Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/nospec.h>
36#include <linux/string.h>
37#include <linux/init.h>
38#include <linux/slab.h>
39#include <linux/leds.h>
40
41#include <linux/kbd_kern.h>
42#include <linux/kbd_diacr.h>
43#include <linux/vt_kern.h>
44#include <linux/input.h>
45#include <linux/reboot.h>
46#include <linux/notifier.h>
47#include <linux/jiffies.h>
48#include <linux/uaccess.h>
49
50#include <asm/irq_regs.h>
51
52extern void ctrl_alt_del(void);
53
54/*
55 * Exported functions/variables
56 */
57
58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
59
60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
61#include <asm/kbdleds.h>
62#else
63static inline int kbd_defleds(void)
64{
65 return 0;
66}
67#endif
68
69#define KBD_DEFLOCK 0
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105};
106
107
108/*
109 * Internal Data.
110 */
111
112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113static struct kbd_struct *kbd = kbd_table;
114
115/* maximum values each key_handler can handle */
116static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120};
121
122static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124static struct input_handler kbd_handler;
125static DEFINE_SPINLOCK(kbd_event_lock);
126static DEFINE_SPINLOCK(led_lock);
127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
129static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130static bool dead_key_next;
131
132/* Handles a number being assembled on the number pad */
133static bool npadch_active;
134static unsigned int npadch_value;
135
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static int shift_state = 0;
140
141static unsigned int ledstate = -1U; /* undefined */
142static unsigned char ledioctl;
143
144/*
145 * Notifier list for console keyboard events
146 */
147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
149int register_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
155int unregister_keyboard_notifier(struct notifier_block *nb)
156{
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158}
159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161/*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174};
175
176static int getkeycode_helper(struct input_handle *handle, void *data)
177{
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183}
184
185static int getkeycode(unsigned int scancode)
186{
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201}
202
203static int setkeycode_helper(struct input_handle *handle, void *data)
204{
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210}
211
212static int setkeycode(unsigned int scancode, unsigned int keycode)
213{
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228}
229
230/*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
235static int kd_sound_helper(struct input_handle *handle, void *data)
236{
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251}
252
253static void kd_nosound(struct timer_list *unused)
254{
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258}
259
260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
261
262void kd_mksound(unsigned int hz, unsigned int ticks)
263{
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270}
271EXPORT_SYMBOL(kd_mksound);
272
273/*
274 * Setting the keyboard rate.
275 */
276
277static int kbd_rate_helper(struct input_handle *handle, void *data)
278{
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rpt = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rpt[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rpt[0].delay);
287 if (rpt[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rpt[0].period);
290
291 rpt[1].delay = dev->rep[REP_DELAY];
292 rpt[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296}
297
298int kbd_rate(struct kbd_repeat *rpt)
299{
300 struct kbd_repeat data[2] = { *rpt };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rpt = data[1]; /* Copy currently used settings */
304
305 return 0;
306}
307
308/*
309 * Helper Functions.
310 */
311static void put_queue(struct vc_data *vc, int ch)
312{
313 tty_insert_flip_char(&vc->port, ch, 0);
314 tty_schedule_flip(&vc->port);
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 while (*cp) {
320 tty_insert_flip_char(&vc->port, *cp, 0);
321 cp++;
322 }
323 tty_schedule_flip(&vc->port);
324}
325
326static void applkey(struct vc_data *vc, int key, char mode)
327{
328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
329
330 buf[1] = (mode ? 'O' : '[');
331 buf[2] = key;
332 puts_queue(vc, buf);
333}
334
335/*
336 * Many other routines do put_queue, but I think either
337 * they produce ASCII, or they produce some user-assigned
338 * string, and in both cases we might assume that it is
339 * in utf-8 already.
340 */
341static void to_utf8(struct vc_data *vc, uint c)
342{
343 if (c < 0x80)
344 /* 0******* */
345 put_queue(vc, c);
346 else if (c < 0x800) {
347 /* 110***** 10****** */
348 put_queue(vc, 0xc0 | (c >> 6));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x10000) {
351 if (c >= 0xD800 && c < 0xE000)
352 return;
353 if (c == 0xFFFF)
354 return;
355 /* 1110**** 10****** 10****** */
356 put_queue(vc, 0xe0 | (c >> 12));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x110000) {
360 /* 11110*** 10****** 10****** 10****** */
361 put_queue(vc, 0xf0 | (c >> 18));
362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 }
366}
367
368/*
369 * Called after returning from RAW mode or when changing consoles - recompute
370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
371 * undefined, so that shiftkey release is seen. The caller must hold the
372 * kbd_event_lock.
373 */
374
375static void do_compute_shiftstate(void)
376{
377 unsigned int k, sym, val;
378
379 shift_state = 0;
380 memset(shift_down, 0, sizeof(shift_down));
381
382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
383 sym = U(key_maps[0][k]);
384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
385 continue;
386
387 val = KVAL(sym);
388 if (val == KVAL(K_CAPSSHIFT))
389 val = KVAL(K_SHIFT);
390
391 shift_down[val]++;
392 shift_state |= BIT(val);
393 }
394}
395
396/* We still have to export this method to vt.c */
397void compute_shiftstate(void)
398{
399 unsigned long flags;
400 spin_lock_irqsave(&kbd_event_lock, flags);
401 do_compute_shiftstate();
402 spin_unlock_irqrestore(&kbd_event_lock, flags);
403}
404
405/*
406 * We have a combining character DIACR here, followed by the character CH.
407 * If the combination occurs in the table, return the corresponding value.
408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
409 * Otherwise, conclude that DIACR was not combining after all,
410 * queue it and return CH.
411 */
412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
413{
414 unsigned int d = diacr;
415 unsigned int i;
416
417 diacr = 0;
418
419 if ((d & ~0xff) == BRL_UC_ROW) {
420 if ((ch & ~0xff) == BRL_UC_ROW)
421 return d | ch;
422 } else {
423 for (i = 0; i < accent_table_size; i++)
424 if (accent_table[i].diacr == d && accent_table[i].base == ch)
425 return accent_table[i].result;
426 }
427
428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 return d;
430
431 if (kbd->kbdmode == VC_UNICODE)
432 to_utf8(vc, d);
433 else {
434 int c = conv_uni_to_8bit(d);
435 if (c != -1)
436 put_queue(vc, c);
437 }
438
439 return ch;
440}
441
442/*
443 * Special function handlers
444 */
445static void fn_enter(struct vc_data *vc)
446{
447 if (diacr) {
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, diacr);
450 else {
451 int c = conv_uni_to_8bit(diacr);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455 diacr = 0;
456 }
457
458 put_queue(vc, 13);
459 if (vc_kbd_mode(kbd, VC_CRLF))
460 put_queue(vc, 10);
461}
462
463static void fn_caps_toggle(struct vc_data *vc)
464{
465 if (rep)
466 return;
467
468 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
469}
470
471static void fn_caps_on(struct vc_data *vc)
472{
473 if (rep)
474 return;
475
476 set_vc_kbd_led(kbd, VC_CAPSLOCK);
477}
478
479static void fn_show_ptregs(struct vc_data *vc)
480{
481 struct pt_regs *regs = get_irq_regs();
482
483 if (regs)
484 show_regs(regs);
485}
486
487static void fn_hold(struct vc_data *vc)
488{
489 struct tty_struct *tty = vc->port.tty;
490
491 if (rep || !tty)
492 return;
493
494 /*
495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
496 * these routines are also activated by ^S/^Q.
497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
498 */
499 if (tty->stopped)
500 start_tty(tty);
501 else
502 stop_tty(tty);
503}
504
505static void fn_num(struct vc_data *vc)
506{
507 if (vc_kbd_mode(kbd, VC_APPLIC))
508 applkey(vc, 'P', 1);
509 else
510 fn_bare_num(vc);
511}
512
513/*
514 * Bind this to Shift-NumLock if you work in application keypad mode
515 * but want to be able to change the NumLock flag.
516 * Bind this to NumLock if you prefer that the NumLock key always
517 * changes the NumLock flag.
518 */
519static void fn_bare_num(struct vc_data *vc)
520{
521 if (!rep)
522 chg_vc_kbd_led(kbd, VC_NUMLOCK);
523}
524
525static void fn_lastcons(struct vc_data *vc)
526{
527 /* switch to the last used console, ChN */
528 set_console(last_console);
529}
530
531static void fn_dec_console(struct vc_data *vc)
532{
533 int i, cur = fg_console;
534
535 /* Currently switching? Queue this next switch relative to that. */
536 if (want_console != -1)
537 cur = want_console;
538
539 for (i = cur - 1; i != cur; i--) {
540 if (i == -1)
541 i = MAX_NR_CONSOLES - 1;
542 if (vc_cons_allocated(i))
543 break;
544 }
545 set_console(i);
546}
547
548static void fn_inc_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur+1; i != cur; i++) {
557 if (i == MAX_NR_CONSOLES)
558 i = 0;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_send_intr(struct vc_data *vc)
566{
567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
568 tty_schedule_flip(&vc->port);
569}
570
571static void fn_scroll_forw(struct vc_data *vc)
572{
573 scrollfront(vc, 0);
574}
575
576static void fn_scroll_back(struct vc_data *vc)
577{
578 scrollback(vc);
579}
580
581static void fn_show_mem(struct vc_data *vc)
582{
583 show_mem(0, NULL);
584}
585
586static void fn_show_state(struct vc_data *vc)
587{
588 show_state();
589}
590
591static void fn_boot_it(struct vc_data *vc)
592{
593 ctrl_alt_del();
594}
595
596static void fn_compose(struct vc_data *vc)
597{
598 dead_key_next = true;
599}
600
601static void fn_spawn_con(struct vc_data *vc)
602{
603 spin_lock(&vt_spawn_con.lock);
604 if (vt_spawn_con.pid)
605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
606 put_pid(vt_spawn_con.pid);
607 vt_spawn_con.pid = NULL;
608 }
609 spin_unlock(&vt_spawn_con.lock);
610}
611
612static void fn_SAK(struct vc_data *vc)
613{
614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
615 schedule_work(SAK_work);
616}
617
618static void fn_null(struct vc_data *vc)
619{
620 do_compute_shiftstate();
621}
622
623/*
624 * Special key handlers
625 */
626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
627{
628}
629
630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
631{
632 if (up_flag)
633 return;
634 if (value >= ARRAY_SIZE(fn_handler))
635 return;
636 if ((kbd->kbdmode == VC_RAW ||
637 kbd->kbdmode == VC_MEDIUMRAW ||
638 kbd->kbdmode == VC_OFF) &&
639 value != KVAL(K_SAK))
640 return; /* SAK is allowed even in raw mode */
641 fn_handler[value](vc);
642}
643
644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
645{
646 pr_err("k_lowercase was called - impossible\n");
647}
648
649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
650{
651 if (up_flag)
652 return; /* no action, if this is a key release */
653
654 if (diacr)
655 value = handle_diacr(vc, value);
656
657 if (dead_key_next) {
658 dead_key_next = false;
659 diacr = value;
660 return;
661 }
662 if (kbd->kbdmode == VC_UNICODE)
663 to_utf8(vc, value);
664 else {
665 int c = conv_uni_to_8bit(value);
666 if (c != -1)
667 put_queue(vc, c);
668 }
669}
670
671/*
672 * Handle dead key. Note that we now may have several
673 * dead keys modifying the same character. Very useful
674 * for Vietnamese.
