Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha.h>
19#include <crypto/aes.h>
20#include <crypto/internal/des.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24
25#include <crypto/internal/hash.h>
26#include <crypto/internal/skcipher.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/algapi.h>
29
30#include <asm/hypervisor.h>
31#include <asm/mdesc.h>
32
33#include "n2_core.h"
34
35#define DRV_MODULE_NAME "n2_crypto"
36#define DRV_MODULE_VERSION "0.2"
37#define DRV_MODULE_RELDATE "July 28, 2011"
38
39static const char version[] =
40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43MODULE_DESCRIPTION("Niagara2 Crypto driver");
44MODULE_LICENSE("GPL");
45MODULE_VERSION(DRV_MODULE_VERSION);
46
47#define N2_CRA_PRIORITY 200
48
49static DEFINE_MUTEX(spu_lock);
50
51struct spu_queue {
52 cpumask_t sharing;
53 unsigned long qhandle;
54
55 spinlock_t lock;
56 u8 q_type;
57 void *q;
58 unsigned long head;
59 unsigned long tail;
60 struct list_head jobs;
61
62 unsigned long devino;
63
64 char irq_name[32];
65 unsigned int irq;
66
67 struct list_head list;
68};
69
70struct spu_qreg {
71 struct spu_queue *queue;
72 unsigned long type;
73};
74
75static struct spu_queue **cpu_to_cwq;
76static struct spu_queue **cpu_to_mau;
77
78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79{
80 if (q->q_type == HV_NCS_QTYPE_MAU) {
81 off += MAU_ENTRY_SIZE;
82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 off = 0;
84 } else {
85 off += CWQ_ENTRY_SIZE;
86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 off = 0;
88 }
89 return off;
90}
91
92struct n2_request_common {
93 struct list_head entry;
94 unsigned int offset;
95};
96#define OFFSET_NOT_RUNNING (~(unsigned int)0)
97
98/* An async job request records the final tail value it used in
99 * n2_request_common->offset, test to see if that offset is in
100 * the range old_head, new_head, inclusive.
101 */
102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 unsigned long old_head, unsigned long new_head)
104{
105 if (old_head <= new_head) {
106 if (offset > old_head && offset <= new_head)
107 return true;
108 } else {
109 if (offset > old_head || offset <= new_head)
110 return true;
111 }
112 return false;
113}
114
115/* When the HEAD marker is unequal to the actual HEAD, we get
116 * a virtual device INO interrupt. We should process the
117 * completed CWQ entries and adjust the HEAD marker to clear
118 * the IRQ.
119 */
120static irqreturn_t cwq_intr(int irq, void *dev_id)
121{
122 unsigned long off, new_head, hv_ret;
123 struct spu_queue *q = dev_id;
124
125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 smp_processor_id(), q->qhandle);
127
128 spin_lock(&q->lock);
129
130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 smp_processor_id(), new_head, hv_ret);
134
135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 /* XXX ... XXX */
137 }
138
139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 if (hv_ret == HV_EOK)
141 q->head = new_head;
142
143 spin_unlock(&q->lock);
144
145 return IRQ_HANDLED;
146}
147
148static irqreturn_t mau_intr(int irq, void *dev_id)
149{
150 struct spu_queue *q = dev_id;
151 unsigned long head, hv_ret;
152
153 spin_lock(&q->lock);
154
155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 smp_processor_id(), q->qhandle);
157
158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 smp_processor_id(), head, hv_ret);
162
163 sun4v_ncs_sethead_marker(q->qhandle, head);
164
165 spin_unlock(&q->lock);
166
167 return IRQ_HANDLED;
168}
169
170static void *spu_queue_next(struct spu_queue *q, void *cur)
171{
172 return q->q + spu_next_offset(q, cur - q->q);
173}
174
175static int spu_queue_num_free(struct spu_queue *q)
176{
177 unsigned long head = q->head;
178 unsigned long tail = q->tail;
179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 unsigned long diff;
181
182 if (head > tail)
183 diff = head - tail;
184 else
185 diff = (end - tail) + head;
186
187 return (diff / CWQ_ENTRY_SIZE) - 1;
188}
189
190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191{
192 int avail = spu_queue_num_free(q);
193
194 if (avail >= num_entries)
195 return q->q + q->tail;
196
197 return NULL;
198}
199
200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201{
202 unsigned long hv_ret, new_tail;
203
204 new_tail = spu_next_offset(q, last - q->q);
205
206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 if (hv_ret == HV_EOK)
208 q->tail = new_tail;
209 return hv_ret;
210}
211
212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 int enc_type, int auth_type,
214 unsigned int hash_len,
215 bool sfas, bool sob, bool eob, bool encrypt,
216 int opcode)
217{
218 u64 word = (len - 1) & CONTROL_LEN;
219
220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 if (sfas)
224 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 if (sob)
226 word |= CONTROL_START_OF_BLOCK;
227 if (eob)
228 word |= CONTROL_END_OF_BLOCK;
229 if (encrypt)
230 word |= CONTROL_ENCRYPT;
231 if (hmac_key_len)
232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 if (hash_len)
234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236 return word;
237}
238
239#if 0
240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241{
242 if (this_len >= 64 ||
243 qp->head != qp->tail)
244 return true;
245 return false;
246}
247#endif
248
249struct n2_ahash_alg {
250 struct list_head entry;
251 const u8 *hash_zero;
252 const u32 *hash_init;
253 u8 hw_op_hashsz;
254 u8 digest_size;
255 u8 auth_type;
256 u8 hmac_type;
257 struct ahash_alg alg;
258};
259
260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261{
262 struct crypto_alg *alg = tfm->__crt_alg;
263 struct ahash_alg *ahash_alg;
264
265 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267 return container_of(ahash_alg, struct n2_ahash_alg, alg);
268}
269
270struct n2_hmac_alg {
271 const char *child_alg;
272 struct n2_ahash_alg derived;
273};
274
275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276{
277 struct crypto_alg *alg = tfm->__crt_alg;
278 struct ahash_alg *ahash_alg;
279
280 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283}
284
285struct n2_hash_ctx {
286 struct crypto_ahash *fallback_tfm;
287};
288
289#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290
291struct n2_hmac_ctx {
292 struct n2_hash_ctx base;
293
294 struct crypto_shash *child_shash;
295
296 int hash_key_len;
297 unsigned char hash_key[N2_HASH_KEY_MAX];
298};
299
300struct n2_hash_req_ctx {
301 union {
302 struct md5_state md5;
303 struct sha1_state sha1;
304 struct sha256_state sha256;
305 } u;
306
307 struct ahash_request fallback_req;
308};
309
310static int n2_hash_async_init(struct ahash_request *req)
311{
312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319 return crypto_ahash_init(&rctx->fallback_req);
320}
321
322static int n2_hash_async_update(struct ahash_request *req)
323{
324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 rctx->fallback_req.nbytes = req->nbytes;
331 rctx->fallback_req.src = req->src;
332
333 return crypto_ahash_update(&rctx->fallback_req);
334}
335
336static int n2_hash_async_final(struct ahash_request *req)
337{
338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 rctx->fallback_req.result = req->result;
345
346 return crypto_ahash_final(&rctx->fallback_req);
347}
348
349static int n2_hash_async_finup(struct ahash_request *req)
350{
351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 rctx->fallback_req.nbytes = req->nbytes;
358 rctx->fallback_req.src = req->src;
359 rctx->fallback_req.result = req->result;
360
361 return crypto_ahash_finup(&rctx->fallback_req);
362}
363
364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365{
366 return -ENOSYS;
367}
368
369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370{
371 return -ENOSYS;
372}
373
374static int n2_hash_cra_init(struct crypto_tfm *tfm)
375{
376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 struct crypto_ahash *fallback_tfm;
380 int err;
381
382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 CRYPTO_ALG_NEED_FALLBACK);
384 if (IS_ERR(fallback_tfm)) {
385 pr_warn("Fallback driver '%s' could not be loaded!\n",
386 fallback_driver_name);
387 err = PTR_ERR(fallback_tfm);
388 goto out;
389 }
390
391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 crypto_ahash_reqsize(fallback_tfm)));
393
394 ctx->fallback_tfm = fallback_tfm;
395 return 0;
396
397out:
398 return err;
399}
400
401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402{
403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406 crypto_free_ahash(ctx->fallback_tfm);
407}
408
409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410{
411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 struct crypto_ahash *fallback_tfm;
416 struct crypto_shash *child_shash;
417 int err;
418
419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 CRYPTO_ALG_NEED_FALLBACK);
421 if (IS_ERR(fallback_tfm)) {
422 pr_warn("Fallback driver '%s' could not be loaded!\n",
423 fallback_driver_name);
424 err = PTR_ERR(fallback_tfm);
425 goto out;
426 }
427
428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 if (IS_ERR(child_shash)) {
430 pr_warn("Child shash '%s' could not be loaded!\n",
431 n2alg->child_alg);
432 err = PTR_ERR(child_shash);
433 goto out_free_fallback;
434 }
435
436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 crypto_ahash_reqsize(fallback_tfm)));
438
439 ctx->child_shash = child_shash;
440 ctx->base.fallback_tfm = fallback_tfm;
441 return 0;
442
443out_free_fallback:
444 crypto_free_ahash(fallback_tfm);
445
446out:
447 return err;
448}
449
450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451{
452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455 crypto_free_ahash(ctx->base.fallback_tfm);
456 crypto_free_shash(ctx->child_shash);
457}
458
459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 unsigned int keylen)
461{
462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 struct crypto_shash *child_shash = ctx->child_shash;
464 struct crypto_ahash *fallback_tfm;
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 bs = crypto_shash_blocksize(child_shash);
473 ds = crypto_shash_digestsize(child_shash);
474 BUG_ON(ds > N2_HASH_KEY_MAX);
475 if (keylen > bs) {
476 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 ctx->hash_key);
478 if (err)
479 return err;
480 keylen = ds;
481 } else if (keylen <= N2_HASH_KEY_MAX)
482 memcpy(ctx->hash_key, key, keylen);
483
484 ctx->hash_key_len = keylen;
485
486 return err;
487}
488
489static unsigned long wait_for_tail(struct spu_queue *qp)
490{
491 unsigned long head, hv_ret;
492
493 do {
494 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 if (hv_ret != HV_EOK) {
496 pr_err("Hypervisor error on gethead\n");
497 break;
498 }
499 if (head == qp->tail) {
500 qp->head = head;
501 break;
502 }
503 } while (1);
504 return hv_ret;
505}
506
507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 struct cwq_initial_entry *ent)
509{
510 unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512 if (hv_ret == HV_EOK)
513 hv_ret = wait_for_tail(qp);
514
515 return hv_ret;
516}
517
518static int n2_do_async_digest(struct ahash_request *req,
519 unsigned int auth_type, unsigned int digest_size,
520 unsigned int result_size, void *hash_loc,
521 unsigned long auth_key, unsigned int auth_key_len)
522{
523 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 struct cwq_initial_entry *ent;
525 struct crypto_hash_walk walk;
526 struct spu_queue *qp;
527 unsigned long flags;
528 int err = -ENODEV;
529 int nbytes, cpu;
530
531 /* The total effective length of the operation may not
532 * exceed 2^16.
533 */
534 if (unlikely(req->nbytes > (1 << 16))) {
535 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 rctx->fallback_req.base.flags =
540 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 rctx->fallback_req.nbytes = req->nbytes;
542 rctx->fallback_req.src = req->src;
543 rctx->fallback_req.result = req->result;
544
545 return crypto_ahash_digest(&rctx->fallback_req);
546 }
547
548 nbytes = crypto_hash_walk_first(req, &walk);
549
550 cpu = get_cpu();
551 qp = cpu_to_cwq[cpu];
552 if (!qp)
553 goto out;
554
555 spin_lock_irqsave(&qp->lock, flags);
556
557 /* XXX can do better, improve this later by doing a by-hand scatterlist
558 * XXX walk, etc.
