Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566{
567 return fwnode_call_ptr_op(fwnode, get_name);
568}
569EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571/**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579{
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581}
582
583/**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591{
592 return fwnode_call_ptr_op(fwnode, get_parent);
593}
594EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596/**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608{
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614}
615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617/**
618 * fwnode_count_parents - Return the number of parents a node has
619 * @fwnode: The node the parents of which are to be counted
620 *
621 * Returns the number of parents a node has.
622 */
623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624{
625 struct fwnode_handle *__fwnode;
626 unsigned int count;
627
628 __fwnode = fwnode_get_parent(fwnode);
629
630 for (count = 0; __fwnode; count++)
631 __fwnode = fwnode_get_next_parent(__fwnode);
632
633 return count;
634}
635EXPORT_SYMBOL_GPL(fwnode_count_parents);
636
637/**
638 * fwnode_get_nth_parent - Return an nth parent of a node
639 * @fwnode: The node the parent of which is requested
640 * @depth: Distance of the parent from the node
641 *
642 * Returns the nth parent of a node. If there is no parent at the requested
643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645 *
646 * The caller is responsible for calling fwnode_handle_put() for the returned
647 * node.
648 */
649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650 unsigned int depth)
651{
652 unsigned int i;
653
654 fwnode_handle_get(fwnode);
655
656 for (i = 0; i < depth && fwnode; i++)
657 fwnode = fwnode_get_next_parent(fwnode);
658
659 return fwnode;
660}
661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662
663/**
664 * fwnode_get_next_child_node - Return the next child node handle for a node
665 * @fwnode: Firmware node to find the next child node for.
666 * @child: Handle to one of the node's child nodes or a %NULL handle.
667 */
668struct fwnode_handle *
669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670 struct fwnode_handle *child)
671{
672 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673}
674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675
676/**
677 * fwnode_get_next_available_child_node - Return the next
678 * available child node handle for a node
679 * @fwnode: Firmware node to find the next child node for.
680 * @child: Handle to one of the node's child nodes or a %NULL handle.
681 */
682struct fwnode_handle *
683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684 struct fwnode_handle *child)
685{
686 struct fwnode_handle *next_child = child;
687
688 if (!fwnode)
689 return NULL;
690
691 do {
692 next_child = fwnode_get_next_child_node(fwnode, next_child);
693
694 if (!next_child || fwnode_device_is_available(next_child))
695 break;
696 } while (next_child);
697
698 return next_child;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701
702/**
703 * device_get_next_child_node - Return the next child node handle for a device
704 * @dev: Device to find the next child node for.
705 * @child: Handle to one of the device's child nodes or a null handle.
706 */
707struct fwnode_handle *device_get_next_child_node(struct device *dev,
708 struct fwnode_handle *child)
709{
710 struct acpi_device *adev = ACPI_COMPANION(dev);
711 struct fwnode_handle *fwnode = NULL, *next;
712
713 if (dev->of_node)
714 fwnode = &dev->of_node->fwnode;
715 else if (adev)
716 fwnode = acpi_fwnode_handle(adev);
717
718 /* Try to find a child in primary fwnode */
719 next = fwnode_get_next_child_node(fwnode, child);
720 if (next)
721 return next;
722
723 /* When no more children in primary, continue with secondary */
724 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725 next = fwnode_get_next_child_node(fwnode->secondary, child);
726
727 return next;
728}
729EXPORT_SYMBOL_GPL(device_get_next_child_node);
730
731/**
732 * fwnode_get_named_child_node - Return first matching named child node handle
733 * @fwnode: Firmware node to find the named child node for.
734 * @childname: String to match child node name against.
735 */
736struct fwnode_handle *
737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738 const char *childname)
739{
740 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741}
742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743
744/**
745 * device_get_named_child_node - Return first matching named child node handle
746 * @dev: Device to find the named child node for.
747 * @childname: String to match child node name against.
