Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/nospec.h>
36#include <linux/string.h>
37#include <linux/init.h>
38#include <linux/slab.h>
39#include <linux/leds.h>
40
41#include <linux/kbd_kern.h>
42#include <linux/kbd_diacr.h>
43#include <linux/vt_kern.h>
44#include <linux/input.h>
45#include <linux/reboot.h>
46#include <linux/notifier.h>
47#include <linux/jiffies.h>
48#include <linux/uaccess.h>
49
50#include <asm/irq_regs.h>
51
52extern void ctrl_alt_del(void);
53
54/*
55 * Exported functions/variables
56 */
57
58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
59
60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
61#include <asm/kbdleds.h>
62#else
63static inline int kbd_defleds(void)
64{
65 return 0;
66}
67#endif
68
69#define KBD_DEFLOCK 0
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105};
106
107
108/*
109 * Internal Data.
110 */
111
112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113static struct kbd_struct *kbd = kbd_table;
114
115/* maximum values each key_handler can handle */
116static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120};
121
122static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124static struct input_handler kbd_handler;
125static DEFINE_SPINLOCK(kbd_event_lock);
126static DEFINE_SPINLOCK(led_lock);
127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
129static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130static bool dead_key_next;
131
132/* Handles a number being assembled on the number pad */
133static bool npadch_active;
134static unsigned int npadch_value;
135
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static int shift_state = 0;
140
141static unsigned int ledstate = -1U; /* undefined */
142static unsigned char ledioctl;
143
144/*
145 * Notifier list for console keyboard events
146 */
147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
149int register_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
155int unregister_keyboard_notifier(struct notifier_block *nb)
156{
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158}
159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161/*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174};
175
176static int getkeycode_helper(struct input_handle *handle, void *data)
177{
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183}
184
185static int getkeycode(unsigned int scancode)
186{
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201}
202
203static int setkeycode_helper(struct input_handle *handle, void *data)
204{
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210}
211
212static int setkeycode(unsigned int scancode, unsigned int keycode)
213{
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228}
229
230/*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
235static int kd_sound_helper(struct input_handle *handle, void *data)
236{
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251}
252
253static void kd_nosound(struct timer_list *unused)
254{
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258}
259
260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
261
262void kd_mksound(unsigned int hz, unsigned int ticks)
263{
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270}
271EXPORT_SYMBOL(kd_mksound);
272
273/*
274 * Setting the keyboard rate.
275 */
276
277static int kbd_rate_helper(struct input_handle *handle, void *data)
278{
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rpt = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rpt[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rpt[0].delay);
287 if (rpt[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rpt[0].period);
290
291 rpt[1].delay = dev->rep[REP_DELAY];
292 rpt[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296}
297
298int kbd_rate(struct kbd_repeat *rpt)
299{
300 struct kbd_repeat data[2] = { *rpt };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rpt = data[1]; /* Copy currently used settings */
304
305 return 0;
306}
307
308/*
309 * Helper Functions.
310 */
311static void put_queue(struct vc_data *vc, int ch)
312{
313 tty_insert_flip_char(&vc->port, ch, 0);
314 tty_schedule_flip(&vc->port);
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 while (*cp) {
320 tty_insert_flip_char(&vc->port, *cp, 0);
321 cp++;
322 }
323 tty_schedule_flip(&vc->port);
324}
325
326static void applkey(struct vc_data *vc, int key, char mode)
327{
328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
329
330 buf[1] = (mode ? 'O' : '[');
331 buf[2] = key;
332 puts_queue(vc, buf);
333}
334
335/*
336 * Many other routines do put_queue, but I think either
337 * they produce ASCII, or they produce some user-assigned
338 * string, and in both cases we might assume that it is
339 * in utf-8 already.
340 */
341static void to_utf8(struct vc_data *vc, uint c)
342{
343 if (c < 0x80)
344 /* 0******* */
345 put_queue(vc, c);
346 else if (c < 0x800) {
347 /* 110***** 10****** */
348 put_queue(vc, 0xc0 | (c >> 6));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x10000) {
351 if (c >= 0xD800 && c < 0xE000)
352 return;
353 if (c == 0xFFFF)
354 return;
355 /* 1110**** 10****** 10****** */
356 put_queue(vc, 0xe0 | (c >> 12));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x110000) {
360 /* 11110*** 10****** 10****** 10****** */
361 put_queue(vc, 0xf0 | (c >> 18));
362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 }
366}
367
368/*
369 * Called after returning from RAW mode or when changing consoles - recompute
370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
371 * undefined, so that shiftkey release is seen. The caller must hold the
372 * kbd_event_lock.
373 */
374
375static void do_compute_shiftstate(void)
376{
377 unsigned int k, sym, val;
378
379 shift_state = 0;
380 memset(shift_down, 0, sizeof(shift_down));
381
382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
383 sym = U(key_maps[0][k]);
384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
385 continue;
386
387 val = KVAL(sym);
388 if (val == KVAL(K_CAPSSHIFT))
389 val = KVAL(K_SHIFT);
390
391 shift_down[val]++;
392 shift_state |= BIT(val);
393 }
394}
395
396/* We still have to export this method to vt.c */
397void compute_shiftstate(void)
398{
399 unsigned long flags;
400 spin_lock_irqsave(&kbd_event_lock, flags);
401 do_compute_shiftstate();
402 spin_unlock_irqrestore(&kbd_event_lock, flags);
403}
404
405/*
406 * We have a combining character DIACR here, followed by the character CH.
407 * If the combination occurs in the table, return the corresponding value.
408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
409 * Otherwise, conclude that DIACR was not combining after all,
410 * queue it and return CH.
411 */
412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
413{
414 unsigned int d = diacr;
415 unsigned int i;
416
417 diacr = 0;
418
419 if ((d & ~0xff) == BRL_UC_ROW) {
420 if ((ch & ~0xff) == BRL_UC_ROW)
421 return d | ch;
422 } else {
423 for (i = 0; i < accent_table_size; i++)
424 if (accent_table[i].diacr == d && accent_table[i].base == ch)
425 return accent_table[i].result;
426 }
427
428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 return d;
430
431 if (kbd->kbdmode == VC_UNICODE)
432 to_utf8(vc, d);
433 else {
434 int c = conv_uni_to_8bit(d);
435 if (c != -1)
436 put_queue(vc, c);
437 }
438
439 return ch;
440}
441
442/*
443 * Special function handlers
444 */
445static void fn_enter(struct vc_data *vc)
446{
447 if (diacr) {
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, diacr);
450 else {
451 int c = conv_uni_to_8bit(diacr);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455 diacr = 0;
456 }
457
458 put_queue(vc, 13);
459 if (vc_kbd_mode(kbd, VC_CRLF))
460 put_queue(vc, 10);
461}
462
463static void fn_caps_toggle(struct vc_data *vc)
464{
465 if (rep)
466 return;
467
468 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
469}
470
471static void fn_caps_on(struct vc_data *vc)
472{
473 if (rep)
474 return;
475
476 set_vc_kbd_led(kbd, VC_CAPSLOCK);
477}
478
479static void fn_show_ptregs(struct vc_data *vc)
480{
481 struct pt_regs *regs = get_irq_regs();
482
483 if (regs)
484 show_regs(regs);
485}
486
487static void fn_hold(struct vc_data *vc)
488{
489 struct tty_struct *tty = vc->port.tty;
490
491 if (rep || !tty)
492 return;
493
494 /*
495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
496 * these routines are also activated by ^S/^Q.
497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
498 */
499 if (tty->stopped)
500 start_tty(tty);
501 else
502 stop_tty(tty);
503}
504
505static void fn_num(struct vc_data *vc)
506{
507 if (vc_kbd_mode(kbd, VC_APPLIC))
508 applkey(vc, 'P', 1);
509 else
510 fn_bare_num(vc);
511}
512
513/*
514 * Bind this to Shift-NumLock if you work in application keypad mode
515 * but want to be able to change the NumLock flag.
516 * Bind this to NumLock if you prefer that the NumLock key always
517 * changes the NumLock flag.
518 */
519static void fn_bare_num(struct vc_data *vc)
520{
521 if (!rep)
522 chg_vc_kbd_led(kbd, VC_NUMLOCK);
523}
524
525static void fn_lastcons(struct vc_data *vc)
526{
527 /* switch to the last used console, ChN */
528 set_console(last_console);
529}
530
531static void fn_dec_console(struct vc_data *vc)
532{
533 int i, cur = fg_console;
534
535 /* Currently switching? Queue this next switch relative to that. */
536 if (want_console != -1)
537 cur = want_console;
538
539 for (i = cur - 1; i != cur; i--) {
540 if (i == -1)
541 i = MAX_NR_CONSOLES - 1;
542 if (vc_cons_allocated(i))
543 break;
544 }
545 set_console(i);
546}
547
548static void fn_inc_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur+1; i != cur; i++) {
557 if (i == MAX_NR_CONSOLES)
558 i = 0;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_send_intr(struct vc_data *vc)
566{
567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
568 tty_schedule_flip(&vc->port);
569}
570
571static void fn_scroll_forw(struct vc_data *vc)
572{
573 scrollfront(vc, 0);
574}
575
576static void fn_scroll_back(struct vc_data *vc)
577{
578 scrollback(vc);
579}
580
581static void fn_show_mem(struct vc_data *vc)
582{
583 show_mem(0, NULL);
584}
585
586static void fn_show_state(struct vc_data *vc)
587{
588 show_state();
589}
590
591static void fn_boot_it(struct vc_data *vc)
592{
593 ctrl_alt_del();
594}
595
596static void fn_compose(struct vc_data *vc)
597{
598 dead_key_next = true;
599}
600
601static void fn_spawn_con(struct vc_data *vc)
602{
603 spin_lock(&vt_spawn_con.lock);
604 if (vt_spawn_con.pid)
605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
606 put_pid(vt_spawn_con.pid);
607 vt_spawn_con.pid = NULL;
608 }
609 spin_unlock(&vt_spawn_con.lock);
610}
611
612static void fn_SAK(struct vc_data *vc)
613{
614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
615 schedule_work(SAK_work);
616}
617
618static void fn_null(struct vc_data *vc)
619{
620 do_compute_shiftstate();
621}
622
623/*
624 * Special key handlers
625 */
626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
627{
628}
629
630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
631{
632 if (up_flag)
633 return;
634 if (value >= ARRAY_SIZE(fn_handler))
635 return;
636 if ((kbd->kbdmode == VC_RAW ||
637 kbd->kbdmode == VC_MEDIUMRAW ||
638 kbd->kbdmode == VC_OFF) &&
639 value != KVAL(K_SAK))
640 return; /* SAK is allowed even in raw mode */
641 fn_handler[value](vc);
642}
643
644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
645{
646 pr_err("k_lowercase was called - impossible\n");
647}
648
649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
650{
651 if (up_flag)
652 return; /* no action, if this is a key release */
653
654 if (diacr)
655 value = handle_diacr(vc, value);
656
657 if (dead_key_next) {
658 dead_key_next = false;
659 diacr = value;
660 return;
661 }
662 if (kbd->kbdmode == VC_UNICODE)
663 to_utf8(vc, value);
664 else {
665 int c = conv_uni_to_8bit(value);
666 if (c != -1)
667 put_queue(vc, c);
668 }
669}
670
671/*
672 * Handle dead key. Note that we now may have several
673 * dead keys modifying the same character. Very useful
674 * for Vietnamese.
