Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/module.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/debug.h>
  32#include <linux/tty.h>
  33#include <linux/tty_flip.h>
  34#include <linux/mm.h>
  35#include <linux/nospec.h>
  36#include <linux/string.h>
  37#include <linux/init.h>
  38#include <linux/slab.h>
  39#include <linux/leds.h>
  40
  41#include <linux/kbd_kern.h>
  42#include <linux/kbd_diacr.h>
  43#include <linux/vt_kern.h>
  44#include <linux/input.h>
  45#include <linux/reboot.h>
  46#include <linux/notifier.h>
  47#include <linux/jiffies.h>
  48#include <linux/uaccess.h>
  49
  50#include <asm/irq_regs.h>
  51
  52extern void ctrl_alt_del(void);
  53
  54/*
  55 * Exported functions/variables
  56 */
  57
  58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  59
  60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  61#include <asm/kbdleds.h>
  62#else
  63static inline int kbd_defleds(void)
  64{
  65	return 0;
  66}
  67#endif
  68
  69#define KBD_DEFLOCK 0
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101struct vt_spawn_console vt_spawn_con = {
 102	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 103	.pid  = NULL,
 104	.sig  = 0,
 105};
 106
 107
 108/*
 109 * Internal Data.
 110 */
 111
 112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 113static struct kbd_struct *kbd = kbd_table;
 114
 115/* maximum values each key_handler can handle */
 116static const int max_vals[] = {
 117	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 118	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 119	255, NR_LOCK - 1, 255, NR_BRL - 1
 120};
 121
 122static const int NR_TYPES = ARRAY_SIZE(max_vals);
 123
 124static struct input_handler kbd_handler;
 125static DEFINE_SPINLOCK(kbd_event_lock);
 126static DEFINE_SPINLOCK(led_lock);
 127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 129static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 130static bool dead_key_next;
 131
 132/* Handles a number being assembled on the number pad */
 133static bool npadch_active;
 134static unsigned int npadch_value;
 135
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 139static int shift_state = 0;
 140
 141static unsigned int ledstate = -1U;			/* undefined */
 142static unsigned char ledioctl;
 143
 144/*
 145 * Notifier list for console keyboard events
 146 */
 147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 148
 149int register_keyboard_notifier(struct notifier_block *nb)
 150{
 151	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 152}
 153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 154
 155int unregister_keyboard_notifier(struct notifier_block *nb)
 156{
 157	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 158}
 159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 160
 161/*
 162 * Translation of scancodes to keycodes. We set them on only the first
 163 * keyboard in the list that accepts the scancode and keycode.
 164 * Explanation for not choosing the first attached keyboard anymore:
 165 *  USB keyboards for example have two event devices: one for all "normal"
 166 *  keys and one for extra function keys (like "volume up", "make coffee",
 167 *  etc.). So this means that scancodes for the extra function keys won't
 168 *  be valid for the first event device, but will be for the second.
 169 */
 170
 171struct getset_keycode_data {
 172	struct input_keymap_entry ke;
 173	int error;
 174};
 175
 176static int getkeycode_helper(struct input_handle *handle, void *data)
 177{
 178	struct getset_keycode_data *d = data;
 179
 180	d->error = input_get_keycode(handle->dev, &d->ke);
 181
 182	return d->error == 0; /* stop as soon as we successfully get one */
 183}
 184
 185static int getkeycode(unsigned int scancode)
 186{
 187	struct getset_keycode_data d = {
 188		.ke	= {
 189			.flags		= 0,
 190			.len		= sizeof(scancode),
 191			.keycode	= 0,
 192		},
 193		.error	= -ENODEV,
 194	};
 195
 196	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 197
 198	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 199
 200	return d.error ?: d.ke.keycode;
 201}
 202
 203static int setkeycode_helper(struct input_handle *handle, void *data)
 204{
 205	struct getset_keycode_data *d = data;
 206
 207	d->error = input_set_keycode(handle->dev, &d->ke);
 208
 209	return d->error == 0; /* stop as soon as we successfully set one */
 210}
 211
 212static int setkeycode(unsigned int scancode, unsigned int keycode)
 213{
 214	struct getset_keycode_data d = {
 215		.ke	= {
 216			.flags		= 0,
 217			.len		= sizeof(scancode),
 218			.keycode	= keycode,
 219		},
 220		.error	= -ENODEV,
 221	};
 222
 223	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 224
 225	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 226
 227	return d.error;
 228}
 229
 230/*
 231 * Making beeps and bells. Note that we prefer beeps to bells, but when
 232 * shutting the sound off we do both.
 233 */
 234
 235static int kd_sound_helper(struct input_handle *handle, void *data)
 236{
 237	unsigned int *hz = data;
 238	struct input_dev *dev = handle->dev;
 239
 240	if (test_bit(EV_SND, dev->evbit)) {
 241		if (test_bit(SND_TONE, dev->sndbit)) {
 242			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 243			if (*hz)
 244				return 0;
 245		}
 246		if (test_bit(SND_BELL, dev->sndbit))
 247			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 248	}
 249
 250	return 0;
 251}
 252
 253static void kd_nosound(struct timer_list *unused)
 254{
 255	static unsigned int zero;
 256
 257	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 258}
 259
 260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 261
 262void kd_mksound(unsigned int hz, unsigned int ticks)
 263{
 264	del_timer_sync(&kd_mksound_timer);
 265
 266	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 267
 268	if (hz && ticks)
 269		mod_timer(&kd_mksound_timer, jiffies + ticks);
 270}
 271EXPORT_SYMBOL(kd_mksound);
 272
 273/*
 274 * Setting the keyboard rate.
 275 */
 276
 277static int kbd_rate_helper(struct input_handle *handle, void *data)
 278{
 279	struct input_dev *dev = handle->dev;
 280	struct kbd_repeat *rpt = data;
 281
 282	if (test_bit(EV_REP, dev->evbit)) {
 283
 284		if (rpt[0].delay > 0)
 285			input_inject_event(handle,
 286					   EV_REP, REP_DELAY, rpt[0].delay);
 287		if (rpt[0].period > 0)
 288			input_inject_event(handle,
 289					   EV_REP, REP_PERIOD, rpt[0].period);
 290
 291		rpt[1].delay = dev->rep[REP_DELAY];
 292		rpt[1].period = dev->rep[REP_PERIOD];
 293	}
 294
 295	return 0;
 296}
 297
 298int kbd_rate(struct kbd_repeat *rpt)
 299{
 300	struct kbd_repeat data[2] = { *rpt };
 301
 302	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 303	*rpt = data[1];	/* Copy currently used settings */
 304
 305	return 0;
 306}
 307
 308/*
 309 * Helper Functions.
 310 */
 311static void put_queue(struct vc_data *vc, int ch)
 312{
 313	tty_insert_flip_char(&vc->port, ch, 0);
 314	tty_schedule_flip(&vc->port);
 315}
 316
 317static void puts_queue(struct vc_data *vc, char *cp)
 318{
 319	while (*cp) {
 320		tty_insert_flip_char(&vc->port, *cp, 0);
 321		cp++;
 322	}
 323	tty_schedule_flip(&vc->port);
 324}
 325
 326static void applkey(struct vc_data *vc, int key, char mode)
 327{
 328	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 329
 330	buf[1] = (mode ? 'O' : '[');
 331	buf[2] = key;
 332	puts_queue(vc, buf);
 333}
 334
 335/*
 336 * Many other routines do put_queue, but I think either
 337 * they produce ASCII, or they produce some user-assigned
 338 * string, and in both cases we might assume that it is
 339 * in utf-8 already.
 340 */
 341static void to_utf8(struct vc_data *vc, uint c)
 342{
 343	if (c < 0x80)
 344		/*  0******* */
 345		put_queue(vc, c);
 346	else if (c < 0x800) {
 347		/* 110***** 10****** */
 348		put_queue(vc, 0xc0 | (c >> 6));
 349		put_queue(vc, 0x80 | (c & 0x3f));
 350	} else if (c < 0x10000) {
 351		if (c >= 0xD800 && c < 0xE000)
 352			return;
 353		if (c == 0xFFFF)
 354			return;
 355		/* 1110**** 10****** 10****** */
 356		put_queue(vc, 0xe0 | (c >> 12));
 357		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 358		put_queue(vc, 0x80 | (c & 0x3f));
 359	} else if (c < 0x110000) {
 360		/* 11110*** 10****** 10****** 10****** */
 361		put_queue(vc, 0xf0 | (c >> 18));
 362		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 363		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 364		put_queue(vc, 0x80 | (c & 0x3f));
 365	}
 366}
 367
 368/*
 369 * Called after returning from RAW mode or when changing consoles - recompute
 370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 371 * undefined, so that shiftkey release is seen. The caller must hold the
 372 * kbd_event_lock.
 373 */
 374
 375static void do_compute_shiftstate(void)
 376{
 377	unsigned int k, sym, val;
 378
 379	shift_state = 0;
 380	memset(shift_down, 0, sizeof(shift_down));
 381
 382	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 383		sym = U(key_maps[0][k]);
 384		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 385			continue;
 386
 387		val = KVAL(sym);
 388		if (val == KVAL(K_CAPSSHIFT))
 389			val = KVAL(K_SHIFT);
 390
 391		shift_down[val]++;
 392		shift_state |= BIT(val);
 393	}
 394}
 395
 396/* We still have to export this method to vt.c */
 397void compute_shiftstate(void)
 398{
 399	unsigned long flags;
 400	spin_lock_irqsave(&kbd_event_lock, flags);
 401	do_compute_shiftstate();
 402	spin_unlock_irqrestore(&kbd_event_lock, flags);
 403}
 404
 405/*
 406 * We have a combining character DIACR here, followed by the character CH.
 407 * If the combination occurs in the table, return the corresponding value.
 408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 409 * Otherwise, conclude that DIACR was not combining after all,
 410 * queue it and return CH.
 411 */
 412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 413{
 414	unsigned int d = diacr;
 415	unsigned int i;
 416
 417	diacr = 0;
 418
 419	if ((d & ~0xff) == BRL_UC_ROW) {
 420		if ((ch & ~0xff) == BRL_UC_ROW)
 421			return d | ch;
 422	} else {
 423		for (i = 0; i < accent_table_size; i++)
 424			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 425				return accent_table[i].result;
 426	}
 427
 428	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 429		return d;
 430
 431	if (kbd->kbdmode == VC_UNICODE)
 432		to_utf8(vc, d);
 433	else {
 434		int c = conv_uni_to_8bit(d);
 435		if (c != -1)
 436			put_queue(vc, c);
 437	}
 438
 439	return ch;
 440}
 441
 442/*
 443 * Special function handlers
 444 */
 445static void fn_enter(struct vc_data *vc)
 446{
 447	if (diacr) {
 448		if (kbd->kbdmode == VC_UNICODE)
 449			to_utf8(vc, diacr);
 450		else {
 451			int c = conv_uni_to_8bit(diacr);
 452			if (c != -1)
 453				put_queue(vc, c);
 454		}
 455		diacr = 0;
 456	}
 457
 458	put_queue(vc, 13);
 459	if (vc_kbd_mode(kbd, VC_CRLF))
 460		put_queue(vc, 10);
 461}
 462
 463static void fn_caps_toggle(struct vc_data *vc)
 464{
 465	if (rep)
 466		return;
 467
 468	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 469}
 470
 471static void fn_caps_on(struct vc_data *vc)
 472{
 473	if (rep)
 474		return;
 475
 476	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 477}
 478
 479static void fn_show_ptregs(struct vc_data *vc)
 480{
 481	struct pt_regs *regs = get_irq_regs();
 482
 483	if (regs)
 484		show_regs(regs);
 485}
 486
 487static void fn_hold(struct vc_data *vc)
 488{
 489	struct tty_struct *tty = vc->port.tty;
 490
 491	if (rep || !tty)
 492		return;
 493
 494	/*
 495	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 496	 * these routines are also activated by ^S/^Q.
 497	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 498	 */
 499	if (tty->stopped)
 500		start_tty(tty);
 501	else
 502		stop_tty(tty);
 503}
 504
 505static void fn_num(struct vc_data *vc)
 506{
 507	if (vc_kbd_mode(kbd, VC_APPLIC))
 508		applkey(vc, 'P', 1);
 509	else
 510		fn_bare_num(vc);
 511}
 512
 513/*
 514 * Bind this to Shift-NumLock if you work in application keypad mode
 515 * but want to be able to change the NumLock flag.
 516 * Bind this to NumLock if you prefer that the NumLock key always
 517 * changes the NumLock flag.
 518 */
 519static void fn_bare_num(struct vc_data *vc)
 520{
 521	if (!rep)
 522		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 523}
 524
 525static void fn_lastcons(struct vc_data *vc)
 526{
 527	/* switch to the last used console, ChN */
 528	set_console(last_console);
 529}
 530
 531static void fn_dec_console(struct vc_data *vc)
 532{
 533	int i, cur = fg_console;
 534
 535	/* Currently switching?  Queue this next switch relative to that. */
 536	if (want_console != -1)
 537		cur = want_console;
 538
 539	for (i = cur - 1; i != cur; i--) {
 540		if (i == -1)
 541			i = MAX_NR_CONSOLES - 1;
 542		if (vc_cons_allocated(i))
 543			break;
 544	}
 545	set_console(i);
 546}
 547
 548static void fn_inc_console(struct vc_data *vc)
 549{
 550	int i, cur = fg_console;
 551
 552	/* Currently switching?  Queue this next switch relative to that. */
 553	if (want_console != -1)
 554		cur = want_console;
 555
 556	for (i = cur+1; i != cur; i++) {
 557		if (i == MAX_NR_CONSOLES)
 558			i = 0;
 559		if (vc_cons_allocated(i))
 560			break;
 561	}
 562	set_console(i);
 563}
 564
 565static void fn_send_intr(struct vc_data *vc)
 566{
 567	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 568	tty_schedule_flip(&vc->port);
 569}
 570
 571static void fn_scroll_forw(struct vc_data *vc)
 572{
 573	scrollfront(vc, 0);
 574}
 575
 576static void fn_scroll_back(struct vc_data *vc)
 577{
 578	scrollback(vc);
 579}
 580
 581static void fn_show_mem(struct vc_data *vc)
 582{
 583	show_mem(0, NULL);
 584}
 585
 586static void fn_show_state(struct vc_data *vc)
 587{
 588	show_state();
 589}
 590
 591static void fn_boot_it(struct vc_data *vc)
 592{
 593	ctrl_alt_del();
 594}
 595
 596static void fn_compose(struct vc_data *vc)
 597{
 598	dead_key_next = true;
 599}
 600
 601static void fn_spawn_con(struct vc_data *vc)
 602{
 603	spin_lock(&vt_spawn_con.lock);
 604	if (vt_spawn_con.pid)
 605		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 606			put_pid(vt_spawn_con.pid);
 607			vt_spawn_con.pid = NULL;
 608		}
 609	spin_unlock(&vt_spawn_con.lock);
 610}
 611
 612static void fn_SAK(struct vc_data *vc)
 613{
 614	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 615	schedule_work(SAK_work);
 616}
 617
 618static void fn_null(struct vc_data *vc)
 619{
 620	do_compute_shiftstate();
 621}
 622
 623/*
 624 * Special key handlers
 625 */
 626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 627{
 628}
 629
 630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 631{
 632	if (up_flag)
 633		return;
 634	if (value >= ARRAY_SIZE(fn_handler))
 635		return;
 636	if ((kbd->kbdmode == VC_RAW ||
 637	     kbd->kbdmode == VC_MEDIUMRAW ||
 638	     kbd->kbdmode == VC_OFF) &&
 639	     value != KVAL(K_SAK))
 640		return;		/* SAK is allowed even in raw mode */
 641	fn_handler[value](vc);
 642}
 643
 644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646	pr_err("k_lowercase was called - impossible\n");
 647}
 648
 649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 650{
 651	if (up_flag)
 652		return;		/* no action, if this is a key release */
 653
 654	if (diacr)
 655		value = handle_diacr(vc, value);
 656
 657	if (dead_key_next) {
 658		dead_key_next = false;
 659		diacr = value;
 660		return;
 661	}
 662	if (kbd->kbdmode == VC_UNICODE)
 663		to_utf8(vc, value);
 664	else {
 665		int c = conv_uni_to_8bit(value);
 666		if (c != -1)
 667			put_queue(vc, c);
 668	}
 669}
 670
 671/*
 672 * Handle dead key. Note that we now may have several
 673 * dead keys modifying the same character. Very useful
 674 * for Vietnamese.
 675 */
 676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 677{
 678	if (up_flag)
 679		return;
 680
 681	diacr = (diacr ? handle_diacr(vc, value) : value);
 682}
 683
 684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 685{
 686	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 687}
 688
 689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 690{
 691	k_deadunicode(vc, value, up_flag);
 692}
 693
 694/*
 695 * Obsolete - for backwards compatibility only
 696 */
 697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 698{
 699	static const unsigned char ret_diacr[NR_DEAD] = {
 700		'`',	/* dead_grave */
 701		'\'',	/* dead_acute */
 702		'^',	/* dead_circumflex */
 703		'~',	/* dead_tilda */
 704		'"',	/* dead_diaeresis */
 705		',',	/* dead_cedilla */
 706		'_',	/* dead_macron */
 707		'U',	/* dead_breve */
 708		'.',	/* dead_abovedot */
 709		'*',	/* dead_abovering */
 710		'=',	/* dead_doubleacute */
 711		'c',	/* dead_caron */
 712		'k',	/* dead_ogonek */
 713		'i',	/* dead_iota */
 714		'#',	/* dead_voiced_sound */
 715		'o',	/* dead_semivoiced_sound */
 716		'!',	/* dead_belowdot */
 717		'?',	/* dead_hook */
 718		'+',	/* dead_horn */
 719		'-',	/* dead_stroke */
 720		')',	/* dead_abovecomma */
 721		'(',	/* dead_abovereversedcomma */
 722		':',	/* dead_doublegrave */
 723		'n',	/* dead_invertedbreve */
 724		';',	/* dead_belowcomma */
 725		'$',	/* dead_currency */
 726		'@',	/* dead_greek */
 727	};
 728
 729	k_deadunicode(vc, ret_diacr[value], up_flag);
 730}
 731
 732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 733{
 734	if (up_flag)
 735		return;
 736
 737	set_console(value);
 738}
 739
 740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 741{
 742	if (up_flag)
 743		return;
 744
 745	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 746		if (func_table[value])
 747			puts_queue(vc, func_table[value]);
 748	} else
 749		pr_err("k_fn called with value=%d\n", value);
 750}
 751
 752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char cur_chars[] = "BDCA";
 755
 756	if (up_flag)
 757		return;
 758
 759	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 760}
 761
 762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 763{
 764	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 765	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 766
 767	if (up_flag)
 768		return;		/* no action, if this is a key release */
 769
 770	/* kludge... shift forces cursor/number keys */
 771	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 772		applkey(vc, app_map[value], 1);
 773		return;
 774	}
 775
 776	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 777
 778		switch (value) {
 779		case KVAL(K_PCOMMA):
 780		case KVAL(K_PDOT):
 781			k_fn(vc, KVAL(K_REMOVE), 0);
 782			return;
 783		case KVAL(K_P0):
 784			k_fn(vc, KVAL(K_INSERT), 0);
 785			return;
 786		case KVAL(K_P1):
 787			k_fn(vc, KVAL(K_SELECT), 0);
 788			return;
 789		case KVAL(K_P2):
 790			k_cur(vc, KVAL(K_DOWN), 0);
 791			return;
 792		case KVAL(K_P3):
 793			k_fn(vc, KVAL(K_PGDN), 0);
 794			return;
 795		case KVAL(K_P4):
 796			k_cur(vc, KVAL(K_LEFT), 0);
 797			return;
 798		case KVAL(K_P6):
 799			k_cur(vc, KVAL(K_RIGHT), 0);
 800			return;
 801		case KVAL(K_P7):
 802			k_fn(vc, KVAL(K_FIND), 0);
 803			return;
 804		case KVAL(K_P8):
 805			k_cur(vc, KVAL(K_UP), 0);
 806			return;
 807		case KVAL(K_P9):
 808			k_fn(vc, KVAL(K_PGUP), 0);
 809			return;
 810		case KVAL(K_P5):
 811			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 812			return;
 813		}
 814	}
 815
 816	put_queue(vc, pad_chars[value]);
 817	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 818		put_queue(vc, 10);
 819}
 820
 821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 822{
 823	int old_state = shift_state;
 824
 825	if (rep)
 826		return;
 827	/*
 828	 * Mimic typewriter:
 829	 * a CapsShift key acts like Shift but undoes CapsLock
 830	 */
 831	if (value == KVAL(K_CAPSSHIFT)) {
 832		value = KVAL(K_SHIFT);
 833		if (!up_flag)
 834			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 835	}
 836
 837	if (up_flag) {
 838		/*
 839		 * handle the case that two shift or control
 840		 * keys are depressed simultaneously
 841		 */
 842		if (shift_down[value])
 843			shift_down[value]--;
 844	} else
 845		shift_down[value]++;
 846
 847	if (shift_down[value])
 848		shift_state |= (1 << value);
 849	else
 850		shift_state &= ~(1 << value);
 851
 852	/* kludge */
 853	if (up_flag && shift_state != old_state && npadch_active) {
 854		if (kbd->kbdmode == VC_UNICODE)
 855			to_utf8(vc, npadch_value);
 856		else
 857			put_queue(vc, npadch_value & 0xff);
 858		npadch_active = false;
 859	}
 860}
 861
 862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 863{
 864	if (up_flag)
 865		return;
 866
 867	if (vc_kbd_mode(kbd, VC_META)) {
 868		put_queue(vc, '\033');
 869		put_queue(vc, value);
 870	} else
 871		put_queue(vc, value | 0x80);
 872}
 873
 874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 875{
 876	unsigned int base;
 877
 878	if (up_flag)
 879		return;
 880
 881	if (value < 10) {
 882		/* decimal input of code, while Alt depressed */
 883		base = 10;
 884	} else {
 885		/* hexadecimal input of code, while AltGr depressed */
 886		value -= 10;
 887		base = 16;
 888	}
 889
 890	if (!npadch_active) {
 891		npadch_value = 0;
 892		npadch_active = true;
 893	}
 894
 895	npadch_value = npadch_value * base + value;
 896}
 897
 898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 899{
 900	if (up_flag || rep)
 901		return;
 902
 903	chg_vc_kbd_lock(kbd, value);
 904}
 905
 906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 907{
 908	k_shift(vc, value, up_flag);
 909	if (up_flag || rep)
 910		return;
 911
 912	chg_vc_kbd_slock(kbd, value);
 913	/* try to make Alt, oops, AltGr and such work */
 914	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 915		kbd->slockstate = 0;
 916		chg_vc_kbd_slock(kbd, value);
 917	}
 918}
 919
 920/* by default, 300ms interval for combination release */
 921static unsigned brl_timeout = 300;
 922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 923module_param(brl_timeout, uint, 0644);
 924
 925static unsigned brl_nbchords = 1;
 926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 927module_param(brl_nbchords, uint, 0644);
 928
 929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 930{
 931	static unsigned long chords;
 932	static unsigned committed;
 933
 934	if (!brl_nbchords)
 935		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 936	else {
 937		committed |= pattern;
 938		chords++;
 939		if (chords == brl_nbchords) {
 940			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 941			chords = 0;
 942			committed = 0;
 943		}
 944	}
 945}
 946
 947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 948{
 949	static unsigned pressed, committing;
 950	static unsigned long releasestart;
 951
 952	if (kbd->kbdmode != VC_UNICODE) {
 953		if (!up_flag)
 954			pr_warn("keyboard mode must be unicode for braille patterns\n");
 955		return;
 956	}
 957
 958	if (!value) {
 959		k_unicode(vc, BRL_UC_ROW, up_flag);
 960		return;
 961	}
 962
 963	if (value > 8)
 964		return;
 965
 966	if (!up_flag) {
 967		pressed |= 1 << (value - 1);
 968		if (!brl_timeout)
 969			committing = pressed;
 970	} else if (brl_timeout) {
 971		if (!committing ||
 972		    time_after(jiffies,
 973			       releasestart + msecs_to_jiffies(brl_timeout))) {
 974			committing = pressed;
 975			releasestart = jiffies;
 976		}
 977		pressed &= ~(1 << (value - 1));
 978		if (!pressed && committing) {
 979			k_brlcommit(vc, committing, 0);
 980			committing = 0;
 981		}
 982	} else {
 983		if (committing) {
 984			k_brlcommit(vc, committing, 0);
 985			committing = 0;
 986		}
 987		pressed &= ~(1 << (value - 1));
 988	}
 989}
 990
 991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 992
 993struct kbd_led_trigger {
 994	struct led_trigger trigger;
 995	unsigned int mask;
 996};
 997
 998static int kbd_led_trigger_activate(struct led_classdev *cdev)
 999{
1000	struct kbd_led_trigger *trigger =
1001		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003	tasklet_disable(&keyboard_tasklet);
1004	if (ledstate != -1U)
1005		led_trigger_event(&trigger->trigger,
1006				  ledstate & trigger->mask ?
1007					LED_FULL : LED_OFF);
1008	tasklet_enable(&keyboard_tasklet);
1009
1010	return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1014		.trigger = {					\