748 */
749struct fwnode_handle *device_get_named_child_node(struct device *dev,
750 const char *childname)
751{
752 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753}
754EXPORT_SYMBOL_GPL(device_get_named_child_node);
755
756/**
757 * fwnode_handle_get - Obtain a reference to a device node
758 * @fwnode: Pointer to the device node to obtain the reference to.
759 *
760 * Returns the fwnode handle.
761 */
762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763{
764 if (!fwnode_has_op(fwnode, get))
765 return fwnode;
766
767 return fwnode_call_ptr_op(fwnode, get);
768}
769EXPORT_SYMBOL_GPL(fwnode_handle_get);
770
771/**
772 * fwnode_handle_put - Drop reference to a device node
773 * @fwnode: Pointer to the device node to drop the reference to.
774 *
775 * This has to be used when terminating device_for_each_child_node() iteration
776 * with break or return to prevent stale device node references from being left
777 * behind.
778 */
779void fwnode_handle_put(struct fwnode_handle *fwnode)
780{
781 fwnode_call_void_op(fwnode, put);
782}
783EXPORT_SYMBOL_GPL(fwnode_handle_put);
784
785/**
786 * fwnode_device_is_available - check if a device is available for use
787 * @fwnode: Pointer to the fwnode of the device.
788 */
789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790{
791 return fwnode_call_bool_op(fwnode, device_is_available);
792}
793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794
795/**
796 * device_get_child_node_count - return the number of child nodes for device
797 * @dev: Device to cound the child nodes for
798 */
799unsigned int device_get_child_node_count(struct device *dev)
800{
801 struct fwnode_handle *child;
802 unsigned int count = 0;
803
804 device_for_each_child_node(dev, child)
805 count++;
806
807 return count;
808}
809EXPORT_SYMBOL_GPL(device_get_child_node_count);
810
811bool device_dma_supported(struct device *dev)
812{
813 /* For DT, this is always supported.
814 * For ACPI, this depends on CCA, which
815 * is determined by the acpi_dma_supported().
816 */
817 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818 return true;
819
820 return acpi_dma_supported(ACPI_COMPANION(dev));
821}
822EXPORT_SYMBOL_GPL(device_dma_supported);
823
824enum dev_dma_attr device_get_dma_attr(struct device *dev)
825{
826 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827
828 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829 if (of_dma_is_coherent(dev->of_node))
830 attr = DEV_DMA_COHERENT;
831 else
832 attr = DEV_DMA_NON_COHERENT;
833 } else
834 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835
836 return attr;
837}
838EXPORT_SYMBOL_GPL(device_get_dma_attr);
839
840/**
841 * fwnode_get_phy_mode - Get phy mode for given firmware node
842 * @fwnode: Pointer to the given node
843 *
844 * The function gets phy interface string from property 'phy-mode' or
845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
846 * error case.
847 */
848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849{
850 const char *pm;
851 int err, i;
852
853 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854 if (err < 0)
855 err = fwnode_property_read_string(fwnode,
856 "phy-connection-type", &pm);
857 if (err < 0)
858 return err;
859
860 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861 if (!strcasecmp(pm, phy_modes(i)))
862 return i;
863
864 return -ENODEV;
865}
866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867
868/**
869 * device_get_phy_mode - Get phy mode for given device
870 * @dev: Pointer to the given device
871 *
872 * The function gets phy interface string from property 'phy-mode' or
873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
874 * error case.
875 */
876int device_get_phy_mode(struct device *dev)
877{
878 return fwnode_get_phy_mode(dev_fwnode(dev));
879}
880EXPORT_SYMBOL_GPL(device_get_phy_mode);
881
882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883 const char *name, char *addr,
884 int alen)
885{
886 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887
888 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889 return addr;
890 return NULL;
891}
892
893/**
894 * fwnode_get_mac_address - Get the MAC from the firmware node
895 * @fwnode: Pointer to the firmware node
896 * @addr: Address of buffer to store the MAC in
897 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
898 *
899 * Search the firmware node for the best MAC address to use. 'mac-address' is
900 * checked first, because that is supposed to contain to "most recent" MAC
901 * address. If that isn't set, then 'local-mac-address' is checked next,
902 * because that is the default address. If that isn't set, then the obsolete
903 * 'address' is checked, just in case we're using an old device tree.