675 */
676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677{
678 if (up_flag)
679 return;
680
681 diacr = (diacr ? handle_diacr(vc, value) : value);
682}
683
684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
687}
688
689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690{
691 k_deadunicode(vc, value, up_flag);
692}
693
694/*
695 * Obsolete - for backwards compatibility only
696 */
697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698{
699 static const unsigned char ret_diacr[NR_DEAD] = {
700 '`', /* dead_grave */
701 '\'', /* dead_acute */
702 '^', /* dead_circumflex */
703 '~', /* dead_tilda */
704 '"', /* dead_diaeresis */
705 ',', /* dead_cedilla */
706 '_', /* dead_macron */
707 'U', /* dead_breve */
708 '.', /* dead_abovedot */
709 '*', /* dead_abovering */
710 '=', /* dead_doubleacute */
711 'c', /* dead_caron */
712 'k', /* dead_ogonek */
713 'i', /* dead_iota */
714 '#', /* dead_voiced_sound */
715 'o', /* dead_semivoiced_sound */
716 '!', /* dead_belowdot */
717 '?', /* dead_hook */
718 '+', /* dead_horn */
719 '-', /* dead_stroke */
720 ')', /* dead_abovecomma */
721 '(', /* dead_abovereversedcomma */
722 ':', /* dead_doublegrave */
723 'n', /* dead_invertedbreve */
724 ';', /* dead_belowcomma */
725 '$', /* dead_currency */
726 '@', /* dead_greek */
727 };
728
729 k_deadunicode(vc, ret_diacr[value], up_flag);
730}
731
732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
733{
734 if (up_flag)
735 return;
736
737 set_console(value);
738}
739
740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
741{
742 if (up_flag)
743 return;
744
745 if ((unsigned)value < ARRAY_SIZE(func_table)) {
746 if (func_table[value])
747 puts_queue(vc, func_table[value]);
748 } else
749 pr_err("k_fn called with value=%d\n", value);
750}
751
752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char cur_chars[] = "BDCA";
755
756 if (up_flag)
757 return;
758
759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
760}
761
762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
763{
764 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
766
767 if (up_flag)
768 return; /* no action, if this is a key release */
769
770 /* kludge... shift forces cursor/number keys */
771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
772 applkey(vc, app_map[value], 1);
773 return;
774 }
775
776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
777
778 switch (value) {
779 case KVAL(K_PCOMMA):
780 case KVAL(K_PDOT):
781 k_fn(vc, KVAL(K_REMOVE), 0);
782 return;
783 case KVAL(K_P0):
784 k_fn(vc, KVAL(K_INSERT), 0);
785 return;
786 case KVAL(K_P1):
787 k_fn(vc, KVAL(K_SELECT), 0);
788 return;
789 case KVAL(K_P2):
790 k_cur(vc, KVAL(K_DOWN), 0);
791 return;
792 case KVAL(K_P3):
793 k_fn(vc, KVAL(K_PGDN), 0);
794 return;
795 case KVAL(K_P4):
796 k_cur(vc, KVAL(K_LEFT), 0);
797 return;
798 case KVAL(K_P6):
799 k_cur(vc, KVAL(K_RIGHT), 0);
800 return;
801 case KVAL(K_P7):
802 k_fn(vc, KVAL(K_FIND), 0);
803 return;
804 case KVAL(K_P8):
805 k_cur(vc, KVAL(K_UP), 0);
806 return;
807 case KVAL(K_P9):
808 k_fn(vc, KVAL(K_PGUP), 0);
809 return;
810 case KVAL(K_P5):
811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
812 return;
813 }
814 }
815
816 put_queue(vc, pad_chars[value]);
817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
818 put_queue(vc, 10);
819}
820
821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
822{
823 int old_state = shift_state;
824
825 if (rep)
826 return;
827 /*
828 * Mimic typewriter:
829 * a CapsShift key acts like Shift but undoes CapsLock
830 */
831 if (value == KVAL(K_CAPSSHIFT)) {
832 value = KVAL(K_SHIFT);
833 if (!up_flag)
834 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
835 }
836
837 if (up_flag) {
838 /*
839 * handle the case that two shift or control
840 * keys are depressed simultaneously
841 */
842 if (shift_down[value])
843 shift_down[value]--;
844 } else
845 shift_down[value]++;
846
847 if (shift_down[value])
848 shift_state |= (1 << value);
849 else
850 shift_state &= ~(1 << value);
851
852 /* kludge */
853 if (up_flag && shift_state != old_state && npadch_active) {
854 if (kbd->kbdmode == VC_UNICODE)
855 to_utf8(vc, npadch_value);
856 else
857 put_queue(vc, npadch_value & 0xff);
858 npadch_active = false;
859 }
860}
861
862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag)
865 return;
866
867 if (vc_kbd_mode(kbd, VC_META)) {
868 put_queue(vc, '\033');
869 put_queue(vc, value);
870 } else
871 put_queue(vc, value | 0x80);
872}
873
874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
875{
876 unsigned int base;
877
878 if (up_flag)
879 return;
880
881 if (value < 10) {
882 /* decimal input of code, while Alt depressed */
883 base = 10;
884 } else {
885 /* hexadecimal input of code, while AltGr depressed */
886 value -= 10;
887 base = 16;
888 }
889
890 if (!npadch_active) {
891 npadch_value = 0;
892 npadch_active = true;
893 }
894
895 npadch_value = npadch_value * base + value;
896}
897
898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_lock(kbd, value);
904}
905
906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
907{
908 k_shift(vc, value, up_flag);
909 if (up_flag || rep)
910 return;
911
912 chg_vc_kbd_slock(kbd, value);
913 /* try to make Alt, oops, AltGr and such work */
914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
915 kbd->slockstate = 0;
916 chg_vc_kbd_slock(kbd, value);
917 }
918}
919
920/* by default, 300ms interval for combination release */
921static unsigned brl_timeout = 300;
922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
923module_param(brl_timeout, uint, 0644);
924
925static unsigned brl_nbchords = 1;
926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
927module_param(brl_nbchords, uint, 0644);
928
929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
930{
931 static unsigned long chords;
932 static unsigned committed;
933
934 if (!brl_nbchords)
935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
936 else {
937 committed |= pattern;
938 chords++;
939 if (chords == brl_nbchords) {
940 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
941 chords = 0;
942 committed = 0;
943 }
944 }
945}
946
947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
948{
949 static unsigned pressed, committing;
950 static unsigned long releasestart;
951
952 if (kbd->kbdmode != VC_UNICODE) {
953 if (!up_flag)
954 pr_warn("keyboard mode must be unicode for braille patterns\n");
955 return;
956 }
957
958 if (!value) {
959 k_unicode(vc, BRL_UC_ROW, up_flag);
960 return;
961 }
962
963 if (value > 8)
964 return;
965
966 if (!up_flag) {
967 pressed |= 1 << (value - 1);
968 if (!brl_timeout)
969 committing = pressed;
970 } else if (brl_timeout) {
971 if (!committing ||
972 time_after(jiffies,
973 releasestart + msecs_to_jiffies(brl_timeout))) {
974 committing = pressed;
975 releasestart = jiffies;
976 }
977 pressed &= ~(1 << (value - 1));
978 if (!pressed && committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 } else {
983 if (committing) {
984 k_brlcommit(vc, committing, 0);
985 committing = 0;
986 }
987 pressed &= ~(1 << (value - 1));
988 }
989}
990
991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
992
993struct kbd_led_trigger {
994 struct led_trigger trigger;
995 unsigned int mask;
996};
997
998static int kbd_led_trigger_activate(struct led_classdev *cdev)
999{
1000 struct kbd_led_trigger *trigger =
1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003 tasklet_disable(&keyboard_tasklet);
1004 if (ledstate != -1U)
1005 led_trigger_event(&trigger->trigger,
1006 ledstate & trigger->mask ?
1007 LED_FULL : LED_OFF);
1008 tasklet_enable(&keyboard_tasklet);
1009
1010 return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) { \
1014 .trigger = { \
1015 .name = _name, \
1016 .activate = kbd_led_trigger_activate, \
1017 }, \
1018 .mask = BIT(_led_bit), \
1019 }
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1022 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1029
1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041 unsigned int new_state)
1042{
1043 struct kbd_led_trigger *trigger;
1044 unsigned int changed = old_state ^ new_state;
1045 int i;
1046
1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048 trigger = &kbd_led_triggers[i];
1049
1050 if (changed & trigger->mask)
1051 led_trigger_event(&trigger->trigger,
1052 new_state & trigger->mask ?
1053 LED_FULL : LED_OFF);
1054 }
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059 unsigned int led_state = *(unsigned int *)data;
1060
1061 if (test_bit(EV_LED, handle->dev->evbit))
1062 kbd_propagate_led_state(~led_state, led_state);
1063
1064 return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069 int error;
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074 if (error)
1075 pr_err("error %d while registering trigger %s\n",
1076 error, kbd_led_triggers[i].trigger.name);
1077 }
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084 unsigned int leds = *(unsigned int *)data;
1085
1086 if (test_bit(EV_LED, handle->dev->evbit)) {
1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091 }
1092
1093 return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097 unsigned int new_state)
1098{
1099 input_handler_for_each_handle(&kbd_handler, &new_state,
1100 kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116 return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121 unsigned long flags;
1122 spin_lock_irqsave(&led_lock, flags);
1123 if (!(led & ~7)) {
1124 ledioctl = led;
1125 kb->ledmode = LED_SHOW_IOCTL;
1126 } else
1127 kb->ledmode = LED_SHOW_FLAGS;
1128
1129 set_leds();
1130 spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135 struct kbd_struct *kb = kbd_table + fg_console;
1136
1137 if (kb->ledmode == LED_SHOW_IOCTL)
1138 return ledioctl;
1139
1140 return kb->ledflagstate;
1141}
1142
1143/**
1144 * vt_get_leds - helper for braille console
1145 * @console: console to read
1146 * @flag: flag we want to check
1147 *
1148 * Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152 struct kbd_struct *kb = kbd_table + console;
1153 int ret;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&led_lock, flags);
1157 ret = vc_kbd_led(kb, flag);
1158 spin_unlock_irqrestore(&led_lock, flags);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 * vt_set_led_state - set LED state of a console
1166 * @console: console to set
1167 * @leds: LED bits
1168 *
1169 * Set the LEDs on a console. This is a wrapper for the VT layer
1170 * so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174 struct kbd_struct *kb = kbd_table + console;
1175 setledstate(kb, leds);
1176}
1177
1178/**
1179 * vt_kbd_con_start - Keyboard side of console start
1180 * @console: console
1181 *
1182 * Handle console start. This is a wrapper for the VT layer
1183 * so that we can keep kbd knowledge internal
1184 *
1185 * FIXME: We eventually need to hold the kbd lock here to protect
1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 * and start_tty under the kbd_event_lock, while normal tty paths
1188 * don't hold the lock. We probably need to split out an LED lock
1189 * but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193 struct kbd_struct *kb = kbd_table + console;
1194 unsigned long flags;
1195 spin_lock_irqsave(&led_lock, flags);
1196 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197 set_leds();
1198 spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 * vt_kbd_con_stop - Keyboard side of console stop
1203 * @console: console
1204 *
1205 * Handle console stop. This is a wrapper for the VT layer
1206 * so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210 struct kbd_struct *kb = kbd_table + console;
1211 unsigned long flags;
1212 spin_lock_irqsave(&led_lock, flags);
1213 set_vc_kbd_led(kb, VC_SCROLLOCK);
1214 set_leds();
1215 spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226 unsigned int leds;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&led_lock, flags);
1230 leds = getleds();
1231 leds |= (unsigned int)kbd->lockstate << 8;
1232 spin_unlock_irqrestore(&led_lock, flags);
1233
1234 if (leds != ledstate) {
1235 kbd_propagate_led_state(ledstate, leds);
1236 ledstate = leds;
1237 }
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273 unsigned char up_flag)
1274{
1275 int code;
1276
1277 switch (keycode) {
1278
1279 case KEY_PAUSE:
1280 put_queue(vc, 0xe1);
1281 put_queue(vc, 0x1d | up_flag);
1282 put_queue(vc, 0x45 | up_flag);
1283 break;
1284
1285 case KEY_HANGEUL:
1286 if (!up_flag)
1287 put_queue(vc, 0xf2);
1288 break;
1289
1290 case KEY_HANJA:
1291 if (!up_flag)
1292 put_queue(vc, 0xf1);
1293 break;
1294
1295 case KEY_SYSRQ:
1296 /*
1297 * Real AT keyboards (that's what we're trying
1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299 * pressing PrtSc/SysRq alone, but simply 0x54
1300 * when pressing Alt+PrtSc/SysRq.
1301 */
1302 if (test_bit(KEY_LEFTALT, key_down) ||
1303 test_bit(KEY_RIGHTALT, key_down)) {
1304 put_queue(vc, 0x54 | up_flag);
1305 } else {
1306 put_queue(vc, 0xe0);
1307 put_queue(vc, 0x2a | up_flag);
1308 put_queue(vc, 0xe0);
1309 put_queue(vc, 0x37 | up_flag);
1310 }
1311 break;
1312
1313 default:
1314 if (keycode > 255)
1315 return -1;
1316
1317 code = x86_keycodes[keycode];
1318 if (!code)
1319 return -1;
1320
1321 if (code & 0x100)
1322 put_queue(vc, 0xe0);
1323 put_queue(vc, (code & 0x7f) | up_flag);
1324
1325 break;
1326 }
1327
1328 return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev) 0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337 if (keycode > 127)
1338 return -1;
1339
1340 put_queue(vc, keycode | up_flag);
1341 return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347 struct vc_data *vc = vc_cons[fg_console].d;
1348
1349 kbd = kbd_table + vc->vc_num;
1350 if (kbd->kbdmode == VC_RAW)
1351 put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356 struct vc_data *vc = vc_cons[fg_console].d;
1357 unsigned short keysym, *key_map;
1358 unsigned char type;
1359 bool raw_mode;
1360 struct tty_struct *tty;
1361 int shift_final;
1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363 int rc;
1364
1365 tty = vc->port.tty;
1366
1367 if (tty && (!tty->driver_data)) {
1368 /* No driver data? Strange. Okay we fix it then. */
1369 tty->driver_data = vc;
1370 }
1371
1372 kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375 if (keycode == KEY_STOP)
1376 sparc_l1_a_state = down;
1377#endif
1378
1379 rep = (down == 2);
1380
1381 raw_mode = (kbd->kbdmode == VC_RAW);
1382 if (raw_mode && !hw_raw)
1383 if (emulate_raw(vc, keycode, !down << 7))
1384 if (keycode < BTN_MISC && printk_ratelimit())
1385 pr_warn("can't emulate rawmode for keycode %d\n",
1386 keycode);
1387
1388#ifdef CONFIG_SPARC
1389 if (keycode == KEY_A && sparc_l1_a_state) {
1390 sparc_l1_a_state = false;
1391 sun_do_break();
1392 }
1393#endif
1394
1395 if (kbd->kbdmode == VC_MEDIUMRAW) {
1396 /*
1397 * This is extended medium raw mode, with keys above 127
1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400 * interfere with anything else. The two bytes after 0 will
1401 * always have the up flag set not to interfere with older
1402 * applications. This allows for 16384 different keycodes,
1403 * which should be enough.
1404 */
1405 if (keycode < 128) {
1406 put_queue(vc, keycode | (!down << 7));
1407 } else {
1408 put_queue(vc, !down << 7);
1409 put_queue(vc, (keycode >> 7) | 0x80);
1410 put_queue(vc, keycode | 0x80);
1411 }
1412 raw_mode = true;
1413 }
1414
1415 if (down)
1416 set_bit(keycode, key_down);
1417 else
1418 clear_bit(keycode, key_down);
1419
1420 if (rep &&
1421 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423 /*
1424 * Don't repeat a key if the input buffers are not empty and the
1425 * characters get aren't echoed locally. This makes key repeat
1426 * usable with slow applications and under heavy loads.