1015			.name = _name,				\
1016			.activate = kbd_led_trigger_activate,	\
1017		},						\
1018		.mask	= BIT(_led_bit),			\
1019	}
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1022	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1027	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1028	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1029
1030	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1031	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1032	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1033	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1034	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1037	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041				    unsigned int new_state)
1042{
1043	struct kbd_led_trigger *trigger;
1044	unsigned int changed = old_state ^ new_state;
1045	int i;
1046
1047	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048		trigger = &kbd_led_triggers[i];
1049
1050		if (changed & trigger->mask)
1051			led_trigger_event(&trigger->trigger,
1052					  new_state & trigger->mask ?
1053						LED_FULL : LED_OFF);
1054	}
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059	unsigned int led_state = *(unsigned int *)data;
1060
1061	if (test_bit(EV_LED, handle->dev->evbit))
1062		kbd_propagate_led_state(~led_state, led_state);
1063
1064	return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069	int error;
1070	int i;
1071
1072	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074		if (error)
1075			pr_err("error %d while registering trigger %s\n",
1076			       error, kbd_led_triggers[i].trigger.name);
1077	}
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084	unsigned int leds = *(unsigned int *)data;
1085
1086	if (test_bit(EV_LED, handle->dev->evbit)) {
1087		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1089		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1090		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091	}
1092
1093	return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097				    unsigned int new_state)
1098{
1099	input_handler_for_each_handle(&kbd_handler, &new_state,
1100				      kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116	return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121        unsigned long flags;
1122        spin_lock_irqsave(&led_lock, flags);
1123	if (!(led & ~7)) {
1124		ledioctl = led;
1125		kb->ledmode = LED_SHOW_IOCTL;
1126	} else
1127		kb->ledmode = LED_SHOW_FLAGS;
1128
1129	set_leds();
1130	spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135	struct kbd_struct *kb = kbd_table + fg_console;
1136
1137	if (kb->ledmode == LED_SHOW_IOCTL)
1138		return ledioctl;
1139
1140	return kb->ledflagstate;
1141}
1142
1143/**
1144 *	vt_get_leds	-	helper for braille console
1145 *	@console: console to read
1146 *	@flag: flag we want to check
1147 *
1148 *	Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152	struct kbd_struct *kb = kbd_table + console;
1153	int ret;
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&led_lock, flags);
1157	ret = vc_kbd_led(kb, flag);
1158	spin_unlock_irqrestore(&led_lock, flags);
1159
1160	return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 *	vt_set_led_state	-	set LED state of a console
1166 *	@console: console to set
1167 *	@leds: LED bits
1168 *
1169 *	Set the LEDs on a console. This is a wrapper for the VT layer
1170 *	so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174	struct kbd_struct *kb = kbd_table + console;
1175	setledstate(kb, leds);
1176}
1177
1178/**
1179 *	vt_kbd_con_start	-	Keyboard side of console start
1180 *	@console: console
1181 *
1182 *	Handle console start. This is a wrapper for the VT layer
1183 *	so that we can keep kbd knowledge internal
1184 *
1185 *	FIXME: We eventually need to hold the kbd lock here to protect
1186 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 *	and start_tty under the kbd_event_lock, while normal tty paths
1188 *	don't hold the lock. We probably need to split out an LED lock
1189 *	but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193	struct kbd_struct *kb = kbd_table + console;
1194	unsigned long flags;
1195	spin_lock_irqsave(&led_lock, flags);
1196	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197	set_leds();
1198	spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 *	vt_kbd_con_stop		-	Keyboard side of console stop
1203 *	@console: console
1204 *
1205 *	Handle console stop. This is a wrapper for the VT layer
1206 *	so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210	struct kbd_struct *kb = kbd_table + console;
1211	unsigned long flags;
1212	spin_lock_irqsave(&led_lock, flags);
1213	set_vc_kbd_led(kb, VC_SCROLLOCK);
1214	set_leds();
1215	spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226	unsigned int leds;
1227	unsigned long flags;
1228
1229	spin_lock_irqsave(&led_lock, flags);
1230	leds = getleds();
1231	leds |= (unsigned int)kbd->lockstate << 8;
1232	spin_unlock_irqrestore(&led_lock, flags);
1233
1234	if (leds != ledstate) {
1235		kbd_propagate_led_state(ledstate, leds);
1236		ledstate = leds;
1237	}
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1252	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273		       unsigned char up_flag)
1274{
1275	int code;
1276
1277	switch (keycode) {
1278
1279	case KEY_PAUSE:
1280		put_queue(vc, 0xe1);
1281		put_queue(vc, 0x1d | up_flag);
1282		put_queue(vc, 0x45 | up_flag);
1283		break;
1284
1285	case KEY_HANGEUL:
1286		if (!up_flag)
1287			put_queue(vc, 0xf2);
1288		break;
1289
1290	case KEY_HANJA:
1291		if (!up_flag)
1292			put_queue(vc, 0xf1);
1293		break;
1294
1295	case KEY_SYSRQ:
1296		/*
1297		 * Real AT keyboards (that's what we're trying
1298		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299		 * pressing PrtSc/SysRq alone, but simply 0x54
1300		 * when pressing Alt+PrtSc/SysRq.
1301		 */
1302		if (test_bit(KEY_LEFTALT, key_down) ||
1303		    test_bit(KEY_RIGHTALT, key_down)) {
1304			put_queue(vc, 0x54 | up_flag);
1305		} else {
1306			put_queue(vc, 0xe0);
1307			put_queue(vc, 0x2a | up_flag);
1308			put_queue(vc, 0xe0);
1309			put_queue(vc, 0x37 | up_flag);
1310		}
1311		break;
1312
1313	default:
1314		if (keycode > 255)
1315			return -1;
1316
1317		code = x86_keycodes[keycode];
1318		if (!code)
1319			return -1;
1320
1321		if (code & 0x100)
1322			put_queue(vc, 0xe0);
1323		put_queue(vc, (code & 0x7f) | up_flag);
1324
1325		break;
1326	}
1327
1328	return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev)	0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337	if (keycode > 127)
1338		return -1;
1339
1340	put_queue(vc, keycode | up_flag);
1341	return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347	struct vc_data *vc = vc_cons[fg_console].d;
1348
1349	kbd = kbd_table + vc->vc_num;
1350	if (kbd->kbdmode == VC_RAW)
1351		put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356	struct vc_data *vc = vc_cons[fg_console].d;
1357	unsigned short keysym, *key_map;
1358	unsigned char type;
1359	bool raw_mode;
1360	struct tty_struct *tty;
1361	int shift_final;
1362	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363	int rc;
1364
1365	tty = vc->port.tty;
1366
1367	if (tty && (!tty->driver_data)) {
1368		/* No driver data? Strange. Okay we fix it then. */
1369		tty->driver_data = vc;
1370	}
1371
1372	kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375	if (keycode == KEY_STOP)
1376		sparc_l1_a_state = down;
1377#endif
1378
1379	rep = (down == 2);
1380
1381	raw_mode = (kbd->kbdmode == VC_RAW);
1382	if (raw_mode && !hw_raw)
1383		if (emulate_raw(vc, keycode, !down << 7))
1384			if (keycode < BTN_MISC && printk_ratelimit())
1385				pr_warn("can't emulate rawmode for keycode %d\n",
1386					keycode);
1387
1388#ifdef CONFIG_SPARC
1389	if (keycode == KEY_A && sparc_l1_a_state) {
1390		sparc_l1_a_state = false;
1391		sun_do_break();
1392	}
1393#endif
1394
1395	if (kbd->kbdmode == VC_MEDIUMRAW) {
1396		/*
1397		 * This is extended medium raw mode, with keys above 127
1398		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400		 * interfere with anything else. The two bytes after 0 will
1401		 * always have the up flag set not to interfere with older
1402		 * applications. This allows for 16384 different keycodes,
1403		 * which should be enough.
1404		 */
1405		if (keycode < 128) {
1406			put_queue(vc, keycode | (!down << 7));
1407		} else {
1408			put_queue(vc, !down << 7);
1409			put_queue(vc, (keycode >> 7) | 0x80);
1410			put_queue(vc, keycode | 0x80);
1411		}
1412		raw_mode = true;
1413	}
1414
1415	if (down)
1416		set_bit(keycode, key_down);
1417	else
1418		clear_bit(keycode, key_down);
1419
1420	if (rep &&
1421	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423		/*
1424		 * Don't repeat a key if the input buffers are not empty and the
1425		 * characters get aren't echoed locally. This makes key repeat
1426		 * usable with slow applications and under heavy loads.
1427		 */
1428		return;
1429	}
1430
1431	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432	param.ledstate = kbd->ledflagstate;
1433	key_map = key_maps[shift_final];
1434
1435	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436					KBD_KEYCODE, &param);
1437	if (rc == NOTIFY_STOP || !key_map) {
1438		atomic_notifier_call_chain(&keyboard_notifier_list,
1439					   KBD_UNBOUND_KEYCODE, &param);
1440		do_compute_shiftstate();
1441		kbd->slockstate = 0;
1442		return;
1443	}
1444
1445	if (keycode < NR_KEYS)
1446		keysym = key_map[keycode];
1447	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449	else
1450		return;
1451
1452	type = KTYP(keysym);
1453
1454	if (type < 0xf0) {
1455		param.value = keysym;
1456		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457						KBD_UNICODE, &param);
1458		if (rc != NOTIFY_STOP)
1459			if (down && !raw_mode)
1460				k_unicode(vc, keysym, !down);
1461		return;
1462	}
1463
1464	type -= 0xf0;
1465
1466	if (type == KT_LETTER) {
1467		type = KT_LATIN;
1468		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470			if (key_map)
1471				keysym = key_map[keycode];
1472		}
1473	}
1474
1475	param.value = keysym;
1476	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477					KBD_KEYSYM, &param);
1478	if (rc == NOTIFY_STOP)
1479		return;
1480
1481	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482		return;
1483
1484	(*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486	param.ledstate = kbd->ledflagstate;
1487	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1488
1489	if (type != KT_SLOCK)
1490		kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494		      unsigned int event_code, int value)
1495{
1496	/* We are called with interrupts disabled, just take the lock */
1497	spin_lock(&kbd_event_lock);
1498
1499	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500		kbd_rawcode(value);
1501	if (event_type == EV_KEY && event_code <= KEY_MAX)
1502		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504	spin_unlock(&kbd_event_lock);
1505
1506	tasklet_schedule(&keyboard_tasklet);
1507	do_poke_blanked_console = 1;
1508	schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513	int i;
1514
1515	if (test_bit(EV_SND, dev->evbit))
1516		return true;
1517
1518	if (test_bit(EV_KEY, dev->evbit)) {
1519		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520			if (test_bit(i, dev->keybit))
1521				return true;
1522		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523			if (test_bit(i, dev->keybit))
1524				return true;
1525	}
1526
1527	return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537			const struct input_device_id *id)
1538{
1539	struct input_handle *handle;
1540	int error;
1541
1542	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543	if (!handle)
1544		return -ENOMEM;
1545
1546	handle->dev = dev;
1547	handle->handler = handler;
1548	handle->name = "kbd";
1549
1550	error = input_register_handle(handle);
1551	if (error)
1552		goto err_free_handle;
1553
1554	error = input_open_device(handle);
1555	if (error)
1556		goto err_unregister_handle;
1557
1558	return 0;
1559
1560 err_unregister_handle:
1561	input_unregister_handle(handle);
1562 err_free_handle:
1563	kfree(handle);
1564	return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569	input_close_device(handle);
1570	input_unregister_handle(handle);
1571	kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580	tasklet_disable(&keyboard_tasklet);
1581
1582	if (ledstate != -1U)
1583		kbd_update_leds_helper(handle, &ledstate);
1584
1585	tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589	{
1590		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591		.evbit = { BIT_MASK(EV_KEY) },
1592	},
1593
1594	{
1595		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596		.evbit = { BIT_MASK(EV_SND) },
1597	},
1598
1599	{ },    /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605	.event		= kbd_event,
1606	.match		= kbd_match,
1607	.connect	= kbd_connect,
1608	.disconnect	= kbd_disconnect,
1609	.start		= kbd_start,
1610	.name		= "kbd",
1611	.id_table	= kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616	int i;
1617	int error;
1618
1619	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620		kbd_table[i].ledflagstate = kbd_defleds();
1621		kbd_table[i].default_ledflagstate = kbd_defleds();
1622		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623		kbd_table[i].lockstate = KBD_DEFLOCK;
1624		kbd_table[i].slockstate = 0;
1625		kbd_table[i].modeflags = KBD_DEFMODE;
1626		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627	}
1628
1629	kbd_init_leds();
1630
1631	error = input_register_handler(&kbd_handler);
1632	if (error)
1633		return error;
1634
1635	tasklet_enable(&keyboard_tasklet);
1636	tasklet_schedule(&keyboard_tasklet);
1637
1638	return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 *	vt_do_diacrit		-	diacritical table updates
1645 *	@cmd: ioctl request
1646 *	@udp: pointer to user data for ioctl
1647 *	@perm: permissions check computed by caller
1648 *
1649 *	Update the diacritical tables atomically and safely. Lock them
1650 *	against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654	unsigned long flags;
1655	int asize;
1656	int ret = 0;
1657
1658	switch (cmd) {
1659	case KDGKBDIACR:
1660	{
1661		struct kbdiacrs __user *a = udp;
1662		struct kbdiacr *dia;
1663		int i;
1664
1665		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666								GFP_KERNEL);
1667		if (!dia)
1668			return -ENOMEM;
1669
1670		/* Lock the diacriticals table, make a copy and then
1671		   copy it after we unlock */
1672		spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674		asize = accent_table_size;
1675		for (i = 0; i < asize; i++) {
1676			dia[i].diacr = conv_uni_to_8bit(
1677						accent_table[i].diacr);
1678			dia[i].base = conv_uni_to_8bit(
1679						accent_table[i].base);
1680			dia[i].result = conv_uni_to_8bit(
1681						accent_table[i].result);
1682		}
1683		spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685		if (put_user(asize, &a->kb_cnt))
1686			ret = -EFAULT;
1687		else  if (copy_to_user(a->kbdiacr, dia,
1688				asize * sizeof(struct kbdiacr)))
1689			ret = -EFAULT;
1690		kfree(dia);
1691		return ret;
1692	}
1693	case KDGKBDIACRUC:
1694	{
1695		struct kbdiacrsuc __user *a = udp;
1696		void *buf;
1697
1698		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699								GFP_KERNEL);
1700		if (buf == NULL)
1701			return -ENOMEM;
1702
1703		/* Lock the diacriticals table, make a copy and then
1704		   copy it after we unlock */
1705		spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707		asize = accent_table_size;
1708		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710		spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712		if (put_user(asize, &a->kb_cnt))
1713			ret = -EFAULT;
1714		else if (copy_to_user(a->kbdiacruc, buf,
1715				asize*sizeof(struct kbdiacruc)))
1716			ret = -EFAULT;
1717		kfree(buf);
1718		return ret;
1719	}
1720
1721	case KDSKBDIACR:
1722	{
1723		struct kbdiacrs __user *a = udp;
1724		struct kbdiacr *dia = NULL;
1725		unsigned int ct;
1726		int i;
1727
1728		if (!perm)
1729			return -EPERM;
1730		if (get_user(ct, &a->kb_cnt))
1731			return -EFAULT;
1732		if (ct >= MAX_DIACR)
1733			return -EINVAL;
1734
1735		if (ct) {
1736
1737			dia = memdup_user(a->kbdiacr,
1738					sizeof(struct kbdiacr) * ct);
1739			if (IS_ERR(dia))
1740				return PTR_ERR(dia);
1741
1742		}
1743
1744		spin_lock_irqsave(&kbd_event_lock, flags);
1745		accent_table_size = ct;
1746		for (i = 0; i < ct; i++) {
1747			accent_table[i].diacr =
1748					conv_8bit_to_uni(dia[i].diacr);
1749			accent_table[i].base =
1750					conv_8bit_to_uni(dia[i].base);
1751			accent_table[i].result =
1752					conv_8bit_to_uni(dia[i].result);
1753		}
1754		spin_unlock_irqrestore(&kbd_event_lock, flags);
1755		kfree(dia);
1756		return 0;
1757	}
1758
1759	case KDSKBDIACRUC:
1760	{
1761		struct kbdiacrsuc __user *a = udp;
1762		unsigned int ct;
1763		void *buf = NULL;
1764
1765		if (!perm)
1766			return -EPERM;
1767
1768		if (get_user(ct, &a->kb_cnt))
1769			return -EFAULT;
1770
1771		if (ct >= MAX_DIACR)
1772			return -EINVAL;
1773
1774		if (ct) {
1775			buf = memdup_user(a->kbdiacruc,
1776					  ct * sizeof(struct kbdiacruc));
1777			if (IS_ERR(buf))
1778				return PTR_ERR(buf);
1779		} 
1780		spin_lock_irqsave(&kbd_event_lock, flags);
1781		if (ct)
1782			memcpy(accent_table, buf,
1783					ct * sizeof(struct kbdiacruc));
1784		accent_table_size = ct;
1785		spin_unlock_irqrestore(&kbd_event_lock, flags);
1786		kfree(buf);
1787		return 0;
1788	}
1789	}
1790	return ret;
1791}
1792
1793/**
1794 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1795 *	@console: the console to use
1796 *	@arg: the requested mode
1797 *
1798 *	Update the keyboard mode bits while holding the correct locks.
1799 *	Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803	struct kbd_struct *kb = kbd_table + console;
1804	int ret = 0;
1805	unsigned long flags;
1806
1807	spin_lock_irqsave(&kbd_event_lock, flags);
1808	switch(arg) {
1809	case K_RAW:
1810		kb->kbdmode = VC_RAW;
1811		break;
1812	case K_MEDIUMRAW:
1813		kb->kbdmode = VC_MEDIUMRAW;
1814		break;
1815	case K_XLATE:
1816		kb->kbdmode = VC_XLATE;
1817		do_compute_shiftstate();
1818		break;
1819	case K_UNICODE:
1820		kb->kbdmode = VC_UNICODE;
1821		do_compute_shiftstate();
1822		break;
1823	case K_OFF:
1824		kb->kbdmode = VC_OFF;
1825		break;
1826	default:
1827		ret = -EINVAL;
1828	}
1829	spin_unlock_irqrestore(&kbd_event_lock, flags);
1830	return ret;
1831}
1832
1833/**
1834 *	vt_do_kdskbmeta		-	set keyboard meta state
1835 *	@console: the console to use
1836 *	@arg: the requested meta state
1837 *
1838 *	Update the keyboard meta bits while holding the correct locks.
1839 *	Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843	struct kbd_struct *kb = kbd_table + console;
1844	int ret = 0;
1845	unsigned long flags;
1846
1847	spin_lock_irqsave(&kbd_event_lock, flags);
1848	switch(arg) {
1849	case K_METABIT:
1850		clr_vc_kbd_mode(kb, VC_META);
1851		break;
1852	case K_ESCPREFIX:
1853		set_vc_kbd_mode(kb, VC_META);
1854		break;
1855	default:
1856		ret = -EINVAL;
1857	}
1858	spin_unlock_irqrestore(&kbd_event_lock, flags);
1859	return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863								int perm)
1864{
1865	struct kbkeycode tmp;
1866	int kc = 0;
1867
1868	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869		return -EFAULT;
1870	switch (cmd) {
1871	case KDGETKEYCODE:
1872		kc = getkeycode(tmp.scancode);
1873		if (kc >= 0)
1874			kc = put_user(kc, &user_kbkc->keycode);
1875		break;
1876	case KDSETKEYCODE:
1877		if (!perm)
1878			return -EPERM;
1879		kc = setkeycode(tmp.scancode, tmp.keycode);
1880		break;
1881	}
1882	return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890						int console)
1891{
1892	struct kbd_struct *kb = kbd_table + console;
1893	struct kbentry tmp;
1894	ushort *key_map, *new_map, val, ov;
1895	unsigned long flags;
1896
1897	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898		return -EFAULT;
1899
1900	if (!capable(CAP_SYS_TTY_CONFIG))
1901		perm = 0;
1902
1903	switch (cmd) {
1904	case KDGKBENT:
1905		/* Ensure another thread doesn't free it under us */
1906		spin_lock_irqsave(&kbd_event_lock, flags);
1907		key_map = key_maps[s];
1908		if (key_map) {
1909		    val = U(key_map[i]);
1910		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911			val = K_HOLE;
1912		} else
1913		    val = (i ? K_HOLE : K_NOSUCHMAP);
1914		spin_unlock_irqrestore(&kbd_event_lock, flags);
1915		return put_user(val, &user_kbe->kb_value);
1916	case KDSKBENT:
1917		if (!perm)
1918			return -EPERM;
1919		if (!i && v == K_NOSUCHMAP) {
1920			spin_lock_irqsave(&kbd_event_lock, flags);
1921			/* deallocate map */
1922			key_map = key_maps[s];
1923			if (s && key_map) {
1924			    key_maps[s] = NULL;
1925			    if (key_map[0] == U(K_ALLOCATED)) {
1926					kfree(key_map);
1927					keymap_count--;
1928			    }
1929			}
1930			spin_unlock_irqrestore(&kbd_event_lock, flags);
1931			break;
1932		}
1933
1934		if (KTYP(v) < NR_TYPES) {
1935		    if (KVAL(v) > max_vals[KTYP(v)])
1936				return -EINVAL;
1937		} else
1938		    if (kb->kbdmode != VC_UNICODE)
1939				return -EINVAL;
1940
1941		/* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943		/* assignment to entry 0 only tests validity of args */
1944		if (!i)
1945			break;
1946#endif
1947
1948		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949		if (!new_map)
1950			return -ENOMEM;
1951		spin_lock_irqsave(&kbd_event_lock, flags);
1952		key_map = key_maps[s];
1953		if (key_map == NULL) {
1954			int j;
1955
1956			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957			    !capable(CAP_SYS_RESOURCE)) {
1958				spin_unlock_irqrestore(&kbd_event_lock, flags);
1959				kfree(new_map);
1960				return -EPERM;
1961			}
1962			key_maps[s] = new_map;
1963			key_map = new_map;
1964			key_map[0] = U(K_ALLOCATED);
1965			for (j = 1; j < NR_KEYS; j++)
1966				key_map[j] = U(K_HOLE);
1967			keymap_count++;
1968		} else
1969			kfree(new_map);
1970
1971		ov = U(key_map[i]);
1972		if (v == ov)
1973			goto out;
1974		/*
1975		 * Attention Key.
1976		 */
1977		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978			spin_unlock_irqrestore(&kbd_event_lock, flags);
1979			return -EPERM;
1980		}
1981		key_map[i] = U(v);
1982		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983			do_compute_shiftstate();
1984out:
1985		spin_unlock_irqrestore(&kbd_event_lock, flags);
1986		break;
1987	}
1988	return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997	struct kbsentry *kbs;
1998	char *p;
1999	u_char *q;
2000	u_char __user *up;
2001	int sz, fnw_sz;
2002	int delta;
2003	char *first_free, *fj, *fnw;
2004	int i, j, k;
2005	int ret;
2006	unsigned long flags;
2007
2008	if (!capable(CAP_SYS_TTY_CONFIG))
2009		perm = 0;
2010
2011	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012	if (!kbs) {
2013		ret = -ENOMEM;
2014		goto reterr;
2015	}
2016
2017	/* we mostly copy too much here (512bytes), but who cares ;) */
2018	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019		ret = -EFAULT;
2020		goto reterr;
2021	}
2022	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023	i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025	switch (cmd) {
2026	case KDGKBSENT:
2027		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028						  a struct member */
2029		up = user_kdgkb->kb_string;
2030		p = func_table[i];
2031		if(p)
2032			for ( ; *p && sz; p++, sz--)
2033				if (put_user(*p, up++)) {
2034					ret = -EFAULT;
2035					goto reterr;
2036				}
2037		if (put_user('\0', up)) {
2038			ret = -EFAULT;
2039			goto reterr;
2040		}
2041		kfree(kbs);
2042		return ((p && *p) ? -EOVERFLOW : 0);
2043	case KDSKBSENT:
2044		if (!perm) {
2045			ret = -EPERM;
2046			goto reterr;
2047		}
2048
2049		fnw = NULL;
2050		fnw_sz = 0;
2051		/* race aginst other writers */
2052		again:
2053		spin_lock_irqsave(&func_buf_lock, flags);
2054		q = func_table[i];
2055
2056		/* fj pointer to next entry after 'q' */
2057		first_free = funcbufptr + (funcbufsize - funcbufleft);
2058		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059			;
2060		if (j < MAX_NR_FUNC)
2061			fj = func_table[j];
2062		else
2063			fj = first_free;
2064		/* buffer usage increase by new entry */
2065		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
 
