Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/nospec.h>
36#include <linux/string.h>
37#include <linux/init.h>
38#include <linux/slab.h>
39#include <linux/leds.h>
40
41#include <linux/kbd_kern.h>
42#include <linux/kbd_diacr.h>
43#include <linux/vt_kern.h>
44#include <linux/input.h>
45#include <linux/reboot.h>
46#include <linux/notifier.h>
47#include <linux/jiffies.h>
48#include <linux/uaccess.h>
49
50#include <asm/irq_regs.h>
51
52extern void ctrl_alt_del(void);
53
54/*
55 * Exported functions/variables
56 */
57
58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
59
60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
61#include <asm/kbdleds.h>
62#else
63static inline int kbd_defleds(void)
64{
65 return 0;
66}
67#endif
68
69#define KBD_DEFLOCK 0
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105};
106
107
108/*
109 * Internal Data.
110 */
111
112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113static struct kbd_struct *kbd = kbd_table;
114
115/* maximum values each key_handler can handle */
116static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120};
121
122static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124static struct input_handler kbd_handler;
125static DEFINE_SPINLOCK(kbd_event_lock);
126static DEFINE_SPINLOCK(led_lock);
127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
129static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130static bool dead_key_next;
131
132/* Handles a number being assembled on the number pad */
133static bool npadch_active;
134static unsigned int npadch_value;
135
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static int shift_state = 0;
140
141static unsigned int ledstate = -1U; /* undefined */
142static unsigned char ledioctl;
143
144/*
145 * Notifier list for console keyboard events
146 */
147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
149int register_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
155int unregister_keyboard_notifier(struct notifier_block *nb)
156{
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158}
159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161/*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174};
175
176static int getkeycode_helper(struct input_handle *handle, void *data)
177{
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183}
184
185static int getkeycode(unsigned int scancode)
186{
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201}
202
203static int setkeycode_helper(struct input_handle *handle, void *data)
204{
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210}
211
212static int setkeycode(unsigned int scancode, unsigned int keycode)
213{
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228}
229
230/*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
235static int kd_sound_helper(struct input_handle *handle, void *data)
236{
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251}
252
253static void kd_nosound(struct timer_list *unused)
254{
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258}
259
260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
261
262void kd_mksound(unsigned int hz, unsigned int ticks)
263{
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270}
271EXPORT_SYMBOL(kd_mksound);
272
273/*
274 * Setting the keyboard rate.
275 */
276
277static int kbd_rate_helper(struct input_handle *handle, void *data)
278{
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rpt = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rpt[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rpt[0].delay);
287 if (rpt[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rpt[0].period);
290
291 rpt[1].delay = dev->rep[REP_DELAY];
292 rpt[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296}
297
298int kbd_rate(struct kbd_repeat *rpt)
299{
300 struct kbd_repeat data[2] = { *rpt };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rpt = data[1]; /* Copy currently used settings */
304
305 return 0;
306}
307
308/*
309 * Helper Functions.
310 */
311static void put_queue(struct vc_data *vc, int ch)
312{
313 tty_insert_flip_char(&vc->port, ch, 0);
314 tty_schedule_flip(&vc->port);
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 while (*cp) {
320 tty_insert_flip_char(&vc->port, *cp, 0);
321 cp++;
322 }
323 tty_schedule_flip(&vc->port);
324}
325
326static void applkey(struct vc_data *vc, int key, char mode)
327{
328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
329
330 buf[1] = (mode ? 'O' : '[');
331 buf[2] = key;
332 puts_queue(vc, buf);
333}
334
335/*
336 * Many other routines do put_queue, but I think either
337 * they produce ASCII, or they produce some user-assigned
338 * string, and in both cases we might assume that it is
339 * in utf-8 already.
340 */
341static void to_utf8(struct vc_data *vc, uint c)
342{
343 if (c < 0x80)
344 /* 0******* */
345 put_queue(vc, c);
346 else if (c < 0x800) {
347 /* 110***** 10****** */
348 put_queue(vc, 0xc0 | (c >> 6));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x10000) {
351 if (c >= 0xD800 && c < 0xE000)
352 return;
353 if (c == 0xFFFF)
354 return;
355 /* 1110**** 10****** 10****** */
356 put_queue(vc, 0xe0 | (c >> 12));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x110000) {
360 /* 11110*** 10****** 10****** 10****** */
361 put_queue(vc, 0xf0 | (c >> 18));
362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 }
366}
367
368/*
369 * Called after returning from RAW mode or when changing consoles - recompute
370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
371 * undefined, so that shiftkey release is seen. The caller must hold the
372 * kbd_event_lock.
373 */
374
375static void do_compute_shiftstate(void)
376{
377 unsigned int k, sym, val;
378
379 shift_state = 0;
380 memset(shift_down, 0, sizeof(shift_down));
381
382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
383 sym = U(key_maps[0][k]);
384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
385 continue;
386
387 val = KVAL(sym);
388 if (val == KVAL(K_CAPSSHIFT))
389 val = KVAL(K_SHIFT);
390
391 shift_down[val]++;
392 shift_state |= BIT(val);
393 }
394}
395
396/* We still have to export this method to vt.c */
397void compute_shiftstate(void)
398{
399 unsigned long flags;
400 spin_lock_irqsave(&kbd_event_lock, flags);
401 do_compute_shiftstate();
402 spin_unlock_irqrestore(&kbd_event_lock, flags);
403}
404
405/*
406 * We have a combining character DIACR here, followed by the character CH.
407 * If the combination occurs in the table, return the corresponding value.
408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
409 * Otherwise, conclude that DIACR was not combining after all,
410 * queue it and return CH.
411 */
412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
413{
414 unsigned int d = diacr;
415 unsigned int i;
416
417 diacr = 0;
418
419 if ((d & ~0xff) == BRL_UC_ROW) {
420 if ((ch & ~0xff) == BRL_UC_ROW)
421 return d | ch;
422 } else {
423 for (i = 0; i < accent_table_size; i++)
424 if (accent_table[i].diacr == d && accent_table[i].base == ch)
425 return accent_table[i].result;
426 }
427
428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 return d;
430
431 if (kbd->kbdmode == VC_UNICODE)
432 to_utf8(vc, d);
433 else {
434 int c = conv_uni_to_8bit(d);
435 if (c != -1)
436 put_queue(vc, c);
437 }
438
439 return ch;
440}
441
442/*
443 * Special function handlers
444 */
445static void fn_enter(struct vc_data *vc)
446{
447 if (diacr) {
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, diacr);
450 else {
451 int c = conv_uni_to_8bit(diacr);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455 diacr = 0;
456 }
457
458 put_queue(vc, 13);
459 if (vc_kbd_mode(kbd, VC_CRLF))
460 put_queue(vc, 10);
461}
462
463static void fn_caps_toggle(struct vc_data *vc)
464{
465 if (rep)
466 return;
467
468 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
469}
470
471static void fn_caps_on(struct vc_data *vc)
472{
473 if (rep)
474 return;
475
476 set_vc_kbd_led(kbd, VC_CAPSLOCK);
477}
478
479static void fn_show_ptregs(struct vc_data *vc)
480{
481 struct pt_regs *regs = get_irq_regs();
482
483 if (regs)
484 show_regs(regs);
485}
486
487static void fn_hold(struct vc_data *vc)
488{
489 struct tty_struct *tty = vc->port.tty;
490
491 if (rep || !tty)
492 return;
493
494 /*
495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
496 * these routines are also activated by ^S/^Q.
497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
498 */
499 if (tty->stopped)
500 start_tty(tty);
501 else
502 stop_tty(tty);
503}
504
505static void fn_num(struct vc_data *vc)
506{
507 if (vc_kbd_mode(kbd, VC_APPLIC))
508 applkey(vc, 'P', 1);
509 else
510 fn_bare_num(vc);
511}
512
513/*
514 * Bind this to Shift-NumLock if you work in application keypad mode
515 * but want to be able to change the NumLock flag.
516 * Bind this to NumLock if you prefer that the NumLock key always
517 * changes the NumLock flag.