559 */
560 ent = qp->q + qp->tail;
561
562 ent->control = control_word_base(nbytes, auth_key_len, 0,
563 auth_type, digest_size,
564 false, true, false, false,
565 OPCODE_INPLACE_BIT |
566 OPCODE_AUTH_MAC);
567 ent->src_addr = __pa(walk.data);
568 ent->auth_key_addr = auth_key;
569 ent->auth_iv_addr = __pa(hash_loc);
570 ent->final_auth_state_addr = 0UL;
571 ent->enc_key_addr = 0UL;
572 ent->enc_iv_addr = 0UL;
573 ent->dest_addr = __pa(hash_loc);
574
575 nbytes = crypto_hash_walk_done(&walk, 0);
576 while (nbytes > 0) {
577 ent = spu_queue_next(qp, ent);
578
579 ent->control = (nbytes - 1);
580 ent->src_addr = __pa(walk.data);
581 ent->auth_key_addr = 0UL;
582 ent->auth_iv_addr = 0UL;
583 ent->final_auth_state_addr = 0UL;
584 ent->enc_key_addr = 0UL;
585 ent->enc_iv_addr = 0UL;
586 ent->dest_addr = 0UL;
587
588 nbytes = crypto_hash_walk_done(&walk, 0);
589 }
590 ent->control |= CONTROL_END_OF_BLOCK;
591
592 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 err = -EINVAL;
594 else
595 err = 0;
596
597 spin_unlock_irqrestore(&qp->lock, flags);
598
599 if (!err)
600 memcpy(req->result, hash_loc, result_size);
601out:
602 put_cpu();
603
604 return err;
605}
606
607static int n2_hash_async_digest(struct ahash_request *req)
608{
609 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 int ds;
612
613 ds = n2alg->digest_size;
614 if (unlikely(req->nbytes == 0)) {
615 memcpy(req->result, n2alg->hash_zero, ds);
616 return 0;
617 }
618 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620 return n2_do_async_digest(req, n2alg->auth_type,
621 n2alg->hw_op_hashsz, ds,
622 &rctx->u, 0UL, 0);
623}
624
625static int n2_hmac_async_digest(struct ahash_request *req)
626{
627 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 int ds;
632
633 ds = n2alg->derived.digest_size;
634 if (unlikely(req->nbytes == 0) ||
635 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 rctx->fallback_req.base.flags =
641 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 rctx->fallback_req.nbytes = req->nbytes;
643 rctx->fallback_req.src = req->src;
644 rctx->fallback_req.result = req->result;
645
646 return crypto_ahash_digest(&rctx->fallback_req);
647 }
648 memcpy(&rctx->u, n2alg->derived.hash_init,
649 n2alg->derived.hw_op_hashsz);
650
651 return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 n2alg->derived.hw_op_hashsz, ds,
653 &rctx->u,
654 __pa(&ctx->hash_key),
655 ctx->hash_key_len);
656}
657
658struct n2_skcipher_context {
659 int key_len;
660 int enc_type;
661 union {
662 u8 aes[AES_MAX_KEY_SIZE];
663 u8 des[DES_KEY_SIZE];
664 u8 des3[3 * DES_KEY_SIZE];
665 u8 arc4[258]; /* S-box, X, Y */
666 } key;
667};
668
669#define N2_CHUNK_ARR_LEN 16
670
671struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
677 struct {
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
681};
682
683struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
687 u8 temp_iv[16];
688};
689
690/* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
692 *
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
699 *
700 * 0xe --> 0xa --> 0x8
701 *
702 * is a valid length sequence, whereas:
703 *
704 * 0xe --> 0xb --> 0x7
705 *
706 * is not a valid sequence.
707 */
708
709struct n2_skcipher_alg {
710 struct list_head entry;
711 u8 enc_type;
712 struct skcipher_alg skcipher;
713};
714
715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716{
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
720}
721
722struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
724};
725
726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 unsigned int keylen)
728{
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735 switch (keylen) {
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 break;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 break;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
751 return 0;
752}
753
754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 unsigned int keylen)
756{
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 int err;
761
762 err = verify_skcipher_des_key(skcipher, key);
763 if (err)
764 return err;
765
766 ctx->enc_type = n2alg->enc_type;
767
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
770 return 0;
771}
772
773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 unsigned int keylen)
775{
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 int err;
780
781 err = verify_skcipher_des3_key(skcipher, key);
782 if (err)
783 return err;
784
785 ctx->enc_type = n2alg->enc_type;
786
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
789 return 0;
790}
791
792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
793 unsigned int keylen)
794{
795 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
796 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
797 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
798 u8 *s = ctx->key.arc4;
799 u8 *x = s + 256;
800 u8 *y = x + 1;
801 int i, j, k;
802
803 ctx->enc_type = n2alg->enc_type;
804
805 j = k = 0;
806 *x = 0;
807 *y = 0;
808 for (i = 0; i < 256; i++)
809 s[i] = i;
810 for (i = 0; i < 256; i++) {
811 u8 a = s[i];
812 j = (j + key[k] + a) & 0xff;
813 s[i] = s[j];
814 s[j] = a;
815 if (++k >= keylen)
816 k = 0;
817 }
818
819 return 0;
820}
821
822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
823{
824 int this_len = nbytes;
825
826 this_len -= (nbytes & (block_size - 1));
827 return this_len > (1 << 16) ? (1 << 16) : this_len;
828}
829
830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
831 struct n2_crypto_chunk *cp,
832 struct spu_queue *qp, bool encrypt)
833{
834 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
835 struct cwq_initial_entry *ent;
836 bool in_place;
837 int i;
838
839 ent = spu_queue_alloc(qp, cp->arr_len);
840 if (!ent) {
841 pr_info("queue_alloc() of %d fails\n",
842 cp->arr_len);
843 return -EBUSY;
844 }
845
846 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848 ent->control = control_word_base(cp->arr[0].src_len,
849 0, ctx->enc_type, 0, 0,
850 false, true, false, encrypt,
851 OPCODE_ENCRYPT |
852 (in_place ? OPCODE_INPLACE_BIT : 0));
853 ent->src_addr = cp->arr[0].src_paddr;
854 ent->auth_key_addr = 0UL;
855 ent->auth_iv_addr = 0UL;
856 ent->final_auth_state_addr = 0UL;
857 ent->enc_key_addr = __pa(&ctx->key);
858 ent->enc_iv_addr = cp->iv_paddr;
859 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861 for (i = 1; i < cp->arr_len; i++) {
862 ent = spu_queue_next(qp, ent);
863
864 ent->control = cp->arr[i].src_len - 1;
865 ent->src_addr = cp->arr[i].src_paddr;
866 ent->auth_key_addr = 0UL;
867 ent->auth_iv_addr = 0UL;
868 ent->final_auth_state_addr = 0UL;
869 ent->enc_key_addr = 0UL;
870 ent->enc_iv_addr = 0UL;
871 ent->dest_addr = 0UL;
872 }
873 ent->control |= CONTROL_END_OF_BLOCK;
874
875 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876}
877
878static int n2_compute_chunks(struct skcipher_request *req)
879{
880 struct n2_request_context *rctx = skcipher_request_ctx(req);
881 struct skcipher_walk *walk = &rctx->walk;
882 struct n2_crypto_chunk *chunk;
883 unsigned long dest_prev;
884 unsigned int tot_len;
885 bool prev_in_place;
886 int err, nbytes;
887
888 err = skcipher_walk_async(walk, req);
889 if (err)
890 return err;
891
892 INIT_LIST_HEAD(&rctx->chunk_list);
893
894 chunk = &rctx->chunk;
895 INIT_LIST_HEAD(&chunk->entry);
896
897 chunk->iv_paddr = 0UL;
898 chunk->arr_len = 0;
899 chunk->dest_paddr = 0UL;
900
901 prev_in_place = false;
902 dest_prev = ~0UL;
903 tot_len = 0;
904
905 while ((nbytes = walk->nbytes) != 0) {
906 unsigned long dest_paddr, src_paddr;
907 bool in_place;
908 int this_len;
909
910 src_paddr = (page_to_phys(walk->src.phys.page) +
911 walk->src.phys.offset);
912 dest_paddr = (page_to_phys(walk->dst.phys.page) +
913 walk->dst.phys.offset);
914 in_place = (src_paddr == dest_paddr);
915 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
916
917 if (chunk->arr_len != 0) {
918 if (in_place != prev_in_place ||
919 (!prev_in_place &&
920 dest_paddr != dest_prev) ||
921 chunk->arr_len == N2_CHUNK_ARR_LEN ||
922 tot_len + this_len > (1 << 16)) {
923 chunk->dest_final = dest_prev;
924 list_add_tail(&chunk->entry,
925 &rctx->chunk_list);
926 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
927 if (!chunk) {
928 err = -ENOMEM;
929 break;
930 }
931 INIT_LIST_HEAD(&chunk->entry);
932 }
933 }
934 if (chunk->arr_len == 0) {
935 chunk->dest_paddr = dest_paddr;
936 tot_len = 0;
937 }
938 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
939 chunk->arr[chunk->arr_len].src_len = this_len;
940 chunk->arr_len++;
941
942 dest_prev = dest_paddr + this_len;
943 prev_in_place = in_place;
944 tot_len += this_len;
945
946 err = skcipher_walk_done(walk, nbytes - this_len);
947 if (err)
948 break;
949 }
950 if (!err && chunk->arr_len != 0) {
951 chunk->dest_final = dest_prev;
952 list_add_tail(&chunk->entry, &rctx->chunk_list);
953 }
954
955 return err;
956}
957
958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
959{
960 struct n2_request_context *rctx = skcipher_request_ctx(req);
961 struct n2_crypto_chunk *c, *tmp;
962
963 if (final_iv)
964 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965
966 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967 list_del(&c->entry);
968 if (unlikely(c != &rctx->chunk))
969 kfree(c);
970 }
971
972}
973
974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
975{
976 struct n2_request_context *rctx = skcipher_request_ctx(req);
977 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
978 int err = n2_compute_chunks(req);
979 struct n2_crypto_chunk *c, *tmp;
980 unsigned long flags, hv_ret;
981 struct spu_queue *qp;
982
983 if (err)
984 return err;
985
986 qp = cpu_to_cwq[get_cpu()];
987 err = -ENODEV;
988 if (!qp)
989 goto out;
990
991 spin_lock_irqsave(&qp->lock, flags);
992
993 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995 if (err)
996 break;
997 list_del(&c->entry);
998 if (unlikely(c != &rctx->chunk))
999 kfree(c);
1000 }
1001 if (!err) {
1002 hv_ret = wait_for_tail(qp);
1003 if (hv_ret != HV_EOK)
1004 err = -EINVAL;
1005 }
1006
1007 spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010 put_cpu();
1011
1012 n2_chunk_complete(req, NULL);
1013 return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018 return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023 return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028 struct n2_request_context *rctx = skcipher_request_ctx(req);
1029 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030 unsigned long flags, hv_ret, iv_paddr;
1031 int err = n2_compute_chunks(req);
1032 struct n2_crypto_chunk *c, *tmp;
1033 struct spu_queue *qp;
1034 void *final_iv_addr;
1035
1036 final_iv_addr = NULL;
1037
1038 if (err)
1039 return err;
1040
1041 qp = cpu_to_cwq[get_cpu()];
1042 err = -ENODEV;
1043 if (!qp)
1044 goto out;
1045
1046 spin_lock_irqsave(&qp->lock, flags);
1047
1048 if (encrypt) {
1049 iv_paddr = __pa(rctx->walk.iv);
1050 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051 entry) {
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, true);
1054 if (err)
1055 break;
1056 iv_paddr = c->dest_final - rctx->walk.blocksize;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1059 kfree(c);
1060 }
1061 final_iv_addr = __va(iv_paddr);
1062 } else {
1063 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064 entry) {
1065 if (c == &rctx->chunk) {
1066 iv_paddr = __pa(rctx->walk.iv);
1067 } else {
1068 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069 tmp->arr[tmp->arr_len-1].src_len -
1070 rctx->walk.blocksize);
1071 }
1072 if (!final_iv_addr) {
1073 unsigned long pa;
1074
1075 pa = (c->arr[c->arr_len-1].src_paddr +
1076 c->arr[c->arr_len-1].src_len -
1077 rctx->walk.blocksize);
1078 final_iv_addr = rctx->temp_iv;
1079 memcpy(rctx->temp_iv, __va(pa),
1080 rctx->walk.blocksize);
1081 }
1082 c->iv_paddr = iv_paddr;
1083 err = __n2_crypt_chunk(tfm, c, qp, false);
1084 if (err)
1085 break;
1086 list_del(&c->entry);
1087 if (unlikely(c != &rctx->chunk))
1088 kfree(c);
1089 }
1090 }
1091 if (!err) {
1092 hv_ret = wait_for_tail(qp);
1093 if (hv_ret != HV_EOK)
1094 err = -EINVAL;
1095 }
1096
1097 spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100 put_cpu();
1101
1102 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103 return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108 return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113 return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117 const char *name;
1118 const char *drv_name;
1119 u8 block_size;
1120 u8 enc_type;
1121 struct skcipher_alg skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125 /* ARC4: only ECB is supported (chaining bits ignored) */
1126 { .name = "ecb(arc4)",
1127 .drv_name = "ecb-arc4",
1128 .block_size = 1,
1129 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1130 ENC_TYPE_CHAINING_ECB),
1131 .skcipher = {
1132 .min_keysize = 1,
1133 .max_keysize = 256,