675 */
676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677{
678 if (up_flag)
679 return;
680
681 diacr = (diacr ? handle_diacr(vc, value) : value);
682}
683
684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
687}
688
689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690{
691 k_deadunicode(vc, value, up_flag);
692}
693
694/*
695 * Obsolete - for backwards compatibility only
696 */
697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698{
699 static const unsigned char ret_diacr[NR_DEAD] = {
700 '`', /* dead_grave */
701 '\'', /* dead_acute */
702 '^', /* dead_circumflex */
703 '~', /* dead_tilda */
704 '"', /* dead_diaeresis */
705 ',', /* dead_cedilla */
706 '_', /* dead_macron */
707 'U', /* dead_breve */
708 '.', /* dead_abovedot */
709 '*', /* dead_abovering */
710 '=', /* dead_doubleacute */
711 'c', /* dead_caron */
712 'k', /* dead_ogonek */
713 'i', /* dead_iota */
714 '#', /* dead_voiced_sound */
715 'o', /* dead_semivoiced_sound */
716 '!', /* dead_belowdot */
717 '?', /* dead_hook */
718 '+', /* dead_horn */
719 '-', /* dead_stroke */
720 ')', /* dead_abovecomma */
721 '(', /* dead_abovereversedcomma */
722 ':', /* dead_doublegrave */
723 'n', /* dead_invertedbreve */
724 ';', /* dead_belowcomma */
725 '$', /* dead_currency */
726 '@', /* dead_greek */
727 };
728
729 k_deadunicode(vc, ret_diacr[value], up_flag);
730}
731
732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
733{
734 if (up_flag)
735 return;
736
737 set_console(value);
738}
739
740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
741{
742 if (up_flag)
743 return;
744
745 if ((unsigned)value < ARRAY_SIZE(func_table)) {
746 if (func_table[value])
747 puts_queue(vc, func_table[value]);
748 } else
749 pr_err("k_fn called with value=%d\n", value);
750}
751
752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char cur_chars[] = "BDCA";
755
756 if (up_flag)
757 return;
758
759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
760}
761
762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
763{
764 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
766
767 if (up_flag)
768 return; /* no action, if this is a key release */
769
770 /* kludge... shift forces cursor/number keys */
771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
772 applkey(vc, app_map[value], 1);
773 return;
774 }
775
776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
777
778 switch (value) {
779 case KVAL(K_PCOMMA):
780 case KVAL(K_PDOT):
781 k_fn(vc, KVAL(K_REMOVE), 0);
782 return;
783 case KVAL(K_P0):
784 k_fn(vc, KVAL(K_INSERT), 0);
785 return;
786 case KVAL(K_P1):
787 k_fn(vc, KVAL(K_SELECT), 0);
788 return;
789 case KVAL(K_P2):
790 k_cur(vc, KVAL(K_DOWN), 0);
791 return;
792 case KVAL(K_P3):
793 k_fn(vc, KVAL(K_PGDN), 0);
794 return;
795 case KVAL(K_P4):
796 k_cur(vc, KVAL(K_LEFT), 0);
797 return;
798 case KVAL(K_P6):
799 k_cur(vc, KVAL(K_RIGHT), 0);
800 return;
801 case KVAL(K_P7):
802 k_fn(vc, KVAL(K_FIND), 0);
803 return;
804 case KVAL(K_P8):
805 k_cur(vc, KVAL(K_UP), 0);
806 return;
807 case KVAL(K_P9):
808 k_fn(vc, KVAL(K_PGUP), 0);
809 return;
810 case KVAL(K_P5):
811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
812 return;
813 }
814 }
815
816 put_queue(vc, pad_chars[value]);
817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
818 put_queue(vc, 10);
819}
820
821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
822{
823 int old_state = shift_state;
824
825 if (rep)
826 return;
827 /*
828 * Mimic typewriter:
829 * a CapsShift key acts like Shift but undoes CapsLock
830 */
831 if (value == KVAL(K_CAPSSHIFT)) {
832 value = KVAL(K_SHIFT);
833 if (!up_flag)
834 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
835 }
836
837 if (up_flag) {
838 /*
839 * handle the case that two shift or control
840 * keys are depressed simultaneously
841 */
842 if (shift_down[value])
843 shift_down[value]--;
844 } else
845 shift_down[value]++;
846
847 if (shift_down[value])
848 shift_state |= (1 << value);
849 else
850 shift_state &= ~(1 << value);
851
852 /* kludge */
853 if (up_flag && shift_state != old_state && npadch_active) {
854 if (kbd->kbdmode == VC_UNICODE)
855 to_utf8(vc, npadch_value);
856 else
857 put_queue(vc, npadch_value & 0xff);
858 npadch_active = false;
859 }
860}
861
862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag)
865 return;
866
867 if (vc_kbd_mode(kbd, VC_META)) {
868 put_queue(vc, '\033');
869 put_queue(vc, value);
870 } else
871 put_queue(vc, value | 0x80);
872}
873
874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
875{
876 unsigned int base;
877
878 if (up_flag)
879 return;
880
881 if (value < 10) {
882 /* decimal input of code, while Alt depressed */
883 base = 10;
884 } else {
885 /* hexadecimal input of code, while AltGr depressed */
886 value -= 10;
887 base = 16;
888 }
889
890 if (!npadch_active) {
891 npadch_value = 0;
892 npadch_active = true;
893 }
894
895 npadch_value = npadch_value * base + value;
896}
897
898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_lock(kbd, value);
904}
905
906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
907{
908 k_shift(vc, value, up_flag);
909 if (up_flag || rep)
910 return;
911
912 chg_vc_kbd_slock(kbd, value);
913 /* try to make Alt, oops, AltGr and such work */
914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
915 kbd->slockstate = 0;
916 chg_vc_kbd_slock(kbd, value);
917 }
918}
919
920/* by default, 300ms interval for combination release */
921static unsigned brl_timeout = 300;
922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
923module_param(brl_timeout, uint, 0644);
924
925static unsigned brl_nbchords = 1;
926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
927module_param(brl_nbchords, uint, 0644);
928
929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
930{
931 static unsigned long chords;
932 static unsigned committed;
933
934 if (!brl_nbchords)
935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
936 else {
937 committed |= pattern;
938 chords++;
939 if (chords == brl_nbchords) {
940 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
941 chords = 0;
942 committed = 0;
943 }
944 }
945}
946
947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
948{
949 static unsigned pressed, committing;
950 static unsigned long releasestart;
951
952 if (kbd->kbdmode != VC_UNICODE) {
953 if (!up_flag)
954 pr_warn("keyboard mode must be unicode for braille patterns\n");
955 return;
956 }
957
958 if (!value) {
959 k_unicode(vc, BRL_UC_ROW, up_flag);
960 return;
961 }
962
963 if (value > 8)
964 return;
965
966 if (!up_flag) {
967 pressed |= 1 << (value - 1);
968 if (!brl_timeout)
969 committing = pressed;
970 } else if (brl_timeout) {
971 if (!committing ||
972 time_after(jiffies,
973 releasestart + msecs_to_jiffies(brl_timeout))) {
974 committing = pressed;
975 releasestart = jiffies;
976 }
977 pressed &= ~(1 << (value - 1));
978 if (!pressed && committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 } else {
983 if (committing) {
984 k_brlcommit(vc, committing, 0);
985 committing = 0;
986 }
987 pressed &= ~(1 << (value - 1));
988 }
989}
990
991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
992
993struct kbd_led_trigger {
994 struct led_trigger trigger;
995 unsigned int mask;
996};
997
998static int kbd_led_trigger_activate(struct led_classdev *cdev)
999{
1000 struct kbd_led_trigger *trigger =
1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003 tasklet_disable(&keyboard_tasklet);
1004 if (ledstate != -1U)
1005 led_trigger_event(&trigger->trigger,
1006 ledstate & trigger->mask ?
1007 LED_FULL : LED_OFF);
1008 tasklet_enable(&keyboard_tasklet);
1009
1010 return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) { \
1014 .trigger = { \
1015 .name = _name, \
1016 .activate = kbd_led_trigger_activate, \
1017 }, \
1018 .mask = BIT(_led_bit), \
1019 }
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1022 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1029
1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041 unsigned int new_state)
1042{
1043 struct kbd_led_trigger *trigger;
1044 unsigned int changed = old_state ^ new_state;
1045 int i;
1046
1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048 trigger = &kbd_led_triggers[i];
1049
1050 if (changed & trigger->mask)
1051 led_trigger_event(&trigger->trigger,
1052 new_state & trigger->mask ?