2067		if (delta <= funcbufleft) { 	/* it fits in current buf */
2068		    if (j < MAX_NR_FUNC) {
2069			/* make enough space for new entry at 'fj' */
2070			memmove(fj + delta, fj, first_free - fj);
2071			for (k = j; k < MAX_NR_FUNC; k++)
2072			    if (func_table[k])
2073				func_table[k] += delta;
2074		    }
2075		    if (!q)
2076		      func_table[i] = fj;
2077		    funcbufleft -= delta;
2078		} else {			/* allocate a larger buffer */
2079		    sz = 256;
2080		    while (sz < funcbufsize - funcbufleft + delta)
2081		      sz <<= 1;
2082		    if (fnw_sz != sz) {
2083		      spin_unlock_irqrestore(&func_buf_lock, flags);
2084		      kfree(fnw);
2085		      fnw = kmalloc(sz, GFP_KERNEL);
2086		      fnw_sz = sz;
2087		      if (!fnw) {
2088			ret = -ENOMEM;
2089			goto reterr;
2090		      }
2091		      goto again;
2092		    }
2093
2094		    if (!q)
2095		      func_table[i] = fj;
2096		    /* copy data before insertion point to new location */
2097		    if (fj > funcbufptr)
2098			memmove(fnw, funcbufptr, fj - funcbufptr);
2099		    for (k = 0; k < j; k++)
2100		      if (func_table[k])
2101			func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103		    /* copy data after insertion point to new location */
2104		    if (first_free > fj) {
2105			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106			for (k = j; k < MAX_NR_FUNC; k++)
2107			  if (func_table[k])
2108			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109		    }
2110		    if (funcbufptr != func_buf)
2111		      kfree(funcbufptr);
2112		    funcbufptr = fnw;
2113		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114		    funcbufsize = sz;
2115		}
2116		/* finally insert item itself */
2117		strcpy(func_table[i], kbs->kb_string);
2118		spin_unlock_irqrestore(&func_buf_lock, flags);
2119		break;
2120	}
2121	ret = 0;
2122reterr:
2123	kfree(kbs);
2124	return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129	struct kbd_struct *kb = kbd_table + console;
2130        unsigned long flags;
2131	unsigned char ucval;
2132
2133        switch(cmd) {
2134	/* the ioctls below read/set the flags usually shown in the leds */
2135	/* don't use them - they will go away without warning */
2136	case KDGKBLED:
2137                spin_lock_irqsave(&kbd_event_lock, flags);
2138		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139                spin_unlock_irqrestore(&kbd_event_lock, flags);
2140		return put_user(ucval, (char __user *)arg);
2141
2142	case KDSKBLED:
2143		if (!perm)
2144			return -EPERM;
2145		if (arg & ~0x77)
2146			return -EINVAL;
2147                spin_lock_irqsave(&led_lock, flags);
2148		kb->ledflagstate = (arg & 7);
2149		kb->default_ledflagstate = ((arg >> 4) & 7);
2150		set_leds();
2151                spin_unlock_irqrestore(&led_lock, flags);
2152		return 0;
2153
2154	/* the ioctls below only set the lights, not the functions */
2155	/* for those, see KDGKBLED and KDSKBLED above */
2156	case KDGETLED:
2157		ucval = getledstate();
2158		return put_user(ucval, (char __user *)arg);
2159
2160	case KDSETLED:
2161		if (!perm)
2162			return -EPERM;
2163		setledstate(kb, arg);
2164		return 0;
2165        }
2166        return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171	struct kbd_struct *kb = kbd_table + console;
2172	/* This is a spot read so needs no locking */
2173	switch (kb->kbdmode) {
2174	case VC_RAW:
2175		return K_RAW;
2176	case VC_MEDIUMRAW:
2177		return K_MEDIUMRAW;
2178	case VC_UNICODE:
2179		return K_UNICODE;
2180	case VC_OFF:
2181		return K_OFF;
2182	default:
2183		return K_XLATE;
2184	}
2185}
2186
2187/**
2188 *	vt_do_kdgkbmeta		-	report meta status
2189 *	@console: console to report
2190 *
2191 *	Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195	struct kbd_struct *kb = kbd_table + console;
2196        /* Again a spot read so no locking */
2197	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 *	vt_reset_unicode	-	reset the unicode status
2202 *	@console: console being reset
2203 *
2204 *	Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208	unsigned long flags;
2209
2210	spin_lock_irqsave(&kbd_event_lock, flags);
2211	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212	spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 *	vt_get_shiftstate	-	shift bit state
2217 *
2218 *	Report the shift bits from the keyboard state. We have to export
2219 *	this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223        /* Don't lock as this is a transient report */
2224        return shift_state;
2225}
2226
2227/**
2228 *	vt_reset_keyboard	-	reset keyboard state
2229 *	@console: console to reset
2230 *
2231 *	Reset the keyboard bits for a console as part of a general console
2232 *	reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236	struct kbd_struct *kb = kbd_table + console;
2237	unsigned long flags;
2238
2239	spin_lock_irqsave(&kbd_event_lock, flags);
2240	set_vc_kbd_mode(kb, VC_REPEAT);
2241	clr_vc_kbd_mode(kb, VC_CKMODE);
2242	clr_vc_kbd_mode(kb, VC_APPLIC);
2243	clr_vc_kbd_mode(kb, VC_CRLF);
2244	kb->lockstate = 0;
2245	kb->slockstate = 0;
2246	spin_lock(&led_lock);
2247	kb->ledmode = LED_SHOW_FLAGS;
2248	kb->ledflagstate = kb->default_ledflagstate;
2249	spin_unlock(&led_lock);
2250	/* do not do set_leds here because this causes an endless tasklet loop
2251	   when the keyboard hasn't been initialized yet */
2252	spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2257 *	@console: console to read from
2258 *	@bit: mode bit to read
2259 *
2260 *	Report back a vt mode bit. We do this without locking so the
2261 *	caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266	struct kbd_struct *kb = kbd_table + console;
2267	return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2272 *	@console: console to read from
2273 *	@bit: mode bit to read
2274 *
2275 *	Set a vt mode bit. We do this without locking so the
2276 *	caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281	struct kbd_struct *kb = kbd_table + console;
2282	unsigned long flags;
2283
2284	spin_lock_irqsave(&kbd_event_lock, flags);
2285	set_vc_kbd_mode(kb, bit);
2286	spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2291 *	@console: console to read from
2292 *	@bit: mode bit to read
2293 *
2294 *	Report back a vt mode bit. We do this without locking so the
2295 *	caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300	struct kbd_struct *kb = kbd_table + console;
2301	unsigned long flags;
2302
2303	spin_lock_irqsave(&kbd_event_lock, flags);
2304	clr_vc_kbd_mode(kb, bit);
2305	spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/module.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/debug.h>
  32#include <linux/tty.h>
  33#include <linux/tty_flip.h>
  34#include <linux/mm.h>
 