1134 .setkey = n2_arc4_setkey,
1135 .encrypt = n2_encrypt_ecb,
1136 .decrypt = n2_decrypt_ecb,
1137 },
1138 },
1139
1140 /* DES: ECB CBC and CFB are supported */
1141 { .name = "ecb(des)",
1142 .drv_name = "ecb-des",
1143 .block_size = DES_BLOCK_SIZE,
1144 .enc_type = (ENC_TYPE_ALG_DES |
1145 ENC_TYPE_CHAINING_ECB),
1146 .skcipher = {
1147 .min_keysize = DES_KEY_SIZE,
1148 .max_keysize = DES_KEY_SIZE,
1149 .setkey = n2_des_setkey,
1150 .encrypt = n2_encrypt_ecb,
1151 .decrypt = n2_decrypt_ecb,
1152 },
1153 },
1154 { .name = "cbc(des)",
1155 .drv_name = "cbc-des",
1156 .block_size = DES_BLOCK_SIZE,
1157 .enc_type = (ENC_TYPE_ALG_DES |
1158 ENC_TYPE_CHAINING_CBC),
1159 .skcipher = {
1160 .ivsize = DES_BLOCK_SIZE,
1161 .min_keysize = DES_KEY_SIZE,
1162 .max_keysize = DES_KEY_SIZE,
1163 .setkey = n2_des_setkey,
1164 .encrypt = n2_encrypt_chaining,
1165 .decrypt = n2_decrypt_chaining,
1166 },
1167 },
1168 { .name = "cfb(des)",
1169 .drv_name = "cfb-des",
1170 .block_size = DES_BLOCK_SIZE,
1171 .enc_type = (ENC_TYPE_ALG_DES |
1172 ENC_TYPE_CHAINING_CFB),
1173 .skcipher = {
1174 .min_keysize = DES_KEY_SIZE,
1175 .max_keysize = DES_KEY_SIZE,
1176 .setkey = n2_des_setkey,
1177 .encrypt = n2_encrypt_chaining,
1178 .decrypt = n2_decrypt_chaining,
1179 },
1180 },
1181
1182 /* 3DES: ECB CBC and CFB are supported */
1183 { .name = "ecb(des3_ede)",
1184 .drv_name = "ecb-3des",
1185 .block_size = DES_BLOCK_SIZE,
1186 .enc_type = (ENC_TYPE_ALG_3DES |
1187 ENC_TYPE_CHAINING_ECB),
1188 .skcipher = {
1189 .min_keysize = 3 * DES_KEY_SIZE,
1190 .max_keysize = 3 * DES_KEY_SIZE,
1191 .setkey = n2_3des_setkey,
1192 .encrypt = n2_encrypt_ecb,
1193 .decrypt = n2_decrypt_ecb,
1194 },
1195 },
1196 { .name = "cbc(des3_ede)",
1197 .drv_name = "cbc-3des",
1198 .block_size = DES_BLOCK_SIZE,
1199 .enc_type = (ENC_TYPE_ALG_3DES |
1200 ENC_TYPE_CHAINING_CBC),
1201 .skcipher = {
1202 .ivsize = DES_BLOCK_SIZE,
1203 .min_keysize = 3 * DES_KEY_SIZE,
1204 .max_keysize = 3 * DES_KEY_SIZE,
1205 .setkey = n2_3des_setkey,
1206 .encrypt = n2_encrypt_chaining,
1207 .decrypt = n2_decrypt_chaining,
1208 },
1209 },
1210 { .name = "cfb(des3_ede)",
1211 .drv_name = "cfb-3des",
1212 .block_size = DES_BLOCK_SIZE,
1213 .enc_type = (ENC_TYPE_ALG_3DES |
1214 ENC_TYPE_CHAINING_CFB),
1215 .skcipher = {
1216 .min_keysize = 3 * DES_KEY_SIZE,
1217 .max_keysize = 3 * DES_KEY_SIZE,
1218 .setkey = n2_3des_setkey,
1219 .encrypt = n2_encrypt_chaining,
1220 .decrypt = n2_decrypt_chaining,
1221 },
1222 },
1223 /* AES: ECB CBC and CTR are supported */
1224 { .name = "ecb(aes)",
1225 .drv_name = "ecb-aes",
1226 .block_size = AES_BLOCK_SIZE,
1227 .enc_type = (ENC_TYPE_ALG_AES128 |
1228 ENC_TYPE_CHAINING_ECB),
1229 .skcipher = {
1230 .min_keysize = AES_MIN_KEY_SIZE,
1231 .max_keysize = AES_MAX_KEY_SIZE,
1232 .setkey = n2_aes_setkey,
1233 .encrypt = n2_encrypt_ecb,
1234 .decrypt = n2_decrypt_ecb,
1235 },
1236 },
1237 { .name = "cbc(aes)",
1238 .drv_name = "cbc-aes",
1239 .block_size = AES_BLOCK_SIZE,
1240 .enc_type = (ENC_TYPE_ALG_AES128 |
1241 ENC_TYPE_CHAINING_CBC),
1242 .skcipher = {
1243 .ivsize = AES_BLOCK_SIZE,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .setkey = n2_aes_setkey,
1247 .encrypt = n2_encrypt_chaining,
1248 .decrypt = n2_decrypt_chaining,
1249 },
1250 },
1251 { .name = "ctr(aes)",
1252 .drv_name = "ctr-aes",
1253 .block_size = AES_BLOCK_SIZE,
1254 .enc_type = (ENC_TYPE_ALG_AES128 |
1255 ENC_TYPE_CHAINING_COUNTER),
1256 .skcipher = {
1257 .ivsize = AES_BLOCK_SIZE,
1258 .min_keysize = AES_MIN_KEY_SIZE,
1259 .max_keysize = AES_MAX_KEY_SIZE,
1260 .setkey = n2_aes_setkey,
1261 .encrypt = n2_encrypt_chaining,
1262 .decrypt = n2_encrypt_chaining,
1263 },
1264 },
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272 const char *name;
1273 const u8 *hash_zero;
1274 const u32 *hash_init;
1275 u8 hw_op_hashsz;
1276 u8 digest_size;
1277 u8 block_size;
1278 u8 auth_type;
1279 u8 hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283 cpu_to_le32(MD5_H0),
1284 cpu_to_le32(MD5_H1),
1285 cpu_to_le32(MD5_H2),
1286 cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301 { .name = "md5",
1302 .hash_zero = md5_zero_message_hash,
1303 .hash_init = n2_md5_init,
1304 .auth_type = AUTH_TYPE_MD5,
1305 .hmac_type = AUTH_TYPE_HMAC_MD5,
1306 .hw_op_hashsz = MD5_DIGEST_SIZE,
1307 .digest_size = MD5_DIGEST_SIZE,
1308 .block_size = MD5_HMAC_BLOCK_SIZE },
1309 { .name = "sha1",
1310 .hash_zero = sha1_zero_message_hash,
1311 .hash_init = n2_sha1_init,
1312 .auth_type = AUTH_TYPE_SHA1,
1313 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1314 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1315 .digest_size = SHA1_DIGEST_SIZE,
1316 .block_size = SHA1_BLOCK_SIZE },
1317 { .name = "sha256",
1318 .hash_zero = sha256_zero_message_hash,
1319 .hash_init = n2_sha256_init,
1320 .auth_type = AUTH_TYPE_SHA256,
1321 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1322 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1323 .digest_size = SHA256_DIGEST_SIZE,
1324 .block_size = SHA256_BLOCK_SIZE },
1325 { .name = "sha224",
1326 .hash_zero = sha224_zero_message_hash,
1327 .hash_init = n2_sha224_init,
1328 .auth_type = AUTH_TYPE_SHA256,
1329 .hmac_type = AUTH_TYPE_RESERVED,
1330 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1331 .digest_size = SHA224_DIGEST_SIZE,
1332 .block_size = SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344 struct n2_ahash_alg *alg, *alg_tmp;
1345 struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348 crypto_unregister_skcipher(&skcipher->skcipher);
1349 list_del(&skcipher->entry);
1350 kfree(skcipher);
1351 }
1352 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353 crypto_unregister_ahash(&hmac->derived.alg);
1354 list_del(&hmac->derived.entry);
1355 kfree(hmac);
1356 }
1357 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358 crypto_unregister_ahash(&alg->alg);
1359 list_del(&alg->entry);
1360 kfree(alg);
1361 }
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367 return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373 struct skcipher_alg *alg;
1374 int err;
1375
1376 if (!p)
1377 return -ENOMEM;
1378
1379 alg = &p->skcipher;
1380 *alg = tmpl->skcipher;
1381
1382 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384 alg->base.cra_priority = N2_CRA_PRIORITY;
1385 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386 CRYPTO_ALG_ALLOCATES_MEMORY;
1387 alg->base.cra_blocksize = tmpl->block_size;
1388 p->enc_type = tmpl->enc_type;
1389 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390 alg->base.cra_module = THIS_MODULE;
1391 alg->init = n2_skcipher_init_tfm;
1392
1393 list_add(&p->entry, &skcipher_algs);
1394 err = crypto_register_skcipher(alg);
1395 if (err) {
1396 pr_err("%s alg registration failed\n", alg->base.cra_name);
1397 list_del(&p->entry);
1398 kfree(p);
1399 } else {
1400 pr_info("%s alg registered\n", alg->base.cra_name);
1401 }
1402 return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408 struct ahash_alg *ahash;
1409 struct crypto_alg *base;
1410 int err;
1411
1412 if (!p)
1413 return -ENOMEM;
1414
1415 p->child_alg = n2ahash->alg.halg.base.cra_name;
1416 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417 INIT_LIST_HEAD(&p->derived.entry);
1418
1419 ahash = &p->derived.alg;
1420 ahash->digest = n2_hmac_async_digest;
1421 ahash->setkey = n2_hmac_async_setkey;
1422
1423 base = &ahash->halg.base;
1424 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428 base->cra_init = n2_hmac_cra_init;
1429 base->cra_exit = n2_hmac_cra_exit;
1430
1431 list_add(&p->derived.entry, &hmac_algs);
1432 err = crypto_register_ahash(ahash);
1433 if (err) {
1434 pr_err("%s alg registration failed\n", base->cra_name);
1435 list_del(&p->derived.entry);
1436 kfree(p);
1437 } else {
1438 pr_info("%s alg registered\n", base->cra_name);
1439 }
1440 return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446 struct hash_alg_common *halg;
1447 struct crypto_alg *base;
1448 struct ahash_alg *ahash;
1449 int err;
1450
1451 if (!p)
1452 return -ENOMEM;
1453
1454 p->hash_zero = tmpl->hash_zero;
1455 p->hash_init = tmpl->hash_init;
1456 p->auth_type = tmpl->auth_type;
1457 p->hmac_type = tmpl->hmac_type;
1458 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459 p->digest_size = tmpl->digest_size;
1460
1461 ahash = &p->alg;
1462 ahash->init = n2_hash_async_init;
1463 ahash->update = n2_hash_async_update;
1464 ahash->final = n2_hash_async_final;
1465 ahash->finup = n2_hash_async_finup;
1466 ahash->digest = n2_hash_async_digest;
1467 ahash->export = n2_hash_async_noexport;
1468 ahash->import = n2_hash_async_noimport;
1469
1470 halg = &ahash->halg;
1471 halg->digestsize = tmpl->digest_size;
1472
1473 base = &halg->base;
1474 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476 base->cra_priority = N2_CRA_PRIORITY;
1477 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478 CRYPTO_ALG_NEED_FALLBACK;
1479 base->cra_blocksize = tmpl->block_size;
1480 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481 base->cra_module = THIS_MODULE;
1482 base->cra_init = n2_hash_cra_init;
1483 base->cra_exit = n2_hash_cra_exit;
1484
1485 list_add(&p->entry, &ahash_algs);
1486 err = crypto_register_ahash(ahash);
1487 if (err) {
1488 pr_err("%s alg registration failed\n", base->cra_name);
1489 list_del(&p->entry);
1490 kfree(p);
1491 } else {
1492 pr_info("%s alg registered\n", base->cra_name);
1493 }
1494 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495 err = __n2_register_one_hmac(p);
1496 return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501 int i, err = 0;
1502
1503 mutex_lock(&spu_lock);
1504 if (algs_registered++)
1505 goto out;
1506
1507 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508 err = __n2_register_one_ahash(&hash_tmpls[i]);
1509 if (err) {
1510 __n2_unregister_algs();
1511 goto out;
1512 }
1513 }
1514 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516 if (err) {
1517 __n2_unregister_algs();
1518 goto out;
1519 }
1520 }
1521
1522out:
1523 mutex_unlock(&spu_lock);
1524 return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529 mutex_lock(&spu_lock);
1530 if (!--algs_registered)
1531 __n2_unregister_algs();
1532 mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino. This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546 unsigned long dev_ino)
1547{
1548 const unsigned int *dev_intrs;
1549 unsigned int intr;
1550 int i;
1551
1552 for (i = 0; i < ip->num_intrs; i++) {
1553 if (ip->ino_table[i].ino == dev_ino)
1554 break;
1555 }
1556 if (i == ip->num_intrs)
1557 return -ENODEV;
1558
1559 intr = ip->ino_table[i].intr;
1560
1561 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562 if (!dev_intrs)
1563 return -ENODEV;
1564
1565 for (i = 0; i < dev->archdata.num_irqs; i++) {
1566 if (dev_intrs[i] == intr)
1567 return i;
1568 }
1569
1570 return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574 const char *irq_name, struct spu_queue *p,
1575 irq_handler_t handler)
1576{
1577 unsigned long herr;
1578 int index;
1579
1580 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581 if (herr)
1582 return -EINVAL;
1583
1584 index = find_devino_index(dev, ip, p->devino);
1585 if (index < 0)
1586 return index;
1587
1588 p->irq = dev->archdata.irqs[index];
1589
1590 sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592 return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604 kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611 kmem_cache_create("mau_queue",
1612 (MAU_NUM_ENTRIES *
1613 MAU_ENTRY_SIZE),
1614 MAU_ENTRY_SIZE, 0, NULL);
1615 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616 return -ENOMEM;
1617
1618 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620 kmem_cache_create("cwq_queue",
1621 (CWQ_NUM_ENTRIES *
1622 CWQ_ENTRY_SIZE),
1623 CWQ_ENTRY_SIZE, 0, NULL);
1624 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627 return -ENOMEM;
1628 }
1629 return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642 struct spu_qreg *qr = arg;
1643 struct spu_queue *p = qr->queue;
1644 unsigned long q_type = qr->type;
1645 unsigned long hv_ret;
1646
1647 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648 CWQ_NUM_ENTRIES, &p->qhandle);
1649 if (!hv_ret)
1650 sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652 return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658 struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665 int err;
1666
1667 p->q = new_queue(p->q_type);
1668 if (!p->q)
1669 return -ENOMEM;
1670
1671 err = spu_queue_register(p, p->q_type);
1672 if (err) {
1673 free_queue(p->q, p->q_type);
1674 p->q = NULL;
1675 }
1676
1677 return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682 unsigned long hv_ret;
1683
1684 if (!p->q)
1685 return;
1686
1687 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689 if (!hv_ret)
1690 free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695 struct spu_queue *p, *n;
1696
1697 list_for_each_entry_safe(p, n, list, list) {