904 *
905 * Note that the 'address' property is supposed to contain a virtual address of
906 * the register set, but some DTS files have redefined that property to be the
907 * MAC address.
908 *
909 * All-zero MAC addresses are rejected, because those could be properties that
910 * exist in the firmware tables, but were not updated by the firmware. For
911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
912 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914 * exists but is all zeros.
915*/
916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917{
918 char *res;
919
920 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921 if (res)
922 return res;
923
924 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925 if (res)
926 return res;
927
928 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929}
930EXPORT_SYMBOL(fwnode_get_mac_address);
931
932/**
933 * device_get_mac_address - Get the MAC for a given device
934 * @dev: Pointer to the device
935 * @addr: Address of buffer to store the MAC in
936 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
937 */
938void *device_get_mac_address(struct device *dev, char *addr, int alen)
939{
940 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941}
942EXPORT_SYMBOL(device_get_mac_address);
943
944/**
945 * fwnode_irq_get - Get IRQ directly from a fwnode
946 * @fwnode: Pointer to the firmware node
947 * @index: Zero-based index of the IRQ
948 *
949 * Returns Linux IRQ number on success. Other values are determined
950 * accordingly to acpi_/of_ irq_get() operation.
951 */
952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953{
954 struct device_node *of_node = to_of_node(fwnode);
955 struct resource res;
956 int ret;
957
958 if (IS_ENABLED(CONFIG_OF) && of_node)
959 return of_irq_get(of_node, index);
960
961 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962 if (ret)
963 return ret;
964
965 return res.start;
966}
967EXPORT_SYMBOL(fwnode_irq_get);
968
969/**
970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971 * @fwnode: Pointer to the parent firmware node
972 * @prev: Previous endpoint node or %NULL to get the first
973 *
974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975 * are available.
976 */
977struct fwnode_handle *
978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979 struct fwnode_handle *prev)
980{
981 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982}
983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984
985/**
986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987 * @endpoint: Endpoint firmware node of the port
988 *
989 * Return: the firmware node of the device the @endpoint belongs to.
990 */
991struct fwnode_handle *
992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993{
994 struct fwnode_handle *port, *parent;
995
996 port = fwnode_get_parent(endpoint);
997 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998
999 fwnode_handle_put(port);
1000
1001 return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014 struct fwnode_handle *endpoint, *parent;
1015
1016 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017 parent = fwnode_graph_get_port_parent(endpoint);
1018
1019 fwnode_handle_put(endpoint);
1020
1021 return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 * to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062 u32 endpoint_id)
1063{
1064 struct fwnode_handle *endpoint = NULL;
1065
1066 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067 struct fwnode_endpoint fwnode_ep;
1068 struct fwnode_handle *remote;
1069 int ret;
1070
1071 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072 if (ret < 0)
1073 continue;
1074
1075 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076 continue;
1077
1078 remote = fwnode_graph_get_remote_port_parent(endpoint);
1079 if (!remote)
1080 return NULL;
1081
1082 return fwnode_device_is_available(remote) ? remote : NULL;
1083 }
1084
1085 return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111 u32 port, u32 endpoint, unsigned long flags)
1112{
1113 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114 unsigned int best_ep_id = 0;
1115 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119 struct fwnode_endpoint fwnode_ep = { 0 };
1120 int ret;
1121
1122 if (enabled_only) {
1123 struct fwnode_handle *dev_node;
1124 bool available;
1125
1126 dev_node = fwnode_graph_get_remote_port_parent(ep);
1127 available = fwnode_device_is_available(dev_node);
1128 fwnode_handle_put(dev_node);
1129 if (!available)
1130 continue;
1131 }
1132
1133 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134 if (ret < 0)
1135 continue;
1136
1137 if (fwnode_ep.port != port)
1138 continue;
1139
1140 if (fwnode_ep.id == endpoint)
1141 return ep;
1142
1143 if (!endpoint_next)
1144 continue;
1145
1146 /*
1147 * If the endpoint that has just been found is not the first
1148 * matching one and the ID of the one found previously is closer
1149 * to the requested endpoint ID, skip it.
