Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_device.h>
  13#include <linux/cpumask.h>
  14#include <linux/slab.h>
  15#include <linux/interrupt.h>
  16#include <linux/crypto.h>
  17#include <crypto/md5.h>
  18#include <crypto/sha.h>
 
  19#include <crypto/aes.h>
  20#include <crypto/internal/des.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/sched.h>
  24
  25#include <crypto/internal/hash.h>
  26#include <crypto/internal/skcipher.h>
  27#include <crypto/scatterwalk.h>
  28#include <crypto/algapi.h>
  29
  30#include <asm/hypervisor.h>
  31#include <asm/mdesc.h>
  32
  33#include "n2_core.h"
  34
  35#define DRV_MODULE_NAME		"n2_crypto"
  36#define DRV_MODULE_VERSION	"0.2"
  37#define DRV_MODULE_RELDATE	"July 28, 2011"
  38
  39static const char version[] =
  40	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  41
  42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  43MODULE_DESCRIPTION("Niagara2 Crypto driver");
  44MODULE_LICENSE("GPL");
  45MODULE_VERSION(DRV_MODULE_VERSION);
  46
  47#define N2_CRA_PRIORITY		200
  48
  49static DEFINE_MUTEX(spu_lock);
  50
  51struct spu_queue {
  52	cpumask_t		sharing;
  53	unsigned long		qhandle;
  54
  55	spinlock_t		lock;
  56	u8			q_type;
  57	void			*q;
  58	unsigned long		head;
  59	unsigned long		tail;
  60	struct list_head	jobs;
  61
  62	unsigned long		devino;
  63
  64	char			irq_name[32];
  65	unsigned int		irq;
  66
  67	struct list_head	list;
  68};
  69
  70struct spu_qreg {
  71	struct spu_queue	*queue;
  72	unsigned long		type;
  73};
  74
  75static struct spu_queue **cpu_to_cwq;
  76static struct spu_queue **cpu_to_mau;
  77
  78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  79{
  80	if (q->q_type == HV_NCS_QTYPE_MAU) {
  81		off += MAU_ENTRY_SIZE;
  82		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  83			off = 0;
  84	} else {
  85		off += CWQ_ENTRY_SIZE;
  86		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  87			off = 0;
  88	}
  89	return off;
  90}
  91
  92struct n2_request_common {
  93	struct list_head	entry;
  94	unsigned int		offset;
  95};
  96#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  97
  98/* An async job request records the final tail value it used in
  99 * n2_request_common->offset, test to see if that offset is in
 100 * the range old_head, new_head, inclusive.
 101 */
 102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 103				unsigned long old_head, unsigned long new_head)
 104{
 105	if (old_head <= new_head) {
 106		if (offset > old_head && offset <= new_head)
 107			return true;
 108	} else {
 109		if (offset > old_head || offset <= new_head)
 110			return true;
 111	}
 112	return false;
 113}
 114
 115/* When the HEAD marker is unequal to the actual HEAD, we get
 116 * a virtual device INO interrupt.  We should process the
 117 * completed CWQ entries and adjust the HEAD marker to clear
 118 * the IRQ.
 119 */
 120static irqreturn_t cwq_intr(int irq, void *dev_id)
 121{
 122	unsigned long off, new_head, hv_ret;
 123	struct spu_queue *q = dev_id;
 124
 125	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 126	       smp_processor_id(), q->qhandle);
 127
 128	spin_lock(&q->lock);
 129
 130	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 131
 132	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 133	       smp_processor_id(), new_head, hv_ret);
 134
 135	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 136		/* XXX ... XXX */
 137	}
 138
 139	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 140	if (hv_ret == HV_EOK)
 141		q->head = new_head;
 142
 143	spin_unlock(&q->lock);
 144
 145	return IRQ_HANDLED;
 146}
 147
 148static irqreturn_t mau_intr(int irq, void *dev_id)
 149{
 150	struct spu_queue *q = dev_id;
 151	unsigned long head, hv_ret;
 152
 153	spin_lock(&q->lock);
 154
 155	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 156	       smp_processor_id(), q->qhandle);
 157
 158	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 159
 160	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 161	       smp_processor_id(), head, hv_ret);
 162
 163	sun4v_ncs_sethead_marker(q->qhandle, head);
 164
 165	spin_unlock(&q->lock);
 166
 167	return IRQ_HANDLED;
 168}
 169
 170static void *spu_queue_next(struct spu_queue *q, void *cur)
 171{
 172	return q->q + spu_next_offset(q, cur - q->q);
 173}
 174
 175static int spu_queue_num_free(struct spu_queue *q)
 176{
 177	unsigned long head = q->head;
 178	unsigned long tail = q->tail;
 179	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 180	unsigned long diff;
 181
 182	if (head > tail)
 183		diff = head - tail;
 184	else
 185		diff = (end - tail) + head;
 186
 187	return (diff / CWQ_ENTRY_SIZE) - 1;
 188}
 189
 190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 191{
 192	int avail = spu_queue_num_free(q);
 193
 194	if (avail >= num_entries)
 195		return q->q + q->tail;
 196
 197	return NULL;
 198}
 199
 200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 201{
 202	unsigned long hv_ret, new_tail;
 203
 204	new_tail = spu_next_offset(q, last - q->q);
 205
 206	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 207	if (hv_ret == HV_EOK)
 208		q->tail = new_tail;
 209	return hv_ret;
 210}
 211
 212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 213			     int enc_type, int auth_type,
 214			     unsigned int hash_len,
 215			     bool sfas, bool sob, bool eob, bool encrypt,
 216			     int opcode)
 217{
 218	u64 word = (len - 1) & CONTROL_LEN;
 219
 220	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 221	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 222	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 223	if (sfas)
 224		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 225	if (sob)
 226		word |= CONTROL_START_OF_BLOCK;
 227	if (eob)
 228		word |= CONTROL_END_OF_BLOCK;
 229	if (encrypt)
 230		word |= CONTROL_ENCRYPT;
 231	if (hmac_key_len)
 232		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 233	if (hash_len)
 234		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 235
 236	return word;
 237}
 238
 239#if 0
 240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 241{
 242	if (this_len >= 64 ||
 243	    qp->head != qp->tail)
 244		return true;
 245	return false;
 246}
 247#endif
 248
 249struct n2_ahash_alg {
 250	struct list_head	entry;
 251	const u8		*hash_zero;
 252	const u32		*hash_init;
 253	u8			hw_op_hashsz;
 254	u8			digest_size;
 255	u8			auth_type;
 256	u8			hmac_type;
 257	struct ahash_alg	alg;
 258};
 259
 260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 261{
 262	struct crypto_alg *alg = tfm->__crt_alg;
 263	struct ahash_alg *ahash_alg;
 264
 265	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 266
 267	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 268}
 269
 270struct n2_hmac_alg {
 271	const char		*child_alg;
 272	struct n2_ahash_alg	derived;
 273};
 274
 275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 276{
 277	struct crypto_alg *alg = tfm->__crt_alg;
 278	struct ahash_alg *ahash_alg;
 279
 280	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 281
 282	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 283}
 284
 285struct n2_hash_ctx {
 286	struct crypto_ahash		*fallback_tfm;
 287};
 288
 289#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 290
 291struct n2_hmac_ctx {
 292	struct n2_hash_ctx		base;
 293
 294	struct crypto_shash		*child_shash;
 295
 296	int				hash_key_len;
 297	unsigned char			hash_key[N2_HASH_KEY_MAX];
 298};
 299
 300struct n2_hash_req_ctx {
 301	union {
 302		struct md5_state	md5;
 303		struct sha1_state	sha1;
 304		struct sha256_state	sha256;
 305	} u;
 306
 307	struct ahash_request		fallback_req;
 308};
 309
 310static int n2_hash_async_init(struct ahash_request *req)
 311{
 312	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 313	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 314	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 315
 316	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 317	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 318
 319	return crypto_ahash_init(&rctx->fallback_req);
 320}
 321
 322static int n2_hash_async_update(struct ahash_request *req)
 323{
 324	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 325	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 326	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 327
 328	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 329	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 330	rctx->fallback_req.nbytes = req->nbytes;
 331	rctx->fallback_req.src = req->src;
 332
 333	return crypto_ahash_update(&rctx->fallback_req);
 334}
 335
 336static int n2_hash_async_final(struct ahash_request *req)
 337{
 338	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 339	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 340	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 341
 342	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 343	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 344	rctx->fallback_req.result = req->result;
 345
 346	return crypto_ahash_final(&rctx->fallback_req);
 347}
 348
 349static int n2_hash_async_finup(struct ahash_request *req)
 350{
 351	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 352	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 353	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 354
 355	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 356	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 357	rctx->fallback_req.nbytes = req->nbytes;
 358	rctx->fallback_req.src = req->src;
 359	rctx->fallback_req.result = req->result;
 360
 361	return crypto_ahash_finup(&rctx->fallback_req);
 362}
 363
 364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 365{
 366	return -ENOSYS;
 367}
 368
 369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 370{
 371	return -ENOSYS;
 372}
 373
 374static int n2_hash_cra_init(struct crypto_tfm *tfm)
 375{
 376	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 377	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 378	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 379	struct crypto_ahash *fallback_tfm;
 380	int err;
 381
 382	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 383					  CRYPTO_ALG_NEED_FALLBACK);
 384	if (IS_ERR(fallback_tfm)) {
 385		pr_warn("Fallback driver '%s' could not be loaded!\n",
 386			fallback_driver_name);
 387		err = PTR_ERR(fallback_tfm);
 388		goto out;
 389	}
 390
 391	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 392					 crypto_ahash_reqsize(fallback_tfm)));
 393
 394	ctx->fallback_tfm = fallback_tfm;
 395	return 0;
 396
 397out:
 398	return err;
 399}
 400
 401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 402{
 403	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 404	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 405
 406	crypto_free_ahash(ctx->fallback_tfm);
 407}
 408
 409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 410{
 411	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 412	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 413	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 414	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 415	struct crypto_ahash *fallback_tfm;
 416	struct crypto_shash *child_shash;
 417	int err;
 418
 419	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 420					  CRYPTO_ALG_NEED_FALLBACK);
 421	if (IS_ERR(fallback_tfm)) {
 422		pr_warn("Fallback driver '%s' could not be loaded!\n",
 423			fallback_driver_name);
 424		err = PTR_ERR(fallback_tfm);
 425		goto out;
 426	}
 427
 428	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 429	if (IS_ERR(child_shash)) {
 430		pr_warn("Child shash '%s' could not be loaded!\n",
 431			n2alg->child_alg);
 432		err = PTR_ERR(child_shash);
 433		goto out_free_fallback;
 434	}
 435
 436	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 437					 crypto_ahash_reqsize(fallback_tfm)));
 438
 439	ctx->child_shash = child_shash;
 440	ctx->base.fallback_tfm = fallback_tfm;
 441	return 0;
 442
 443out_free_fallback:
 444	crypto_free_ahash(fallback_tfm);
 445
 446out:
 447	return err;
 448}
 449
 450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 451{
 452	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 453	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 454
 455	crypto_free_ahash(ctx->base.fallback_tfm);
 456	crypto_free_shash(ctx->child_shash);
 457}
 458
 459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 460				unsigned int keylen)
 461{
 462	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 463	struct crypto_shash *child_shash = ctx->child_shash;
 464	struct crypto_ahash *fallback_tfm;
 465	int err, bs, ds;
 466
 467	fallback_tfm = ctx->base.fallback_tfm;
 468	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 469	if (err)
 470		return err;
 471
 472	bs = crypto_shash_blocksize(child_shash);
 473	ds = crypto_shash_digestsize(child_shash);
 474	BUG_ON(ds > N2_HASH_KEY_MAX);
 475	if (keylen > bs) {
 476		err = crypto_shash_tfm_digest(child_shash, key, keylen,
 477					      ctx->hash_key);
 478		if (err)
 479			return err;
 480		keylen = ds;
 481	} else if (keylen <= N2_HASH_KEY_MAX)
 482		memcpy(ctx->hash_key, key, keylen);
 483
 484	ctx->hash_key_len = keylen;
 485
 486	return err;
 487}
 488
 489static unsigned long wait_for_tail(struct spu_queue *qp)
 490{
 491	unsigned long head, hv_ret;
 492
 493	do {
 494		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 495		if (hv_ret != HV_EOK) {
 496			pr_err("Hypervisor error on gethead\n");
 497			break;
 498		}
 499		if (head == qp->tail) {
 500			qp->head = head;
 501			break;
 502		}
 503	} while (1);
 504	return hv_ret;
 505}
 506
 507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 508					      struct cwq_initial_entry *ent)
 509{
 510	unsigned long hv_ret = spu_queue_submit(qp, ent);
 511
 512	if (hv_ret == HV_EOK)
 513		hv_ret = wait_for_tail(qp);
 514
 515	return hv_ret;
 516}
 517
 518static int n2_do_async_digest(struct ahash_request *req,
 519			      unsigned int auth_type, unsigned int digest_size,
 520			      unsigned int result_size, void *hash_loc,
 521			      unsigned long auth_key, unsigned int auth_key_len)
 522{
 523	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 524	struct cwq_initial_entry *ent;
 525	struct crypto_hash_walk walk;
 526	struct spu_queue *qp;
 527	unsigned long flags;
 528	int err = -ENODEV;
 529	int nbytes, cpu;
 530
 531	/* The total effective length of the operation may not
 532	 * exceed 2^16.
 533	 */
 534	if (unlikely(req->nbytes > (1 << 16))) {
 535		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 536		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 537
 538		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 539		rctx->fallback_req.base.flags =
 540			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 541		rctx->fallback_req.nbytes = req->nbytes;
 542		rctx->fallback_req.src = req->src;
 543		rctx->fallback_req.result = req->result;
 544
 545		return crypto_ahash_digest(&rctx->fallback_req);
 546	}
 547
 548	nbytes = crypto_hash_walk_first(req, &walk);
 549
 550	cpu = get_cpu();
 551	qp = cpu_to_cwq[cpu];
 552	if (!qp)
 553		goto out;
 554
 555	spin_lock_irqsave(&qp->lock, flags);
 556
 557	/* XXX can do better, improve this later by doing a by-hand scatterlist
 558	 * XXX walk, etc.
