Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/nospec.h>
36#include <linux/string.h>
37#include <linux/init.h>
38#include <linux/slab.h>
39#include <linux/leds.h>
40
41#include <linux/kbd_kern.h>
42#include <linux/kbd_diacr.h>
43#include <linux/vt_kern.h>
44#include <linux/input.h>
45#include <linux/reboot.h>
46#include <linux/notifier.h>
47#include <linux/jiffies.h>
48#include <linux/uaccess.h>
49
50#include <asm/irq_regs.h>
51
52extern void ctrl_alt_del(void);
53
54/*
55 * Exported functions/variables
56 */
57
58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
59
60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
61#include <asm/kbdleds.h>
62#else
63static inline int kbd_defleds(void)
64{
65 return 0;
66}
67#endif
68
69#define KBD_DEFLOCK 0
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105};
106
107
108/*
109 * Internal Data.
110 */
111
112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113static struct kbd_struct *kbd = kbd_table;
114
115/* maximum values each key_handler can handle */
116static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120};
121
122static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124static struct input_handler kbd_handler;
125static DEFINE_SPINLOCK(kbd_event_lock);
126static DEFINE_SPINLOCK(led_lock);
127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
129static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130static bool dead_key_next;
131
132/* Handles a number being assembled on the number pad */
133static bool npadch_active;
134static unsigned int npadch_value;
135
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static int shift_state = 0;
140
141static unsigned int ledstate = -1U; /* undefined */
142static unsigned char ledioctl;
143
144/*
145 * Notifier list for console keyboard events
146 */
147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
149int register_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
155int unregister_keyboard_notifier(struct notifier_block *nb)
156{
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158}
159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161/*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174};
175
176static int getkeycode_helper(struct input_handle *handle, void *data)
177{
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183}
184
185static int getkeycode(unsigned int scancode)
186{
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201}
202
203static int setkeycode_helper(struct input_handle *handle, void *data)
204{
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210}
211
212static int setkeycode(unsigned int scancode, unsigned int keycode)
213{
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228}
229
230/*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
235static int kd_sound_helper(struct input_handle *handle, void *data)
236{
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251}
252
253static void kd_nosound(struct timer_list *unused)
254{
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258}
259
260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
261
262void kd_mksound(unsigned int hz, unsigned int ticks)
263{
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270}
271EXPORT_SYMBOL(kd_mksound);
272
273/*
274 * Setting the keyboard rate.
275 */
276
277static int kbd_rate_helper(struct input_handle *handle, void *data)
278{
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rpt = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rpt[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rpt[0].delay);
287 if (rpt[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rpt[0].period);
290
291 rpt[1].delay = dev->rep[REP_DELAY];
292 rpt[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296}
297
298int kbd_rate(struct kbd_repeat *rpt)
299{
300 struct kbd_repeat data[2] = { *rpt };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rpt = data[1]; /* Copy currently used settings */
304
305 return 0;
306}
307
308/*
309 * Helper Functions.
310 */
311static void put_queue(struct vc_data *vc, int ch)
312{
313 tty_insert_flip_char(&vc->port, ch, 0);
314 tty_schedule_flip(&vc->port);
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 while (*cp) {
320 tty_insert_flip_char(&vc->port, *cp, 0);
321 cp++;
322 }
323 tty_schedule_flip(&vc->port);
324}
325
326static void applkey(struct vc_data *vc, int key, char mode)
327{
328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
329
330 buf[1] = (mode ? 'O' : '[');
331 buf[2] = key;
332 puts_queue(vc, buf);
333}
334
335/*
336 * Many other routines do put_queue, but I think either
337 * they produce ASCII, or they produce some user-assigned
338 * string, and in both cases we might assume that it is
339 * in utf-8 already.
340 */
341static void to_utf8(struct vc_data *vc, uint c)
342{
343 if (c < 0x80)
344 /* 0******* */
345 put_queue(vc, c);
346 else if (c < 0x800) {
347 /* 110***** 10****** */
348 put_queue(vc, 0xc0 | (c >> 6));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x10000) {
351 if (c >= 0xD800 && c < 0xE000)
352 return;
353 if (c == 0xFFFF)
354 return;
355 /* 1110**** 10****** 10****** */
356 put_queue(vc, 0xe0 | (c >> 12));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x110000) {
360 /* 11110*** 10****** 10****** 10****** */
361 put_queue(vc, 0xf0 | (c >> 18));
362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 }
366}
367
368/*
369 * Called after returning from RAW mode or when changing consoles - recompute
370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
371 * undefined, so that shiftkey release is seen. The caller must hold the
372 * kbd_event_lock.
373 */
374
375static void do_compute_shiftstate(void)
376{
377 unsigned int k, sym, val;
378
379 shift_state = 0;
380 memset(shift_down, 0, sizeof(shift_down));
381
382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
383 sym = U(key_maps[0][k]);
384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
385 continue;
386
387 val = KVAL(sym);
388 if (val == KVAL(K_CAPSSHIFT))
389 val = KVAL(K_SHIFT);
390
391 shift_down[val]++;
392 shift_state |= BIT(val);
393 }
394}
395
396/* We still have to export this method to vt.c */
397void compute_shiftstate(void)
398{
399 unsigned long flags;
400 spin_lock_irqsave(&kbd_event_lock, flags);
401 do_compute_shiftstate();
402 spin_unlock_irqrestore(&kbd_event_lock, flags);
403}
404
405/*
406 * We have a combining character DIACR here, followed by the character CH.
407 * If the combination occurs in the table, return the corresponding value.
408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
409 * Otherwise, conclude that DIACR was not combining after all,
410 * queue it and return CH.
411 */
412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
413{
414 unsigned int d = diacr;
415 unsigned int i;
416
417 diacr = 0;
418
419 if ((d & ~0xff) == BRL_UC_ROW) {
420 if ((ch & ~0xff) == BRL_UC_ROW)
421 return d | ch;
422 } else {
423 for (i = 0; i < accent_table_size; i++)
424 if (accent_table[i].diacr == d && accent_table[i].base == ch)
425 return accent_table[i].result;
426 }
427
428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 return d;
430
431 if (kbd->kbdmode == VC_UNICODE)
432 to_utf8(vc, d);
433 else {
434 int c = conv_uni_to_8bit(d);
435 if (c != -1)
436 put_queue(vc, c);
437 }
438
439 return ch;
440}
441
442/*
443 * Special function handlers
444 */
445static void fn_enter(struct vc_data *vc)
446{
447 if (diacr) {
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, diacr);
450 else {
451 int c = conv_uni_to_8bit(diacr);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455 diacr = 0;
456 }
457
458 put_queue(vc, 13);
459 if (vc_kbd_mode(kbd, VC_CRLF))
460 put_queue(vc, 10);
461}
462
463static void fn_caps_toggle(struct vc_data *vc)
464{
465 if (rep)
466 return;
467
468 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
469}
470
471static void fn_caps_on(struct vc_data *vc)
472{
473 if (rep)
474 return;
475
476 set_vc_kbd_led(kbd, VC_CAPSLOCK);
477}
478
479static void fn_show_ptregs(struct vc_data *vc)
480{
481 struct pt_regs *regs = get_irq_regs();
482
483 if (regs)
484 show_regs(regs);
485}
486
487static void fn_hold(struct vc_data *vc)
488{
489 struct tty_struct *tty = vc->port.tty;
490
491 if (rep || !tty)
492 return;
493
494 /*
495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
496 * these routines are also activated by ^S/^Q.
497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
498 */
499 if (tty->stopped)
500 start_tty(tty);
501 else
502 stop_tty(tty);
503}
504
505static void fn_num(struct vc_data *vc)
506{
507 if (vc_kbd_mode(kbd, VC_APPLIC))
508 applkey(vc, 'P', 1);
509 else
510 fn_bare_num(vc);
511}
512
513/*
514 * Bind this to Shift-NumLock if you work in application keypad mode
515 * but want to be able to change the NumLock flag.
516 * Bind this to NumLock if you prefer that the NumLock key always
517 * changes the NumLock flag.
518 */
519static void fn_bare_num(struct vc_data *vc)
520{
521 if (!rep)
522 chg_vc_kbd_led(kbd, VC_NUMLOCK);
523}
524
525static void fn_lastcons(struct vc_data *vc)
526{
527 /* switch to the last used console, ChN */
528 set_console(last_console);
529}
530
531static void fn_dec_console(struct vc_data *vc)
532{
533 int i, cur = fg_console;
534
535 /* Currently switching? Queue this next switch relative to that. */
536 if (want_console != -1)
537 cur = want_console;
538
539 for (i = cur - 1; i != cur; i--) {
540 if (i == -1)
541 i = MAX_NR_CONSOLES - 1;
542 if (vc_cons_allocated(i))
543 break;
544 }
545 set_console(i);
546}
547
548static void fn_inc_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur+1; i != cur; i++) {
557 if (i == MAX_NR_CONSOLES)
558 i = 0;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_send_intr(struct vc_data *vc)
566{
567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
568 tty_schedule_flip(&vc->port);
569}
570
571static void fn_scroll_forw(struct vc_data *vc)
572{
573 scrollfront(vc, 0);
574}
575
576static void fn_scroll_back(struct vc_data *vc)
577{
578 scrollback(vc);
579}
580
581static void fn_show_mem(struct vc_data *vc)
582{
583 show_mem(0, NULL);
584}
585
586static void fn_show_state(struct vc_data *vc)
587{
588 show_state();
589}
590
591static void fn_boot_it(struct vc_data *vc)
592{
593 ctrl_alt_del();
594}
595
596static void fn_compose(struct vc_data *vc)
597{
598 dead_key_next = true;
599}
600
601static void fn_spawn_con(struct vc_data *vc)
602{
603 spin_lock(&vt_spawn_con.lock);
604 if (vt_spawn_con.pid)
605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
606 put_pid(vt_spawn_con.pid);
607 vt_spawn_con.pid = NULL;
608 }
609 spin_unlock(&vt_spawn_con.lock);
610}
611
612static void fn_SAK(struct vc_data *vc)
613{
614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
615 schedule_work(SAK_work);
616}
617
618static void fn_null(struct vc_data *vc)
619{
620 do_compute_shiftstate();
621}
622
623/*
624 * Special key handlers
625 */
626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
627{
628}
629
630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
631{
632 if (up_flag)
633 return;
634 if (value >= ARRAY_SIZE(fn_handler))
635 return;
636 if ((kbd->kbdmode == VC_RAW ||
637 kbd->kbdmode == VC_MEDIUMRAW ||
638 kbd->kbdmode == VC_OFF) &&
639 value != KVAL(K_SAK))
640 return; /* SAK is allowed even in raw mode */
641 fn_handler[value](vc);
642}
643
644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
645{
646 pr_err("k_lowercase was called - impossible\n");
647}
648
649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
650{
651 if (up_flag)
652 return; /* no action, if this is a key release */
653
654 if (diacr)
655 value = handle_diacr(vc, value);
656
657 if (dead_key_next) {
658 dead_key_next = false;
659 diacr = value;
660 return;
661 }
662 if (kbd->kbdmode == VC_UNICODE)
663 to_utf8(vc, value);
664 else {
665 int c = conv_uni_to_8bit(value);
666 if (c != -1)
667 put_queue(vc, c);
668 }
669}
670
671/*
672 * Handle dead key. Note that we now may have several
673 * dead keys modifying the same character. Very useful
674 * for Vietnamese.