1427 */
1428 return;
1429 }
1430
1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432 param.ledstate = kbd->ledflagstate;
1433 key_map = key_maps[shift_final];
1434
1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436 KBD_KEYCODE, ¶m);
1437 if (rc == NOTIFY_STOP || !key_map) {
1438 atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_UNBOUND_KEYCODE, ¶m);
1440 do_compute_shiftstate();
1441 kbd->slockstate = 0;
1442 return;
1443 }
1444
1445 if (keycode < NR_KEYS)
1446 keysym = key_map[keycode];
1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449 else
1450 return;
1451
1452 type = KTYP(keysym);
1453
1454 if (type < 0xf0) {
1455 param.value = keysym;
1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457 KBD_UNICODE, ¶m);
1458 if (rc != NOTIFY_STOP)
1459 if (down && !raw_mode)
1460 k_unicode(vc, keysym, !down);
1461 return;
1462 }
1463
1464 type -= 0xf0;
1465
1466 if (type == KT_LETTER) {
1467 type = KT_LATIN;
1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470 if (key_map)
1471 keysym = key_map[keycode];
1472 }
1473 }
1474
1475 param.value = keysym;
1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_KEYSYM, ¶m);
1478 if (rc == NOTIFY_STOP)
1479 return;
1480
1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482 return;
1483
1484 (*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486 param.ledstate = kbd->ledflagstate;
1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1488
1489 if (type != KT_SLOCK)
1490 kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494 unsigned int event_code, int value)
1495{
1496 /* We are called with interrupts disabled, just take the lock */
1497 spin_lock(&kbd_event_lock);
1498
1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500 kbd_rawcode(value);
1501 if (event_type == EV_KEY && event_code <= KEY_MAX)
1502 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504 spin_unlock(&kbd_event_lock);
1505
1506 tasklet_schedule(&keyboard_tasklet);
1507 do_poke_blanked_console = 1;
1508 schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513 int i;
1514
1515 if (test_bit(EV_SND, dev->evbit))
1516 return true;
1517
1518 if (test_bit(EV_KEY, dev->evbit)) {
1519 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520 if (test_bit(i, dev->keybit))
1521 return true;
1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523 if (test_bit(i, dev->keybit))
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537 const struct input_device_id *id)
1538{
1539 struct input_handle *handle;
1540 int error;
1541
1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543 if (!handle)
1544 return -ENOMEM;
1545
1546 handle->dev = dev;
1547 handle->handler = handler;
1548 handle->name = "kbd";
1549
1550 error = input_register_handle(handle);
1551 if (error)
1552 goto err_free_handle;
1553
1554 error = input_open_device(handle);
1555 if (error)
1556 goto err_unregister_handle;
1557
1558 return 0;
1559
1560 err_unregister_handle:
1561 input_unregister_handle(handle);
1562 err_free_handle:
1563 kfree(handle);
1564 return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569 input_close_device(handle);
1570 input_unregister_handle(handle);
1571 kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580 tasklet_disable(&keyboard_tasklet);
1581
1582 if (ledstate != -1U)
1583 kbd_update_leds_helper(handle, &ledstate);
1584
1585 tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589 {
1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591 .evbit = { BIT_MASK(EV_KEY) },
1592 },
1593
1594 {
1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596 .evbit = { BIT_MASK(EV_SND) },
1597 },
1598
1599 { }, /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605 .event = kbd_event,
1606 .match = kbd_match,
1607 .connect = kbd_connect,
1608 .disconnect = kbd_disconnect,
1609 .start = kbd_start,
1610 .name = "kbd",
1611 .id_table = kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616 int i;
1617 int error;
1618
1619 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620 kbd_table[i].ledflagstate = kbd_defleds();
1621 kbd_table[i].default_ledflagstate = kbd_defleds();
1622 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623 kbd_table[i].lockstate = KBD_DEFLOCK;
1624 kbd_table[i].slockstate = 0;
1625 kbd_table[i].modeflags = KBD_DEFMODE;
1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627 }
1628
1629 kbd_init_leds();
1630
1631 error = input_register_handler(&kbd_handler);
1632 if (error)
1633 return error;
1634
1635 tasklet_enable(&keyboard_tasklet);
1636 tasklet_schedule(&keyboard_tasklet);
1637
1638 return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 * vt_do_diacrit - diacritical table updates
1645 * @cmd: ioctl request
1646 * @udp: pointer to user data for ioctl
1647 * @perm: permissions check computed by caller
1648 *
1649 * Update the diacritical tables atomically and safely. Lock them
1650 * against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654 unsigned long flags;
1655 int asize;
1656 int ret = 0;
1657
1658 switch (cmd) {
1659 case KDGKBDIACR:
1660 {
1661 struct kbdiacrs __user *a = udp;
1662 struct kbdiacr *dia;
1663 int i;
1664
1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666 GFP_KERNEL);
1667 if (!dia)
1668 return -ENOMEM;
1669
1670 /* Lock the diacriticals table, make a copy and then
1671 copy it after we unlock */
1672 spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674 asize = accent_table_size;
1675 for (i = 0; i < asize; i++) {
1676 dia[i].diacr = conv_uni_to_8bit(
1677 accent_table[i].diacr);
1678 dia[i].base = conv_uni_to_8bit(
1679 accent_table[i].base);
1680 dia[i].result = conv_uni_to_8bit(
1681 accent_table[i].result);
1682 }
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacr, dia,
1688 asize * sizeof(struct kbdiacr)))
1689 ret = -EFAULT;
1690 kfree(dia);
1691 return ret;
1692 }
1693 case KDGKBDIACRUC:
1694 {
1695 struct kbdiacrsuc __user *a = udp;
1696 void *buf;
1697
1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699 GFP_KERNEL);
1700 if (buf == NULL)
1701 return -ENOMEM;
1702
1703 /* Lock the diacriticals table, make a copy and then
1704 copy it after we unlock */
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707 asize = accent_table_size;
1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacruc, buf,
1715 asize*sizeof(struct kbdiacruc)))
1716 ret = -EFAULT;
1717 kfree(buf);
1718 return ret;
1719 }
1720
1721 case KDSKBDIACR:
1722 {
1723 struct kbdiacrs __user *a = udp;
1724 struct kbdiacr *dia = NULL;
1725 unsigned int ct;
1726 int i;
1727
1728 if (!perm)
1729 return -EPERM;
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1734
1735 if (ct) {
1736
1737 dia = memdup_user(a->kbdiacr,
1738 sizeof(struct kbdiacr) * ct);
1739 if (IS_ERR(dia))
1740 return PTR_ERR(dia);
1741
1742 }
1743
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745 accent_table_size = ct;
1746 for (i = 0; i < ct; i++) {
1747 accent_table[i].diacr =
1748 conv_8bit_to_uni(dia[i].diacr);
1749 accent_table[i].base =
1750 conv_8bit_to_uni(dia[i].base);
1751 accent_table[i].result =
1752 conv_8bit_to_uni(dia[i].result);
1753 }
1754 spin_unlock_irqrestore(&kbd_event_lock, flags);
1755 kfree(dia);
1756 return 0;
1757 }
1758
1759 case KDSKBDIACRUC:
1760 {
1761 struct kbdiacrsuc __user *a = udp;
1762 unsigned int ct;
1763 void *buf = NULL;
1764
1765 if (!perm)
1766 return -EPERM;
1767
1768 if (get_user(ct, &a->kb_cnt))
1769 return -EFAULT;
1770
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 buf = memdup_user(a->kbdiacruc,
1776 ct * sizeof(struct kbdiacruc));
1777 if (IS_ERR(buf))
1778 return PTR_ERR(buf);
1779 }
1780 spin_lock_irqsave(&kbd_event_lock, flags);
1781 if (ct)
1782 memcpy(accent_table, buf,
1783 ct * sizeof(struct kbdiacruc));
1784 accent_table_size = ct;
1785 spin_unlock_irqrestore(&kbd_event_lock, flags);
1786 kfree(buf);
1787 return 0;
1788 }
1789 }
1790 return ret;
1791}
1792
1793/**
1794 * vt_do_kdskbmode - set keyboard mode ioctl
1795 * @console: the console to use
1796 * @arg: the requested mode
1797 *
1798 * Update the keyboard mode bits while holding the correct locks.
1799 * Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803 struct kbd_struct *kb = kbd_table + console;
1804 int ret = 0;
1805 unsigned long flags;
1806
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 switch(arg) {
1809 case K_RAW:
1810 kb->kbdmode = VC_RAW;
1811 break;
1812 case K_MEDIUMRAW:
1813 kb->kbdmode = VC_MEDIUMRAW;
1814 break;
1815 case K_XLATE:
1816 kb->kbdmode = VC_XLATE;
1817 do_compute_shiftstate();
1818 break;
1819 case K_UNICODE:
1820 kb->kbdmode = VC_UNICODE;
1821 do_compute_shiftstate();
1822 break;
1823 case K_OFF:
1824 kb->kbdmode = VC_OFF;
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829 spin_unlock_irqrestore(&kbd_event_lock, flags);
1830 return ret;
1831}
1832
1833/**
1834 * vt_do_kdskbmeta - set keyboard meta state
1835 * @console: the console to use
1836 * @arg: the requested meta state
1837 *
1838 * Update the keyboard meta bits while holding the correct locks.
1839 * Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843 struct kbd_struct *kb = kbd_table + console;
1844 int ret = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&kbd_event_lock, flags);
1848 switch(arg) {
1849 case K_METABIT:
1850 clr_vc_kbd_mode(kb, VC_META);
1851 break;
1852 case K_ESCPREFIX:
1853 set_vc_kbd_mode(kb, VC_META);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 }
1858 spin_unlock_irqrestore(&kbd_event_lock, flags);
1859 return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863 int perm)
1864{
1865 struct kbkeycode tmp;
1866 int kc = 0;
1867
1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869 return -EFAULT;
1870 switch (cmd) {
1871 case KDGETKEYCODE:
1872 kc = getkeycode(tmp.scancode);
1873 if (kc >= 0)
1874 kc = put_user(kc, &user_kbkc->keycode);
1875 break;
1876 case KDSETKEYCODE:
1877 if (!perm)
1878 return -EPERM;
1879 kc = setkeycode(tmp.scancode, tmp.keycode);
1880 break;
1881 }
1882 return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890 int console)
1891{
1892 struct kbd_struct *kb = kbd_table + console;
1893 struct kbentry tmp;
1894 ushort *key_map, *new_map, val, ov;
1895 unsigned long flags;
1896
1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898 return -EFAULT;
1899
1900 if (!capable(CAP_SYS_TTY_CONFIG))
1901 perm = 0;
1902
1903 switch (cmd) {
1904 case KDGKBENT:
1905 /* Ensure another thread doesn't free it under us */
1906 spin_lock_irqsave(&kbd_event_lock, flags);
1907 key_map = key_maps[s];
1908 if (key_map) {
1909 val = U(key_map[i]);
1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911 val = K_HOLE;
1912 } else
1913 val = (i ? K_HOLE : K_NOSUCHMAP);
1914 spin_unlock_irqrestore(&kbd_event_lock, flags);
1915 return put_user(val, &user_kbe->kb_value);
1916 case KDSKBENT:
1917 if (!perm)
1918 return -EPERM;
1919 if (!i && v == K_NOSUCHMAP) {
1920 spin_lock_irqsave(&kbd_event_lock, flags);
1921 /* deallocate map */
1922 key_map = key_maps[s];
1923 if (s && key_map) {
1924 key_maps[s] = NULL;
1925 if (key_map[0] == U(K_ALLOCATED)) {
1926 kfree(key_map);
1927 keymap_count--;
1928 }
1929 }
1930 spin_unlock_irqrestore(&kbd_event_lock, flags);
1931 break;
1932 }
1933
1934 if (KTYP(v) < NR_TYPES) {
1935 if (KVAL(v) > max_vals[KTYP(v)])
1936 return -EINVAL;
1937 } else
1938 if (kb->kbdmode != VC_UNICODE)
1939 return -EINVAL;
1940
1941 /* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943 /* assignment to entry 0 only tests validity of args */
1944 if (!i)
1945 break;
1946#endif
1947
1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949 if (!new_map)
1950 return -ENOMEM;
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 key_map = key_maps[s];
1953 if (key_map == NULL) {
1954 int j;
1955
1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957 !capable(CAP_SYS_RESOURCE)) {
1958 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 kfree(new_map);
1960 return -EPERM;
1961 }
1962 key_maps[s] = new_map;
1963 key_map = new_map;
1964 key_map[0] = U(K_ALLOCATED);
1965 for (j = 1; j < NR_KEYS; j++)
1966 key_map[j] = U(K_HOLE);
1967 keymap_count++;
1968 } else
1969 kfree(new_map);
1970
1971 ov = U(key_map[i]);
1972 if (v == ov)
1973 goto out;
1974 /*
1975 * Attention Key.