 559	 */
 560	ent = qp->q + qp->tail;
 561
 562	ent->control = control_word_base(nbytes, auth_key_len, 0,
 563					 auth_type, digest_size,
 564					 false, true, false, false,
 565					 OPCODE_INPLACE_BIT |
 566					 OPCODE_AUTH_MAC);
 567	ent->src_addr = __pa(walk.data);
 568	ent->auth_key_addr = auth_key;
 569	ent->auth_iv_addr = __pa(hash_loc);
 570	ent->final_auth_state_addr = 0UL;
 571	ent->enc_key_addr = 0UL;
 572	ent->enc_iv_addr = 0UL;
 573	ent->dest_addr = __pa(hash_loc);
 574
 575	nbytes = crypto_hash_walk_done(&walk, 0);
 576	while (nbytes > 0) {
 577		ent = spu_queue_next(qp, ent);
 578
 579		ent->control = (nbytes - 1);
 580		ent->src_addr = __pa(walk.data);
 581		ent->auth_key_addr = 0UL;
 582		ent->auth_iv_addr = 0UL;
 583		ent->final_auth_state_addr = 0UL;
 584		ent->enc_key_addr = 0UL;
 585		ent->enc_iv_addr = 0UL;
 586		ent->dest_addr = 0UL;
 587
 588		nbytes = crypto_hash_walk_done(&walk, 0);
 589	}
 590	ent->control |= CONTROL_END_OF_BLOCK;
 591
 592	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 593		err = -EINVAL;
 594	else
 595		err = 0;
 596
 597	spin_unlock_irqrestore(&qp->lock, flags);
 598
 599	if (!err)
 600		memcpy(req->result, hash_loc, result_size);
 601out:
 602	put_cpu();
 603
 604	return err;
 605}
 606
 607static int n2_hash_async_digest(struct ahash_request *req)
 608{
 609	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 610	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 611	int ds;
 612
 613	ds = n2alg->digest_size;
 614	if (unlikely(req->nbytes == 0)) {
 615		memcpy(req->result, n2alg->hash_zero, ds);
 616		return 0;
 617	}
 618	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 619
 620	return n2_do_async_digest(req, n2alg->auth_type,
 621				  n2alg->hw_op_hashsz, ds,
 622				  &rctx->u, 0UL, 0);
 623}
 624
 625static int n2_hmac_async_digest(struct ahash_request *req)
 626{
 627	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 628	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 629	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 630	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 631	int ds;
 632
 633	ds = n2alg->derived.digest_size;
 634	if (unlikely(req->nbytes == 0) ||
 635	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 636		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 637		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 638
 639		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 640		rctx->fallback_req.base.flags =
 641			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 642		rctx->fallback_req.nbytes = req->nbytes;
 643		rctx->fallback_req.src = req->src;
 644		rctx->fallback_req.result = req->result;
 645
 646		return crypto_ahash_digest(&rctx->fallback_req);
 647	}
 648	memcpy(&rctx->u, n2alg->derived.hash_init,
 649	       n2alg->derived.hw_op_hashsz);
 650
 651	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 652				  n2alg->derived.hw_op_hashsz, ds,
 653				  &rctx->u,
 654				  __pa(&ctx->hash_key),
 655				  ctx->hash_key_len);
 656}
 657
 658struct n2_skcipher_context {
 659	int			key_len;
 660	int			enc_type;
 661	union {
 662		u8		aes[AES_MAX_KEY_SIZE];
 663		u8		des[DES_KEY_SIZE];
 664		u8		des3[3 * DES_KEY_SIZE];
 665		u8		arc4[258]; /* S-box, X, Y */
 666	} key;
 667};
 668
 669#define N2_CHUNK_ARR_LEN	16
 670
 671struct n2_crypto_chunk {
 672	struct list_head	entry;
 673	unsigned long		iv_paddr : 44;
 674	unsigned long		arr_len : 20;
 675	unsigned long		dest_paddr;
 676	unsigned long		dest_final;
 677	struct {
 678		unsigned long	src_paddr : 44;
 679		unsigned long	src_len : 20;
 680	} arr[N2_CHUNK_ARR_LEN];
 681};
 682
 683struct n2_request_context {
 684	struct skcipher_walk	walk;
 685	struct list_head	chunk_list;
 686	struct n2_crypto_chunk	chunk;
 687	u8			temp_iv[16];
 688};
 689
 690/* The SPU allows some level of flexibility for partial cipher blocks
 691 * being specified in a descriptor.
 692 *
 693 * It merely requires that every descriptor's length field is at least
 694 * as large as the cipher block size.  This means that a cipher block
 695 * can span at most 2 descriptors.  However, this does not allow a
 696 * partial block to span into the final descriptor as that would
 697 * violate the rule (since every descriptor's length must be at lest
 698 * the block size).  So, for example, assuming an 8 byte block size:
 699 *
 700 *	0xe --> 0xa --> 0x8
 701 *
 702 * is a valid length sequence, whereas:
 703 *
 704 *	0xe --> 0xb --> 0x7
 705 *
 706 * is not a valid sequence.
 707 */
 708
 709struct n2_skcipher_alg {
 710	struct list_head	entry;
 711	u8			enc_type;
 712	struct skcipher_alg	skcipher;
 713};
 714
 715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
 716{
 717	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 718
 719	return container_of(alg, struct n2_skcipher_alg, skcipher);
 720}
 721
 722struct n2_skcipher_request_context {
 723	struct skcipher_walk	walk;
 724};
 725
 726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 727			 unsigned int keylen)
 728{
 729	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 730	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 731	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 732
 733	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 734
 735	switch (keylen) {
 736	case AES_KEYSIZE_128:
 737		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 738		break;
 739	case AES_KEYSIZE_192:
 740		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 741		break;
 742	case AES_KEYSIZE_256:
 743		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 744		break;
 745	default:
 746		return -EINVAL;
 747	}
 748
 749	ctx->key_len = keylen;
 750	memcpy(ctx->key.aes, key, keylen);
 751	return 0;
 752}
 753
 754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 755			 unsigned int keylen)
 756{
 757	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 758	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 759	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 760	int err;
 761
 762	err = verify_skcipher_des_key(skcipher, key);
 763	if (err)
 764		return err;
 765
 766	ctx->enc_type = n2alg->enc_type;
 767
 768	ctx->key_len = keylen;
 769	memcpy(ctx->key.des, key, keylen);
 770	return 0;
 771}
 772
 773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 774			  unsigned int keylen)
 775{
 776	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 777	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 778	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 779	int err;
 780
 781	err = verify_skcipher_des3_key(skcipher, key);
 782	if (err)
 783		return err;
 784
 785	ctx->enc_type = n2alg->enc_type;
 786
 787	ctx->key_len = keylen;
 788	memcpy(ctx->key.des3, key, keylen);
 789	return 0;
 790}
 791
 792static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 793			  unsigned int keylen)
 794{
 795	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 796	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 797	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 798	u8 *s = ctx->key.arc4;
 799	u8 *x = s + 256;
 800	u8 *y = x + 1;
 801	int i, j, k;
 802
 803	ctx->enc_type = n2alg->enc_type;
 804
 805	j = k = 0;
 806	*x = 0;
 807	*y = 0;
 808	for (i = 0; i < 256; i++)
 809		s[i] = i;
 810	for (i = 0; i < 256; i++) {
 811		u8 a = s[i];
 812		j = (j + key[k] + a) & 0xff;
 813		s[i] = s[j];
 814		s[j] = a;
 815		if (++k >= keylen)
 816			k = 0;
 817	}
 818
 819	return 0;
 820}
 821
 822static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
 823{
 824	int this_len = nbytes;
 825
 826	this_len -= (nbytes & (block_size - 1));
 827	return this_len > (1 << 16) ? (1 << 16) : this_len;
 828}
 829
 830static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
 831			    struct n2_crypto_chunk *cp,
 832			    struct spu_queue *qp, bool encrypt)
 833{
 834	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
 835	struct cwq_initial_entry *ent;
 836	bool in_place;
 837	int i;
 838
 839	ent = spu_queue_alloc(qp, cp->arr_len);
 840	if (!ent) {
 841		pr_info("queue_alloc() of %d fails\n",
 842			cp->arr_len);
 843		return -EBUSY;
 844	}
 845
 846	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 847
 848	ent->control = control_word_base(cp->arr[0].src_len,
 849					 0, ctx->enc_type, 0, 0,
 850					 false, true, false, encrypt,
 851					 OPCODE_ENCRYPT |
 852					 (in_place ? OPCODE_INPLACE_BIT : 0));
 853	ent->src_addr = cp->arr[0].src_paddr;
 854	ent->auth_key_addr = 0UL;
 855	ent->auth_iv_addr = 0UL;
 856	ent->final_auth_state_addr = 0UL;
 857	ent->enc_key_addr = __pa(&ctx->key);
 858	ent->enc_iv_addr = cp->iv_paddr;
 859	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 860
 861	for (i = 1; i < cp->arr_len; i++) {
 862		ent = spu_queue_next(qp, ent);
 863
 864		ent->control = cp->arr[i].src_len - 1;
 865		ent->src_addr = cp->arr[i].src_paddr;
 866		ent->auth_key_addr = 0UL;
 867		ent->auth_iv_addr = 0UL;
 868		ent->final_auth_state_addr = 0UL;
 869		ent->enc_key_addr = 0UL;
 870		ent->enc_iv_addr = 0UL;
 871		ent->dest_addr = 0UL;
 872	}
 873	ent->control |= CONTROL_END_OF_BLOCK;
 874
 875	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 876}
 877
 878static int n2_compute_chunks(struct skcipher_request *req)
 879{
 880	struct n2_request_context *rctx = skcipher_request_ctx(req);
 881	struct skcipher_walk *walk = &rctx->walk;
 882	struct n2_crypto_chunk *chunk;
 883	unsigned long dest_prev;
 884	unsigned int tot_len;
 885	bool prev_in_place;
 886	int err, nbytes;
 887
 888	err = skcipher_walk_async(walk, req);
 889	if (err)
 890		return err;
 891
 892	INIT_LIST_HEAD(&rctx->chunk_list);
 893
 894	chunk = &rctx->chunk;
 895	INIT_LIST_HEAD(&chunk->entry);
 896
 897	chunk->iv_paddr = 0UL;
 898	chunk->arr_len = 0;
 899	chunk->dest_paddr = 0UL;
 900
 901	prev_in_place = false;
 902	dest_prev = ~0UL;
 903	tot_len = 0;
 904
 905	while ((nbytes = walk->nbytes) != 0) {
 906		unsigned long dest_paddr, src_paddr;
 907		bool in_place;
 908		int this_len;
 909
 910		src_paddr = (page_to_phys(walk->src.phys.page) +
 911			     walk->src.phys.offset);
 912		dest_paddr = (page_to_phys(walk->dst.phys.page) +
 913			      walk->dst.phys.offset);
 914		in_place = (src_paddr == dest_paddr);
 915		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
 916
 917		if (chunk->arr_len != 0) {
 918			if (in_place != prev_in_place ||
 919			    (!prev_in_place &&
 920			     dest_paddr != dest_prev) ||
 921			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 922			    tot_len + this_len > (1 << 16)) {
 923				chunk->dest_final = dest_prev;
 924				list_add_tail(&chunk->entry,
 925					      &rctx->chunk_list);
 926				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 927				if (!chunk) {
 928					err = -ENOMEM;
 929					break;
 930				}
 931				INIT_LIST_HEAD(&chunk->entry);
 932			}
 933		}
 934		if (chunk->arr_len == 0) {
 935			chunk->dest_paddr = dest_paddr;
 936			tot_len = 0;
 937		}
 938		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 939		chunk->arr[chunk->arr_len].src_len = this_len;
 940		chunk->arr_len++;
 941
 942		dest_prev = dest_paddr + this_len;
 943		prev_in_place = in_place;
 944		tot_len += this_len;
 945
 946		err = skcipher_walk_done(walk, nbytes - this_len);
 947		if (err)
 948			break;
 949	}
 950	if (!err && chunk->arr_len != 0) {
 951		chunk->dest_final = dest_prev;
 952		list_add_tail(&chunk->entry, &rctx->chunk_list);
 953	}
 954
 955	return err;
 956}
 957
 958static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
 959{
 960	struct n2_request_context *rctx = skcipher_request_ctx(req);
 961	struct n2_crypto_chunk *c, *tmp;
 962
 963	if (final_iv)
 964		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 965
 966	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 967		list_del(&c->entry);
 968		if (unlikely(c != &rctx->chunk))
 969			kfree(c);
 970	}
 971
 972}
 973
 974static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
 975{
 976	struct n2_request_context *rctx = skcipher_request_ctx(req);
 977	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 978	int err = n2_compute_chunks(req);
 979	struct n2_crypto_chunk *c, *tmp;
 980	unsigned long flags, hv_ret;
 981	struct spu_queue *qp;
 982
 983	if (err)
 984		return err;
 985
 986	qp = cpu_to_cwq[get_cpu()];
 987	err = -ENODEV;
 988	if (!qp)
 989		goto out;
 990
 991	spin_lock_irqsave(&qp->lock, flags);
 992
 993	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 994		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 995		if (err)
 996			break;
 997		list_del(&c->entry);
 998		if (unlikely(c != &rctx->chunk))
 999			kfree(c);
1000	}
1001	if (!err) {
1002		hv_ret = wait_for_tail(qp);
1003		if (hv_ret != HV_EOK)
1004			err = -EINVAL;
1005	}
1006
1007	spin_unlock_irqrestore(&qp->lock, flags);
1008
1009out:
1010	put_cpu();
1011
1012	n2_chunk_complete(req, NULL);
1013	return err;
1014}
1015
1016static int n2_encrypt_ecb(struct skcipher_request *req)
1017{
1018	return n2_do_ecb(req, true);
1019}
1020
1021static int n2_decrypt_ecb(struct skcipher_request *req)
1022{
1023	return n2_do_ecb(req, false);
1024}
1025
1026static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027{
1028	struct n2_request_context *rctx = skcipher_request_ctx(req);
1029	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030	unsigned long flags, hv_ret, iv_paddr;
1031	int err = n2_compute_chunks(req);
1032	struct n2_crypto_chunk *c, *tmp;
1033	struct spu_queue *qp;
1034	void *final_iv_addr;
1035
1036	final_iv_addr = NULL;
1037
1038	if (err)
1039		return err;
1040
1041	qp = cpu_to_cwq[get_cpu()];
1042	err = -ENODEV;
1043	if (!qp)
1044		goto out;
1045
1046	spin_lock_irqsave(&qp->lock, flags);
1047
1048	if (encrypt) {
1049		iv_paddr = __pa(rctx->walk.iv);
1050		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051					 entry) {
1052			c->iv_paddr = iv_paddr;
1053			err = __n2_crypt_chunk(tfm, c, qp, true);
1054			if (err)
1055				break;
1056			iv_paddr = c->dest_final - rctx->walk.blocksize;
1057			list_del(&c->entry);
1058			if (unlikely(c != &rctx->chunk))
1059				kfree(c);
1060		}