518 */
519static void fn_bare_num(struct vc_data *vc)
520{
521 if (!rep)
522 chg_vc_kbd_led(kbd, VC_NUMLOCK);
523}
524
525static void fn_lastcons(struct vc_data *vc)
526{
527 /* switch to the last used console, ChN */
528 set_console(last_console);
529}
530
531static void fn_dec_console(struct vc_data *vc)
532{
533 int i, cur = fg_console;
534
535 /* Currently switching? Queue this next switch relative to that. */
536 if (want_console != -1)
537 cur = want_console;
538
539 for (i = cur - 1; i != cur; i--) {
540 if (i == -1)
541 i = MAX_NR_CONSOLES - 1;
542 if (vc_cons_allocated(i))
543 break;
544 }
545 set_console(i);
546}
547
548static void fn_inc_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur+1; i != cur; i++) {
557 if (i == MAX_NR_CONSOLES)
558 i = 0;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_send_intr(struct vc_data *vc)
566{
567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
568 tty_schedule_flip(&vc->port);
569}
570
571static void fn_scroll_forw(struct vc_data *vc)
572{
573 scrollfront(vc, 0);
574}
575
576static void fn_scroll_back(struct vc_data *vc)
577{
578 scrollback(vc);
579}
580
581static void fn_show_mem(struct vc_data *vc)
582{
583 show_mem(0, NULL);
584}
585
586static void fn_show_state(struct vc_data *vc)
587{
588 show_state();
589}
590
591static void fn_boot_it(struct vc_data *vc)
592{
593 ctrl_alt_del();
594}
595
596static void fn_compose(struct vc_data *vc)
597{
598 dead_key_next = true;
599}
600
601static void fn_spawn_con(struct vc_data *vc)
602{
603 spin_lock(&vt_spawn_con.lock);
604 if (vt_spawn_con.pid)
605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
606 put_pid(vt_spawn_con.pid);
607 vt_spawn_con.pid = NULL;
608 }
609 spin_unlock(&vt_spawn_con.lock);
610}
611
612static void fn_SAK(struct vc_data *vc)
613{
614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
615 schedule_work(SAK_work);
616}
617
618static void fn_null(struct vc_data *vc)
619{
620 do_compute_shiftstate();
621}
622
623/*
624 * Special key handlers
625 */
626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
627{
628}
629
630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
631{
632 if (up_flag)
633 return;
634 if (value >= ARRAY_SIZE(fn_handler))
635 return;
636 if ((kbd->kbdmode == VC_RAW ||
637 kbd->kbdmode == VC_MEDIUMRAW ||
638 kbd->kbdmode == VC_OFF) &&
639 value != KVAL(K_SAK))
640 return; /* SAK is allowed even in raw mode */
641 fn_handler[value](vc);
642}
643
644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
645{
646 pr_err("k_lowercase was called - impossible\n");
647}
648
649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
650{
651 if (up_flag)
652 return; /* no action, if this is a key release */
653
654 if (diacr)
655 value = handle_diacr(vc, value);
656
657 if (dead_key_next) {
658 dead_key_next = false;
659 diacr = value;
660 return;
661 }
662 if (kbd->kbdmode == VC_UNICODE)
663 to_utf8(vc, value);
664 else {
665 int c = conv_uni_to_8bit(value);
666 if (c != -1)
667 put_queue(vc, c);
668 }
669}
670
671/*
672 * Handle dead key. Note that we now may have several
673 * dead keys modifying the same character. Very useful
674 * for Vietnamese.
675 */
676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677{
678 if (up_flag)
679 return;
680
681 diacr = (diacr ? handle_diacr(vc, value) : value);
682}
683
684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
687}
688
689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690{
691 k_deadunicode(vc, value, up_flag);
692}
693
694/*
695 * Obsolete - for backwards compatibility only
696 */
697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698{
699 static const unsigned char ret_diacr[NR_DEAD] = {
700 '`', /* dead_grave */
701 '\'', /* dead_acute */
702 '^', /* dead_circumflex */
703 '~', /* dead_tilda */
704 '"', /* dead_diaeresis */
705 ',', /* dead_cedilla */
706 '_', /* dead_macron */
707 'U', /* dead_breve */
708 '.', /* dead_abovedot */
709 '*', /* dead_abovering */
710 '=', /* dead_doubleacute */
711 'c', /* dead_caron */
712 'k', /* dead_ogonek */
713 'i', /* dead_iota */
714 '#', /* dead_voiced_sound */
715 'o', /* dead_semivoiced_sound */
716 '!', /* dead_belowdot */
717 '?', /* dead_hook */
718 '+', /* dead_horn */
719 '-', /* dead_stroke */
720 ')', /* dead_abovecomma */
721 '(', /* dead_abovereversedcomma */
722 ':', /* dead_doublegrave */
723 'n', /* dead_invertedbreve */
724 ';', /* dead_belowcomma */
725 '$', /* dead_currency */
726 '@', /* dead_greek */
727 };
728
729 k_deadunicode(vc, ret_diacr[value], up_flag);
730}
731
732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
733{
734 if (up_flag)
735 return;
736
737 set_console(value);
738}
739
740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
741{
742 if (up_flag)
743 return;
744
745 if ((unsigned)value < ARRAY_SIZE(func_table)) {
746 if (func_table[value])
747 puts_queue(vc, func_table[value]);
748 } else
749 pr_err("k_fn called with value=%d\n", value);
750}
751
752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char cur_chars[] = "BDCA";
755
756 if (up_flag)
757 return;
758
759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
760}
761
762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
763{
764 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
766
767 if (up_flag)
768 return; /* no action, if this is a key release */
769
770 /* kludge... shift forces cursor/number keys */
771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
772 applkey(vc, app_map[value], 1);
773 return;
774 }
775
776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
777
778 switch (value) {
779 case KVAL(K_PCOMMA):
780 case KVAL(K_PDOT):
781 k_fn(vc, KVAL(K_REMOVE), 0);
782 return;
783 case KVAL(K_P0):
784 k_fn(vc, KVAL(K_INSERT), 0);
785 return;
786 case KVAL(K_P1):
787 k_fn(vc, KVAL(K_SELECT), 0);
788 return;
789 case KVAL(K_P2):
790 k_cur(vc, KVAL(K_DOWN), 0);
791 return;
792 case KVAL(K_P3):
793 k_fn(vc, KVAL(K_PGDN), 0);
794 return;
795 case KVAL(K_P4):
796 k_cur(vc, KVAL(K_LEFT), 0);
797 return;
798 case KVAL(K_P6):
799 k_cur(vc, KVAL(K_RIGHT), 0);
800 return;
801 case KVAL(K_P7):
802 k_fn(vc, KVAL(K_FIND), 0);
803 return;
804 case KVAL(K_P8):
805 k_cur(vc, KVAL(K_UP), 0);
806 return;
807 case KVAL(K_P9):
808 k_fn(vc, KVAL(K_PGUP), 0);
809 return;
810 case KVAL(K_P5):
811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
812 return;
813 }
814 }
815
816 put_queue(vc, pad_chars[value]);
817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
818 put_queue(vc, 10);
819}
820
821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
822{
823 int old_state = shift_state;
824
825 if (rep)
826 return;
827 /*
828 * Mimic typewriter:
829 * a CapsShift key acts like Shift but undoes CapsLock
830 */
831 if (value == KVAL(K_CAPSSHIFT)) {
832 value = KVAL(K_SHIFT);
833 if (!up_flag)
834 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
835 }
836
837 if (up_flag) {
838 /*
839 * handle the case that two shift or control
840 * keys are depressed simultaneously
841 */
842 if (shift_down[value])
843 shift_down[value]--;
844 } else
845 shift_down[value]++;
846
847 if (shift_down[value])
848 shift_state |= (1 << value);
849 else
850 shift_state &= ~(1 << value);
851
852 /* kludge */
853 if (up_flag && shift_state != old_state && npadch_active) {
854 if (kbd->kbdmode == VC_UNICODE)
855 to_utf8(vc, npadch_value);
856 else
857 put_queue(vc, npadch_value & 0xff);
858 npadch_active = false;
859 }
860}
861
862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag)
865 return;
866
867 if (vc_kbd_mode(kbd, VC_META)) {
868 put_queue(vc, '\033');
869 put_queue(vc, value);
870 } else
871 put_queue(vc, value | 0x80);
872}
873
874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
875{
876 unsigned int base;
877
878 if (up_flag)
879 return;
880
881 if (value < 10) {
882 /* decimal input of code, while Alt depressed */
883 base = 10;
884 } else {
885 /* hexadecimal input of code, while AltGr depressed */
886 value -= 10;
887 base = 16;
888 }
889
890 if (!npadch_active) {
891 npadch_value = 0;
892 npadch_active = true;
893 }
894
895 npadch_value = npadch_value * base + value;
896}
897
898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_lock(kbd, value);
904}
905
906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
907{
908 k_shift(vc, value, up_flag);
909 if (up_flag || rep)
910 return;
911
912 chg_vc_kbd_slock(kbd, value);
913 /* try to make Alt, oops, AltGr and such work */
914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
915 kbd->slockstate = 0;
916 chg_vc_kbd_slock(kbd, value);
917 }
918}
919
920/* by default, 300ms interval for combination release */
921static unsigned brl_timeout = 300;
922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
923module_param(brl_timeout, uint, 0644);
924
925static unsigned brl_nbchords = 1;
926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
927module_param(brl_nbchords, uint, 0644);
928
929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
930{
931 static unsigned long chords;
932 static unsigned committed;
933
934 if (!brl_nbchords)
935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
936 else {
937 committed |= pattern;
938 chords++;
939 if (chords == brl_nbchords) {
940 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
941 chords = 0;
942 committed = 0;
943 }
944 }
945}
946
947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
948{
949 static unsigned pressed, committing;
950 static unsigned long releasestart;
951
952 if (kbd->kbdmode != VC_UNICODE) {
953 if (!up_flag)
954 pr_warn("keyboard mode must be unicode for braille patterns\n");
955 return;
956 }
957
958 if (!value) {
959 k_unicode(vc, BRL_UC_ROW, up_flag);
960 return;
961 }
962
963 if (value > 8)
964 return;
965
966 if (!up_flag) {
967 pressed |= 1 << (value - 1);
968 if (!brl_timeout)
969 committing = pressed;
970 } else if (brl_timeout) {
971 if (!committing ||
972 time_after(jiffies,
973 releasestart + msecs_to_jiffies(brl_timeout))) {
974 committing = pressed;
975 releasestart = jiffies;
976 }
977 pressed &= ~(1 << (value - 1));
978 if (!pressed && committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 } else {
983 if (committing) {
984 k_brlcommit(vc, committing, 0);
985 committing = 0;
986 }
987 pressed &= ~(1 << (value - 1));
988 }
989}
990
991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
992
993struct kbd_led_trigger {
994 struct led_trigger trigger;
995 unsigned int mask;
996};
997
998static int kbd_led_trigger_activate(struct led_classdev *cdev)
999{
1000 struct kbd_led_trigger *trigger =
1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003 tasklet_disable(&keyboard_tasklet);
1004 if (ledstate != -1U)
1005 led_trigger_event(&trigger->trigger,
1006 ledstate & trigger->mask ?