675 */
676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677{
678 if (up_flag)
679 return;
680
681 diacr = (diacr ? handle_diacr(vc, value) : value);
682}
683
684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
687}
688
689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690{
691 k_deadunicode(vc, value, up_flag);
692}
693
694/*
695 * Obsolete - for backwards compatibility only
696 */
697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698{
699 static const unsigned char ret_diacr[NR_DEAD] = {
700 '`', /* dead_grave */
701 '\'', /* dead_acute */
702 '^', /* dead_circumflex */
703 '~', /* dead_tilda */
704 '"', /* dead_diaeresis */
705 ',', /* dead_cedilla */
706 '_', /* dead_macron */
707 'U', /* dead_breve */
708 '.', /* dead_abovedot */
709 '*', /* dead_abovering */
710 '=', /* dead_doubleacute */
711 'c', /* dead_caron */
712 'k', /* dead_ogonek */
713 'i', /* dead_iota */
714 '#', /* dead_voiced_sound */
715 'o', /* dead_semivoiced_sound */
716 '!', /* dead_belowdot */
717 '?', /* dead_hook */
718 '+', /* dead_horn */
719 '-', /* dead_stroke */
720 ')', /* dead_abovecomma */
721 '(', /* dead_abovereversedcomma */
722 ':', /* dead_doublegrave */
723 'n', /* dead_invertedbreve */
724 ';', /* dead_belowcomma */
725 '$', /* dead_currency */
726 '@', /* dead_greek */
727 };
728
729 k_deadunicode(vc, ret_diacr[value], up_flag);
730}
731
732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
733{
734 if (up_flag)
735 return;
736
737 set_console(value);
738}
739
740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
741{
742 if (up_flag)
743 return;
744
745 if ((unsigned)value < ARRAY_SIZE(func_table)) {
746 if (func_table[value])
747 puts_queue(vc, func_table[value]);
748 } else
749 pr_err("k_fn called with value=%d\n", value);
750}
751
752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char cur_chars[] = "BDCA";
755
756 if (up_flag)
757 return;
758
759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
760}
761
762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
763{
764 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
766
767 if (up_flag)
768 return; /* no action, if this is a key release */
769
770 /* kludge... shift forces cursor/number keys */
771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
772 applkey(vc, app_map[value], 1);
773 return;
774 }
775
776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
777
778 switch (value) {
779 case KVAL(K_PCOMMA):
780 case KVAL(K_PDOT):
781 k_fn(vc, KVAL(K_REMOVE), 0);
782 return;
783 case KVAL(K_P0):
784 k_fn(vc, KVAL(K_INSERT), 0);
785 return;
786 case KVAL(K_P1):
787 k_fn(vc, KVAL(K_SELECT), 0);
788 return;
789 case KVAL(K_P2):
790 k_cur(vc, KVAL(K_DOWN), 0);
791 return;
792 case KVAL(K_P3):
793 k_fn(vc, KVAL(K_PGDN), 0);
794 return;
795 case KVAL(K_P4):
796 k_cur(vc, KVAL(K_LEFT), 0);
797 return;
798 case KVAL(K_P6):
799 k_cur(vc, KVAL(K_RIGHT), 0);
800 return;
801 case KVAL(K_P7):
802 k_fn(vc, KVAL(K_FIND), 0);
803 return;
804 case KVAL(K_P8):
805 k_cur(vc, KVAL(K_UP), 0);
806 return;
807 case KVAL(K_P9):
808 k_fn(vc, KVAL(K_PGUP), 0);
809 return;
810 case KVAL(K_P5):
811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
812 return;
813 }
814 }
815
816 put_queue(vc, pad_chars[value]);
817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
818 put_queue(vc, 10);
819}
820
821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
822{
823 int old_state = shift_state;
824
825 if (rep)
826 return;
827 /*
828 * Mimic typewriter:
829 * a CapsShift key acts like Shift but undoes CapsLock
830 */
831 if (value == KVAL(K_CAPSSHIFT)) {
832 value = KVAL(K_SHIFT);
833 if (!up_flag)
834 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
835 }
836
837 if (up_flag) {
838 /*
839 * handle the case that two shift or control
840 * keys are depressed simultaneously
841 */
842 if (shift_down[value])
843 shift_down[value]--;
844 } else
845 shift_down[value]++;
846
847 if (shift_down[value])
848 shift_state |= (1 << value);
849 else
850 shift_state &= ~(1 << value);
851
852 /* kludge */
853 if (up_flag && shift_state != old_state && npadch_active) {
854 if (kbd->kbdmode == VC_UNICODE)
855 to_utf8(vc, npadch_value);
856 else
857 put_queue(vc, npadch_value & 0xff);
858 npadch_active = false;
859 }
860}
861
862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag)
865 return;
866
867 if (vc_kbd_mode(kbd, VC_META)) {
868 put_queue(vc, '\033');
869 put_queue(vc, value);
870 } else
871 put_queue(vc, value | 0x80);
872}
873
874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
875{
876 unsigned int base;
877
878 if (up_flag)
879 return;
880
881 if (value < 10) {
882 /* decimal input of code, while Alt depressed */
883 base = 10;
884 } else {
885 /* hexadecimal input of code, while AltGr depressed */
886 value -= 10;
887 base = 16;
888 }
889
890 if (!npadch_active) {
891 npadch_value = 0;
892 npadch_active = true;
893 }
894
895 npadch_value = npadch_value * base + value;
896}
897
898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_lock(kbd, value);
904}
905
906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
907{
908 k_shift(vc, value, up_flag);
909 if (up_flag || rep)
910 return;
911
912 chg_vc_kbd_slock(kbd, value);
913 /* try to make Alt, oops, AltGr and such work */
914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
915 kbd->slockstate = 0;
916 chg_vc_kbd_slock(kbd, value);
917 }
918}
919
920/* by default, 300ms interval for combination release */
921static unsigned brl_timeout = 300;
922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
923module_param(brl_timeout, uint, 0644);
924
925static unsigned brl_nbchords = 1;
926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
927module_param(brl_nbchords, uint, 0644);
928
929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
930{
931 static unsigned long chords;
932 static unsigned committed;
933
934 if (!brl_nbchords)
935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
936 else {
937 committed |= pattern;
938 chords++;
939 if (chords == brl_nbchords) {
940 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
941 chords = 0;
942 committed = 0;
943 }
944 }
945}
946
947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
948{
949 static unsigned pressed, committing;
950 static unsigned long releasestart;
951
952 if (kbd->kbdmode != VC_UNICODE) {
953 if (!up_flag)
954 pr_warn("keyboard mode must be unicode for braille patterns\n");
955 return;
956 }
957
958 if (!value) {
959 k_unicode(vc, BRL_UC_ROW, up_flag);
960 return;
961 }
962
963 if (value > 8)
964 return;
965
966 if (!up_flag) {
967 pressed |= 1 << (value - 1);
968 if (!brl_timeout)
969 committing = pressed;
970 } else if (brl_timeout) {
971 if (!committing ||
972 time_after(jiffies,
973 releasestart + msecs_to_jiffies(brl_timeout))) {
974 committing = pressed;
975 releasestart = jiffies;
976 }
977 pressed &= ~(1 << (value - 1));
978 if (!pressed && committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 } else {
983 if (committing) {
984 k_brlcommit(vc, committing, 0);
985 committing = 0;
986 }
987 pressed &= ~(1 << (value - 1));
988 }
989}
990
991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
992
993struct kbd_led_trigger {
994 struct led_trigger trigger;
995 unsigned int mask;
996};
997
998static int kbd_led_trigger_activate(struct led_classdev *cdev)
999{
1000 struct kbd_led_trigger *trigger =
1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003 tasklet_disable(&keyboard_tasklet);
1004 if (ledstate != -1U)
1005 led_trigger_event(&trigger->trigger,
1006 ledstate & trigger->mask ?
1007 LED_FULL : LED_OFF);
1008 tasklet_enable(&keyboard_tasklet);
1009
1010 return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) { \
1014 .trigger = { \
1015 .name = _name, \
1016 .activate = kbd_led_trigger_activate, \
1017 }, \
1018 .mask = BIT(_led_bit), \
1019 }
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1022 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1029
1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041 unsigned int new_state)
1042{
1043 struct kbd_led_trigger *trigger;
1044 unsigned int changed = old_state ^ new_state;
1045 int i;
1046
1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048 trigger = &kbd_led_triggers[i];
1049
1050 if (changed & trigger->mask)
1051 led_trigger_event(&trigger->trigger,
1052 new_state & trigger->mask ?
1053 LED_FULL : LED_OFF);
1054 }
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059 unsigned int led_state = *(unsigned int *)data;
1060
1061 if (test_bit(EV_LED, handle->dev->evbit))
1062 kbd_propagate_led_state(~led_state, led_state);
1063
1064 return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069 int error;
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074 if (error)
1075 pr_err("error %d while registering trigger %s\n",
1076 error, kbd_led_triggers[i].trigger.name);
1077 }
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084 unsigned int leds = *(unsigned int *)data;
1085
1086 if (test_bit(EV_LED, handle->dev->evbit)) {
1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091 }
1092
1093 return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097 unsigned int new_state)
1098{
1099 input_handler_for_each_handle(&kbd_handler, &new_state,
1100 kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116 return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121 unsigned long flags;
1122 spin_lock_irqsave(&led_lock, flags);
1123 if (!(led & ~7)) {
1124 ledioctl = led;
1125 kb->ledmode = LED_SHOW_IOCTL;
1126 } else
1127 kb->ledmode = LED_SHOW_FLAGS;
1128
1129 set_leds();
1130 spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135 struct kbd_struct *kb = kbd_table + fg_console;
1136
1137 if (kb->ledmode == LED_SHOW_IOCTL)
1138 return ledioctl;
1139
1140 return kb->ledflagstate;
1141}
1142
1143/**
1144 * vt_get_leds - helper for braille console
1145 * @console: console to read
1146 * @flag: flag we want to check
1147 *
1148 * Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152 struct kbd_struct *kb = kbd_table + console;
1153 int ret;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&led_lock, flags);
1157 ret = vc_kbd_led(kb, flag);
1158 spin_unlock_irqrestore(&led_lock, flags);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 * vt_set_led_state - set LED state of a console
1166 * @console: console to set
1167 * @leds: LED bits
1168 *
1169 * Set the LEDs on a console. This is a wrapper for the VT layer
1170 * so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174 struct kbd_struct *kb = kbd_table + console;
1175 setledstate(kb, leds);
1176}
1177
1178/**
1179 * vt_kbd_con_start - Keyboard side of console start
1180 * @console: console
1181 *
1182 * Handle console start. This is a wrapper for the VT layer
1183 * so that we can keep kbd knowledge internal
1184 *
1185 * FIXME: We eventually need to hold the kbd lock here to protect
1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 * and start_tty under the kbd_event_lock, while normal tty paths
1188 * don't hold the lock. We probably need to split out an LED lock
1189 * but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193 struct kbd_struct *kb = kbd_table + console;
1194 unsigned long flags;
1195 spin_lock_irqsave(&led_lock, flags);
1196 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197 set_leds();
1198 spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 * vt_kbd_con_stop - Keyboard side of console stop
1203 * @console: console
1204 *
1205 * Handle console stop. This is a wrapper for the VT layer
1206 * so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210 struct kbd_struct *kb = kbd_table + console;
1211 unsigned long flags;
1212 spin_lock_irqsave(&led_lock, flags);
1213 set_vc_kbd_led(kb, VC_SCROLLOCK);
1214 set_leds();
1215 spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226 unsigned int leds;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&led_lock, flags);
1230 leds = getleds();
1231 leds |= (unsigned int)kbd->lockstate << 8;
1232 spin_unlock_irqrestore(&led_lock, flags);
1233
1234 if (leds != ledstate) {
1235 kbd_propagate_led_state(ledstate, leds);
1236 ledstate = leds;
1237 }
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273 unsigned char up_flag)
1274{
1275 int code;
1276
1277 switch (keycode) {
1278
1279 case KEY_PAUSE:
1280 put_queue(vc, 0xe1);
1281 put_queue(vc, 0x1d | up_flag);
1282 put_queue(vc, 0x45 | up_flag);
1283 break;
1284
1285 case KEY_HANGEUL:
1286 if (!up_flag)
1287 put_queue(vc, 0xf2);
1288 break;
1289
1290 case KEY_HANJA:
1291 if (!up_flag)
1292 put_queue(vc, 0xf1);
1293 break;
1294
1295 case KEY_SYSRQ:
1296 /*
1297 * Real AT keyboards (that's what we're trying
1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299 * pressing PrtSc/SysRq alone, but simply 0x54
1300 * when pressing Alt+PrtSc/SysRq.
1301 */
1302 if (test_bit(KEY_LEFTALT, key_down) ||
1303 test_bit(KEY_RIGHTALT, key_down)) {
1304 put_queue(vc, 0x54 | up_flag);
1305 } else {
1306 put_queue(vc, 0xe0);
1307 put_queue(vc, 0x2a | up_flag);
1308 put_queue(vc, 0xe0);
1309 put_queue(vc, 0x37 | up_flag);
1310 }
1311 break;
1312
1313 default:
1314 if (keycode > 255)
1315 return -1;
1316
1317 code = x86_keycodes[keycode];
1318 if (!code)
1319 return -1;
1320
1321 if (code & 0x100)
1322 put_queue(vc, 0xe0);
1323 put_queue(vc, (code & 0x7f) | up_flag);
1324
1325 break;
1326 }
1327
1328 return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev) 0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337 if (keycode > 127)
1338 return -1;
1339
1340 put_queue(vc, keycode | up_flag);
1341 return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347 struct vc_data *vc = vc_cons[fg_console].d;
1348
1349 kbd = kbd_table + vc->vc_num;
1350 if (kbd->kbdmode == VC_RAW)
1351 put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356 struct vc_data *vc = vc_cons[fg_console].d;
1357 unsigned short keysym, *key_map;
1358 unsigned char type;
1359 bool raw_mode;
1360 struct tty_struct *tty;
1361 int shift_final;
1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363 int rc;
1364
1365 tty = vc->port.tty;
1366
1367 if (tty && (!tty->driver_data)) {
1368 /* No driver data? Strange. Okay we fix it then. */
1369 tty->driver_data = vc;
1370 }
1371
1372 kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375 if (keycode == KEY_STOP)
1376 sparc_l1_a_state = down;
1377#endif
1378
1379 rep = (down == 2);
1380
1381 raw_mode = (kbd->kbdmode == VC_RAW);
1382 if (raw_mode && !hw_raw)
1383 if (emulate_raw(vc, keycode, !down << 7))
1384 if (keycode < BTN_MISC && printk_ratelimit())
1385 pr_warn("can't emulate rawmode for keycode %d\n",
1386 keycode);
1387
1388#ifdef CONFIG_SPARC
1389 if (keycode == KEY_A && sparc_l1_a_state) {
1390 sparc_l1_a_state = false;
1391 sun_do_break();
1392 }
1393#endif
1394
1395 if (kbd->kbdmode == VC_MEDIUMRAW) {
1396 /*
1397 * This is extended medium raw mode, with keys above 127
1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400 * interfere with anything else. The two bytes after 0 will
1401 * always have the up flag set not to interfere with older
1402 * applications. This allows for 16384 different keycodes,
1403 * which should be enough.