1150 */
1151 if (fwnode_ep.id < endpoint ||
1152 (best_ep && best_ep_id < fwnode_ep.id))
1153 continue;
1154
1155 fwnode_handle_put(best_ep);
1156 best_ep = fwnode_handle_get(ep);
1157 best_ep_id = fwnode_ep.id;
1158 }
1159
1160 return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174 struct fwnode_endpoint *endpoint)
1175{
1176 memset(endpoint, 0, sizeof(*endpoint));
1177
1178 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_next_parent - Iterate to the node's parent
561 * @fwnode: Firmware whose parent is retrieved
562 *
563 * This is like fwnode_get_parent() except that it drops the refcount
564 * on the passed node, making it suitable for iterating through a
565 * node's parents.
566 *
567 * Returns a node pointer with refcount incremented, use
568 * fwnode_handle_node() on it when done.
569 */
570struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
571{
572 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
573
574 fwnode_handle_put(fwnode);
575
576 return parent;
577}
578EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
579
580/**
581 * fwnode_get_parent - Return parent firwmare node
582 * @fwnode: Firmware whose parent is retrieved
583 *
584 * Return parent firmware node of the given node if possible or %NULL if no
585 * parent was available.
586 */
587struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
588{
589 return fwnode_call_ptr_op(fwnode, get_parent);
590}
591EXPORT_SYMBOL_GPL(fwnode_get_parent);
592
593/**
594 * fwnode_get_next_child_node - Return the next child node handle for a node
595 * @fwnode: Firmware node to find the next child node for.
596 * @child: Handle to one of the node's child nodes or a %NULL handle.
597 */
598struct fwnode_handle *
599fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
600 struct fwnode_handle *child)
601{
602 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
603}
604EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
605
606/**
607 * fwnode_get_next_available_child_node - Return the next
608 * available child node handle for a node
609 * @fwnode: Firmware node to find the next child node for.
610 * @child: Handle to one of the node's child nodes or a %NULL handle.
611 */
612struct fwnode_handle *
613fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
614 struct fwnode_handle *child)
615{
616 struct fwnode_handle *next_child = child;
617
618 if (!fwnode)
619 return NULL;
620
621 do {
622 next_child = fwnode_get_next_child_node(fwnode, next_child);
623
624 if (!next_child || fwnode_device_is_available(next_child))
625 break;
626 } while (next_child);
627
628 return next_child;
629}
630EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
631
632/**
633 * device_get_next_child_node - Return the next child node handle for a device
634 * @dev: Device to find the next child node for.
635 * @child: Handle to one of the device's child nodes or a null handle.
636 */
637struct fwnode_handle *device_get_next_child_node(struct device *dev,
638 struct fwnode_handle *child)
639{
640 struct acpi_device *adev = ACPI_COMPANION(dev);
641 struct fwnode_handle *fwnode = NULL;
642
643 if (dev->of_node)
644 fwnode = &dev->of_node->fwnode;
645 else if (adev)
646 fwnode = acpi_fwnode_handle(adev);
647
648 return fwnode_get_next_child_node(fwnode, child);
649}
650EXPORT_SYMBOL_GPL(device_get_next_child_node);
651
652/**
653 * fwnode_get_named_child_node - Return first matching named child node handle
654 * @fwnode: Firmware node to find the named child node for.
655 * @childname: String to match child node name against.
656 */
657struct fwnode_handle *
658fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
659 const char *childname)
660{
661 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
662}
663EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
664
665/**
666 * device_get_named_child_node - Return first matching named child node handle
667 * @dev: Device to find the named child node for.