1053 LED_FULL : LED_OFF);
1054 }
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059 unsigned int led_state = *(unsigned int *)data;
1060
1061 if (test_bit(EV_LED, handle->dev->evbit))
1062 kbd_propagate_led_state(~led_state, led_state);
1063
1064 return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069 int error;
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074 if (error)
1075 pr_err("error %d while registering trigger %s\n",
1076 error, kbd_led_triggers[i].trigger.name);
1077 }
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084 unsigned int leds = *(unsigned int *)data;
1085
1086 if (test_bit(EV_LED, handle->dev->evbit)) {
1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091 }
1092
1093 return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097 unsigned int new_state)
1098{
1099 input_handler_for_each_handle(&kbd_handler, &new_state,
1100 kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116 return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121 unsigned long flags;
1122 spin_lock_irqsave(&led_lock, flags);
1123 if (!(led & ~7)) {
1124 ledioctl = led;
1125 kb->ledmode = LED_SHOW_IOCTL;
1126 } else
1127 kb->ledmode = LED_SHOW_FLAGS;
1128
1129 set_leds();
1130 spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135 struct kbd_struct *kb = kbd_table + fg_console;
1136
1137 if (kb->ledmode == LED_SHOW_IOCTL)
1138 return ledioctl;
1139
1140 return kb->ledflagstate;
1141}
1142
1143/**
1144 * vt_get_leds - helper for braille console
1145 * @console: console to read
1146 * @flag: flag we want to check
1147 *
1148 * Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152 struct kbd_struct *kb = kbd_table + console;
1153 int ret;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&led_lock, flags);
1157 ret = vc_kbd_led(kb, flag);
1158 spin_unlock_irqrestore(&led_lock, flags);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 * vt_set_led_state - set LED state of a console
1166 * @console: console to set
1167 * @leds: LED bits
1168 *
1169 * Set the LEDs on a console. This is a wrapper for the VT layer
1170 * so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174 struct kbd_struct *kb = kbd_table + console;
1175 setledstate(kb, leds);
1176}
1177
1178/**
1179 * vt_kbd_con_start - Keyboard side of console start
1180 * @console: console
1181 *
1182 * Handle console start. This is a wrapper for the VT layer
1183 * so that we can keep kbd knowledge internal
1184 *
1185 * FIXME: We eventually need to hold the kbd lock here to protect
1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 * and start_tty under the kbd_event_lock, while normal tty paths
1188 * don't hold the lock. We probably need to split out an LED lock
1189 * but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193 struct kbd_struct *kb = kbd_table + console;
1194 unsigned long flags;
1195 spin_lock_irqsave(&led_lock, flags);
1196 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197 set_leds();
1198 spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 * vt_kbd_con_stop - Keyboard side of console stop
1203 * @console: console
1204 *
1205 * Handle console stop. This is a wrapper for the VT layer
1206 * so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210 struct kbd_struct *kb = kbd_table + console;
1211 unsigned long flags;
1212 spin_lock_irqsave(&led_lock, flags);
1213 set_vc_kbd_led(kb, VC_SCROLLOCK);
1214 set_leds();
1215 spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226 unsigned int leds;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&led_lock, flags);
1230 leds = getleds();
1231 leds |= (unsigned int)kbd->lockstate << 8;
1232 spin_unlock_irqrestore(&led_lock, flags);
1233
1234 if (leds != ledstate) {
1235 kbd_propagate_led_state(ledstate, leds);
1236 ledstate = leds;
1237 }
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273 unsigned char up_flag)
1274{
1275 int code;
1276
1277 switch (keycode) {
1278
1279 case KEY_PAUSE:
1280 put_queue(vc, 0xe1);
1281 put_queue(vc, 0x1d | up_flag);
1282 put_queue(vc, 0x45 | up_flag);
1283 break;
1284
1285 case KEY_HANGEUL:
1286 if (!up_flag)
1287 put_queue(vc, 0xf2);
1288 break;
1289
1290 case KEY_HANJA:
1291 if (!up_flag)
1292 put_queue(vc, 0xf1);
1293 break;
1294
1295 case KEY_SYSRQ:
1296 /*
1297 * Real AT keyboards (that's what we're trying
1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299 * pressing PrtSc/SysRq alone, but simply 0x54
1300 * when pressing Alt+PrtSc/SysRq.
1301 */
1302 if (test_bit(KEY_LEFTALT, key_down) ||
1303 test_bit(KEY_RIGHTALT, key_down)) {
1304 put_queue(vc, 0x54 | up_flag);
1305 } else {
1306 put_queue(vc, 0xe0);
1307 put_queue(vc, 0x2a | up_flag);
1308 put_queue(vc, 0xe0);
1309 put_queue(vc, 0x37 | up_flag);
1310 }
1311 break;
1312
1313 default:
1314 if (keycode > 255)
1315 return -1;
1316
1317 code = x86_keycodes[keycode];
1318 if (!code)
1319 return -1;
1320
1321 if (code & 0x100)
1322 put_queue(vc, 0xe0);
1323 put_queue(vc, (code & 0x7f) | up_flag);
1324
1325 break;
1326 }
1327
1328 return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev) 0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337 if (keycode > 127)
1338 return -1;
1339
1340 put_queue(vc, keycode | up_flag);
1341 return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347 struct vc_data *vc = vc_cons[fg_console].d;
1348
1349 kbd = kbd_table + vc->vc_num;
1350 if (kbd->kbdmode == VC_RAW)
1351 put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356 struct vc_data *vc = vc_cons[fg_console].d;
1357 unsigned short keysym, *key_map;
1358 unsigned char type;
1359 bool raw_mode;
1360 struct tty_struct *tty;
1361 int shift_final;
1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363 int rc;
1364
1365 tty = vc->port.tty;
1366
1367 if (tty && (!tty->driver_data)) {
1368 /* No driver data? Strange. Okay we fix it then. */
1369 tty->driver_data = vc;
1370 }
1371
1372 kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375 if (keycode == KEY_STOP)
1376 sparc_l1_a_state = down;
1377#endif
1378
1379 rep = (down == 2);
1380
1381 raw_mode = (kbd->kbdmode == VC_RAW);
1382 if (raw_mode && !hw_raw)
1383 if (emulate_raw(vc, keycode, !down << 7))
1384 if (keycode < BTN_MISC && printk_ratelimit())
1385 pr_warn("can't emulate rawmode for keycode %d\n",
1386 keycode);
1387
1388#ifdef CONFIG_SPARC
1389 if (keycode == KEY_A && sparc_l1_a_state) {
1390 sparc_l1_a_state = false;
1391 sun_do_break();
1392 }
1393#endif
1394
1395 if (kbd->kbdmode == VC_MEDIUMRAW) {
1396 /*
1397 * This is extended medium raw mode, with keys above 127
1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400 * interfere with anything else. The two bytes after 0 will
1401 * always have the up flag set not to interfere with older
1402 * applications. This allows for 16384 different keycodes,
1403 * which should be enough.
1404 */
1405 if (keycode < 128) {
1406 put_queue(vc, keycode | (!down << 7));
1407 } else {
1408 put_queue(vc, !down << 7);
1409 put_queue(vc, (keycode >> 7) | 0x80);
1410 put_queue(vc, keycode | 0x80);
1411 }
1412 raw_mode = true;
1413 }
1414
1415 if (down)
1416 set_bit(keycode, key_down);
1417 else
1418 clear_bit(keycode, key_down);
1419
1420 if (rep &&
1421 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423 /*
1424 * Don't repeat a key if the input buffers are not empty and the
1425 * characters get aren't echoed locally. This makes key repeat
1426 * usable with slow applications and under heavy loads.
1427 */
1428 return;
1429 }
1430
1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432 param.ledstate = kbd->ledflagstate;
1433 key_map = key_maps[shift_final];
1434
1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436 KBD_KEYCODE, ¶m);
1437 if (rc == NOTIFY_STOP || !key_map) {
1438 atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_UNBOUND_KEYCODE, ¶m);
1440 do_compute_shiftstate();
1441 kbd->slockstate = 0;
1442 return;
1443 }
1444
1445 if (keycode < NR_KEYS)
1446 keysym = key_map[keycode];
1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449 else
1450 return;
1451
1452 type = KTYP(keysym);
1453
1454 if (type < 0xf0) {
1455 param.value = keysym;
1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457 KBD_UNICODE, ¶m);
1458 if (rc != NOTIFY_STOP)
1459 if (down && !raw_mode)
1460 k_unicode(vc, keysym, !down);
1461 return;
1462 }
1463
1464 type -= 0xf0;
1465
1466 if (type == KT_LETTER) {
1467 type = KT_LATIN;
1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470 if (key_map)
1471 keysym = key_map[keycode];
1472 }
1473 }
1474
1475 param.value = keysym;
1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_KEYSYM, ¶m);
1478 if (rc == NOTIFY_STOP)
1479 return;
1480
1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482 return;
1483
1484 (*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486 param.ledstate = kbd->ledflagstate;
1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1488
1489 if (type != KT_SLOCK)
1490 kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494 unsigned int event_code, int value)
1495{
1496 /* We are called with interrupts disabled, just take the lock */
1497 spin_lock(&kbd_event_lock);
1498
1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500 kbd_rawcode(value);
1501 if (event_type == EV_KEY && event_code <= KEY_MAX)
1502 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504 spin_unlock(&kbd_event_lock);
1505
1506 tasklet_schedule(&keyboard_tasklet);
1507 do_poke_blanked_console = 1;
1508 schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513 int i;
1514
1515 if (test_bit(EV_SND, dev->evbit))
1516 return true;
1517
1518 if (test_bit(EV_KEY, dev->evbit)) {
1519 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520 if (test_bit(i, dev->keybit))
1521 return true;
1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523 if (test_bit(i, dev->keybit))