  35#include <linux/string.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/leds.h>
  39
  40#include <linux/kbd_kern.h>
  41#include <linux/kbd_diacr.h>
  42#include <linux/vt_kern.h>
  43#include <linux/input.h>
  44#include <linux/reboot.h>
  45#include <linux/notifier.h>
  46#include <linux/jiffies.h>
  47#include <linux/uaccess.h>
  48
  49#include <asm/irq_regs.h>
  50
  51extern void ctrl_alt_del(void);
  52
  53/*
  54 * Exported functions/variables
  55 */
  56
  57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  58
  59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  60#include <asm/kbdleds.h>
  61#else
  62static inline int kbd_defleds(void)
  63{
  64	return 0;
  65}
  66#endif
  67
  68#define KBD_DEFLOCK 0
  69
  70/*
  71 * Handler Tables.
  72 */
  73
  74#define K_HANDLERS\
  75	k_self,		k_fn,		k_spec,		k_pad,\
  76	k_dead,		k_cons,		k_cur,		k_shift,\
  77	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  78	k_slock,	k_dead2,	k_brl,		k_ignore
  79
  80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  81			    char up_flag);
  82static k_handler_fn K_HANDLERS;
  83static k_handler_fn *k_handler[16] = { K_HANDLERS };
  84
  85#define FN_HANDLERS\
  86	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  87	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  88	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  89	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  90	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  91
  92typedef void (fn_handler_fn)(struct vc_data *vc);
  93static fn_handler_fn FN_HANDLERS;
  94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  95
  96/*
  97 * Variables exported for vt_ioctl.c
  98 */
  99
 100struct vt_spawn_console vt_spawn_con = {
 101	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 102	.pid  = NULL,
 103	.sig  = 0,
 104};
 105
 106
 107/*
 108 * Internal Data.
 109 */
 110
 111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 112static struct kbd_struct *kbd = kbd_table;
 113
 114/* maximum values each key_handler can handle */
 115static const int max_vals[] = {
 116	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 117	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 118	255, NR_LOCK - 1, 255, NR_BRL - 1
 119};
 120
 121static const int NR_TYPES = ARRAY_SIZE(max_vals);
 122
 123static struct input_handler kbd_handler;
 124static DEFINE_SPINLOCK(kbd_event_lock);
 125static DEFINE_SPINLOCK(led_lock);
 