1976 */
1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 return -EPERM;
1980 }
1981 key_map[i] = U(v);
1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983 do_compute_shiftstate();
1984out:
1985 spin_unlock_irqrestore(&kbd_event_lock, flags);
1986 break;
1987 }
1988 return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997 struct kbsentry *kbs;
1998 char *p;
1999 u_char *q;
2000 u_char __user *up;
2001 int sz, fnw_sz;
2002 int delta;
2003 char *first_free, *fj, *fnw;
2004 int i, j, k;
2005 int ret;
2006 unsigned long flags;
2007
2008 if (!capable(CAP_SYS_TTY_CONFIG))
2009 perm = 0;
2010
2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012 if (!kbs) {
2013 ret = -ENOMEM;
2014 goto reterr;
2015 }
2016
2017 /* we mostly copy too much here (512bytes), but who cares ;) */
2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019 ret = -EFAULT;
2020 goto reterr;
2021 }
2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025 switch (cmd) {
2026 case KDGKBSENT:
2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028 a struct member */
2029 up = user_kdgkb->kb_string;
2030 p = func_table[i];
2031 if(p)
2032 for ( ; *p && sz; p++, sz--)
2033 if (put_user(*p, up++)) {
2034 ret = -EFAULT;
2035 goto reterr;
2036 }
2037 if (put_user('\0', up)) {
2038 ret = -EFAULT;
2039 goto reterr;
2040 }
2041 kfree(kbs);
2042 return ((p && *p) ? -EOVERFLOW : 0);
2043 case KDSKBSENT:
2044 if (!perm) {
2045 ret = -EPERM;
2046 goto reterr;
2047 }
2048
2049 fnw = NULL;
2050 fnw_sz = 0;
2051 /* race aginst other writers */
2052 again:
2053 spin_lock_irqsave(&func_buf_lock, flags);
2054 q = func_table[i];
2055
2056 /* fj pointer to next entry after 'q' */
2057 first_free = funcbufptr + (funcbufsize - funcbufleft);
2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059 ;
2060 if (j < MAX_NR_FUNC)
2061 fj = func_table[j];
2062 else
2063 fj = first_free;
2064 /* buffer usage increase by new entry */
2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067 if (delta <= funcbufleft) { /* it fits in current buf */
2068 if (j < MAX_NR_FUNC) {
2069 /* make enough space for new entry at 'fj' */
2070 memmove(fj + delta, fj, first_free - fj);
2071 for (k = j; k < MAX_NR_FUNC; k++)
2072 if (func_table[k])
2073 func_table[k] += delta;
2074 }
2075 if (!q)
2076 func_table[i] = fj;
2077 funcbufleft -= delta;
2078 } else { /* allocate a larger buffer */
2079 sz = 256;
2080 while (sz < funcbufsize - funcbufleft + delta)
2081 sz <<= 1;
2082 if (fnw_sz != sz) {
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084 kfree(fnw);
2085 fnw = kmalloc(sz, GFP_KERNEL);
2086 fnw_sz = sz;
2087 if (!fnw) {
2088 ret = -ENOMEM;
2089 goto reterr;
2090 }
2091 goto again;
2092 }
2093
2094 if (!q)
2095 func_table[i] = fj;
2096 /* copy data before insertion point to new location */
2097 if (fj > funcbufptr)
2098 memmove(fnw, funcbufptr, fj - funcbufptr);
2099 for (k = 0; k < j; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103 /* copy data after insertion point to new location */
2104 if (first_free > fj) {
2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106 for (k = j; k < MAX_NR_FUNC; k++)
2107 if (func_table[k])
2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109 }
2110 if (funcbufptr != func_buf)
2111 kfree(funcbufptr);
2112 funcbufptr = fnw;
2113 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114 funcbufsize = sz;
2115 }
2116 /* finally insert item itself */
2117 strcpy(func_table[i], kbs->kb_string);
2118 spin_unlock_irqrestore(&func_buf_lock, flags);
2119 break;
2120 }
2121 ret = 0;
2122reterr:
2123 kfree(kbs);
2124 return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129 struct kbd_struct *kb = kbd_table + console;
2130 unsigned long flags;
2131 unsigned char ucval;
2132
2133 switch(cmd) {
2134 /* the ioctls below read/set the flags usually shown in the leds */
2135 /* don't use them - they will go away without warning */
2136 case KDGKBLED:
2137 spin_lock_irqsave(&kbd_event_lock, flags);
2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139 spin_unlock_irqrestore(&kbd_event_lock, flags);
2140 return put_user(ucval, (char __user *)arg);
2141
2142 case KDSKBLED:
2143 if (!perm)
2144 return -EPERM;
2145 if (arg & ~0x77)
2146 return -EINVAL;
2147 spin_lock_irqsave(&led_lock, flags);
2148 kb->ledflagstate = (arg & 7);
2149 kb->default_ledflagstate = ((arg >> 4) & 7);
2150 set_leds();
2151 spin_unlock_irqrestore(&led_lock, flags);
2152 return 0;
2153
2154 /* the ioctls below only set the lights, not the functions */
2155 /* for those, see KDGKBLED and KDSKBLED above */
2156 case KDGETLED:
2157 ucval = getledstate();
2158 return put_user(ucval, (char __user *)arg);
2159
2160 case KDSETLED:
2161 if (!perm)
2162 return -EPERM;
2163 setledstate(kb, arg);
2164 return 0;
2165 }
2166 return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171 struct kbd_struct *kb = kbd_table + console;
2172 /* This is a spot read so needs no locking */
2173 switch (kb->kbdmode) {
2174 case VC_RAW:
2175 return K_RAW;
2176 case VC_MEDIUMRAW:
2177 return K_MEDIUMRAW;
2178 case VC_UNICODE:
2179 return K_UNICODE;
2180 case VC_OFF:
2181 return K_OFF;
2182 default:
2183 return K_XLATE;
2184 }
2185}
2186
2187/**
2188 * vt_do_kdgkbmeta - report meta status
2189 * @console: console to report
2190 *
2191 * Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 /* Again a spot read so no locking */
2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 * vt_reset_unicode - reset the unicode status
2202 * @console: console being reset
2203 *
2204 * Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&kbd_event_lock, flags);
2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212 spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 * vt_get_shiftstate - shift bit state
2217 *
2218 * Report the shift bits from the keyboard state. We have to export
2219 * this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223 /* Don't lock as this is a transient report */
2224 return shift_state;
2225}
2226
2227/**
2228 * vt_reset_keyboard - reset keyboard state
2229 * @console: console to reset
2230 *
2231 * Reset the keyboard bits for a console as part of a general console
2232 * reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236 struct kbd_struct *kb = kbd_table + console;
2237 unsigned long flags;
2238
2239 spin_lock_irqsave(&kbd_event_lock, flags);
2240 set_vc_kbd_mode(kb, VC_REPEAT);
2241 clr_vc_kbd_mode(kb, VC_CKMODE);
2242 clr_vc_kbd_mode(kb, VC_APPLIC);
2243 clr_vc_kbd_mode(kb, VC_CRLF);
2244 kb->lockstate = 0;
2245 kb->slockstate = 0;
2246 spin_lock(&led_lock);
2247 kb->ledmode = LED_SHOW_FLAGS;
2248 kb->ledflagstate = kb->default_ledflagstate;
2249 spin_unlock(&led_lock);
2250 /* do not do set_leds here because this causes an endless tasklet loop
2251 when the keyboard hasn't been initialized yet */
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 * vt_get_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Report back a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266 struct kbd_struct *kb = kbd_table + console;
2267 return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 * vt_set_kbd_mode_bit - read keyboard status bits
2272 * @console: console to read from
2273 * @bit: mode bit to read
2274 *
2275 * Set a vt mode bit. We do this without locking so the
2276 * caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281 struct kbd_struct *kb = kbd_table + console;
2282 unsigned long flags;
2283
2284 spin_lock_irqsave(&kbd_event_lock, flags);
2285 set_vc_kbd_mode(kb, bit);
2286 spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 * vt_clr_kbd_mode_bit - read keyboard status bits
2291 * @console: console to read from
2292 * @bit: mode bit to read
2293 *
2294 * Report back a vt mode bit. We do this without locking so the
2295 * caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300 struct kbd_struct *kb = kbd_table + console;
2301 unsigned long flags;
2302
2303 spin_lock_irqsave(&kbd_event_lock, flags);
2304 clr_vc_kbd_mode(kb, bit);
2305 spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/string.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/leds.h>
39
40#include <linux/kbd_kern.h>
41#include <linux/kbd_diacr.h>
42#include <linux/vt_kern.h>
43#include <linux/input.h>
44#include <linux/reboot.h>
45#include <linux/notifier.h>
46#include <linux/jiffies.h>
47#include <linux/uaccess.h>
48
49#include <asm/irq_regs.h>
50
51extern void ctrl_alt_del(void);
52
53/*
54 * Exported functions/variables
55 */
56
57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58
59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60#include <asm/kbdleds.h>
61#else
62static inline int kbd_defleds(void)
63{
64 return 0;
65}
66#endif
67
68#define KBD_DEFLOCK 0
69
70/*
71 * Handler Tables.
72 */
73
74#define K_HANDLERS\
75 k_self, k_fn, k_spec, k_pad,\
76 k_dead, k_cons, k_cur, k_shift,\
77 k_meta, k_ascii, k_lock, k_lowercase,\
78 k_slock, k_dead2, k_brl, k_ignore
79
80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 char up_flag);
82static k_handler_fn K_HANDLERS;
83static k_handler_fn *k_handler[16] = { K_HANDLERS };
84
85#define FN_HANDLERS\
86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91
92typedef void (fn_handler_fn)(struct vc_data *vc);
93static fn_handler_fn FN_HANDLERS;
94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95
96/*
97 * Variables exported for vt_ioctl.c
98 */
99
100struct vt_spawn_console vt_spawn_con = {
101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 .pid = NULL,
103 .sig = 0,
104};
105
106
107/*
108 * Internal Data.
109 */
110
111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112static struct kbd_struct *kbd = kbd_table;
113
114/* maximum values each key_handler can handle */
115static const int max_vals[] = {
116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 255, NR_LOCK - 1, 255, NR_BRL - 1
119};
120
121static const int NR_TYPES = ARRAY_SIZE(max_vals);
122
123static struct input_handler kbd_handler;
124static DEFINE_SPINLOCK(kbd_event_lock);
125static DEFINE_SPINLOCK(led_lock);
126static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
127static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
128static bool dead_key_next;
129static int npadch = -1; /* -1 or number assembled on pad */
130static unsigned int diacr;
131static char rep; /* flag telling character repeat */
132
133static int shift_state = 0;
134
135static unsigned int ledstate = -1U; /* undefined */
136static unsigned char ledioctl;
137
138/*
139 * Notifier list for console keyboard events
140 */
141static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
142
143int register_keyboard_notifier(struct notifier_block *nb)
144{
145 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
146}
147EXPORT_SYMBOL_GPL(register_keyboard_notifier);
148
149int unregister_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
154
155/*
156 * Translation of scancodes to keycodes. We set them on only the first
157 * keyboard in the list that accepts the scancode and keycode.
158 * Explanation for not choosing the first attached keyboard anymore:
159 * USB keyboards for example have two event devices: one for all "normal"
160 * keys and one for extra function keys (like "volume up", "make coffee",
161 * etc.). So this means that scancodes for the extra function keys won't
162 * be valid for the first event device, but will be for the second.
163 */
164
165struct getset_keycode_data {
166 struct input_keymap_entry ke;
167 int error;
168};
169
170static int getkeycode_helper(struct input_handle *handle, void *data)
171{
172 struct getset_keycode_data *d = data;
173
174 d->error = input_get_keycode(handle->dev, &d->ke);
175
176 return d->error == 0; /* stop as soon as we successfully get one */
177}
178
179static int getkeycode(unsigned int scancode)
180{
181 struct getset_keycode_data d = {
182 .ke = {
183 .flags = 0,
184 .len = sizeof(scancode),
185 .keycode = 0,
186 },
187 .error = -ENODEV,
188 };
189
190 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
191
192 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
193
194 return d.error ?: d.ke.keycode;
195}
196
197static int setkeycode_helper(struct input_handle *handle, void *data)
198{
199 struct getset_keycode_data *d = data;
200
201 d->error = input_set_keycode(handle->dev, &d->ke);
202
203 return d->error == 0; /* stop as soon as we successfully set one */
204}
205
206static int setkeycode(unsigned int scancode, unsigned int keycode)
207{
208 struct getset_keycode_data d = {
209 .ke = {
210 .flags = 0,
211 .len = sizeof(scancode),
212 .keycode = keycode,
213 },
214 .error = -ENODEV,
215 };
216
217 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
218
219 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
220
221 return d.error;
222}
223
224/*
225 * Making beeps and bells. Note that we prefer beeps to bells, but when
226 * shutting the sound off we do both.
227 */
228
229static int kd_sound_helper(struct input_handle *handle, void *data)
230{
231 unsigned int *hz = data;
232 struct input_dev *dev = handle->dev;
233
234 if (test_bit(EV_SND, dev->evbit)) {
235 if (test_bit(SND_TONE, dev->sndbit)) {
236 input_inject_event(handle, EV_SND, SND_TONE, *hz);
237 if (*hz)
238 return 0;
239 }
240 if (test_bit(SND_BELL, dev->sndbit))
241 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
242 }
243
244 return 0;
245}
246
247static void kd_nosound(struct timer_list *unused)
248{
249 static unsigned int zero;
250
251 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
252}
253
254static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
255
256void kd_mksound(unsigned int hz, unsigned int ticks)
257{
258 del_timer_sync(&kd_mksound_timer);
259
260 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
261
262 if (hz && ticks)
263 mod_timer(&kd_mksound_timer, jiffies + ticks);
264}
265EXPORT_SYMBOL(kd_mksound);
266
267/*
268 * Setting the keyboard rate.