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537 const struct input_device_id *id)
1538{
1539 struct input_handle *handle;
1540 int error;
1541
1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543 if (!handle)
1544 return -ENOMEM;
1545
1546 handle->dev = dev;
1547 handle->handler = handler;
1548 handle->name = "kbd";
1549
1550 error = input_register_handle(handle);
1551 if (error)
1552 goto err_free_handle;
1553
1554 error = input_open_device(handle);
1555 if (error)
1556 goto err_unregister_handle;
1557
1558 return 0;
1559
1560 err_unregister_handle:
1561 input_unregister_handle(handle);
1562 err_free_handle:
1563 kfree(handle);
1564 return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569 input_close_device(handle);
1570 input_unregister_handle(handle);
1571 kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580 tasklet_disable(&keyboard_tasklet);
1581
1582 if (ledstate != -1U)
1583 kbd_update_leds_helper(handle, &ledstate);
1584
1585 tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589 {
1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591 .evbit = { BIT_MASK(EV_KEY) },
1592 },
1593
1594 {
1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596 .evbit = { BIT_MASK(EV_SND) },
1597 },
1598
1599 { }, /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605 .event = kbd_event,
1606 .match = kbd_match,
1607 .connect = kbd_connect,
1608 .disconnect = kbd_disconnect,
1609 .start = kbd_start,
1610 .name = "kbd",
1611 .id_table = kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616 int i;
1617 int error;
1618
1619 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620 kbd_table[i].ledflagstate = kbd_defleds();
1621 kbd_table[i].default_ledflagstate = kbd_defleds();
1622 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623 kbd_table[i].lockstate = KBD_DEFLOCK;
1624 kbd_table[i].slockstate = 0;
1625 kbd_table[i].modeflags = KBD_DEFMODE;
1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627 }
1628
1629 kbd_init_leds();
1630
1631 error = input_register_handler(&kbd_handler);
1632 if (error)
1633 return error;
1634
1635 tasklet_enable(&keyboard_tasklet);
1636 tasklet_schedule(&keyboard_tasklet);
1637
1638 return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 * vt_do_diacrit - diacritical table updates
1645 * @cmd: ioctl request
1646 * @udp: pointer to user data for ioctl
1647 * @perm: permissions check computed by caller
1648 *
1649 * Update the diacritical tables atomically and safely. Lock them
1650 * against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654 unsigned long flags;
1655 int asize;
1656 int ret = 0;
1657
1658 switch (cmd) {
1659 case KDGKBDIACR:
1660 {
1661 struct kbdiacrs __user *a = udp;
1662 struct kbdiacr *dia;
1663 int i;
1664
1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666 GFP_KERNEL);
1667 if (!dia)
1668 return -ENOMEM;
1669
1670 /* Lock the diacriticals table, make a copy and then
1671 copy it after we unlock */
1672 spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674 asize = accent_table_size;
1675 for (i = 0; i < asize; i++) {
1676 dia[i].diacr = conv_uni_to_8bit(
1677 accent_table[i].diacr);
1678 dia[i].base = conv_uni_to_8bit(
1679 accent_table[i].base);
1680 dia[i].result = conv_uni_to_8bit(
1681 accent_table[i].result);
1682 }
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacr, dia,
1688 asize * sizeof(struct kbdiacr)))
1689 ret = -EFAULT;
1690 kfree(dia);
1691 return ret;
1692 }
1693 case KDGKBDIACRUC:
1694 {
1695 struct kbdiacrsuc __user *a = udp;
1696 void *buf;
1697
1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699 GFP_KERNEL);
1700 if (buf == NULL)
1701 return -ENOMEM;
1702
1703 /* Lock the diacriticals table, make a copy and then
1704 copy it after we unlock */
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707 asize = accent_table_size;
1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacruc, buf,
1715 asize*sizeof(struct kbdiacruc)))
1716 ret = -EFAULT;
1717 kfree(buf);
1718 return ret;
1719 }
1720
1721 case KDSKBDIACR:
1722 {
1723 struct kbdiacrs __user *a = udp;
1724 struct kbdiacr *dia = NULL;
1725 unsigned int ct;
1726 int i;
1727
1728 if (!perm)
1729 return -EPERM;
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1734
1735 if (ct) {
1736
1737 dia = memdup_user(a->kbdiacr,
1738 sizeof(struct kbdiacr) * ct);
1739 if (IS_ERR(dia))
1740 return PTR_ERR(dia);
1741
1742 }
1743
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745 accent_table_size = ct;
1746 for (i = 0; i < ct; i++) {
1747 accent_table[i].diacr =
1748 conv_8bit_to_uni(dia[i].diacr);
1749 accent_table[i].base =
1750 conv_8bit_to_uni(dia[i].base);
1751 accent_table[i].result =
1752 conv_8bit_to_uni(dia[i].result);
1753 }
1754 spin_unlock_irqrestore(&kbd_event_lock, flags);
1755 kfree(dia);
1756 return 0;
1757 }
1758
1759 case KDSKBDIACRUC:
1760 {
1761 struct kbdiacrsuc __user *a = udp;
1762 unsigned int ct;
1763 void *buf = NULL;
1764
1765 if (!perm)
1766 return -EPERM;
1767
1768 if (get_user(ct, &a->kb_cnt))
1769 return -EFAULT;
1770
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 buf = memdup_user(a->kbdiacruc,
1776 ct * sizeof(struct kbdiacruc));
1777 if (IS_ERR(buf))
1778 return PTR_ERR(buf);
1779 }
1780 spin_lock_irqsave(&kbd_event_lock, flags);
1781 if (ct)
1782 memcpy(accent_table, buf,
1783 ct * sizeof(struct kbdiacruc));
1784 accent_table_size = ct;
1785 spin_unlock_irqrestore(&kbd_event_lock, flags);
1786 kfree(buf);
1787 return 0;
1788 }
1789 }
1790 return ret;
1791}
1792
1793/**
1794 * vt_do_kdskbmode - set keyboard mode ioctl
1795 * @console: the console to use
1796 * @arg: the requested mode
1797 *
1798 * Update the keyboard mode bits while holding the correct locks.
1799 * Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803 struct kbd_struct *kb = kbd_table + console;
1804 int ret = 0;
1805 unsigned long flags;
1806
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 switch(arg) {
1809 case K_RAW:
1810 kb->kbdmode = VC_RAW;
1811 break;
1812 case K_MEDIUMRAW:
1813 kb->kbdmode = VC_MEDIUMRAW;
1814 break;
1815 case K_XLATE:
1816 kb->kbdmode = VC_XLATE;
1817 do_compute_shiftstate();
1818 break;
1819 case K_UNICODE:
1820 kb->kbdmode = VC_UNICODE;
1821 do_compute_shiftstate();
1822 break;
1823 case K_OFF:
1824 kb->kbdmode = VC_OFF;
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829 spin_unlock_irqrestore(&kbd_event_lock, flags);
1830 return ret;
1831}
1832
1833/**
1834 * vt_do_kdskbmeta - set keyboard meta state
1835 * @console: the console to use
1836 * @arg: the requested meta state
1837 *
1838 * Update the keyboard meta bits while holding the correct locks.
1839 * Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843 struct kbd_struct *kb = kbd_table + console;
1844 int ret = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&kbd_event_lock, flags);
1848 switch(arg) {
1849 case K_METABIT:
1850 clr_vc_kbd_mode(kb, VC_META);
1851 break;
1852 case K_ESCPREFIX:
1853 set_vc_kbd_mode(kb, VC_META);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 }
1858 spin_unlock_irqrestore(&kbd_event_lock, flags);
1859 return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863 int perm)
1864{
1865 struct kbkeycode tmp;
1866 int kc = 0;
1867
1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869 return -EFAULT;
1870 switch (cmd) {
1871 case KDGETKEYCODE:
1872 kc = getkeycode(tmp.scancode);
1873 if (kc >= 0)
1874 kc = put_user(kc, &user_kbkc->keycode);
1875 break;
1876 case KDSETKEYCODE:
1877 if (!perm)
1878 return -EPERM;
1879 kc = setkeycode(tmp.scancode, tmp.keycode);
1880 break;
1881 }
1882 return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890 int console)
1891{
1892 struct kbd_struct *kb = kbd_table + console;
1893 struct kbentry tmp;
1894 ushort *key_map, *new_map, val, ov;
1895 unsigned long flags;
1896
1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898 return -EFAULT;
1899
1900 if (!capable(CAP_SYS_TTY_CONFIG))
1901 perm = 0;
1902
1903 switch (cmd) {
1904 case KDGKBENT:
1905 /* Ensure another thread doesn't free it under us */
1906 spin_lock_irqsave(&kbd_event_lock, flags);
1907 key_map = key_maps[s];
1908 if (key_map) {
1909 val = U(key_map[i]);
1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911 val = K_HOLE;
1912 } else
1913 val = (i ? K_HOLE : K_NOSUCHMAP);
1914 spin_unlock_irqrestore(&kbd_event_lock, flags);
1915 return put_user(val, &user_kbe->kb_value);
1916 case KDSKBENT:
1917 if (!perm)
1918 return -EPERM;
1919 if (!i && v == K_NOSUCHMAP) {
1920 spin_lock_irqsave(&kbd_event_lock, flags);
1921 /* deallocate map */
1922 key_map = key_maps[s];
1923 if (s && key_map) {
1924 key_maps[s] = NULL;
1925 if (key_map[0] == U(K_ALLOCATED)) {
1926 kfree(key_map);
1927 keymap_count--;
1928 }
1929 }
1930 spin_unlock_irqrestore(&kbd_event_lock, flags);
1931 break;
1932 }
1933
1934 if (KTYP(v) < NR_TYPES) {
1935 if (KVAL(v) > max_vals[KTYP(v)])
1936 return -EINVAL;
1937 } else
1938 if (kb->kbdmode != VC_UNICODE)
1939 return -EINVAL;
1940
1941 /* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943 /* assignment to entry 0 only tests validity of args */
1944 if (!i)
1945 break;
1946#endif
1947
1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949 if (!new_map)
1950 return -ENOMEM;
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 key_map = key_maps[s];
1953 if (key_map == NULL) {
1954 int j;
1955
1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957 !capable(CAP_SYS_RESOURCE)) {
1958 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 kfree(new_map);
1960 return -EPERM;
1961 }
1962 key_maps[s] = new_map;
1963 key_map = new_map;
1964 key_map[0] = U(K_ALLOCATED);
1965 for (j = 1; j < NR_KEYS; j++)
1966 key_map[j] = U(K_HOLE);
1967 keymap_count++;
1968 } else
1969 kfree(new_map);
1970
1971 ov = U(key_map[i]);
1972 if (v == ov)
1973 goto out;
1974 /*
1975 * Attention Key.