1007 LED_FULL : LED_OFF);
1008 tasklet_enable(&keyboard_tasklet);
1009
1010 return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) { \
1014 .trigger = { \
1015 .name = _name, \
1016 .activate = kbd_led_trigger_activate, \
1017 }, \
1018 .mask = BIT(_led_bit), \
1019 }
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1022 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1029
1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041 unsigned int new_state)
1042{
1043 struct kbd_led_trigger *trigger;
1044 unsigned int changed = old_state ^ new_state;
1045 int i;
1046
1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048 trigger = &kbd_led_triggers[i];
1049
1050 if (changed & trigger->mask)
1051 led_trigger_event(&trigger->trigger,
1052 new_state & trigger->mask ?
1053 LED_FULL : LED_OFF);
1054 }
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059 unsigned int led_state = *(unsigned int *)data;
1060
1061 if (test_bit(EV_LED, handle->dev->evbit))
1062 kbd_propagate_led_state(~led_state, led_state);
1063
1064 return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069 int error;
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074 if (error)
1075 pr_err("error %d while registering trigger %s\n",
1076 error, kbd_led_triggers[i].trigger.name);
1077 }
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084 unsigned int leds = *(unsigned int *)data;
1085
1086 if (test_bit(EV_LED, handle->dev->evbit)) {
1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091 }
1092
1093 return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097 unsigned int new_state)
1098{
1099 input_handler_for_each_handle(&kbd_handler, &new_state,
1100 kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116 return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121 unsigned long flags;
1122 spin_lock_irqsave(&led_lock, flags);
1123 if (!(led & ~7)) {
1124 ledioctl = led;
1125 kb->ledmode = LED_SHOW_IOCTL;
1126 } else
1127 kb->ledmode = LED_SHOW_FLAGS;
1128
1129 set_leds();
1130 spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135 struct kbd_struct *kb = kbd_table + fg_console;
1136
1137 if (kb->ledmode == LED_SHOW_IOCTL)
1138 return ledioctl;
1139
1140 return kb->ledflagstate;
1141}
1142
1143/**
1144 * vt_get_leds - helper for braille console
1145 * @console: console to read
1146 * @flag: flag we want to check
1147 *
1148 * Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152 struct kbd_struct *kb = kbd_table + console;
1153 int ret;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&led_lock, flags);
1157 ret = vc_kbd_led(kb, flag);
1158 spin_unlock_irqrestore(&led_lock, flags);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 * vt_set_led_state - set LED state of a console
1166 * @console: console to set
1167 * @leds: LED bits
1168 *
1169 * Set the LEDs on a console. This is a wrapper for the VT layer
1170 * so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174 struct kbd_struct *kb = kbd_table + console;
1175 setledstate(kb, leds);
1176}
1177
1178/**
1179 * vt_kbd_con_start - Keyboard side of console start
1180 * @console: console
1181 *
1182 * Handle console start. This is a wrapper for the VT layer
1183 * so that we can keep kbd knowledge internal
1184 *
1185 * FIXME: We eventually need to hold the kbd lock here to protect
1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 * and start_tty under the kbd_event_lock, while normal tty paths
1188 * don't hold the lock. We probably need to split out an LED lock
1189 * but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193 struct kbd_struct *kb = kbd_table + console;
1194 unsigned long flags;
1195 spin_lock_irqsave(&led_lock, flags);
1196 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197 set_leds();
1198 spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 * vt_kbd_con_stop - Keyboard side of console stop
1203 * @console: console
1204 *
1205 * Handle console stop. This is a wrapper for the VT layer
1206 * so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210 struct kbd_struct *kb = kbd_table + console;
1211 unsigned long flags;
1212 spin_lock_irqsave(&led_lock, flags);
1213 set_vc_kbd_led(kb, VC_SCROLLOCK);
1214 set_leds();
1215 spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226 unsigned int leds;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&led_lock, flags);
1230 leds = getleds();
1231 leds |= (unsigned int)kbd->lockstate << 8;
1232 spin_unlock_irqrestore(&led_lock, flags);
1233
1234 if (leds != ledstate) {
1235 kbd_propagate_led_state(ledstate, leds);
1236 ledstate = leds;
1237 }
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273 unsigned char up_flag)
1274{
1275 int code;
1276
1277 switch (keycode) {
1278
1279 case KEY_PAUSE:
1280 put_queue(vc, 0xe1);
1281 put_queue(vc, 0x1d | up_flag);
1282 put_queue(vc, 0x45 | up_flag);
1283 break;
1284
1285 case KEY_HANGEUL:
1286 if (!up_flag)
1287 put_queue(vc, 0xf2);
1288 break;
1289
1290 case KEY_HANJA:
1291 if (!up_flag)
1292 put_queue(vc, 0xf1);
1293 break;
1294
1295 case KEY_SYSRQ:
1296 /*
1297 * Real AT keyboards (that's what we're trying
1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299 * pressing PrtSc/SysRq alone, but simply 0x54
1300 * when pressing Alt+PrtSc/SysRq.
1301 */
1302 if (test_bit(KEY_LEFTALT, key_down) ||
1303 test_bit(KEY_RIGHTALT, key_down)) {
1304 put_queue(vc, 0x54 | up_flag);
1305 } else {
1306 put_queue(vc, 0xe0);
1307 put_queue(vc, 0x2a | up_flag);
1308 put_queue(vc, 0xe0);
1309 put_queue(vc, 0x37 | up_flag);
1310 }
1311 break;
1312
1313 default:
1314 if (keycode > 255)
1315 return -1;
1316
1317 code = x86_keycodes[keycode];
1318 if (!code)
1319 return -1;
1320
1321 if (code & 0x100)
1322 put_queue(vc, 0xe0);
1323 put_queue(vc, (code & 0x7f) | up_flag);
1324
1325 break;
1326 }
1327
1328 return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev) 0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337 if (keycode > 127)
1338 return -1;
1339
1340 put_queue(vc, keycode | up_flag);
1341 return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347 struct vc_data *vc = vc_cons[fg_console].d;
1348
1349 kbd = kbd_table + vc->vc_num;
1350 if (kbd->kbdmode == VC_RAW)
1351 put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356 struct vc_data *vc = vc_cons[fg_console].d;
1357 unsigned short keysym, *key_map;
1358 unsigned char type;
1359 bool raw_mode;
1360 struct tty_struct *tty;
1361 int shift_final;
1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363 int rc;
1364
1365 tty = vc->port.tty;
1366
1367 if (tty && (!tty->driver_data)) {
1368 /* No driver data? Strange. Okay we fix it then. */
1369 tty->driver_data = vc;
1370 }
1371
1372 kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375 if (keycode == KEY_STOP)
1376 sparc_l1_a_state = down;
1377#endif
1378
1379 rep = (down == 2);
1380
1381 raw_mode = (kbd->kbdmode == VC_RAW);
1382 if (raw_mode && !hw_raw)
1383 if (emulate_raw(vc, keycode, !down << 7))
1384 if (keycode < BTN_MISC && printk_ratelimit())
1385 pr_warn("can't emulate rawmode for keycode %d\n",
1386 keycode);
1387
1388#ifdef CONFIG_SPARC
1389 if (keycode == KEY_A && sparc_l1_a_state) {
1390 sparc_l1_a_state = false;
1391 sun_do_break();
1392 }
1393#endif
1394
1395 if (kbd->kbdmode == VC_MEDIUMRAW) {
1396 /*
1397 * This is extended medium raw mode, with keys above 127
1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400 * interfere with anything else. The two bytes after 0 will
1401 * always have the up flag set not to interfere with older
1402 * applications. This allows for 16384 different keycodes,
1403 * which should be enough.
1404 */
1405 if (keycode < 128) {
1406 put_queue(vc, keycode | (!down << 7));
1407 } else {
1408 put_queue(vc, !down << 7);
1409 put_queue(vc, (keycode >> 7) | 0x80);
1410 put_queue(vc, keycode | 0x80);
1411 }
1412 raw_mode = true;
1413 }
1414
1415 if (down)
1416 set_bit(keycode, key_down);
1417 else
1418 clear_bit(keycode, key_down);
1419
1420 if (rep &&
1421 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423 /*
1424 * Don't repeat a key if the input buffers are not empty and the
1425 * characters get aren't echoed locally. This makes key repeat
1426 * usable with slow applications and under heavy loads.