1061		final_iv_addr = __va(iv_paddr);
1062	} else {
1063		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064						 entry) {
1065			if (c == &rctx->chunk) {
1066				iv_paddr = __pa(rctx->walk.iv);
1067			} else {
1068				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069					    tmp->arr[tmp->arr_len-1].src_len -
1070					    rctx->walk.blocksize);
1071			}
1072			if (!final_iv_addr) {
1073				unsigned long pa;
1074
1075				pa = (c->arr[c->arr_len-1].src_paddr +
1076				      c->arr[c->arr_len-1].src_len -
1077				      rctx->walk.blocksize);
1078				final_iv_addr = rctx->temp_iv;
1079				memcpy(rctx->temp_iv, __va(pa),
1080				       rctx->walk.blocksize);
1081			}
1082			c->iv_paddr = iv_paddr;
1083			err = __n2_crypt_chunk(tfm, c, qp, false);
1084			if (err)
1085				break;
1086			list_del(&c->entry);
1087			if (unlikely(c != &rctx->chunk))
1088				kfree(c);
1089		}
1090	}
1091	if (!err) {
1092		hv_ret = wait_for_tail(qp);
1093		if (hv_ret != HV_EOK)
1094			err = -EINVAL;
1095	}
1096
1097	spin_unlock_irqrestore(&qp->lock, flags);
1098
1099out:
1100	put_cpu();
1101
1102	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103	return err;
1104}
1105
1106static int n2_encrypt_chaining(struct skcipher_request *req)
1107{
1108	return n2_do_chaining(req, true);
1109}
1110
1111static int n2_decrypt_chaining(struct skcipher_request *req)
1112{
1113	return n2_do_chaining(req, false);
1114}
1115
1116struct n2_skcipher_tmpl {
1117	const char		*name;
1118	const char		*drv_name;
1119	u8			block_size;
1120	u8			enc_type;
1121	struct skcipher_alg	skcipher;
1122};
1123
1124static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125	/* ARC4: only ECB is supported (chaining bits ignored) */
1126	{	.name		= "ecb(arc4)",
1127		.drv_name	= "ecb-arc4",
1128		.block_size	= 1,
1129		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1130				   ENC_TYPE_CHAINING_ECB),
1131		.skcipher	= {
1132			.min_keysize	= 1,
1133			.max_keysize	= 256,
1134			.setkey		= n2_arc4_setkey,
1135			.encrypt	= n2_encrypt_ecb,
1136			.decrypt	= n2_decrypt_ecb,
1137		},
1138	},
1139
1140	/* DES: ECB CBC and CFB are supported */
1141	{	.name		= "ecb(des)",
1142		.drv_name	= "ecb-des",
1143		.block_size	= DES_BLOCK_SIZE,
1144		.enc_type	= (ENC_TYPE_ALG_DES |
1145				   ENC_TYPE_CHAINING_ECB),
1146		.skcipher	= {
1147			.min_keysize	= DES_KEY_SIZE,
1148			.max_keysize	= DES_KEY_SIZE,
1149			.setkey		= n2_des_setkey,
1150			.encrypt	= n2_encrypt_ecb,
1151			.decrypt	= n2_decrypt_ecb,
1152		},
1153	},
1154	{	.name		= "cbc(des)",
1155		.drv_name	= "cbc-des",
1156		.block_size	= DES_BLOCK_SIZE,
1157		.enc_type	= (ENC_TYPE_ALG_DES |
1158				   ENC_TYPE_CHAINING_CBC),
1159		.skcipher	= {
1160			.ivsize		= DES_BLOCK_SIZE,
1161			.min_keysize	= DES_KEY_SIZE,
1162			.max_keysize	= DES_KEY_SIZE,
1163			.setkey		= n2_des_setkey,
1164			.encrypt	= n2_encrypt_chaining,
1165			.decrypt	= n2_decrypt_chaining,
1166		},
1167	},
1168	{	.name		= "cfb(des)",
1169		.drv_name	= "cfb-des",
1170		.block_size	= DES_BLOCK_SIZE,
1171		.enc_type	= (ENC_TYPE_ALG_DES |
1172				   ENC_TYPE_CHAINING_CFB),
1173		.skcipher	= {
1174			.min_keysize	= DES_KEY_SIZE,
1175			.max_keysize	= DES_KEY_SIZE,
1176			.setkey		= n2_des_setkey,
1177			.encrypt	= n2_encrypt_chaining,
1178			.decrypt	= n2_decrypt_chaining,
1179		},
1180	},
1181
1182	/* 3DES: ECB CBC and CFB are supported */
1183	{	.name		= "ecb(des3_ede)",
1184		.drv_name	= "ecb-3des",
1185		.block_size	= DES_BLOCK_SIZE,
1186		.enc_type	= (ENC_TYPE_ALG_3DES |
1187				   ENC_TYPE_CHAINING_ECB),
1188		.skcipher	= {
1189			.min_keysize	= 3 * DES_KEY_SIZE,
1190			.max_keysize	= 3 * DES_KEY_SIZE,
1191			.setkey		= n2_3des_setkey,
1192			.encrypt	= n2_encrypt_ecb,
1193			.decrypt	= n2_decrypt_ecb,
1194		},
1195	},
1196	{	.name		= "cbc(des3_ede)",
1197		.drv_name	= "cbc-3des",
1198		.block_size	= DES_BLOCK_SIZE,
1199		.enc_type	= (ENC_TYPE_ALG_3DES |
1200				   ENC_TYPE_CHAINING_CBC),
1201		.skcipher	= {
1202			.ivsize		= DES_BLOCK_SIZE,
1203			.min_keysize	= 3 * DES_KEY_SIZE,
1204			.max_keysize	= 3 * DES_KEY_SIZE,
1205			.setkey		= n2_3des_setkey,
1206			.encrypt	= n2_encrypt_chaining,
1207			.decrypt	= n2_decrypt_chaining,
1208		},
1209	},
1210	{	.name		= "cfb(des3_ede)",
1211		.drv_name	= "cfb-3des",
1212		.block_size	= DES_BLOCK_SIZE,
1213		.enc_type	= (ENC_TYPE_ALG_3DES |
1214				   ENC_TYPE_CHAINING_CFB),
1215		.skcipher	= {
1216			.min_keysize	= 3 * DES_KEY_SIZE,
1217			.max_keysize	= 3 * DES_KEY_SIZE,
1218			.setkey		= n2_3des_setkey,
1219			.encrypt	= n2_encrypt_chaining,
1220			.decrypt	= n2_decrypt_chaining,
1221		},
1222	},
1223	/* AES: ECB CBC and CTR are supported */
1224	{	.name		= "ecb(aes)",
1225		.drv_name	= "ecb-aes",
1226		.block_size	= AES_BLOCK_SIZE,
1227		.enc_type	= (ENC_TYPE_ALG_AES128 |
1228				   ENC_TYPE_CHAINING_ECB),
1229		.skcipher	= {
1230			.min_keysize	= AES_MIN_KEY_SIZE,
1231			.max_keysize	= AES_MAX_KEY_SIZE,
1232			.setkey		= n2_aes_setkey,
1233			.encrypt	= n2_encrypt_ecb,
1234			.decrypt	= n2_decrypt_ecb,
1235		},
1236	},
1237	{	.name		= "cbc(aes)",
1238		.drv_name	= "cbc-aes",
1239		.block_size	= AES_BLOCK_SIZE,
1240		.enc_type	= (ENC_TYPE_ALG_AES128 |
1241				   ENC_TYPE_CHAINING_CBC),
1242		.skcipher	= {
1243			.ivsize		= AES_BLOCK_SIZE,
1244			.min_keysize	= AES_MIN_KEY_SIZE,
1245			.max_keysize	= AES_MAX_KEY_SIZE,
1246			.setkey		= n2_aes_setkey,
1247			.encrypt	= n2_encrypt_chaining,
1248			.decrypt	= n2_decrypt_chaining,
1249		},
1250	},
1251	{	.name		= "ctr(aes)",
1252		.drv_name	= "ctr-aes",
1253		.block_size	= AES_BLOCK_SIZE,
1254		.enc_type	= (ENC_TYPE_ALG_AES128 |
1255				   ENC_TYPE_CHAINING_COUNTER),
1256		.skcipher	= {
1257			.ivsize		= AES_BLOCK_SIZE,
1258			.min_keysize	= AES_MIN_KEY_SIZE,
1259			.max_keysize	= AES_MAX_KEY_SIZE,
1260			.setkey		= n2_aes_setkey,
1261			.encrypt	= n2_encrypt_chaining,
1262			.decrypt	= n2_encrypt_chaining,
1263		},
1264	},
1265
1266};
1267#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269static LIST_HEAD(skcipher_algs);
1270
1271struct n2_hash_tmpl {
1272	const char	*name;
1273	const u8	*hash_zero;
1274	const u32	*hash_init;
1275	u8		hw_op_hashsz;
1276	u8		digest_size;
 
1277	u8		block_size;
1278	u8		auth_type;
1279	u8		hmac_type;
1280};
1281
1282static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283	cpu_to_le32(MD5_H0),
1284	cpu_to_le32(MD5_H1),
1285	cpu_to_le32(MD5_H2),
1286	cpu_to_le32(MD5_H3),
1287};
1288static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290};
1291static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294};
1295static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298};
1299
1300static const struct n2_hash_tmpl hash_tmpls[] = {
1301	{ .name		= "md5",
1302	  .hash_zero	= md5_zero_message_hash,
1303	  .hash_init	= n2_md5_init,
1304	  .auth_type	= AUTH_TYPE_MD5,
1305	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1306	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1307	  .digest_size	= MD5_DIGEST_SIZE,
 
1308	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1309	{ .name		= "sha1",
1310	  .hash_zero	= sha1_zero_message_hash,
1311	  .hash_init	= n2_sha1_init,
1312	  .auth_type	= AUTH_TYPE_SHA1,
1313	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1314	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1315	  .digest_size	= SHA1_DIGEST_SIZE,
 
1316	  .block_size	= SHA1_BLOCK_SIZE },
1317	{ .name		= "sha256",
1318	  .hash_zero	= sha256_zero_message_hash,
1319	  .hash_init	= n2_sha256_init,
1320	  .auth_type	= AUTH_TYPE_SHA256,
1321	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1322	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1323	  .digest_size	= SHA256_DIGEST_SIZE,
 
1324	  .block_size	= SHA256_BLOCK_SIZE },
1325	{ .name		= "sha224",
1326	  .hash_zero	= sha224_zero_message_hash,
1327	  .hash_init	= n2_sha224_init,
1328	  .auth_type	= AUTH_TYPE_SHA256,
1329	  .hmac_type	= AUTH_TYPE_RESERVED,
1330	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1331	  .digest_size	= SHA224_DIGEST_SIZE,
 
1332	  .block_size	= SHA224_BLOCK_SIZE },
1333};
1334#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336static LIST_HEAD(ahash_algs);
1337static LIST_HEAD(hmac_algs);
1338
1339static int algs_registered;
1340
1341static void __n2_unregister_algs(void)
1342{
1343	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344	struct n2_ahash_alg *alg, *alg_tmp;
1345	struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348		crypto_unregister_skcipher(&skcipher->skcipher);
1349		list_del(&skcipher->entry);
1350		kfree(skcipher);
1351	}
1352	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353		crypto_unregister_ahash(&hmac->derived.alg);
1354		list_del(&hmac->derived.entry);
1355		kfree(hmac);
1356	}
1357	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358		crypto_unregister_ahash(&alg->alg);
1359		list_del(&alg->entry);
1360		kfree(alg);
1361	}
1362}
1363
1364static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365{
1366	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367	return 0;
1368}
1369
1370static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371{
1372	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373	struct skcipher_alg *alg;
1374	int err;
1375
1376	if (!p)
1377		return -ENOMEM;
1378
1379	alg = &p->skcipher;
1380	*alg = tmpl->skcipher;
1381
1382	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384	alg->base.cra_priority = N2_CRA_PRIORITY;
1385	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386			      CRYPTO_ALG_ALLOCATES_MEMORY;
1387	alg->base.cra_blocksize = tmpl->block_size;
1388	p->enc_type = tmpl->enc_type;
1389	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390	alg->base.cra_module = THIS_MODULE;
1391	alg->init = n2_skcipher_init_tfm;
1392
1393	list_add(&p->entry, &skcipher_algs);
1394	err = crypto_register_skcipher(alg);
1395	if (err) {
1396		pr_err("%s alg registration failed\n", alg->base.cra_name);
1397		list_del(&p->entry);
1398		kfree(p);
1399	} else {
1400		pr_info("%s alg registered\n", alg->base.cra_name);
1401	}
1402	return err;
1403}
1404
1405static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406{
1407	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408	struct ahash_alg *ahash;
1409	struct crypto_alg *base;
1410	int err;
1411
1412	if (!p)
1413		return -ENOMEM;
1414
1415	p->child_alg = n2ahash->alg.halg.base.cra_name;
1416	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417	INIT_LIST_HEAD(&p->derived.entry);
1418
1419	ahash = &p->derived.alg;
1420	ahash->digest = n2_hmac_async_digest;
1421	ahash->setkey = n2_hmac_async_setkey;
1422
1423	base = &ahash->halg.base;
1424	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428	base->cra_init = n2_hmac_cra_init;
1429	base->cra_exit = n2_hmac_cra_exit;
1430
1431	list_add(&p->derived.entry, &hmac_algs);
1432	err = crypto_register_ahash(ahash);
1433	if (err) {
1434		pr_err("%s alg registration failed\n", base->cra_name);
1435		list_del(&p->derived.entry);
1436		kfree(p);
1437	} else {
1438		pr_info("%s alg registered\n", base->cra_name);
1439	}
1440	return err;
1441}
1442
1443static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444{
1445	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446	struct hash_alg_common *halg;
1447	struct crypto_alg *base;
1448	struct ahash_alg *ahash;
1449	int err;
1450
1451	if (!p)
1452		return -ENOMEM;
1453
1454	p->hash_zero = tmpl->hash_zero;
1455	p->hash_init = tmpl->hash_init;
1456	p->auth_type = tmpl->auth_type;
1457	p->hmac_type = tmpl->hmac_type;
1458	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459	p->digest_size = tmpl->digest_size;
1460
1461	ahash = &p->alg;
1462	ahash->init = n2_hash_async_init;
1463	ahash->update = n2_hash_async_update;
1464	ahash->final = n2_hash_async_final;
1465	ahash->finup = n2_hash_async_finup;
1466	ahash->digest = n2_hash_async_digest;
1467	ahash->export = n2_hash_async_noexport;
1468	ahash->import = n2_hash_async_noimport;
1469
1470	halg = &ahash->halg;
1471	halg->digestsize = tmpl->digest_size;
 
1472
1473	base = &halg->base;
1474	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476	base->cra_priority = N2_CRA_PRIORITY;
1477	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478			  CRYPTO_ALG_NEED_FALLBACK;
1479	base->cra_blocksize = tmpl->block_size;
1480	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481	base->cra_module = THIS_MODULE;
1482	base->cra_init = n2_hash_cra_init;
1483	base->cra_exit = n2_hash_cra_exit;
1484
1485	list_add(&p->entry, &ahash_algs);
1486	err = crypto_register_ahash(ahash);
1487	if (err) {
1488		pr_err("%s alg registration failed\n", base->cra_name);
1489		list_del(&p->entry);
1490		kfree(p);
1491	} else {
1492		pr_info("%s alg registered\n", base->cra_name);
1493	}
1494	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495		err = __n2_register_one_hmac(p);
1496	return err;
1497}
1498
1499static int n2_register_algs(void)
1500{
1501	int i, err = 0;
1502
1503	mutex_lock(&spu_lock);
1504	if (algs_registered++)
1505		goto out;
1506
1507	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508		err = __n2_register_one_ahash(&hash_tmpls[i]);
1509		if (err) {
1510			__n2_unregister_algs();
1511			goto out;
1512		}
1513	}
1514	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516		if (err) {
1517			__n2_unregister_algs();
1518			goto out;
1519		}
1520	}
1521
1522out:
1523	mutex_unlock(&spu_lock);
1524	return err;
1525}
1526
1527static void n2_unregister_algs(void)
1528{
1529	mutex_lock(&spu_lock);
1530	if (!--algs_registered)
1531		__n2_unregister_algs();
1532	mutex_unlock(&spu_lock);
1533}
1534
1535/* To map CWQ queues to interrupt sources, the hypervisor API provides
1536 * a devino.  This isn't very useful to us because all of the
1537 * interrupts listed in the device_node have been translated to
1538 * Linux virtual IRQ cookie numbers.
1539 *
1540 * So we have to back-translate, going through the 'intr' and 'ino'
1541 * property tables of the n2cp MDESC node, matching it with the OF
1542 * 'interrupts' property entries, in order to to figure out which
1543 * devino goes to which already-translated IRQ.