1976 */
1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 return -EPERM;
1980 }
1981 key_map[i] = U(v);
1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983 do_compute_shiftstate();
1984out:
1985 spin_unlock_irqrestore(&kbd_event_lock, flags);
1986 break;
1987 }
1988 return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997 struct kbsentry *kbs;
1998 char *p;
1999 u_char *q;
2000 u_char __user *up;
2001 int sz, fnw_sz;
2002 int delta;
2003 char *first_free, *fj, *fnw;
2004 int i, j, k;
2005 int ret;
2006 unsigned long flags;
2007
2008 if (!capable(CAP_SYS_TTY_CONFIG))
2009 perm = 0;
2010
2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012 if (!kbs) {
2013 ret = -ENOMEM;
2014 goto reterr;
2015 }
2016
2017 /* we mostly copy too much here (512bytes), but who cares ;) */
2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019 ret = -EFAULT;
2020 goto reterr;
2021 }
2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025 switch (cmd) {
2026 case KDGKBSENT:
2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028 a struct member */
2029 up = user_kdgkb->kb_string;
2030 p = func_table[i];
2031 if(p)
2032 for ( ; *p && sz; p++, sz--)
2033 if (put_user(*p, up++)) {
2034 ret = -EFAULT;
2035 goto reterr;
2036 }
2037 if (put_user('\0', up)) {
2038 ret = -EFAULT;
2039 goto reterr;
2040 }
2041 kfree(kbs);
2042 return ((p && *p) ? -EOVERFLOW : 0);
2043 case KDSKBSENT:
2044 if (!perm) {
2045 ret = -EPERM;
2046 goto reterr;
2047 }
2048
2049 fnw = NULL;
2050 fnw_sz = 0;
2051 /* race aginst other writers */
2052 again:
2053 spin_lock_irqsave(&func_buf_lock, flags);
2054 q = func_table[i];
2055
2056 /* fj pointer to next entry after 'q' */
2057 first_free = funcbufptr + (funcbufsize - funcbufleft);
2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059 ;
2060 if (j < MAX_NR_FUNC)
2061 fj = func_table[j];
2062 else
2063 fj = first_free;
2064 /* buffer usage increase by new entry */
2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067 if (delta <= funcbufleft) { /* it fits in current buf */
2068 if (j < MAX_NR_FUNC) {
2069 /* make enough space for new entry at 'fj' */
2070 memmove(fj + delta, fj, first_free - fj);
2071 for (k = j; k < MAX_NR_FUNC; k++)
2072 if (func_table[k])
2073 func_table[k] += delta;
2074 }
2075 if (!q)
2076 func_table[i] = fj;
2077 funcbufleft -= delta;
2078 } else { /* allocate a larger buffer */
2079 sz = 256;
2080 while (sz < funcbufsize - funcbufleft + delta)
2081 sz <<= 1;
2082 if (fnw_sz != sz) {
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084 kfree(fnw);
2085 fnw = kmalloc(sz, GFP_KERNEL);
2086 fnw_sz = sz;
2087 if (!fnw) {
2088 ret = -ENOMEM;
2089 goto reterr;
2090 }
2091 goto again;
2092 }
2093
2094 if (!q)
2095 func_table[i] = fj;
2096 /* copy data before insertion point to new location */
2097 if (fj > funcbufptr)
2098 memmove(fnw, funcbufptr, fj - funcbufptr);
2099 for (k = 0; k < j; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103 /* copy data after insertion point to new location */
2104 if (first_free > fj) {
2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106 for (k = j; k < MAX_NR_FUNC; k++)
2107 if (func_table[k])
2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109 }
2110 if (funcbufptr != func_buf)
2111 kfree(funcbufptr);
2112 funcbufptr = fnw;
2113 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114 funcbufsize = sz;
2115 }
2116 /* finally insert item itself */
2117 strcpy(func_table[i], kbs->kb_string);
2118 spin_unlock_irqrestore(&func_buf_lock, flags);
2119 break;
2120 }
2121 ret = 0;
2122reterr:
2123 kfree(kbs);
2124 return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129 struct kbd_struct *kb = kbd_table + console;
2130 unsigned long flags;
2131 unsigned char ucval;
2132
2133 switch(cmd) {
2134 /* the ioctls below read/set the flags usually shown in the leds */
2135 /* don't use them - they will go away without warning */
2136 case KDGKBLED:
2137 spin_lock_irqsave(&kbd_event_lock, flags);
2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139 spin_unlock_irqrestore(&kbd_event_lock, flags);
2140 return put_user(ucval, (char __user *)arg);
2141
2142 case KDSKBLED:
2143 if (!perm)
2144 return -EPERM;
2145 if (arg & ~0x77)
2146 return -EINVAL;
2147 spin_lock_irqsave(&led_lock, flags);
2148 kb->ledflagstate = (arg & 7);
2149 kb->default_ledflagstate = ((arg >> 4) & 7);
2150 set_leds();
2151 spin_unlock_irqrestore(&led_lock, flags);
2152 return 0;
2153
2154 /* the ioctls below only set the lights, not the functions */
2155 /* for those, see KDGKBLED and KDSKBLED above */
2156 case KDGETLED:
2157 ucval = getledstate();
2158 return put_user(ucval, (char __user *)arg);
2159
2160 case KDSETLED:
2161 if (!perm)
2162 return -EPERM;
2163 setledstate(kb, arg);
2164 return 0;
2165 }
2166 return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171 struct kbd_struct *kb = kbd_table + console;
2172 /* This is a spot read so needs no locking */
2173 switch (kb->kbdmode) {
2174 case VC_RAW:
2175 return K_RAW;
2176 case VC_MEDIUMRAW:
2177 return K_MEDIUMRAW;
2178 case VC_UNICODE:
2179 return K_UNICODE;
2180 case VC_OFF:
2181 return K_OFF;
2182 default:
2183 return K_XLATE;
2184 }
2185}
2186
2187/**
2188 * vt_do_kdgkbmeta - report meta status
2189 * @console: console to report
2190 *
2191 * Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 /* Again a spot read so no locking */
2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 * vt_reset_unicode - reset the unicode status
2202 * @console: console being reset
2203 *
2204 * Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&kbd_event_lock, flags);
2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212 spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 * vt_get_shiftstate - shift bit state
2217 *
2218 * Report the shift bits from the keyboard state. We have to export
2219 * this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223 /* Don't lock as this is a transient report */
2224 return shift_state;
2225}
2226
2227/**
2228 * vt_reset_keyboard - reset keyboard state
2229 * @console: console to reset
2230 *
2231 * Reset the keyboard bits for a console as part of a general console
2232 * reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236 struct kbd_struct *kb = kbd_table + console;
2237 unsigned long flags;
2238
2239 spin_lock_irqsave(&kbd_event_lock, flags);
2240 set_vc_kbd_mode(kb, VC_REPEAT);
2241 clr_vc_kbd_mode(kb, VC_CKMODE);
2242 clr_vc_kbd_mode(kb, VC_APPLIC);
2243 clr_vc_kbd_mode(kb, VC_CRLF);
2244 kb->lockstate = 0;
2245 kb->slockstate = 0;
2246 spin_lock(&led_lock);
2247 kb->ledmode = LED_SHOW_FLAGS;
2248 kb->ledflagstate = kb->default_ledflagstate;
2249 spin_unlock(&led_lock);
2250 /* do not do set_leds here because this causes an endless tasklet loop
2251 when the keyboard hasn't been initialized yet */
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 * vt_get_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Report back a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266 struct kbd_struct *kb = kbd_table + console;
2267 return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 * vt_set_kbd_mode_bit - read keyboard status bits
2272 * @console: console to read from
2273 * @bit: mode bit to read
2274 *
2275 * Set a vt mode bit. We do this without locking so the
2276 * caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281 struct kbd_struct *kb = kbd_table + console;
2282 unsigned long flags;
2283
2284 spin_lock_irqsave(&kbd_event_lock, flags);
2285 set_vc_kbd_mode(kb, bit);
2286 spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 * vt_clr_kbd_mode_bit - read keyboard status bits
2291 * @console: console to read from
2292 * @bit: mode bit to read
2293 *
2294 * Report back a vt mode bit. We do this without locking so the
2295 * caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300 struct kbd_struct *kb = kbd_table + console;
2301 unsigned long flags;
2302
2303 spin_lock_irqsave(&kbd_event_lock, flags);
2304 clr_vc_kbd_mode(kb, bit);
2305 spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36#include <linux/irq.h>
37
38#include <linux/kbd_kern.h>
39#include <linux/kbd_diacr.h>
40#include <linux/vt_kern.h>
41#include <linux/input.h>
42#include <linux/reboot.h>
43#include <linux/notifier.h>
44#include <linux/jiffies.h>
45
46extern void ctrl_alt_del(void);
47
48/*
49 * Exported functions/variables
50 */
51
52#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
53
54/*
55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
56 * This seems a good reason to start with NumLock off. On HIL keyboards
57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
58 * to be used for numbers.
59 */
60
61#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
62#define KBD_DEFLEDS (1 << VC_NUMLOCK)
63#else
64#define KBD_DEFLEDS 0
65#endif
66
67#define KBD_DEFLOCK 0
68
69void compute_shiftstate(void);
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101/* maximum values each key_handler can handle */
102const int max_vals[] = {
103 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
104 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
105 255, NR_LOCK - 1, 255, NR_BRL - 1
106};
107
108const int NR_TYPES = ARRAY_SIZE(max_vals);
109
110struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111EXPORT_SYMBOL_GPL(kbd_table);
112static struct kbd_struct *kbd = kbd_table;
113
114struct vt_spawn_console vt_spawn_con = {
115 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
116 .pid = NULL,
117 .sig = 0,
118};
119
120/*
121 * Variables exported for vt.c
122 */
123
124int shift_state = 0;
125
126/*
127 * Internal Data.
128 */
129
130static struct input_handler kbd_handler;
131static DEFINE_SPINLOCK(kbd_event_lock);
132static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
133static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
134static bool dead_key_next;
135static int npadch = -1; /* -1 or number assembled on pad */
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static unsigned char ledstate = 0xff; /* undefined */
140static unsigned char ledioctl;
141
142static struct ledptr {
143 unsigned int *addr;
144 unsigned int mask;
145 unsigned char valid:1;
146} ledptrs[3];
147
148/*
149 * Notifier list for console keyboard events
150 */
151static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
152
153int register_keyboard_notifier(struct notifier_block *nb)
154{
155 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
156}
157EXPORT_SYMBOL_GPL(register_keyboard_notifier);
158
159int unregister_keyboard_notifier(struct notifier_block *nb)
160{
161 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
162}
163EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
164
165/*
166 * Translation of scancodes to keycodes. We set them on only the first
167 * keyboard in the list that accepts the scancode and keycode.
168 * Explanation for not choosing the first attached keyboard anymore:
169 * USB keyboards for example have two event devices: one for all "normal"
170 * keys and one for extra function keys (like "volume up", "make coffee",
171 * etc.). So this means that scancodes for the extra function keys won't
172 * be valid for the first event device, but will be for the second.
173 */
174
175struct getset_keycode_data {
176 struct input_keymap_entry ke;
177 int error;
178};
179
180static int getkeycode_helper(struct input_handle *handle, void *data)
181{
182 struct getset_keycode_data *d = data;
183
184 d->error = input_get_keycode(handle->dev, &d->ke);
185
186 return d->error == 0; /* stop as soon as we successfully get one */
187}
188
189int getkeycode(unsigned int scancode)
190{
191 struct getset_keycode_data d = {
192 .ke = {
193 .flags = 0,
194 .len = sizeof(scancode),
195 .keycode = 0,
196 },
197 .error = -ENODEV,
198 };
199
200 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
201
202 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
203
204 return d.error ?: d.ke.keycode;
205}
206
207static int setkeycode_helper(struct input_handle *handle, void *data)
208{
209 struct getset_keycode_data *d = data;
210
211 d->error = input_set_keycode(handle->dev, &d->ke);
212
213 return d->error == 0; /* stop as soon as we successfully set one */
214}
215
216int setkeycode(unsigned int scancode, unsigned int keycode)
217{
218 struct getset_keycode_data d = {
219 .ke = {
220 .flags = 0,
221 .len = sizeof(scancode),
222 .keycode = keycode,
223 },
224 .error = -ENODEV,
225 };
226
227 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
228
229 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
230
231 return d.error;
232}
233
234/*
235 * Making beeps and bells. Note that we prefer beeps to bells, but when
236 * shutting the sound off we do both.