1698 int i;
1699
1700 for (i = 0; i < NR_CPUS; i++) {
1701 if (cpu_to_cwq[i] == p)
1702 cpu_to_cwq[i] = NULL;
1703 }
1704
1705 if (p->irq) {
1706 free_irq(p->irq, p);
1707 p->irq = 0;
1708 }
1709 spu_queue_destroy(p);
1710 list_del(&p->list);
1711 kfree(p);
1712 }
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719 struct platform_device *dev,
1720 u64 node, struct spu_queue *p,
1721 struct spu_queue **table)
1722{
1723 u64 arc;
1724
1725 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726 u64 tgt = mdesc_arc_target(mdesc, arc);
1727 const char *name = mdesc_node_name(mdesc, tgt);
1728 const u64 *id;
1729
1730 if (strcmp(name, "cpu"))
1731 continue;
1732 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733 if (table[*id] != NULL) {
1734 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735 dev->dev.of_node);
1736 return -EINVAL;
1737 }
1738 cpumask_set_cpu(*id, &p->sharing);
1739 table[*id] = p;
1740 }
1741 return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746 struct platform_device *dev, struct mdesc_handle *mdesc,
1747 u64 node, const char *iname, unsigned long q_type,
1748 irq_handler_t handler, struct spu_queue **table)
1749{
1750 struct spu_queue *p;
1751 int err;
1752
1753 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754 if (!p) {
1755 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756 dev->dev.of_node);
1757 return -ENOMEM;
1758 }
1759
1760 cpumask_clear(&p->sharing);
1761 spin_lock_init(&p->lock);
1762 p->q_type = q_type;
1763 INIT_LIST_HEAD(&p->jobs);
1764 list_add(&p->list, list);
1765
1766 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767 if (err)
1768 return err;
1769
1770 err = spu_queue_setup(p);
1771 if (err)
1772 return err;
1773
1774 return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778 struct spu_mdesc_info *ip, struct list_head *list,
1779 const char *exec_name, unsigned long q_type,
1780 irq_handler_t handler, struct spu_queue **table)
1781{
1782 int err = 0;
1783 u64 node;
1784
1785 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786 const char *type;
1787
1788 type = mdesc_get_property(mdesc, node, "type", NULL);
1789 if (!type || strcmp(type, exec_name))
1790 continue;
1791
1792 err = handle_exec_unit(ip, list, dev, mdesc, node,
1793 exec_name, q_type, handler, table);
1794 if (err) {
1795 spu_list_destroy(list);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804 struct spu_mdesc_info *ip)
1805{
1806 const u64 *ino;
1807 int ino_len;
1808 int i;
1809
1810 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811 if (!ino) {
1812 printk("NO 'ino'\n");
1813 return -ENODEV;
1814 }
1815
1816 ip->num_intrs = ino_len / sizeof(u64);
1817 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818 ip->num_intrs),
1819 GFP_KERNEL);
1820 if (!ip->ino_table)
1821 return -ENOMEM;
1822
1823 for (i = 0; i < ip->num_intrs; i++) {
1824 struct ino_blob *b = &ip->ino_table[i];
1825 b->intr = i + 1;
1826 b->ino = ino[i];
1827 }
1828
1829 return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833 struct platform_device *dev,
1834 struct spu_mdesc_info *ip,
1835 const char *node_name)
1836{
1837 const unsigned int *reg;
1838 u64 node;
1839
1840 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841 if (!reg)
1842 return -ENODEV;
1843
1844 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845 const char *name;
1846 const u64 *chdl;
1847
1848 name = mdesc_get_property(mdesc, node, "name", NULL);
1849 if (!name || strcmp(name, node_name))
1850 continue;
1851 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852 if (!chdl || (*chdl != *reg))
1853 continue;
1854 ip->cfg_handle = *chdl;
1855 return get_irq_props(mdesc, node, ip);
1856 }
1857
1858 return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866 int err;
1867
1868 n2_spu_hvapi_major = 2;
1869 n2_spu_hvapi_minor = 0;
1870
1871 err = sun4v_hvapi_register(HV_GRP_NCS,
1872 n2_spu_hvapi_major,
1873 &n2_spu_hvapi_minor);
1874
1875 if (!err)
1876 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877 n2_spu_hvapi_major,
1878 n2_spu_hvapi_minor);
1879
1880 return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885 sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892 int err = 0;
1893
1894 mutex_lock(&spu_lock);
1895
1896 if (global_ref++)
1897 goto out;
1898
1899 err = n2_spu_hvapi_register();
1900 if (err)
1901 goto out;
1902
1903 err = queue_cache_init();
1904 if (err)
1905 goto out_hvapi_release;
1906
1907 err = -ENOMEM;
1908 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909 GFP_KERNEL);
1910 if (!cpu_to_cwq)
1911 goto out_queue_cache_destroy;
1912
1913 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914 GFP_KERNEL);
1915 if (!cpu_to_mau)
1916 goto out_free_cwq_table;
1917
1918 err = 0;
1919
1920out:
1921 if (err)
1922 global_ref--;
1923 mutex_unlock(&spu_lock);
1924 return err;
1925
1926out_free_cwq_table:
1927 kfree(cpu_to_cwq);
1928 cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931 queue_cache_destroy();
1932
1933out_hvapi_release:
1934 n2_spu_hvapi_unregister();
1935 goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940 mutex_lock(&spu_lock);
1941 if (!--global_ref) {
1942 kfree(cpu_to_cwq);
1943 cpu_to_cwq = NULL;
1944
1945 kfree(cpu_to_mau);
1946 cpu_to_mau = NULL;
1947
1948 queue_cache_destroy();
1949 n2_spu_hvapi_unregister();
1950 }
1951 mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958 if (np)
1959 INIT_LIST_HEAD(&np->cwq_list);
1960
1961 return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966 kfree(np->cwq_info.ino_table);
1967 np->cwq_info.ino_table = NULL;
1968
1969 kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974 static int n2_spu_version_printed;
1975
1976 if (n2_spu_version_printed++ == 0)
1977 pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982 struct mdesc_handle *mdesc;
1983 struct n2_crypto *np;
1984 int err;
1985
1986 n2_spu_driver_version();
1987
1988 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990 np = alloc_n2cp();
1991 if (!np) {
1992 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993 dev->dev.of_node);
1994 return -ENOMEM;
1995 }
1996
1997 err = grab_global_resources();
1998 if (err) {
1999 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000 dev->dev.of_node);
2001 goto out_free_n2cp;
2002 }
2003
2004 mdesc = mdesc_grab();
2005
2006 if (!mdesc) {
2007 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008 dev->dev.of_node);
2009 err = -ENODEV;
2010 goto out_free_global;
2011 }
2012 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013 if (err) {
2014 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015 dev->dev.of_node);
2016 mdesc_release(mdesc);
2017 goto out_free_global;
2018 }
2019
2020 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022 cpu_to_cwq);
2023 mdesc_release(mdesc);
2024
2025 if (err) {
2026 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027 dev->dev.of_node);
2028 goto out_free_global;
2029 }
2030
2031 err = n2_register_algs();
2032 if (err) {
2033 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034 dev->dev.of_node);
2035 goto out_free_spu_list;
2036 }
2037
2038 dev_set_drvdata(&dev->dev, np);
2039
2040 return 0;
2041
2042out_free_spu_list:
2043 spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046 release_global_resources();
2047
2048out_free_n2cp:
2049 free_n2cp(np);
2050
2051 return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058 n2_unregister_algs();
2059
2060 spu_list_destroy(&np->cwq_list);
2061
2062 release_global_resources();
2063
2064 free_n2cp(np);
2065
2066 return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073 if (mp)
2074 INIT_LIST_HEAD(&mp->mau_list);
2075
2076 return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081 kfree(mp->mau_info.ino_table);
2082 mp->mau_info.ino_table = NULL;
2083
2084 kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089 struct mdesc_handle *mdesc;
2090 struct n2_mau *mp;
2091 int err;
2092
2093 n2_spu_driver_version();
2094
2095 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097 mp = alloc_ncp();
2098 if (!mp) {
2099 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100 dev->dev.of_node);
2101 return -ENOMEM;
2102 }
2103
2104 err = grab_global_resources();
2105 if (err) {
2106 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107 dev->dev.of_node);
2108 goto out_free_ncp;
2109 }
2110
2111 mdesc = mdesc_grab();
2112
2113 if (!mdesc) {
2114 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115 dev->dev.of_node);
2116 err = -ENODEV;
2117 goto out_free_global;
2118 }
2119
2120 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121 if (err) {
2122 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123 dev->dev.of_node);
2124 mdesc_release(mdesc);
2125 goto out_free_global;
2126 }
2127
2128 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130 cpu_to_mau);
2131 mdesc_release(mdesc);
2132
2133 if (err) {
2134 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135 dev->dev.of_node);
2136 goto out_free_global;
2137 }
2138
2139 dev_set_drvdata(&dev->dev, mp);
2140
2141 return 0;
2142
2143out_free_global:
2144 release_global_resources();
2145
2146out_free_ncp:
2147 free_ncp(mp);
2148
2149 return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156 spu_list_destroy(&mp->mau_list);
2157
2158 release_global_resources();
2159
2160 free_ncp(mp);
2161
2162 return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166 {
2167 .name = "n2cp",
2168 .compatible = "SUNW,n2-cwq",
2169 },
2170 {
2171 .name = "n2cp",
2172 .compatible = "SUNW,vf-cwq",
2173 },
2174 {
2175 .name = "n2cp",
2176 .compatible = "SUNW,kt-cwq",
2177 },
2178 {},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184 .driver = {
2185 .name = "n2cp",
2186 .of_match_table = n2_crypto_match,
2187 },
2188 .probe = n2_crypto_probe,
2189 .remove = n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193 {
2194 .name = "ncp",
2195 .compatible = "SUNW,n2-mau",
2196 },
2197 {
2198 .name = "ncp",
2199 .compatible = "SUNW,vf-mau",
2200 },
2201 {
2202 .name = "ncp",
2203 .compatible = "SUNW,kt-mau",
2204 },
2205 {},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211 .driver = {
2212 .name = "ncp",
2213 .of_match_table = n2_mau_match,
2214 },
2215 .probe = n2_mau_probe,
2216 .remove = n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220 &n2_crypto_driver,
2221 &n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha1.h>
19#include <crypto/sha2.h>
20#include <crypto/aes.h>
21#include <crypto/internal/des.h>
22#include <linux/mutex.h>
23#include <linux/delay.h>
24#include <linux/sched.h>
25
26#include <crypto/internal/hash.h>
27#include <crypto/internal/skcipher.h>
28#include <crypto/scatterwalk.h>
29#include <crypto/algapi.h>
30
31#include <asm/hypervisor.h>
32#include <asm/mdesc.h>
33
34#include "n2_core.h"
35
36#define DRV_MODULE_NAME "n2_crypto"
37#define DRV_MODULE_VERSION "0.2"
38#define DRV_MODULE_RELDATE "July 28, 2011"
39
40static const char version[] =
41 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
42
43MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
44MODULE_DESCRIPTION("Niagara2 Crypto driver");
45MODULE_LICENSE("GPL");
46MODULE_VERSION(DRV_MODULE_VERSION);
47
48#define N2_CRA_PRIORITY 200
49
50static DEFINE_MUTEX(spu_lock);
51
52struct spu_queue {
53 cpumask_t sharing;
54 unsigned long qhandle;
55
56 spinlock_t lock;
57 u8 q_type;
58 void *q;
59 unsigned long head;
60 unsigned long tail;
61 struct list_head jobs;
62
63 unsigned long devino;
64
65 char irq_name[32];
66 unsigned int irq;
67
68 struct list_head list;
69};
70
71struct spu_qreg {
72 struct spu_queue *queue;
73 unsigned long type;
74};
75
76static struct spu_queue **cpu_to_cwq;
77static struct spu_queue **cpu_to_mau;
78
79static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
80{
81 if (q->q_type == HV_NCS_QTYPE_MAU) {
82 off += MAU_ENTRY_SIZE;
83 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
84 off = 0;
85 } else {
86 off += CWQ_ENTRY_SIZE;
87 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
88 off = 0;
89 }
90 return off;
91}
92
93struct n2_request_common {
94 struct list_head entry;
95 unsigned int offset;
96};
97#define OFFSET_NOT_RUNNING (~(unsigned int)0)
98
99/* An async job request records the final tail value it used in
100 * n2_request_common->offset, test to see if that offset is in
101 * the range old_head, new_head, inclusive.
102 */
103static inline bool job_finished(struct spu_queue *q, unsigned int offset,
104 unsigned long old_head, unsigned long new_head)
105{
106 if (old_head <= new_head) {
107 if (offset > old_head && offset <= new_head)
108 return true;
109 } else {
110 if (offset > old_head || offset <= new_head)
111 return true;
112 }
113 return false;
114}
115
116/* When the HEAD marker is unequal to the actual HEAD, we get
117 * a virtual device INO interrupt. We should process the
118 * completed CWQ entries and adjust the HEAD marker to clear
119 * the IRQ.