1404 */
1405 if (keycode < 128) {
1406 put_queue(vc, keycode | (!down << 7));
1407 } else {
1408 put_queue(vc, !down << 7);
1409 put_queue(vc, (keycode >> 7) | 0x80);
1410 put_queue(vc, keycode | 0x80);
1411 }
1412 raw_mode = true;
1413 }
1414
1415 if (down)
1416 set_bit(keycode, key_down);
1417 else
1418 clear_bit(keycode, key_down);
1419
1420 if (rep &&
1421 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423 /*
1424 * Don't repeat a key if the input buffers are not empty and the
1425 * characters get aren't echoed locally. This makes key repeat
1426 * usable with slow applications and under heavy loads.
1427 */
1428 return;
1429 }
1430
1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432 param.ledstate = kbd->ledflagstate;
1433 key_map = key_maps[shift_final];
1434
1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436 KBD_KEYCODE, ¶m);
1437 if (rc == NOTIFY_STOP || !key_map) {
1438 atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_UNBOUND_KEYCODE, ¶m);
1440 do_compute_shiftstate();
1441 kbd->slockstate = 0;
1442 return;
1443 }
1444
1445 if (keycode < NR_KEYS)
1446 keysym = key_map[keycode];
1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449 else
1450 return;
1451
1452 type = KTYP(keysym);
1453
1454 if (type < 0xf0) {
1455 param.value = keysym;
1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457 KBD_UNICODE, ¶m);
1458 if (rc != NOTIFY_STOP)
1459 if (down && !raw_mode)
1460 k_unicode(vc, keysym, !down);
1461 return;
1462 }
1463
1464 type -= 0xf0;
1465
1466 if (type == KT_LETTER) {
1467 type = KT_LATIN;
1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470 if (key_map)
1471 keysym = key_map[keycode];
1472 }
1473 }
1474
1475 param.value = keysym;
1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_KEYSYM, ¶m);
1478 if (rc == NOTIFY_STOP)
1479 return;
1480
1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482 return;
1483
1484 (*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486 param.ledstate = kbd->ledflagstate;
1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1488
1489 if (type != KT_SLOCK)
1490 kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494 unsigned int event_code, int value)
1495{
1496 /* We are called with interrupts disabled, just take the lock */
1497 spin_lock(&kbd_event_lock);
1498
1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500 kbd_rawcode(value);
1501 if (event_type == EV_KEY && event_code <= KEY_MAX)
1502 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504 spin_unlock(&kbd_event_lock);
1505
1506 tasklet_schedule(&keyboard_tasklet);
1507 do_poke_blanked_console = 1;
1508 schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513 int i;
1514
1515 if (test_bit(EV_SND, dev->evbit))
1516 return true;
1517
1518 if (test_bit(EV_KEY, dev->evbit)) {
1519 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520 if (test_bit(i, dev->keybit))
1521 return true;
1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523 if (test_bit(i, dev->keybit))
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537 const struct input_device_id *id)
1538{
1539 struct input_handle *handle;
1540 int error;
1541
1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543 if (!handle)
1544 return -ENOMEM;
1545
1546 handle->dev = dev;
1547 handle->handler = handler;
1548 handle->name = "kbd";
1549
1550 error = input_register_handle(handle);
1551 if (error)
1552 goto err_free_handle;
1553
1554 error = input_open_device(handle);
1555 if (error)
1556 goto err_unregister_handle;
1557
1558 return 0;
1559
1560 err_unregister_handle:
1561 input_unregister_handle(handle);
1562 err_free_handle:
1563 kfree(handle);
1564 return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569 input_close_device(handle);
1570 input_unregister_handle(handle);
1571 kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580 tasklet_disable(&keyboard_tasklet);
1581
1582 if (ledstate != -1U)
1583 kbd_update_leds_helper(handle, &ledstate);
1584
1585 tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589 {
1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591 .evbit = { BIT_MASK(EV_KEY) },
1592 },
1593
1594 {
1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596 .evbit = { BIT_MASK(EV_SND) },
1597 },
1598
1599 { }, /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605 .event = kbd_event,
1606 .match = kbd_match,
1607 .connect = kbd_connect,
1608 .disconnect = kbd_disconnect,
1609 .start = kbd_start,
1610 .name = "kbd",
1611 .id_table = kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616 int i;
1617 int error;
1618
1619 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620 kbd_table[i].ledflagstate = kbd_defleds();
1621 kbd_table[i].default_ledflagstate = kbd_defleds();
1622 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623 kbd_table[i].lockstate = KBD_DEFLOCK;
1624 kbd_table[i].slockstate = 0;
1625 kbd_table[i].modeflags = KBD_DEFMODE;
1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627 }
1628
1629 kbd_init_leds();
1630
1631 error = input_register_handler(&kbd_handler);
1632 if (error)
1633 return error;
1634
1635 tasklet_enable(&keyboard_tasklet);
1636 tasklet_schedule(&keyboard_tasklet);
1637
1638 return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 * vt_do_diacrit - diacritical table updates
1645 * @cmd: ioctl request
1646 * @udp: pointer to user data for ioctl
1647 * @perm: permissions check computed by caller
1648 *
1649 * Update the diacritical tables atomically and safely. Lock them
1650 * against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654 unsigned long flags;
1655 int asize;
1656 int ret = 0;
1657
1658 switch (cmd) {
1659 case KDGKBDIACR:
1660 {
1661 struct kbdiacrs __user *a = udp;
1662 struct kbdiacr *dia;
1663 int i;
1664
1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666 GFP_KERNEL);
1667 if (!dia)
1668 return -ENOMEM;
1669
1670 /* Lock the diacriticals table, make a copy and then
1671 copy it after we unlock */
1672 spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674 asize = accent_table_size;
1675 for (i = 0; i < asize; i++) {
1676 dia[i].diacr = conv_uni_to_8bit(
1677 accent_table[i].diacr);
1678 dia[i].base = conv_uni_to_8bit(
1679 accent_table[i].base);
1680 dia[i].result = conv_uni_to_8bit(
1681 accent_table[i].result);
1682 }
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacr, dia,
1688 asize * sizeof(struct kbdiacr)))
1689 ret = -EFAULT;
1690 kfree(dia);
1691 return ret;
1692 }
1693 case KDGKBDIACRUC:
1694 {
1695 struct kbdiacrsuc __user *a = udp;
1696 void *buf;
1697
1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699 GFP_KERNEL);
1700 if (buf == NULL)
1701 return -ENOMEM;
1702
1703 /* Lock the diacriticals table, make a copy and then
1704 copy it after we unlock */
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707 asize = accent_table_size;
1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacruc, buf,
1715 asize*sizeof(struct kbdiacruc)))
1716 ret = -EFAULT;
1717 kfree(buf);
1718 return ret;
1719 }
1720
1721 case KDSKBDIACR:
1722 {
1723 struct kbdiacrs __user *a = udp;
1724 struct kbdiacr *dia = NULL;
1725 unsigned int ct;
1726 int i;
1727
1728 if (!perm)
1729 return -EPERM;
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1734
1735 if (ct) {
1736
1737 dia = memdup_user(a->kbdiacr,
1738 sizeof(struct kbdiacr) * ct);
1739 if (IS_ERR(dia))
1740 return PTR_ERR(dia);
1741
1742 }
1743
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745 accent_table_size = ct;
1746 for (i = 0; i < ct; i++) {
1747 accent_table[i].diacr =
1748 conv_8bit_to_uni(dia[i].diacr);
1749 accent_table[i].base =
1750 conv_8bit_to_uni(dia[i].base);
1751 accent_table[i].result =
1752 conv_8bit_to_uni(dia[i].result);
1753 }
1754 spin_unlock_irqrestore(&kbd_event_lock, flags);
1755 kfree(dia);
1756 return 0;
1757 }
1758
1759 case KDSKBDIACRUC:
1760 {
1761 struct kbdiacrsuc __user *a = udp;
1762 unsigned int ct;
1763 void *buf = NULL;
1764
1765 if (!perm)
1766 return -EPERM;
1767
1768 if (get_user(ct, &a->kb_cnt))
1769 return -EFAULT;
1770
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 buf = memdup_user(a->kbdiacruc,
1776 ct * sizeof(struct kbdiacruc));
1777 if (IS_ERR(buf))
1778 return PTR_ERR(buf);
1779 }
1780 spin_lock_irqsave(&kbd_event_lock, flags);
1781 if (ct)
1782 memcpy(accent_table, buf,
1783 ct * sizeof(struct kbdiacruc));
1784 accent_table_size = ct;
1785 spin_unlock_irqrestore(&kbd_event_lock, flags);
1786 kfree(buf);
1787 return 0;
1788 }
1789 }
1790 return ret;
1791}
1792
1793/**
1794 * vt_do_kdskbmode - set keyboard mode ioctl
1795 * @console: the console to use
1796 * @arg: the requested mode
1797 *
1798 * Update the keyboard mode bits while holding the correct locks.
1799 * Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803 struct kbd_struct *kb = kbd_table + console;
1804 int ret = 0;
1805 unsigned long flags;
1806
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 switch(arg) {
1809 case K_RAW:
1810 kb->kbdmode = VC_RAW;
1811 break;
1812 case K_MEDIUMRAW:
1813 kb->kbdmode = VC_MEDIUMRAW;
1814 break;
1815 case K_XLATE:
1816 kb->kbdmode = VC_XLATE;
1817 do_compute_shiftstate();
1818 break;
1819 case K_UNICODE:
1820 kb->kbdmode = VC_UNICODE;
1821 do_compute_shiftstate();
1822 break;
1823 case K_OFF:
1824 kb->kbdmode = VC_OFF;
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829 spin_unlock_irqrestore(&kbd_event_lock, flags);
1830 return ret;
1831}
1832
1833/**
1834 * vt_do_kdskbmeta - set keyboard meta state
1835 * @console: the console to use
1836 * @arg: the requested meta state
1837 *
1838 * Update the keyboard meta bits while holding the correct locks.
1839 * Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843 struct kbd_struct *kb = kbd_table + console;
1844 int ret = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&kbd_event_lock, flags);
1848 switch(arg) {
1849 case K_METABIT:
1850 clr_vc_kbd_mode(kb, VC_META);
1851 break;
1852 case K_ESCPREFIX:
1853 set_vc_kbd_mode(kb, VC_META);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 }
1858 spin_unlock_irqrestore(&kbd_event_lock, flags);
1859 return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863 int perm)
1864{
1865 struct kbkeycode tmp;
1866 int kc = 0;
1867
1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869 return -EFAULT;
1870 switch (cmd) {
1871 case KDGETKEYCODE:
1872 kc = getkeycode(tmp.scancode);
1873 if (kc >= 0)
1874 kc = put_user(kc, &user_kbkc->keycode);
1875 break;
1876 case KDSETKEYCODE:
1877 if (!perm)
1878 return -EPERM;
1879 kc = setkeycode(tmp.scancode, tmp.keycode);
1880 break;
1881 }
1882 return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890 int console)
1891{
1892 struct kbd_struct *kb = kbd_table + console;
1893 struct kbentry tmp;
1894 ushort *key_map, *new_map, val, ov;
1895 unsigned long flags;
1896
1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898 return -EFAULT;
1899
1900 if (!capable(CAP_SYS_TTY_CONFIG))
1901 perm = 0;
1902
1903 switch (cmd) {
1904 case KDGKBENT:
1905 /* Ensure another thread doesn't free it under us */
1906 spin_lock_irqsave(&kbd_event_lock, flags);
1907 key_map = key_maps[s];
1908 if (key_map) {
1909 val = U(key_map[i]);
1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911 val = K_HOLE;
1912 } else
1913 val = (i ? K_HOLE : K_NOSUCHMAP);
1914 spin_unlock_irqrestore(&kbd_event_lock, flags);
1915 return put_user(val, &user_kbe->kb_value);
1916 case KDSKBENT:
1917 if (!perm)
1918 return -EPERM;
1919 if (!i && v == K_NOSUCHMAP) {
1920 spin_lock_irqsave(&kbd_event_lock, flags);
1921 /* deallocate map */
1922 key_map = key_maps[s];
1923 if (s && key_map) {
1924 key_maps[s] = NULL;
1925 if (key_map[0] == U(K_ALLOCATED)) {
1926 kfree(key_map);
1927 keymap_count--;
1928 }
1929 }
1930 spin_unlock_irqrestore(&kbd_event_lock, flags);
1931 break;
1932 }
1933
1934 if (KTYP(v) < NR_TYPES) {
1935 if (KVAL(v) > max_vals[KTYP(v)])
1936 return -EINVAL;
1937 } else
1938 if (kb->kbdmode != VC_UNICODE)
1939 return -EINVAL;
1940
1941 /* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943 /* assignment to entry 0 only tests validity of args */
1944 if (!i)
1945 break;
1946#endif
1947
1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949 if (!new_map)
1950 return -ENOMEM;
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 key_map = key_maps[s];
1953 if (key_map == NULL) {
1954 int j;
1955
1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957 !capable(CAP_SYS_RESOURCE)) {
1958 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 kfree(new_map);
1960 return -EPERM;
1961 }
1962 key_maps[s] = new_map;
1963 key_map = new_map;
1964 key_map[0] = U(K_ALLOCATED);
1965 for (j = 1; j < NR_KEYS; j++)
1966 key_map[j] = U(K_HOLE);
1967 keymap_count++;
1968 } else
1969 kfree(new_map);
1970
1971 ov = U(key_map[i]);
1972 if (v == ov)
1973 goto out;
1974 /*
1975 * Attention Key.