269 */
270
271static int kbd_rate_helper(struct input_handle *handle, void *data)
272{
273 struct input_dev *dev = handle->dev;
274 struct kbd_repeat *rpt = data;
275
276 if (test_bit(EV_REP, dev->evbit)) {
277
278 if (rpt[0].delay > 0)
279 input_inject_event(handle,
280 EV_REP, REP_DELAY, rpt[0].delay);
281 if (rpt[0].period > 0)
282 input_inject_event(handle,
283 EV_REP, REP_PERIOD, rpt[0].period);
284
285 rpt[1].delay = dev->rep[REP_DELAY];
286 rpt[1].period = dev->rep[REP_PERIOD];
287 }
288
289 return 0;
290}
291
292int kbd_rate(struct kbd_repeat *rpt)
293{
294 struct kbd_repeat data[2] = { *rpt };
295
296 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
297 *rpt = data[1]; /* Copy currently used settings */
298
299 return 0;
300}
301
302/*
303 * Helper Functions.
304 */
305static void put_queue(struct vc_data *vc, int ch)
306{
307 tty_insert_flip_char(&vc->port, ch, 0);
308 tty_schedule_flip(&vc->port);
309}
310
311static void puts_queue(struct vc_data *vc, char *cp)
312{
313 while (*cp) {
314 tty_insert_flip_char(&vc->port, *cp, 0);
315 cp++;
316 }
317 tty_schedule_flip(&vc->port);
318}
319
320static void applkey(struct vc_data *vc, int key, char mode)
321{
322 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
323
324 buf[1] = (mode ? 'O' : '[');
325 buf[2] = key;
326 puts_queue(vc, buf);
327}
328
329/*
330 * Many other routines do put_queue, but I think either
331 * they produce ASCII, or they produce some user-assigned
332 * string, and in both cases we might assume that it is
333 * in utf-8 already.
334 */
335static void to_utf8(struct vc_data *vc, uint c)
336{
337 if (c < 0x80)
338 /* 0******* */
339 put_queue(vc, c);
340 else if (c < 0x800) {
341 /* 110***** 10****** */
342 put_queue(vc, 0xc0 | (c >> 6));
343 put_queue(vc, 0x80 | (c & 0x3f));
344 } else if (c < 0x10000) {
345 if (c >= 0xD800 && c < 0xE000)
346 return;
347 if (c == 0xFFFF)
348 return;
349 /* 1110**** 10****** 10****** */
350 put_queue(vc, 0xe0 | (c >> 12));
351 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
352 put_queue(vc, 0x80 | (c & 0x3f));
353 } else if (c < 0x110000) {
354 /* 11110*** 10****** 10****** 10****** */
355 put_queue(vc, 0xf0 | (c >> 18));
356 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 }
360}
361
362/*
363 * Called after returning from RAW mode or when changing consoles - recompute
364 * shift_down[] and shift_state from key_down[] maybe called when keymap is
365 * undefined, so that shiftkey release is seen. The caller must hold the
366 * kbd_event_lock.
367 */
368
369static void do_compute_shiftstate(void)
370{
371 unsigned int k, sym, val;
372
373 shift_state = 0;
374 memset(shift_down, 0, sizeof(shift_down));
375
376 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
377 sym = U(key_maps[0][k]);
378 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
379 continue;
380
381 val = KVAL(sym);
382 if (val == KVAL(K_CAPSSHIFT))
383 val = KVAL(K_SHIFT);
384
385 shift_down[val]++;
386 shift_state |= BIT(val);
387 }
388}
389
390/* We still have to export this method to vt.c */
391void compute_shiftstate(void)
392{
393 unsigned long flags;
394 spin_lock_irqsave(&kbd_event_lock, flags);
395 do_compute_shiftstate();
396 spin_unlock_irqrestore(&kbd_event_lock, flags);
397}
398
399/*
400 * We have a combining character DIACR here, followed by the character CH.
401 * If the combination occurs in the table, return the corresponding value.
402 * Otherwise, if CH is a space or equals DIACR, return DIACR.
403 * Otherwise, conclude that DIACR was not combining after all,
404 * queue it and return CH.
405 */
406static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
407{
408 unsigned int d = diacr;
409 unsigned int i;
410
411 diacr = 0;
412
413 if ((d & ~0xff) == BRL_UC_ROW) {
414 if ((ch & ~0xff) == BRL_UC_ROW)
415 return d | ch;
416 } else {
417 for (i = 0; i < accent_table_size; i++)
418 if (accent_table[i].diacr == d && accent_table[i].base == ch)
419 return accent_table[i].result;
420 }
421
422 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
423 return d;
424
425 if (kbd->kbdmode == VC_UNICODE)
426 to_utf8(vc, d);
427 else {
428 int c = conv_uni_to_8bit(d);
429 if (c != -1)
430 put_queue(vc, c);
431 }
432
433 return ch;
434}
435
436/*
437 * Special function handlers
438 */
439static void fn_enter(struct vc_data *vc)
440{
441 if (diacr) {
442 if (kbd->kbdmode == VC_UNICODE)
443 to_utf8(vc, diacr);
444 else {
445 int c = conv_uni_to_8bit(diacr);
446 if (c != -1)
447 put_queue(vc, c);
448 }
449 diacr = 0;
450 }
451
452 put_queue(vc, 13);
453 if (vc_kbd_mode(kbd, VC_CRLF))
454 put_queue(vc, 10);
455}
456
457static void fn_caps_toggle(struct vc_data *vc)
458{
459 if (rep)
460 return;
461
462 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463}
464
465static void fn_caps_on(struct vc_data *vc)
466{
467 if (rep)
468 return;
469
470 set_vc_kbd_led(kbd, VC_CAPSLOCK);
471}
472
473static void fn_show_ptregs(struct vc_data *vc)
474{
475 struct pt_regs *regs = get_irq_regs();
476
477 if (regs)
478 show_regs(regs);
479}
480
481static void fn_hold(struct vc_data *vc)
482{
483 struct tty_struct *tty = vc->port.tty;
484
485 if (rep || !tty)
486 return;
487
488 /*
489 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
490 * these routines are also activated by ^S/^Q.
491 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
492 */
493 if (tty->stopped)
494 start_tty(tty);
495 else
496 stop_tty(tty);
497}
498
499static void fn_num(struct vc_data *vc)
500{
501 if (vc_kbd_mode(kbd, VC_APPLIC))
502 applkey(vc, 'P', 1);
503 else
504 fn_bare_num(vc);
505}
506
507/*
508 * Bind this to Shift-NumLock if you work in application keypad mode
509 * but want to be able to change the NumLock flag.
510 * Bind this to NumLock if you prefer that the NumLock key always
511 * changes the NumLock flag.
512 */
513static void fn_bare_num(struct vc_data *vc)
514{
515 if (!rep)
516 chg_vc_kbd_led(kbd, VC_NUMLOCK);
517}
518
519static void fn_lastcons(struct vc_data *vc)
520{
521 /* switch to the last used console, ChN */
522 set_console(last_console);
523}
524
525static void fn_dec_console(struct vc_data *vc)
526{
527 int i, cur = fg_console;
528
529 /* Currently switching? Queue this next switch relative to that. */
530 if (want_console != -1)
531 cur = want_console;
532
533 for (i = cur - 1; i != cur; i--) {
534 if (i == -1)
535 i = MAX_NR_CONSOLES - 1;
536 if (vc_cons_allocated(i))
537 break;
538 }
539 set_console(i);
540}
541
542static void fn_inc_console(struct vc_data *vc)
543{
544 int i, cur = fg_console;
545
546 /* Currently switching? Queue this next switch relative to that. */
547 if (want_console != -1)
548 cur = want_console;
549
550 for (i = cur+1; i != cur; i++) {
551 if (i == MAX_NR_CONSOLES)
552 i = 0;
553 if (vc_cons_allocated(i))
554 break;
555 }
556 set_console(i);
557}
558
559static void fn_send_intr(struct vc_data *vc)
560{
561 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
562 tty_schedule_flip(&vc->port);
563}
564
565static void fn_scroll_forw(struct vc_data *vc)
566{
567 scrollfront(vc, 0);
568}
569
570static void fn_scroll_back(struct vc_data *vc)
571{
572 scrollback(vc);
573}
574
575static void fn_show_mem(struct vc_data *vc)
576{
577 show_mem(0, NULL);
578}
579
580static void fn_show_state(struct vc_data *vc)
581{
582 show_state();
583}
584
585static void fn_boot_it(struct vc_data *vc)
586{
587 ctrl_alt_del();
588}
589
590static void fn_compose(struct vc_data *vc)
591{
592 dead_key_next = true;
593}
594
595static void fn_spawn_con(struct vc_data *vc)
596{
597 spin_lock(&vt_spawn_con.lock);
598 if (vt_spawn_con.pid)
599 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
600 put_pid(vt_spawn_con.pid);
601 vt_spawn_con.pid = NULL;
602 }
603 spin_unlock(&vt_spawn_con.lock);
604}
605
606static void fn_SAK(struct vc_data *vc)
607{
608 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
609 schedule_work(SAK_work);
610}
611
612static void fn_null(struct vc_data *vc)
613{
614 do_compute_shiftstate();
615}
616
617/*
618 * Special key handlers
619 */
620static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
621{
622}
623
624static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
625{
626 if (up_flag)
627 return;
628 if (value >= ARRAY_SIZE(fn_handler))
629 return;
630 if ((kbd->kbdmode == VC_RAW ||
631 kbd->kbdmode == VC_MEDIUMRAW ||
632 kbd->kbdmode == VC_OFF) &&
633 value != KVAL(K_SAK))
634 return; /* SAK is allowed even in raw mode */
635 fn_handler[value](vc);
636}
637
638static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
639{
640 pr_err("k_lowercase was called - impossible\n");
641}
642
643static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
644{
645 if (up_flag)
646 return; /* no action, if this is a key release */
647
648 if (diacr)
649 value = handle_diacr(vc, value);
650
651 if (dead_key_next) {
652 dead_key_next = false;
653 diacr = value;
654 return;
655 }
656 if (kbd->kbdmode == VC_UNICODE)
657 to_utf8(vc, value);
658 else {
659 int c = conv_uni_to_8bit(value);
660 if (c != -1)
661 put_queue(vc, c);
662 }
663}
664
665/*
666 * Handle dead key. Note that we now may have several
667 * dead keys modifying the same character. Very useful
668 * for Vietnamese.