120 */
121static irqreturn_t cwq_intr(int irq, void *dev_id)
122{
123 unsigned long off, new_head, hv_ret;
124 struct spu_queue *q = dev_id;
125
126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
127 smp_processor_id(), q->qhandle);
128
129 spin_lock(&q->lock);
130
131 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
132
133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
134 smp_processor_id(), new_head, hv_ret);
135
136 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
137 /* XXX ... XXX */
138 }
139
140 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
141 if (hv_ret == HV_EOK)
142 q->head = new_head;
143
144 spin_unlock(&q->lock);
145
146 return IRQ_HANDLED;
147}
148
149static irqreturn_t mau_intr(int irq, void *dev_id)
150{
151 struct spu_queue *q = dev_id;
152 unsigned long head, hv_ret;
153
154 spin_lock(&q->lock);
155
156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
157 smp_processor_id(), q->qhandle);
158
159 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
160
161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
162 smp_processor_id(), head, hv_ret);
163
164 sun4v_ncs_sethead_marker(q->qhandle, head);
165
166 spin_unlock(&q->lock);
167
168 return IRQ_HANDLED;
169}
170
171static void *spu_queue_next(struct spu_queue *q, void *cur)
172{
173 return q->q + spu_next_offset(q, cur - q->q);
174}
175
176static int spu_queue_num_free(struct spu_queue *q)
177{
178 unsigned long head = q->head;
179 unsigned long tail = q->tail;
180 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
181 unsigned long diff;
182
183 if (head > tail)
184 diff = head - tail;
185 else
186 diff = (end - tail) + head;
187
188 return (diff / CWQ_ENTRY_SIZE) - 1;
189}
190
191static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
192{
193 int avail = spu_queue_num_free(q);
194
195 if (avail >= num_entries)
196 return q->q + q->tail;
197
198 return NULL;
199}
200
201static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
202{
203 unsigned long hv_ret, new_tail;
204
205 new_tail = spu_next_offset(q, last - q->q);
206
207 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
208 if (hv_ret == HV_EOK)
209 q->tail = new_tail;
210 return hv_ret;
211}
212
213static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
214 int enc_type, int auth_type,
215 unsigned int hash_len,
216 bool sfas, bool sob, bool eob, bool encrypt,
217 int opcode)
218{
219 u64 word = (len - 1) & CONTROL_LEN;
220
221 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
222 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
223 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
224 if (sfas)
225 word |= CONTROL_STORE_FINAL_AUTH_STATE;
226 if (sob)
227 word |= CONTROL_START_OF_BLOCK;
228 if (eob)
229 word |= CONTROL_END_OF_BLOCK;
230 if (encrypt)
231 word |= CONTROL_ENCRYPT;
232 if (hmac_key_len)
233 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
234 if (hash_len)
235 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
236
237 return word;
238}
239
240#if 0
241static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
242{
243 if (this_len >= 64 ||
244 qp->head != qp->tail)
245 return true;
246 return false;
247}
248#endif
249
250struct n2_ahash_alg {
251 struct list_head entry;
252 const u8 *hash_zero;
253 const u8 *hash_init;
254 u8 hw_op_hashsz;
255 u8 digest_size;
256 u8 auth_type;
257 u8 hmac_type;
258 struct ahash_alg alg;
259};
260
261static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
262{
263 struct crypto_alg *alg = tfm->__crt_alg;
264 struct ahash_alg *ahash_alg;
265
266 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
267
268 return container_of(ahash_alg, struct n2_ahash_alg, alg);
269}
270
271struct n2_hmac_alg {
272 const char *child_alg;
273 struct n2_ahash_alg derived;
274};
275
276static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
277{
278 struct crypto_alg *alg = tfm->__crt_alg;
279 struct ahash_alg *ahash_alg;
280
281 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
282
283 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
284}
285
286struct n2_hash_ctx {
287 struct crypto_ahash *fallback_tfm;
288};
289
290#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
291
292struct n2_hmac_ctx {
293 struct n2_hash_ctx base;
294
295 struct crypto_shash *child_shash;
296
297 int hash_key_len;
298 unsigned char hash_key[N2_HASH_KEY_MAX];
299};
300
301struct n2_hash_req_ctx {
302 union {
303 struct md5_state md5;
304 struct sha1_state sha1;
305 struct sha256_state sha256;
306 } u;
307
308 struct ahash_request fallback_req;
309};
310
311static int n2_hash_async_init(struct ahash_request *req)
312{
313 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
314 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
315 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
316
317 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
318 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
319
320 return crypto_ahash_init(&rctx->fallback_req);
321}
322
323static int n2_hash_async_update(struct ahash_request *req)
324{
325 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
326 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
327 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
328
329 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
330 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
331 rctx->fallback_req.nbytes = req->nbytes;
332 rctx->fallback_req.src = req->src;
333
334 return crypto_ahash_update(&rctx->fallback_req);
335}
336
337static int n2_hash_async_final(struct ahash_request *req)
338{
339 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
340 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
341 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
342
343 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
344 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
345 rctx->fallback_req.result = req->result;
346
347 return crypto_ahash_final(&rctx->fallback_req);
348}
349
350static int n2_hash_async_finup(struct ahash_request *req)
351{
352 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
353 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
354 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
355
356 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
357 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
358 rctx->fallback_req.nbytes = req->nbytes;
359 rctx->fallback_req.src = req->src;
360 rctx->fallback_req.result = req->result;
361
362 return crypto_ahash_finup(&rctx->fallback_req);
363}
364
365static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
366{
367 return -ENOSYS;
368}
369
370static int n2_hash_async_noexport(struct ahash_request *req, void *out)
371{
372 return -ENOSYS;
373}
374
375static int n2_hash_cra_init(struct crypto_tfm *tfm)
376{
377 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
378 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
379 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
380 struct crypto_ahash *fallback_tfm;
381 int err;
382
383 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
384 CRYPTO_ALG_NEED_FALLBACK);
385 if (IS_ERR(fallback_tfm)) {
386 pr_warn("Fallback driver '%s' could not be loaded!\n",
387 fallback_driver_name);
388 err = PTR_ERR(fallback_tfm);
389 goto out;
390 }
391
392 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
393 crypto_ahash_reqsize(fallback_tfm)));
394
395 ctx->fallback_tfm = fallback_tfm;
396 return 0;
397
398out:
399 return err;
400}
401
402static void n2_hash_cra_exit(struct crypto_tfm *tfm)
403{
404 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
405 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
406
407 crypto_free_ahash(ctx->fallback_tfm);
408}
409
410static int n2_hmac_cra_init(struct crypto_tfm *tfm)
411{
412 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
413 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
414 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
415 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
416 struct crypto_ahash *fallback_tfm;
417 struct crypto_shash *child_shash;
418 int err;
419
420 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
421 CRYPTO_ALG_NEED_FALLBACK);
422 if (IS_ERR(fallback_tfm)) {
423 pr_warn("Fallback driver '%s' could not be loaded!\n",
424 fallback_driver_name);
425 err = PTR_ERR(fallback_tfm);
426 goto out;
427 }
428
429 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
430 if (IS_ERR(child_shash)) {
431 pr_warn("Child shash '%s' could not be loaded!\n",
432 n2alg->child_alg);
433 err = PTR_ERR(child_shash);
434 goto out_free_fallback;
435 }
436
437 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
438 crypto_ahash_reqsize(fallback_tfm)));
439
440 ctx->child_shash = child_shash;
441 ctx->base.fallback_tfm = fallback_tfm;
442 return 0;
443
444out_free_fallback:
445 crypto_free_ahash(fallback_tfm);
446
447out:
448 return err;
449}
450
451static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
452{
453 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
454 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
455
456 crypto_free_ahash(ctx->base.fallback_tfm);
457 crypto_free_shash(ctx->child_shash);
458}
459
460static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
461 unsigned int keylen)
462{
463 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
464 struct crypto_shash *child_shash = ctx->child_shash;
465 struct crypto_ahash *fallback_tfm;
466 int err, bs, ds;
467
468 fallback_tfm = ctx->base.fallback_tfm;
469 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470 if (err)
471 return err;
472
473 bs = crypto_shash_blocksize(child_shash);
474 ds = crypto_shash_digestsize(child_shash);
475 BUG_ON(ds > N2_HASH_KEY_MAX);
476 if (keylen > bs) {
477 err = crypto_shash_tfm_digest(child_shash, key, keylen,
478 ctx->hash_key);
479 if (err)
480 return err;
481 keylen = ds;
482 } else if (keylen <= N2_HASH_KEY_MAX)
483 memcpy(ctx->hash_key, key, keylen);
484
485 ctx->hash_key_len = keylen;
486
487 return err;
488}
489
490static unsigned long wait_for_tail(struct spu_queue *qp)
491{
492 unsigned long head, hv_ret;
493
494 do {
495 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
496 if (hv_ret != HV_EOK) {
497 pr_err("Hypervisor error on gethead\n");
498 break;
499 }
500 if (head == qp->tail) {
501 qp->head = head;
502 break;
503 }
504 } while (1);
505 return hv_ret;
506}
507
508static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
509 struct cwq_initial_entry *ent)
510{
511 unsigned long hv_ret = spu_queue_submit(qp, ent);
512
513 if (hv_ret == HV_EOK)
514 hv_ret = wait_for_tail(qp);
515
516 return hv_ret;
517}
518
519static int n2_do_async_digest(struct ahash_request *req,
520 unsigned int auth_type, unsigned int digest_size,
521 unsigned int result_size, void *hash_loc,
522 unsigned long auth_key, unsigned int auth_key_len)
523{
524 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
525 struct cwq_initial_entry *ent;
526 struct crypto_hash_walk walk;
527 struct spu_queue *qp;
528 unsigned long flags;
529 int err = -ENODEV;
530 int nbytes, cpu;
531
532 /* The total effective length of the operation may not
533 * exceed 2^16.
534 */
535 if (unlikely(req->nbytes > (1 << 16))) {
536 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
537 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
538
539 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
540 rctx->fallback_req.base.flags =
541 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
542 rctx->fallback_req.nbytes = req->nbytes;
543 rctx->fallback_req.src = req->src;
544 rctx->fallback_req.result = req->result;
545
546 return crypto_ahash_digest(&rctx->fallback_req);
547 }
548
549 nbytes = crypto_hash_walk_first(req, &walk);
550
551 cpu = get_cpu();
552 qp = cpu_to_cwq[cpu];
553 if (!qp)
554 goto out;
555
556 spin_lock_irqsave(&qp->lock, flags);
557
558 /* XXX can do better, improve this later by doing a by-hand scatterlist
559 * XXX walk, etc.
560 */
561 ent = qp->q + qp->tail;
562
563 ent->control = control_word_base(nbytes, auth_key_len, 0,
564 auth_type, digest_size,
565 false, true, false, false,
566 OPCODE_INPLACE_BIT |
567 OPCODE_AUTH_MAC);
568 ent->src_addr = __pa(walk.data);
569 ent->auth_key_addr = auth_key;
570 ent->auth_iv_addr = __pa(hash_loc);
571 ent->final_auth_state_addr = 0UL;
572 ent->enc_key_addr = 0UL;
573 ent->enc_iv_addr = 0UL;
574 ent->dest_addr = __pa(hash_loc);
575
576 nbytes = crypto_hash_walk_done(&walk, 0);
577 while (nbytes > 0) {
578 ent = spu_queue_next(qp, ent);
579
580 ent->control = (nbytes - 1);
581 ent->src_addr = __pa(walk.data);
582 ent->auth_key_addr = 0UL;
583 ent->auth_iv_addr = 0UL;
584 ent->final_auth_state_addr = 0UL;
585 ent->enc_key_addr = 0UL;
586 ent->enc_iv_addr = 0UL;
587 ent->dest_addr = 0UL;
588
589 nbytes = crypto_hash_walk_done(&walk, 0);
590 }
591 ent->control |= CONTROL_END_OF_BLOCK;
592
593 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
594 err = -EINVAL;
595 else
596 err = 0;
597
598 spin_unlock_irqrestore(&qp->lock, flags);
599
600 if (!err)
601 memcpy(req->result, hash_loc, result_size);
602out:
603 put_cpu();
604
605 return err;
606}
607
608static int n2_hash_async_digest(struct ahash_request *req)
609{
610 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
611 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
612 int ds;
613
614 ds = n2alg->digest_size;
615 if (unlikely(req->nbytes == 0)) {
616 memcpy(req->result, n2alg->hash_zero, ds);
617 return 0;
618 }
619 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
620
621 return n2_do_async_digest(req, n2alg->auth_type,
622 n2alg->hw_op_hashsz, ds,
623 &rctx->u, 0UL, 0);
624}
625
626static int n2_hmac_async_digest(struct ahash_request *req)
627{
628 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
631 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
632 int ds;
633
634 ds = n2alg->derived.digest_size;
635 if (unlikely(req->nbytes == 0) ||
636 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
637 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
638 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
639
640 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
641 rctx->fallback_req.base.flags =
642 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
643 rctx->fallback_req.nbytes = req->nbytes;
644 rctx->fallback_req.src = req->src;
645 rctx->fallback_req.result = req->result;
646
647 return crypto_ahash_digest(&rctx->fallback_req);
648 }
649 memcpy(&rctx->u, n2alg->derived.hash_init,
650 n2alg->derived.hw_op_hashsz);
651
652 return n2_do_async_digest(req, n2alg->derived.hmac_type,
653 n2alg->derived.hw_op_hashsz, ds,
654 &rctx->u,
655 __pa(&ctx->hash_key),
656 ctx->hash_key_len);
657}
658
659struct n2_skcipher_context {
660 int key_len;
661 int enc_type;
662 union {
663 u8 aes[AES_MAX_KEY_SIZE];
664 u8 des[DES_KEY_SIZE];
665 u8 des3[3 * DES_KEY_SIZE];
666 } key;
667};
668
669#define N2_CHUNK_ARR_LEN 16
670
671struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
677 struct {
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
681};
682
683struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
687 u8 temp_iv[16];
688};
689
690/* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
692 *
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
699 *
700 * 0xe --> 0xa --> 0x8
701 *
702 * is a valid length sequence, whereas:
703 *
704 * 0xe --> 0xb --> 0x7
705 *
706 * is not a valid sequence.