1976 */
1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 return -EPERM;
1980 }
1981 key_map[i] = U(v);
1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983 do_compute_shiftstate();
1984out:
1985 spin_unlock_irqrestore(&kbd_event_lock, flags);
1986 break;
1987 }
1988 return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997 struct kbsentry *kbs;
1998 char *p;
1999 u_char *q;
2000 u_char __user *up;
2001 int sz, fnw_sz;
2002 int delta;
2003 char *first_free, *fj, *fnw;
2004 int i, j, k;
2005 int ret;
2006 unsigned long flags;
2007
2008 if (!capable(CAP_SYS_TTY_CONFIG))
2009 perm = 0;
2010
2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012 if (!kbs) {
2013 ret = -ENOMEM;
2014 goto reterr;
2015 }
2016
2017 /* we mostly copy too much here (512bytes), but who cares ;) */
2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019 ret = -EFAULT;
2020 goto reterr;
2021 }
2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025 switch (cmd) {
2026 case KDGKBSENT:
2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028 a struct member */
2029 up = user_kdgkb->kb_string;
2030 p = func_table[i];
2031 if(p)
2032 for ( ; *p && sz; p++, sz--)
2033 if (put_user(*p, up++)) {
2034 ret = -EFAULT;
2035 goto reterr;
2036 }
2037 if (put_user('\0', up)) {
2038 ret = -EFAULT;
2039 goto reterr;
2040 }
2041 kfree(kbs);
2042 return ((p && *p) ? -EOVERFLOW : 0);
2043 case KDSKBSENT:
2044 if (!perm) {
2045 ret = -EPERM;
2046 goto reterr;
2047 }
2048
2049 fnw = NULL;
2050 fnw_sz = 0;
2051 /* race aginst other writers */
2052 again:
2053 spin_lock_irqsave(&func_buf_lock, flags);
2054 q = func_table[i];
2055
2056 /* fj pointer to next entry after 'q' */
2057 first_free = funcbufptr + (funcbufsize - funcbufleft);
2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059 ;
2060 if (j < MAX_NR_FUNC)
2061 fj = func_table[j];
2062 else
2063 fj = first_free;
2064 /* buffer usage increase by new entry */
2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067 if (delta <= funcbufleft) { /* it fits in current buf */
2068 if (j < MAX_NR_FUNC) {
2069 /* make enough space for new entry at 'fj' */
2070 memmove(fj + delta, fj, first_free - fj);
2071 for (k = j; k < MAX_NR_FUNC; k++)
2072 if (func_table[k])
2073 func_table[k] += delta;
2074 }
2075 if (!q)
2076 func_table[i] = fj;
2077 funcbufleft -= delta;
2078 } else { /* allocate a larger buffer */
2079 sz = 256;
2080 while (sz < funcbufsize - funcbufleft + delta)
2081 sz <<= 1;
2082 if (fnw_sz != sz) {
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084 kfree(fnw);
2085 fnw = kmalloc(sz, GFP_KERNEL);
2086 fnw_sz = sz;
2087 if (!fnw) {
2088 ret = -ENOMEM;
2089 goto reterr;
2090 }
2091 goto again;
2092 }
2093
2094 if (!q)
2095 func_table[i] = fj;
2096 /* copy data before insertion point to new location */
2097 if (fj > funcbufptr)
2098 memmove(fnw, funcbufptr, fj - funcbufptr);
2099 for (k = 0; k < j; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103 /* copy data after insertion point to new location */
2104 if (first_free > fj) {
2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106 for (k = j; k < MAX_NR_FUNC; k++)
2107 if (func_table[k])
2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109 }
2110 if (funcbufptr != func_buf)
2111 kfree(funcbufptr);
2112 funcbufptr = fnw;
2113 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114 funcbufsize = sz;
2115 }
2116 /* finally insert item itself */
2117 strcpy(func_table[i], kbs->kb_string);
2118 spin_unlock_irqrestore(&func_buf_lock, flags);
2119 break;
2120 }
2121 ret = 0;
2122reterr:
2123 kfree(kbs);
2124 return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129 struct kbd_struct *kb = kbd_table + console;
2130 unsigned long flags;
2131 unsigned char ucval;
2132
2133 switch(cmd) {
2134 /* the ioctls below read/set the flags usually shown in the leds */
2135 /* don't use them - they will go away without warning */
2136 case KDGKBLED:
2137 spin_lock_irqsave(&kbd_event_lock, flags);
2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139 spin_unlock_irqrestore(&kbd_event_lock, flags);
2140 return put_user(ucval, (char __user *)arg);
2141
2142 case KDSKBLED:
2143 if (!perm)
2144 return -EPERM;
2145 if (arg & ~0x77)
2146 return -EINVAL;
2147 spin_lock_irqsave(&led_lock, flags);
2148 kb->ledflagstate = (arg & 7);
2149 kb->default_ledflagstate = ((arg >> 4) & 7);
2150 set_leds();
2151 spin_unlock_irqrestore(&led_lock, flags);
2152 return 0;
2153
2154 /* the ioctls below only set the lights, not the functions */
2155 /* for those, see KDGKBLED and KDSKBLED above */
2156 case KDGETLED:
2157 ucval = getledstate();
2158 return put_user(ucval, (char __user *)arg);
2159
2160 case KDSETLED:
2161 if (!perm)
2162 return -EPERM;
2163 setledstate(kb, arg);
2164 return 0;
2165 }
2166 return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171 struct kbd_struct *kb = kbd_table + console;
2172 /* This is a spot read so needs no locking */
2173 switch (kb->kbdmode) {
2174 case VC_RAW:
2175 return K_RAW;
2176 case VC_MEDIUMRAW:
2177 return K_MEDIUMRAW;
2178 case VC_UNICODE:
2179 return K_UNICODE;
2180 case VC_OFF:
2181 return K_OFF;
2182 default:
2183 return K_XLATE;
2184 }
2185}
2186
2187/**
2188 * vt_do_kdgkbmeta - report meta status
2189 * @console: console to report
2190 *
2191 * Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 /* Again a spot read so no locking */
2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 * vt_reset_unicode - reset the unicode status
2202 * @console: console being reset
2203 *
2204 * Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&kbd_event_lock, flags);
2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212 spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 * vt_get_shiftstate - shift bit state
2217 *
2218 * Report the shift bits from the keyboard state. We have to export
2219 * this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223 /* Don't lock as this is a transient report */
2224 return shift_state;
2225}
2226
2227/**
2228 * vt_reset_keyboard - reset keyboard state
2229 * @console: console to reset
2230 *
2231 * Reset the keyboard bits for a console as part of a general console
2232 * reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236 struct kbd_struct *kb = kbd_table + console;
2237 unsigned long flags;
2238
2239 spin_lock_irqsave(&kbd_event_lock, flags);
2240 set_vc_kbd_mode(kb, VC_REPEAT);
2241 clr_vc_kbd_mode(kb, VC_CKMODE);
2242 clr_vc_kbd_mode(kb, VC_APPLIC);
2243 clr_vc_kbd_mode(kb, VC_CRLF);
2244 kb->lockstate = 0;
2245 kb->slockstate = 0;
2246 spin_lock(&led_lock);
2247 kb->ledmode = LED_SHOW_FLAGS;
2248 kb->ledflagstate = kb->default_ledflagstate;
2249 spin_unlock(&led_lock);
2250 /* do not do set_leds here because this causes an endless tasklet loop
2251 when the keyboard hasn't been initialized yet */
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 * vt_get_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Report back a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266 struct kbd_struct *kb = kbd_table + console;
2267 return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 * vt_set_kbd_mode_bit - read keyboard status bits
2272 * @console: console to read from
2273 * @bit: mode bit to read
2274 *
2275 * Set a vt mode bit. We do this without locking so the
2276 * caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281 struct kbd_struct *kb = kbd_table + console;
2282 unsigned long flags;
2283
2284 spin_lock_irqsave(&kbd_event_lock, flags);
2285 set_vc_kbd_mode(kb, bit);
2286 spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 * vt_clr_kbd_mode_bit - read keyboard status bits
2291 * @console: console to read from
2292 * @bit: mode bit to read
2293 *
2294 * Report back a vt mode bit. We do this without locking so the
2295 * caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300 struct kbd_struct *kb = kbd_table + console;
2301 unsigned long flags;
2302
2303 spin_lock_irqsave(&kbd_event_lock, flags);
2304 clr_vc_kbd_mode(kb, bit);
2305 spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156
157/*
158 * Notifier list for console keyboard events
159 */
160static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
161
162int register_keyboard_notifier(struct notifier_block *nb)
163{
164 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
165}
166EXPORT_SYMBOL_GPL(register_keyboard_notifier);
167
168int unregister_keyboard_notifier(struct notifier_block *nb)
169{
170 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
171}
172EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
173
174/*
175 * Translation of scancodes to keycodes. We set them on only the first
176 * keyboard in the list that accepts the scancode and keycode.
177 * Explanation for not choosing the first attached keyboard anymore:
178 * USB keyboards for example have two event devices: one for all "normal"
179 * keys and one for extra function keys (like "volume up", "make coffee",
180 * etc.). So this means that scancodes for the extra function keys won't
181 * be valid for the first event device, but will be for the second.
182 */
183
184struct getset_keycode_data {
185 struct input_keymap_entry ke;
186 int error;
187};
188
189static int getkeycode_helper(struct input_handle *handle, void *data)
190{
191 struct getset_keycode_data *d = data;
192
193 d->error = input_get_keycode(handle->dev, &d->ke);
194
195 return d->error == 0; /* stop as soon as we successfully get one */
196}
197
198static int getkeycode(unsigned int scancode)
199{
200 struct getset_keycode_data d = {
201 .ke = {
202 .flags = 0,
203 .len = sizeof(scancode),
204 .keycode = 0,
205 },
206 .error = -ENODEV,
207 };
208
209 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
210
211 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
212
213 return d.error ?: d.ke.keycode;
214}
215
216static int setkeycode_helper(struct input_handle *handle, void *data)
217{
218 struct getset_keycode_data *d = data;
219
220 d->error = input_set_keycode(handle->dev, &d->ke);
221
222 return d->error == 0; /* stop as soon as we successfully set one */
223}
224
225static int setkeycode(unsigned int scancode, unsigned int keycode)
226{
227 struct getset_keycode_data d = {
228 .ke = {
229 .flags = 0,
230 .len = sizeof(scancode),
231 .keycode = keycode,
232 },
233 .error = -ENODEV,
234 };
235
236 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
237
238 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
239
240 return d.error;
241}
242
243/*
244 * Making beeps and bells. Note that we prefer beeps to bells, but when
245 * shutting the sound off we do both.
246 */
247
248static int kd_sound_helper(struct input_handle *handle, void *data)
249{
250 unsigned int *hz = data;
251 struct input_dev *dev = handle->dev;
252
253 if (test_bit(EV_SND, dev->evbit)) {
254 if (test_bit(SND_TONE, dev->sndbit)) {
255 input_inject_event(handle, EV_SND, SND_TONE, *hz);
256 if (*hz)
257 return 0;
258 }
259 if (test_bit(SND_BELL, dev->sndbit))
260 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
261 }
262
263 return 0;
264}
265
266static void kd_nosound(struct timer_list *unused)
267{
268 static unsigned int zero;
269
270 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
271}
272
273static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
274
275void kd_mksound(unsigned int hz, unsigned int ticks)
276{
277 del_timer_sync(&kd_mksound_timer);
278
279 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
280
281 if (hz && ticks)
282 mod_timer(&kd_mksound_timer, jiffies + ticks);
283}
284EXPORT_SYMBOL(kd_mksound);
285
286/*
287 * Setting the keyboard rate.
288 */
289
290static int kbd_rate_helper(struct input_handle *handle, void *data)
291{
292 struct input_dev *dev = handle->dev;
293 struct kbd_repeat *rpt = data;
294
295 if (test_bit(EV_REP, dev->evbit)) {
296
297 if (rpt[0].delay > 0)
298 input_inject_event(handle,
299 EV_REP, REP_DELAY, rpt[0].delay);
300 if (rpt[0].period > 0)
301 input_inject_event(handle,
302 EV_REP, REP_PERIOD, rpt[0].period);
303
304 rpt[1].delay = dev->rep[REP_DELAY];
305 rpt[1].period = dev->rep[REP_PERIOD];
306 }
307
308 return 0;
309}
310
311int kbd_rate(struct kbd_repeat *rpt)
312{
313 struct kbd_repeat data[2] = { *rpt };
314
315 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
316 *rpt = data[1]; /* Copy currently used settings */
317
318 return 0;
319}
320
321/*
322 * Helper Functions.