1544 */
1545static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546			     unsigned long dev_ino)
1547{
1548	const unsigned int *dev_intrs;
1549	unsigned int intr;
1550	int i;
1551
1552	for (i = 0; i < ip->num_intrs; i++) {
1553		if (ip->ino_table[i].ino == dev_ino)
1554			break;
1555	}
1556	if (i == ip->num_intrs)
1557		return -ENODEV;
1558
1559	intr = ip->ino_table[i].intr;
1560
1561	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562	if (!dev_intrs)
1563		return -ENODEV;
1564
1565	for (i = 0; i < dev->archdata.num_irqs; i++) {
1566		if (dev_intrs[i] == intr)
1567			return i;
1568	}
1569
1570	return -ENODEV;
1571}
1572
1573static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574		       const char *irq_name, struct spu_queue *p,
1575		       irq_handler_t handler)
1576{
1577	unsigned long herr;
1578	int index;
1579
1580	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581	if (herr)
1582		return -EINVAL;
1583
1584	index = find_devino_index(dev, ip, p->devino);
1585	if (index < 0)
1586		return index;
1587
1588	p->irq = dev->archdata.irqs[index];
1589
1590	sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592	return request_irq(p->irq, handler, 0, p->irq_name, p);
1593}
1594
1595static struct kmem_cache *queue_cache[2];
1596
1597static void *new_queue(unsigned long q_type)
1598{
1599	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600}
1601
1602static void free_queue(void *p, unsigned long q_type)
1603{
1604	kmem_cache_free(queue_cache[q_type - 1], p);
1605}
1606
1607static int queue_cache_init(void)
1608{
1609	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611			kmem_cache_create("mau_queue",
1612					  (MAU_NUM_ENTRIES *
1613					   MAU_ENTRY_SIZE),
1614					  MAU_ENTRY_SIZE, 0, NULL);
1615	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616		return -ENOMEM;
1617
1618	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620			kmem_cache_create("cwq_queue",
1621					  (CWQ_NUM_ENTRIES *
1622					   CWQ_ENTRY_SIZE),
1623					  CWQ_ENTRY_SIZE, 0, NULL);
1624	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627		return -ENOMEM;
1628	}
1629	return 0;
1630}
1631
1632static void queue_cache_destroy(void)
1633{
1634	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638}
1639
1640static long spu_queue_register_workfn(void *arg)
1641{
1642	struct spu_qreg *qr = arg;
1643	struct spu_queue *p = qr->queue;
1644	unsigned long q_type = qr->type;
1645	unsigned long hv_ret;
1646
1647	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648				 CWQ_NUM_ENTRIES, &p->qhandle);
1649	if (!hv_ret)
1650		sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652	return hv_ret ? -EINVAL : 0;
1653}
1654
1655static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656{
1657	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658	struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661}
1662
1663static int spu_queue_setup(struct spu_queue *p)
1664{
1665	int err;
1666
1667	p->q = new_queue(p->q_type);
1668	if (!p->q)
1669		return -ENOMEM;
1670
1671	err = spu_queue_register(p, p->q_type);
1672	if (err) {
1673		free_queue(p->q, p->q_type);
1674		p->q = NULL;
1675	}
1676
1677	return err;
1678}
1679
1680static void spu_queue_destroy(struct spu_queue *p)
1681{
1682	unsigned long hv_ret;
1683
1684	if (!p->q)
1685		return;
1686
1687	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689	if (!hv_ret)
1690		free_queue(p->q, p->q_type);
1691}
1692
1693static void spu_list_destroy(struct list_head *list)
1694{
1695	struct spu_queue *p, *n;
1696
1697	list_for_each_entry_safe(p, n, list, list) {
1698		int i;
1699
1700		for (i = 0; i < NR_CPUS; i++) {
1701			if (cpu_to_cwq[i] == p)
1702				cpu_to_cwq[i] = NULL;
1703		}
1704
1705		if (p->irq) {
1706			free_irq(p->irq, p);
1707			p->irq = 0;
1708		}
1709		spu_queue_destroy(p);
1710		list_del(&p->list);
1711		kfree(p);
1712	}
1713}
1714
1715/* Walk the backward arcs of a CWQ 'exec-unit' node,
1716 * gathering cpu membership information.
1717 */
1718static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719			       struct platform_device *dev,
1720			       u64 node, struct spu_queue *p,
1721			       struct spu_queue **table)
1722{
1723	u64 arc;
1724
1725	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726		u64 tgt = mdesc_arc_target(mdesc, arc);
1727		const char *name = mdesc_node_name(mdesc, tgt);
1728		const u64 *id;
1729
1730		if (strcmp(name, "cpu"))
1731			continue;
1732		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733		if (table[*id] != NULL) {
1734			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735				dev->dev.of_node);
1736			return -EINVAL;
1737		}
1738		cpumask_set_cpu(*id, &p->sharing);
1739		table[*id] = p;
1740	}
1741	return 0;
1742}
1743
1744/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1745static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746			    struct platform_device *dev, struct mdesc_handle *mdesc,
1747			    u64 node, const char *iname, unsigned long q_type,
1748			    irq_handler_t handler, struct spu_queue **table)
1749{
1750	struct spu_queue *p;
1751	int err;
1752
1753	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754	if (!p) {
1755		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756			dev->dev.of_node);
1757		return -ENOMEM;
1758	}
1759
1760	cpumask_clear(&p->sharing);
1761	spin_lock_init(&p->lock);
1762	p->q_type = q_type;
1763	INIT_LIST_HEAD(&p->jobs);
1764	list_add(&p->list, list);
1765
1766	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767	if (err)
1768		return err;
1769
1770	err = spu_queue_setup(p);
1771	if (err)
1772		return err;
1773
1774	return spu_map_ino(dev, ip, iname, p, handler);
1775}
1776
1777static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778			  struct spu_mdesc_info *ip, struct list_head *list,
1779			  const char *exec_name, unsigned long q_type,
1780			  irq_handler_t handler, struct spu_queue **table)
1781{
1782	int err = 0;
1783	u64 node;
1784
1785	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786		const char *type;
1787
1788		type = mdesc_get_property(mdesc, node, "type", NULL);
1789		if (!type || strcmp(type, exec_name))
1790			continue;
1791
1792		err = handle_exec_unit(ip, list, dev, mdesc, node,
1793				       exec_name, q_type, handler, table);
1794		if (err) {
1795			spu_list_destroy(list);
1796			break;
1797		}
1798	}
1799
1800	return err;
1801}
1802
1803static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804			 struct spu_mdesc_info *ip)
1805{
1806	const u64 *ino;
1807	int ino_len;
1808	int i;
1809
1810	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811	if (!ino) {
1812		printk("NO 'ino'\n");
1813		return -ENODEV;
1814	}
1815
1816	ip->num_intrs = ino_len / sizeof(u64);
1817	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818				 ip->num_intrs),
1819				GFP_KERNEL);
1820	if (!ip->ino_table)
1821		return -ENOMEM;
1822
1823	for (i = 0; i < ip->num_intrs; i++) {
1824		struct ino_blob *b = &ip->ino_table[i];
1825		b->intr = i + 1;
1826		b->ino = ino[i];
1827	}
1828
1829	return 0;
1830}
1831
1832static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833				struct platform_device *dev,
1834				struct spu_mdesc_info *ip,
1835				const char *node_name)
1836{
1837	const unsigned int *reg;
1838	u64 node;
1839
1840	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841	if (!reg)
1842		return -ENODEV;
1843
1844	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845		const char *name;
1846		const u64 *chdl;
1847
1848		name = mdesc_get_property(mdesc, node, "name", NULL);
1849		if (!name || strcmp(name, node_name))
1850			continue;
1851		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852		if (!chdl || (*chdl != *reg))
1853			continue;
1854		ip->cfg_handle = *chdl;
1855		return get_irq_props(mdesc, node, ip);
1856	}
1857
1858	return -ENODEV;
1859}
1860
1861static unsigned long n2_spu_hvapi_major;
1862static unsigned long n2_spu_hvapi_minor;
1863
1864static int n2_spu_hvapi_register(void)
1865{
1866	int err;
1867
1868	n2_spu_hvapi_major = 2;
1869	n2_spu_hvapi_minor = 0;
1870
1871	err = sun4v_hvapi_register(HV_GRP_NCS,
1872				   n2_spu_hvapi_major,
1873				   &n2_spu_hvapi_minor);
1874
1875	if (!err)
1876		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877			n2_spu_hvapi_major,
1878			n2_spu_hvapi_minor);
1879
1880	return err;
1881}
1882
1883static void n2_spu_hvapi_unregister(void)
1884{
1885	sun4v_hvapi_unregister(HV_GRP_NCS);
1886}
1887
1888static int global_ref;
1889
1890static int grab_global_resources(void)
1891{
1892	int err = 0;
1893
1894	mutex_lock(&spu_lock);
1895
1896	if (global_ref++)
1897		goto out;
1898
1899	err = n2_spu_hvapi_register();
1900	if (err)
1901		goto out;
1902
1903	err = queue_cache_init();
1904	if (err)
1905		goto out_hvapi_release;
1906
1907	err = -ENOMEM;
1908	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909			     GFP_KERNEL);
1910	if (!cpu_to_cwq)
1911		goto out_queue_cache_destroy;
1912
1913	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914			     GFP_KERNEL);
1915	if (!cpu_to_mau)
1916		goto out_free_cwq_table;
1917
1918	err = 0;
1919
1920out:
1921	if (err)
1922		global_ref--;
1923	mutex_unlock(&spu_lock);
1924	return err;
1925
1926out_free_cwq_table:
1927	kfree(cpu_to_cwq);
1928	cpu_to_cwq = NULL;
1929
1930out_queue_cache_destroy:
1931	queue_cache_destroy();
1932
1933out_hvapi_release:
1934	n2_spu_hvapi_unregister();
1935	goto out;
1936}
1937
1938static void release_global_resources(void)
1939{
1940	mutex_lock(&spu_lock);
1941	if (!--global_ref) {
1942		kfree(cpu_to_cwq);
1943		cpu_to_cwq = NULL;
1944
1945		kfree(cpu_to_mau);
1946		cpu_to_mau = NULL;
1947
1948		queue_cache_destroy();
1949		n2_spu_hvapi_unregister();
1950	}
1951	mutex_unlock(&spu_lock);
1952}
1953
1954static struct n2_crypto *alloc_n2cp(void)
1955{
1956	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958	if (np)
1959		INIT_LIST_HEAD(&np->cwq_list);
1960
1961	return np;
1962}
1963
1964static void free_n2cp(struct n2_crypto *np)
1965{
1966	kfree(np->cwq_info.ino_table);
1967	np->cwq_info.ino_table = NULL;
1968
1969	kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974	static int n2_spu_version_printed;
1975
1976	if (n2_spu_version_printed++ == 0)
1977		pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982	struct mdesc_handle *mdesc;
1983	struct n2_crypto *np;
1984	int err;
1985
1986	n2_spu_driver_version();
1987
1988	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990	np = alloc_n2cp();
1991	if (!np) {
1992		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993			dev->dev.of_node);
1994		return -ENOMEM;
1995	}
1996
1997	err = grab_global_resources();
1998	if (err) {
1999		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000			dev->dev.of_node);
2001		goto out_free_n2cp;
2002	}
2003
2004	mdesc = mdesc_grab();
2005
2006	if (!mdesc) {
2007		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008			dev->dev.of_node);
2009		err = -ENODEV;
2010		goto out_free_global;
2011	}
2012	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013	if (err) {
2014		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015			dev->dev.of_node);
2016		mdesc_release(mdesc);
2017		goto out_free_global;
2018	}
2019
2020	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022			     cpu_to_cwq);
2023	mdesc_release(mdesc);
2024
2025	if (err) {
2026		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027			dev->dev.of_node);
2028		goto out_free_global;
2029	}
2030
2031	err = n2_register_algs();
2032	if (err) {
2033		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034			dev->dev.of_node);
2035		goto out_free_spu_list;
2036	}
2037
2038	dev_set_drvdata(&dev->dev, np);
2039
2040	return 0;
2041
2042out_free_spu_list:
2043	spu_list_destroy(&np->cwq_list);
2044
2045out_free_global:
2046	release_global_resources();
2047
2048out_free_n2cp:
2049	free_n2cp(np);
2050
2051	return err;
2052}
2053
2054static int n2_crypto_remove(struct platform_device *dev)
2055{
2056	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058	n2_unregister_algs();
2059
2060	spu_list_destroy(&np->cwq_list);
2061
2062	release_global_resources();
2063
2064	free_n2cp(np);
2065
2066	return 0;
2067}
2068
2069static struct n2_mau *alloc_ncp(void)
2070{
2071	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073	if (mp)
2074		INIT_LIST_HEAD(&mp->mau_list);
2075
2076	return mp;
2077}
2078
2079static void free_ncp(struct n2_mau *mp)
2080{
2081	kfree(mp->mau_info.ino_table);
2082	mp->mau_info.ino_table = NULL;
2083
2084	kfree(mp);
2085}
2086
2087static int n2_mau_probe(struct platform_device *dev)
2088{
2089	struct mdesc_handle *mdesc;
2090	struct n2_mau *mp;
2091	int err;
2092
2093	n2_spu_driver_version();
2094
2095	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097	mp = alloc_ncp();
2098	if (!mp) {
2099		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100			dev->dev.of_node);
2101		return -ENOMEM;
2102	}
2103
2104	err = grab_global_resources();
2105	if (err) {
2106		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107			dev->dev.of_node);
2108		goto out_free_ncp;
2109	}
2110
2111	mdesc = mdesc_grab();
2112
2113	if (!mdesc) {
2114		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115			dev->dev.of_node);
2116		err = -ENODEV;
2117		goto out_free_global;
2118	}
2119
2120	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121	if (err) {
2122		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123			dev->dev.of_node);
2124		mdesc_release(mdesc);
2125		goto out_free_global;
2126	}
2127
2128	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130			     cpu_to_mau);
2131	mdesc_release(mdesc);
2132
2133	if (err) {
2134		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135			dev->dev.of_node);
2136		goto out_free_global;
2137	}
2138
2139	dev_set_drvdata(&dev->dev, mp);
2140
2141	return 0;
2142
2143out_free_global:
2144	release_global_resources();
2145
2146out_free_ncp:
2147	free_ncp(mp);
2148
2149	return err;
2150}
2151
2152static int n2_mau_remove(struct platform_device *dev)
2153{
2154	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156	spu_list_destroy(&mp->mau_list);
2157
2158	release_global_resources();
2159
2160	free_ncp(mp);
2161
2162	return 0;
2163}
2164
2165static const struct of_device_id n2_crypto_match[] = {
2166	{
2167		.name = "n2cp",
2168		.compatible = "SUNW,n2-cwq",
2169	},
2170	{
2171		.name = "n2cp",
2172		.compatible = "SUNW,vf-cwq",
2173	},
2174	{
2175		.name = "n2cp",
2176		.compatible = "SUNW,kt-cwq",
2177	},
2178	{},
2179};
2180
2181MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183static struct platform_driver n2_crypto_driver = {
2184	.driver = {
2185		.name		=	"n2cp",
2186		.of_match_table	=	n2_crypto_match,
2187	},
2188	.probe		=	n2_crypto_probe,
2189	.remove		=	n2_crypto_remove,
2190};
2191
2192static const struct of_device_id n2_mau_match[] = {
2193	{
2194		.name = "ncp",
2195		.compatible = "SUNW,n2-mau",
2196	},
2197	{
2198		.name = "ncp",
2199		.compatible = "SUNW,vf-mau",
2200	},
2201	{
2202		.name = "ncp",
2203		.compatible = "SUNW,kt-mau",
2204	},
2205	{},
2206};
2207
2208MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210static struct platform_driver n2_mau_driver = {
2211	.driver = {
2212		.name		=	"ncp",
2213		.of_match_table	=	n2_mau_match,
2214	},
2215	.probe		=	n2_mau_probe,
2216	.remove		=	n2_mau_remove,
2217};
2218
2219static struct platform_driver * const drivers[] = {
2220	&n2_crypto_driver,
2221	&n2_mau_driver,
2222};
2223
2224static int __init n2_init(void)
2225{
2226	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227}
2228
2229static void __exit n2_exit(void)
2230{
2231	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232}
2233
2234module_init(n2_init);
2235module_exit(n2_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_device.h>
  13#include <linux/cpumask.h>
  14#include <linux/slab.h>
  15#include <linux/interrupt.h>
  16#include <linux/crypto.h>
  17#include <crypto/md5.h>
  18#include <crypto/sha1.h>
  19#include <crypto/sha2.h>
  20#include <crypto/aes.h>
  21#include <crypto/internal/des.h>
  22#include <linux/mutex.h>
  23#include <linux/delay.h>
  24#include <linux/sched.h>
  25
  26#include <crypto/internal/hash.h>
  27#include <crypto/internal/skcipher.h>
  28#include <crypto/scatterwalk.h>
  29#include <crypto/algapi.h>
  30
  31#include <asm/hypervisor.h>
  32#include <asm/mdesc.h>
  33
  34#include "n2_core.h"
  35
  36#define DRV_MODULE_NAME		"n2_crypto"
  37#define DRV_MODULE_VERSION	"0.2"
  38#define DRV_MODULE_RELDATE	"July 28, 2011"
  39
  40static const char version[] =
  41	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  42
  43MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  44MODULE_DESCRIPTION("Niagara2 Crypto driver");
  45MODULE_LICENSE("GPL");
  46MODULE_VERSION(DRV_MODULE_VERSION);
  47
  48#define N2_CRA_PRIORITY		200
  49
  50static DEFINE_MUTEX(spu_lock);
  51
  52struct spu_queue {
  53	cpumask_t		sharing;
  54	unsigned long		qhandle;
  55
  56	spinlock_t		lock;
  57	u8			q_type;
  58	void			*q;
  59	unsigned long		head;
  60	unsigned long		tail;
  61	struct list_head	jobs;
  62
  63	unsigned long		devino;
  64
  65	char			irq_name[32];
  66	unsigned int		irq;
  67
  68	struct list_head	list;
  69};
  70
  71struct spu_qreg {
  72	struct spu_queue	*queue;
  73	unsigned long		type;
  74};
  75
  76static struct spu_queue **cpu_to_cwq;
  77static struct spu_queue **cpu_to_mau;
  78
  79static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  80{
  81	if (q->q_type == HV_NCS_QTYPE_MAU) {
  82		off += MAU_ENTRY_SIZE;
  83		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  84			off = 0;
  85	} else {
  86		off += CWQ_ENTRY_SIZE;
  87		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  88			off = 0;
  89	}
  90	return off;
  91}
  92
  93struct n2_request_common {
  94	struct list_head	entry;
  95	unsigned int		offset;
  96};
  97#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  98
  99/* An async job request records the final tail value it used in
 100 * n2_request_common->offset, test to see if that offset is in
 101 * the range old_head, new_head, inclusive.