1427 */
1428 return;
1429 }
1430
1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432 param.ledstate = kbd->ledflagstate;
1433 key_map = key_maps[shift_final];
1434
1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436 KBD_KEYCODE, ¶m);
1437 if (rc == NOTIFY_STOP || !key_map) {
1438 atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_UNBOUND_KEYCODE, ¶m);
1440 do_compute_shiftstate();
1441 kbd->slockstate = 0;
1442 return;
1443 }
1444
1445 if (keycode < NR_KEYS)
1446 keysym = key_map[keycode];
1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449 else
1450 return;
1451
1452 type = KTYP(keysym);
1453
1454 if (type < 0xf0) {
1455 param.value = keysym;
1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457 KBD_UNICODE, ¶m);
1458 if (rc != NOTIFY_STOP)
1459 if (down && !raw_mode)
1460 k_unicode(vc, keysym, !down);
1461 return;
1462 }
1463
1464 type -= 0xf0;
1465
1466 if (type == KT_LETTER) {
1467 type = KT_LATIN;
1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470 if (key_map)
1471 keysym = key_map[keycode];
1472 }
1473 }
1474
1475 param.value = keysym;
1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_KEYSYM, ¶m);
1478 if (rc == NOTIFY_STOP)
1479 return;
1480
1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482 return;
1483
1484 (*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486 param.ledstate = kbd->ledflagstate;
1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1488
1489 if (type != KT_SLOCK)
1490 kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494 unsigned int event_code, int value)
1495{
1496 /* We are called with interrupts disabled, just take the lock */
1497 spin_lock(&kbd_event_lock);
1498
1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500 kbd_rawcode(value);
1501 if (event_type == EV_KEY && event_code <= KEY_MAX)
1502 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504 spin_unlock(&kbd_event_lock);
1505
1506 tasklet_schedule(&keyboard_tasklet);
1507 do_poke_blanked_console = 1;
1508 schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513 int i;
1514
1515 if (test_bit(EV_SND, dev->evbit))
1516 return true;
1517
1518 if (test_bit(EV_KEY, dev->evbit)) {
1519 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520 if (test_bit(i, dev->keybit))
1521 return true;
1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523 if (test_bit(i, dev->keybit))
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537 const struct input_device_id *id)
1538{
1539 struct input_handle *handle;
1540 int error;
1541
1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543 if (!handle)
1544 return -ENOMEM;
1545
1546 handle->dev = dev;
1547 handle->handler = handler;
1548 handle->name = "kbd";
1549
1550 error = input_register_handle(handle);
1551 if (error)
1552 goto err_free_handle;
1553
1554 error = input_open_device(handle);
1555 if (error)
1556 goto err_unregister_handle;
1557
1558 return 0;
1559
1560 err_unregister_handle:
1561 input_unregister_handle(handle);
1562 err_free_handle:
1563 kfree(handle);
1564 return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569 input_close_device(handle);
1570 input_unregister_handle(handle);
1571 kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580 tasklet_disable(&keyboard_tasklet);
1581
1582 if (ledstate != -1U)
1583 kbd_update_leds_helper(handle, &ledstate);
1584
1585 tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589 {
1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591 .evbit = { BIT_MASK(EV_KEY) },
1592 },
1593
1594 {
1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596 .evbit = { BIT_MASK(EV_SND) },
1597 },
1598
1599 { }, /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605 .event = kbd_event,
1606 .match = kbd_match,
1607 .connect = kbd_connect,
1608 .disconnect = kbd_disconnect,
1609 .start = kbd_start,
1610 .name = "kbd",
1611 .id_table = kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616 int i;
1617 int error;
1618
1619 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620 kbd_table[i].ledflagstate = kbd_defleds();
1621 kbd_table[i].default_ledflagstate = kbd_defleds();
1622 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623 kbd_table[i].lockstate = KBD_DEFLOCK;
1624 kbd_table[i].slockstate = 0;
1625 kbd_table[i].modeflags = KBD_DEFMODE;
1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627 }
1628
1629 kbd_init_leds();
1630
1631 error = input_register_handler(&kbd_handler);
1632 if (error)
1633 return error;
1634
1635 tasklet_enable(&keyboard_tasklet);
1636 tasklet_schedule(&keyboard_tasklet);
1637
1638 return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 * vt_do_diacrit - diacritical table updates
1645 * @cmd: ioctl request
1646 * @udp: pointer to user data for ioctl
1647 * @perm: permissions check computed by caller
1648 *
1649 * Update the diacritical tables atomically and safely. Lock them
1650 * against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654 unsigned long flags;
1655 int asize;
1656 int ret = 0;
1657
1658 switch (cmd) {
1659 case KDGKBDIACR:
1660 {
1661 struct kbdiacrs __user *a = udp;
1662 struct kbdiacr *dia;
1663 int i;
1664
1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666 GFP_KERNEL);
1667 if (!dia)
1668 return -ENOMEM;
1669
1670 /* Lock the diacriticals table, make a copy and then
1671 copy it after we unlock */
1672 spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674 asize = accent_table_size;
1675 for (i = 0; i < asize; i++) {
1676 dia[i].diacr = conv_uni_to_8bit(
1677 accent_table[i].diacr);
1678 dia[i].base = conv_uni_to_8bit(
1679 accent_table[i].base);
1680 dia[i].result = conv_uni_to_8bit(
1681 accent_table[i].result);
1682 }
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacr, dia,
1688 asize * sizeof(struct kbdiacr)))
1689 ret = -EFAULT;
1690 kfree(dia);
1691 return ret;
1692 }
1693 case KDGKBDIACRUC:
1694 {
1695 struct kbdiacrsuc __user *a = udp;
1696 void *buf;
1697
1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699 GFP_KERNEL);
1700 if (buf == NULL)
1701 return -ENOMEM;
1702
1703 /* Lock the diacriticals table, make a copy and then
1704 copy it after we unlock */
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707 asize = accent_table_size;
1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacruc, buf,
1715 asize*sizeof(struct kbdiacruc)))
1716 ret = -EFAULT;
1717 kfree(buf);
1718 return ret;
1719 }
1720
1721 case KDSKBDIACR:
1722 {
1723 struct kbdiacrs __user *a = udp;
1724 struct kbdiacr *dia = NULL;
1725 unsigned int ct;
1726 int i;
1727
1728 if (!perm)
1729 return -EPERM;
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1734
1735 if (ct) {
1736
1737 dia = memdup_user(a->kbdiacr,
1738 sizeof(struct kbdiacr) * ct);
1739 if (IS_ERR(dia))
1740 return PTR_ERR(dia);
1741
1742 }
1743
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745 accent_table_size = ct;
1746 for (i = 0; i < ct; i++) {
1747 accent_table[i].diacr =
1748 conv_8bit_to_uni(dia[i].diacr);
1749 accent_table[i].base =
1750 conv_8bit_to_uni(dia[i].base);
1751 accent_table[i].result =
1752 conv_8bit_to_uni(dia[i].result);
1753 }
1754 spin_unlock_irqrestore(&kbd_event_lock, flags);
1755 kfree(dia);
1756 return 0;
1757 }
1758
1759 case KDSKBDIACRUC:
1760 {
1761 struct kbdiacrsuc __user *a = udp;
1762 unsigned int ct;
1763 void *buf = NULL;
1764
1765 if (!perm)
1766 return -EPERM;
1767
1768 if (get_user(ct, &a->kb_cnt))
1769 return -EFAULT;
1770
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 buf = memdup_user(a->kbdiacruc,
1776 ct * sizeof(struct kbdiacruc));
1777 if (IS_ERR(buf))
1778 return PTR_ERR(buf);
1779 }
1780 spin_lock_irqsave(&kbd_event_lock, flags);
1781 if (ct)
1782 memcpy(accent_table, buf,
1783 ct * sizeof(struct kbdiacruc));
1784 accent_table_size = ct;
1785 spin_unlock_irqrestore(&kbd_event_lock, flags);
1786 kfree(buf);
1787 return 0;
1788 }
1789 }
1790 return ret;
1791}
1792
1793/**
1794 * vt_do_kdskbmode - set keyboard mode ioctl
1795 * @console: the console to use
1796 * @arg: the requested mode
1797 *
1798 * Update the keyboard mode bits while holding the correct locks.
1799 * Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803 struct kbd_struct *kb = kbd_table + console;
1804 int ret = 0;
1805 unsigned long flags;
1806
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 switch(arg) {
1809 case K_RAW:
1810 kb->kbdmode = VC_RAW;
1811 break;
1812 case K_MEDIUMRAW:
1813 kb->kbdmode = VC_MEDIUMRAW;
1814 break;
1815 case K_XLATE:
1816 kb->kbdmode = VC_XLATE;
1817 do_compute_shiftstate();
1818 break;
1819 case K_UNICODE:
1820 kb->kbdmode = VC_UNICODE;
1821 do_compute_shiftstate();
1822 break;
1823 case K_OFF:
1824 kb->kbdmode = VC_OFF;
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829 spin_unlock_irqrestore(&kbd_event_lock, flags);
1830 return ret;
1831}
1832
1833/**
1834 * vt_do_kdskbmeta - set keyboard meta state
1835 * @console: the console to use
1836 * @arg: the requested meta state
1837 *
1838 * Update the keyboard meta bits while holding the correct locks.