323 */
324static void put_queue(struct vc_data *vc, int ch)
325{
326 tty_insert_flip_char(&vc->port, ch, 0);
327 tty_schedule_flip(&vc->port);
328}
329
330static void puts_queue(struct vc_data *vc, const char *cp)
331{
332 tty_insert_flip_string(&vc->port, cp, strlen(cp));
333 tty_schedule_flip(&vc->port);
334}
335
336static void applkey(struct vc_data *vc, int key, char mode)
337{
338 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
339
340 buf[1] = (mode ? 'O' : '[');
341 buf[2] = key;
342 puts_queue(vc, buf);
343}
344
345/*
346 * Many other routines do put_queue, but I think either
347 * they produce ASCII, or they produce some user-assigned
348 * string, and in both cases we might assume that it is
349 * in utf-8 already.
350 */
351static void to_utf8(struct vc_data *vc, uint c)
352{
353 if (c < 0x80)
354 /* 0******* */
355 put_queue(vc, c);
356 else if (c < 0x800) {
357 /* 110***** 10****** */
358 put_queue(vc, 0xc0 | (c >> 6));
359 put_queue(vc, 0x80 | (c & 0x3f));
360 } else if (c < 0x10000) {
361 if (c >= 0xD800 && c < 0xE000)
362 return;
363 if (c == 0xFFFF)
364 return;
365 /* 1110**** 10****** 10****** */
366 put_queue(vc, 0xe0 | (c >> 12));
367 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
368 put_queue(vc, 0x80 | (c & 0x3f));
369 } else if (c < 0x110000) {
370 /* 11110*** 10****** 10****** 10****** */
371 put_queue(vc, 0xf0 | (c >> 18));
372 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
373 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
374 put_queue(vc, 0x80 | (c & 0x3f));
375 }
376}
377
378/* FIXME: review locking for vt.c callers */
379static void set_leds(void)
380{
381 tasklet_schedule(&keyboard_tasklet);
382}
383
384/*
385 * Called after returning from RAW mode or when changing consoles - recompute
386 * shift_down[] and shift_state from key_down[] maybe called when keymap is
387 * undefined, so that shiftkey release is seen. The caller must hold the
388 * kbd_event_lock.
389 */
390
391static void do_compute_shiftstate(void)
392{
393 unsigned int k, sym, val;
394
395 shift_state = 0;
396 memset(shift_down, 0, sizeof(shift_down));
397
398 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
399 sym = U(key_maps[0][k]);
400 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 continue;
402
403 val = KVAL(sym);
404 if (val == KVAL(K_CAPSSHIFT))
405 val = KVAL(K_SHIFT);
406
407 shift_down[val]++;
408 shift_state |= BIT(val);
409 }
410}
411
412/* We still have to export this method to vt.c */
413void vt_set_leds_compute_shiftstate(void)
414{
415 unsigned long flags;
416
417 set_leds();
418
419 spin_lock_irqsave(&kbd_event_lock, flags);
420 do_compute_shiftstate();
421 spin_unlock_irqrestore(&kbd_event_lock, flags);
422}
423
424/*
425 * We have a combining character DIACR here, followed by the character CH.
426 * If the combination occurs in the table, return the corresponding value.
427 * Otherwise, if CH is a space or equals DIACR, return DIACR.
428 * Otherwise, conclude that DIACR was not combining after all,
429 * queue it and return CH.
430 */
431static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
432{
433 unsigned int d = diacr;
434 unsigned int i;
435
436 diacr = 0;
437
438 if ((d & ~0xff) == BRL_UC_ROW) {
439 if ((ch & ~0xff) == BRL_UC_ROW)
440 return d | ch;
441 } else {
442 for (i = 0; i < accent_table_size; i++)
443 if (accent_table[i].diacr == d && accent_table[i].base == ch)
444 return accent_table[i].result;
445 }
446
447 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
448 return d;
449
450 if (kbd->kbdmode == VC_UNICODE)
451 to_utf8(vc, d);
452 else {
453 int c = conv_uni_to_8bit(d);
454 if (c != -1)
455 put_queue(vc, c);
456 }
457
458 return ch;
459}
460
461/*
462 * Special function handlers
463 */
464static void fn_enter(struct vc_data *vc)
465{
466 if (diacr) {
467 if (kbd->kbdmode == VC_UNICODE)
468 to_utf8(vc, diacr);
469 else {
470 int c = conv_uni_to_8bit(diacr);
471 if (c != -1)
472 put_queue(vc, c);
473 }
474 diacr = 0;
475 }
476
477 put_queue(vc, '\r');
478 if (vc_kbd_mode(kbd, VC_CRLF))
479 put_queue(vc, '\n');
480}
481
482static void fn_caps_toggle(struct vc_data *vc)
483{
484 if (rep)
485 return;
486
487 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
488}
489
490static void fn_caps_on(struct vc_data *vc)
491{
492 if (rep)
493 return;
494
495 set_vc_kbd_led(kbd, VC_CAPSLOCK);
496}
497
498static void fn_show_ptregs(struct vc_data *vc)
499{
500 struct pt_regs *regs = get_irq_regs();
501
502 if (regs)
503 show_regs(regs);
504}
505
506static void fn_hold(struct vc_data *vc)
507{
508 struct tty_struct *tty = vc->port.tty;
509
510 if (rep || !tty)
511 return;
512
513 /*
514 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
515 * these routines are also activated by ^S/^Q.
516 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
517 */
518 if (tty->flow.stopped)
519 start_tty(tty);
520 else
521 stop_tty(tty);
522}
523
524static void fn_num(struct vc_data *vc)
525{
526 if (vc_kbd_mode(kbd, VC_APPLIC))
527 applkey(vc, 'P', 1);
528 else
529 fn_bare_num(vc);
530}
531
532/*
533 * Bind this to Shift-NumLock if you work in application keypad mode
534 * but want to be able to change the NumLock flag.
535 * Bind this to NumLock if you prefer that the NumLock key always
536 * changes the NumLock flag.
537 */
538static void fn_bare_num(struct vc_data *vc)
539{
540 if (!rep)
541 chg_vc_kbd_led(kbd, VC_NUMLOCK);
542}
543
544static void fn_lastcons(struct vc_data *vc)
545{
546 /* switch to the last used console, ChN */
547 set_console(last_console);
548}
549
550static void fn_dec_console(struct vc_data *vc)
551{
552 int i, cur = fg_console;
553
554 /* Currently switching? Queue this next switch relative to that. */
555 if (want_console != -1)
556 cur = want_console;
557
558 for (i = cur - 1; i != cur; i--) {
559 if (i == -1)
560 i = MAX_NR_CONSOLES - 1;
561 if (vc_cons_allocated(i))
562 break;
563 }
564 set_console(i);
565}
566
567static void fn_inc_console(struct vc_data *vc)
568{
569 int i, cur = fg_console;
570
571 /* Currently switching? Queue this next switch relative to that. */
572 if (want_console != -1)
573 cur = want_console;
574
575 for (i = cur+1; i != cur; i++) {
576 if (i == MAX_NR_CONSOLES)
577 i = 0;
578 if (vc_cons_allocated(i))
579 break;
580 }
581 set_console(i);
582}
583
584static void fn_send_intr(struct vc_data *vc)
585{
586 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
587 tty_schedule_flip(&vc->port);
588}
589
590static void fn_scroll_forw(struct vc_data *vc)
591{
592 scrollfront(vc, 0);
593}
594
595static void fn_scroll_back(struct vc_data *vc)
596{
597 scrollback(vc);
598}
599
600static void fn_show_mem(struct vc_data *vc)
601{
602 show_mem(0, NULL);
603}
604
605static void fn_show_state(struct vc_data *vc)
606{
607 show_state();
608}
609
610static void fn_boot_it(struct vc_data *vc)
611{
612 ctrl_alt_del();
613}
614
615static void fn_compose(struct vc_data *vc)
616{
617 dead_key_next = true;
618}
619
620static void fn_spawn_con(struct vc_data *vc)
621{
622 spin_lock(&vt_spawn_con.lock);
623 if (vt_spawn_con.pid)
624 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
625 put_pid(vt_spawn_con.pid);
626 vt_spawn_con.pid = NULL;
627 }
628 spin_unlock(&vt_spawn_con.lock);
629}
630
631static void fn_SAK(struct vc_data *vc)
632{
633 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
634 schedule_work(SAK_work);
635}
636
637static void fn_null(struct vc_data *vc)
638{
639 do_compute_shiftstate();
640}
641
642/*
643 * Special key handlers
644 */
645static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
646{
647}
648
649static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
650{
651 if (up_flag)
652 return;
653 if (value >= ARRAY_SIZE(fn_handler))
654 return;
655 if ((kbd->kbdmode == VC_RAW ||
656 kbd->kbdmode == VC_MEDIUMRAW ||
657 kbd->kbdmode == VC_OFF) &&
658 value != KVAL(K_SAK))
659 return; /* SAK is allowed even in raw mode */
660 fn_handler[value](vc);
661}
662
663static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
664{
665 pr_err("k_lowercase was called - impossible\n");
666}
667
668static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
669{
670 if (up_flag)
671 return; /* no action, if this is a key release */
672
673 if (diacr)
674 value = handle_diacr(vc, value);
675
676 if (dead_key_next) {
677 dead_key_next = false;
678 diacr = value;
679 return;
680 }
681 if (kbd->kbdmode == VC_UNICODE)
682 to_utf8(vc, value);
683 else {
684 int c = conv_uni_to_8bit(value);
685 if (c != -1)
686 put_queue(vc, c);
687 }
688}
689
690/*
691 * Handle dead key. Note that we now may have several
692 * dead keys modifying the same character. Very useful
693 * for Vietnamese.