 102 */
 103static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 104				unsigned long old_head, unsigned long new_head)
 105{
 106	if (old_head <= new_head) {
 107		if (offset > old_head && offset <= new_head)
 108			return true;
 109	} else {
 110		if (offset > old_head || offset <= new_head)
 111			return true;
 112	}
 113	return false;
 114}
 115
 116/* When the HEAD marker is unequal to the actual HEAD, we get
 117 * a virtual device INO interrupt.  We should process the
 118 * completed CWQ entries and adjust the HEAD marker to clear
 119 * the IRQ.
 120 */
 121static irqreturn_t cwq_intr(int irq, void *dev_id)
 122{
 123	unsigned long off, new_head, hv_ret;
 124	struct spu_queue *q = dev_id;
 125
 126	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 127	       smp_processor_id(), q->qhandle);
 128
 129	spin_lock(&q->lock);
 130
 131	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 132
 133	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 134	       smp_processor_id(), new_head, hv_ret);
 135
 136	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 137		/* XXX ... XXX */
 138	}
 139
 140	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 141	if (hv_ret == HV_EOK)
 142		q->head = new_head;
 143
 144	spin_unlock(&q->lock);
 145
 146	return IRQ_HANDLED;
 147}
 148
 149static irqreturn_t mau_intr(int irq, void *dev_id)
 150{
 151	struct spu_queue *q = dev_id;
 152	unsigned long head, hv_ret;
 153
 154	spin_lock(&q->lock);
 155
 156	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 157	       smp_processor_id(), q->qhandle);
 158
 159	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 160
 161	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 162	       smp_processor_id(), head, hv_ret);
 163
 164	sun4v_ncs_sethead_marker(q->qhandle, head);
 165
 166	spin_unlock(&q->lock);
 167
 168	return IRQ_HANDLED;
 169}
 170
 171static void *spu_queue_next(struct spu_queue *q, void *cur)
 172{
 173	return q->q + spu_next_offset(q, cur - q->q);
 174}
 175
 176static int spu_queue_num_free(struct spu_queue *q)
 177{
 178	unsigned long head = q->head;
 179	unsigned long tail = q->tail;
 180	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 181	unsigned long diff;
 182
 183	if (head > tail)
 184		diff = head - tail;
 185	else
 186		diff = (end - tail) + head;
 187
 188	return (diff / CWQ_ENTRY_SIZE) - 1;
 189}
 190
 191static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 192{
 193	int avail = spu_queue_num_free(q);
 194
 195	if (avail >= num_entries)
 196		return q->q + q->tail;
 197
 198	return NULL;
 199}
 200
 201static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 202{
 203	unsigned long hv_ret, new_tail;
 204
 205	new_tail = spu_next_offset(q, last - q->q);
 206
 207	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 208	if (hv_ret == HV_EOK)
 209		q->tail = new_tail;
 210	return hv_ret;
 211}
 212
 213static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 214			     int enc_type, int auth_type,
 215			     unsigned int hash_len,
 216			     bool sfas, bool sob, bool eob, bool encrypt,
 217			     int opcode)
 218{
 219	u64 word = (len - 1) & CONTROL_LEN;
 220
 221	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 222	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 223	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 224	if (sfas)
 225		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 226	if (sob)
 227		word |= CONTROL_START_OF_BLOCK;
 228	if (eob)
 229		word |= CONTROL_END_OF_BLOCK;
 230	if (encrypt)
 231		word |= CONTROL_ENCRYPT;
 232	if (hmac_key_len)
 233		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 234	if (hash_len)
 235		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 236
 237	return word;
 238}
 239
 240#if 0
 241static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 242{
 243	if (this_len >= 64 ||
 244	    qp->head != qp->tail)
 245		return true;
 246	return false;
 247}
 248#endif
 249
 250struct n2_ahash_alg {
 251	struct list_head	entry;
 252	const u8		*hash_zero;
 253	const u8		*hash_init;
 254	u8			hw_op_hashsz;
 255	u8			digest_size;
 256	u8			auth_type;
 257	u8			hmac_type;
 258	struct ahash_alg	alg;
 259};
 260
 261static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 262{
 263	struct crypto_alg *alg = tfm->__crt_alg;
 264	struct ahash_alg *ahash_alg;
 265
 266	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 267
 268	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 269}
 270
 271struct n2_hmac_alg {
 272	const char		*child_alg;
 273	struct n2_ahash_alg	derived;
 274};
 275
 276static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 277{
 278	struct crypto_alg *alg = tfm->__crt_alg;
 279	struct ahash_alg *ahash_alg;
 280
 281	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 282
 283	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 284}
 285
 286struct n2_hash_ctx {
 287	struct crypto_ahash		*fallback_tfm;
 288};
 289
 290#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 291
 292struct n2_hmac_ctx {
 293	struct n2_hash_ctx		base;
 294
 295	struct crypto_shash		*child_shash;
 296
 297	int				hash_key_len;
 298	unsigned char			hash_key[N2_HASH_KEY_MAX];
 299};
 300
 301struct n2_hash_req_ctx {
 302	union {
 303		struct md5_state	md5;
 304		struct sha1_state	sha1;
 305		struct sha256_state	sha256;
 306	} u;
 307
 308	struct ahash_request		fallback_req;
 309};
 310
 311static int n2_hash_async_init(struct ahash_request *req)
 312{
 313	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 314	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 315	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 316
 317	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 318	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 319
 320	return crypto_ahash_init(&rctx->fallback_req);
 321}
 322
 323static int n2_hash_async_update(struct ahash_request *req)
 324{
 325	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 326	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 327	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 328
 329	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 330	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 331	rctx->fallback_req.nbytes = req->nbytes;
 332	rctx->fallback_req.src = req->src;
 333
 334	return crypto_ahash_update(&rctx->fallback_req);
 335}
 336
 337static int n2_hash_async_final(struct ahash_request *req)
 338{
 339	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 340	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 341	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 342
 343	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 344	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 345	rctx->fallback_req.result = req->result;
 346
 347	return crypto_ahash_final(&rctx->fallback_req);
 348}
 349
 350static int n2_hash_async_finup(struct ahash_request *req)
 351{
 352	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 353	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 354	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 355
 356	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 357	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 358	rctx->fallback_req.nbytes = req->nbytes;
 359	rctx->fallback_req.src = req->src;
 360	rctx->fallback_req.result = req->result;
 361
 362	return crypto_ahash_finup(&rctx->fallback_req);
 363}
 364
 365static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 366{
 367	return -ENOSYS;
 368}
 369
 370static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 371{
 372	return -ENOSYS;
 373}
 374
 375static int n2_hash_cra_init(struct crypto_tfm *tfm)
 376{
 377	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 378	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 379	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 380	struct crypto_ahash *fallback_tfm;
 381	int err;
 382
 383	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 384					  CRYPTO_ALG_NEED_FALLBACK);
 385	if (IS_ERR(fallback_tfm)) {
 386		pr_warn("Fallback driver '%s' could not be loaded!\n",
 387			fallback_driver_name);
 388		err = PTR_ERR(fallback_tfm);
 389		goto out;
 390	}
 391
 392	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 393					 crypto_ahash_reqsize(fallback_tfm)));
 394
 395	ctx->fallback_tfm = fallback_tfm;
 396	return 0;
 397
 398out:
 399	return err;
 400}
 401
 402static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 403{
 404	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 405	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 406
 407	crypto_free_ahash(ctx->fallback_tfm);
 408}
 409
 410static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 411{
 412	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 413	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 414	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 415	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 416	struct crypto_ahash *fallback_tfm;
 417	struct crypto_shash *child_shash;
 418	int err;
 419
 420	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 421					  CRYPTO_ALG_NEED_FALLBACK);
 422	if (IS_ERR(fallback_tfm)) {
 423		pr_warn("Fallback driver '%s' could not be loaded!\n",
 424			fallback_driver_name);
 425		err = PTR_ERR(fallback_tfm);
 426		goto out;
 427	}
 428
 429	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 430	if (IS_ERR(child_shash)) {
 431		pr_warn("Child shash '%s' could not be loaded!\n",
 432			n2alg->child_alg);
 433		err = PTR_ERR(child_shash);
 434		goto out_free_fallback;
 435	}
 436
 437	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 438					 crypto_ahash_reqsize(fallback_tfm)));
 439
 440	ctx->child_shash = child_shash;
 441	ctx->base.fallback_tfm = fallback_tfm;
 442	return 0;
 443
 444out_free_fallback:
 445	crypto_free_ahash(fallback_tfm);
 446
 447out:
 448	return err;
 449}
 450
 451static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 452{
 453	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 454	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 455
 456	crypto_free_ahash(ctx->base.fallback_tfm);
 457	crypto_free_shash(ctx->child_shash);
 458}
 459
 460static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 461				unsigned int keylen)
 462{
 463	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 464	struct crypto_shash *child_shash = ctx->child_shash;
 465	struct crypto_ahash *fallback_tfm;
 466	int err, bs, ds;
 467
 468	fallback_tfm = ctx->base.fallback_tfm;
 469	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 470	if (err)
 471		return err;
 472
 473	bs = crypto_shash_blocksize(child_shash);
 474	ds = crypto_shash_digestsize(child_shash);
 475	BUG_ON(ds > N2_HASH_KEY_MAX);
 476	if (keylen > bs) {
 477		err = crypto_shash_tfm_digest(child_shash, key, keylen,
 478					      ctx->hash_key);
 479		if (err)
 480			return err;
 481		keylen = ds;
 482	} else if (keylen <= N2_HASH_KEY_MAX)
 483		memcpy(ctx->hash_key, key, keylen);
 484
 485	ctx->hash_key_len = keylen;
 486
 487	return err;
 488}
 489
 490static unsigned long wait_for_tail(struct spu_queue *qp)
 491{
 492	unsigned long head, hv_ret;
 493
 494	do {
 495		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 496		if (hv_ret != HV_EOK) {
 497			pr_err("Hypervisor error on gethead\n");
 498			break;
 499		}
 500		if (head == qp->tail) {
 501			qp->head = head;
 502			break;
 503		}
 504	} while (1);
 505	return hv_ret;
 506}
 507
 508static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 509					      struct cwq_initial_entry *ent)
 510{
 511	unsigned long hv_ret = spu_queue_submit(qp, ent);
 512
 513	if (hv_ret == HV_EOK)
 514		hv_ret = wait_for_tail(qp);
 515
 516	return hv_ret;
 517}
 518
 519static int n2_do_async_digest(struct ahash_request *req,
 520			      unsigned int auth_type, unsigned int digest_size,
 521			      unsigned int result_size, void *hash_loc,
 522			      unsigned long auth_key, unsigned int auth_key_len)
 523{
 524	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 525	struct cwq_initial_entry *ent;
 526	struct crypto_hash_walk walk;
 527	struct spu_queue *qp;
 528	unsigned long flags;
 529	int err = -ENODEV;
 530	int nbytes, cpu;
 531
 532	/* The total effective length of the operation may not
 533	 * exceed 2^16.
 534	 */
 535	if (unlikely(req->nbytes > (1 << 16))) {
 536		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 537		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 538
 539		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 540		rctx->fallback_req.base.flags =
 541			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 542		rctx->fallback_req.nbytes = req->nbytes;
 543		rctx->fallback_req.src = req->src;
 544		rctx->fallback_req.result = req->result;
 545
 546		return crypto_ahash_digest(&rctx->fallback_req);
 547	}
 548
 549	nbytes = crypto_hash_walk_first(req, &walk);
 550
 551	cpu = get_cpu();
 552	qp = cpu_to_cwq[cpu];
 553	if (!qp)
 554		goto out;
 555
 556	spin_lock_irqsave(&qp->lock, flags);
 557
 558	/* XXX can do better, improve this later by doing a by-hand scatterlist
 559	 * XXX walk, etc.