669 */
670static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
671{
672 if (up_flag)
673 return;
674
675 diacr = (diacr ? handle_diacr(vc, value) : value);
676}
677
678static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
679{
680 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
681}
682
683static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
684{
685 k_deadunicode(vc, value, up_flag);
686}
687
688/*
689 * Obsolete - for backwards compatibility only
690 */
691static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
692{
693 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
694
695 k_deadunicode(vc, ret_diacr[value], up_flag);
696}
697
698static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
699{
700 if (up_flag)
701 return;
702
703 set_console(value);
704}
705
706static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
707{
708 if (up_flag)
709 return;
710
711 if ((unsigned)value < ARRAY_SIZE(func_table)) {
712 if (func_table[value])
713 puts_queue(vc, func_table[value]);
714 } else
715 pr_err("k_fn called with value=%d\n", value);
716}
717
718static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
719{
720 static const char cur_chars[] = "BDCA";
721
722 if (up_flag)
723 return;
724
725 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
726}
727
728static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
729{
730 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
731 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
732
733 if (up_flag)
734 return; /* no action, if this is a key release */
735
736 /* kludge... shift forces cursor/number keys */
737 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
738 applkey(vc, app_map[value], 1);
739 return;
740 }
741
742 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
743
744 switch (value) {
745 case KVAL(K_PCOMMA):
746 case KVAL(K_PDOT):
747 k_fn(vc, KVAL(K_REMOVE), 0);
748 return;
749 case KVAL(K_P0):
750 k_fn(vc, KVAL(K_INSERT), 0);
751 return;
752 case KVAL(K_P1):
753 k_fn(vc, KVAL(K_SELECT), 0);
754 return;
755 case KVAL(K_P2):
756 k_cur(vc, KVAL(K_DOWN), 0);
757 return;
758 case KVAL(K_P3):
759 k_fn(vc, KVAL(K_PGDN), 0);
760 return;
761 case KVAL(K_P4):
762 k_cur(vc, KVAL(K_LEFT), 0);
763 return;
764 case KVAL(K_P6):
765 k_cur(vc, KVAL(K_RIGHT), 0);
766 return;
767 case KVAL(K_P7):
768 k_fn(vc, KVAL(K_FIND), 0);
769 return;
770 case KVAL(K_P8):
771 k_cur(vc, KVAL(K_UP), 0);
772 return;
773 case KVAL(K_P9):
774 k_fn(vc, KVAL(K_PGUP), 0);
775 return;
776 case KVAL(K_P5):
777 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
778 return;
779 }
780 }
781
782 put_queue(vc, pad_chars[value]);
783 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
784 put_queue(vc, 10);
785}
786
787static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
788{
789 int old_state = shift_state;
790
791 if (rep)
792 return;
793 /*
794 * Mimic typewriter:
795 * a CapsShift key acts like Shift but undoes CapsLock
796 */
797 if (value == KVAL(K_CAPSSHIFT)) {
798 value = KVAL(K_SHIFT);
799 if (!up_flag)
800 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
801 }
802
803 if (up_flag) {
804 /*
805 * handle the case that two shift or control
806 * keys are depressed simultaneously
807 */
808 if (shift_down[value])
809 shift_down[value]--;
810 } else
811 shift_down[value]++;
812
813 if (shift_down[value])
814 shift_state |= (1 << value);
815 else
816 shift_state &= ~(1 << value);
817
818 /* kludge */
819 if (up_flag && shift_state != old_state && npadch != -1) {
820 if (kbd->kbdmode == VC_UNICODE)
821 to_utf8(vc, npadch);
822 else
823 put_queue(vc, npadch & 0xff);
824 npadch = -1;
825 }
826}
827
828static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
829{
830 if (up_flag)
831 return;
832
833 if (vc_kbd_mode(kbd, VC_META)) {
834 put_queue(vc, '\033');
835 put_queue(vc, value);
836 } else
837 put_queue(vc, value | 0x80);
838}
839
840static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
841{
842 int base;
843
844 if (up_flag)
845 return;
846
847 if (value < 10) {
848 /* decimal input of code, while Alt depressed */
849 base = 10;
850 } else {
851 /* hexadecimal input of code, while AltGr depressed */
852 value -= 10;
853 base = 16;
854 }
855
856 if (npadch == -1)
857 npadch = value;
858 else
859 npadch = npadch * base + value;
860}
861
862static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag || rep)
865 return;
866
867 chg_vc_kbd_lock(kbd, value);
868}
869
870static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
871{
872 k_shift(vc, value, up_flag);
873 if (up_flag || rep)
874 return;
875
876 chg_vc_kbd_slock(kbd, value);
877 /* try to make Alt, oops, AltGr and such work */
878 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
879 kbd->slockstate = 0;
880 chg_vc_kbd_slock(kbd, value);
881 }
882}
883
884/* by default, 300ms interval for combination release */
885static unsigned brl_timeout = 300;
886MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
887module_param(brl_timeout, uint, 0644);
888
889static unsigned brl_nbchords = 1;
890MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
891module_param(brl_nbchords, uint, 0644);
892
893static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
894{
895 static unsigned long chords;
896 static unsigned committed;
897
898 if (!brl_nbchords)
899 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
900 else {
901 committed |= pattern;
902 chords++;
903 if (chords == brl_nbchords) {
904 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
905 chords = 0;
906 committed = 0;
907 }
908 }
909}
910
911static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
912{
913 static unsigned pressed, committing;
914 static unsigned long releasestart;
915
916 if (kbd->kbdmode != VC_UNICODE) {
917 if (!up_flag)
918 pr_warn("keyboard mode must be unicode for braille patterns\n");
919 return;
920 }
921
922 if (!value) {
923 k_unicode(vc, BRL_UC_ROW, up_flag);
924 return;
925 }
926
927 if (value > 8)
928 return;
929
930 if (!up_flag) {
931 pressed |= 1 << (value - 1);
932 if (!brl_timeout)
933 committing = pressed;
934 } else if (brl_timeout) {
935 if (!committing ||
936 time_after(jiffies,
937 releasestart + msecs_to_jiffies(brl_timeout))) {
938 committing = pressed;
939 releasestart = jiffies;
940 }
941 pressed &= ~(1 << (value - 1));
942 if (!pressed && committing) {
943 k_brlcommit(vc, committing, 0);
944 committing = 0;
945 }
946 } else {
947 if (committing) {
948 k_brlcommit(vc, committing, 0);
949 committing = 0;
950 }
951 pressed &= ~(1 << (value - 1));
952 }
953}
954
955#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
956
957struct kbd_led_trigger {
958 struct led_trigger trigger;
959 unsigned int mask;
960};
961
962static void kbd_led_trigger_activate(struct led_classdev *cdev)
963{
964 struct kbd_led_trigger *trigger =
965 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
966
967 tasklet_disable(&keyboard_tasklet);
968 if (ledstate != -1U)
969 led_trigger_event(&trigger->trigger,
970 ledstate & trigger->mask ?
971 LED_FULL : LED_OFF);
972 tasklet_enable(&keyboard_tasklet);
973}
974
975#define KBD_LED_TRIGGER(_led_bit, _name) { \
976 .trigger = { \
977 .name = _name, \
978 .activate = kbd_led_trigger_activate, \
979 }, \
980 .mask = BIT(_led_bit), \
981 }
982
983#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
984 KBD_LED_TRIGGER((_led_bit) + 8, _name)
985
986static struct kbd_led_trigger kbd_led_triggers[] = {
987 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
988 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
989 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
990 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
991
992 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
993 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
994 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
995 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
996 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
997 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
998 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
999 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1000};
1001
1002static void kbd_propagate_led_state(unsigned int old_state,
1003 unsigned int new_state)
1004{
1005 struct kbd_led_trigger *trigger;
1006 unsigned int changed = old_state ^ new_state;
1007 int i;
1008
1009 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010 trigger = &kbd_led_triggers[i];
1011
1012 if (changed & trigger->mask)
1013 led_trigger_event(&trigger->trigger,
1014 new_state & trigger->mask ?
1015 LED_FULL : LED_OFF);
1016 }
1017}
1018
1019static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020{
1021 unsigned int led_state = *(unsigned int *)data;
1022
1023 if (test_bit(EV_LED, handle->dev->evbit))
1024 kbd_propagate_led_state(~led_state, led_state);
1025
1026 return 0;
1027}
1028
1029static void kbd_init_leds(void)
1030{
1031 int error;
1032 int i;
1033
1034 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036 if (error)
1037 pr_err("error %d while registering trigger %s\n",
1038 error, kbd_led_triggers[i].trigger.name);
1039 }
1040}
1041
1042#else
1043
1044static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045{
1046 unsigned int leds = *(unsigned int *)data;
1047
1048 if (test_bit(EV_LED, handle->dev->evbit)) {
1049 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1051 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1052 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053 }
1054
1055 return 0;
1056}
1057
1058static void kbd_propagate_led_state(unsigned int old_state,
1059 unsigned int new_state)
1060{
1061 input_handler_for_each_handle(&kbd_handler, &new_state,
1062 kbd_update_leds_helper);
1063}
1064
1065static void kbd_init_leds(void)
1066{
1067}
1068
1069#endif
1070
1071/*
1072 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074 * or (iii) specified bits of specified words in kernel memory.
1075 */
1076static unsigned char getledstate(void)
1077{
1078 return ledstate & 0xff;
1079}
1080
1081void setledstate(struct kbd_struct *kb, unsigned int led)
1082{
1083 unsigned long flags;
1084 spin_lock_irqsave(&led_lock, flags);
1085 if (!(led & ~7)) {
1086 ledioctl = led;
1087 kb->ledmode = LED_SHOW_IOCTL;
1088 } else
1089 kb->ledmode = LED_SHOW_FLAGS;
1090
1091 set_leds();
1092 spin_unlock_irqrestore(&led_lock, flags);
1093}
1094
1095static inline unsigned char getleds(void)
1096{
1097 struct kbd_struct *kb = kbd_table + fg_console;
1098
1099 if (kb->ledmode == LED_SHOW_IOCTL)
1100 return ledioctl;
1101
1102 return kb->ledflagstate;
1103}
1104
1105/**
1106 * vt_get_leds - helper for braille console
1107 * @console: console to read
1108 * @flag: flag we want to check
1109 *
1110 * Check the status of a keyboard led flag and report it back
1111 */
1112int vt_get_leds(int console, int flag)
1113{
1114 struct kbd_struct *kb = kbd_table + console;
1115 int ret;
1116 unsigned long flags;
1117
1118 spin_lock_irqsave(&led_lock, flags);
1119 ret = vc_kbd_led(kb, flag);
1120 spin_unlock_irqrestore(&led_lock, flags);
1121
1122 return ret;
1123}
1124EXPORT_SYMBOL_GPL(vt_get_leds);
1125
1126/**
1127 * vt_set_led_state - set LED state of a console
1128 * @console: console to set
1129 * @leds: LED bits
1130 *
1131 * Set the LEDs on a console. This is a wrapper for the VT layer
1132 * so that we can keep kbd knowledge internal
1133 */
1134void vt_set_led_state(int console, int leds)
1135{
1136 struct kbd_struct *kb = kbd_table + console;
1137 setledstate(kb, leds);
1138}
1139
1140/**
1141 * vt_kbd_con_start - Keyboard side of console start
1142 * @console: console
1143 *
1144 * Handle console start. This is a wrapper for the VT layer
1145 * so that we can keep kbd knowledge internal
1146 *
1147 * FIXME: We eventually need to hold the kbd lock here to protect
1148 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1149 * and start_tty under the kbd_event_lock, while normal tty paths
1150 * don't hold the lock. We probably need to split out an LED lock
1151 * but not during an -rc release!
1152 */
1153void vt_kbd_con_start(int console)
1154{
1155 struct kbd_struct *kb = kbd_table + console;
1156 unsigned long flags;
1157 spin_lock_irqsave(&led_lock, flags);
1158 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159 set_leds();
1160 spin_unlock_irqrestore(&led_lock, flags);
1161}
1162
1163/**
1164 * vt_kbd_con_stop - Keyboard side of console stop
1165 * @console: console
1166 *
1167 * Handle console stop. This is a wrapper for the VT layer
1168 * so that we can keep kbd knowledge internal
1169 */
1170void vt_kbd_con_stop(int console)
1171{
1172 struct kbd_struct *kb = kbd_table + console;
1173 unsigned long flags;
1174 spin_lock_irqsave(&led_lock, flags);
1175 set_vc_kbd_led(kb, VC_SCROLLOCK);
1176 set_leds();
1177 spin_unlock_irqrestore(&led_lock, flags);
1178}
1179
1180/*
1181 * This is the tasklet that updates LED state of LEDs using standard
1182 * keyboard triggers. The reason we use tasklet is that we need to
1183 * handle the scenario when keyboard handler is not registered yet
1184 * but we already getting updates from the VT to update led state.
1185 */
1186static void kbd_bh(unsigned long dummy)
1187{
1188 unsigned int leds;
1189 unsigned long flags;
1190
1191 spin_lock_irqsave(&led_lock, flags);
1192 leds = getleds();
1193 leds |= (unsigned int)kbd->lockstate << 8;
1194 spin_unlock_irqrestore(&led_lock, flags);
1195
1196 if (leds != ledstate) {
1197 kbd_propagate_led_state(ledstate, leds);
1198 ledstate = leds;
1199 }
1200}
1201
1202DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203
1204#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1208
1209#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211
1212static const unsigned short x86_keycodes[256] =
1213 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1214 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228
1229#ifdef CONFIG_SPARC
1230static int sparc_l1_a_state;
1231extern void sun_do_break(void);
1232#endif
1233
1234static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235 unsigned char up_flag)
1236{
1237 int code;
1238
1239 switch (keycode) {
1240
1241 case KEY_PAUSE:
1242 put_queue(vc, 0xe1);
1243 put_queue(vc, 0x1d | up_flag);
1244 put_queue(vc, 0x45 | up_flag);
1245 break;
1246
1247 case KEY_HANGEUL:
1248 if (!up_flag)
1249 put_queue(vc, 0xf2);
1250 break;
1251
1252 case KEY_HANJA:
1253 if (!up_flag)
1254 put_queue(vc, 0xf1);
1255 break;
1256
1257 case KEY_SYSRQ:
1258 /*
1259 * Real AT keyboards (that's what we're trying
1260 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261 * pressing PrtSc/SysRq alone, but simply 0x54
1262 * when pressing Alt+PrtSc/SysRq.
1263 */
1264 if (test_bit(KEY_LEFTALT, key_down) ||
1265 test_bit(KEY_RIGHTALT, key_down)) {
1266 put_queue(vc, 0x54 | up_flag);
1267 } else {
1268 put_queue(vc, 0xe0);
1269 put_queue(vc, 0x2a | up_flag);
1270 put_queue(vc, 0xe0);
1271 put_queue(vc, 0x37 | up_flag);
1272 }
1273 break;
1274
1275 default:
1276 if (keycode > 255)
1277 return -1;
1278
1279 code = x86_keycodes[keycode];
1280 if (!code)
1281 return -1;
1282
1283 if (code & 0x100)
1284 put_queue(vc, 0xe0);
1285 put_queue(vc, (code & 0x7f) | up_flag);
1286
1287 break;
1288 }
1289
1290 return 0;
1291}
1292
1293#else
1294
1295#define HW_RAW(dev) 0
1296
1297static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298{
1299 if (keycode > 127)
1300 return -1;
1301
1302 put_queue(vc, keycode | up_flag);
1303 return 0;
1304}
1305#endif
1306
1307static void kbd_rawcode(unsigned char data)
1308{
1309 struct vc_data *vc = vc_cons[fg_console].d;
1310
1311 kbd = kbd_table + vc->vc_num;
1312 if (kbd->kbdmode == VC_RAW)
1313 put_queue(vc, data);
1314}
1315
1316static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317{
1318 struct vc_data *vc = vc_cons[fg_console].d;
1319 unsigned short keysym, *key_map;
1320 unsigned char type;
1321 bool raw_mode;
1322 struct tty_struct *tty;
1323 int shift_final;
1324 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325 int rc;
1326
1327 tty = vc->port.tty;
1328
1329 if (tty && (!tty->driver_data)) {
1330 /* No driver data? Strange. Okay we fix it then. */
1331 tty->driver_data = vc;
1332 }
1333
1334 kbd = kbd_table + vc->vc_num;
1335
1336#ifdef CONFIG_SPARC
1337 if (keycode == KEY_STOP)
1338 sparc_l1_a_state = down;
1339#endif
1340
1341 rep = (down == 2);
1342
1343 raw_mode = (kbd->kbdmode == VC_RAW);
1344 if (raw_mode && !hw_raw)
1345 if (emulate_raw(vc, keycode, !down << 7))
1346 if (keycode < BTN_MISC && printk_ratelimit())
1347 pr_warn("can't emulate rawmode for keycode %d\n",
1348 keycode);
1349
1350#ifdef CONFIG_SPARC
1351 if (keycode == KEY_A && sparc_l1_a_state) {
1352 sparc_l1_a_state = false;
1353 sun_do_break();
1354 }
1355#endif
1356
1357 if (kbd->kbdmode == VC_MEDIUMRAW) {
1358 /*
1359 * This is extended medium raw mode, with keys above 127
1360 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362 * interfere with anything else. The two bytes after 0 will
1363 * always have the up flag set not to interfere with older
1364 * applications. This allows for 16384 different keycodes,
1365 * which should be enough.