 126static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 127static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 128static bool dead_key_next;
 129static int npadch = -1;					/* -1 or number assembled on pad */
 
 
 
 
 130static unsigned int diacr;
 131static char rep;					/* flag telling character repeat */
 132
 133static int shift_state = 0;
 134
 135static unsigned int ledstate = -1U;			/* undefined */
 136static unsigned char ledioctl;
 137
 138/*
 139 * Notifier list for console keyboard events
 140 */
 141static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 142
 143int register_keyboard_notifier(struct notifier_block *nb)
 144{
 145	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 146}
 147EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 148
 149int unregister_keyboard_notifier(struct notifier_block *nb)
 150{
 151	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 152}
 153EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 154
 155/*
 156 * Translation of scancodes to keycodes. We set them on only the first
 157 * keyboard in the list that accepts the scancode and keycode.
 158 * Explanation for not choosing the first attached keyboard anymore:
 159 *  USB keyboards for example have two event devices: one for all "normal"
 160 *  keys and one for extra function keys (like "volume up", "make coffee",
 161 *  etc.). So this means that scancodes for the extra function keys won't
 162 *  be valid for the first event device, but will be for the second.
 163 */
 164
 165struct getset_keycode_data {
 166	struct input_keymap_entry ke;
 167	int error;
 168};
 169
 170static int getkeycode_helper(struct input_handle *handle, void *data)
 171{
 172	struct getset_keycode_data *d = data;
 173
 174	d->error = input_get_keycode(handle->dev, &d->ke);
 175
 176	return d->error == 0; /* stop as soon as we successfully get one */
 177}
 178
 179static int getkeycode(unsigned int scancode)
 180{
 181	struct getset_keycode_data d = {
 182		.ke	= {
 183			.flags		= 0,
 184			.len		= sizeof(scancode),
 185			.keycode	= 0,
 186		},
 187		.error	= -ENODEV,
 188	};
 189
 190	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 191
 192	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 193
 194	return d.error ?: d.ke.keycode;
 195}
 196
 197static int setkeycode_helper(struct input_handle *handle, void *data)
 198{
 199	struct getset_keycode_data *d = data;
 200
 201	d->error = input_set_keycode(handle->dev, &d->ke);
 202
 203	return d->error == 0; /* stop as soon as we successfully set one */
 204}
 205
 206static int setkeycode(unsigned int scancode, unsigned int keycode)
 207{
 208	struct getset_keycode_data d = {
 209		.ke	= {
 210			.flags		= 0,
 211			.len		= sizeof(scancode),
 212			.keycode	= keycode,
 213		},
 214		.error	= -ENODEV,
 215	};
 216
 217	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 218
 219	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 220
 221	return d.error;
 222}
 223
 224/*
 225 * Making beeps and bells. Note that we prefer beeps to bells, but when
 226 * shutting the sound off we do both.
 227 */
 228
 229static int kd_sound_helper(struct input_handle *handle, void *data)
 230{
 231	unsigned int *hz = data;
 232	struct input_dev *dev = handle->dev;
 233
 234	if (test_bit(EV_SND, dev->evbit)) {
 235		if (test_bit(SND_TONE, dev->sndbit)) {
 236			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 237			if (*hz)
 238				return 0;
 239		}
 240		if (test_bit(SND_BELL, dev->sndbit))
 241			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 242	}
 243
 244	return 0;
 245}
 246
 247static void kd_nosound(struct timer_list *unused)
 248{
 249	static unsigned int zero;
 250
 251	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 252}
 253
 254static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 255
 256void kd_mksound(unsigned int hz, unsigned int ticks)
 257{
 258	del_timer_sync(&kd_mksound_timer);
 259
 260	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 261
 262	if (hz && ticks)
 263		mod_timer(&kd_mksound_timer, jiffies + ticks);
 264}
 265EXPORT_SYMBOL(kd_mksound);
 266
 267/*
 268 * Setting the keyboard rate.
 269 */
 270
 271static int kbd_rate_helper(struct input_handle *handle, void *data)
 272{
 273	struct input_dev *dev = handle->dev;
 274	struct kbd_repeat *rpt = data;
 275
 276	if (test_bit(EV_REP, dev->evbit)) {
 277
 278		if (rpt[0].delay > 0)
 279			input_inject_event(handle,
 280					   EV_REP, REP_DELAY, rpt[0].delay);
 281		if (rpt[0].period > 0)
 282			input_inject_event(handle,
 283					   EV_REP, REP_PERIOD, rpt[0].period);
 284
 285		rpt[1].delay = dev->rep[REP_DELAY];
 286		rpt[1].period = dev->rep[REP_PERIOD];
 287	}
 288
 289	return 0;
 290}
 291
 292int kbd_rate(struct kbd_repeat *rpt)
 293{
 294	struct kbd_repeat data[2] = { *rpt };
 295
 296	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 297	*rpt = data[1];	/* Copy currently used settings */
 298
 299	return 0;
 300}
 301
 302/*
 303 * Helper Functions.
 304 */
 305static void put_queue(struct vc_data *vc, int ch)
 306{
 307	tty_insert_flip_char(&vc->port, ch, 0);
 308	tty_schedule_flip(&vc->port);
 309}
 310
 311static void puts_queue(struct vc_data *vc, char *cp)
 312{
 313	while (*cp) {
 314		tty_insert_flip_char(&vc->port, *cp, 0);
 315		cp++;
 316	}
 317	tty_schedule_flip(&vc->port);
 318}
 319
 320static void applkey(struct vc_data *vc, int key, char mode)
 321{
 322	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 323
 324	buf[1] = (mode ? 'O' : '[');
 325	buf[2] = key;
 326	puts_queue(vc, buf);
 327}
 328
 329/*
 330 * Many other routines do put_queue, but I think either
 331 * they produce ASCII, or they produce some user-assigned
 332 * string, and in both cases we might assume that it is
 333 * in utf-8 already.
 334 */
 335static void to_utf8(struct vc_data *vc, uint c)
 336{
 337	if (c < 0x80)
 338		/*  0******* */
 339		put_queue(vc, c);
 340	else if (c < 0x800) {
 341		/* 110***** 10****** */
 342		put_queue(vc, 0xc0 | (c >> 6));
 343		put_queue(vc, 0x80 | (c & 0x3f));
 344	} else if (c < 0x10000) {
 345		if (c >= 0xD800 && c < 0xE000)
 346			return;
 347		if (c == 0xFFFF)
 348			return;
 349		/* 1110**** 10****** 10****** */
 350		put_queue(vc, 0xe0 | (c >> 12));
 351		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 352		put_queue(vc, 0x80 | (c & 0x3f));
 353	} else if (c < 0x110000) {
 354		/* 11110*** 10****** 10****** 10****** */
 355		put_queue(vc, 0xf0 | (c >> 18));
 356		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 357		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 358		put_queue(vc, 0x80 | (c & 0x3f));
 359	}
 360}
 361
 362/*
 363 * Called after returning from RAW mode or when changing consoles - recompute
 364 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 365 * undefined, so that shiftkey release is seen. The caller must hold the
 366 * kbd_event_lock.
 367 */
 368
 369static void do_compute_shiftstate(void)
 370{
 371	unsigned int k, sym, val;
 372
 373	shift_state = 0;
 374	memset(shift_down, 0, sizeof(shift_down));
 375
 376	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 377		sym = U(key_maps[0][k]);
 378		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 379			continue;
 380
 381		val = KVAL(sym);
 382		if (val == KVAL(K_CAPSSHIFT))
 383			val = KVAL(K_SHIFT);
 384
 385		shift_down[val]++;
 386		shift_state |= BIT(val);
 387	}
 388}
 389
 390/* We still have to export this method to vt.c */
 391void compute_shiftstate(void)
 392{
 393	unsigned long flags;
 394	spin_lock_irqsave(&kbd_event_lock, flags);
 395	do_compute_shiftstate();
 396	spin_unlock_irqrestore(&kbd_event_lock, flags);
 397}
 398
 399/*
 400 * We have a combining character DIACR here, followed by the character CH.
 401 * If the combination occurs in the table, return the corresponding value.
 402 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 403 * Otherwise, conclude that DIACR was not combining after all,
 404 * queue it and return CH.
 405 */
 406static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 407{
 408	unsigned int d = diacr;
 409	unsigned int i;
 410
 411	diacr = 0;
 412
 413	if ((d & ~0xff) == BRL_UC_ROW) {
 414		if ((ch & ~0xff) == BRL_UC_ROW)
 415			return d | ch;
 416	} else {
 417		for (i = 0; i < accent_table_size; i++)
 418			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 419				return accent_table[i].result;
 420	}
 421
 422	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 423		return d;
 424
 425	if (kbd->kbdmode == VC_UNICODE)
 426		to_utf8(vc, d);
 427	else {
 428		int c = conv_uni_to_8bit(d);
 429		if (c != -1)
 430			put_queue(vc, c);
 431	}
 432
 433	return ch;
 434}
 435
 436/*
 437 * Special function handlers
 438 */
 439static void fn_enter(struct vc_data *vc)
 440{
 441	if (diacr) {
 442		if (kbd->kbdmode == VC_UNICODE)
 443			to_utf8(vc, diacr);
 444		else {
 445			int c = conv_uni_to_8bit(diacr);
 446			if (c != -1)
 447				put_queue(vc, c);
 448		}
 449		diacr = 0;
 450	}
 451
 452	put_queue(vc, 13);
 453	if (vc_kbd_mode(kbd, VC_CRLF))
 454		put_queue(vc, 10);
 455}
 456
 457static void fn_caps_toggle(struct vc_data *vc)
 458{
 459	if (rep)
 460		return;
 461
 462	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 463}
 464
 465static void fn_caps_on(struct vc_data *vc)
 466{
 467	if (rep)
 468		return;
 469
 470	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 471}
 472
 473static void fn_show_ptregs(struct vc_data *vc)
 474{
 475	struct pt_regs *regs = get_irq_regs();
 476
 477	if (regs)
 478		show_regs(regs);
 479}
 480
 481static void fn_hold(struct vc_data *vc)
 482{
 483	struct tty_struct *tty = vc->port.tty;
 484
 485	if (rep || !tty)
 486		return;
 487
 488	/*
 489	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 490	 * these routines are also activated by ^S/^Q.
 491	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 492	 */
 493	if (tty->stopped)
 494		start_tty(tty);
 495	else
 496		stop_tty(tty);
 497}
 498
 499static void fn_num(struct vc_data *vc)
 500{
 501	if (vc_kbd_mode(kbd, VC_APPLIC))
 502		applkey(vc, 'P', 1);
 503	else
 504		fn_bare_num(vc);
 505}
 506
 507/*
 508 * Bind this to Shift-NumLock if you work in application keypad mode
 509 * but want to be able to change the NumLock flag.
 510 * Bind this to NumLock if you prefer that the NumLock key always
 511 * changes the NumLock flag.
 512 */
 513static void fn_bare_num(struct vc_data *vc)
 514{
 515	if (!rep)
 516		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 517}
 518
 519static void fn_lastcons(struct vc_data *vc)
 520{
 521	/* switch to the last used console, ChN */
 522	set_console(last_console);
 523}
 524
 525static void fn_dec_console(struct vc_data *vc)
 526{
 527	int i, cur = fg_console;
 528
 529	/* Currently switching?  Queue this next switch relative to that. */
 530	if (want_console != -1)
 531		cur = want_console;
 532
 533	for (i = cur - 1; i != cur; i--) {
 534		if (i == -1)
 535			i = MAX_NR_CONSOLES - 1;
 536		if (vc_cons_allocated(i))
 537			break;
 538	}
 539	set_console(i);
 540}
 541
 542static void fn_inc_console(struct vc_data *vc)
 543{
 544	int i, cur = fg_console;
 545
 546	/* Currently switching?  Queue this next switch relative to that. */
 547	if (want_console != -1)
 548		cur = want_console;
 549
 550	for (i = cur+1; i != cur; i++) {
 551		if (i == MAX_NR_CONSOLES)
 552			i = 0;
 553		if (vc_cons_allocated(i))
 554			break;
 555	}
 556	set_console(i);
 557}
 558
 559static void fn_send_intr(struct vc_data *vc)
 560{
 561	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 562	tty_schedule_flip(&vc->port);
 563}
 564
 565static void fn_scroll_forw(struct vc_data *vc)
 566{
 567	scrollfront(vc, 0);
 568}
 569
 570static void fn_scroll_back(struct vc_data *vc)
 571{
 572	scrollback(vc);
 573}
 574
 575static void fn_show_mem(struct vc_data *vc)
 576{
 577	show_mem(0, NULL);
 578}
 579
 580static void fn_show_state(struct vc_data *vc)
 581{
 582	show_state();
 583}
 584
 585static void fn_boot_it(struct vc_data *vc)
 586{
 587	ctrl_alt_del();
 588}
 589
 590static void fn_compose(struct vc_data *vc)
 591{
 592	dead_key_next = true;
 593}
 594
 595static void fn_spawn_con(struct vc_data *vc)
 596{
 597	spin_lock(&vt_spawn_con.lock);
 598	if (vt_spawn_con.pid)
 599		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 600			put_pid(vt_spawn_con.pid);
 601			vt_spawn_con.pid = NULL;
 602		}
 603	spin_unlock(&vt_spawn_con.lock);
 604}
 605
 606static void fn_SAK(struct vc_data *vc)
 607{
 608	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 609	schedule_work(SAK_work);
 610}
 611
 612static void fn_null(struct vc_data *vc)
 613{
 614	do_compute_shiftstate();
 615}
 616
 617/*
 618 * Special key handlers
 619 */
 620static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 621{
 622}
 623
 624static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 625{
 626	if (up_flag)
 627		return;
 628	if (value >= ARRAY_SIZE(fn_handler))
 629		return;
 630	if ((kbd->kbdmode == VC_RAW ||
 631	     kbd->kbdmode == VC_MEDIUMRAW ||
 632	     kbd->kbdmode == VC_OFF) &&
 633	     value != KVAL(K_SAK))
 634		return;		/* SAK is allowed even in raw mode */
 635	fn_handler[value](vc);
 636}
 637
 638static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 639{
 640	pr_err("k_lowercase was called - impossible\n");
 641}
 642
 643static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 644{
 645	if (up_flag)
 646		return;		/* no action, if this is a key release */
 647
 648	if (diacr)
 649		value = handle_diacr(vc, value);
 650
 651	if (dead_key_next) {
 652		dead_key_next = false;
 653		diacr = value;
 654		return;
 655	}
 656	if (kbd->kbdmode == VC_UNICODE)
 657		to_utf8(vc, value);
 658	else {
 659		int c = conv_uni_to_8bit(value);
 660		if (c != -1)
 661			put_queue(vc, c);
 662	}
 663}
 664
 665/*
 666 * Handle dead key. Note that we now may have several
 667 * dead keys modifying the same character. Very useful
 668 * for Vietnamese.
 669 */
 670static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 671{
 672	if (up_flag)
 673		return;
 674
 675	diacr = (diacr ? handle_diacr(vc, value) : value);
 676}
 677
 678static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 679{
 680	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 681}
 682
 683static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 684{
 685	k_deadunicode(vc, value, up_flag);
 686}
 687
 688/*
 689 * Obsolete - for backwards compatibility only
 690 */
 691static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 692{
 693	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694
 695	k_deadunicode(vc, ret_diacr[value], up_flag);
 696}
 697
 698static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 699{
 700	if (up_flag)
 701		return;
 702
 703	set_console(value);
 704}
 705
 706static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 707{
 708	if (up_flag)
 709		return;
 710
 711	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 712		if (func_table[value])
 713			puts_queue(vc, func_table[value]);
 714	} else
 715		pr_err("k_fn called with value=%d\n", value);
 716}
 717
 718static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 719{
 720	static const char cur_chars[] = "BDCA";
 721
 722	if (up_flag)
 723		return;
 724
 725	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 726}
 727
 728static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 729{
 730	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 731	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 732
 733	if (up_flag)
 734		return;		/* no action, if this is a key release */
 735
 736	/* kludge... shift forces cursor/number keys */
 737	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 738		applkey(vc, app_map[value], 1);
 739		return;
 740	}
 741
 742	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 743
 744		switch (value) {
 745		case KVAL(K_PCOMMA):
 746		case KVAL(K_PDOT):
 747			k_fn(vc, KVAL(K_REMOVE), 0);
 748			return;
 749		case KVAL(K_P0):
 750			k_fn(vc, KVAL(K_INSERT), 0);
 751			return;
 752		case KVAL(K_P1):
 753			k_fn(vc, KVAL(K_SELECT), 0);
 754			return;
 755		case KVAL(K_P2):
 756			k_cur(vc, KVAL(K_DOWN), 0);
 757			return;
 758		case KVAL(K_P3):
 759			k_fn(vc, KVAL(K_PGDN), 0);
 760			return;
 761		case KVAL(K_P4):
 762			k_cur(vc, KVAL(K_LEFT), 0);
 763			return;
 764		case KVAL(K_P6):
 765			k_cur(vc, KVAL(K_RIGHT), 0);
 766			return;
 767		case KVAL(K_P7):
 768			k_fn(vc, KVAL(K_FIND), 0);
 769			return;
 770		case KVAL(K_P8):
 771			k_cur(vc, KVAL(K_UP), 0);
 772			return;
 773		case KVAL(K_P9):
 774			k_fn(vc, KVAL(K_PGUP), 0);
 775			return;
 776		case KVAL(K_P5):
 777			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 778			return;
 779		}
 780	}
 781
 782	put_queue(vc, pad_chars[value]);
 783	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 784		put_queue(vc, 10);
 785}
 786
 787static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 788{
 789	int old_state = shift_state;
 790
 791	if (rep)
 792		return;
 793	/*
 794	 * Mimic typewriter:
 795	 * a CapsShift key acts like Shift but undoes CapsLock
 796	 */
 797	if (value == KVAL(K_CAPSSHIFT)) {
 798		value = KVAL(K_SHIFT);
 799		if (!up_flag)
 800			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 801	}
 802
 803	if (up_flag) {
 804		/*
 805		 * handle the case that two shift or control
 806		 * keys are depressed simultaneously
 807		 */
 808		if (shift_down[value])
 809			shift_down[value]--;
 810	} else
 811		shift_down[value]++;
 812
 813	if (shift_down[value])
 814		shift_state |= (1 << value);
 815	else
 816		shift_state &= ~(1 << value);
 817
 818	/* kludge */
 819	if (up_flag && shift_state != old_state && npadch != -1) {
 820		if (kbd->kbdmode == VC_UNICODE)
 821			to_utf8(vc, npadch);
 822		else
 823			put_queue(vc, npadch & 0xff);
 824		npadch = -1;
 825	}
 826}
 827
 828static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 829{
 830	if (up_flag)
 831		return;
 832
 833	if (vc_kbd_mode(kbd, VC_META)) {
 834		put_queue(vc, '\033');
 835		put_queue(vc, value);
 836	} else
 837		put_queue(vc, value | 0x80);
 838}
 839
 840static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 841{
 842	int base;
 843
 844	if (up_flag)
 845		return;
 846
 847	if (value < 10) {
 848		/* decimal input of code, while Alt depressed */
 849		base = 10;
 850	} else {
 851		/* hexadecimal input of code, while AltGr depressed */
 852		value -= 10;
 853		base = 16;
 854	}
 855
 856	if (npadch == -1)
 857		npadch = value;
 858	else
 859		npadch = npadch * base + value;
 