668 * @childname: String to match child node name against.
669 */
670struct fwnode_handle *device_get_named_child_node(struct device *dev,
671 const char *childname)
672{
673 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
674}
675EXPORT_SYMBOL_GPL(device_get_named_child_node);
676
677/**
678 * fwnode_handle_get - Obtain a reference to a device node
679 * @fwnode: Pointer to the device node to obtain the reference to.
680 *
681 * Returns the fwnode handle.
682 */
683struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
684{
685 if (!fwnode_has_op(fwnode, get))
686 return fwnode;
687
688 return fwnode_call_ptr_op(fwnode, get);
689}
690EXPORT_SYMBOL_GPL(fwnode_handle_get);
691
692/**
693 * fwnode_handle_put - Drop reference to a device node
694 * @fwnode: Pointer to the device node to drop the reference to.
695 *
696 * This has to be used when terminating device_for_each_child_node() iteration
697 * with break or return to prevent stale device node references from being left
698 * behind.
699 */
700void fwnode_handle_put(struct fwnode_handle *fwnode)
701{
702 fwnode_call_void_op(fwnode, put);
703}
704EXPORT_SYMBOL_GPL(fwnode_handle_put);
705
706/**
707 * fwnode_device_is_available - check if a device is available for use
708 * @fwnode: Pointer to the fwnode of the device.
709 */
710bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
711{
712 return fwnode_call_bool_op(fwnode, device_is_available);
713}
714EXPORT_SYMBOL_GPL(fwnode_device_is_available);
715
716/**
717 * device_get_child_node_count - return the number of child nodes for device
718 * @dev: Device to cound the child nodes for
719 */
720unsigned int device_get_child_node_count(struct device *dev)
721{
722 struct fwnode_handle *child;
723 unsigned int count = 0;
724
725 device_for_each_child_node(dev, child)
726 count++;
727
728 return count;
729}
730EXPORT_SYMBOL_GPL(device_get_child_node_count);
731
732bool device_dma_supported(struct device *dev)
733{
734 /* For DT, this is always supported.
735 * For ACPI, this depends on CCA, which
736 * is determined by the acpi_dma_supported().
737 */
738 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
739 return true;
740
741 return acpi_dma_supported(ACPI_COMPANION(dev));
742}
743EXPORT_SYMBOL_GPL(device_dma_supported);
744
745enum dev_dma_attr device_get_dma_attr(struct device *dev)
746{
747 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
748
749 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
750 if (of_dma_is_coherent(dev->of_node))
751 attr = DEV_DMA_COHERENT;
752 else
753 attr = DEV_DMA_NON_COHERENT;
754 } else
755 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
756
757 return attr;
758}
759EXPORT_SYMBOL_GPL(device_get_dma_attr);
760
761/**
762 * fwnode_get_phy_mode - Get phy mode for given firmware node
763 * @fwnode: Pointer to the given node
764 *
765 * The function gets phy interface string from property 'phy-mode' or
766 * 'phy-connection-type', and return its index in phy_modes table, or errno in
767 * error case.
768 */
769int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
770{
771 const char *pm;
772 int err, i;
773
774 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
775 if (err < 0)
776 err = fwnode_property_read_string(fwnode,
777 "phy-connection-type", &pm);
778 if (err < 0)
779 return err;
780
781 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
782 if (!strcasecmp(pm, phy_modes(i)))
783 return i;
784
785 return -ENODEV;
786}
787EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
788
789/**
790 * device_get_phy_mode - Get phy mode for given device
791 * @dev: Pointer to the given device
792 *
793 * The function gets phy interface string from property 'phy-mode' or
794 * 'phy-connection-type', and return its index in phy_modes table, or errno in
795 * error case.