237 */
238
239static int kd_sound_helper(struct input_handle *handle, void *data)
240{
241 unsigned int *hz = data;
242 struct input_dev *dev = handle->dev;
243
244 if (test_bit(EV_SND, dev->evbit)) {
245 if (test_bit(SND_TONE, dev->sndbit)) {
246 input_inject_event(handle, EV_SND, SND_TONE, *hz);
247 if (*hz)
248 return 0;
249 }
250 if (test_bit(SND_BELL, dev->sndbit))
251 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
252 }
253
254 return 0;
255}
256
257static void kd_nosound(unsigned long ignored)
258{
259 static unsigned int zero;
260
261 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
262}
263
264static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
265
266void kd_mksound(unsigned int hz, unsigned int ticks)
267{
268 del_timer_sync(&kd_mksound_timer);
269
270 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
271
272 if (hz && ticks)
273 mod_timer(&kd_mksound_timer, jiffies + ticks);
274}
275EXPORT_SYMBOL(kd_mksound);
276
277/*
278 * Setting the keyboard rate.
279 */
280
281static int kbd_rate_helper(struct input_handle *handle, void *data)
282{
283 struct input_dev *dev = handle->dev;
284 struct kbd_repeat *rep = data;
285
286 if (test_bit(EV_REP, dev->evbit)) {
287
288 if (rep[0].delay > 0)
289 input_inject_event(handle,
290 EV_REP, REP_DELAY, rep[0].delay);
291 if (rep[0].period > 0)
292 input_inject_event(handle,
293 EV_REP, REP_PERIOD, rep[0].period);
294
295 rep[1].delay = dev->rep[REP_DELAY];
296 rep[1].period = dev->rep[REP_PERIOD];
297 }
298
299 return 0;
300}
301
302int kbd_rate(struct kbd_repeat *rep)
303{
304 struct kbd_repeat data[2] = { *rep };
305
306 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
307 *rep = data[1]; /* Copy currently used settings */
308
309 return 0;
310}
311
312/*
313 * Helper Functions.
314 */
315static void put_queue(struct vc_data *vc, int ch)
316{
317 struct tty_struct *tty = vc->port.tty;
318
319 if (tty) {
320 tty_insert_flip_char(tty, ch, 0);
321 con_schedule_flip(tty);
322 }
323}
324
325static void puts_queue(struct vc_data *vc, char *cp)
326{
327 struct tty_struct *tty = vc->port.tty;
328
329 if (!tty)
330 return;
331
332 while (*cp) {
333 tty_insert_flip_char(tty, *cp, 0);
334 cp++;
335 }
336 con_schedule_flip(tty);
337}
338
339static void applkey(struct vc_data *vc, int key, char mode)
340{
341 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
342
343 buf[1] = (mode ? 'O' : '[');
344 buf[2] = key;
345 puts_queue(vc, buf);
346}
347
348/*
349 * Many other routines do put_queue, but I think either
350 * they produce ASCII, or they produce some user-assigned
351 * string, and in both cases we might assume that it is
352 * in utf-8 already.
353 */
354static void to_utf8(struct vc_data *vc, uint c)
355{
356 if (c < 0x80)
357 /* 0******* */
358 put_queue(vc, c);
359 else if (c < 0x800) {
360 /* 110***** 10****** */
361 put_queue(vc, 0xc0 | (c >> 6));
362 put_queue(vc, 0x80 | (c & 0x3f));
363 } else if (c < 0x10000) {
364 if (c >= 0xD800 && c < 0xE000)
365 return;
366 if (c == 0xFFFF)
367 return;
368 /* 1110**** 10****** 10****** */
369 put_queue(vc, 0xe0 | (c >> 12));
370 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
371 put_queue(vc, 0x80 | (c & 0x3f));
372 } else if (c < 0x110000) {
373 /* 11110*** 10****** 10****** 10****** */
374 put_queue(vc, 0xf0 | (c >> 18));
375 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
376 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
377 put_queue(vc, 0x80 | (c & 0x3f));
378 }
379}
380
381/*
382 * Called after returning from RAW mode or when changing consoles - recompute
383 * shift_down[] and shift_state from key_down[] maybe called when keymap is
384 * undefined, so that shiftkey release is seen
385 */
386void compute_shiftstate(void)
387{
388 unsigned int i, j, k, sym, val;
389
390 shift_state = 0;
391 memset(shift_down, 0, sizeof(shift_down));
392
393 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
394
395 if (!key_down[i])
396 continue;
397
398 k = i * BITS_PER_LONG;
399
400 for (j = 0; j < BITS_PER_LONG; j++, k++) {
401
402 if (!test_bit(k, key_down))
403 continue;
404
405 sym = U(key_maps[0][k]);
406 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
407 continue;
408
409 val = KVAL(sym);
410 if (val == KVAL(K_CAPSSHIFT))
411 val = KVAL(K_SHIFT);
412
413 shift_down[val]++;
414 shift_state |= (1 << val);
415 }
416 }
417}
418
419/*
420 * We have a combining character DIACR here, followed by the character CH.
421 * If the combination occurs in the table, return the corresponding value.
422 * Otherwise, if CH is a space or equals DIACR, return DIACR.
423 * Otherwise, conclude that DIACR was not combining after all,
424 * queue it and return CH.
425 */
426static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
427{
428 unsigned int d = diacr;
429 unsigned int i;
430
431 diacr = 0;
432
433 if ((d & ~0xff) == BRL_UC_ROW) {
434 if ((ch & ~0xff) == BRL_UC_ROW)
435 return d | ch;
436 } else {
437 for (i = 0; i < accent_table_size; i++)
438 if (accent_table[i].diacr == d && accent_table[i].base == ch)
439 return accent_table[i].result;
440 }
441
442 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
443 return d;
444
445 if (kbd->kbdmode == VC_UNICODE)
446 to_utf8(vc, d);
447 else {
448 int c = conv_uni_to_8bit(d);
449 if (c != -1)
450 put_queue(vc, c);
451 }
452
453 return ch;
454}
455
456/*
457 * Special function handlers
458 */
459static void fn_enter(struct vc_data *vc)
460{
461 if (diacr) {
462 if (kbd->kbdmode == VC_UNICODE)
463 to_utf8(vc, diacr);
464 else {
465 int c = conv_uni_to_8bit(diacr);
466 if (c != -1)
467 put_queue(vc, c);
468 }
469 diacr = 0;
470 }
471
472 put_queue(vc, 13);
473 if (vc_kbd_mode(kbd, VC_CRLF))
474 put_queue(vc, 10);
475}
476
477static void fn_caps_toggle(struct vc_data *vc)
478{
479 if (rep)
480 return;
481
482 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
483}
484
485static void fn_caps_on(struct vc_data *vc)
486{
487 if (rep)
488 return;
489
490 set_vc_kbd_led(kbd, VC_CAPSLOCK);
491}
492
493static void fn_show_ptregs(struct vc_data *vc)
494{
495 struct pt_regs *regs = get_irq_regs();
496
497 if (regs)
498 show_regs(regs);
499}
500
501static void fn_hold(struct vc_data *vc)
502{
503 struct tty_struct *tty = vc->port.tty;
504
505 if (rep || !tty)
506 return;
507
508 /*
509 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
510 * these routines are also activated by ^S/^Q.
511 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
512 */
513 if (tty->stopped)
514 start_tty(tty);
515 else
516 stop_tty(tty);
517}
518
519static void fn_num(struct vc_data *vc)
520{
521 if (vc_kbd_mode(kbd, VC_APPLIC))
522 applkey(vc, 'P', 1);
523 else
524 fn_bare_num(vc);
525}
526
527/*
528 * Bind this to Shift-NumLock if you work in application keypad mode
529 * but want to be able to change the NumLock flag.
530 * Bind this to NumLock if you prefer that the NumLock key always
531 * changes the NumLock flag.
532 */
533static void fn_bare_num(struct vc_data *vc)
534{
535 if (!rep)
536 chg_vc_kbd_led(kbd, VC_NUMLOCK);
537}
538
539static void fn_lastcons(struct vc_data *vc)
540{
541 /* switch to the last used console, ChN */
542 set_console(last_console);
543}
544
545static void fn_dec_console(struct vc_data *vc)
546{
547 int i, cur = fg_console;
548
549 /* Currently switching? Queue this next switch relative to that. */
550 if (want_console != -1)
551 cur = want_console;
552
553 for (i = cur - 1; i != cur; i--) {
554 if (i == -1)
555 i = MAX_NR_CONSOLES - 1;
556 if (vc_cons_allocated(i))
557 break;
558 }
559 set_console(i);
560}
561
562static void fn_inc_console(struct vc_data *vc)
563{
564 int i, cur = fg_console;
565
566 /* Currently switching? Queue this next switch relative to that. */
567 if (want_console != -1)
568 cur = want_console;
569
570 for (i = cur+1; i != cur; i++) {
571 if (i == MAX_NR_CONSOLES)
572 i = 0;
573 if (vc_cons_allocated(i))
574 break;
575 }
576 set_console(i);
577}
578
579static void fn_send_intr(struct vc_data *vc)
580{
581 struct tty_struct *tty = vc->port.tty;
582
583 if (!tty)
584 return;
585 tty_insert_flip_char(tty, 0, TTY_BREAK);
586 con_schedule_flip(tty);
587}
588
589static void fn_scroll_forw(struct vc_data *vc)
590{
591 scrollfront(vc, 0);
592}
593
594static void fn_scroll_back(struct vc_data *vc)
595{
596 scrollback(vc, 0);
597}
598
599static void fn_show_mem(struct vc_data *vc)
600{
601 show_mem(0);
602}
603
604static void fn_show_state(struct vc_data *vc)
605{
606 show_state();
607}
608
609static void fn_boot_it(struct vc_data *vc)
610{
611 ctrl_alt_del();
612}
613
614static void fn_compose(struct vc_data *vc)
615{
616 dead_key_next = true;
617}
618
619static void fn_spawn_con(struct vc_data *vc)
620{
621 spin_lock(&vt_spawn_con.lock);
622 if (vt_spawn_con.pid)
623 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
624 put_pid(vt_spawn_con.pid);
625 vt_spawn_con.pid = NULL;
626 }
627 spin_unlock(&vt_spawn_con.lock);
628}
629
630static void fn_SAK(struct vc_data *vc)
631{
632 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
633 schedule_work(SAK_work);
634}
635
636static void fn_null(struct vc_data *vc)
637{
638 compute_shiftstate();
639}
640
641/*
642 * Special key handlers
643 */
644static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
645{
646}
647
648static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
649{
650 if (up_flag)
651 return;
652 if (value >= ARRAY_SIZE(fn_handler))
653 return;
654 if ((kbd->kbdmode == VC_RAW ||
655 kbd->kbdmode == VC_MEDIUMRAW ||
656 kbd->kbdmode == VC_OFF) &&
657 value != KVAL(K_SAK))
658 return; /* SAK is allowed even in raw mode */
659 fn_handler[value](vc);
660}
661
662static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
663{
664 pr_err("k_lowercase was called - impossible\n");
665}
666
667static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
668{
669 if (up_flag)
670 return; /* no action, if this is a key release */
671
672 if (diacr)
673 value = handle_diacr(vc, value);
674
675 if (dead_key_next) {
676 dead_key_next = false;
677 diacr = value;
678 return;
679 }
680 if (kbd->kbdmode == VC_UNICODE)
681 to_utf8(vc, value);
682 else {
683 int c = conv_uni_to_8bit(value);
684 if (c != -1)
685 put_queue(vc, c);
686 }
687}
688
689/*
690 * Handle dead key. Note that we now may have several
691 * dead keys modifying the same character. Very useful
692 * for Vietnamese.