707 */
708
709struct n2_skcipher_alg {
710 struct list_head entry;
711 u8 enc_type;
712 struct skcipher_alg skcipher;
713};
714
715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716{
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
720}
721
722struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
724};
725
726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 unsigned int keylen)
728{
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735 switch (keylen) {
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 break;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 break;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
751 return 0;
752}
753
754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 unsigned int keylen)
756{
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 int err;
761
762 err = verify_skcipher_des_key(skcipher, key);
763 if (err)
764 return err;
765
766 ctx->enc_type = n2alg->enc_type;
767
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
770 return 0;
771}
772
773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 unsigned int keylen)
775{
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 int err;
780
781 err = verify_skcipher_des3_key(skcipher, key);
782 if (err)
783 return err;
784
785 ctx->enc_type = n2alg->enc_type;
786
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
789 return 0;
790}
791
792static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
793{
794 int this_len = nbytes;
795
796 this_len -= (nbytes & (block_size - 1));
797 return this_len > (1 << 16) ? (1 << 16) : this_len;
798}
799
800static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
801 struct n2_crypto_chunk *cp,
802 struct spu_queue *qp, bool encrypt)
803{
804 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
805 struct cwq_initial_entry *ent;
806 bool in_place;
807 int i;
808
809 ent = spu_queue_alloc(qp, cp->arr_len);
810 if (!ent) {
811 pr_info("queue_alloc() of %d fails\n",
812 cp->arr_len);
813 return -EBUSY;
814 }
815
816 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
817
818 ent->control = control_word_base(cp->arr[0].src_len,
819 0, ctx->enc_type, 0, 0,
820 false, true, false, encrypt,
821 OPCODE_ENCRYPT |
822 (in_place ? OPCODE_INPLACE_BIT : 0));
823 ent->src_addr = cp->arr[0].src_paddr;
824 ent->auth_key_addr = 0UL;
825 ent->auth_iv_addr = 0UL;
826 ent->final_auth_state_addr = 0UL;
827 ent->enc_key_addr = __pa(&ctx->key);
828 ent->enc_iv_addr = cp->iv_paddr;
829 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
830
831 for (i = 1; i < cp->arr_len; i++) {
832 ent = spu_queue_next(qp, ent);
833
834 ent->control = cp->arr[i].src_len - 1;
835 ent->src_addr = cp->arr[i].src_paddr;
836 ent->auth_key_addr = 0UL;
837 ent->auth_iv_addr = 0UL;
838 ent->final_auth_state_addr = 0UL;
839 ent->enc_key_addr = 0UL;
840 ent->enc_iv_addr = 0UL;
841 ent->dest_addr = 0UL;
842 }
843 ent->control |= CONTROL_END_OF_BLOCK;
844
845 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
846}
847
848static int n2_compute_chunks(struct skcipher_request *req)
849{
850 struct n2_request_context *rctx = skcipher_request_ctx(req);
851 struct skcipher_walk *walk = &rctx->walk;
852 struct n2_crypto_chunk *chunk;
853 unsigned long dest_prev;
854 unsigned int tot_len;
855 bool prev_in_place;
856 int err, nbytes;
857
858 err = skcipher_walk_async(walk, req);
859 if (err)
860 return err;
861
862 INIT_LIST_HEAD(&rctx->chunk_list);
863
864 chunk = &rctx->chunk;
865 INIT_LIST_HEAD(&chunk->entry);
866
867 chunk->iv_paddr = 0UL;
868 chunk->arr_len = 0;
869 chunk->dest_paddr = 0UL;
870
871 prev_in_place = false;
872 dest_prev = ~0UL;
873 tot_len = 0;
874
875 while ((nbytes = walk->nbytes) != 0) {
876 unsigned long dest_paddr, src_paddr;
877 bool in_place;
878 int this_len;
879
880 src_paddr = (page_to_phys(walk->src.phys.page) +
881 walk->src.phys.offset);
882 dest_paddr = (page_to_phys(walk->dst.phys.page) +
883 walk->dst.phys.offset);
884 in_place = (src_paddr == dest_paddr);
885 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
886
887 if (chunk->arr_len != 0) {
888 if (in_place != prev_in_place ||
889 (!prev_in_place &&
890 dest_paddr != dest_prev) ||
891 chunk->arr_len == N2_CHUNK_ARR_LEN ||
892 tot_len + this_len > (1 << 16)) {
893 chunk->dest_final = dest_prev;
894 list_add_tail(&chunk->entry,
895 &rctx->chunk_list);
896 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
897 if (!chunk) {
898 err = -ENOMEM;
899 break;
900 }
901 INIT_LIST_HEAD(&chunk->entry);
902 }
903 }
904 if (chunk->arr_len == 0) {
905 chunk->dest_paddr = dest_paddr;
906 tot_len = 0;
907 }
908 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
909 chunk->arr[chunk->arr_len].src_len = this_len;
910 chunk->arr_len++;
911
912 dest_prev = dest_paddr + this_len;
913 prev_in_place = in_place;
914 tot_len += this_len;
915
916 err = skcipher_walk_done(walk, nbytes - this_len);
917 if (err)
918 break;
919 }
920 if (!err && chunk->arr_len != 0) {
921 chunk->dest_final = dest_prev;
922 list_add_tail(&chunk->entry, &rctx->chunk_list);
923 }
924
925 return err;
926}
927
928static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
929{
930 struct n2_request_context *rctx = skcipher_request_ctx(req);
931 struct n2_crypto_chunk *c, *tmp;
932
933 if (final_iv)
934 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
935
936 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
937 list_del(&c->entry);
938 if (unlikely(c != &rctx->chunk))
939 kfree(c);
940 }
941
942}
943
944static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
945{
946 struct n2_request_context *rctx = skcipher_request_ctx(req);
947 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
948 int err = n2_compute_chunks(req);
949 struct n2_crypto_chunk *c, *tmp;
950 unsigned long flags, hv_ret;
951 struct spu_queue *qp;
952
953 if (err)
954 return err;
955
956 qp = cpu_to_cwq[get_cpu()];
957 err = -ENODEV;
958 if (!qp)
959 goto out;
960
961 spin_lock_irqsave(&qp->lock, flags);
962
963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
965 if (err)
966 break;
967 list_del(&c->entry);
968 if (unlikely(c != &rctx->chunk))
969 kfree(c);
970 }
971 if (!err) {
972 hv_ret = wait_for_tail(qp);
973 if (hv_ret != HV_EOK)
974 err = -EINVAL;
975 }
976
977 spin_unlock_irqrestore(&qp->lock, flags);
978
979out:
980 put_cpu();
981
982 n2_chunk_complete(req, NULL);
983 return err;
984}
985
986static int n2_encrypt_ecb(struct skcipher_request *req)
987{
988 return n2_do_ecb(req, true);
989}
990
991static int n2_decrypt_ecb(struct skcipher_request *req)
992{
993 return n2_do_ecb(req, false);
994}
995
996static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
997{
998 struct n2_request_context *rctx = skcipher_request_ctx(req);
999 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000 unsigned long flags, hv_ret, iv_paddr;
1001 int err = n2_compute_chunks(req);
1002 struct n2_crypto_chunk *c, *tmp;
1003 struct spu_queue *qp;
1004 void *final_iv_addr;
1005
1006 final_iv_addr = NULL;
1007
1008 if (err)
1009 return err;
1010
1011 qp = cpu_to_cwq[get_cpu()];
1012 err = -ENODEV;
1013 if (!qp)
1014 goto out;
1015
1016 spin_lock_irqsave(&qp->lock, flags);
1017
1018 if (encrypt) {
1019 iv_paddr = __pa(rctx->walk.iv);
1020 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021 entry) {
1022 c->iv_paddr = iv_paddr;
1023 err = __n2_crypt_chunk(tfm, c, qp, true);
1024 if (err)
1025 break;
1026 iv_paddr = c->dest_final - rctx->walk.blocksize;
1027 list_del(&c->entry);
1028 if (unlikely(c != &rctx->chunk))
1029 kfree(c);
1030 }
1031 final_iv_addr = __va(iv_paddr);
1032 } else {
1033 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034 entry) {
1035 if (c == &rctx->chunk) {
1036 iv_paddr = __pa(rctx->walk.iv);
1037 } else {
1038 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039 tmp->arr[tmp->arr_len-1].src_len -
1040 rctx->walk.blocksize);
1041 }
1042 if (!final_iv_addr) {
1043 unsigned long pa;
1044
1045 pa = (c->arr[c->arr_len-1].src_paddr +
1046 c->arr[c->arr_len-1].src_len -
1047 rctx->walk.blocksize);
1048 final_iv_addr = rctx->temp_iv;
1049 memcpy(rctx->temp_iv, __va(pa),
1050 rctx->walk.blocksize);
1051 }
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, false);
1054 if (err)
1055 break;
1056 list_del(&c->entry);
1057 if (unlikely(c != &rctx->chunk))
1058 kfree(c);
1059 }
1060 }
1061 if (!err) {
1062 hv_ret = wait_for_tail(qp);
1063 if (hv_ret != HV_EOK)
1064 err = -EINVAL;
1065 }
1066
1067 spin_unlock_irqrestore(&qp->lock, flags);
1068
1069out:
1070 put_cpu();
1071
1072 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073 return err;
1074}
1075
1076static int n2_encrypt_chaining(struct skcipher_request *req)
1077{
1078 return n2_do_chaining(req, true);
1079}
1080
1081static int n2_decrypt_chaining(struct skcipher_request *req)
1082{
1083 return n2_do_chaining(req, false);
1084}
1085
1086struct n2_skcipher_tmpl {
1087 const char *name;
1088 const char *drv_name;
1089 u8 block_size;
1090 u8 enc_type;
1091 struct skcipher_alg skcipher;
1092};
1093
1094static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095 /* DES: ECB CBC and CFB are supported */
1096 { .name = "ecb(des)",
1097 .drv_name = "ecb-des",
1098 .block_size = DES_BLOCK_SIZE,
1099 .enc_type = (ENC_TYPE_ALG_DES |
1100 ENC_TYPE_CHAINING_ECB),
1101 .skcipher = {
1102 .min_keysize = DES_KEY_SIZE,
1103 .max_keysize = DES_KEY_SIZE,
1104 .setkey = n2_des_setkey,
1105 .encrypt = n2_encrypt_ecb,
1106 .decrypt = n2_decrypt_ecb,
1107 },
1108 },
1109 { .name = "cbc(des)",
1110 .drv_name = "cbc-des",
1111 .block_size = DES_BLOCK_SIZE,
1112 .enc_type = (ENC_TYPE_ALG_DES |
1113 ENC_TYPE_CHAINING_CBC),
1114 .skcipher = {
1115 .ivsize = DES_BLOCK_SIZE,
1116 .min_keysize = DES_KEY_SIZE,
1117 .max_keysize = DES_KEY_SIZE,
1118 .setkey = n2_des_setkey,
1119 .encrypt = n2_encrypt_chaining,
1120 .decrypt = n2_decrypt_chaining,
1121 },
1122 },
1123 { .name = "cfb(des)",
1124 .drv_name = "cfb-des",
1125 .block_size = DES_BLOCK_SIZE,
1126 .enc_type = (ENC_TYPE_ALG_DES |
1127 ENC_TYPE_CHAINING_CFB),
1128 .skcipher = {
1129 .min_keysize = DES_KEY_SIZE,
1130 .max_keysize = DES_KEY_SIZE,
1131 .setkey = n2_des_setkey,
1132 .encrypt = n2_encrypt_chaining,
1133 .decrypt = n2_decrypt_chaining,
1134 },
1135 },
1136
1137 /* 3DES: ECB CBC and CFB are supported */
1138 { .name = "ecb(des3_ede)",
1139 .drv_name = "ecb-3des",
1140 .block_size = DES_BLOCK_SIZE,
1141 .enc_type = (ENC_TYPE_ALG_3DES |
1142 ENC_TYPE_CHAINING_ECB),
1143 .skcipher = {
1144 .min_keysize = 3 * DES_KEY_SIZE,
1145 .max_keysize = 3 * DES_KEY_SIZE,
1146 .setkey = n2_3des_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1149 },
1150 },
1151 { .name = "cbc(des3_ede)",
1152 .drv_name = "cbc-3des",
1153 .block_size = DES_BLOCK_SIZE,
1154 .enc_type = (ENC_TYPE_ALG_3DES |
1155 ENC_TYPE_CHAINING_CBC),
1156 .skcipher = {
1157 .ivsize = DES_BLOCK_SIZE,
1158 .min_keysize = 3 * DES_KEY_SIZE,
1159 .max_keysize = 3 * DES_KEY_SIZE,
1160 .setkey = n2_3des_setkey,
1161 .encrypt = n2_encrypt_chaining,
1162 .decrypt = n2_decrypt_chaining,
1163 },
1164 },
1165 { .name = "cfb(des3_ede)",
1166 .drv_name = "cfb-3des",
1167 .block_size = DES_BLOCK_SIZE,
1168 .enc_type = (ENC_TYPE_ALG_3DES |
1169 ENC_TYPE_CHAINING_CFB),
1170 .skcipher = {
1171 .min_keysize = 3 * DES_KEY_SIZE,
1172 .max_keysize = 3 * DES_KEY_SIZE,
1173 .setkey = n2_3des_setkey,
1174 .encrypt = n2_encrypt_chaining,
1175 .decrypt = n2_decrypt_chaining,
1176 },
1177 },
1178 /* AES: ECB CBC and CTR are supported */
1179 { .name = "ecb(aes)",
1180 .drv_name = "ecb-aes",
1181 .block_size = AES_BLOCK_SIZE,
1182 .enc_type = (ENC_TYPE_ALG_AES128 |
1183 ENC_TYPE_CHAINING_ECB),
1184 .skcipher = {
1185 .min_keysize = AES_MIN_KEY_SIZE,
1186 .max_keysize = AES_MAX_KEY_SIZE,
1187 .setkey = n2_aes_setkey,
1188 .encrypt = n2_encrypt_ecb,
1189 .decrypt = n2_decrypt_ecb,
1190 },
1191 },
1192 { .name = "cbc(aes)",
1193 .drv_name = "cbc-aes",
1194 .block_size = AES_BLOCK_SIZE,
1195 .enc_type = (ENC_TYPE_ALG_AES128 |
1196 ENC_TYPE_CHAINING_CBC),
1197 .skcipher = {
1198 .ivsize = AES_BLOCK_SIZE,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .setkey = n2_aes_setkey,
1202 .encrypt = n2_encrypt_chaining,
1203 .decrypt = n2_decrypt_chaining,
1204 },
1205 },
1206 { .name = "ctr(aes)",
1207 .drv_name = "ctr-aes",
1208 .block_size = AES_BLOCK_SIZE,
1209 .enc_type = (ENC_TYPE_ALG_AES128 |
1210 ENC_TYPE_CHAINING_COUNTER),
1211 .skcipher = {
1212 .ivsize = AES_BLOCK_SIZE,
1213 .min_keysize = AES_MIN_KEY_SIZE,
1214 .max_keysize = AES_MAX_KEY_SIZE,
1215 .setkey = n2_aes_setkey,
1216 .encrypt = n2_encrypt_chaining,
1217 .decrypt = n2_encrypt_chaining,
1218 },
1219 },
1220
1221};
1222#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223
1224static LIST_HEAD(skcipher_algs);
1225
1226struct n2_hash_tmpl {
1227 const char *name;
1228 const u8 *hash_zero;
1229 const u8 *hash_init;
1230 u8 hw_op_hashsz;
1231 u8 digest_size;
1232 u8 statesize;
1233 u8 block_size;
1234 u8 auth_type;