796 */
797int device_get_phy_mode(struct device *dev)
798{
799 return fwnode_get_phy_mode(dev_fwnode(dev));
800}
801EXPORT_SYMBOL_GPL(device_get_phy_mode);
802
803static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
804 const char *name, char *addr,
805 int alen)
806{
807 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
808
809 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
810 return addr;
811 return NULL;
812}
813
814/**
815 * fwnode_get_mac_address - Get the MAC from the firmware node
816 * @fwnode: Pointer to the firmware node
817 * @addr: Address of buffer to store the MAC in
818 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
819 *
820 * Search the firmware node for the best MAC address to use. 'mac-address' is
821 * checked first, because that is supposed to contain to "most recent" MAC
822 * address. If that isn't set, then 'local-mac-address' is checked next,
823 * because that is the default address. If that isn't set, then the obsolete
824 * 'address' is checked, just in case we're using an old device tree.
825 *
826 * Note that the 'address' property is supposed to contain a virtual address of
827 * the register set, but some DTS files have redefined that property to be the
828 * MAC address.
829 *
830 * All-zero MAC addresses are rejected, because those could be properties that
831 * exist in the firmware tables, but were not updated by the firmware. For
832 * example, the DTS could define 'mac-address' and 'local-mac-address', with
833 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
834 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
835 * exists but is all zeros.
836*/
837void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
838{
839 char *res;
840
841 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
842 if (res)
843 return res;
844
845 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
846 if (res)
847 return res;
848
849 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
850}
851EXPORT_SYMBOL(fwnode_get_mac_address);
852
853/**
854 * device_get_mac_address - Get the MAC for a given device
855 * @dev: Pointer to the device
856 * @addr: Address of buffer to store the MAC in
857 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
858 */
859void *device_get_mac_address(struct device *dev, char *addr, int alen)
860{
861 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
862}
863EXPORT_SYMBOL(device_get_mac_address);
864
865/**
866 * fwnode_irq_get - Get IRQ directly from a fwnode
867 * @fwnode: Pointer to the firmware node
868 * @index: Zero-based index of the IRQ
869 *
870 * Returns Linux IRQ number on success. Other values are determined
871 * accordingly to acpi_/of_ irq_get() operation.
872 */
873int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
874{
875 struct device_node *of_node = to_of_node(fwnode);
876 struct resource res;
877 int ret;
878
879 if (IS_ENABLED(CONFIG_OF) && of_node)
880 return of_irq_get(of_node, index);
881
882 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
883 if (ret)
884 return ret;
885
886 return res.start;
887}
888EXPORT_SYMBOL(fwnode_irq_get);
889
890/**
891 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
892 * @fwnode: Pointer to the parent firmware node
893 * @prev: Previous endpoint node or %NULL to get the first
894 *
895 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
896 * are available.
897 */
898struct fwnode_handle *
899fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
900 struct fwnode_handle *prev)
901{
902 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
903}
904EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
905
906/**
907 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
908 * @endpoint: Endpoint firmware node of the port
909 *
910 * Return: the firmware node of the device the @endpoint belongs to.
911 */
912struct fwnode_handle *
913fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
914{
915 struct fwnode_handle *port, *parent;
916
917 port = fwnode_get_parent(endpoint);
918 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
919
920 fwnode_handle_put(port);
921
922 return parent;
923}
924EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
925
926/**
927 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
928 * @fwnode: Endpoint firmware node pointing to the remote endpoint
929 *
930 * Extracts firmware node of a remote device the @fwnode points to.
931 */
932struct fwnode_handle *
933fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
934{
935 struct fwnode_handle *endpoint, *parent;
936
937 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
938 parent = fwnode_graph_get_port_parent(endpoint);
939
940 fwnode_handle_put(endpoint);
941
942 return parent;
943}
944EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
945
946/**
947 * fwnode_graph_get_remote_port - Return fwnode of a remote port
948 * @fwnode: Endpoint firmware node pointing to the remote endpoint
949 *
950 * Extracts firmware node of a remote port the @fwnode points to.
951 */
952struct fwnode_handle *
953fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
954{
955 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
956}
957EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
958
959/**
960 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
961 * @fwnode: Endpoint firmware node pointing to the remote endpoint
962 *
963 * Extracts firmware node of a remote endpoint the @fwnode points to.