1839 * Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843 struct kbd_struct *kb = kbd_table + console;
1844 int ret = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&kbd_event_lock, flags);
1848 switch(arg) {
1849 case K_METABIT:
1850 clr_vc_kbd_mode(kb, VC_META);
1851 break;
1852 case K_ESCPREFIX:
1853 set_vc_kbd_mode(kb, VC_META);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 }
1858 spin_unlock_irqrestore(&kbd_event_lock, flags);
1859 return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863 int perm)
1864{
1865 struct kbkeycode tmp;
1866 int kc = 0;
1867
1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869 return -EFAULT;
1870 switch (cmd) {
1871 case KDGETKEYCODE:
1872 kc = getkeycode(tmp.scancode);
1873 if (kc >= 0)
1874 kc = put_user(kc, &user_kbkc->keycode);
1875 break;
1876 case KDSETKEYCODE:
1877 if (!perm)
1878 return -EPERM;
1879 kc = setkeycode(tmp.scancode, tmp.keycode);
1880 break;
1881 }
1882 return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890 int console)
1891{
1892 struct kbd_struct *kb = kbd_table + console;
1893 struct kbentry tmp;
1894 ushort *key_map, *new_map, val, ov;
1895 unsigned long flags;
1896
1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898 return -EFAULT;
1899
1900 if (!capable(CAP_SYS_TTY_CONFIG))
1901 perm = 0;
1902
1903 switch (cmd) {
1904 case KDGKBENT:
1905 /* Ensure another thread doesn't free it under us */
1906 spin_lock_irqsave(&kbd_event_lock, flags);
1907 key_map = key_maps[s];
1908 if (key_map) {
1909 val = U(key_map[i]);
1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911 val = K_HOLE;
1912 } else
1913 val = (i ? K_HOLE : K_NOSUCHMAP);
1914 spin_unlock_irqrestore(&kbd_event_lock, flags);
1915 return put_user(val, &user_kbe->kb_value);
1916 case KDSKBENT:
1917 if (!perm)
1918 return -EPERM;
1919 if (!i && v == K_NOSUCHMAP) {
1920 spin_lock_irqsave(&kbd_event_lock, flags);
1921 /* deallocate map */
1922 key_map = key_maps[s];
1923 if (s && key_map) {
1924 key_maps[s] = NULL;
1925 if (key_map[0] == U(K_ALLOCATED)) {
1926 kfree(key_map);
1927 keymap_count--;
1928 }
1929 }
1930 spin_unlock_irqrestore(&kbd_event_lock, flags);
1931 break;
1932 }
1933
1934 if (KTYP(v) < NR_TYPES) {
1935 if (KVAL(v) > max_vals[KTYP(v)])
1936 return -EINVAL;
1937 } else
1938 if (kb->kbdmode != VC_UNICODE)
1939 return -EINVAL;
1940
1941 /* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943 /* assignment to entry 0 only tests validity of args */
1944 if (!i)
1945 break;
1946#endif
1947
1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949 if (!new_map)
1950 return -ENOMEM;
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 key_map = key_maps[s];
1953 if (key_map == NULL) {
1954 int j;
1955
1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957 !capable(CAP_SYS_RESOURCE)) {
1958 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 kfree(new_map);
1960 return -EPERM;
1961 }
1962 key_maps[s] = new_map;
1963 key_map = new_map;
1964 key_map[0] = U(K_ALLOCATED);
1965 for (j = 1; j < NR_KEYS; j++)
1966 key_map[j] = U(K_HOLE);
1967 keymap_count++;
1968 } else
1969 kfree(new_map);
1970
1971 ov = U(key_map[i]);
1972 if (v == ov)
1973 goto out;
1974 /*
1975 * Attention Key.
1976 */
1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 return -EPERM;
1980 }
1981 key_map[i] = U(v);
1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983 do_compute_shiftstate();
1984out:
1985 spin_unlock_irqrestore(&kbd_event_lock, flags);
1986 break;
1987 }
1988 return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997 struct kbsentry *kbs;
1998 char *p;
1999 u_char *q;
2000 u_char __user *up;
2001 int sz, fnw_sz;
2002 int delta;
2003 char *first_free, *fj, *fnw;
2004 int i, j, k;
2005 int ret;
2006 unsigned long flags;
2007
2008 if (!capable(CAP_SYS_TTY_CONFIG))
2009 perm = 0;
2010
2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012 if (!kbs) {
2013 ret = -ENOMEM;
2014 goto reterr;
2015 }
2016
2017 /* we mostly copy too much here (512bytes), but who cares ;) */
2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019 ret = -EFAULT;
2020 goto reterr;
2021 }
2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025 switch (cmd) {
2026 case KDGKBSENT:
2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028 a struct member */
2029 up = user_kdgkb->kb_string;
2030 p = func_table[i];
2031 if(p)
2032 for ( ; *p && sz; p++, sz--)
2033 if (put_user(*p, up++)) {
2034 ret = -EFAULT;
2035 goto reterr;
2036 }
2037 if (put_user('\0', up)) {
2038 ret = -EFAULT;
2039 goto reterr;
2040 }
2041 kfree(kbs);
2042 return ((p && *p) ? -EOVERFLOW : 0);
2043 case KDSKBSENT:
2044 if (!perm) {
2045 ret = -EPERM;
2046 goto reterr;
2047 }
2048
2049 fnw = NULL;
2050 fnw_sz = 0;
2051 /* race aginst other writers */
2052 again:
2053 spin_lock_irqsave(&func_buf_lock, flags);
2054 q = func_table[i];
2055
2056 /* fj pointer to next entry after 'q' */
2057 first_free = funcbufptr + (funcbufsize - funcbufleft);
2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059 ;
2060 if (j < MAX_NR_FUNC)
2061 fj = func_table[j];
2062 else
2063 fj = first_free;
2064 /* buffer usage increase by new entry */
2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067 if (delta <= funcbufleft) { /* it fits in current buf */
2068 if (j < MAX_NR_FUNC) {
2069 /* make enough space for new entry at 'fj' */
2070 memmove(fj + delta, fj, first_free - fj);
2071 for (k = j; k < MAX_NR_FUNC; k++)
2072 if (func_table[k])
2073 func_table[k] += delta;
2074 }
2075 if (!q)
2076 func_table[i] = fj;
2077 funcbufleft -= delta;
2078 } else { /* allocate a larger buffer */
2079 sz = 256;
2080 while (sz < funcbufsize - funcbufleft + delta)
2081 sz <<= 1;
2082 if (fnw_sz != sz) {
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084 kfree(fnw);
2085 fnw = kmalloc(sz, GFP_KERNEL);
2086 fnw_sz = sz;
2087 if (!fnw) {
2088 ret = -ENOMEM;
2089 goto reterr;
2090 }
2091 goto again;
2092 }
2093
2094 if (!q)
2095 func_table[i] = fj;
2096 /* copy data before insertion point to new location */
2097 if (fj > funcbufptr)
2098 memmove(fnw, funcbufptr, fj - funcbufptr);
2099 for (k = 0; k < j; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103 /* copy data after insertion point to new location */
2104 if (first_free > fj) {
2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106 for (k = j; k < MAX_NR_FUNC; k++)
2107 if (func_table[k])
2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109 }
2110 if (funcbufptr != func_buf)
2111 kfree(funcbufptr);
2112 funcbufptr = fnw;
2113 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114 funcbufsize = sz;
2115 }
2116 /* finally insert item itself */
2117 strcpy(func_table[i], kbs->kb_string);
2118 spin_unlock_irqrestore(&func_buf_lock, flags);
2119 break;
2120 }
2121 ret = 0;
2122reterr:
2123 kfree(kbs);
2124 return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129 struct kbd_struct *kb = kbd_table + console;
2130 unsigned long flags;
2131 unsigned char ucval;
2132
2133 switch(cmd) {
2134 /* the ioctls below read/set the flags usually shown in the leds */
2135 /* don't use them - they will go away without warning */
2136 case KDGKBLED:
2137 spin_lock_irqsave(&kbd_event_lock, flags);
2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139 spin_unlock_irqrestore(&kbd_event_lock, flags);
2140 return put_user(ucval, (char __user *)arg);
2141
2142 case KDSKBLED:
2143 if (!perm)
2144 return -EPERM;
2145 if (arg & ~0x77)
2146 return -EINVAL;
2147 spin_lock_irqsave(&led_lock, flags);
2148 kb->ledflagstate = (arg & 7);
2149 kb->default_ledflagstate = ((arg >> 4) & 7);
2150 set_leds();
2151 spin_unlock_irqrestore(&led_lock, flags);
2152 return 0;
2153
2154 /* the ioctls below only set the lights, not the functions */
2155 /* for those, see KDGKBLED and KDSKBLED above */
2156 case KDGETLED:
2157 ucval = getledstate();
2158 return put_user(ucval, (char __user *)arg);
2159
2160 case KDSETLED:
2161 if (!perm)
2162 return -EPERM;
2163 setledstate(kb, arg);
2164 return 0;
2165 }
2166 return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171 struct kbd_struct *kb = kbd_table + console;
2172 /* This is a spot read so needs no locking */
2173 switch (kb->kbdmode) {
2174 case VC_RAW:
2175 return K_RAW;
2176 case VC_MEDIUMRAW:
2177 return K_MEDIUMRAW;
2178 case VC_UNICODE:
2179 return K_UNICODE;
2180 case VC_OFF:
2181 return K_OFF;
2182 default:
2183 return K_XLATE;
2184 }
2185}
2186
2187/**
2188 * vt_do_kdgkbmeta - report meta status
2189 * @console: console to report
2190 *
2191 * Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 /* Again a spot read so no locking */
2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 * vt_reset_unicode - reset the unicode status
2202 * @console: console being reset
2203 *
2204 * Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&kbd_event_lock, flags);
2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212 spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 * vt_get_shiftstate - shift bit state
2217 *
2218 * Report the shift bits from the keyboard state. We have to export