1235 u8 hmac_type;
1236};
1237
1238static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1239 cpu_to_le32(MD5_H0),
1240 cpu_to_le32(MD5_H1),
1241 cpu_to_le32(MD5_H2),
1242 cpu_to_le32(MD5_H3),
1243};
1244static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1245 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1246};
1247static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1248 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1249 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1250};
1251static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1252 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1253 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1254};
1255
1256static const struct n2_hash_tmpl hash_tmpls[] = {
1257 { .name = "md5",
1258 .hash_zero = md5_zero_message_hash,
1259 .hash_init = (u8 *)n2_md5_init,
1260 .auth_type = AUTH_TYPE_MD5,
1261 .hmac_type = AUTH_TYPE_HMAC_MD5,
1262 .hw_op_hashsz = MD5_DIGEST_SIZE,
1263 .digest_size = MD5_DIGEST_SIZE,
1264 .statesize = sizeof(struct md5_state),
1265 .block_size = MD5_HMAC_BLOCK_SIZE },
1266 { .name = "sha1",
1267 .hash_zero = sha1_zero_message_hash,
1268 .hash_init = (u8 *)n2_sha1_init,
1269 .auth_type = AUTH_TYPE_SHA1,
1270 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1271 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1272 .digest_size = SHA1_DIGEST_SIZE,
1273 .statesize = sizeof(struct sha1_state),
1274 .block_size = SHA1_BLOCK_SIZE },
1275 { .name = "sha256",
1276 .hash_zero = sha256_zero_message_hash,
1277 .hash_init = (u8 *)n2_sha256_init,
1278 .auth_type = AUTH_TYPE_SHA256,
1279 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1280 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1281 .digest_size = SHA256_DIGEST_SIZE,
1282 .statesize = sizeof(struct sha256_state),
1283 .block_size = SHA256_BLOCK_SIZE },
1284 { .name = "sha224",
1285 .hash_zero = sha224_zero_message_hash,
1286 .hash_init = (u8 *)n2_sha224_init,
1287 .auth_type = AUTH_TYPE_SHA256,
1288 .hmac_type = AUTH_TYPE_RESERVED,
1289 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1290 .digest_size = SHA224_DIGEST_SIZE,
1291 .statesize = sizeof(struct sha256_state),
1292 .block_size = SHA224_BLOCK_SIZE },
1293};
1294#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1295
1296static LIST_HEAD(ahash_algs);
1297static LIST_HEAD(hmac_algs);
1298
1299static int algs_registered;
1300
1301static void __n2_unregister_algs(void)
1302{
1303 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1304 struct n2_ahash_alg *alg, *alg_tmp;
1305 struct n2_hmac_alg *hmac, *hmac_tmp;
1306
1307 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1308 crypto_unregister_skcipher(&skcipher->skcipher);
1309 list_del(&skcipher->entry);
1310 kfree(skcipher);
1311 }
1312 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1313 crypto_unregister_ahash(&hmac->derived.alg);
1314 list_del(&hmac->derived.entry);
1315 kfree(hmac);
1316 }
1317 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1318 crypto_unregister_ahash(&alg->alg);
1319 list_del(&alg->entry);
1320 kfree(alg);
1321 }
1322}
1323
1324static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1325{
1326 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1327 return 0;
1328}
1329
1330static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1331{
1332 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1333 struct skcipher_alg *alg;
1334 int err;
1335
1336 if (!p)
1337 return -ENOMEM;
1338
1339 alg = &p->skcipher;
1340 *alg = tmpl->skcipher;
1341
1342 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1343 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1344 alg->base.cra_priority = N2_CRA_PRIORITY;
1345 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1346 CRYPTO_ALG_ALLOCATES_MEMORY;
1347 alg->base.cra_blocksize = tmpl->block_size;
1348 p->enc_type = tmpl->enc_type;
1349 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1350 alg->base.cra_module = THIS_MODULE;
1351 alg->init = n2_skcipher_init_tfm;
1352
1353 list_add(&p->entry, &skcipher_algs);
1354 err = crypto_register_skcipher(alg);
1355 if (err) {
1356 pr_err("%s alg registration failed\n", alg->base.cra_name);
1357 list_del(&p->entry);
1358 kfree(p);
1359 } else {
1360 pr_info("%s alg registered\n", alg->base.cra_name);
1361 }
1362 return err;
1363}
1364
1365static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1366{
1367 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1368 struct ahash_alg *ahash;
1369 struct crypto_alg *base;
1370 int err;
1371
1372 if (!p)
1373 return -ENOMEM;
1374
1375 p->child_alg = n2ahash->alg.halg.base.cra_name;
1376 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1377 INIT_LIST_HEAD(&p->derived.entry);
1378
1379 ahash = &p->derived.alg;
1380 ahash->digest = n2_hmac_async_digest;
1381 ahash->setkey = n2_hmac_async_setkey;
1382
1383 base = &ahash->halg.base;
1384 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1385 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1386
1387 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1388 base->cra_init = n2_hmac_cra_init;
1389 base->cra_exit = n2_hmac_cra_exit;
1390
1391 list_add(&p->derived.entry, &hmac_algs);
1392 err = crypto_register_ahash(ahash);
1393 if (err) {
1394 pr_err("%s alg registration failed\n", base->cra_name);
1395 list_del(&p->derived.entry);
1396 kfree(p);
1397 } else {
1398 pr_info("%s alg registered\n", base->cra_name);
1399 }
1400 return err;
1401}
1402
1403static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1404{
1405 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406 struct hash_alg_common *halg;
1407 struct crypto_alg *base;
1408 struct ahash_alg *ahash;
1409 int err;
1410
1411 if (!p)
1412 return -ENOMEM;
1413
1414 p->hash_zero = tmpl->hash_zero;
1415 p->hash_init = tmpl->hash_init;
1416 p->auth_type = tmpl->auth_type;
1417 p->hmac_type = tmpl->hmac_type;
1418 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1419 p->digest_size = tmpl->digest_size;
1420
1421 ahash = &p->alg;
1422 ahash->init = n2_hash_async_init;
1423 ahash->update = n2_hash_async_update;
1424 ahash->final = n2_hash_async_final;
1425 ahash->finup = n2_hash_async_finup;
1426 ahash->digest = n2_hash_async_digest;
1427 ahash->export = n2_hash_async_noexport;
1428 ahash->import = n2_hash_async_noimport;
1429
1430 halg = &ahash->halg;
1431 halg->digestsize = tmpl->digest_size;
1432 halg->statesize = tmpl->statesize;
1433
1434 base = &halg->base;
1435 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1436 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1437 base->cra_priority = N2_CRA_PRIORITY;
1438 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1439 CRYPTO_ALG_NEED_FALLBACK;
1440 base->cra_blocksize = tmpl->block_size;
1441 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1442 base->cra_module = THIS_MODULE;
1443 base->cra_init = n2_hash_cra_init;
1444 base->cra_exit = n2_hash_cra_exit;
1445
1446 list_add(&p->entry, &ahash_algs);
1447 err = crypto_register_ahash(ahash);
1448 if (err) {
1449 pr_err("%s alg registration failed\n", base->cra_name);
1450 list_del(&p->entry);
1451 kfree(p);
1452 } else {
1453 pr_info("%s alg registered\n", base->cra_name);
1454 }
1455 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1456 err = __n2_register_one_hmac(p);
1457 return err;
1458}
1459
1460static int n2_register_algs(void)
1461{
1462 int i, err = 0;
1463
1464 mutex_lock(&spu_lock);
1465 if (algs_registered++)
1466 goto out;
1467
1468 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1469 err = __n2_register_one_ahash(&hash_tmpls[i]);
1470 if (err) {
1471 __n2_unregister_algs();
1472 goto out;
1473 }
1474 }
1475 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1476 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1477 if (err) {
1478 __n2_unregister_algs();
1479 goto out;
1480 }
1481 }
1482
1483out:
1484 mutex_unlock(&spu_lock);
1485 return err;
1486}
1487
1488static void n2_unregister_algs(void)
1489{
1490 mutex_lock(&spu_lock);
1491 if (!--algs_registered)
1492 __n2_unregister_algs();
1493 mutex_unlock(&spu_lock);
1494}
1495
1496/* To map CWQ queues to interrupt sources, the hypervisor API provides
1497 * a devino. This isn't very useful to us because all of the
1498 * interrupts listed in the device_node have been translated to
1499 * Linux virtual IRQ cookie numbers.
1500 *
1501 * So we have to back-translate, going through the 'intr' and 'ino'
1502 * property tables of the n2cp MDESC node, matching it with the OF
1503 * 'interrupts' property entries, in order to figure out which
1504 * devino goes to which already-translated IRQ.
1505 */
1506static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1507 unsigned long dev_ino)
1508{
1509 const unsigned int *dev_intrs;
1510 unsigned int intr;
1511 int i;
1512
1513 for (i = 0; i < ip->num_intrs; i++) {
1514 if (ip->ino_table[i].ino == dev_ino)
1515 break;
1516 }
1517 if (i == ip->num_intrs)
1518 return -ENODEV;
1519
1520 intr = ip->ino_table[i].intr;
1521
1522 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1523 if (!dev_intrs)
1524 return -ENODEV;
1525
1526 for (i = 0; i < dev->archdata.num_irqs; i++) {
1527 if (dev_intrs[i] == intr)
1528 return i;
1529 }
1530
1531 return -ENODEV;
1532}
1533
1534static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1535 const char *irq_name, struct spu_queue *p,
1536 irq_handler_t handler)
1537{
1538 unsigned long herr;
1539 int index;
1540
1541 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1542 if (herr)
1543 return -EINVAL;
1544
1545 index = find_devino_index(dev, ip, p->devino);
1546 if (index < 0)
1547 return index;
1548
1549 p->irq = dev->archdata.irqs[index];
1550
1551 sprintf(p->irq_name, "%s-%d", irq_name, index);
1552
1553 return request_irq(p->irq, handler, 0, p->irq_name, p);
1554}
1555
1556static struct kmem_cache *queue_cache[2];
1557
1558static void *new_queue(unsigned long q_type)
1559{
1560 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1561}
1562
1563static void free_queue(void *p, unsigned long q_type)
1564{
1565 kmem_cache_free(queue_cache[q_type - 1], p);
1566}
1567
1568static int queue_cache_init(void)
1569{
1570 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1572 kmem_cache_create("mau_queue",
1573 (MAU_NUM_ENTRIES *
1574 MAU_ENTRY_SIZE),
1575 MAU_ENTRY_SIZE, 0, NULL);
1576 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1577 return -ENOMEM;
1578
1579 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1580 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1581 kmem_cache_create("cwq_queue",
1582 (CWQ_NUM_ENTRIES *
1583 CWQ_ENTRY_SIZE),
1584 CWQ_ENTRY_SIZE, 0, NULL);
1585 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1586 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1587 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1588 return -ENOMEM;
1589 }
1590 return 0;
1591}
1592
1593static void queue_cache_destroy(void)
1594{
1595 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1596 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1597 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1598 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1599}
1600
1601static long spu_queue_register_workfn(void *arg)
1602{
1603 struct spu_qreg *qr = arg;
1604 struct spu_queue *p = qr->queue;
1605 unsigned long q_type = qr->type;
1606 unsigned long hv_ret;
1607
1608 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1609 CWQ_NUM_ENTRIES, &p->qhandle);
1610 if (!hv_ret)
1611 sun4v_ncs_sethead_marker(p->qhandle, 0);
1612
1613 return hv_ret ? -EINVAL : 0;
1614}
1615
1616static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1617{
1618 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1619 struct spu_qreg qr = { .queue = p, .type = q_type };
1620
1621 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1622}
1623
1624static int spu_queue_setup(struct spu_queue *p)
1625{
1626 int err;
1627
1628 p->q = new_queue(p->q_type);
1629 if (!p->q)
1630 return -ENOMEM;
1631
1632 err = spu_queue_register(p, p->q_type);
1633 if (err) {
1634 free_queue(p->q, p->q_type);
1635 p->q = NULL;
1636 }
1637
1638 return err;
1639}
1640
1641static void spu_queue_destroy(struct spu_queue *p)
1642{
1643 unsigned long hv_ret;
1644
1645 if (!p->q)
1646 return;
1647
1648 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1649
1650 if (!hv_ret)
1651 free_queue(p->q, p->q_type);
1652}
1653
1654static void spu_list_destroy(struct list_head *list)
1655{
1656 struct spu_queue *p, *n;
1657
1658 list_for_each_entry_safe(p, n, list, list) {
1659 int i;
1660
1661 for (i = 0; i < NR_CPUS; i++) {
1662 if (cpu_to_cwq[i] == p)
1663 cpu_to_cwq[i] = NULL;
1664 }
1665
1666 if (p->irq) {
1667 free_irq(p->irq, p);
1668 p->irq = 0;
1669 }
1670 spu_queue_destroy(p);
1671 list_del(&p->list);
1672 kfree(p);
1673 }
1674}
1675
1676/* Walk the backward arcs of a CWQ 'exec-unit' node,
1677 * gathering cpu membership information.