964 */
965struct fwnode_handle *
966fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
967{
968 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
969}
970EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
971
972/**
973 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
974 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
975 * @port_id: identifier of the parent port node
976 * @endpoint_id: identifier of the endpoint node
977 *
978 * Return: Remote fwnode handle associated with remote endpoint node linked
979 * to @node. Use fwnode_node_put() on it when done.
980 */
981struct fwnode_handle *
982fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
983 u32 endpoint_id)
984{
985 struct fwnode_handle *endpoint = NULL;
986
987 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
988 struct fwnode_endpoint fwnode_ep;
989 struct fwnode_handle *remote;
990 int ret;
991
992 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
993 if (ret < 0)
994 continue;
995
996 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
997 continue;
998
999 remote = fwnode_graph_get_remote_port_parent(endpoint);
1000 if (!remote)
1001 return NULL;
1002
1003 return fwnode_device_is_available(remote) ? remote : NULL;
1004 }
1005
1006 return NULL;
1007}
1008EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1009
1010/**
1011 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1012 * @fwnode: parent fwnode_handle containing the graph
1013 * @port: identifier of the port node
1014 * @endpoint: identifier of the endpoint node under the port node
1015 * @flags: fwnode lookup flags
1016 *
1017 * Return the fwnode handle of the local endpoint corresponding the port and
1018 * endpoint IDs or NULL if not found.
1019 *
1020 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1021 * has not been found, look for the closest endpoint ID greater than the
1022 * specified one and return the endpoint that corresponds to it, if present.
1023 *
1024 * Do not return endpoints that belong to disabled devices, unless
1025 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1026 *
1027 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1028 * it when it is not needed any more.
1029 */
1030struct fwnode_handle *
1031fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1032 u32 port, u32 endpoint, unsigned long flags)
1033{
1034 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1035 unsigned int best_ep_id = 0;
1036 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1037 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1038
1039 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1040 struct fwnode_endpoint fwnode_ep = { 0 };
1041 int ret;
1042
1043 if (enabled_only) {
1044 struct fwnode_handle *dev_node;
1045 bool available;
1046
1047 dev_node = fwnode_graph_get_remote_port_parent(ep);
1048 available = fwnode_device_is_available(dev_node);
1049 fwnode_handle_put(dev_node);
1050 if (!available)
1051 continue;
1052 }
1053
1054 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1055 if (ret < 0)
1056 continue;
1057
1058 if (fwnode_ep.port != port)
1059 continue;
1060
1061 if (fwnode_ep.id == endpoint)
1062 return ep;
1063
1064 if (!endpoint_next)
1065 continue;
1066
1067 /*
1068 * If the endpoint that has just been found is not the first
1069 * matching one and the ID of the one found previously is closer
1070 * to the requested endpoint ID, skip it.
1071 */
1072 if (fwnode_ep.id < endpoint ||
1073 (best_ep && best_ep_id < fwnode_ep.id))
1074 continue;
1075
1076 fwnode_handle_put(best_ep);
1077 best_ep = fwnode_handle_get(ep);
1078 best_ep_id = fwnode_ep.id;
1079 }
1080
1081 return best_ep;
1082}
1083EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1084
1085/**
1086 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1087 * @fwnode: pointer to endpoint fwnode_handle
1088 * @endpoint: pointer to the fwnode endpoint data structure
1089 *
1090 * Parse @fwnode representing a graph endpoint node and store the
1091 * information in @endpoint. The caller must hold a reference to
1092 * @fwnode.
1093 */
1094int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1095 struct fwnode_endpoint *endpoint)
1096{
1097 memset(endpoint, 0, sizeof(*endpoint));
1098
1099 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1100}
1101EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1102
1103const void *device_get_match_data(struct device *dev)
1104{
1105 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1106}
1107EXPORT_SYMBOL_GPL(device_get_match_data);