694 */
695static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
696{
697 if (up_flag)
698 return;
699
700 diacr = (diacr ? handle_diacr(vc, value) : value);
701}
702
703static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
704{
705 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
706}
707
708static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
709{
710 k_deadunicode(vc, value, up_flag);
711}
712
713/*
714 * Obsolete - for backwards compatibility only
715 */
716static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
717{
718 static const unsigned char ret_diacr[NR_DEAD] = {
719 '`', /* dead_grave */
720 '\'', /* dead_acute */
721 '^', /* dead_circumflex */
722 '~', /* dead_tilda */
723 '"', /* dead_diaeresis */
724 ',', /* dead_cedilla */
725 '_', /* dead_macron */
726 'U', /* dead_breve */
727 '.', /* dead_abovedot */
728 '*', /* dead_abovering */
729 '=', /* dead_doubleacute */
730 'c', /* dead_caron */
731 'k', /* dead_ogonek */
732 'i', /* dead_iota */
733 '#', /* dead_voiced_sound */
734 'o', /* dead_semivoiced_sound */
735 '!', /* dead_belowdot */
736 '?', /* dead_hook */
737 '+', /* dead_horn */
738 '-', /* dead_stroke */
739 ')', /* dead_abovecomma */
740 '(', /* dead_abovereversedcomma */
741 ':', /* dead_doublegrave */
742 'n', /* dead_invertedbreve */
743 ';', /* dead_belowcomma */
744 '$', /* dead_currency */
745 '@', /* dead_greek */
746 };
747
748 k_deadunicode(vc, ret_diacr[value], up_flag);
749}
750
751static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
752{
753 if (up_flag)
754 return;
755
756 set_console(value);
757}
758
759static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
760{
761 if (up_flag)
762 return;
763
764 if ((unsigned)value < ARRAY_SIZE(func_table)) {
765 unsigned long flags;
766
767 spin_lock_irqsave(&func_buf_lock, flags);
768 if (func_table[value])
769 puts_queue(vc, func_table[value]);
770 spin_unlock_irqrestore(&func_buf_lock, flags);
771
772 } else
773 pr_err("k_fn called with value=%d\n", value);
774}
775
776static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
777{
778 static const char cur_chars[] = "BDCA";
779
780 if (up_flag)
781 return;
782
783 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
784}
785
786static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
787{
788 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
789 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
790
791 if (up_flag)
792 return; /* no action, if this is a key release */
793
794 /* kludge... shift forces cursor/number keys */
795 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
796 applkey(vc, app_map[value], 1);
797 return;
798 }
799
800 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
801
802 switch (value) {
803 case KVAL(K_PCOMMA):
804 case KVAL(K_PDOT):
805 k_fn(vc, KVAL(K_REMOVE), 0);
806 return;
807 case KVAL(K_P0):
808 k_fn(vc, KVAL(K_INSERT), 0);
809 return;
810 case KVAL(K_P1):
811 k_fn(vc, KVAL(K_SELECT), 0);
812 return;
813 case KVAL(K_P2):
814 k_cur(vc, KVAL(K_DOWN), 0);
815 return;
816 case KVAL(K_P3):
817 k_fn(vc, KVAL(K_PGDN), 0);
818 return;
819 case KVAL(K_P4):
820 k_cur(vc, KVAL(K_LEFT), 0);
821 return;
822 case KVAL(K_P6):
823 k_cur(vc, KVAL(K_RIGHT), 0);
824 return;
825 case KVAL(K_P7):
826 k_fn(vc, KVAL(K_FIND), 0);
827 return;
828 case KVAL(K_P8):
829 k_cur(vc, KVAL(K_UP), 0);
830 return;
831 case KVAL(K_P9):
832 k_fn(vc, KVAL(K_PGUP), 0);
833 return;
834 case KVAL(K_P5):
835 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
836 return;
837 }
838 }
839
840 put_queue(vc, pad_chars[value]);
841 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
842 put_queue(vc, '\n');
843}
844
845static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
846{
847 int old_state = shift_state;
848
849 if (rep)
850 return;
851 /*
852 * Mimic typewriter:
853 * a CapsShift key acts like Shift but undoes CapsLock
854 */
855 if (value == KVAL(K_CAPSSHIFT)) {
856 value = KVAL(K_SHIFT);
857 if (!up_flag)
858 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
859 }
860
861 if (up_flag) {
862 /*
863 * handle the case that two shift or control
864 * keys are depressed simultaneously
865 */
866 if (shift_down[value])
867 shift_down[value]--;
868 } else
869 shift_down[value]++;
870
871 if (shift_down[value])
872 shift_state |= BIT(value);
873 else
874 shift_state &= ~BIT(value);
875
876 /* kludge */
877 if (up_flag && shift_state != old_state && npadch_active) {
878 if (kbd->kbdmode == VC_UNICODE)
879 to_utf8(vc, npadch_value);
880 else
881 put_queue(vc, npadch_value & 0xff);
882 npadch_active = false;
883 }
884}
885
886static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
887{
888 if (up_flag)
889 return;
890
891 if (vc_kbd_mode(kbd, VC_META)) {
892 put_queue(vc, '\033');
893 put_queue(vc, value);
894 } else
895 put_queue(vc, value | BIT(7));
896}
897
898static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 unsigned int base;
901
902 if (up_flag)
903 return;
904
905 if (value < 10) {
906 /* decimal input of code, while Alt depressed */
907 base = 10;
908 } else {
909 /* hexadecimal input of code, while AltGr depressed */
910 value -= 10;
911 base = 16;
912 }
913
914 if (!npadch_active) {
915 npadch_value = 0;
916 npadch_active = true;
917 }
918
919 npadch_value = npadch_value * base + value;
920}
921
922static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
923{
924 if (up_flag || rep)
925 return;
926
927 chg_vc_kbd_lock(kbd, value);
928}
929
930static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
931{
932 k_shift(vc, value, up_flag);
933 if (up_flag || rep)
934 return;
935
936 chg_vc_kbd_slock(kbd, value);
937 /* try to make Alt, oops, AltGr and such work */
938 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
939 kbd->slockstate = 0;
940 chg_vc_kbd_slock(kbd, value);
941 }
942}
943
944/* by default, 300ms interval for combination release */
945static unsigned brl_timeout = 300;
946MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
947module_param(brl_timeout, uint, 0644);
948
949static unsigned brl_nbchords = 1;
950MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
951module_param(brl_nbchords, uint, 0644);
952
953static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
954{
955 static unsigned long chords;
956 static unsigned committed;
957
958 if (!brl_nbchords)
959 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
960 else {
961 committed |= pattern;
962 chords++;
963 if (chords == brl_nbchords) {
964 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
965 chords = 0;
966 committed = 0;
967 }
968 }
969}
970
971static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
972{
973 static unsigned pressed, committing;
974 static unsigned long releasestart;
975
976 if (kbd->kbdmode != VC_UNICODE) {
977 if (!up_flag)
978 pr_warn("keyboard mode must be unicode for braille patterns\n");
979 return;
980 }
981
982 if (!value) {
983 k_unicode(vc, BRL_UC_ROW, up_flag);
984 return;
985 }
986
987 if (value > 8)
988 return;
989
990 if (!up_flag) {
991 pressed |= BIT(value - 1);
992 if (!brl_timeout)
993 committing = pressed;
994 } else if (brl_timeout) {
995 if (!committing ||
996 time_after(jiffies,
997 releasestart + msecs_to_jiffies(brl_timeout))) {
998 committing = pressed;
999 releasestart = jiffies;
1000 }
1001 pressed &= ~BIT(value - 1);
1002 if (!pressed && committing) {
1003 k_brlcommit(vc, committing, 0);
1004 committing = 0;
1005 }
1006 } else {
1007 if (committing) {
1008 k_brlcommit(vc, committing, 0);
1009 committing = 0;
1010 }
1011 pressed &= ~BIT(value - 1);
1012 }
1013}
1014
1015#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016
1017struct kbd_led_trigger {
1018 struct led_trigger trigger;
1019 unsigned int mask;
1020};
1021
1022static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023{
1024 struct kbd_led_trigger *trigger =
1025 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026
1027 tasklet_disable(&keyboard_tasklet);
1028 if (ledstate != -1U)
1029 led_trigger_event(&trigger->trigger,
1030 ledstate & trigger->mask ?
1031 LED_FULL : LED_OFF);
1032 tasklet_enable(&keyboard_tasklet);
1033
1034 return 0;
1035}
1036
1037#define KBD_LED_TRIGGER(_led_bit, _name) { \
1038 .trigger = { \
1039 .name = _name, \
1040 .activate = kbd_led_trigger_activate, \
1041 }, \
1042 .mask = BIT(_led_bit), \
1043 }
1044
1045#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1046 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047
1048static struct kbd_led_trigger kbd_led_triggers[] = {
1049 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1051 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1052 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1053
1054 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1055 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1056 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1057 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1058 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1062};
1063
1064static void kbd_propagate_led_state(unsigned int old_state,
1065 unsigned int new_state)
1066{
1067 struct kbd_led_trigger *trigger;
1068 unsigned int changed = old_state ^ new_state;
1069 int i;
1070
1071 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072 trigger = &kbd_led_triggers[i];
1073
1074 if (changed & trigger->mask)
1075 led_trigger_event(&trigger->trigger,
1076 new_state & trigger->mask ?
1077 LED_FULL : LED_OFF);
1078 }
1079}
1080
1081static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082{
1083 unsigned int led_state = *(unsigned int *)data;
1084
1085 if (test_bit(EV_LED, handle->dev->evbit))
1086 kbd_propagate_led_state(~led_state, led_state);
1087
1088 return 0;
1089}
1090
1091static void kbd_init_leds(void)
1092{
1093 int error;
1094 int i;
1095
1096 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098 if (error)
1099 pr_err("error %d while registering trigger %s\n",
1100 error, kbd_led_triggers[i].trigger.name);
1101 }
1102}
1103
1104#else
1105
1106static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107{
1108 unsigned int leds = *(unsigned int *)data;
1109
1110 if (test_bit(EV_LED, handle->dev->evbit)) {
1111 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1113 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1114 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115 }
1116
1117 return 0;
1118}
1119
1120static void kbd_propagate_led_state(unsigned int old_state,
1121 unsigned int new_state)
1122{
1123 input_handler_for_each_handle(&kbd_handler, &new_state,
1124 kbd_update_leds_helper);
1125}
1126
1127static void kbd_init_leds(void)
1128{
1129}
1130
1131#endif
1132
1133/*
1134 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 * or (iii) specified bits of specified words in kernel memory.
1137 */
1138static unsigned char getledstate(void)
1139{
1140 return ledstate & 0xff;
1141}
1142
1143void setledstate(struct kbd_struct *kb, unsigned int led)
1144{
1145 unsigned long flags;
1146 spin_lock_irqsave(&led_lock, flags);
1147 if (!(led & ~7)) {
1148 ledioctl = led;
1149 kb->ledmode = LED_SHOW_IOCTL;
1150 } else
1151 kb->ledmode = LED_SHOW_FLAGS;
1152
1153 set_leds();
1154 spin_unlock_irqrestore(&led_lock, flags);
1155}
1156
1157static inline unsigned char getleds(void)
1158{
1159 struct kbd_struct *kb = kbd_table + fg_console;
1160
1161 if (kb->ledmode == LED_SHOW_IOCTL)
1162 return ledioctl;
1163
1164 return kb->ledflagstate;
1165}
1166
1167/**
1168 * vt_get_leds - helper for braille console
1169 * @console: console to read
1170 * @flag: flag we want to check
1171 *
1172 * Check the status of a keyboard led flag and report it back
1173 */
1174int vt_get_leds(unsigned int console, int flag)
1175{
1176 struct kbd_struct *kb = kbd_table + console;
1177 int ret;
1178 unsigned long flags;
1179
1180 spin_lock_irqsave(&led_lock, flags);
1181 ret = vc_kbd_led(kb, flag);
1182 spin_unlock_irqrestore(&led_lock, flags);
1183
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(vt_get_leds);
1187
1188/**
1189 * vt_set_led_state - set LED state of a console
1190 * @console: console to set
1191 * @leds: LED bits
1192 *
1193 * Set the LEDs on a console. This is a wrapper for the VT layer
1194 * so that we can keep kbd knowledge internal
1195 */
1196void vt_set_led_state(unsigned int console, int leds)
1197{
1198 struct kbd_struct *kb = kbd_table + console;
1199 setledstate(kb, leds);
1200}
1201
1202/**
1203 * vt_kbd_con_start - Keyboard side of console start
1204 * @console: console
1205 *
1206 * Handle console start. This is a wrapper for the VT layer
1207 * so that we can keep kbd knowledge internal
1208 *
1209 * FIXME: We eventually need to hold the kbd lock here to protect
1210 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 * and start_tty under the kbd_event_lock, while normal tty paths
1212 * don't hold the lock. We probably need to split out an LED lock
1213 * but not during an -rc release!
1214 */
1215void vt_kbd_con_start(unsigned int console)
1216{
1217 struct kbd_struct *kb = kbd_table + console;
1218 unsigned long flags;
1219 spin_lock_irqsave(&led_lock, flags);
1220 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221 set_leds();
1222 spin_unlock_irqrestore(&led_lock, flags);
1223}
1224
1225/**
1226 * vt_kbd_con_stop - Keyboard side of console stop
1227 * @console: console
1228 *
1229 * Handle console stop. This is a wrapper for the VT layer
1230 * so that we can keep kbd knowledge internal
1231 */
1232void vt_kbd_con_stop(unsigned int console)
1233{
1234 struct kbd_struct *kb = kbd_table + console;
1235 unsigned long flags;
1236 spin_lock_irqsave(&led_lock, flags);
1237 set_vc_kbd_led(kb, VC_SCROLLOCK);
1238 set_leds();
1239 spin_unlock_irqrestore(&led_lock, flags);
1240}
1241
1242/*
1243 * This is the tasklet that updates LED state of LEDs using standard
1244 * keyboard triggers. The reason we use tasklet is that we need to
1245 * handle the scenario when keyboard handler is not registered yet
1246 * but we already getting updates from the VT to update led state.
1247 */
1248static void kbd_bh(struct tasklet_struct *unused)
1249{
1250 unsigned int leds;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&led_lock, flags);
1254 leds = getleds();
1255 leds |= (unsigned int)kbd->lockstate << 8;
1256 spin_unlock_irqrestore(&led_lock, flags);
1257
1258 if (leds != ledstate) {
1259 kbd_propagate_led_state(ledstate, leds);
1260 ledstate = leds;
1261 }
1262}
1263
1264#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1268
1269static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270{
1271 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272 return false;
1273
1274 return dev->id.bustype == BUS_I8042 &&
1275 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276}
1277
1278static const unsigned short x86_keycodes[256] =
1279 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1280 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294
1295#ifdef CONFIG_SPARC
1296static int sparc_l1_a_state;
1297extern void sun_do_break(void);
1298#endif
1299
1300static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301 unsigned char up_flag)
1302{
1303 int code;
1304
1305 switch (keycode) {
1306
1307 case KEY_PAUSE:
1308 put_queue(vc, 0xe1);
1309 put_queue(vc, 0x1d | up_flag);
1310 put_queue(vc, 0x45 | up_flag);
1311 break;
1312
1313 case KEY_HANGEUL:
1314 if (!up_flag)
1315 put_queue(vc, 0xf2);
1316 break;
1317
1318 case KEY_HANJA:
1319 if (!up_flag)
1320 put_queue(vc, 0xf1);
1321 break;
1322
1323 case KEY_SYSRQ:
1324 /*
1325 * Real AT keyboards (that's what we're trying
1326 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327 * pressing PrtSc/SysRq alone, but simply 0x54
1328 * when pressing Alt+PrtSc/SysRq.