 560	 */
 561	ent = qp->q + qp->tail;
 562
 563	ent->control = control_word_base(nbytes, auth_key_len, 0,
 564					 auth_type, digest_size,
 565					 false, true, false, false,
 566					 OPCODE_INPLACE_BIT |
 567					 OPCODE_AUTH_MAC);
 568	ent->src_addr = __pa(walk.data);
 569	ent->auth_key_addr = auth_key;
 570	ent->auth_iv_addr = __pa(hash_loc);
 571	ent->final_auth_state_addr = 0UL;
 572	ent->enc_key_addr = 0UL;
 573	ent->enc_iv_addr = 0UL;
 574	ent->dest_addr = __pa(hash_loc);
 575
 576	nbytes = crypto_hash_walk_done(&walk, 0);
 577	while (nbytes > 0) {
 578		ent = spu_queue_next(qp, ent);
 579
 580		ent->control = (nbytes - 1);
 581		ent->src_addr = __pa(walk.data);
 582		ent->auth_key_addr = 0UL;
 583		ent->auth_iv_addr = 0UL;
 584		ent->final_auth_state_addr = 0UL;
 585		ent->enc_key_addr = 0UL;
 586		ent->enc_iv_addr = 0UL;
 587		ent->dest_addr = 0UL;
 588
 589		nbytes = crypto_hash_walk_done(&walk, 0);
 590	}
 591	ent->control |= CONTROL_END_OF_BLOCK;
 592
 593	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 594		err = -EINVAL;
 595	else
 596		err = 0;
 597
 598	spin_unlock_irqrestore(&qp->lock, flags);
 599
 600	if (!err)
 601		memcpy(req->result, hash_loc, result_size);
 602out:
 603	put_cpu();
 604
 605	return err;
 606}
 607
 608static int n2_hash_async_digest(struct ahash_request *req)
 609{
 610	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 611	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 612	int ds;
 613
 614	ds = n2alg->digest_size;
 615	if (unlikely(req->nbytes == 0)) {
 616		memcpy(req->result, n2alg->hash_zero, ds);
 617		return 0;
 618	}
 619	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 620
 621	return n2_do_async_digest(req, n2alg->auth_type,
 622				  n2alg->hw_op_hashsz, ds,
 623				  &rctx->u, 0UL, 0);
 624}
 625
 626static int n2_hmac_async_digest(struct ahash_request *req)
 627{
 628	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 629	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 630	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 631	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 632	int ds;
 633
 634	ds = n2alg->derived.digest_size;
 635	if (unlikely(req->nbytes == 0) ||
 636	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 637		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 638		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 639
 640		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 641		rctx->fallback_req.base.flags =
 642			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 643		rctx->fallback_req.nbytes = req->nbytes;
 644		rctx->fallback_req.src = req->src;
 645		rctx->fallback_req.result = req->result;
 646
 647		return crypto_ahash_digest(&rctx->fallback_req);
 648	}
 649	memcpy(&rctx->u, n2alg->derived.hash_init,
 650	       n2alg->derived.hw_op_hashsz);
 651
 652	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 653				  n2alg->derived.hw_op_hashsz, ds,
 654				  &rctx->u,
 655				  __pa(&ctx->hash_key),
 656				  ctx->hash_key_len);
 657}
 658
 659struct n2_skcipher_context {
 660	int			key_len;
 661	int			enc_type;
 662	union {
 663		u8		aes[AES_MAX_KEY_SIZE];
 664		u8		des[DES_KEY_SIZE];
 665		u8		des3[3 * DES_KEY_SIZE];
 
 666	} key;
 667};
 668
 669#define N2_CHUNK_ARR_LEN	16
 670
 671struct n2_crypto_chunk {
 672	struct list_head	entry;
 673	unsigned long		iv_paddr : 44;
 674	unsigned long		arr_len : 20;
 675	unsigned long		dest_paddr;
 676	unsigned long		dest_final;
 677	struct {
 678		unsigned long	src_paddr : 44;
 679		unsigned long	src_len : 20;
 680	} arr[N2_CHUNK_ARR_LEN];
 681};
 682
 683struct n2_request_context {
 684	struct skcipher_walk	walk;
 685	struct list_head	chunk_list;
 686	struct n2_crypto_chunk	chunk;
 687	u8			temp_iv[16];
 688};
 689
 690/* The SPU allows some level of flexibility for partial cipher blocks
 691 * being specified in a descriptor.
 692 *
 693 * It merely requires that every descriptor's length field is at least
 694 * as large as the cipher block size.  This means that a cipher block
 695 * can span at most 2 descriptors.  However, this does not allow a
 696 * partial block to span into the final descriptor as that would
 697 * violate the rule (since every descriptor's length must be at lest
 698 * the block size).  So, for example, assuming an 8 byte block size:
 699 *
 700 *	0xe --> 0xa --> 0x8
 701 *
 702 * is a valid length sequence, whereas:
 703 *
 704 *	0xe --> 0xb --> 0x7
 705 *
 706 * is not a valid sequence.
 707 */
 708
 709struct n2_skcipher_alg {
 710	struct list_head	entry;
 711	u8			enc_type;
 712	struct skcipher_alg	skcipher;
 713};
 714
 715static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
 716{
 717	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 718
 719	return container_of(alg, struct n2_skcipher_alg, skcipher);
 720}
 721
 722struct n2_skcipher_request_context {
 723	struct skcipher_walk	walk;
 724};
 725
 726static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 727			 unsigned int keylen)
 728{
 729	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 730	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 731	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 732
 733	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 734
 735	switch (keylen) {
 736	case AES_KEYSIZE_128:
 737		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 738		break;
 739	case AES_KEYSIZE_192:
 740		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 741		break;
 742	case AES_KEYSIZE_256:
 743		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 744		break;
 745	default:
 746		return -EINVAL;
 747	}
 748
 749	ctx->key_len = keylen;
 750	memcpy(ctx->key.aes, key, keylen);
 751	return 0;
 752}
 753
 754static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 755			 unsigned int keylen)
 756{
 757	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 758	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 759	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 760	int err;
 761
 762	err = verify_skcipher_des_key(skcipher, key);
 763	if (err)
 764		return err;
 765
 766	ctx->enc_type = n2alg->enc_type;
 767
 768	ctx->key_len = keylen;
 769	memcpy(ctx->key.des, key, keylen);
 770	return 0;
 771}
 772
 773static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 774			  unsigned int keylen)
 775{
 776	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 777	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 778	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 779	int err;
 780
 781	err = verify_skcipher_des3_key(skcipher, key);
 782	if (err)
 783		return err;
 784
 785	ctx->enc_type = n2alg->enc_type;
 786
 787	ctx->key_len = keylen;
 788	memcpy(ctx->key.des3, key, keylen);
 789	return 0;
 790}
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
 793{
 794	int this_len = nbytes;
 795
 796	this_len -= (nbytes & (block_size - 1));
 797	return this_len > (1 << 16) ? (1 << 16) : this_len;
 798}
 799
 800static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
 801			    struct n2_crypto_chunk *cp,
 802			    struct spu_queue *qp, bool encrypt)
 803{
 804	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
 805	struct cwq_initial_entry *ent;
 806	bool in_place;
 807	int i;
 808
 809	ent = spu_queue_alloc(qp, cp->arr_len);
 810	if (!ent) {
 811		pr_info("queue_alloc() of %d fails\n",
 812			cp->arr_len);
 813		return -EBUSY;
 814	}
 815
 816	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 817
 818	ent->control = control_word_base(cp->arr[0].src_len,
 819					 0, ctx->enc_type, 0, 0,
 820					 false, true, false, encrypt,
 821					 OPCODE_ENCRYPT |
 822					 (in_place ? OPCODE_INPLACE_BIT : 0));
 823	ent->src_addr = cp->arr[0].src_paddr;
 824	ent->auth_key_addr = 0UL;
 825	ent->auth_iv_addr = 0UL;
 826	ent->final_auth_state_addr = 0UL;
 827	ent->enc_key_addr = __pa(&ctx->key);
 828	ent->enc_iv_addr = cp->iv_paddr;
 829	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 830
 831	for (i = 1; i < cp->arr_len; i++) {
 832		ent = spu_queue_next(qp, ent);
 833
 834		ent->control = cp->arr[i].src_len - 1;
 835		ent->src_addr = cp->arr[i].src_paddr;
 836		ent->auth_key_addr = 0UL;
 837		ent->auth_iv_addr = 0UL;
 838		ent->final_auth_state_addr = 0UL;
 839		ent->enc_key_addr = 0UL;
 840		ent->enc_iv_addr = 0UL;
 841		ent->dest_addr = 0UL;
 842	}
 843	ent->control |= CONTROL_END_OF_BLOCK;
 844
 845	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 846}
 847
 848static int n2_compute_chunks(struct skcipher_request *req)
 849{
 850	struct n2_request_context *rctx = skcipher_request_ctx(req);
 851	struct skcipher_walk *walk = &rctx->walk;
 852	struct n2_crypto_chunk *chunk;
 853	unsigned long dest_prev;
 854	unsigned int tot_len;
 855	bool prev_in_place;
 856	int err, nbytes;
 857
 858	err = skcipher_walk_async(walk, req);
 859	if (err)
 860		return err;
 861
 862	INIT_LIST_HEAD(&rctx->chunk_list);
 863
 864	chunk = &rctx->chunk;
 865	INIT_LIST_HEAD(&chunk->entry);
 866
 867	chunk->iv_paddr = 0UL;
 868	chunk->arr_len = 0;
 869	chunk->dest_paddr = 0UL;
 870
 871	prev_in_place = false;
 872	dest_prev = ~0UL;
 873	tot_len = 0;
 874
 875	while ((nbytes = walk->nbytes) != 0) {
 876		unsigned long dest_paddr, src_paddr;
 877		bool in_place;
 878		int this_len;
 879
 880		src_paddr = (page_to_phys(walk->src.phys.page) +
 881			     walk->src.phys.offset);
 882		dest_paddr = (page_to_phys(walk->dst.phys.page) +
 883			      walk->dst.phys.offset);
 884		in_place = (src_paddr == dest_paddr);
 885		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
 886
 887		if (chunk->arr_len != 0) {
 888			if (in_place != prev_in_place ||
 889			    (!prev_in_place &&
 890			     dest_paddr != dest_prev) ||
 891			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 892			    tot_len + this_len > (1 << 16)) {
 893				chunk->dest_final = dest_prev;
 894				list_add_tail(&chunk->entry,
 895					      &rctx->chunk_list);
 896				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 897				if (!chunk) {
 898					err = -ENOMEM;
 899					break;
 900				}
 901				INIT_LIST_HEAD(&chunk->entry);
 902			}
 903		}
 904		if (chunk->arr_len == 0) {
 905			chunk->dest_paddr = dest_paddr;
 906			tot_len = 0;
 907		}
 908		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 909		chunk->arr[chunk->arr_len].src_len = this_len;
 910		chunk->arr_len++;
 911
 912		dest_prev = dest_paddr + this_len;
 913		prev_in_place = in_place;
 914		tot_len += this_len;
 915
 916		err = skcipher_walk_done(walk, nbytes - this_len);
 917		if (err)
 918			break;
 919	}
 920	if (!err && chunk->arr_len != 0) {
 921		chunk->dest_final = dest_prev;
 922		list_add_tail(&chunk->entry, &rctx->chunk_list);
 923	}
 924
 925	return err;
 926}
 927
 928static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
 929{
 930	struct n2_request_context *rctx = skcipher_request_ctx(req);
 931	struct n2_crypto_chunk *c, *tmp;
 932
 933	if (final_iv)
 934		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 935
 936	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 937		list_del(&c->entry);
 938		if (unlikely(c != &rctx->chunk))
 939			kfree(c);
 940	}
 941
 942}
 943
 944static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
 945{
 946	struct n2_request_context *rctx = skcipher_request_ctx(req);
 947	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 948	int err = n2_compute_chunks(req);
 949	struct n2_crypto_chunk *c, *tmp;
 950	unsigned long flags, hv_ret;
 951	struct spu_queue *qp;
 952
 953	if (err)
 954		return err;
 955
 956	qp = cpu_to_cwq[get_cpu()];
 957	err = -ENODEV;
 958	if (!qp)
 959		goto out;
 960
 961	spin_lock_irqsave(&qp->lock, flags);
 962
 963	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 964		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 965		if (err)
 966			break;
 967		list_del(&c->entry);
 968		if (unlikely(c != &rctx->chunk))
 969			kfree(c);
 970	}
 971	if (!err) {
 972		hv_ret = wait_for_tail(qp);
 973		if (hv_ret != HV_EOK)
 974			err = -EINVAL;
 975	}
 976
 977	spin_unlock_irqrestore(&qp->lock, flags);
 978
 979out:
 980	put_cpu();
 981
 982	n2_chunk_complete(req, NULL);
 983	return err;
 984}
 985
 986static int n2_encrypt_ecb(struct skcipher_request *req)
 987{
 988	return n2_do_ecb(req, true);
 989}
 990
 991static int n2_decrypt_ecb(struct skcipher_request *req)
 992{
 993	return n2_do_ecb(req, false);
 994}
 995
 996static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
 997{
 998	struct n2_request_context *rctx = skcipher_request_ctx(req);
 999	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000	unsigned long flags, hv_ret, iv_paddr;
1001	int err = n2_compute_chunks(req);
1002	struct n2_crypto_chunk *c, *tmp;
1003	struct spu_queue *qp;
1004	void *final_iv_addr;
1005
1006	final_iv_addr = NULL;
1007
1008	if (err)
1009		return err;
1010
1011	qp = cpu_to_cwq[get_cpu()];
1012	err = -ENODEV;
1013	if (!qp)
1014		goto out;
1015
1016	spin_lock_irqsave(&qp->lock, flags);
1017
1018	if (encrypt) {
1019		iv_paddr = __pa(rctx->walk.iv);
1020		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021					 entry) {
1022			c->iv_paddr = iv_paddr;
1023			err = __n2_crypt_chunk(tfm, c, qp, true);
1024			if (err)
1025				break;
1026			iv_paddr = c->dest_final - rctx->walk.blocksize;
1027			list_del(&c->entry);
1028			if (unlikely(c != &rctx->chunk))
1029				kfree(c);
1030		}
1031		final_iv_addr = __va(iv_paddr);
1032	} else {
1033		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034						 entry) {
1035			if (c == &rctx->chunk) {
1036				iv_paddr = __pa(rctx->walk.iv);
1037			} else {
1038				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039					    tmp->arr[tmp->arr_len-1].src_len -
1040					    rctx->walk.blocksize);
1041			}
1042			if (!final_iv_addr) {
1043				unsigned long pa;
1044
1045				pa = (c->arr[c->arr_len-1].src_paddr +
1046				      c->arr[c->arr_len-1].src_len -
1047				      rctx->walk.blocksize);
1048				final_iv_addr = rctx->temp_iv;