693 */
694static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
695{
696 if (up_flag)
697 return;
698
699 diacr = (diacr ? handle_diacr(vc, value) : value);
700}
701
702static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
703{
704 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
705}
706
707static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
708{
709 k_deadunicode(vc, value, up_flag);
710}
711
712/*
713 * Obsolete - for backwards compatibility only
714 */
715static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
718
719 k_deadunicode(vc, ret_diacr[value], up_flag);
720}
721
722static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
723{
724 if (up_flag)
725 return;
726
727 set_console(value);
728}
729
730static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
731{
732 if (up_flag)
733 return;
734
735 if ((unsigned)value < ARRAY_SIZE(func_table)) {
736 if (func_table[value])
737 puts_queue(vc, func_table[value]);
738 } else
739 pr_err("k_fn called with value=%d\n", value);
740}
741
742static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
743{
744 static const char cur_chars[] = "BDCA";
745
746 if (up_flag)
747 return;
748
749 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
750}
751
752static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
755 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
756
757 if (up_flag)
758 return; /* no action, if this is a key release */
759
760 /* kludge... shift forces cursor/number keys */
761 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
762 applkey(vc, app_map[value], 1);
763 return;
764 }
765
766 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
767
768 switch (value) {
769 case KVAL(K_PCOMMA):
770 case KVAL(K_PDOT):
771 k_fn(vc, KVAL(K_REMOVE), 0);
772 return;
773 case KVAL(K_P0):
774 k_fn(vc, KVAL(K_INSERT), 0);
775 return;
776 case KVAL(K_P1):
777 k_fn(vc, KVAL(K_SELECT), 0);
778 return;
779 case KVAL(K_P2):
780 k_cur(vc, KVAL(K_DOWN), 0);
781 return;
782 case KVAL(K_P3):
783 k_fn(vc, KVAL(K_PGDN), 0);
784 return;
785 case KVAL(K_P4):
786 k_cur(vc, KVAL(K_LEFT), 0);
787 return;
788 case KVAL(K_P6):
789 k_cur(vc, KVAL(K_RIGHT), 0);
790 return;
791 case KVAL(K_P7):
792 k_fn(vc, KVAL(K_FIND), 0);
793 return;
794 case KVAL(K_P8):
795 k_cur(vc, KVAL(K_UP), 0);
796 return;
797 case KVAL(K_P9):
798 k_fn(vc, KVAL(K_PGUP), 0);
799 return;
800 case KVAL(K_P5):
801 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
802 return;
803 }
804 }
805
806 put_queue(vc, pad_chars[value]);
807 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
808 put_queue(vc, 10);
809}
810
811static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
812{
813 int old_state = shift_state;
814
815 if (rep)
816 return;
817 /*
818 * Mimic typewriter:
819 * a CapsShift key acts like Shift but undoes CapsLock
820 */
821 if (value == KVAL(K_CAPSSHIFT)) {
822 value = KVAL(K_SHIFT);
823 if (!up_flag)
824 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
825 }
826
827 if (up_flag) {
828 /*
829 * handle the case that two shift or control
830 * keys are depressed simultaneously
831 */
832 if (shift_down[value])
833 shift_down[value]--;
834 } else
835 shift_down[value]++;
836
837 if (shift_down[value])
838 shift_state |= (1 << value);
839 else
840 shift_state &= ~(1 << value);
841
842 /* kludge */
843 if (up_flag && shift_state != old_state && npadch != -1) {
844 if (kbd->kbdmode == VC_UNICODE)
845 to_utf8(vc, npadch);
846 else
847 put_queue(vc, npadch & 0xff);
848 npadch = -1;
849 }
850}
851
852static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 if (up_flag)
855 return;
856
857 if (vc_kbd_mode(kbd, VC_META)) {
858 put_queue(vc, '\033');
859 put_queue(vc, value);
860 } else
861 put_queue(vc, value | 0x80);
862}
863
864static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
865{
866 int base;
867
868 if (up_flag)
869 return;
870
871 if (value < 10) {
872 /* decimal input of code, while Alt depressed */
873 base = 10;
874 } else {
875 /* hexadecimal input of code, while AltGr depressed */
876 value -= 10;
877 base = 16;
878 }
879
880 if (npadch == -1)
881 npadch = value;
882 else
883 npadch = npadch * base + value;
884}
885
886static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
887{
888 if (up_flag || rep)
889 return;
890
891 chg_vc_kbd_lock(kbd, value);
892}
893
894static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
895{
896 k_shift(vc, value, up_flag);
897 if (up_flag || rep)
898 return;
899
900 chg_vc_kbd_slock(kbd, value);
901 /* try to make Alt, oops, AltGr and such work */
902 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
903 kbd->slockstate = 0;
904 chg_vc_kbd_slock(kbd, value);
905 }
906}
907
908/* by default, 300ms interval for combination release */
909static unsigned brl_timeout = 300;
910MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
911module_param(brl_timeout, uint, 0644);
912
913static unsigned brl_nbchords = 1;
914MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
915module_param(brl_nbchords, uint, 0644);
916
917static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
918{
919 static unsigned long chords;
920 static unsigned committed;
921
922 if (!brl_nbchords)
923 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
924 else {
925 committed |= pattern;
926 chords++;
927 if (chords == brl_nbchords) {
928 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
929 chords = 0;
930 committed = 0;
931 }
932 }
933}
934
935static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
936{
937 static unsigned pressed, committing;
938 static unsigned long releasestart;
939
940 if (kbd->kbdmode != VC_UNICODE) {
941 if (!up_flag)
942 pr_warning("keyboard mode must be unicode for braille patterns\n");
943 return;
944 }
945
946 if (!value) {
947 k_unicode(vc, BRL_UC_ROW, up_flag);
948 return;
949 }
950
951 if (value > 8)
952 return;
953
954 if (!up_flag) {
955 pressed |= 1 << (value - 1);
956 if (!brl_timeout)
957 committing = pressed;
958 } else if (brl_timeout) {
959 if (!committing ||
960 time_after(jiffies,
961 releasestart + msecs_to_jiffies(brl_timeout))) {
962 committing = pressed;
963 releasestart = jiffies;
964 }
965 pressed &= ~(1 << (value - 1));
966 if (!pressed && committing) {
967 k_brlcommit(vc, committing, 0);
968 committing = 0;
969 }
970 } else {
971 if (committing) {
972 k_brlcommit(vc, committing, 0);
973 committing = 0;
974 }
975 pressed &= ~(1 << (value - 1));
976 }
977}
978
979/*
980 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
981 * or (ii) whatever pattern of lights people want to show using KDSETLED,
982 * or (iii) specified bits of specified words in kernel memory.
983 */
984unsigned char getledstate(void)
985{
986 return ledstate;
987}
988
989void setledstate(struct kbd_struct *kbd, unsigned int led)
990{
991 if (!(led & ~7)) {
992 ledioctl = led;
993 kbd->ledmode = LED_SHOW_IOCTL;
994 } else
995 kbd->ledmode = LED_SHOW_FLAGS;
996
997 set_leds();
998}
999
1000static inline unsigned char getleds(void)
1001{
1002 struct kbd_struct *kbd = kbd_table + fg_console;
1003 unsigned char leds;
1004 int i;
1005
1006 if (kbd->ledmode == LED_SHOW_IOCTL)
1007 return ledioctl;
1008
1009 leds = kbd->ledflagstate;
1010
1011 if (kbd->ledmode == LED_SHOW_MEM) {
1012 for (i = 0; i < 3; i++)
1013 if (ledptrs[i].valid) {
1014 if (*ledptrs[i].addr & ledptrs[i].mask)
1015 leds |= (1 << i);
1016 else
1017 leds &= ~(1 << i);
1018 }
1019 }
1020 return leds;
1021}
1022
1023static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1024{
1025 unsigned char leds = *(unsigned char *)data;
1026
1027 if (test_bit(EV_LED, handle->dev->evbit)) {
1028 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1029 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1030 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1031 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * This is the tasklet that updates LED state on all keyboards
1039 * attached to the box. The reason we use tasklet is that we
1040 * need to handle the scenario when keyboard handler is not
1041 * registered yet but we already getting updates form VT to
1042 * update led state.