 
 860}
 861
 862static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 863{
 864	if (up_flag || rep)
 865		return;
 866
 867	chg_vc_kbd_lock(kbd, value);
 868}
 869
 870static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 871{
 872	k_shift(vc, value, up_flag);
 873	if (up_flag || rep)
 874		return;
 875
 876	chg_vc_kbd_slock(kbd, value);
 877	/* try to make Alt, oops, AltGr and such work */
 878	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 879		kbd->slockstate = 0;
 880		chg_vc_kbd_slock(kbd, value);
 881	}
 882}
 883
 884/* by default, 300ms interval for combination release */
 885static unsigned brl_timeout = 300;
 886MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 887module_param(brl_timeout, uint, 0644);
 888
 889static unsigned brl_nbchords = 1;
 890MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 891module_param(brl_nbchords, uint, 0644);
 892
 893static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 894{
 895	static unsigned long chords;
 896	static unsigned committed;
 897
 898	if (!brl_nbchords)
 899		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 900	else {
 901		committed |= pattern;
 902		chords++;
 903		if (chords == brl_nbchords) {
 904			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 905			chords = 0;
 906			committed = 0;
 907		}
 908	}
 909}
 910
 911static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 912{
 913	static unsigned pressed, committing;
 914	static unsigned long releasestart;
 915
 916	if (kbd->kbdmode != VC_UNICODE) {
 917		if (!up_flag)
 918			pr_warn("keyboard mode must be unicode for braille patterns\n");
 919		return;
 920	}
 921
 922	if (!value) {
 923		k_unicode(vc, BRL_UC_ROW, up_flag);
 924		return;
 925	}
 926
 927	if (value > 8)
 928		return;
 929
 930	if (!up_flag) {
 931		pressed |= 1 << (value - 1);
 932		if (!brl_timeout)
 933			committing = pressed;
 934	} else if (brl_timeout) {
 935		if (!committing ||
 936		    time_after(jiffies,
 937			       releasestart + msecs_to_jiffies(brl_timeout))) {
 938			committing = pressed;
 939			releasestart = jiffies;
 940		}
 941		pressed &= ~(1 << (value - 1));
 942		if (!pressed && committing) {
 943			k_brlcommit(vc, committing, 0);
 944			committing = 0;
 945		}
 946	} else {
 947		if (committing) {
 948			k_brlcommit(vc, committing, 0);
 949			committing = 0;
 950		}
 951		pressed &= ~(1 << (value - 1));
 952	}
 953}
 954
 955#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 956
 957struct kbd_led_trigger {
 958	struct led_trigger trigger;
 959	unsigned int mask;
 960};
 961
 962static void kbd_led_trigger_activate(struct led_classdev *cdev)
 963{
 964	struct kbd_led_trigger *trigger =
 965		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
 966
 967	tasklet_disable(&keyboard_tasklet);
 968	if (ledstate != -1U)
 969		led_trigger_event(&trigger->trigger,
 970				  ledstate & trigger->mask ?
 971					LED_FULL : LED_OFF);
 972	tasklet_enable(&keyboard_tasklet);
 