1329 */
1330 if (test_bit(KEY_LEFTALT, key_down) ||
1331 test_bit(KEY_RIGHTALT, key_down)) {
1332 put_queue(vc, 0x54 | up_flag);
1333 } else {
1334 put_queue(vc, 0xe0);
1335 put_queue(vc, 0x2a | up_flag);
1336 put_queue(vc, 0xe0);
1337 put_queue(vc, 0x37 | up_flag);
1338 }
1339 break;
1340
1341 default:
1342 if (keycode > 255)
1343 return -1;
1344
1345 code = x86_keycodes[keycode];
1346 if (!code)
1347 return -1;
1348
1349 if (code & 0x100)
1350 put_queue(vc, 0xe0);
1351 put_queue(vc, (code & 0x7f) | up_flag);
1352
1353 break;
1354 }
1355
1356 return 0;
1357}
1358
1359#else
1360
1361static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362{
1363 return false;
1364}
1365
1366static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367{
1368 if (keycode > 127)
1369 return -1;
1370
1371 put_queue(vc, keycode | up_flag);
1372 return 0;
1373}
1374#endif
1375
1376static void kbd_rawcode(unsigned char data)
1377{
1378 struct vc_data *vc = vc_cons[fg_console].d;
1379
1380 kbd = kbd_table + vc->vc_num;
1381 if (kbd->kbdmode == VC_RAW)
1382 put_queue(vc, data);
1383}
1384
1385static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386{
1387 struct vc_data *vc = vc_cons[fg_console].d;
1388 unsigned short keysym, *key_map;
1389 unsigned char type;
1390 bool raw_mode;
1391 struct tty_struct *tty;
1392 int shift_final;
1393 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394 int rc;
1395
1396 tty = vc->port.tty;
1397
1398 if (tty && (!tty->driver_data)) {
1399 /* No driver data? Strange. Okay we fix it then. */
1400 tty->driver_data = vc;
1401 }
1402
1403 kbd = kbd_table + vc->vc_num;
1404
1405#ifdef CONFIG_SPARC
1406 if (keycode == KEY_STOP)
1407 sparc_l1_a_state = down;
1408#endif
1409
1410 rep = (down == 2);
1411
1412 raw_mode = (kbd->kbdmode == VC_RAW);
1413 if (raw_mode && !hw_raw)
1414 if (emulate_raw(vc, keycode, !down << 7))
1415 if (keycode < BTN_MISC && printk_ratelimit())
1416 pr_warn("can't emulate rawmode for keycode %d\n",
1417 keycode);
1418
1419#ifdef CONFIG_SPARC
1420 if (keycode == KEY_A && sparc_l1_a_state) {
1421 sparc_l1_a_state = false;
1422 sun_do_break();
1423 }
1424#endif
1425
1426 if (kbd->kbdmode == VC_MEDIUMRAW) {
1427 /*
1428 * This is extended medium raw mode, with keys above 127
1429 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431 * interfere with anything else. The two bytes after 0 will
1432 * always have the up flag set not to interfere with older
1433 * applications. This allows for 16384 different keycodes,
1434 * which should be enough.
1435 */
1436 if (keycode < 128) {
1437 put_queue(vc, keycode | (!down << 7));
1438 } else {
1439 put_queue(vc, !down << 7);
1440 put_queue(vc, (keycode >> 7) | BIT(7));
1441 put_queue(vc, keycode | BIT(7));
1442 }
1443 raw_mode = true;
1444 }
1445
1446 assign_bit(keycode, key_down, down);
1447
1448 if (rep &&
1449 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451 /*
1452 * Don't repeat a key if the input buffers are not empty and the
1453 * characters get aren't echoed locally. This makes key repeat
1454 * usable with slow applications and under heavy loads.
1455 */
1456 return;
1457 }
1458
1459 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460 param.ledstate = kbd->ledflagstate;
1461 key_map = key_maps[shift_final];
1462
1463 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464 KBD_KEYCODE, ¶m);
1465 if (rc == NOTIFY_STOP || !key_map) {
1466 atomic_notifier_call_chain(&keyboard_notifier_list,
1467 KBD_UNBOUND_KEYCODE, ¶m);
1468 do_compute_shiftstate();
1469 kbd->slockstate = 0;
1470 return;
1471 }
1472
1473 if (keycode < NR_KEYS)
1474 keysym = key_map[keycode];
1475 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477 else
1478 return;
1479
1480 type = KTYP(keysym);
1481
1482 if (type < 0xf0) {
1483 param.value = keysym;
1484 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485 KBD_UNICODE, ¶m);
1486 if (rc != NOTIFY_STOP)
1487 if (down && !raw_mode)
1488 k_unicode(vc, keysym, !down);
1489 return;
1490 }
1491
1492 type -= 0xf0;
1493
1494 if (type == KT_LETTER) {
1495 type = KT_LATIN;
1496 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498 if (key_map)
1499 keysym = key_map[keycode];
1500 }
1501 }
1502
1503 param.value = keysym;
1504 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505 KBD_KEYSYM, ¶m);
1506 if (rc == NOTIFY_STOP)
1507 return;
1508
1509 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510 return;
1511
1512 (*k_handler[type])(vc, keysym & 0xff, !down);
1513
1514 param.ledstate = kbd->ledflagstate;
1515 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1516
1517 if (type != KT_SLOCK)
1518 kbd->slockstate = 0;
1519}
1520
1521static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522 unsigned int event_code, int value)
1523{
1524 /* We are called with interrupts disabled, just take the lock */
1525 spin_lock(&kbd_event_lock);
1526
1527 if (event_type == EV_MSC && event_code == MSC_RAW &&
1528 kbd_is_hw_raw(handle->dev))
1529 kbd_rawcode(value);
1530 if (event_type == EV_KEY && event_code <= KEY_MAX)
1531 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532
1533 spin_unlock(&kbd_event_lock);
1534
1535 tasklet_schedule(&keyboard_tasklet);
1536 do_poke_blanked_console = 1;
1537 schedule_console_callback();
1538}
1539
1540static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541{
1542 if (test_bit(EV_SND, dev->evbit))
1543 return true;
1544
1545 if (test_bit(EV_KEY, dev->evbit)) {
1546 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547 BTN_MISC)
1548 return true;
1549 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551 return true;
1552 }
1553
1554 return false;
1555}
1556
1557/*
1558 * When a keyboard (or other input device) is found, the kbd_connect
1559 * function is called. The function then looks at the device, and if it
1560 * likes it, it can open it and get events from it. In this (kbd_connect)
1561 * function, we should decide which VT to bind that keyboard to initially.
1562 */
1563static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564 const struct input_device_id *id)
1565{
1566 struct input_handle *handle;
1567 int error;
1568
1569 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570 if (!handle)
1571 return -ENOMEM;
1572
1573 handle->dev = dev;
1574 handle->handler = handler;
1575 handle->name = "kbd";
1576
1577 error = input_register_handle(handle);
1578 if (error)
1579 goto err_free_handle;
1580
1581 error = input_open_device(handle);
1582 if (error)
1583 goto err_unregister_handle;
1584
1585 return 0;
1586
1587 err_unregister_handle:
1588 input_unregister_handle(handle);
1589 err_free_handle:
1590 kfree(handle);
1591 return error;
1592}
1593
1594static void kbd_disconnect(struct input_handle *handle)
1595{
1596 input_close_device(handle);
1597 input_unregister_handle(handle);
1598 kfree(handle);
1599}
1600
1601/*
1602 * Start keyboard handler on the new keyboard by refreshing LED state to
1603 * match the rest of the system.
1604 */
1605static void kbd_start(struct input_handle *handle)
1606{
1607 tasklet_disable(&keyboard_tasklet);
1608
1609 if (ledstate != -1U)
1610 kbd_update_leds_helper(handle, &ledstate);
1611
1612 tasklet_enable(&keyboard_tasklet);
1613}
1614
1615static const struct input_device_id kbd_ids[] = {
1616 {
1617 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618 .evbit = { BIT_MASK(EV_KEY) },
1619 },
1620
1621 {
1622 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623 .evbit = { BIT_MASK(EV_SND) },
1624 },
1625
1626 { }, /* Terminating entry */
1627};
1628
1629MODULE_DEVICE_TABLE(input, kbd_ids);
1630
1631static struct input_handler kbd_handler = {
1632 .event = kbd_event,
1633 .match = kbd_match,
1634 .connect = kbd_connect,
1635 .disconnect = kbd_disconnect,
1636 .start = kbd_start,
1637 .name = "kbd",
1638 .id_table = kbd_ids,
1639};
1640
1641int __init kbd_init(void)
1642{
1643 int i;
1644 int error;
1645
1646 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647 kbd_table[i].ledflagstate = kbd_defleds();
1648 kbd_table[i].default_ledflagstate = kbd_defleds();
1649 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650 kbd_table[i].lockstate = KBD_DEFLOCK;
1651 kbd_table[i].slockstate = 0;
1652 kbd_table[i].modeflags = KBD_DEFMODE;
1653 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654 }
1655
1656 kbd_init_leds();
1657
1658 error = input_register_handler(&kbd_handler);
1659 if (error)
1660 return error;
1661
1662 tasklet_enable(&keyboard_tasklet);
1663 tasklet_schedule(&keyboard_tasklet);
1664
1665 return 0;
1666}
1667
1668/* Ioctl support code */
1669
1670/**
1671 * vt_do_diacrit - diacritical table updates
1672 * @cmd: ioctl request
1673 * @udp: pointer to user data for ioctl
1674 * @perm: permissions check computed by caller
1675 *
1676 * Update the diacritical tables atomically and safely. Lock them
1677 * against simultaneous keypresses
1678 */
1679int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680{
1681 unsigned long flags;
1682 int asize;
1683 int ret = 0;
1684
1685 switch (cmd) {
1686 case KDGKBDIACR:
1687 {
1688 struct kbdiacrs __user *a = udp;
1689 struct kbdiacr *dia;
1690 int i;
1691
1692 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693 GFP_KERNEL);
1694 if (!dia)
1695 return -ENOMEM;
1696
1697 /* Lock the diacriticals table, make a copy and then
1698 copy it after we unlock */
1699 spin_lock_irqsave(&kbd_event_lock, flags);
1700
1701 asize = accent_table_size;
1702 for (i = 0; i < asize; i++) {
1703 dia[i].diacr = conv_uni_to_8bit(
1704 accent_table[i].diacr);
1705 dia[i].base = conv_uni_to_8bit(
1706 accent_table[i].base);
1707 dia[i].result = conv_uni_to_8bit(
1708 accent_table[i].result);
1709 }
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacr, dia,
1715 asize * sizeof(struct kbdiacr)))
1716 ret = -EFAULT;
1717 kfree(dia);
1718 return ret;
1719 }
1720 case KDGKBDIACRUC:
1721 {
1722 struct kbdiacrsuc __user *a = udp;
1723 void *buf;
1724
1725 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726 GFP_KERNEL);
1727 if (buf == NULL)
1728 return -ENOMEM;
1729
1730 /* Lock the diacriticals table, make a copy and then
1731 copy it after we unlock */
1732 spin_lock_irqsave(&kbd_event_lock, flags);
1733
1734 asize = accent_table_size;
1735 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738
1739 if (put_user(asize, &a->kb_cnt))
1740 ret = -EFAULT;
1741 else if (copy_to_user(a->kbdiacruc, buf,
1742 asize*sizeof(struct kbdiacruc)))
1743 ret = -EFAULT;
1744 kfree(buf);
1745 return ret;
1746 }
1747
1748 case KDSKBDIACR:
1749 {
1750 struct kbdiacrs __user *a = udp;
1751 struct kbdiacr *dia = NULL;
1752 unsigned int ct;
1753 int i;
1754
1755 if (!perm)
1756 return -EPERM;
1757 if (get_user(ct, &a->kb_cnt))
1758 return -EFAULT;
1759 if (ct >= MAX_DIACR)
1760 return -EINVAL;
1761
1762 if (ct) {
1763
1764 dia = memdup_user(a->kbdiacr,
1765 sizeof(struct kbdiacr) * ct);
1766 if (IS_ERR(dia))
1767 return PTR_ERR(dia);
1768
1769 }
1770
1771 spin_lock_irqsave(&kbd_event_lock, flags);
1772 accent_table_size = ct;
1773 for (i = 0; i < ct; i++) {
1774 accent_table[i].diacr =
1775 conv_8bit_to_uni(dia[i].diacr);
1776 accent_table[i].base =
1777 conv_8bit_to_uni(dia[i].base);
1778 accent_table[i].result =
1779 conv_8bit_to_uni(dia[i].result);
1780 }
1781 spin_unlock_irqrestore(&kbd_event_lock, flags);
1782 kfree(dia);
1783 return 0;
1784 }
1785
1786 case KDSKBDIACRUC:
1787 {
1788 struct kbdiacrsuc __user *a = udp;
1789 unsigned int ct;
1790 void *buf = NULL;
1791
1792 if (!perm)
1793 return -EPERM;
1794
1795 if (get_user(ct, &a->kb_cnt))
1796 return -EFAULT;
1797
1798 if (ct >= MAX_DIACR)
1799 return -EINVAL;
1800
1801 if (ct) {
1802 buf = memdup_user(a->kbdiacruc,
1803 ct * sizeof(struct kbdiacruc));
1804 if (IS_ERR(buf))
1805 return PTR_ERR(buf);
1806 }
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 if (ct)
1809 memcpy(accent_table, buf,
1810 ct * sizeof(struct kbdiacruc));
1811 accent_table_size = ct;
1812 spin_unlock_irqrestore(&kbd_event_lock, flags);
1813 kfree(buf);
1814 return 0;
1815 }
1816 }
1817 return ret;
1818}
1819
1820/**
1821 * vt_do_kdskbmode - set keyboard mode ioctl
1822 * @console: the console to use
1823 * @arg: the requested mode
1824 *
1825 * Update the keyboard mode bits while holding the correct locks.
1826 * Return 0 for success or an error code.