1366 */
1367 if (keycode < 128) {
1368 put_queue(vc, keycode | (!down << 7));
1369 } else {
1370 put_queue(vc, !down << 7);
1371 put_queue(vc, (keycode >> 7) | 0x80);
1372 put_queue(vc, keycode | 0x80);
1373 }
1374 raw_mode = true;
1375 }
1376
1377 if (down)
1378 set_bit(keycode, key_down);
1379 else
1380 clear_bit(keycode, key_down);
1381
1382 if (rep &&
1383 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385 /*
1386 * Don't repeat a key if the input buffers are not empty and the
1387 * characters get aren't echoed locally. This makes key repeat
1388 * usable with slow applications and under heavy loads.
1389 */
1390 return;
1391 }
1392
1393 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394 param.ledstate = kbd->ledflagstate;
1395 key_map = key_maps[shift_final];
1396
1397 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398 KBD_KEYCODE, ¶m);
1399 if (rc == NOTIFY_STOP || !key_map) {
1400 atomic_notifier_call_chain(&keyboard_notifier_list,
1401 KBD_UNBOUND_KEYCODE, ¶m);
1402 do_compute_shiftstate();
1403 kbd->slockstate = 0;
1404 return;
1405 }
1406
1407 if (keycode < NR_KEYS)
1408 keysym = key_map[keycode];
1409 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411 else
1412 return;
1413
1414 type = KTYP(keysym);
1415
1416 if (type < 0xf0) {
1417 param.value = keysym;
1418 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419 KBD_UNICODE, ¶m);
1420 if (rc != NOTIFY_STOP)
1421 if (down && !raw_mode)
1422 to_utf8(vc, keysym);
1423 return;
1424 }
1425
1426 type -= 0xf0;
1427
1428 if (type == KT_LETTER) {
1429 type = KT_LATIN;
1430 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432 if (key_map)
1433 keysym = key_map[keycode];
1434 }
1435 }
1436
1437 param.value = keysym;
1438 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_KEYSYM, ¶m);
1440 if (rc == NOTIFY_STOP)
1441 return;
1442
1443 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444 return;
1445
1446 (*k_handler[type])(vc, keysym & 0xff, !down);
1447
1448 param.ledstate = kbd->ledflagstate;
1449 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1450
1451 if (type != KT_SLOCK)
1452 kbd->slockstate = 0;
1453}
1454
1455static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456 unsigned int event_code, int value)
1457{
1458 /* We are called with interrupts disabled, just take the lock */
1459 spin_lock(&kbd_event_lock);
1460
1461 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462 kbd_rawcode(value);
1463 if (event_type == EV_KEY)
1464 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465
1466 spin_unlock(&kbd_event_lock);
1467
1468 tasklet_schedule(&keyboard_tasklet);
1469 do_poke_blanked_console = 1;
1470 schedule_console_callback();
1471}
1472
1473static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474{
1475 int i;
1476
1477 if (test_bit(EV_SND, dev->evbit))
1478 return true;
1479
1480 if (test_bit(EV_KEY, dev->evbit)) {
1481 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482 if (test_bit(i, dev->keybit))
1483 return true;
1484 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485 if (test_bit(i, dev->keybit))
1486 return true;
1487 }
1488
1489 return false;
1490}
1491
1492/*
1493 * When a keyboard (or other input device) is found, the kbd_connect
1494 * function is called. The function then looks at the device, and if it
1495 * likes it, it can open it and get events from it. In this (kbd_connect)
1496 * function, we should decide which VT to bind that keyboard to initially.
1497 */
1498static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499 const struct input_device_id *id)
1500{
1501 struct input_handle *handle;
1502 int error;
1503
1504 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505 if (!handle)
1506 return -ENOMEM;
1507
1508 handle->dev = dev;
1509 handle->handler = handler;
1510 handle->name = "kbd";
1511
1512 error = input_register_handle(handle);
1513 if (error)
1514 goto err_free_handle;
1515
1516 error = input_open_device(handle);
1517 if (error)
1518 goto err_unregister_handle;
1519
1520 return 0;
1521
1522 err_unregister_handle:
1523 input_unregister_handle(handle);
1524 err_free_handle:
1525 kfree(handle);
1526 return error;
1527}
1528
1529static void kbd_disconnect(struct input_handle *handle)
1530{
1531 input_close_device(handle);
1532 input_unregister_handle(handle);
1533 kfree(handle);
1534}
1535
1536/*
1537 * Start keyboard handler on the new keyboard by refreshing LED state to
1538 * match the rest of the system.
1539 */
1540static void kbd_start(struct input_handle *handle)
1541{
1542 tasklet_disable(&keyboard_tasklet);
1543
1544 if (ledstate != -1U)
1545 kbd_update_leds_helper(handle, &ledstate);
1546
1547 tasklet_enable(&keyboard_tasklet);
1548}
1549
1550static const struct input_device_id kbd_ids[] = {
1551 {
1552 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553 .evbit = { BIT_MASK(EV_KEY) },
1554 },
1555
1556 {
1557 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558 .evbit = { BIT_MASK(EV_SND) },
1559 },
1560
1561 { }, /* Terminating entry */
1562};
1563
1564MODULE_DEVICE_TABLE(input, kbd_ids);
1565
1566static struct input_handler kbd_handler = {
1567 .event = kbd_event,
1568 .match = kbd_match,
1569 .connect = kbd_connect,
1570 .disconnect = kbd_disconnect,
1571 .start = kbd_start,
1572 .name = "kbd",
1573 .id_table = kbd_ids,
1574};
1575
1576int __init kbd_init(void)
1577{
1578 int i;
1579 int error;
1580
1581 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582 kbd_table[i].ledflagstate = kbd_defleds();
1583 kbd_table[i].default_ledflagstate = kbd_defleds();
1584 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585 kbd_table[i].lockstate = KBD_DEFLOCK;
1586 kbd_table[i].slockstate = 0;
1587 kbd_table[i].modeflags = KBD_DEFMODE;
1588 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589 }
1590
1591 kbd_init_leds();
1592
1593 error = input_register_handler(&kbd_handler);
1594 if (error)
1595 return error;
1596
1597 tasklet_enable(&keyboard_tasklet);
1598 tasklet_schedule(&keyboard_tasklet);
1599
1600 return 0;
1601}
1602
1603/* Ioctl support code */
1604
1605/**
1606 * vt_do_diacrit - diacritical table updates
1607 * @cmd: ioctl request
1608 * @udp: pointer to user data for ioctl
1609 * @perm: permissions check computed by caller
1610 *
1611 * Update the diacritical tables atomically and safely. Lock them
1612 * against simultaneous keypresses
1613 */
1614int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615{
1616 unsigned long flags;
1617 int asize;
1618 int ret = 0;
1619
1620 switch (cmd) {
1621 case KDGKBDIACR:
1622 {
1623 struct kbdiacrs __user *a = udp;
1624 struct kbdiacr *dia;
1625 int i;
1626
1627 dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1628 GFP_KERNEL);
1629 if (!dia)
1630 return -ENOMEM;
1631
1632 /* Lock the diacriticals table, make a copy and then
1633 copy it after we unlock */
1634 spin_lock_irqsave(&kbd_event_lock, flags);
1635
1636 asize = accent_table_size;
1637 for (i = 0; i < asize; i++) {
1638 dia[i].diacr = conv_uni_to_8bit(
1639 accent_table[i].diacr);
1640 dia[i].base = conv_uni_to_8bit(
1641 accent_table[i].base);
1642 dia[i].result = conv_uni_to_8bit(
1643 accent_table[i].result);
1644 }
1645 spin_unlock_irqrestore(&kbd_event_lock, flags);
1646
1647 if (put_user(asize, &a->kb_cnt))
1648 ret = -EFAULT;
1649 else if (copy_to_user(a->kbdiacr, dia,
1650 asize * sizeof(struct kbdiacr)))
1651 ret = -EFAULT;
1652 kfree(dia);
1653 return ret;
1654 }
1655 case KDGKBDIACRUC:
1656 {
1657 struct kbdiacrsuc __user *a = udp;
1658 void *buf;
1659
1660 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1661 GFP_KERNEL);
1662 if (buf == NULL)
1663 return -ENOMEM;
1664
1665 /* Lock the diacriticals table, make a copy and then
1666 copy it after we unlock */
1667 spin_lock_irqsave(&kbd_event_lock, flags);
1668
1669 asize = accent_table_size;
1670 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671
1672 spin_unlock_irqrestore(&kbd_event_lock, flags);
1673
1674 if (put_user(asize, &a->kb_cnt))
1675 ret = -EFAULT;
1676 else if (copy_to_user(a->kbdiacruc, buf,
1677 asize*sizeof(struct kbdiacruc)))
1678 ret = -EFAULT;
1679 kfree(buf);
1680 return ret;
1681 }
1682
1683 case KDSKBDIACR:
1684 {
1685 struct kbdiacrs __user *a = udp;
1686 struct kbdiacr *dia = NULL;
1687 unsigned int ct;
1688 int i;
1689
1690 if (!perm)
1691 return -EPERM;
1692 if (get_user(ct, &a->kb_cnt))
1693 return -EFAULT;
1694 if (ct >= MAX_DIACR)
1695 return -EINVAL;
1696
1697 if (ct) {
1698
1699 dia = memdup_user(a->kbdiacr,
1700 sizeof(struct kbdiacr) * ct);
1701 if (IS_ERR(dia))
1702 return PTR_ERR(dia);
1703
1704 }
1705
1706 spin_lock_irqsave(&kbd_event_lock, flags);
1707 accent_table_size = ct;
1708 for (i = 0; i < ct; i++) {
1709 accent_table[i].diacr =
1710 conv_8bit_to_uni(dia[i].diacr);
1711 accent_table[i].base =
1712 conv_8bit_to_uni(dia[i].base);
1713 accent_table[i].result =
1714 conv_8bit_to_uni(dia[i].result);
1715 }
1716 spin_unlock_irqrestore(&kbd_event_lock, flags);
1717 kfree(dia);
1718 return 0;
1719 }
1720
1721 case KDSKBDIACRUC:
1722 {
1723 struct kbdiacrsuc __user *a = udp;
1724 unsigned int ct;
1725 void *buf = NULL;
1726
1727 if (!perm)
1728 return -EPERM;
1729
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732
1733 if (ct >= MAX_DIACR)
1734 return -EINVAL;
1735
1736 if (ct) {
1737 buf = memdup_user(a->kbdiacruc,
1738 ct * sizeof(struct kbdiacruc));
1739 if (IS_ERR(buf))
1740 return PTR_ERR(buf);
1741 }
1742 spin_lock_irqsave(&kbd_event_lock, flags);
1743 if (ct)
1744 memcpy(accent_table, buf,
1745 ct * sizeof(struct kbdiacruc));
1746 accent_table_size = ct;
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748 kfree(buf);
1749 return 0;
1750 }
1751 }
1752 return ret;
1753}
1754
1755/**
1756 * vt_do_kdskbmode - set keyboard mode ioctl
1757 * @console: the console to use
1758 * @arg: the requested mode
1759 *
1760 * Update the keyboard mode bits while holding the correct locks.
1761 * Return 0 for success or an error code.
1762 */
1763int vt_do_kdskbmode(int console, unsigned int arg)
1764{
1765 struct kbd_struct *kb = kbd_table + console;
1766 int ret = 0;
1767 unsigned long flags;
1768
1769 spin_lock_irqsave(&kbd_event_lock, flags);
1770 switch(arg) {
1771 case K_RAW:
1772 kb->kbdmode = VC_RAW;
1773 break;
1774 case K_MEDIUMRAW:
1775 kb->kbdmode = VC_MEDIUMRAW;
1776 break;
1777 case K_XLATE:
1778 kb->kbdmode = VC_XLATE;
1779 do_compute_shiftstate();
1780 break;
1781 case K_UNICODE:
1782 kb->kbdmode = VC_UNICODE;
1783 do_compute_shiftstate();
1784 break;
1785 case K_OFF:
1786 kb->kbdmode = VC_OFF;
1787 break;
1788 default:
1789 ret = -EINVAL;
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 return ret;
1793}
1794
1795/**
1796 * vt_do_kdskbmeta - set keyboard meta state
1797 * @console: the console to use
1798 * @arg: the requested meta state
1799 *
1800 * Update the keyboard meta bits while holding the correct locks.
1801 * Return 0 for success or an error code.