 
 973}
 974
 975#define KBD_LED_TRIGGER(_led_bit, _name) {			\
 976		.trigger = {					\
 977			.name = _name,				\
 978			.activate = kbd_led_trigger_activate,	\
 979		},						\
 980		.mask	= BIT(_led_bit),			\
 981	}
 982
 983#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
 984	KBD_LED_TRIGGER((_led_bit) + 8, _name)
 985
 986static struct kbd_led_trigger kbd_led_triggers[] = {
 987	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
 988	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
 989	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
 990	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
 991
 992	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
 993	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
 994	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
 995	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
 996	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
 997	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
 998	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
 999	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1000};
1001
1002static void kbd_propagate_led_state(unsigned int old_state,
1003				    unsigned int new_state)
1004{
1005	struct kbd_led_trigger *trigger;
1006	unsigned int changed = old_state ^ new_state;
1007	int i;
1008
1009	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010		trigger = &kbd_led_triggers[i];
1011
1012		if (changed & trigger->mask)
1013			led_trigger_event(&trigger->trigger,
1014					  new_state & trigger->mask ?
1015						LED_FULL : LED_OFF);
1016	}
1017}
1018
1019static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020{
1021	unsigned int led_state = *(unsigned int *)data;
1022
1023	if (test_bit(EV_LED, handle->dev->evbit))
1024		kbd_propagate_led_state(~led_state, led_state);
1025
1026	return 0;
1027}
1028
1029static void kbd_init_leds(void)
1030{
1031	int error;
1032	int i;
1033
1034	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036		if (error)
1037			pr_err("error %d while registering trigger %s\n",
1038			       error, kbd_led_triggers[i].trigger.name);
1039	}
1040}
1041
1042#else
1043
1044static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045{
1046	unsigned int leds = *(unsigned int *)data;
1047
1048	if (test_bit(EV_LED, handle->dev->evbit)) {
1049		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1051		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1052		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053	}
1054
1055	return 0;
1056}
1057
1058static void kbd_propagate_led_state(unsigned int old_state,
1059				    unsigned int new_state)
1060{
1061	input_handler_for_each_handle(&kbd_handler, &new_state,
1062				      kbd_update_leds_helper);
1063}
1064
1065static void kbd_init_leds(void)
1066{
1067}
1068
1069#endif
1070
1071/*
1072 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074 * or (iii) specified bits of specified words in kernel memory.
1075 */
1076static unsigned char getledstate(void)
1077{
1078	return ledstate & 0xff;
1079}
1080
1081void setledstate(struct kbd_struct *kb, unsigned int led)
1082{
1083        unsigned long flags;
1084        spin_lock_irqsave(&led_lock, flags);
1085	if (!(led & ~7)) {
1086		ledioctl = led;
1087		kb->ledmode = LED_SHOW_IOCTL;
1088	} else
1089		kb->ledmode = LED_SHOW_FLAGS;
1090
1091	set_leds();
1092	spin_unlock_irqrestore(&led_lock, flags);
1093}
1094
1095static inline unsigned char getleds(void)
1096{
1097	struct kbd_struct *kb = kbd_table + fg_console;
1098
1099	if (kb->ledmode == LED_SHOW_IOCTL)
1100		return ledioctl;
1101
1102	return kb->ledflagstate;
1103}
1104
1105/**
1106 *	vt_get_leds	-	helper for braille console
1107 *	@console: console to read
1108 *	@flag: flag we want to check
1109 *
1110 *	Check the status of a keyboard led flag and report it back
1111 */
1112int vt_get_leds(int console, int flag)
1113{
1114	struct kbd_struct *kb = kbd_table + console;
1115	int ret;
1116	unsigned long flags;
1117
1118	spin_lock_irqsave(&led_lock, flags);
1119	ret = vc_kbd_led(kb, flag);
1120	spin_unlock_irqrestore(&led_lock, flags);
1121
1122	return ret;
1123}
1124EXPORT_SYMBOL_GPL(vt_get_leds);
1125
1126/**
1127 *	vt_set_led_state	-	set LED state of a console
1128 *	@console: console to set
1129 *	@leds: LED bits
1130 *
1131 *	Set the LEDs on a console. This is a wrapper for the VT layer
1132 *	so that we can keep kbd knowledge internal
1133 */
1134void vt_set_led_state(int console, int leds)
1135{
1136	struct kbd_struct *kb = kbd_table + console;
1137	setledstate(kb, leds);
1138}
1139
1140/**
1141 *	vt_kbd_con_start	-	Keyboard side of console start
1142 *	@console: console
1143 *
1144 *	Handle console start. This is a wrapper for the VT layer
1145 *	so that we can keep kbd knowledge internal
1146 *
1147 *	FIXME: We eventually need to hold the kbd lock here to protect
1148 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1149 *	and start_tty under the kbd_event_lock, while normal tty paths
1150 *	don't hold the lock. We probably need to split out an LED lock
1151 *	but not during an -rc release!
1152 */
1153void vt_kbd_con_start(int console)
1154{
1155	struct kbd_struct *kb = kbd_table + console;
1156	unsigned long flags;
1157	spin_lock_irqsave(&led_lock, flags);
1158	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159	set_leds();
1160	spin_unlock_irqrestore(&led_lock, flags);
1161}
1162
1163/**
1164 *	vt_kbd_con_stop		-	Keyboard side of console stop
1165 *	@console: console
1166 *
1167 *	Handle console stop. This is a wrapper for the VT layer
1168 *	so that we can keep kbd knowledge internal
1169 */
1170void vt_kbd_con_stop(int console)
1171{
1172	struct kbd_struct *kb = kbd_table + console;
1173	unsigned long flags;
1174	spin_lock_irqsave(&led_lock, flags);
1175	set_vc_kbd_led(kb, VC_SCROLLOCK);
1176	set_leds();
1177	spin_unlock_irqrestore(&led_lock, flags);
1178}
1179
1180/*
1181 * This is the tasklet that updates LED state of LEDs using standard
1182 * keyboard triggers. The reason we use tasklet is that we need to
1183 * handle the scenario when keyboard handler is not registered yet
1184 * but we already getting updates from the VT to update led state.
1185 */
1186static void kbd_bh(unsigned long dummy)
1187{
1188	unsigned int leds;
1189	unsigned long flags;
1190
1191	spin_lock_irqsave(&led_lock, flags);
1192	leds = getleds();
1193	leds |= (unsigned int)kbd->lockstate << 8;
1194	spin_unlock_irqrestore(&led_lock, flags);
1195
1196	if (leds != ledstate) {
1197		kbd_propagate_led_state(ledstate, leds);
1198		ledstate = leds;
1199	}
1200}
1201
1202DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203
1204#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1208
1209#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211
1212static const unsigned short x86_keycodes[256] =
1213	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1214	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228
1229#ifdef CONFIG_SPARC
1230static int sparc_l1_a_state;
1231extern void sun_do_break(void);
1232#endif
1233
1234static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235		       unsigned char up_flag)
1236{
1237	int code;
1238
1239	switch (keycode) {
1240
1241	case KEY_PAUSE:
1242		put_queue(vc, 0xe1);
1243		put_queue(vc, 0x1d | up_flag);
1244		put_queue(vc, 0x45 | up_flag);
1245		break;
1246
1247	case KEY_HANGEUL:
1248		if (!up_flag)
1249			put_queue(vc, 0xf2);
1250		break;
1251
1252	case KEY_HANJA:
1253		if (!up_flag)
1254			put_queue(vc, 0xf1);
1255		break;
1256
1257	case KEY_SYSRQ:
1258		/*
1259		 * Real AT keyboards (that's what we're trying
1260		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261		 * pressing PrtSc/SysRq alone, but simply 0x54
1262		 * when pressing Alt+PrtSc/SysRq.
1263		 */
1264		if (test_bit(KEY_LEFTALT, key_down) ||
1265		    test_bit(KEY_RIGHTALT, key_down)) {
1266			put_queue(vc, 0x54 | up_flag);
1267		} else {
1268			put_queue(vc, 0xe0);
1269			put_queue(vc, 0x2a | up_flag);
1270			put_queue(vc, 0xe0);
1271			put_queue(vc, 0x37 | up_flag);
1272		}
1273		break;
1274
1275	default:
1276		if (keycode > 255)
1277			return -1;
1278
1279		code = x86_keycodes[keycode];
1280		if (!code)
1281			return -1;
1282
1283		if (code & 0x100)
1284			put_queue(vc, 0xe0);
1285		put_queue(vc, (code & 0x7f) | up_flag);
1286
1287		break;
1288	}
1289
1290	return 0;
1291}
1292
1293#else
1294
1295#define HW_RAW(dev)	0
1296
1297static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298{
1299	if (keycode > 127)
1300		return -1;
1301
1302	put_queue(vc, keycode | up_flag);
1303	return 0;
1304}
1305#endif
1306
1307static void kbd_rawcode(unsigned char data)
1308{
1309	struct vc_data *vc = vc_cons[fg_console].d;
1310
1311	kbd = kbd_table + vc->vc_num;
1312	if (kbd->kbdmode == VC_RAW)
1313		put_queue(vc, data);
1314}
1315
1316static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317{
1318	struct vc_data *vc = vc_cons[fg_console].d;
1319	unsigned short keysym, *key_map;
1320	unsigned char type;
1321	bool raw_mode;
1322	struct tty_struct *tty;
1323	int shift_final;
1324	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325	int rc;
1326
1327	tty = vc->port.tty;
1328
1329	if (tty && (!tty->driver_data)) {
1330		/* No driver data? Strange. Okay we fix it then. */
1331		tty->driver_data = vc;
1332	}
1333
1334	kbd = kbd_table + vc->vc_num;
1335
1336#ifdef CONFIG_SPARC
1337	if (keycode == KEY_STOP)
1338		sparc_l1_a_state = down;
1339#endif
1340
1341	rep = (down == 2);
1342
1343	raw_mode = (kbd->kbdmode == VC_RAW);
1344	if (raw_mode && !hw_raw)
1345		if (emulate_raw(vc, keycode, !down << 7))
1346			if (keycode < BTN_MISC && printk_ratelimit())
1347				pr_warn("can't emulate rawmode for keycode %d\n",
1348					keycode);
1349
1350#ifdef CONFIG_SPARC
1351	if (keycode == KEY_A && sparc_l1_a_state) {
1352		sparc_l1_a_state = false;
1353		sun_do_break();
1354	}
1355#endif
1356
1357	if (kbd->kbdmode == VC_MEDIUMRAW) {
1358		/*
1359		 * This is extended medium raw mode, with keys above 127
1360		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362		 * interfere with anything else. The two bytes after 0 will
1363		 * always have the up flag set not to interfere with older
1364		 * applications. This allows for 16384 different keycodes,
1365		 * which should be enough.
1366		 */
1367		if (keycode < 128) {
1368			put_queue(vc, keycode | (!down << 7));
1369		} else {
1370			put_queue(vc, !down << 7);
1371			put_queue(vc, (keycode >> 7) | 0x80);
1372			put_queue(vc, keycode | 0x80);
1373		}
1374		raw_mode = true;
1375	}
1376
1377	if (down)
1378		set_bit(keycode, key_down);
1379	else
1380		clear_bit(keycode, key_down);
1381
1382	if (rep &&
1383	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385		/*
1386		 * Don't repeat a key if the input buffers are not empty and the
1387		 * characters get aren't echoed locally. This makes key repeat
1388		 * usable with slow applications and under heavy loads.
1389		 */
1390		return;
1391	}
1392
1393	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394	param.ledstate = kbd->ledflagstate;
1395	key_map = key_maps[shift_final];
1396
1397	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398					KBD_KEYCODE, &param);
1399	if (rc == NOTIFY_STOP || !key_map) {
1400		atomic_notifier_call_chain(&keyboard_notifier_list,
1401					   KBD_UNBOUND_KEYCODE, &param);
1402		do_compute_shiftstate();
1403		kbd->slockstate = 0;
1404		return;
1405	}
1406
1407	if (keycode < NR_KEYS)
1408		keysym = key_map[keycode];
1409	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411	else
1412		return;
1413
1414	type = KTYP(keysym);
1415
1416	if (type < 0xf0) {
1417		param.value = keysym;
1418		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419						KBD_UNICODE, &param);
1420		if (rc != NOTIFY_STOP)
1421			if (down && !raw_mode)
1422				to_utf8(vc, keysym);
1423		return;
1424	}
1425
1426	type -= 0xf0;
1427
1428	if (type == KT_LETTER) {
1429		type = KT_LATIN;
1430		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432			if (key_map)
1433				keysym = key_map[keycode];
1434		}
1435	}
1436
1437	param.value = keysym;
1438	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439					KBD_KEYSYM, &param);
1440	if (rc == NOTIFY_STOP)
1441		return;
1442
1443	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444		return;
1445
1446	(*k_handler[type])(vc, keysym & 0xff, !down);
1447
1448	param.ledstate = kbd->ledflagstate;
1449	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450
1451	if (type != KT_SLOCK)
1452		kbd->slockstate = 0;
1453}
1454
1455static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456		      unsigned int event_code, int value)
1457{
1458	/* We are called with interrupts disabled, just take the lock */
1459	spin_lock(&kbd_event_lock);
1460
1461	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462		kbd_rawcode(value);
1463	if (event_type == EV_KEY)
1464		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465
1466	spin_unlock(&kbd_event_lock);
1467
1468	tasklet_schedule(&keyboard_tasklet);
1469	do_poke_blanked_console = 1;
1470	schedule_console_callback();
1471}
1472
1473static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474{
1475	int i;
1476
1477	if (test_bit(EV_SND, dev->evbit))
1478		return true;
1479
1480	if (test_bit(EV_KEY, dev->evbit)) {
1481		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482			if (test_bit(i, dev->keybit))
1483				return true;
1484		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485			if (test_bit(i, dev->keybit))
1486				return true;
1487	}
1488
1489	return false;
1490}
1491
1492/*
1493 * When a keyboard (or other input device) is found, the kbd_connect
1494 * function is called. The function then looks at the device, and if it
1495 * likes it, it can open it and get events from it. In this (kbd_connect)
1496 * function, we should decide which VT to bind that keyboard to initially.
1497 */
1498static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499			const struct input_device_id *id)
1500{
1501	struct input_handle *handle;
1502	int error;
1503
1504	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505	if (!handle)
1506		return -ENOMEM;
1507
1508	handle->dev = dev;
1509	handle->handler = handler;
1510	handle->name = "kbd";
1511
1512	error = input_register_handle(handle);
1513	if (error)
1514		goto err_free_handle;
1515
1516	error = input_open_device(handle);
1517	if (error)
1518		goto err_unregister_handle;
1519
1520	return 0;
1521
1522 err_unregister_handle:
1523	input_unregister_handle(handle);
1524 err_free_handle:
1525	kfree(handle);
1526	return error;
1527}
1528
1529static void kbd_disconnect(struct input_handle *handle)
1530{
1531	input_close_device(handle);
1532	input_unregister_handle(handle);
1533	kfree(handle);
1534}
1535
1536/*
1537 * Start keyboard handler on the new keyboard by refreshing LED state to
1538 * match the rest of the system.
1539 */
1540static void kbd_start(struct input_handle *handle)
1541{
1542	tasklet_disable(&keyboard_tasklet);
1543
1544	if (ledstate != -1U)
1545		kbd_update_leds_helper(handle, &ledstate);
1546
1547	tasklet_enable(&keyboard_tasklet);
1548}
1549
1550static const struct input_device_id kbd_ids[] = {
1551	{
1552		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553		.evbit = { BIT_MASK(EV_KEY) },
1554	},
1555
1556	{
1557		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558		.evbit = { BIT_MASK(EV_SND) },
1559	},
1560
1561	{ },    /* Terminating entry */
1562};
1563
1564MODULE_DEVICE_TABLE(input, kbd_ids);
1565
1566static struct input_handler kbd_handler = {
1567	.event		= kbd_event,
1568	.match		= kbd_match,
1569	.connect	= kbd_connect,
1570	.disconnect	= kbd_disconnect,
1571	.start		= kbd_start,
1572	.name		= "kbd",
1573	.id_table	= kbd_ids,
1574};
1575
1576int __init kbd_init(void)
1577{
1578	int i;
1579	int error;
1580
1581	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582		kbd_table[i].ledflagstate = kbd_defleds();
1583		kbd_table[i].default_ledflagstate = kbd_defleds();
1584		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585		kbd_table[i].lockstate = KBD_DEFLOCK;
1586		kbd_table[i].slockstate = 0;
1587		kbd_table[i].modeflags = KBD_DEFMODE;
1588		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589	}
1590
1591	kbd_init_leds();
1592
1593	error = input_register_handler(&kbd_handler);
1594	if (error)
1595		return error;
1596
1597	tasklet_enable(&keyboard_tasklet);
1598	tasklet_schedule(&keyboard_tasklet);
1599
1600	return 0;
1601}
1602
1603/* Ioctl support code */
1604
1605/**
1606 *	vt_do_diacrit		-	diacritical table updates
1607 *	@cmd: ioctl request
1608 *	@udp: pointer to user data for ioctl
1609 *	@perm: permissions check computed by caller
1610 *
1611 *	Update the diacritical tables atomically and safely. Lock them
1612 *	against simultaneous keypresses
1613 */
1614int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615{
1616	unsigned long flags;
1617	int asize;
1618	int ret = 0;
1619
1620	switch (cmd) {
1621	case KDGKBDIACR:
1622	{
1623		struct kbdiacrs __user *a = udp;
1624		struct kbdiacr *dia;
1625		int i;
1626
1627		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1628								GFP_KERNEL);
1629		if (!dia)
1630			return -ENOMEM;
1631
1632		/* Lock the diacriticals table, make a copy and then
1633		   copy it after we unlock */
1634		spin_lock_irqsave(&kbd_event_lock, flags);
1635
1636		asize = accent_table_size;
1637		for (i = 0; i < asize; i++) {
1638			dia[i].diacr = conv_uni_to_8bit(
1639						accent_table[i].diacr);
1640			dia[i].base = conv_uni_to_8bit(
1641						accent_table[i].base);
1642			dia[i].result = conv_uni_to_8bit(
1643						accent_table[i].result);
1644		}
1645		spin_unlock_irqrestore(&kbd_event_lock, flags);
1646
1647		if (put_user(asize, &a->kb_cnt))
1648			ret = -EFAULT;
1649		else  if (copy_to_user(a->kbdiacr, dia,
1650				asize * sizeof(struct kbdiacr)))
1651			ret = -EFAULT;
1652		kfree(dia);
1653		return ret;
1654	}
1655	case KDGKBDIACRUC:
1656	{
1657		struct kbdiacrsuc __user *a = udp;
1658		void *buf;
1659
1660		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1661								GFP_KERNEL);
1662		if (buf == NULL)
1663			return -ENOMEM;
1664
1665		/* Lock the diacriticals table, make a copy and then
1666		   copy it after we unlock */
1667		spin_lock_irqsave(&kbd_event_lock, flags);
1668
1669		asize = accent_table_size;
1670		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671
1672		spin_unlock_irqrestore(&kbd_event_lock, flags);
1673
1674		if (put_user(asize, &a->kb_cnt))
1675			ret = -EFAULT;
1676		else if (copy_to_user(a->kbdiacruc, buf,
1677				asize*sizeof(struct kbdiacruc)))
1678			ret = -EFAULT;
1679		kfree(buf);
1680		return ret;
1681	}
1682
1683	case KDSKBDIACR:
1684	{
1685		struct kbdiacrs __user *a = udp;
1686		struct kbdiacr *dia = NULL;
1687		unsigned int ct;
1688		int i;
1689
1690		if (!perm)
1691			return -EPERM;
1692		if (get_user(ct, &a->kb_cnt))
1693			return -EFAULT;
1694		if (ct >= MAX_DIACR)
1695			return -EINVAL;
1696
1697		if (ct) {
1698
1699			dia = memdup_user(a->kbdiacr,
1700					sizeof(struct kbdiacr) * ct);
1701			if (IS_ERR(dia))
1702				return PTR_ERR(dia);
1703
1704		}
1705
1706		spin_lock_irqsave(&kbd_event_lock, flags);
1707		accent_table_size = ct;
1708		for (i = 0; i < ct; i++) {
1709			accent_table[i].diacr =
1710					conv_8bit_to_uni(dia[i].diacr);
1711			accent_table[i].base =
1712					conv_8bit_to_uni(dia[i].base);
1713			accent_table[i].result =
1714					conv_8bit_to_uni(dia[i].result);
1715		}
1716		spin_unlock_irqrestore(&kbd_event_lock, flags);
1717		kfree(dia);
1718		return 0;
1719	}
1720
1721	case KDSKBDIACRUC:
1722	{
1723		struct kbdiacrsuc __user *a = udp;
1724		unsigned int ct;
1725		void *buf = NULL;
1726
1727		if (!perm)
1728			return -EPERM;
1729
1730		if (get_user(ct, &a->kb_cnt))
1731			return -EFAULT;
1732
1733		if (ct >= MAX_DIACR)
1734			return -EINVAL;
1735
1736		if (ct) {
1737			buf = memdup_user(a->kbdiacruc,
1738					  ct * sizeof(struct kbdiacruc));
1739			if (IS_ERR(buf))
1740				return PTR_ERR(buf);
1741		} 
1742		spin_lock_irqsave(&kbd_event_lock, flags);
1743		if (ct)
1744			memcpy(accent_table, buf,
1745					ct * sizeof(struct kbdiacruc));
1746		accent_table_size = ct;
1747		spin_unlock_irqrestore(&kbd_event_lock, flags);
1748		kfree(buf);
1749		return 0;
1750	}
1751	}
1752	return ret;
1753}
1754
1755/**
1756 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1757 *	@console: the console to use
1758 *	@arg: the requested mode
1759 *
1760 *	Update the keyboard mode bits while holding the correct locks.
1761 *	Return 0 for success or an error code.
1762 */
1763int vt_do_kdskbmode(int console, unsigned int arg)
1764{
1765	struct kbd_struct *kb = kbd_table + console;
1766	int ret = 0;
1767	unsigned long flags;
1768
1769	spin_lock_irqsave(&kbd_event_lock, flags);
1770	switch(arg) {
1771	case K_RAW:
1772		kb->kbdmode = VC_RAW;
1773		break;
1774	case K_MEDIUMRAW:
1775		kb->kbdmode = VC_MEDIUMRAW;
1776		break;
1777	case K_XLATE:
1778		kb->kbdmode = VC_XLATE;
1779		do_compute_shiftstate();
1780		break;
1781	case K_UNICODE:
1782		kb->kbdmode = VC_UNICODE;
1783		do_compute_shiftstate();
1784		break;
1785	case K_OFF:
1786		kb->kbdmode = VC_OFF;
1787		break;
1788	default:
1789		ret = -EINVAL;
1790	}
1791	spin_unlock_irqrestore(&kbd_event_lock, flags);
1792	return ret;
1793}
1794
1795/**
1796 *	vt_do_kdskbmeta		-	set keyboard meta state
1797 *	@console: the console to use
1798 *	@arg: the requested meta state
1799 *
1800 *	Update the keyboard meta bits while holding the correct locks.
1801 *	Return 0 for success or an error code.
1802 */
1803int vt_do_kdskbmeta(int console, unsigned int arg)
1804{
1805	struct kbd_struct *kb = kbd_table + console;
1806	int ret = 0;
1807	unsigned long flags;
1808
1809	spin_lock_irqsave(&kbd_event_lock, flags);
1810	switch(arg) {
1811	case K_METABIT:
1812		clr_vc_kbd_mode(kb, VC_META);
1813		break;
1814	case K_ESCPREFIX:
1815		set_vc_kbd_mode(kb, VC_META);
1816		break;
1817	default:
1818		ret = -EINVAL;
1819	}
1820	spin_unlock_irqrestore(&kbd_event_lock, flags);
1821	return ret;
1822}
1823
1824int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825								int perm)
1826{
1827	struct kbkeycode tmp;
1828	int kc = 0;
1829
1830	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831		return -EFAULT;
1832	switch (cmd) {
1833	case KDGETKEYCODE:
1834		kc = getkeycode(tmp.scancode);
1835		if (kc >= 0)
1836			kc = put_user(kc, &user_kbkc->keycode);
1837		break;
1838	case KDSETKEYCODE:
1839		if (!perm)
1840			return -EPERM;
1841		kc = setkeycode(tmp.scancode, tmp.keycode);
1842		break;
1843	}
1844	return kc;
1845}
1846
1847#define i (tmp.kb_index)
1848#define s (tmp.kb_table)
1849#define v (tmp.kb_value)
1850
1851int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852						int console)
1853{
1854	struct kbd_struct *kb = kbd_table + console;
1855	struct kbentry tmp;
1856	ushort *key_map, *new_map, val, ov;
1857	unsigned long flags;
1858
1859	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860		return -EFAULT;
1861
1862	if (!capable(CAP_SYS_TTY_CONFIG))
1863		perm = 0;
1864
1865	switch (cmd) {
1866	case KDGKBENT:
1867		/* Ensure another thread doesn't free it under us */
1868		spin_lock_irqsave(&kbd_event_lock, flags);
1869		key_map = key_maps[s];
1870		if (key_map) {
1871		    val = U(key_map[i]);
1872		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873			val = K_HOLE;
1874		} else
1875		    val = (i ? K_HOLE : K_NOSUCHMAP);
1876		spin_unlock_irqrestore(&kbd_event_lock, flags);
1877		return put_user(val, &user_kbe->kb_value);
1878	case KDSKBENT:
1879		if (!perm)
1880			return -EPERM;
1881		if (!i && v == K_NOSUCHMAP) {
1882			spin_lock_irqsave(&kbd_event_lock, flags);
1883			/* deallocate map */
1884			key_map = key_maps[s];
1885			if (s && key_map) {
1886			    key_maps[s] = NULL;
1887			    if (key_map[0] == U(K_ALLOCATED)) {
1888					kfree(key_map);
1889					keymap_count--;
1890			    }
1891			}
1892			spin_unlock_irqrestore(&kbd_event_lock, flags);
1893			break;
1894		}
1895
1896		if (KTYP(v) < NR_TYPES) {
1897		    if (KVAL(v) > max_vals[KTYP(v)])
1898				return -EINVAL;
1899		} else
1900		    if (kb->kbdmode != VC_UNICODE)
1901				return -EINVAL;
1902
1903		/* ++Geert: non-PC keyboards may generate keycode zero */
1904#if !defined(__mc68000__) && !defined(__powerpc__)
1905		/* assignment to entry 0 only tests validity of args */
1906		if (!i)
1907			break;
1908#endif
1909
1910		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911		if (!new_map)
1912			return -ENOMEM;
1913		spin_lock_irqsave(&kbd_event_lock, flags);
1914		key_map = key_maps[s];
1915		if (key_map == NULL) {
1916			int j;
1917
1918			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919			    !capable(CAP_SYS_RESOURCE)) {
1920				spin_unlock_irqrestore(&kbd_event_lock, flags);
1921				kfree(new_map);
1922				return -EPERM;
1923			}
1924			key_maps[s] = new_map;
1925			key_map = new_map;
1926			key_map[0] = U(K_ALLOCATED);
1927			for (j = 1; j < NR_KEYS; j++)
1928				key_map[j] = U(K_HOLE);
1929			keymap_count++;
1930		} else
1931			kfree(new_map);
1932
1933		ov = U(key_map[i]);
1934		if (v == ov)
1935			goto out;
1936		/*
1937		 * Attention Key.
1938		 */
1939		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940			spin_unlock_irqrestore(&kbd_event_lock, flags);
1941			return -EPERM;
1942		}
1943		key_map[i] = U(v);
1944		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945			do_compute_shiftstate();
1946out:
1947		spin_unlock_irqrestore(&kbd_event_lock, flags);
1948		break;
1949	}
1950	return 0;
1951}
1952#undef i
1953#undef s
1954#undef v
1955
1956/* FIXME: This one needs untangling and locking */
1957int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958{
1959	struct kbsentry *kbs;
1960	char *p;
1961	u_char *q;
1962	u_char __user *up;
1963	int sz;
1964	int delta;
1965	char *first_free, *fj, *fnw;
1966	int i, j, k;
1967	int ret;
 