2219 * this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223 /* Don't lock as this is a transient report */
2224 return shift_state;
2225}
2226
2227/**
2228 * vt_reset_keyboard - reset keyboard state
2229 * @console: console to reset
2230 *
2231 * Reset the keyboard bits for a console as part of a general console
2232 * reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236 struct kbd_struct *kb = kbd_table + console;
2237 unsigned long flags;
2238
2239 spin_lock_irqsave(&kbd_event_lock, flags);
2240 set_vc_kbd_mode(kb, VC_REPEAT);
2241 clr_vc_kbd_mode(kb, VC_CKMODE);
2242 clr_vc_kbd_mode(kb, VC_APPLIC);
2243 clr_vc_kbd_mode(kb, VC_CRLF);
2244 kb->lockstate = 0;
2245 kb->slockstate = 0;
2246 spin_lock(&led_lock);
2247 kb->ledmode = LED_SHOW_FLAGS;
2248 kb->ledflagstate = kb->default_ledflagstate;
2249 spin_unlock(&led_lock);
2250 /* do not do set_leds here because this causes an endless tasklet loop
2251 when the keyboard hasn't been initialized yet */
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 * vt_get_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Report back a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266 struct kbd_struct *kb = kbd_table + console;
2267 return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 * vt_set_kbd_mode_bit - read keyboard status bits
2272 * @console: console to read from
2273 * @bit: mode bit to read
2274 *
2275 * Set a vt mode bit. We do this without locking so the
2276 * caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281 struct kbd_struct *kb = kbd_table + console;
2282 unsigned long flags;
2283
2284 spin_lock_irqsave(&kbd_event_lock, flags);
2285 set_vc_kbd_mode(kb, bit);
2286 spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 * vt_clr_kbd_mode_bit - read keyboard status bits
2291 * @console: console to read from
2292 * @bit: mode bit to read
2293 *
2294 * Report back a vt mode bit. We do this without locking so the
2295 * caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300 struct kbd_struct *kb = kbd_table + console;
2301 unsigned long flags;
2302
2303 spin_lock_irqsave(&kbd_event_lock, flags);
2304 clr_vc_kbd_mode(kb, bit);
2305 spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/vt_kern.h>
40#include <linux/input.h>
41#include <linux/reboot.h>
42#include <linux/notifier.h>
43#include <linux/jiffies.h>
44#include <linux/uaccess.h>
45
46#include <asm/irq_regs.h>
47
48extern void ctrl_alt_del(void);
49
50/*
51 * Exported functions/variables
52 */
53
54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57#include <asm/kbdleds.h>
58#else
59static inline int kbd_defleds(void)
60{
61 return 0;
62}
63#endif
64
65#define KBD_DEFLOCK 0
66
67/*
68 * Handler Tables.
69 */
70
71#define K_HANDLERS\
72 k_self, k_fn, k_spec, k_pad,\
73 k_dead, k_cons, k_cur, k_shift,\
74 k_meta, k_ascii, k_lock, k_lowercase,\
75 k_slock, k_dead2, k_brl, k_ignore
76
77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
78 char up_flag);
79static k_handler_fn K_HANDLERS;
80static k_handler_fn *k_handler[16] = { K_HANDLERS };
81
82#define FN_HANDLERS\
83 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
84 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
85 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
86 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
87 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
88
89typedef void (fn_handler_fn)(struct vc_data *vc);
90static fn_handler_fn FN_HANDLERS;
91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92
93/*
94 * Variables exported for vt_ioctl.c
95 */
96
97struct vt_spawn_console vt_spawn_con = {
98 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
99 .pid = NULL,
100 .sig = 0,
101};
102
103
104/*
105 * Internal Data.
106 */
107
108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109static struct kbd_struct *kbd = kbd_table;
110
111/* maximum values each key_handler can handle */
112static const int max_vals[] = {
113 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115 255, NR_LOCK - 1, 255, NR_BRL - 1
116};
117
118static const int NR_TYPES = ARRAY_SIZE(max_vals);
119
120static struct input_handler kbd_handler;
121static DEFINE_SPINLOCK(kbd_event_lock);
122static DEFINE_SPINLOCK(led_lock);
123static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
124static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
125static bool dead_key_next;
126static int npadch = -1; /* -1 or number assembled on pad */
127static unsigned int diacr;
128static char rep; /* flag telling character repeat */
129
130static int shift_state = 0;
131
132static unsigned char ledstate = 0xff; /* undefined */
133static unsigned char ledioctl;
134
135/*
136 * Notifier list for console keyboard events
137 */
138static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
139
140int register_keyboard_notifier(struct notifier_block *nb)
141{
142 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
143}
144EXPORT_SYMBOL_GPL(register_keyboard_notifier);
145
146int unregister_keyboard_notifier(struct notifier_block *nb)
147{
148 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
149}
150EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
151
152/*
153 * Translation of scancodes to keycodes. We set them on only the first
154 * keyboard in the list that accepts the scancode and keycode.
155 * Explanation for not choosing the first attached keyboard anymore:
156 * USB keyboards for example have two event devices: one for all "normal"
157 * keys and one for extra function keys (like "volume up", "make coffee",
158 * etc.). So this means that scancodes for the extra function keys won't
159 * be valid for the first event device, but will be for the second.
160 */
161
162struct getset_keycode_data {
163 struct input_keymap_entry ke;
164 int error;
165};
166
167static int getkeycode_helper(struct input_handle *handle, void *data)
168{
169 struct getset_keycode_data *d = data;
170
171 d->error = input_get_keycode(handle->dev, &d->ke);
172
173 return d->error == 0; /* stop as soon as we successfully get one */
174}
175
176static int getkeycode(unsigned int scancode)
177{
178 struct getset_keycode_data d = {
179 .ke = {
180 .flags = 0,
181 .len = sizeof(scancode),
182 .keycode = 0,
183 },
184 .error = -ENODEV,
185 };
186
187 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
188
189 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
190
191 return d.error ?: d.ke.keycode;
192}
193
194static int setkeycode_helper(struct input_handle *handle, void *data)
195{
196 struct getset_keycode_data *d = data;
197
198 d->error = input_set_keycode(handle->dev, &d->ke);
199
200 return d->error == 0; /* stop as soon as we successfully set one */
201}
202
203static int setkeycode(unsigned int scancode, unsigned int keycode)
204{
205 struct getset_keycode_data d = {
206 .ke = {
207 .flags = 0,
208 .len = sizeof(scancode),
209 .keycode = keycode,
210 },
211 .error = -ENODEV,
212 };
213
214 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
215
216 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
217
218 return d.error;
219}
220
221/*
222 * Making beeps and bells. Note that we prefer beeps to bells, but when
223 * shutting the sound off we do both.
224 */
225
226static int kd_sound_helper(struct input_handle *handle, void *data)
227{
228 unsigned int *hz = data;
229 struct input_dev *dev = handle->dev;
230
231 if (test_bit(EV_SND, dev->evbit)) {
232 if (test_bit(SND_TONE, dev->sndbit)) {
233 input_inject_event(handle, EV_SND, SND_TONE, *hz);
234 if (*hz)
235 return 0;
236 }
237 if (test_bit(SND_BELL, dev->sndbit))
238 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
239 }
240
241 return 0;
242}
243
244static void kd_nosound(unsigned long ignored)
245{
246 static unsigned int zero;
247
248 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
249}
250
251static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
252
253void kd_mksound(unsigned int hz, unsigned int ticks)
254{
255 del_timer_sync(&kd_mksound_timer);
256
257 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
258
259 if (hz && ticks)
260 mod_timer(&kd_mksound_timer, jiffies + ticks);
261}
262EXPORT_SYMBOL(kd_mksound);
263
264/*
265 * Setting the keyboard rate.
266 */
267
268static int kbd_rate_helper(struct input_handle *handle, void *data)
269{
270 struct input_dev *dev = handle->dev;
271 struct kbd_repeat *rep = data;
272
273 if (test_bit(EV_REP, dev->evbit)) {
274
275 if (rep[0].delay > 0)
276 input_inject_event(handle,
277 EV_REP, REP_DELAY, rep[0].delay);
278 if (rep[0].period > 0)
279 input_inject_event(handle,
280 EV_REP, REP_PERIOD, rep[0].period);
281
282 rep[1].delay = dev->rep[REP_DELAY];
283 rep[1].period = dev->rep[REP_PERIOD];
284 }
285
286 return 0;
287}
288
289int kbd_rate(struct kbd_repeat *rep)
290{
291 struct kbd_repeat data[2] = { *rep };
292
293 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
294 *rep = data[1]; /* Copy currently used settings */
295
296 return 0;
297}
298
299/*
300 * Helper Functions.
