long n2_spu_hvapi_minor;
1877
1878static int n2_spu_hvapi_register(void)
1879{
1880	int err;
1881
1882	n2_spu_hvapi_major = 2;
1883	n2_spu_hvapi_minor = 0;
1884
1885	err = sun4v_hvapi_register(HV_GRP_NCS,
1886				   n2_spu_hvapi_major,
1887				   &n2_spu_hvapi_minor);
1888
1889	if (!err)
1890		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1891			n2_spu_hvapi_major,
1892			n2_spu_hvapi_minor);
1893
1894	return err;
1895}
1896
1897static void n2_spu_hvapi_unregister(void)
1898{
1899	sun4v_hvapi_unregister(HV_GRP_NCS);
1900}
1901
1902static int global_ref;
1903
1904static int grab_global_resources(void)
1905{
1906	int err = 0;
1907
1908	mutex_lock(&spu_lock);
1909
1910	if (global_ref++)
1911		goto out;
1912
1913	err = n2_spu_hvapi_register();
1914	if (err)
1915		goto out;
1916
1917	err = queue_cache_init();
1918	if (err)
1919		goto out_hvapi_release;
1920
1921	err = -ENOMEM;
1922	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1923			     GFP_KERNEL);
1924	if (!cpu_to_cwq)
1925		goto out_queue_cache_destroy;
1926
1927	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1928			     GFP_KERNEL);
1929	if (!cpu_to_mau)
1930		goto out_free_cwq_table;
1931
1932	err = 0;
1933
1934out:
1935	if (err)
1936		global_ref--;
1937	mutex_unlock(&spu_lock);
1938	return err;
1939
1940out_free_cwq_table:
1941	kfree(cpu_to_cwq);
1942	cpu_to_cwq = NULL;
1943
1944out_queue_cache_destroy:
1945	queue_cache_destroy();
1946
1947out_hvapi_release:
1948	n2_spu_hvapi_unregister();
1949	goto out;
1950}
1951
1952static void release_global_resources(void)
1953{
1954	mutex_lock(&spu_lock);
1955	if (!--global_ref) {
1956		kfree(cpu_to_cwq);
1957		cpu_to_cwq = NULL;
1958
1959		kfree(cpu_to_mau);
1960		cpu_to_mau = NULL;
1961
1962		queue_cache_destroy();
1963		n2_spu_hvapi_unregister();
1964	}
1965	mutex_unlock(&spu_lock);
1966}
1967
1968static struct n2_crypto *alloc_n2cp(void)
1969{
1970	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1971
1972	if (np)
1973		INIT_LIST_HEAD(&np->cwq_list);
1974
1975	return np;
1976}
1977
1978static void free_n2cp(struct n2_crypto *np)
1979{
1980	kfree(np->cwq_info.ino_table);
1981	np->cwq_info.ino_table = NULL;
1982
1983	kfree(np);
1984}
1985
1986static void n2_spu_driver_version(void)
1987{
1988	static int n2_spu_version_printed;
1989
1990	if (n2_spu_version_printed++ == 0)
1991		pr_info("%s", version);
1992}
1993
1994static int n2_crypto_probe(struct platform_device *dev)
1995{
1996	struct mdesc_handle *mdesc;
1997	struct n2_crypto *np;
1998	int err;
1999
2000	n2_spu_driver_version();
2001
2002	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2003
2004	np = alloc_n2cp();
2005	if (!np) {
2006		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2007			dev->dev.of_node);
2008		return -ENOMEM;
2009	}
2010
2011	err = grab_global_resources();
2012	if (err) {
2013		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2014			dev->dev.of_node);
2015		goto out_free_n2cp;
2016	}
2017
2018	mdesc = mdesc_grab();
2019
2020	if (!mdesc) {
2021		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2022			dev->dev.of_node);
2023		err = -ENODEV;
2024		goto out_free_global;
2025	}
2026	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2027	if (err) {
2028		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2029			dev->dev.of_node);
2030		mdesc_release(mdesc);
2031		goto out_free_global;
2032	}
2033
2034	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2035			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2036			     cpu_to_cwq);
2037	mdesc_release(mdesc);
2038
2039	if (err) {
2040		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2041			dev->dev.of_node);
2042		goto out_free_global;
2043	}
2044
2045	err = n2_register_algs();
2046	if (err) {
2047		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2048			dev->dev.of_node);
2049		goto out_free_spu_list;
2050	}
2051
2052	dev_set_drvdata(&dev->dev, np);
2053
2054	return 0;
2055
2056out_free_spu_list:
2057	spu_list_destroy(&np->cwq_list);
2058
2059out_free_global:
2060	release_global_resources();
2061
2062out_free_n2cp:
2063	free_n2cp(np);
2064
2065	return err;
2066}
2067
2068static int n2_crypto_remove(struct platform_device *dev)
2069{
2070	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2071
2072	n2_unregister_algs();
2073
2074	spu_list_destroy(&np->cwq_list);
2075
2076	release_global_resources();
2077
2078	free_n2cp(np);
2079
2080	return 0;
2081}
2082
2083static struct n2_mau *alloc_ncp(void)
2084{
2085	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2086
2087	if (mp)
2088		INIT_LIST_HEAD(&mp->mau_list);
2089
2090	return mp;
2091}
2092
2093static void free_ncp(struct n2_mau *mp)
2094{
2095	kfree(mp->mau_info.ino_table);
2096	mp->mau_info.ino_table = NULL;
2097
2098	kfree(mp);
2099}
2100
2101static int n2_mau_probe(struct platform_device *dev)
2102{
2103	struct mdesc_handle *mdesc;
2104	struct n2_mau *mp;
2105	int err;
2106
2107	n2_spu_driver_version();
2108
2109	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2110
2111	mp = alloc_ncp();
2112	if (!mp) {
2113		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2114			dev->dev.of_node);
2115		return -ENOMEM;
2116	}
2117
2118	err = grab_global_resources();
2119	if (err) {
2120		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2121			dev->dev.of_node);
2122		goto out_free_ncp;
2123	}
2124
2125	mdesc = mdesc_grab();
2126
2127	if (!mdesc) {
2128		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2129			dev->dev.of_node);
2130		err = -ENODEV;
2131		goto out_free_global;
2132	}
2133
2134	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2135	if (err) {
2136		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2137			dev->dev.of_node);
2138		mdesc_release(mdesc);
2139		goto out_free_global;
2140	}
2141
2142	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2143			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2144			     cpu_to_mau);
2145	mdesc_release(mdesc);
2146
2147	if (err) {
2148		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2149			dev->dev.of_node);
2150		goto out_free_global;
2151	}
2152
2153	dev_set_drvdata(&dev->dev, mp);
2154
2155	return 0;
2156
2157out_free_global:
2158	release_global_resources();
2159
2160out_free_ncp:
2161	free_ncp(mp);
2162
2163	return err;
2164}
2165
2166static int n2_mau_remove(struct platform_device *dev)
2167{
2168	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2169
2170	spu_list_destroy(&mp->mau_list);
2171
2172	release_global_resources();
2173
2174	free_ncp(mp);
2175
2176	return 0;
2177}
2178
2179static const struct of_device_id n2_crypto_match[] = {
2180	{
2181		.name = "n2cp",
2182		.compatible = "SUNW,n2-cwq",
2183	},
2184	{
2185		.name = "n2cp",
2186		.compatible = "SUNW,vf-cwq",
2187	},
2188	{
2189		.name = "n2cp",
2190		.compatible = "SUNW,kt-cwq",
2191	},
2192	{},
2193};
2194
2195MODULE_DEVICE_TABLE(of, n2_crypto_match);
2196
2197static struct platform_driver n2_crypto_driver = {
2198	.driver = {
2199		.name		=	"n2cp",
2200		.of_match_table	=	n2_crypto_match,
2201	},
2202	.probe		=	n2_crypto_probe,
2203	.remove		=	n2_crypto_remove,
2204};
2205
2206static const struct of_device_id n2_mau_match[] = {
2207	{
2208		.name = "ncp",
2209		.compatible = "SUNW,n2-mau",
2210	},
2211	{
2212		.name = "ncp",
2213		.compatible = "SUNW,vf-mau",
2214	},
2215	{
2216		.name = "ncp",
2217		.compatible = "SUNW,kt-mau",
2218	},
2219	{},
2220};
2221
2222MODULE_DEVICE_TABLE(of, n2_mau_match);
2223
2224static struct platform_driver n2_mau_driver = {
2225	.driver = {
2226		.name		=	"ncp",
2227		.of_match_table	=	n2_mau_match,
2228	},
2229	.probe		=	n2_mau_probe,
2230	.remove		=	n2_mau_remove,
2231};
2232
2233static struct platform_driver * const drivers[] = {
2234	&n2_crypto_driver,
2235	&n2_mau_driver,
2236};
2237
2238static int __init n2_init(void)
2239{
2240	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2241}
2242
2243static void __exit n2_exit(void)
2244{
2245	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2246}
2247
2248module_init(n2_init);
2249module_exit(n2_exit);