1827 */
1828int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1829{
1830 struct kbd_struct *kb = kbd_table + console;
1831 int ret = 0;
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(&kbd_event_lock, flags);
1835 switch(arg) {
1836 case K_RAW:
1837 kb->kbdmode = VC_RAW;
1838 break;
1839 case K_MEDIUMRAW:
1840 kb->kbdmode = VC_MEDIUMRAW;
1841 break;
1842 case K_XLATE:
1843 kb->kbdmode = VC_XLATE;
1844 do_compute_shiftstate();
1845 break;
1846 case K_UNICODE:
1847 kb->kbdmode = VC_UNICODE;
1848 do_compute_shiftstate();
1849 break;
1850 case K_OFF:
1851 kb->kbdmode = VC_OFF;
1852 break;
1853 default:
1854 ret = -EINVAL;
1855 }
1856 spin_unlock_irqrestore(&kbd_event_lock, flags);
1857 return ret;
1858}
1859
1860/**
1861 * vt_do_kdskbmeta - set keyboard meta state
1862 * @console: the console to use
1863 * @arg: the requested meta state
1864 *
1865 * Update the keyboard meta bits while holding the correct locks.
1866 * Return 0 for success or an error code.
1867 */
1868int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1869{
1870 struct kbd_struct *kb = kbd_table + console;
1871 int ret = 0;
1872 unsigned long flags;
1873
1874 spin_lock_irqsave(&kbd_event_lock, flags);
1875 switch(arg) {
1876 case K_METABIT:
1877 clr_vc_kbd_mode(kb, VC_META);
1878 break;
1879 case K_ESCPREFIX:
1880 set_vc_kbd_mode(kb, VC_META);
1881 break;
1882 default:
1883 ret = -EINVAL;
1884 }
1885 spin_unlock_irqrestore(&kbd_event_lock, flags);
1886 return ret;
1887}
1888
1889int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890 int perm)
1891{
1892 struct kbkeycode tmp;
1893 int kc = 0;
1894
1895 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896 return -EFAULT;
1897 switch (cmd) {
1898 case KDGETKEYCODE:
1899 kc = getkeycode(tmp.scancode);
1900 if (kc >= 0)
1901 kc = put_user(kc, &user_kbkc->keycode);
1902 break;
1903 case KDSETKEYCODE:
1904 if (!perm)
1905 return -EPERM;
1906 kc = setkeycode(tmp.scancode, tmp.keycode);
1907 break;
1908 }
1909 return kc;
1910}
1911
1912static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913 unsigned char map)
1914{
1915 unsigned short *key_map, val;
1916 unsigned long flags;
1917
1918 /* Ensure another thread doesn't free it under us */
1919 spin_lock_irqsave(&kbd_event_lock, flags);
1920 key_map = key_maps[map];
1921 if (key_map) {
1922 val = U(key_map[idx]);
1923 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924 val = K_HOLE;
1925 } else
1926 val = idx ? K_HOLE : K_NOSUCHMAP;
1927 spin_unlock_irqrestore(&kbd_event_lock, flags);
1928
1929 return val;
1930}
1931
1932static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933 unsigned char map, unsigned short val)
1934{
1935 unsigned long flags;
1936 unsigned short *key_map, *new_map, oldval;
1937
1938 if (!idx && val == K_NOSUCHMAP) {
1939 spin_lock_irqsave(&kbd_event_lock, flags);
1940 /* deallocate map */
1941 key_map = key_maps[map];
1942 if (map && key_map) {
1943 key_maps[map] = NULL;
1944 if (key_map[0] == U(K_ALLOCATED)) {
1945 kfree(key_map);
1946 keymap_count--;
1947 }
1948 }
1949 spin_unlock_irqrestore(&kbd_event_lock, flags);
1950
1951 return 0;
1952 }
1953
1954 if (KTYP(val) < NR_TYPES) {
1955 if (KVAL(val) > max_vals[KTYP(val)])
1956 return -EINVAL;
1957 } else if (kbdmode != VC_UNICODE)
1958 return -EINVAL;
1959
1960 /* ++Geert: non-PC keyboards may generate keycode zero */
1961#if !defined(__mc68000__) && !defined(__powerpc__)
1962 /* assignment to entry 0 only tests validity of args */
1963 if (!idx)
1964 return 0;
1965#endif
1966
1967 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968 if (!new_map)
1969 return -ENOMEM;
1970
1971 spin_lock_irqsave(&kbd_event_lock, flags);
1972 key_map = key_maps[map];
1973 if (key_map == NULL) {
1974 int j;
1975
1976 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977 !capable(CAP_SYS_RESOURCE)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 kfree(new_map);
1980 return -EPERM;
1981 }
1982 key_maps[map] = new_map;
1983 key_map = new_map;
1984 key_map[0] = U(K_ALLOCATED);
1985 for (j = 1; j < NR_KEYS; j++)
1986 key_map[j] = U(K_HOLE);
1987 keymap_count++;
1988 } else
1989 kfree(new_map);
1990
1991 oldval = U(key_map[idx]);
1992 if (val == oldval)
1993 goto out;
1994
1995 /* Attention Key */
1996 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997 spin_unlock_irqrestore(&kbd_event_lock, flags);
1998 return -EPERM;
1999 }
2000
2001 key_map[idx] = U(val);
2002 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003 do_compute_shiftstate();
2004out:
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006
2007 return 0;
2008}
2009
2010int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011 unsigned int console)
2012{
2013 struct kbd_struct *kb = kbd_table + console;
2014 struct kbentry kbe;
2015
2016 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017 return -EFAULT;
2018
2019 switch (cmd) {
2020 case KDGKBENT:
2021 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022 kbe.kb_table),
2023 &user_kbe->kb_value);
2024 case KDSKBENT:
2025 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026 return -EPERM;
2027 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028 kbe.kb_value);
2029 }
2030 return 0;
2031}
2032
2033static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034{
2035 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036 char *cur_f = func_table[cur];
2037
2038 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039 strcpy(cur_f, kbs);
2040 return kbs;
2041 }
2042
2043 func_table[cur] = kbs;
2044
2045 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046}
2047
2048int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049{
2050 unsigned char kb_func;
2051 unsigned long flags;
2052 char *kbs;
2053 int ret;
2054
2055 if (get_user(kb_func, &user_kdgkb->kb_func))
2056 return -EFAULT;
2057
2058 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059
2060 switch (cmd) {
2061 case KDGKBSENT: {
2062 /* size should have been a struct member */
2063 ssize_t len = sizeof(user_kdgkb->kb_string);
2064
2065 kbs = kmalloc(len, GFP_KERNEL);
2066 if (!kbs)
2067 return -ENOMEM;
2068
2069 spin_lock_irqsave(&func_buf_lock, flags);
2070 len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071 spin_unlock_irqrestore(&func_buf_lock, flags);
2072
2073 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074 -EFAULT : 0;
2075
2076 break;
2077 }
2078 case KDSKBSENT:
2079 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080 return -EPERM;
2081
2082 kbs = strndup_user(user_kdgkb->kb_string,
2083 sizeof(user_kdgkb->kb_string));
2084 if (IS_ERR(kbs))
2085 return PTR_ERR(kbs);
2086
2087 spin_lock_irqsave(&func_buf_lock, flags);
2088 kbs = vt_kdskbsent(kbs, kb_func);
2089 spin_unlock_irqrestore(&func_buf_lock, flags);
2090
2091 ret = 0;
2092 break;
2093 }
2094
2095 kfree(kbs);
2096
2097 return ret;
2098}
2099
2100int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2101{
2102 struct kbd_struct *kb = kbd_table + console;
2103 unsigned long flags;
2104 unsigned char ucval;
2105
2106 switch(cmd) {
2107 /* the ioctls below read/set the flags usually shown in the leds */
2108 /* don't use them - they will go away without warning */
2109 case KDGKBLED:
2110 spin_lock_irqsave(&kbd_event_lock, flags);
2111 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112 spin_unlock_irqrestore(&kbd_event_lock, flags);
2113 return put_user(ucval, (char __user *)arg);
2114
2115 case KDSKBLED:
2116 if (!perm)
2117 return -EPERM;
2118 if (arg & ~0x77)
2119 return -EINVAL;
2120 spin_lock_irqsave(&led_lock, flags);
2121 kb->ledflagstate = (arg & 7);
2122 kb->default_ledflagstate = ((arg >> 4) & 7);
2123 set_leds();
2124 spin_unlock_irqrestore(&led_lock, flags);
2125 return 0;
2126
2127 /* the ioctls below only set the lights, not the functions */
2128 /* for those, see KDGKBLED and KDSKBLED above */
2129 case KDGETLED:
2130 ucval = getledstate();
2131 return put_user(ucval, (char __user *)arg);
2132
2133 case KDSETLED:
2134 if (!perm)
2135 return -EPERM;
2136 setledstate(kb, arg);
2137 return 0;
2138 }
2139 return -ENOIOCTLCMD;
2140}
2141
2142int vt_do_kdgkbmode(unsigned int console)
2143{
2144 struct kbd_struct *kb = kbd_table + console;
2145 /* This is a spot read so needs no locking */
2146 switch (kb->kbdmode) {
2147 case VC_RAW:
2148 return K_RAW;
2149 case VC_MEDIUMRAW:
2150 return K_MEDIUMRAW;
2151 case VC_UNICODE:
2152 return K_UNICODE;
2153 case VC_OFF:
2154 return K_OFF;
2155 default:
2156 return K_XLATE;
2157 }
2158}
2159
2160/**
2161 * vt_do_kdgkbmeta - report meta status
2162 * @console: console to report
2163 *
2164 * Report the meta flag status of this console
2165 */
2166int vt_do_kdgkbmeta(unsigned int console)
2167{
2168 struct kbd_struct *kb = kbd_table + console;
2169 /* Again a spot read so no locking */
2170 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171}
2172
2173/**
2174 * vt_reset_unicode - reset the unicode status
2175 * @console: console being reset
2176 *
2177 * Restore the unicode console state to its default
2178 */
2179void vt_reset_unicode(unsigned int console)
2180{
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&kbd_event_lock, flags);
2184 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185 spin_unlock_irqrestore(&kbd_event_lock, flags);
2186}
2187
2188/**
2189 * vt_get_shift_state - shift bit state
2190 *
2191 * Report the shift bits from the keyboard state. We have to export
2192 * this to support some oddities in the vt layer.
2193 */
2194int vt_get_shift_state(void)
2195{
2196 /* Don't lock as this is a transient report */
2197 return shift_state;
2198}
2199
2200/**
2201 * vt_reset_keyboard - reset keyboard state
2202 * @console: console to reset
2203 *
2204 * Reset the keyboard bits for a console as part of a general console
2205 * reset event
2206 */
2207void vt_reset_keyboard(unsigned int console)
2208{
2209 struct kbd_struct *kb = kbd_table + console;
2210 unsigned long flags;
2211
2212 spin_lock_irqsave(&kbd_event_lock, flags);
2213 set_vc_kbd_mode(kb, VC_REPEAT);
2214 clr_vc_kbd_mode(kb, VC_CKMODE);
2215 clr_vc_kbd_mode(kb, VC_APPLIC);
2216 clr_vc_kbd_mode(kb, VC_CRLF);
2217 kb->lockstate = 0;
2218 kb->slockstate = 0;
2219 spin_lock(&led_lock);
2220 kb->ledmode = LED_SHOW_FLAGS;
2221 kb->ledflagstate = kb->default_ledflagstate;
2222 spin_unlock(&led_lock);
2223 /* do not do set_leds here because this causes an endless tasklet loop
2224 when the keyboard hasn't been initialized yet */
2225 spin_unlock_irqrestore(&kbd_event_lock, flags);
2226}
2227
2228/**
2229 * vt_get_kbd_mode_bit - read keyboard status bits
2230 * @console: console to read from
2231 * @bit: mode bit to read
2232 *
2233 * Report back a vt mode bit. We do this without locking so the
2234 * caller must be sure that there are no synchronization needs
2235 */
2236
2237int vt_get_kbd_mode_bit(unsigned int console, int bit)
2238{
2239 struct kbd_struct *kb = kbd_table + console;
2240 return vc_kbd_mode(kb, bit);
2241}
2242
2243/**
2244 * vt_set_kbd_mode_bit - read keyboard status bits
2245 * @console: console to read from
2246 * @bit: mode bit to read
2247 *
2248 * Set a vt mode bit. We do this without locking so the
2249 * caller must be sure that there are no synchronization needs
2250 */
2251
2252void vt_set_kbd_mode_bit(unsigned int console, int bit)
2253{
2254 struct kbd_struct *kb = kbd_table + console;
2255 unsigned long flags;
2256
2257 spin_lock_irqsave(&kbd_event_lock, flags);
2258 set_vc_kbd_mode(kb, bit);
2259 spin_unlock_irqrestore(&kbd_event_lock, flags);
2260}
2261
2262/**
2263 * vt_clr_kbd_mode_bit - read keyboard status bits
2264 * @console: console to read from
2265 * @bit: mode bit to read
2266 *
2267 * Report back a vt mode bit. We do this without locking so the
2268 * caller must be sure that there are no synchronization needs
2269 */
2270
2271void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2272{
2273 struct kbd_struct *kb = kbd_table + console;
2274 unsigned long flags;
2275
2276 spin_lock_irqsave(&kbd_event_lock, flags);
2277 clr_vc_kbd_mode(kb, bit);
2278 spin_unlock_irqrestore(&kbd_event_lock, flags);
2279}