301 */
302static void put_queue(struct vc_data *vc, int ch)
303{
304 tty_insert_flip_char(&vc->port, ch, 0);
305 tty_schedule_flip(&vc->port);
306}
307
308static void puts_queue(struct vc_data *vc, char *cp)
309{
310 while (*cp) {
311 tty_insert_flip_char(&vc->port, *cp, 0);
312 cp++;
313 }
314 tty_schedule_flip(&vc->port);
315}
316
317static void applkey(struct vc_data *vc, int key, char mode)
318{
319 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
320
321 buf[1] = (mode ? 'O' : '[');
322 buf[2] = key;
323 puts_queue(vc, buf);
324}
325
326/*
327 * Many other routines do put_queue, but I think either
328 * they produce ASCII, or they produce some user-assigned
329 * string, and in both cases we might assume that it is
330 * in utf-8 already.
331 */
332static void to_utf8(struct vc_data *vc, uint c)
333{
334 if (c < 0x80)
335 /* 0******* */
336 put_queue(vc, c);
337 else if (c < 0x800) {
338 /* 110***** 10****** */
339 put_queue(vc, 0xc0 | (c >> 6));
340 put_queue(vc, 0x80 | (c & 0x3f));
341 } else if (c < 0x10000) {
342 if (c >= 0xD800 && c < 0xE000)
343 return;
344 if (c == 0xFFFF)
345 return;
346 /* 1110**** 10****** 10****** */
347 put_queue(vc, 0xe0 | (c >> 12));
348 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x110000) {
351 /* 11110*** 10****** 10****** 10****** */
352 put_queue(vc, 0xf0 | (c >> 18));
353 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
354 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
355 put_queue(vc, 0x80 | (c & 0x3f));
356 }
357}
358
359/*
360 * Called after returning from RAW mode or when changing consoles - recompute
361 * shift_down[] and shift_state from key_down[] maybe called when keymap is
362 * undefined, so that shiftkey release is seen. The caller must hold the
363 * kbd_event_lock.
364 */
365
366static void do_compute_shiftstate(void)
367{
368 unsigned int i, j, k, sym, val;
369
370 shift_state = 0;
371 memset(shift_down, 0, sizeof(shift_down));
372
373 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
374
375 if (!key_down[i])
376 continue;
377
378 k = i * BITS_PER_LONG;
379
380 for (j = 0; j < BITS_PER_LONG; j++, k++) {
381
382 if (!test_bit(k, key_down))
383 continue;
384
385 sym = U(key_maps[0][k]);
386 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
387 continue;
388
389 val = KVAL(sym);
390 if (val == KVAL(K_CAPSSHIFT))
391 val = KVAL(K_SHIFT);
392
393 shift_down[val]++;
394 shift_state |= (1 << val);
395 }
396 }
397}
398
399/* We still have to export this method to vt.c */
400void compute_shiftstate(void)
401{
402 unsigned long flags;
403 spin_lock_irqsave(&kbd_event_lock, flags);
404 do_compute_shiftstate();
405 spin_unlock_irqrestore(&kbd_event_lock, flags);
406}
407
408/*
409 * We have a combining character DIACR here, followed by the character CH.
410 * If the combination occurs in the table, return the corresponding value.
411 * Otherwise, if CH is a space or equals DIACR, return DIACR.
412 * Otherwise, conclude that DIACR was not combining after all,
413 * queue it and return CH.
414 */
415static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
416{
417 unsigned int d = diacr;
418 unsigned int i;
419
420 diacr = 0;
421
422 if ((d & ~0xff) == BRL_UC_ROW) {
423 if ((ch & ~0xff) == BRL_UC_ROW)
424 return d | ch;
425 } else {
426 for (i = 0; i < accent_table_size; i++)
427 if (accent_table[i].diacr == d && accent_table[i].base == ch)
428 return accent_table[i].result;
429 }
430
431 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
432 return d;
433
434 if (kbd->kbdmode == VC_UNICODE)
435 to_utf8(vc, d);
436 else {
437 int c = conv_uni_to_8bit(d);
438 if (c != -1)
439 put_queue(vc, c);
440 }
441
442 return ch;
443}
444
445/*
446 * Special function handlers
447 */
448static void fn_enter(struct vc_data *vc)
449{
450 if (diacr) {
451 if (kbd->kbdmode == VC_UNICODE)
452 to_utf8(vc, diacr);
453 else {
454 int c = conv_uni_to_8bit(diacr);
455 if (c != -1)
456 put_queue(vc, c);
457 }
458 diacr = 0;
459 }
460
461 put_queue(vc, 13);
462 if (vc_kbd_mode(kbd, VC_CRLF))
463 put_queue(vc, 10);
464}
465
466static void fn_caps_toggle(struct vc_data *vc)
467{
468 if (rep)
469 return;
470
471 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
472}
473
474static void fn_caps_on(struct vc_data *vc)
475{
476 if (rep)
477 return;
478
479 set_vc_kbd_led(kbd, VC_CAPSLOCK);
480}
481
482static void fn_show_ptregs(struct vc_data *vc)
483{
484 struct pt_regs *regs = get_irq_regs();
485
486 if (regs)
487 show_regs(regs);
488}
489
490static void fn_hold(struct vc_data *vc)
491{
492 struct tty_struct *tty = vc->port.tty;
493
494 if (rep || !tty)
495 return;
496
497 /*
498 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
499 * these routines are also activated by ^S/^Q.
500 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
501 */
502 if (tty->stopped)
503 start_tty(tty);
504 else
505 stop_tty(tty);
506}
507
508static void fn_num(struct vc_data *vc)
509{
510 if (vc_kbd_mode(kbd, VC_APPLIC))
511 applkey(vc, 'P', 1);
512 else
513 fn_bare_num(vc);
514}
515
516/*
517 * Bind this to Shift-NumLock if you work in application keypad mode
518 * but want to be able to change the NumLock flag.
519 * Bind this to NumLock if you prefer that the NumLock key always
520 * changes the NumLock flag.
521 */
522static void fn_bare_num(struct vc_data *vc)
523{
524 if (!rep)
525 chg_vc_kbd_led(kbd, VC_NUMLOCK);
526}
527
528static void fn_lastcons(struct vc_data *vc)
529{
530 /* switch to the last used console, ChN */
531 set_console(last_console);
532}
533
534static void fn_dec_console(struct vc_data *vc)
535{
536 int i, cur = fg_console;
537
538 /* Currently switching? Queue this next switch relative to that. */
539 if (want_console != -1)
540 cur = want_console;
541
542 for (i = cur - 1; i != cur; i--) {
543 if (i == -1)
544 i = MAX_NR_CONSOLES - 1;
545 if (vc_cons_allocated(i))
546 break;
547 }
548 set_console(i);
549}
550
551static void fn_inc_console(struct vc_data *vc)
552{
553 int i, cur = fg_console;
554
555 /* Currently switching? Queue this next switch relative to that. */
556 if (want_console != -1)
557 cur = want_console;
558
559 for (i = cur+1; i != cur; i++) {
560 if (i == MAX_NR_CONSOLES)
561 i = 0;
562 if (vc_cons_allocated(i))
563 break;
564 }
565 set_console(i);
566}
567
568static void fn_send_intr(struct vc_data *vc)
569{
570 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
571 tty_schedule_flip(&vc->port);
572}
573
574static void fn_scroll_forw(struct vc_data *vc)
575{
576 scrollfront(vc, 0);
577}
578
579static void fn_scroll_back(struct vc_data *vc)
580{
581 scrollback(vc, 0);
582}
583
584static void fn_show_mem(struct vc_data *vc)
585{
586 show_mem(0);
587}
588
589static void fn_show_state(struct vc_data *vc)
590{
591 show_state();
592}
593
594static void fn_boot_it(struct vc_data *vc)
595{
596 ctrl_alt_del();
597}
598
599static void fn_compose(struct vc_data *vc)
600{
601 dead_key_next = true;
602}
603
604static void fn_spawn_con(struct vc_data *vc)
605{
606 spin_lock(&vt_spawn_con.lock);
607 if (vt_spawn_con.pid)
608 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
609 put_pid(vt_spawn_con.pid);
610 vt_spawn_con.pid = NULL;
611 }
612 spin_unlock(&vt_spawn_con.lock);
613}
614
615static void fn_SAK(struct vc_data *vc)
616{
617 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
618 schedule_work(SAK_work);
619}
620
621static void fn_null(struct vc_data *vc)
622{
623 do_compute_shiftstate();
624}
625
626/*
627 * Special key handlers
628 */
629static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
630{
631}
632
633static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
634{
635 if (up_flag)
636 return;
637 if (value >= ARRAY_SIZE(fn_handler))
638 return;
639 if ((kbd->kbdmode == VC_RAW ||
640 kbd->kbdmode == VC_MEDIUMRAW ||
641 kbd->kbdmode == VC_OFF) &&
642 value != KVAL(K_SAK))
643 return; /* SAK is allowed even in raw mode */
644 fn_handler[value](vc);
645}
646
647static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
648{
649 pr_err("k_lowercase was called - impossible\n");
650}
651
652static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
653{
654 if (up_flag)
655 return; /* no action, if this is a key release */
656
657 if (diacr)
658 value = handle_diacr(vc, value);
659
660 if (dead_key_next) {
661 dead_key_next = false;
662 diacr = value;
663 return;
664 }
665 if (kbd->kbdmode == VC_UNICODE)
666 to_utf8(vc, value);
667 else {
668 int c = conv_uni_to_8bit(value);
669 if (c != -1)
670 put_queue(vc, c);
671 }
672}
673
674/*
675 * Handle dead key. Note that we now may have several
676 * dead keys modifying the same character. Very useful
677 * for Vietnamese.