1968
1969	if (!capable(CAP_SYS_TTY_CONFIG))
1970		perm = 0;
1971
1972	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973	if (!kbs) {
1974		ret = -ENOMEM;
1975		goto reterr;
1976	}
1977
1978	/* we mostly copy too much here (512bytes), but who cares ;) */
1979	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980		ret = -EFAULT;
1981		goto reterr;
1982	}
1983	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984	i = kbs->kb_func;
1985
1986	switch (cmd) {
1987	case KDGKBSENT:
1988		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989						  a struct member */
1990		up = user_kdgkb->kb_string;
1991		p = func_table[i];
1992		if(p)
1993			for ( ; *p && sz; p++, sz--)
1994				if (put_user(*p, up++)) {
1995					ret = -EFAULT;
1996					goto reterr;
1997				}
1998		if (put_user('\0', up)) {
1999			ret = -EFAULT;
2000			goto reterr;
2001		}
2002		kfree(kbs);
2003		return ((p && *p) ? -EOVERFLOW : 0);
2004	case KDSKBSENT:
2005		if (!perm) {
2006			ret = -EPERM;
2007			goto reterr;
2008		}
2009
 
 
 
 
 
2010		q = func_table[i];
 
 
2011		first_free = funcbufptr + (funcbufsize - funcbufleft);
2012		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013			;
2014		if (j < MAX_NR_FUNC)
2015			fj = func_table[j];
2016		else
2017			fj = first_free;
 
 
2018
2019		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020		if (delta <= funcbufleft) { 	/* it fits in current buf */
2021		    if (j < MAX_NR_FUNC) {
 
2022			memmove(fj + delta, fj, first_free - fj);
2023			for (k = j; k < MAX_NR_FUNC; k++)
2024			    if (func_table[k])
2025				func_table[k] += delta;
2026		    }
2027		    if (!q)
2028		      func_table[i] = fj;
2029		    funcbufleft -= delta;
2030		} else {			/* allocate a larger buffer */
2031		    sz = 256;
2032		    while (sz < funcbufsize - funcbufleft + delta)
2033		      sz <<= 1;
2034		    fnw = kmalloc(sz, GFP_KERNEL);
2035		    if(!fnw) {
2036		      ret = -ENOMEM;
2037		      goto reterr;
 
 
 
 
 
 
2038		    }
2039
2040		    if (!q)
2041		      func_table[i] = fj;
 
2042		    if (fj > funcbufptr)
2043			memmove(fnw, funcbufptr, fj - funcbufptr);
2044		    for (k = 0; k < j; k++)
2045		      if (func_table[k])
2046			func_table[k] = fnw + (func_table[k] - funcbufptr);
2047
 
2048		    if (first_free > fj) {
2049			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050			for (k = j; k < MAX_NR_FUNC; k++)
2051			  if (func_table[k])
2052			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053		    }
2054		    if (funcbufptr != func_buf)
2055		      kfree(funcbufptr);
2056		    funcbufptr = fnw;
2057		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058		    funcbufsize = sz;
2059		}
 
2060		strcpy(func_table[i], kbs->kb_string);
 
2061		break;
2062	}
2063	ret = 0;
2064reterr:
2065	kfree(kbs);
2066	return ret;
2067}
2068
2069int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070{
2071	struct kbd_struct *kb = kbd_table + console;
2072        unsigned long flags;
2073	unsigned char ucval;
2074
2075        switch(cmd) {
2076	/* the ioctls below read/set the flags usually shown in the leds */
2077	/* don't use them - they will go away without warning */
2078	case KDGKBLED:
2079                spin_lock_irqsave(&kbd_event_lock, flags);
2080		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081                spin_unlock_irqrestore(&kbd_event_lock, flags);
2082		return put_user(ucval, (char __user *)arg);
2083
2084	case KDSKBLED:
2085		if (!perm)
2086			return -EPERM;
2087		if (arg & ~0x77)
2088			return -EINVAL;
2089                spin_lock_irqsave(&led_lock, flags);
2090		kb->ledflagstate = (arg & 7);
2091		kb->default_ledflagstate = ((arg >> 4) & 7);
2092		set_leds();
2093                spin_unlock_irqrestore(&led_lock, flags);
2094		return 0;
2095
2096	/* the ioctls below only set the lights, not the functions */
2097	/* for those, see KDGKBLED and KDSKBLED above */
2098	case KDGETLED:
2099		ucval = getledstate();
2100		return put_user(ucval, (char __user *)arg);
2101
2102	case KDSETLED:
2103		if (!perm)
2104			return -EPERM;
2105		setledstate(kb, arg);
2106		return 0;
2107        }
2108        return -ENOIOCTLCMD;
2109}
2110
2111int vt_do_kdgkbmode(int console)
2112{
2113	struct kbd_struct *kb = kbd_table + console;
2114	/* This is a spot read so needs no locking */
2115	switch (kb->kbdmode) {
2116	case VC_RAW:
2117		return K_RAW;
2118	case VC_MEDIUMRAW:
2119		return K_MEDIUMRAW;
2120	case VC_UNICODE:
2121		return K_UNICODE;
2122	case VC_OFF:
2123		return K_OFF;
2124	default:
2125		return K_XLATE;
2126	}
2127}
2128
2129/**
2130 *	vt_do_kdgkbmeta		-	report meta status
2131 *	@console: console to report
2132 *
2133 *	Report the meta flag status of this console
2134 */
2135int vt_do_kdgkbmeta(int console)
2136{
2137	struct kbd_struct *kb = kbd_table + console;
2138        /* Again a spot read so no locking */
2139	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140}
2141
2142/**
2143 *	vt_reset_unicode	-	reset the unicode status
2144 *	@console: console being reset
2145 *
2146 *	Restore the unicode console state to its default
2147 */
2148void vt_reset_unicode(int console)
2149{
2150	unsigned long flags;
2151
2152	spin_lock_irqsave(&kbd_event_lock, flags);
2153	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154	spin_unlock_irqrestore(&kbd_event_lock, flags);
2155}
2156
2157/**
2158 *	vt_get_shiftstate	-	shift bit state
2159 *
2160 *	Report the shift bits from the keyboard state. We have to export
2161 *	this to support some oddities in the vt layer.
2162 */
2163int vt_get_shift_state(void)
2164{
2165        /* Don't lock as this is a transient report */
2166        return shift_state;
2167}
2168
2169/**
2170 *	vt_reset_keyboard	-	reset keyboard state
2171 *	@console: console to reset
2172 *
2173 *	Reset the keyboard bits for a console as part of a general console
2174 *	reset event
2175 */
2176void vt_reset_keyboard(int console)
2177{
2178	struct kbd_struct *kb = kbd_table + console;
2179	unsigned long flags;
2180
2181	spin_lock_irqsave(&kbd_event_lock, flags);
2182	set_vc_kbd_mode(kb, VC_REPEAT);
2183	clr_vc_kbd_mode(kb, VC_CKMODE);
2184	clr_vc_kbd_mode(kb, VC_APPLIC);
2185	clr_vc_kbd_mode(kb, VC_CRLF);
2186	kb->lockstate = 0;
2187	kb->slockstate = 0;
2188	spin_lock(&led_lock);
2189	kb->ledmode = LED_SHOW_FLAGS;
2190	kb->ledflagstate = kb->default_ledflagstate;
2191	spin_unlock(&led_lock);
2192	/* do not do set_leds here because this causes an endless tasklet loop
2193	   when the keyboard hasn't been initialized yet */
2194	spin_unlock_irqrestore(&kbd_event_lock, flags);
2195}
2196
2197/**
2198 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2199 *	@console: console to read from
2200 *	@bit: mode bit to read
2201 *
2202 *	Report back a vt mode bit. We do this without locking so the
2203 *	caller must be sure that there are no synchronization needs
2204 */
2205
2206int vt_get_kbd_mode_bit(int console, int bit)
2207{
2208	struct kbd_struct *kb = kbd_table + console;
2209	return vc_kbd_mode(kb, bit);
2210}
2211
2212/**
2213 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2214 *	@console: console to read from
2215 *	@bit: mode bit to read
2216 *
2217 *	Set a vt mode bit. We do this without locking so the
2218 *	caller must be sure that there are no synchronization needs
2219 */
2220
2221void vt_set_kbd_mode_bit(int console, int bit)
2222{
2223	struct kbd_struct *kb = kbd_table + console;
2224	unsigned long flags;
2225
2226	spin_lock_irqsave(&kbd_event_lock, flags);
2227	set_vc_kbd_mode(kb, bit);
2228	spin_unlock_irqrestore(&kbd_event_lock, flags);
2229}
2230
2231/**
2232 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2233 *	@console: console to read from
2234 *	@bit: mode bit to read
2235 *
2236 *	Report back a vt mode bit. We do this without locking so the
2237 *	caller must be sure that there are no synchronization needs
2238 */
2239
2240void vt_clr_kbd_mode_bit(int console, int bit)
2241{
2242	struct kbd_struct *kb = kbd_table + console;
2243	unsigned long flags;
2244
2245	spin_lock_irqsave(&kbd_event_lock, flags);
2246	clr_vc_kbd_mode(kb, bit);
2247	spin_unlock_irqrestore(&kbd_event_lock, flags);
2248}