1802 */
1803int vt_do_kdskbmeta(int console, unsigned int arg)
1804{
1805 struct kbd_struct *kb = kbd_table + console;
1806 int ret = 0;
1807 unsigned long flags;
1808
1809 spin_lock_irqsave(&kbd_event_lock, flags);
1810 switch(arg) {
1811 case K_METABIT:
1812 clr_vc_kbd_mode(kb, VC_META);
1813 break;
1814 case K_ESCPREFIX:
1815 set_vc_kbd_mode(kb, VC_META);
1816 break;
1817 default:
1818 ret = -EINVAL;
1819 }
1820 spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 return ret;
1822}
1823
1824int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825 int perm)
1826{
1827 struct kbkeycode tmp;
1828 int kc = 0;
1829
1830 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831 return -EFAULT;
1832 switch (cmd) {
1833 case KDGETKEYCODE:
1834 kc = getkeycode(tmp.scancode);
1835 if (kc >= 0)
1836 kc = put_user(kc, &user_kbkc->keycode);
1837 break;
1838 case KDSETKEYCODE:
1839 if (!perm)
1840 return -EPERM;
1841 kc = setkeycode(tmp.scancode, tmp.keycode);
1842 break;
1843 }
1844 return kc;
1845}
1846
1847#define i (tmp.kb_index)
1848#define s (tmp.kb_table)
1849#define v (tmp.kb_value)
1850
1851int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852 int console)
1853{
1854 struct kbd_struct *kb = kbd_table + console;
1855 struct kbentry tmp;
1856 ushort *key_map, *new_map, val, ov;
1857 unsigned long flags;
1858
1859 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860 return -EFAULT;
1861
1862 if (!capable(CAP_SYS_TTY_CONFIG))
1863 perm = 0;
1864
1865 switch (cmd) {
1866 case KDGKBENT:
1867 /* Ensure another thread doesn't free it under us */
1868 spin_lock_irqsave(&kbd_event_lock, flags);
1869 key_map = key_maps[s];
1870 if (key_map) {
1871 val = U(key_map[i]);
1872 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873 val = K_HOLE;
1874 } else
1875 val = (i ? K_HOLE : K_NOSUCHMAP);
1876 spin_unlock_irqrestore(&kbd_event_lock, flags);
1877 return put_user(val, &user_kbe->kb_value);
1878 case KDSKBENT:
1879 if (!perm)
1880 return -EPERM;
1881 if (!i && v == K_NOSUCHMAP) {
1882 spin_lock_irqsave(&kbd_event_lock, flags);
1883 /* deallocate map */
1884 key_map = key_maps[s];
1885 if (s && key_map) {
1886 key_maps[s] = NULL;
1887 if (key_map[0] == U(K_ALLOCATED)) {
1888 kfree(key_map);
1889 keymap_count--;
1890 }
1891 }
1892 spin_unlock_irqrestore(&kbd_event_lock, flags);
1893 break;
1894 }
1895
1896 if (KTYP(v) < NR_TYPES) {
1897 if (KVAL(v) > max_vals[KTYP(v)])
1898 return -EINVAL;
1899 } else
1900 if (kb->kbdmode != VC_UNICODE)
1901 return -EINVAL;
1902
1903 /* ++Geert: non-PC keyboards may generate keycode zero */
1904#if !defined(__mc68000__) && !defined(__powerpc__)
1905 /* assignment to entry 0 only tests validity of args */
1906 if (!i)
1907 break;
1908#endif
1909
1910 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911 if (!new_map)
1912 return -ENOMEM;
1913 spin_lock_irqsave(&kbd_event_lock, flags);
1914 key_map = key_maps[s];
1915 if (key_map == NULL) {
1916 int j;
1917
1918 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919 !capable(CAP_SYS_RESOURCE)) {
1920 spin_unlock_irqrestore(&kbd_event_lock, flags);
1921 kfree(new_map);
1922 return -EPERM;
1923 }
1924 key_maps[s] = new_map;
1925 key_map = new_map;
1926 key_map[0] = U(K_ALLOCATED);
1927 for (j = 1; j < NR_KEYS; j++)
1928 key_map[j] = U(K_HOLE);
1929 keymap_count++;
1930 } else
1931 kfree(new_map);
1932
1933 ov = U(key_map[i]);
1934 if (v == ov)
1935 goto out;
1936 /*
1937 * Attention Key.
1938 */
1939 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940 spin_unlock_irqrestore(&kbd_event_lock, flags);
1941 return -EPERM;
1942 }
1943 key_map[i] = U(v);
1944 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945 do_compute_shiftstate();
1946out:
1947 spin_unlock_irqrestore(&kbd_event_lock, flags);
1948 break;
1949 }
1950 return 0;
1951}
1952#undef i
1953#undef s
1954#undef v
1955
1956/* FIXME: This one needs untangling and locking */
1957int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958{
1959 struct kbsentry *kbs;
1960 char *p;
1961 u_char *q;
1962 u_char __user *up;
1963 int sz;
1964 int delta;
1965 char *first_free, *fj, *fnw;
1966 int i, j, k;
1967 int ret;
1968
1969 if (!capable(CAP_SYS_TTY_CONFIG))
1970 perm = 0;
1971
1972 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973 if (!kbs) {
1974 ret = -ENOMEM;
1975 goto reterr;
1976 }
1977
1978 /* we mostly copy too much here (512bytes), but who cares ;) */
1979 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980 ret = -EFAULT;
1981 goto reterr;
1982 }
1983 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984 i = kbs->kb_func;
1985
1986 switch (cmd) {
1987 case KDGKBSENT:
1988 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989 a struct member */
1990 up = user_kdgkb->kb_string;
1991 p = func_table[i];
1992 if(p)
1993 for ( ; *p && sz; p++, sz--)
1994 if (put_user(*p, up++)) {
1995 ret = -EFAULT;
1996 goto reterr;
1997 }
1998 if (put_user('\0', up)) {
1999 ret = -EFAULT;
2000 goto reterr;
2001 }
2002 kfree(kbs);
2003 return ((p && *p) ? -EOVERFLOW : 0);
2004 case KDSKBSENT:
2005 if (!perm) {
2006 ret = -EPERM;
2007 goto reterr;
2008 }
2009
2010 q = func_table[i];
2011 first_free = funcbufptr + (funcbufsize - funcbufleft);
2012 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013 ;
2014 if (j < MAX_NR_FUNC)
2015 fj = func_table[j];
2016 else
2017 fj = first_free;
2018
2019 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020 if (delta <= funcbufleft) { /* it fits in current buf */
2021 if (j < MAX_NR_FUNC) {
2022 memmove(fj + delta, fj, first_free - fj);
2023 for (k = j; k < MAX_NR_FUNC; k++)
2024 if (func_table[k])
2025 func_table[k] += delta;
2026 }
2027 if (!q)
2028 func_table[i] = fj;
2029 funcbufleft -= delta;
2030 } else { /* allocate a larger buffer */
2031 sz = 256;
2032 while (sz < funcbufsize - funcbufleft + delta)
2033 sz <<= 1;
2034 fnw = kmalloc(sz, GFP_KERNEL);
2035 if(!fnw) {
2036 ret = -ENOMEM;
2037 goto reterr;
2038 }
2039
2040 if (!q)
2041 func_table[i] = fj;
2042 if (fj > funcbufptr)
2043 memmove(fnw, funcbufptr, fj - funcbufptr);
2044 for (k = 0; k < j; k++)
2045 if (func_table[k])
2046 func_table[k] = fnw + (func_table[k] - funcbufptr);
2047
2048 if (first_free > fj) {
2049 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050 for (k = j; k < MAX_NR_FUNC; k++)
2051 if (func_table[k])
2052 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053 }
2054 if (funcbufptr != func_buf)
2055 kfree(funcbufptr);
2056 funcbufptr = fnw;
2057 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058 funcbufsize = sz;
2059 }
2060 strcpy(func_table[i], kbs->kb_string);
2061 break;
2062 }
2063 ret = 0;
2064reterr:
2065 kfree(kbs);
2066 return ret;
2067}
2068
2069int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070{
2071 struct kbd_struct *kb = kbd_table + console;
2072 unsigned long flags;
2073 unsigned char ucval;
2074
2075 switch(cmd) {
2076 /* the ioctls below read/set the flags usually shown in the leds */
2077 /* don't use them - they will go away without warning */
2078 case KDGKBLED:
2079 spin_lock_irqsave(&kbd_event_lock, flags);
2080 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081 spin_unlock_irqrestore(&kbd_event_lock, flags);
2082 return put_user(ucval, (char __user *)arg);
2083
2084 case KDSKBLED:
2085 if (!perm)
2086 return -EPERM;
2087 if (arg & ~0x77)
2088 return -EINVAL;
2089 spin_lock_irqsave(&led_lock, flags);
2090 kb->ledflagstate = (arg & 7);
2091 kb->default_ledflagstate = ((arg >> 4) & 7);
2092 set_leds();
2093 spin_unlock_irqrestore(&led_lock, flags);
2094 return 0;
2095
2096 /* the ioctls below only set the lights, not the functions */
2097 /* for those, see KDGKBLED and KDSKBLED above */
2098 case KDGETLED:
2099 ucval = getledstate();
2100 return put_user(ucval, (char __user *)arg);
2101
2102 case KDSETLED:
2103 if (!perm)
2104 return -EPERM;
2105 setledstate(kb, arg);
2106 return 0;
2107 }
2108 return -ENOIOCTLCMD;
2109}
2110
2111int vt_do_kdgkbmode(int console)
2112{
2113 struct kbd_struct *kb = kbd_table + console;
2114 /* This is a spot read so needs no locking */
2115 switch (kb->kbdmode) {
2116 case VC_RAW:
2117 return K_RAW;
2118 case VC_MEDIUMRAW:
2119 return K_MEDIUMRAW;
2120 case VC_UNICODE:
2121 return K_UNICODE;
2122 case VC_OFF:
2123 return K_OFF;
2124 default:
2125 return K_XLATE;
2126 }
2127}
2128
2129/**
2130 * vt_do_kdgkbmeta - report meta status
2131 * @console: console to report
2132 *
2133 * Report the meta flag status of this console
2134 */
2135int vt_do_kdgkbmeta(int console)
2136{
2137 struct kbd_struct *kb = kbd_table + console;
2138 /* Again a spot read so no locking */
2139 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140}
2141
2142/**
2143 * vt_reset_unicode - reset the unicode status
2144 * @console: console being reset
2145 *
2146 * Restore the unicode console state to its default
2147 */
2148void vt_reset_unicode(int console)
2149{
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(&kbd_event_lock, flags);
2153 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154 spin_unlock_irqrestore(&kbd_event_lock, flags);
2155}
2156
2157/**
2158 * vt_get_shiftstate - shift bit state
2159 *
2160 * Report the shift bits from the keyboard state. We have to export
2161 * this to support some oddities in the vt layer.
2162 */
2163int vt_get_shift_state(void)
2164{
2165 /* Don't lock as this is a transient report */
2166 return shift_state;
2167}
2168
2169/**
2170 * vt_reset_keyboard - reset keyboard state
2171 * @console: console to reset
2172 *
2173 * Reset the keyboard bits for a console as part of a general console
2174 * reset event
2175 */
2176void vt_reset_keyboard(int console)
2177{
2178 struct kbd_struct *kb = kbd_table + console;
2179 unsigned long flags;
2180
2181 spin_lock_irqsave(&kbd_event_lock, flags);
2182 set_vc_kbd_mode(kb, VC_REPEAT);
2183 clr_vc_kbd_mode(kb, VC_CKMODE);
2184 clr_vc_kbd_mode(kb, VC_APPLIC);
2185 clr_vc_kbd_mode(kb, VC_CRLF);
2186 kb->lockstate = 0;
2187 kb->slockstate = 0;
2188 spin_lock(&led_lock);
2189 kb->ledmode = LED_SHOW_FLAGS;
2190 kb->ledflagstate = kb->default_ledflagstate;
2191 spin_unlock(&led_lock);
2192 /* do not do set_leds here because this causes an endless tasklet loop
2193 when the keyboard hasn't been initialized yet */
2194 spin_unlock_irqrestore(&kbd_event_lock, flags);
2195}
2196
2197/**
2198 * vt_get_kbd_mode_bit - read keyboard status bits
2199 * @console: console to read from
2200 * @bit: mode bit to read
2201 *
2202 * Report back a vt mode bit. We do this without locking so the
2203 * caller must be sure that there are no synchronization needs
2204 */
2205
2206int vt_get_kbd_mode_bit(int console, int bit)
2207{
2208 struct kbd_struct *kb = kbd_table + console;
2209 return vc_kbd_mode(kb, bit);
2210}
2211
2212/**
2213 * vt_set_kbd_mode_bit - read keyboard status bits
2214 * @console: console to read from
2215 * @bit: mode bit to read
2216 *
2217 * Set a vt mode bit. We do this without locking so the
2218 * caller must be sure that there are no synchronization needs
2219 */
2220
2221void vt_set_kbd_mode_bit(int console, int bit)
2222{
2223 struct kbd_struct *kb = kbd_table + console;
2224 unsigned long flags;
2225
2226 spin_lock_irqsave(&kbd_event_lock, flags);
2227 set_vc_kbd_mode(kb, bit);
2228 spin_unlock_irqrestore(&kbd_event_lock, flags);
2229}
2230
2231/**
2232 * vt_clr_kbd_mode_bit - read keyboard status bits
2233 * @console: console to read from
2234 * @bit: mode bit to read
2235 *
2236 * Report back a vt mode bit. We do this without locking so the
2237 * caller must be sure that there are no synchronization needs
2238 */
2239
2240void vt_clr_kbd_mode_bit(int console, int bit)
2241{
2242 struct kbd_struct *kb = kbd_table + console;
2243 unsigned long flags;
2244
2245 spin_lock_irqsave(&kbd_event_lock, flags);
2246 clr_vc_kbd_mode(kb, bit);
2247 spin_unlock_irqrestore(&kbd_event_lock, flags);
2248}