1043 */
1044static void kbd_bh(unsigned long dummy)
1045{
1046 unsigned char leds = getleds();
1047
1048 if (leds != ledstate) {
1049 input_handler_for_each_handle(&kbd_handler, &leds,
1050 kbd_update_leds_helper);
1051 ledstate = leds;
1052 }
1053}
1054
1055DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1056
1057#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1058 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1059 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1060 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1061 defined(CONFIG_AVR32)
1062
1063#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1064 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1065
1066static const unsigned short x86_keycodes[256] =
1067 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1068 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1069 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1070 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1071 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1072 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1073 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1074 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1075 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1076 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1077 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1078 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1079 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1080 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1081 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1082
1083#ifdef CONFIG_SPARC
1084static int sparc_l1_a_state;
1085extern void sun_do_break(void);
1086#endif
1087
1088static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1089 unsigned char up_flag)
1090{
1091 int code;
1092
1093 switch (keycode) {
1094
1095 case KEY_PAUSE:
1096 put_queue(vc, 0xe1);
1097 put_queue(vc, 0x1d | up_flag);
1098 put_queue(vc, 0x45 | up_flag);
1099 break;
1100
1101 case KEY_HANGEUL:
1102 if (!up_flag)
1103 put_queue(vc, 0xf2);
1104 break;
1105
1106 case KEY_HANJA:
1107 if (!up_flag)
1108 put_queue(vc, 0xf1);
1109 break;
1110
1111 case KEY_SYSRQ:
1112 /*
1113 * Real AT keyboards (that's what we're trying
1114 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1115 * pressing PrtSc/SysRq alone, but simply 0x54
1116 * when pressing Alt+PrtSc/SysRq.
1117 */
1118 if (test_bit(KEY_LEFTALT, key_down) ||
1119 test_bit(KEY_RIGHTALT, key_down)) {
1120 put_queue(vc, 0x54 | up_flag);
1121 } else {
1122 put_queue(vc, 0xe0);
1123 put_queue(vc, 0x2a | up_flag);
1124 put_queue(vc, 0xe0);
1125 put_queue(vc, 0x37 | up_flag);
1126 }
1127 break;
1128
1129 default:
1130 if (keycode > 255)
1131 return -1;
1132
1133 code = x86_keycodes[keycode];
1134 if (!code)
1135 return -1;
1136
1137 if (code & 0x100)
1138 put_queue(vc, 0xe0);
1139 put_queue(vc, (code & 0x7f) | up_flag);
1140
1141 break;
1142 }
1143
1144 return 0;
1145}
1146
1147#else
1148
1149#define HW_RAW(dev) 0
1150
1151static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1152{
1153 if (keycode > 127)
1154 return -1;
1155
1156 put_queue(vc, keycode | up_flag);
1157 return 0;
1158}
1159#endif
1160
1161static void kbd_rawcode(unsigned char data)
1162{
1163 struct vc_data *vc = vc_cons[fg_console].d;
1164
1165 kbd = kbd_table + vc->vc_num;
1166 if (kbd->kbdmode == VC_RAW)
1167 put_queue(vc, data);
1168}
1169
1170static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1171{
1172 struct vc_data *vc = vc_cons[fg_console].d;
1173 unsigned short keysym, *key_map;
1174 unsigned char type;
1175 bool raw_mode;
1176 struct tty_struct *tty;
1177 int shift_final;
1178 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1179 int rc;
1180
1181 tty = vc->port.tty;
1182
1183 if (tty && (!tty->driver_data)) {
1184 /* No driver data? Strange. Okay we fix it then. */
1185 tty->driver_data = vc;
1186 }
1187
1188 kbd = kbd_table + vc->vc_num;
1189
1190#ifdef CONFIG_SPARC
1191 if (keycode == KEY_STOP)
1192 sparc_l1_a_state = down;
1193#endif
1194
1195 rep = (down == 2);
1196
1197 raw_mode = (kbd->kbdmode == VC_RAW);
1198 if (raw_mode && !hw_raw)
1199 if (emulate_raw(vc, keycode, !down << 7))
1200 if (keycode < BTN_MISC && printk_ratelimit())
1201 pr_warning("can't emulate rawmode for keycode %d\n",
1202 keycode);
1203
1204#ifdef CONFIG_SPARC
1205 if (keycode == KEY_A && sparc_l1_a_state) {
1206 sparc_l1_a_state = false;
1207 sun_do_break();
1208 }
1209#endif
1210
1211 if (kbd->kbdmode == VC_MEDIUMRAW) {
1212 /*
1213 * This is extended medium raw mode, with keys above 127
1214 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1215 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1216 * interfere with anything else. The two bytes after 0 will
1217 * always have the up flag set not to interfere with older
1218 * applications. This allows for 16384 different keycodes,
1219 * which should be enough.
1220 */
1221 if (keycode < 128) {
1222 put_queue(vc, keycode | (!down << 7));
1223 } else {
1224 put_queue(vc, !down << 7);
1225 put_queue(vc, (keycode >> 7) | 0x80);
1226 put_queue(vc, keycode | 0x80);
1227 }
1228 raw_mode = true;
1229 }
1230
1231 if (down)
1232 set_bit(keycode, key_down);
1233 else
1234 clear_bit(keycode, key_down);
1235
1236 if (rep &&
1237 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1238 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1239 /*
1240 * Don't repeat a key if the input buffers are not empty and the
1241 * characters get aren't echoed locally. This makes key repeat
1242 * usable with slow applications and under heavy loads.
1243 */
1244 return;
1245 }
1246
1247 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1248 param.ledstate = kbd->ledflagstate;
1249 key_map = key_maps[shift_final];
1250
1251 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1252 KBD_KEYCODE, ¶m);
1253 if (rc == NOTIFY_STOP || !key_map) {
1254 atomic_notifier_call_chain(&keyboard_notifier_list,
1255 KBD_UNBOUND_KEYCODE, ¶m);
1256 compute_shiftstate();
1257 kbd->slockstate = 0;
1258 return;
1259 }
1260
1261 if (keycode < NR_KEYS)
1262 keysym = key_map[keycode];
1263 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265 else
1266 return;
1267
1268 type = KTYP(keysym);
1269
1270 if (type < 0xf0) {
1271 param.value = keysym;
1272 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1273 KBD_UNICODE, ¶m);
1274 if (rc != NOTIFY_STOP)
1275 if (down && !raw_mode)
1276 to_utf8(vc, keysym);
1277 return;
1278 }
1279
1280 type -= 0xf0;
1281
1282 if (type == KT_LETTER) {
1283 type = KT_LATIN;
1284 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1285 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1286 if (key_map)
1287 keysym = key_map[keycode];
1288 }
1289 }
1290
1291 param.value = keysym;
1292 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1293 KBD_KEYSYM, ¶m);
1294 if (rc == NOTIFY_STOP)
1295 return;
1296
1297 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1298 return;
1299
1300 (*k_handler[type])(vc, keysym & 0xff, !down);
1301
1302 param.ledstate = kbd->ledflagstate;
1303 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1304
1305 if (type != KT_SLOCK)
1306 kbd->slockstate = 0;
1307}
1308
1309static void kbd_event(struct input_handle *handle, unsigned int event_type,
1310 unsigned int event_code, int value)
1311{
1312 /* We are called with interrupts disabled, just take the lock */
1313 spin_lock(&kbd_event_lock);
1314
1315 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1316 kbd_rawcode(value);
1317 if (event_type == EV_KEY)
1318 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319
1320 spin_unlock(&kbd_event_lock);
1321
1322 tasklet_schedule(&keyboard_tasklet);
1323 do_poke_blanked_console = 1;
1324 schedule_console_callback();
1325}
1326
1327static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328{
1329 int i;
1330
1331 if (test_bit(EV_SND, dev->evbit))
1332 return true;
1333
1334 if (test_bit(EV_KEY, dev->evbit)) {
1335 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1336 if (test_bit(i, dev->keybit))
1337 return true;
1338 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1339 if (test_bit(i, dev->keybit))
1340 return true;
1341 }
1342
1343 return false;
1344}
1345
1346/*
1347 * When a keyboard (or other input device) is found, the kbd_connect
1348 * function is called. The function then looks at the device, and if it
1349 * likes it, it can open it and get events from it. In this (kbd_connect)
1350 * function, we should decide which VT to bind that keyboard to initially.
1351 */
1352static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1353 const struct input_device_id *id)
1354{
1355 struct input_handle *handle;
1356 int error;
1357
1358 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1359 if (!handle)
1360 return -ENOMEM;
1361
1362 handle->dev = dev;
1363 handle->handler = handler;
1364 handle->name = "kbd";
1365
1366 error = input_register_handle(handle);
1367 if (error)
1368 goto err_free_handle;
1369
1370 error = input_open_device(handle);
1371 if (error)
1372 goto err_unregister_handle;
1373
1374 return 0;
1375
1376 err_unregister_handle:
1377 input_unregister_handle(handle);
1378 err_free_handle:
1379 kfree(handle);
1380 return error;
1381}
1382
1383static void kbd_disconnect(struct input_handle *handle)
1384{
1385 input_close_device(handle);
1386 input_unregister_handle(handle);
1387 kfree(handle);
1388}
1389
1390/*
1391 * Start keyboard handler on the new keyboard by refreshing LED state to
1392 * match the rest of the system.
1393 */
1394static void kbd_start(struct input_handle *handle)
1395{
1396 tasklet_disable(&keyboard_tasklet);
1397
1398 if (ledstate != 0xff)
1399 kbd_update_leds_helper(handle, &ledstate);
1400
1401 tasklet_enable(&keyboard_tasklet);
1402}
1403
1404static const struct input_device_id kbd_ids[] = {
1405 {
1406 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407 .evbit = { BIT_MASK(EV_KEY) },
1408 },
1409
1410 {
1411 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1412 .evbit = { BIT_MASK(EV_SND) },
1413 },
1414
1415 { }, /* Terminating entry */
1416};
1417
1418MODULE_DEVICE_TABLE(input, kbd_ids);
1419
1420static struct input_handler kbd_handler = {
1421 .event = kbd_event,
1422 .match = kbd_match,
1423 .connect = kbd_connect,
1424 .disconnect = kbd_disconnect,
1425 .start = kbd_start,
1426 .name = "kbd",
1427 .id_table = kbd_ids,
1428};
1429
1430int __init kbd_init(void)
1431{
1432 int i;
1433 int error;
1434
1435 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1436 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1437 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1438 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1439 kbd_table[i].lockstate = KBD_DEFLOCK;
1440 kbd_table[i].slockstate = 0;
1441 kbd_table[i].modeflags = KBD_DEFMODE;
1442 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1443 }
1444
1445 error = input_register_handler(&kbd_handler);
1446 if (error)
1447 return error;
1448
1449 tasklet_enable(&keyboard_tasklet);
1450 tasklet_schedule(&keyboard_tasklet);
1451
1452 return 0;
1453}