1678 */
1679static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1680 struct platform_device *dev,
1681 u64 node, struct spu_queue *p,
1682 struct spu_queue **table)
1683{
1684 u64 arc;
1685
1686 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1687 u64 tgt = mdesc_arc_target(mdesc, arc);
1688 const char *name = mdesc_node_name(mdesc, tgt);
1689 const u64 *id;
1690
1691 if (strcmp(name, "cpu"))
1692 continue;
1693 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1694 if (table[*id] != NULL) {
1695 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1696 dev->dev.of_node);
1697 return -EINVAL;
1698 }
1699 cpumask_set_cpu(*id, &p->sharing);
1700 table[*id] = p;
1701 }
1702 return 0;
1703}
1704
1705/* Process an 'exec-unit' MDESC node of type 'cwq'. */
1706static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1707 struct platform_device *dev, struct mdesc_handle *mdesc,
1708 u64 node, const char *iname, unsigned long q_type,
1709 irq_handler_t handler, struct spu_queue **table)
1710{
1711 struct spu_queue *p;
1712 int err;
1713
1714 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1715 if (!p) {
1716 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1717 dev->dev.of_node);
1718 return -ENOMEM;
1719 }
1720
1721 cpumask_clear(&p->sharing);
1722 spin_lock_init(&p->lock);
1723 p->q_type = q_type;
1724 INIT_LIST_HEAD(&p->jobs);
1725 list_add(&p->list, list);
1726
1727 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1728 if (err)
1729 return err;
1730
1731 err = spu_queue_setup(p);
1732 if (err)
1733 return err;
1734
1735 return spu_map_ino(dev, ip, iname, p, handler);
1736}
1737
1738static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1739 struct spu_mdesc_info *ip, struct list_head *list,
1740 const char *exec_name, unsigned long q_type,
1741 irq_handler_t handler, struct spu_queue **table)
1742{
1743 int err = 0;
1744 u64 node;
1745
1746 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1747 const char *type;
1748
1749 type = mdesc_get_property(mdesc, node, "type", NULL);
1750 if (!type || strcmp(type, exec_name))
1751 continue;
1752
1753 err = handle_exec_unit(ip, list, dev, mdesc, node,
1754 exec_name, q_type, handler, table);
1755 if (err) {
1756 spu_list_destroy(list);
1757 break;
1758 }
1759 }
1760
1761 return err;
1762}
1763
1764static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1765 struct spu_mdesc_info *ip)
1766{
1767 const u64 *ino;
1768 int ino_len;
1769 int i;
1770
1771 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1772 if (!ino) {
1773 printk("NO 'ino'\n");
1774 return -ENODEV;
1775 }
1776
1777 ip->num_intrs = ino_len / sizeof(u64);
1778 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1779 ip->num_intrs),
1780 GFP_KERNEL);
1781 if (!ip->ino_table)
1782 return -ENOMEM;
1783
1784 for (i = 0; i < ip->num_intrs; i++) {
1785 struct ino_blob *b = &ip->ino_table[i];
1786 b->intr = i + 1;
1787 b->ino = ino[i];
1788 }
1789
1790 return 0;
1791}
1792
1793static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1794 struct platform_device *dev,
1795 struct spu_mdesc_info *ip,
1796 const char *node_name)
1797{
1798 const unsigned int *reg;
1799 u64 node;
1800
1801 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1802 if (!reg)
1803 return -ENODEV;
1804
1805 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1806 const char *name;
1807 const u64 *chdl;
1808
1809 name = mdesc_get_property(mdesc, node, "name", NULL);
1810 if (!name || strcmp(name, node_name))
1811 continue;
1812 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1813 if (!chdl || (*chdl != *reg))
1814 continue;
1815 ip->cfg_handle = *chdl;
1816 return get_irq_props(mdesc, node, ip);
1817 }
1818
1819 return -ENODEV;
1820}
1821
1822static unsigned long n2_spu_hvapi_major;
1823static unsigned long n2_spu_hvapi_minor;
1824
1825static int n2_spu_hvapi_register(void)
1826{
1827 int err;
1828
1829 n2_spu_hvapi_major = 2;
1830 n2_spu_hvapi_minor = 0;
1831
1832 err = sun4v_hvapi_register(HV_GRP_NCS,
1833 n2_spu_hvapi_major,
1834 &n2_spu_hvapi_minor);
1835
1836 if (!err)
1837 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1838 n2_spu_hvapi_major,
1839 n2_spu_hvapi_minor);
1840
1841 return err;
1842}
1843
1844static void n2_spu_hvapi_unregister(void)
1845{
1846 sun4v_hvapi_unregister(HV_GRP_NCS);
1847}
1848
1849static int global_ref;
1850
1851static int grab_global_resources(void)
1852{
1853 int err = 0;
1854
1855 mutex_lock(&spu_lock);
1856
1857 if (global_ref++)
1858 goto out;
1859
1860 err = n2_spu_hvapi_register();
1861 if (err)
1862 goto out;
1863
1864 err = queue_cache_init();
1865 if (err)
1866 goto out_hvapi_release;
1867
1868 err = -ENOMEM;
1869 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1870 GFP_KERNEL);
1871 if (!cpu_to_cwq)
1872 goto out_queue_cache_destroy;
1873
1874 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1875 GFP_KERNEL);
1876 if (!cpu_to_mau)
1877 goto out_free_cwq_table;
1878
1879 err = 0;
1880
1881out:
1882 if (err)
1883 global_ref--;
1884 mutex_unlock(&spu_lock);
1885 return err;
1886
1887out_free_cwq_table:
1888 kfree(cpu_to_cwq);
1889 cpu_to_cwq = NULL;
1890
1891out_queue_cache_destroy:
1892 queue_cache_destroy();
1893
1894out_hvapi_release:
1895 n2_spu_hvapi_unregister();
1896 goto out;
1897}
1898
1899static void release_global_resources(void)
1900{
1901 mutex_lock(&spu_lock);
1902 if (!--global_ref) {
1903 kfree(cpu_to_cwq);
1904 cpu_to_cwq = NULL;
1905
1906 kfree(cpu_to_mau);
1907 cpu_to_mau = NULL;
1908
1909 queue_cache_destroy();
1910 n2_spu_hvapi_unregister();
1911 }
1912 mutex_unlock(&spu_lock);
1913}
1914
1915static struct n2_crypto *alloc_n2cp(void)
1916{
1917 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1918
1919 if (np)
1920 INIT_LIST_HEAD(&np->cwq_list);
1921
1922 return np;
1923}
1924
1925static void free_n2cp(struct n2_crypto *np)
1926{
1927 kfree(np->cwq_info.ino_table);
1928 np->cwq_info.ino_table = NULL;
1929
1930 kfree(np);
1931}
1932
1933static void n2_spu_driver_version(void)
1934{
1935 static int n2_spu_version_printed;
1936
1937 if (n2_spu_version_printed++ == 0)
1938 pr_info("%s", version);
1939}
1940
1941static int n2_crypto_probe(struct platform_device *dev)
1942{
1943 struct mdesc_handle *mdesc;
1944 struct n2_crypto *np;
1945 int err;
1946
1947 n2_spu_driver_version();
1948
1949 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1950
1951 np = alloc_n2cp();
1952 if (!np) {
1953 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1954 dev->dev.of_node);
1955 return -ENOMEM;
1956 }
1957
1958 err = grab_global_resources();
1959 if (err) {
1960 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1961 dev->dev.of_node);
1962 goto out_free_n2cp;
1963 }
1964
1965 mdesc = mdesc_grab();
1966
1967 if (!mdesc) {
1968 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1969 dev->dev.of_node);
1970 err = -ENODEV;
1971 goto out_free_global;
1972 }
1973 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1974 if (err) {
1975 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1976 dev->dev.of_node);
1977 mdesc_release(mdesc);
1978 goto out_free_global;
1979 }
1980
1981 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1982 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1983 cpu_to_cwq);
1984 mdesc_release(mdesc);
1985
1986 if (err) {
1987 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1988 dev->dev.of_node);
1989 goto out_free_global;
1990 }
1991
1992 err = n2_register_algs();
1993 if (err) {
1994 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1995 dev->dev.of_node);
1996 goto out_free_spu_list;
1997 }
1998
1999 dev_set_drvdata(&dev->dev, np);
2000
2001 return 0;
2002
2003out_free_spu_list:
2004 spu_list_destroy(&np->cwq_list);
2005
2006out_free_global:
2007 release_global_resources();
2008
2009out_free_n2cp:
2010 free_n2cp(np);
2011
2012 return err;
2013}
2014
2015static int n2_crypto_remove(struct platform_device *dev)
2016{
2017 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2018
2019 n2_unregister_algs();
2020
2021 spu_list_destroy(&np->cwq_list);
2022
2023 release_global_resources();
2024
2025 free_n2cp(np);
2026
2027 return 0;
2028}
2029
2030static struct n2_mau *alloc_ncp(void)
2031{
2032 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2033
2034 if (mp)
2035 INIT_LIST_HEAD(&mp->mau_list);
2036
2037 return mp;
2038}
2039
2040static void free_ncp(struct n2_mau *mp)
2041{
2042 kfree(mp->mau_info.ino_table);
2043 mp->mau_info.ino_table = NULL;
2044
2045 kfree(mp);
2046}
2047
2048static int n2_mau_probe(struct platform_device *dev)
2049{
2050 struct mdesc_handle *mdesc;
2051 struct n2_mau *mp;
2052 int err;
2053
2054 n2_spu_driver_version();
2055
2056 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2057
2058 mp = alloc_ncp();
2059 if (!mp) {
2060 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2061 dev->dev.of_node);
2062 return -ENOMEM;
2063 }
2064
2065 err = grab_global_resources();
2066 if (err) {
2067 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2068 dev->dev.of_node);
2069 goto out_free_ncp;
2070 }
2071
2072 mdesc = mdesc_grab();
2073
2074 if (!mdesc) {
2075 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2076 dev->dev.of_node);
2077 err = -ENODEV;
2078 goto out_free_global;
2079 }
2080
2081 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2082 if (err) {
2083 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2084 dev->dev.of_node);
2085 mdesc_release(mdesc);
2086 goto out_free_global;
2087 }
2088
2089 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2090 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2091 cpu_to_mau);
2092 mdesc_release(mdesc);
2093
2094 if (err) {
2095 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2096 dev->dev.of_node);
2097 goto out_free_global;
2098 }
2099
2100 dev_set_drvdata(&dev->dev, mp);
2101
2102 return 0;
2103
2104out_free_global:
2105 release_global_resources();
2106
2107out_free_ncp:
2108 free_ncp(mp);
2109
2110 return err;
2111}
2112
2113static int n2_mau_remove(struct platform_device *dev)
2114{
2115 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2116
2117 spu_list_destroy(&mp->mau_list);
2118
2119 release_global_resources();
2120
2121 free_ncp(mp);
2122
2123 return 0;
2124}
2125
2126static const struct of_device_id n2_crypto_match[] = {
2127 {
2128 .name = "n2cp",
2129 .compatible = "SUNW,n2-cwq",
2130 },
2131 {
2132 .name = "n2cp",
2133 .compatible = "SUNW,vf-cwq",
2134 },
2135 {
2136 .name = "n2cp",
2137 .compatible = "SUNW,kt-cwq",
2138 },
2139 {},
2140};
2141
2142MODULE_DEVICE_TABLE(of, n2_crypto_match);
2143
2144static struct platform_driver n2_crypto_driver = {
2145 .driver = {
2146 .name = "n2cp",
2147 .of_match_table = n2_crypto_match,
2148 },
2149 .probe = n2_crypto_probe,
2150 .remove = n2_crypto_remove,
2151};
2152
2153static const struct of_device_id n2_mau_match[] = {
2154 {
2155 .name = "ncp",
2156 .compatible = "SUNW,n2-mau",
2157 },
2158 {
2159 .name = "ncp",
2160 .compatible = "SUNW,vf-mau",
2161 },
2162 {
2163 .name = "ncp",
2164 .compatible = "SUNW,kt-mau",
2165 },
2166 {},
2167};
2168
2169MODULE_DEVICE_TABLE(of, n2_mau_match);
2170
2171static struct platform_driver n2_mau_driver = {
2172 .driver = {
2173 .name = "ncp",
2174 .of_match_table = n2_mau_match,
2175 },
2176 .probe = n2_mau_probe,
2177 .remove = n2_mau_remove,
2178};
2179
2180static struct platform_driver * const drivers[] = {
2181 &n2_crypto_driver,
2182 &n2_mau_driver,
2183};
2184
2185static int __init n2_init(void)
2186{
2187 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2188}
2189
2190static void __exit n2_exit(void)
2191{
2192 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2193}
2194
2195module_init(n2_init);
2196module_exit(n2_exit);