1049				memcpy(rctx->temp_iv, __va(pa),
1050				       rctx->walk.blocksize);
1051			}
1052			c->iv_paddr = iv_paddr;
1053			err = __n2_crypt_chunk(tfm, c, qp, false);
1054			if (err)
1055				break;
1056			list_del(&c->entry);
1057			if (unlikely(c != &rctx->chunk))
1058				kfree(c);
1059		}
1060	}
1061	if (!err) {
1062		hv_ret = wait_for_tail(qp);
1063		if (hv_ret != HV_EOK)
1064			err = -EINVAL;
1065	}
1066
1067	spin_unlock_irqrestore(&qp->lock, flags);
1068
1069out:
1070	put_cpu();
1071
1072	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073	return err;
1074}
1075
1076static int n2_encrypt_chaining(struct skcipher_request *req)
1077{
1078	return n2_do_chaining(req, true);
1079}
1080
1081static int n2_decrypt_chaining(struct skcipher_request *req)
1082{
1083	return n2_do_chaining(req, false);
1084}
1085
1086struct n2_skcipher_tmpl {
1087	const char		*name;
1088	const char		*drv_name;
1089	u8			block_size;
1090	u8			enc_type;
1091	struct skcipher_alg	skcipher;
1092};
1093
1094static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095	/* DES: ECB CBC and CFB are supported */
1096	{	.name		= "ecb(des)",
1097		.drv_name	= "ecb-des",
1098		.block_size	= DES_BLOCK_SIZE,
1099		.enc_type	= (ENC_TYPE_ALG_DES |
1100				   ENC_TYPE_CHAINING_ECB),
1101		.skcipher	= {
1102			.min_keysize	= DES_KEY_SIZE,
1103			.max_keysize	= DES_KEY_SIZE,
1104			.setkey		= n2_des_setkey,
1105			.encrypt	= n2_encrypt_ecb,
1106			.decrypt	= n2_decrypt_ecb,
1107		},
1108	},
1109	{	.name		= "cbc(des)",
1110		.drv_name	= "cbc-des",
1111		.block_size	= DES_BLOCK_SIZE,
1112		.enc_type	= (ENC_TYPE_ALG_DES |
1113				   ENC_TYPE_CHAINING_CBC),
1114		.skcipher	= {
1115			.ivsize		= DES_BLOCK_SIZE,
1116			.min_keysize	= DES_KEY_SIZE,
1117			.max_keysize	= DES_KEY_SIZE,
1118			.setkey		= n2_des_setkey,
1119			.encrypt	= n2_encrypt_chaining,
1120			.decrypt	= n2_decrypt_chaining,
1121		},
1122	},
1123	{	.name		= "cfb(des)",
1124		.drv_name	= "cfb-des",
1125		.block_size	= DES_BLOCK_SIZE,
1126		.enc_type	= (ENC_TYPE_ALG_DES |
1127				   ENC_TYPE_CHAINING_CFB),
1128		.skcipher	= {
1129			.min_keysize	= DES_KEY_SIZE,
1130			.max_keysize	= DES_KEY_SIZE,
1131			.setkey		= n2_des_setkey,
1132			.encrypt	= n2_encrypt_chaining,
1133			.decrypt	= n2_decrypt_chaining,
1134		},
1135	},
1136
1137	/* 3DES: ECB CBC and CFB are supported */
1138	{	.name		= "ecb(des3_ede)",
1139		.drv_name	= "ecb-3des",
1140		.block_size	= DES_BLOCK_SIZE,
1141		.enc_type	= (ENC_TYPE_ALG_3DES |
1142				   ENC_TYPE_CHAINING_ECB),
1143		.skcipher	= {
1144			.min_keysize	= 3 * DES_KEY_SIZE,
1145			.max_keysize	= 3 * DES_KEY_SIZE,
1146			.setkey		= n2_3des_setkey,
1147			.encrypt	= n2_encrypt_ecb,
1148			.decrypt	= n2_decrypt_ecb,
1149		},
1150	},
1151	{	.name		= "cbc(des3_ede)",
1152		.drv_name	= "cbc-3des",
1153		.block_size	= DES_BLOCK_SIZE,
1154		.enc_type	= (ENC_TYPE_ALG_3DES |
1155				   ENC_TYPE_CHAINING_CBC),
1156		.skcipher	= {
1157			.ivsize		= DES_BLOCK_SIZE,
1158			.min_keysize	= 3 * DES_KEY_SIZE,
1159			.max_keysize	= 3 * DES_KEY_SIZE,
1160			.setkey		= n2_3des_setkey,
1161			.encrypt	= n2_encrypt_chaining,
1162			.decrypt	= n2_decrypt_chaining,
1163		},
1164	},
1165	{	.name		= "cfb(des3_ede)",
1166		.drv_name	= "cfb-3des",
1167		.block_size	= DES_BLOCK_SIZE,
1168		.enc_type	= (ENC_TYPE_ALG_3DES |
1169				   ENC_TYPE_CHAINING_CFB),
1170		.skcipher	= {
1171			.min_keysize	= 3 * DES_KEY_SIZE,
1172			.max_keysize	= 3 * DES_KEY_SIZE,
1173			.setkey		= n2_3des_setkey,
1174			.encrypt	= n2_encrypt_chaining,
1175			.decrypt	= n2_decrypt_chaining,
1176		},
1177	},
1178	/* AES: ECB CBC and CTR are supported */
1179	{	.name		= "ecb(aes)",
1180		.drv_name	= "ecb-aes",
1181		.block_size	= AES_BLOCK_SIZE,
1182		.enc_type	= (ENC_TYPE_ALG_AES128 |
1183				   ENC_TYPE_CHAINING_ECB),
1184		.skcipher	= {
1185			.min_keysize	= AES_MIN_KEY_SIZE,
1186			.max_keysize	= AES_MAX_KEY_SIZE,
1187			.setkey		= n2_aes_setkey,
1188			.encrypt	= n2_encrypt_ecb,
1189			.decrypt	= n2_decrypt_ecb,
1190		},
1191	},
1192	{	.name		= "cbc(aes)",
1193		.drv_name	= "cbc-aes",
1194		.block_size	= AES_BLOCK_SIZE,
1195		.enc_type	= (ENC_TYPE_ALG_AES128 |
1196				   ENC_TYPE_CHAINING_CBC),
1197		.skcipher	= {
1198			.ivsize		= AES_BLOCK_SIZE,
1199			.min_keysize	= AES_MIN_KEY_SIZE,
1200			.max_keysize	= AES_MAX_KEY_SIZE,
1201			.setkey		= n2_aes_setkey,
1202			.encrypt	= n2_encrypt_chaining,
1203			.decrypt	= n2_decrypt_chaining,
1204		},
1205	},
1206	{	.name		= "ctr(aes)",
1207		.drv_name	= "ctr-aes",
1208		.block_size	= AES_BLOCK_SIZE,
1209		.enc_type	= (ENC_TYPE_ALG_AES128 |
1210				   ENC_TYPE_CHAINING_COUNTER),
1211		.skcipher	= {
1212			.ivsize		= AES_BLOCK_SIZE,
1213			.min_keysize	= AES_MIN_KEY_SIZE,
1214			.max_keysize	= AES_MAX_KEY_SIZE,
1215			.setkey		= n2_aes_setkey,
1216			.encrypt	= n2_encrypt_chaining,
1217			.decrypt	= n2_encrypt_chaining,
1218		},
1219	},
1220
1221};
1222#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223
1224static LIST_HEAD(skcipher_algs);
1225
1226struct n2_hash_tmpl {
1227	const char	*name;
1228	const u8	*hash_zero;
1229	const u8	*hash_init;
1230	u8		hw_op_hashsz;
1231	u8		digest_size;
1232	u8		statesize;
1233	u8		block_size;
1234	u8		auth_type;
1235	u8		hmac_type;
1236};
1237
1238static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1239	cpu_to_le32(MD5_H0),
1240	cpu_to_le32(MD5_H1),
1241	cpu_to_le32(MD5_H2),
1242	cpu_to_le32(MD5_H3),
1243};
1244static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1245	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1246};
1247static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1248	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1249	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1250};
1251static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1252	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1253	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1254};
1255
1256static const struct n2_hash_tmpl hash_tmpls[] = {
1257	{ .name		= "md5",
1258	  .hash_zero	= md5_zero_message_hash,
1259	  .hash_init	= (u8 *)n2_md5_init,
1260	  .auth_type	= AUTH_TYPE_MD5,
1261	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1262	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1263	  .digest_size	= MD5_DIGEST_SIZE,
1264	  .statesize	= sizeof(struct md5_state),
1265	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1266	{ .name		= "sha1",
1267	  .hash_zero	= sha1_zero_message_hash,
1268	  .hash_init	= (u8 *)n2_sha1_init,
1269	  .auth_type	= AUTH_TYPE_SHA1,
1270	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1271	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1272	  .digest_size	= SHA1_DIGEST_SIZE,
1273	  .statesize	= sizeof(struct sha1_state),
1274	  .block_size	= SHA1_BLOCK_SIZE },
1275	{ .name		= "sha256",
1276	  .hash_zero	= sha256_zero_message_hash,
1277	  .hash_init	= (u8 *)n2_sha256_init,
1278	  .auth_type	= AUTH_TYPE_SHA256,
1279	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1280	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1281	  .digest_size	= SHA256_DIGEST_SIZE,
1282	  .statesize	= sizeof(struct sha256_state),
1283	  .block_size	= SHA256_BLOCK_SIZE },
1284	{ .name		= "sha224",
1285	  .hash_zero	= sha224_zero_message_hash,
1286	  .hash_init	= (u8 *)n2_sha224_init,
1287	  .auth_type	= AUTH_TYPE_SHA256,
1288	  .hmac_type	= AUTH_TYPE_RESERVED,
1289	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1290	  .digest_size	= SHA224_DIGEST_SIZE,
1291	  .statesize	= sizeof(struct sha256_state),
1292	  .block_size	= SHA224_BLOCK_SIZE },
1293};
1294#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1295
1296static LIST_HEAD(ahash_algs);
1297static LIST_HEAD(hmac_algs);
1298
1299static int algs_registered;
1300
1301static void __n2_unregister_algs(void)
1302{
1303	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1304	struct n2_ahash_alg *alg, *alg_tmp;
1305	struct n2_hmac_alg *hmac, *hmac_tmp;
1306
1307	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1308		crypto_unregister_skcipher(&skcipher->skcipher);
1309		list_del(&skcipher->entry);
1310		kfree(skcipher);
1311	}
1312	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1313		crypto_unregister_ahash(&hmac->derived.alg);
1314		list_del(&hmac->derived.entry);
1315		kfree(hmac);
1316	}
1317	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1318		crypto_unregister_ahash(&alg->alg);
1319		list_del(&alg->entry);
1320		kfree(alg);
1321	}
1322}
1323
1324static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1325{
1326	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1327	return 0;
1328}
1329
1330static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1331{
1332	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1333	struct skcipher_alg *alg;
1334	int err;
1335
1336	if (!p)
1337		return -ENOMEM;
1338
1339	alg = &p->skcipher;
1340	*alg = tmpl->skcipher;
1341
1342	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1343	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1344	alg->base.cra_priority = N2_CRA_PRIORITY;
1345	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1346			      CRYPTO_ALG_ALLOCATES_MEMORY;
1347	alg->base.cra_blocksize = tmpl->block_size;
1348	p->enc_type = tmpl->enc_type;
1349	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1350	alg->base.cra_module = THIS_MODULE;
1351	alg->init = n2_skcipher_init_tfm;
1352
1353	list_add(&p->entry, &skcipher_algs);
1354	err = crypto_register_skcipher(alg);
1355	if (err) {
1356		pr_err("%s alg registration failed\n", alg->base.cra_name);
1357		list_del(&p->entry);
1358		kfree(p);
1359	} else {
1360		pr_info("%s alg registered\n", alg->base.cra_name);
1361	}
1362	return err;
1363}
1364
1365static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1366{
1367	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1368	struct ahash_alg *ahash;
1369	struct crypto_alg *base;
1370	int err;
1371
1372	if (!p)
1373		return -ENOMEM;
1374
1375	p->child_alg = n2ahash->alg.halg.base.cra_name;
1376	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1377	INIT_LIST_HEAD(&p->derived.entry);
1378
1379	ahash = &p->derived.alg;
1380	ahash->digest = n2_hmac_async_digest;
1381	ahash->setkey = n2_hmac_async_setkey;
1382
1383	base = &ahash->halg.base;
1384	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1385	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1386
1387	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1388	base->cra_init = n2_hmac_cra_init;
1389	base->cra_exit = n2_hmac_cra_exit;
1390
1391	list_add(&p->derived.entry, &hmac_algs);
1392	err = crypto_register_ahash(ahash);
1393	if (err) {
1394		pr_err("%s alg registration failed\n", base->cra_name);
1395		list_del(&p->derived.entry);
1396		kfree(p);
1397	} else {
1398		pr_info("%s alg registered\n", base->cra_name);
1399	}
1400	return err;
1401}
1402
1403static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1404{
1405	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406	struct hash_alg_common *halg;
1407	struct crypto_alg *base;
1408	struct ahash_alg *ahash;
1409	int err;
1410
1411	if (!p)
1412		return -ENOMEM;
1413
1414	p->hash_zero = tmpl->hash_zero;
1415	p->hash_init = tmpl->hash_init;
1416	p->auth_type = tmpl->auth_type;
1417	p->hmac_type = tmpl->hmac_type;
1418	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1419	p->digest_size = tmpl->digest_size;
1420
1421	ahash = &p->alg;
1422	ahash->init = n2_hash_async_init;
1423	ahash->update = n2_hash_async_update;
1424	ahash->final = n2_hash_async_final;
1425	ahash->finup = n2_hash_async_finup;
1426	ahash->digest = n2_hash_async_digest;
1427	ahash->export = n2_hash_async_noexport;
1428	ahash->import = n2_hash_async_noimport;
1429
1430	halg = &ahash->halg;
1431	halg->digestsize = tmpl->digest_size;
1432	halg->statesize = tmpl->statesize;
1433
1434	base = &halg->base;
1435	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1436	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1437	base->cra_priority = N2_CRA_PRIORITY;
1438	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1439			  CRYPTO_ALG_NEED_FALLBACK;
1440	base->cra_blocksize = tmpl->block_size;
1441	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1442	base->cra_module = THIS_MODULE;
1443	base->cra_init = n2_hash_cra_init;
1444	base->cra_exit = n2_hash_cra_exit;
1445
1446	list_add(&p->entry, &ahash_algs);
1447	err = crypto_register_ahash(ahash);
1448	if (err) {
1449		pr_err("%s alg registration failed\n", base->cra_name);
1450		list_del(&p->entry);
1451		kfree(p);
1452	} else {
1453		pr_info("%s alg registered\n", base->cra_name);
1454	}
1455	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1456		err = __n2_register_one_hmac(p);
1457	return err;
1458}
1459
1460static int n2_register_algs(void)
1461{
1462	int i, err = 0;
1463
1464	mutex_lock(&spu_lock);
1465	if (algs_registered++)
1466		goto out;
1467
1468	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1469		err = __n2_register_one_ahash(&hash_tmpls[i]);
1470		if (err) {
1471			__n2_unregister_algs();
1472			goto out;
1473		}
1474	}
1475	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1476		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1477		if (err) {
1478			__n2_unregister_algs();
1479			goto out;
1480		}
1481	}
1482
1483out:
1484	mutex_unlock(&spu_lock);
1485	return err;
1486}
1487
1488static void n2_unregister_algs(void)
1489{
1490	mutex_lock(&spu_lock);
1491	if (!--algs_registered)
1492		__n2_unregister_algs();
1493	mutex_unlock(&spu_lock);
1494}
1495
1496/* To map CWQ queues to interrupt sources, the hypervisor API provides
1497 * a devino.  This isn't very useful to us because all of the
1498 * interrupts listed in the device_node have been translated to
1499 * Linux virtual IRQ cookie numbers.
1500 *
1501 * So we have to back-translate, going through the 'intr' and 'ino'
1502 * property tables of the n2cp MDESC node, matching it with the OF
1503 * 'interrupts' property entries, in order to figure out which
1504 * devino goes to which already-translated IRQ.
1505 */
1506static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1507			     unsigned long dev_ino)
1508{
1509	const unsigned int *dev_intrs;
1510	unsigned int intr;
1511	int i;
1512
1513	for (i = 0; i < ip->num_intrs; i++) {
1514		if (ip->ino_table[i].ino == dev_ino)
1515			break;
1516	}
1517	if (i == ip->num_intrs)
1518		return -ENODEV;
1519
1520	intr = ip->ino_table[i].intr;
1521
1522	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1523	if (!dev_intrs)
1524		return -ENODEV;
1525
1526	for (i = 0; i < dev->archdata.num_irqs; i++) {
1527		if (dev_intrs[i] == intr)
1528			return i;
1529	}
1530
1531	return -ENODEV;
1532}
1533
1534static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1535		       const char *irq_name, struct spu_queue *p,
1536		       irq_handler_t handler)
1537{
1538	unsigned long herr;
1539	int index;
1540
1541	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1542	if (herr)
1543		return -EINVAL;
1544
1545	index = find_devino_index(dev, ip, p->devino);
1546	if (index < 0)
1547		return index;
1548
1549	p->irq = dev->archdata.irqs[index];
1550
1551	sprintf(p->irq_name, "%s-%d", irq_name, index);
1552
1553	return request_irq(p->irq, handler, 0, p->irq_name, p);
1554}
1555
1556static struct kmem_cache *queue_cache[2];
1557
1558static void *new_queue(unsigned long q_type)
1559{
1560	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1561}
1562
1563static void free_queue(void *p, unsigned long q_type)
1564{
1565	kmem_cache_free(queue_cache[q_type - 1], p);
1566}
1567
1568static int queue_cache_init(void)
1569{
1570	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1572			kmem_cache_create("mau_queue",
1573					  (MAU_NUM_ENTRIES *
1574					   MAU_ENTRY_SIZE),
1575					  MAU_ENTRY_SIZE, 0, NULL);
1576	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1577		return -ENOMEM;
1578
1579	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1580		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1581			kmem_cache_create("cwq_queue",
1582					  (CWQ_NUM_ENTRIES *
1583					   CWQ_ENTRY_SIZE),
1584					  CWQ_ENTRY_SIZE, 0, NULL);
1585	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1586		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1587		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1588		return -ENOMEM;
1589	}
1590	return 0;
1591}
1592
1593static void queue_cache_destroy(void)
1594{
1595	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1596	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1597	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1598	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1599}
1600
1601static long spu_queue_register_workfn(void *arg)
1602{
1603	struct spu_qreg *qr = arg;
1604	struct spu_queue *p = qr->queue;
1605	unsigned long q_type = qr->type;
1606	unsigned long hv_ret;
1607
1608	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1609				 CWQ_NUM_ENTRIES, &p->qhandle);
1610	if (!hv_ret)
1611		sun4v_ncs_sethead_marker(p->qhandle, 0);
1612
1613	return hv_ret ? -EINVAL : 0;
1614}
1615
1616static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1617{
1618	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1619	struct spu_qreg qr = { .queue = p, .type = q_type };
1620
1621	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1622}
1623
1624static int spu_queue_setup(struct spu_queue *p)
1625{
1626	int err;
1627
1628	p->q = new_queue(p->q_type);
1629	if (!p->q)
1630		return -ENOMEM;
1631
1632	err = spu_queue_register(p, p->q_type);
1633	if (err) {
1634		free_queue(p->q, p->q_type);
1635		p->q = NULL;
1636	}
1637
1638	return err;
1639}
1640
1641static void spu_queue_destroy(struct spu_queue *p)
1642{
1643	unsigned long hv_ret;
1644
1645	if (!p->q)
1646		return;
1647
1648	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1649
1650	if (!hv_ret)
1651		free_queue(p->q, p->q_type);
1652}
1653
1654static void spu_list_destroy(struct list_head *list)
1655{
1656	struct spu_queue *p, *n;
1657
1658	list_for_each_entry_safe(p, n, list, list) {
1659		int i;
1660
1661		for (i = 0; i < NR_CPUS; i++) {
1662			if (cpu_to_cwq[i] == p)
1663				cpu_to_cwq[i] = NULL;
1664		}
1665
1666		if (p->irq) {
1667			free_irq(p->irq, p);
1668			p->irq = 0;
1669		}
1670		spu_queue_destroy(p);
1671		list_del(&p->list);
1672		kfree(p);
1673	}
1674}
1675
1676/* Walk the backward arcs of a CWQ 'exec-unit' node,
1677 * gathering cpu membership information.
1678 */
1679static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1680			       struct platform_device *dev,
1681			       u64 node, struct spu_queue *p,
1682			       struct spu_queue **table)
1683{
1684	u64 arc;
1685
1686	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1687		u64 tgt = mdesc_arc_target(mdesc, arc);
1688		const char *name = mdesc_node_name(mdesc, tgt);
1689		const u64 *id;
1690
1691		if (strcmp(name, "cpu"))
1692			continue;
1693		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1694		if (table[*id] != NULL) {
1695			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1696				dev->dev.of_node);
1697			return -EINVAL;
1698		}
1699		cpumask_set_cpu(*id, &p->sharing);
1700		table[*id] = p;
1701	}
1702	return 0;
1703}
1704
1705/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1706static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1707			    struct platform_device *dev, struct mdesc_handle *mdesc,
1708			    u64 node, const char *iname, unsigned long q_type,
1709			    irq_handler_t handler, struct spu_queue **table)
1710{
1711	struct spu_queue *p;
1712	int err;
1713
1714	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1715	if (!p) {
1716		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1717			dev->dev.of_node);
1718		return -ENOMEM;
1719	}
1720
1721	cpumask_clear(&p->sharing);
1722	spin_lock_init(&p->lock);
1723	p->q_type = q_type;
1724	INIT_LIST_HEAD(&p->jobs);
1725	list_add(&p->list, list);
1726
1727	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1728	if (err)
1729		return err;
1730
1731	err = spu_queue_setup(p);
1732	if (err)
1733		return err;
1734
1735	return spu_map_ino(dev, ip, iname, p, handler);
1736}
1737
1738static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1739			  struct spu_mdesc_info *ip, struct list_head *list,
1740			  const char *exec_name, unsigned long q_type,
1741			  irq_handler_t handler, struct spu_queue **table)
1742{
1743	int err = 0;
1744	u64 node;
1745
1746	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1747		const char *type;
1748
1749		type = mdesc_get_property(mdesc, node, "type", NULL);
1750		if (!type || strcmp(type, exec_name))
1751			continue;
1752
1753		err = handle_exec_unit(ip, list, dev, mdesc, node,
1754				       exec_name, q_type, handler, table);
1755		if (err) {
1756			spu_list_destroy(list);
1757			break;
1758		}
1759	}
1760
1761	return err;
1762}
1763
1764static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1765			 struct spu_mdesc_info *ip)
1766{
1767	const u64 *ino;
1768	int ino_len;
1769	int i;
1770
1771	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1772	if (!ino) {
1773		printk("NO 'ino'\n");
1774		return -ENODEV;
1775	}
1776
1777	ip->num_intrs = ino_len / sizeof(u64);
1778	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1779				 ip->num_intrs),
1780				GFP_KERNEL);
1781	if (!ip->ino_table)
1782		return -ENOMEM;
1783
1784	for (i = 0; i < ip->num_intrs; i++) {
1785		struct ino_blob *b = &ip->ino_table[i];
1786		b->intr = i + 1;
1787		b->ino = ino[i];
1788	}
1789
1790	return 0;
1791}
1792
1793static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1794				struct platform_device *dev,
1795				struct spu_mdesc_info *ip,
1796				const char *node_name)
1797{
1798	const unsigned int *reg;
1799	u64 node;
1800
1801	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1802	if (!reg)
1803		return -ENODEV;
1804
1805	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1806		const char *name;
1807		const u64 *chdl;
1808
1809		name = mdesc_get_property(mdesc, node, "name", NULL);
1810		if (!name || strcmp(name, node_name))
1811			continue;
1812		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1813		if (!chdl || (*chdl != *reg))
1814			continue;
1815		ip->cfg_handle = *chdl;
1816		return get_irq_props(mdesc, node, ip);
1817	}
1818
1819	return -ENODEV;
1820}
1821
1822static unsigned long n2_spu_hvapi_major;
1823static unsigned long n2_spu_hvapi_minor;
1824
1825static int n2_spu_hvapi_register(void)
1826{
1827	int err;
1828
1829	n2_spu_hvapi_major = 2;
1830	n2_spu_hvapi_minor = 0;
1831
1832	err = sun4v_hvapi_register(HV_GRP_NCS,
1833				   n2_spu_hvapi_major,
1834				   &n2_spu_hvapi_minor);
1835
1836	if (!err)
1837		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1838			n2_spu_hvapi_major,
1839			n2_spu_hvapi_minor);
1840
1841	return err;
1842}
1843
1844static void n2_spu_hvapi_unregister(void)
1845{
1846	sun4v_hvapi_unregister(HV_GRP_NCS);
1847}
1848
1849static int global_ref;
1850
1851static int grab_global_resources(void)
1852{
1853	int err = 0;
1854
1855	mutex_lock(&spu_lock);
1856
1857	if (global_ref++)
1858		goto out;
1859
1860	err = n2_spu_hvapi_register();
1861	if (err)
1862		goto out;
1863
1864	err = queue_cache_init();
1865	if (err)
1866		goto out_hvapi_release;
1867
1868	err = -ENOMEM;
1869	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1870			     GFP_KERNEL);
1871	if (!cpu_to_cwq)
1872		goto out_queue_cache_destroy;
1873
1874	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1875			     GFP_KERNEL);
1876	if (!cpu_to_mau)
1877		goto out_free_cwq_table;
1878
1879	err = 0;
1880
1881out:
1882	if (err)
1883		global_ref--;
1884	mutex_unlock(&spu_lock);
1885	return err;
1886
1887out_free_cwq_table:
1888	kfree(cpu_to_cwq);
1889	cpu_to_cwq = NULL;
1890
1891out_queue_cache_destroy:
1892	queue_cache_destroy();
1893
1894out_hvapi_release:
1895	n2_spu_hvapi_unregister();
1896	goto out;
1897}
1898
1899static void release_global_resources(void)
1900{
1901	mutex_lock(&spu_lock);
1902	if (!--global_ref) {
1903		kfree(cpu_to_cwq);
1904		cpu_to_cwq = NULL;
1905
1906		kfree(cpu_to_mau);
1907		cpu_to_mau = NULL;
1908
1909		queue_cache_destroy();
1910		n2_spu_hvapi_unregister();
1911	}
1912	mutex_unlock(&spu_lock);
1913}
1914
1915static struct n2_crypto *alloc_n2cp(void)
1916{
1917	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1918
1919	if (np)
1920		INIT_LIST_HEAD(&np->cwq_list);
1921
1922	return np;
1923}
1924
1925static void free_n2cp(struct n2_crypto *np)
1926{
1927	kfree(np->cwq_info.ino_table);
1928	np->cwq_info.ino_table = NULL;
1929
1930	kfree(np);
1931}
1932
1933static void n2_spu_driver_version(void)
1934{
1935	static int n2_spu_version_printed;
1936
1937	if (n2_spu_version_printed++ == 0)
1938		pr_info("%s", version);
1939}
1940
1941static int n2_crypto_probe(struct platform_device *dev)
1942{
1943	struct mdesc_handle *mdesc;
1944	struct n2_crypto *np;
1945	int err;
1946
1947	n2_spu_driver_version();
1948
1949	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1950
1951	np = alloc_n2cp();
1952	if (!np) {
1953		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1954			dev->dev.of_node);
1955		return -ENOMEM;
1956	}
1957
1958	err = grab_global_resources();
1959	if (err) {
1960		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1961			dev->dev.of_node);
1962		goto out_free_n2cp;
1963	}
1964
1965	mdesc = mdesc_grab();
1966
1967	if (!mdesc) {
1968		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1969			dev->dev.of_node);
1970		err = -ENODEV;
1971		goto out_free_global;
1972	}
1973	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1974	if (err) {
1975		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1976			dev->dev.of_node);
1977		mdesc_release(mdesc);
1978		goto out_free_global;
1979	}
1980
1981	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1982			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1983			     cpu_to_cwq);
1984	mdesc_release(mdesc);
1985
1986	if (err) {
1987		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1988			dev->dev.of_node);
1989		goto out_free_global;
1990	}
1991
1992	err = n2_register_algs();
1993	if (err) {
1994		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1995			dev->dev.of_node);
1996		goto out_free_spu_list;
1997	}
1998
1999	dev_set_drvdata(&dev->dev, np);
2000
2001	return 0;
2002
2003out_free_spu_list:
2004	spu_list_destroy(&np->cwq_list);
2005
2006out_free_global:
2007	release_global_resources();
2008
2009out_free_n2cp:
2010	free_n2cp(np);
2011
2012	return err;
2013}
2014
2015static int n2_crypto_remove(struct platform_device *dev)
2016{
2017	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2018
2019	n2_unregister_algs();
2020
2021	spu_list_destroy(&np->cwq_list);
2022
2023	release_global_resources();
2024
2025	free_n2cp(np);
2026
2027	return 0;
2028}
2029
2030static struct n2_mau *alloc_ncp(void)
2031{
2032	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2033
2034	if (mp)
2035		INIT_LIST_HEAD(&mp->mau_list);
2036
2037	return mp;
2038}
2039
2040static void free_ncp(struct n2_mau *mp)
2041{
2042	kfree(mp->mau_info.ino_table);
2043	mp->mau_info.ino_table = NULL;
2044
2045	kfree(mp);
2046}
2047
2048static int n2_mau_probe(struct platform_device *dev)
2049{
2050	struct mdesc_handle *mdesc;
2051	struct n2_mau *mp;
2052	int err;
2053
2054	n2_spu_driver_version();
2055
2056	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2057
2058	mp = alloc_ncp();
2059	if (!mp) {
2060		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2061			dev->dev.of_node);
2062		return -ENOMEM;
2063	}
2064
2065	err = grab_global_resources();
2066	if (err) {
2067		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2068			dev->dev.of_node);
2069		goto out_free_ncp;
2070	}
2071
2072	mdesc = mdesc_grab();
2073
2074	if (!mdesc) {
2075		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2076			dev->dev.of_node);
2077		err = -ENODEV;
2078		goto out_free_global;
2079	}
2080
2081	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2082	if (err) {
2083		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2084			dev->dev.of_node);
2085		mdesc_release(mdesc);
2086		goto out_free_global;
2087	}
2088
2089	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2090			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2091			     cpu_to_mau);
2092	mdesc_release(mdesc);
2093
2094	if (err) {
2095		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2096			dev->dev.of_node);
2097		goto out_free_global;
2098	}
2099
2100	dev_set_drvdata(&dev->dev, mp);
2101
2102	return 0;
2103
2104out_free_global:
2105	release_global_resources();
2106
2107out_free_ncp:
2108	free_ncp(mp);
2109
2110	return err;
2111}
2112
2113static int n2_mau_remove(struct platform_device *dev)
2114{
2115	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2116
2117	spu_list_destroy(&mp->mau_list);
2118
2119	release_global_resources();
2120
2121	free_ncp(mp);
2122
2123	return 0;
2124}
2125
2126static const struct of_device_id n2_crypto_match[] = {
2127	{
2128		.name = "n2cp",
2129		.compatible = "SUNW,n2-cwq",
2130	},
2131	{
2132		.name = "n2cp",
2133		.compatible = "SUNW,vf-cwq",
2134	},
2135	{
2136		.name = "n2cp",
2137		.compatible = "SUNW,kt-cwq",
2138	},
2139	{},
2140};
2141
2142MODULE_DEVICE_TABLE(of, n2_crypto_match);
2143
2144static struct platform_driver n2_crypto_driver = {
2145	.driver = {
2146		.name		=	"n2cp",
2147		.of_match_table	=	n2_crypto_match,
2148	},
2149	.probe		=	n2_crypto_probe,
2150	.remove		=	n2_crypto_remove,
2151};
2152
2153static const struct of_device_id n2_mau_match[] = {
2154	{
2155		.name = "ncp",
2156		.compatible = "SUNW,n2-mau",
2157	},
2158	{
2159		.name = "ncp",
2160		.compatible = "SUNW,vf-mau",
2161	},
2162	{
2163		.name = "ncp",
2164		.compatible = "SUNW,kt-mau",
2165	},
2166	{},
2167};
2168
2169MODULE_DEVICE_TABLE(of, n2_mau_match);
2170
2171static struct platform_driver n2_mau_driver = {
2172	.driver = {
2173		.name		=	"ncp",
2174		.of_match_table	=	n2_mau_match,
2175	},
2176	.probe		=	n2_mau_probe,
2177	.remove		=	n2_mau_remove,
2178};
2179
2180static struct platform_driver * const drivers[] = {
2181	&n2_crypto_driver,
2182	&n2_mau_driver,
2183};
2184
2185static int __init n2_init(void)
2186{
2187	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2188}
2189
2190static void __exit n2_exit(void)
2191{
2192	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2193}
2194
2195module_init(n2_init);
2196module_exit(n2_exit);