678 */
679static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
680{
681 if (up_flag)
682 return;
683
684 diacr = (diacr ? handle_diacr(vc, value) : value);
685}
686
687static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
688{
689 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
690}
691
692static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
693{
694 k_deadunicode(vc, value, up_flag);
695}
696
697/*
698 * Obsolete - for backwards compatibility only
699 */
700static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
701{
702 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
703
704 k_deadunicode(vc, ret_diacr[value], up_flag);
705}
706
707static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
708{
709 if (up_flag)
710 return;
711
712 set_console(value);
713}
714
715static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 if (up_flag)
718 return;
719
720 if ((unsigned)value < ARRAY_SIZE(func_table)) {
721 if (func_table[value])
722 puts_queue(vc, func_table[value]);
723 } else
724 pr_err("k_fn called with value=%d\n", value);
725}
726
727static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
728{
729 static const char cur_chars[] = "BDCA";
730
731 if (up_flag)
732 return;
733
734 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
735}
736
737static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
738{
739 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
740 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
741
742 if (up_flag)
743 return; /* no action, if this is a key release */
744
745 /* kludge... shift forces cursor/number keys */
746 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
747 applkey(vc, app_map[value], 1);
748 return;
749 }
750
751 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
752
753 switch (value) {
754 case KVAL(K_PCOMMA):
755 case KVAL(K_PDOT):
756 k_fn(vc, KVAL(K_REMOVE), 0);
757 return;
758 case KVAL(K_P0):
759 k_fn(vc, KVAL(K_INSERT), 0);
760 return;
761 case KVAL(K_P1):
762 k_fn(vc, KVAL(K_SELECT), 0);
763 return;
764 case KVAL(K_P2):
765 k_cur(vc, KVAL(K_DOWN), 0);
766 return;
767 case KVAL(K_P3):
768 k_fn(vc, KVAL(K_PGDN), 0);
769 return;
770 case KVAL(K_P4):
771 k_cur(vc, KVAL(K_LEFT), 0);
772 return;
773 case KVAL(K_P6):
774 k_cur(vc, KVAL(K_RIGHT), 0);
775 return;
776 case KVAL(K_P7):
777 k_fn(vc, KVAL(K_FIND), 0);
778 return;
779 case KVAL(K_P8):
780 k_cur(vc, KVAL(K_UP), 0);
781 return;
782 case KVAL(K_P9):
783 k_fn(vc, KVAL(K_PGUP), 0);
784 return;
785 case KVAL(K_P5):
786 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
787 return;
788 }
789 }
790
791 put_queue(vc, pad_chars[value]);
792 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
793 put_queue(vc, 10);
794}
795
796static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
797{
798 int old_state = shift_state;
799
800 if (rep)
801 return;
802 /*
803 * Mimic typewriter:
804 * a CapsShift key acts like Shift but undoes CapsLock
805 */
806 if (value == KVAL(K_CAPSSHIFT)) {
807 value = KVAL(K_SHIFT);
808 if (!up_flag)
809 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
810 }
811
812 if (up_flag) {
813 /*
814 * handle the case that two shift or control
815 * keys are depressed simultaneously
816 */
817 if (shift_down[value])
818 shift_down[value]--;
819 } else
820 shift_down[value]++;
821
822 if (shift_down[value])
823 shift_state |= (1 << value);
824 else
825 shift_state &= ~(1 << value);
826
827 /* kludge */
828 if (up_flag && shift_state != old_state && npadch != -1) {
829 if (kbd->kbdmode == VC_UNICODE)
830 to_utf8(vc, npadch);
831 else
832 put_queue(vc, npadch & 0xff);
833 npadch = -1;
834 }
835}
836
837static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
838{
839 if (up_flag)
840 return;
841
842 if (vc_kbd_mode(kbd, VC_META)) {
843 put_queue(vc, '\033');
844 put_queue(vc, value);
845 } else
846 put_queue(vc, value | 0x80);
847}
848
849static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
850{
851 int base;
852
853 if (up_flag)
854 return;
855
856 if (value < 10) {
857 /* decimal input of code, while Alt depressed */
858 base = 10;
859 } else {
860 /* hexadecimal input of code, while AltGr depressed */
861 value -= 10;
862 base = 16;
863 }
864
865 if (npadch == -1)
866 npadch = value;
867 else
868 npadch = npadch * base + value;
869}
870
871static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
872{
873 if (up_flag || rep)
874 return;
875
876 chg_vc_kbd_lock(kbd, value);
877}
878
879static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
880{
881 k_shift(vc, value, up_flag);
882 if (up_flag || rep)
883 return;
884
885 chg_vc_kbd_slock(kbd, value);
886 /* try to make Alt, oops, AltGr and such work */
887 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
888 kbd->slockstate = 0;
889 chg_vc_kbd_slock(kbd, value);
890 }
891}
892
893/* by default, 300ms interval for combination release */
894static unsigned brl_timeout = 300;
895MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
896module_param(brl_timeout, uint, 0644);
897
898static unsigned brl_nbchords = 1;
899MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
900module_param(brl_nbchords, uint, 0644);
901
902static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
903{
904 static unsigned long chords;
905 static unsigned committed;
906
907 if (!brl_nbchords)
908 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
909 else {
910 committed |= pattern;
911 chords++;
912 if (chords == brl_nbchords) {
913 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
914 chords = 0;
915 committed = 0;
916 }
917 }
918}
919
920static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
921{
922 static unsigned pressed, committing;
923 static unsigned long releasestart;
924
925 if (kbd->kbdmode != VC_UNICODE) {
926 if (!up_flag)
927 pr_warning("keyboard mode must be unicode for braille patterns\n");
928 return;
929 }
930
931 if (!value) {
932 k_unicode(vc, BRL_UC_ROW, up_flag);
933 return;
934 }
935
936 if (value > 8)
937 return;
938
939 if (!up_flag) {
940 pressed |= 1 << (value - 1);
941 if (!brl_timeout)
942 committing = pressed;
943 } else if (brl_timeout) {
944 if (!committing ||
945 time_after(jiffies,
946 releasestart + msecs_to_jiffies(brl_timeout))) {
947 committing = pressed;
948 releasestart = jiffies;
949 }
950 pressed &= ~(1 << (value - 1));
951 if (!pressed && committing) {
952 k_brlcommit(vc, committing, 0);
953 committing = 0;
954 }
955 } else {
956 if (committing) {
957 k_brlcommit(vc, committing, 0);
958 committing = 0;
959 }
960 pressed &= ~(1 << (value - 1));
961 }
962}
963
964/*
965 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
966 * or (ii) whatever pattern of lights people want to show using KDSETLED,
967 * or (iii) specified bits of specified words in kernel memory.
968 */
969static unsigned char getledstate(void)
970{
971 return ledstate;
972}
973
974void setledstate(struct kbd_struct *kbd, unsigned int led)
975{
976 unsigned long flags;
977 spin_lock_irqsave(&led_lock, flags);
978 if (!(led & ~7)) {
979 ledioctl = led;
980 kbd->ledmode = LED_SHOW_IOCTL;
981 } else
982 kbd->ledmode = LED_SHOW_FLAGS;
983
984 set_leds();
985 spin_unlock_irqrestore(&led_lock, flags);
986}
987
988static inline unsigned char getleds(void)
989{
990 struct kbd_struct *kbd = kbd_table + fg_console;
991
992 if (kbd->ledmode == LED_SHOW_IOCTL)
993 return ledioctl;
994
995 return kbd->ledflagstate;
996}
997
998static int kbd_update_leds_helper(struct input_handle *handle, void *data)
999{
1000 unsigned char leds = *(unsigned char *)data;
1001
1002 if (test_bit(EV_LED, handle->dev->evbit)) {
1003 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1004 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1005 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1006 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1007 }
1008
1009 return 0;
1010}
1011
1012/**
1013 * vt_get_leds - helper for braille console
1014 * @console: console to read
1015 * @flag: flag we want to check
1016 *
1017 * Check the status of a keyboard led flag and report it back
1018 */
1019int vt_get_leds(int console, int flag)
1020{
1021 struct kbd_struct * kbd = kbd_table + console;
1022 int ret;
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&led_lock, flags);
1026 ret = vc_kbd_led(kbd, flag);
1027 spin_unlock_irqrestore(&led_lock, flags);
1028
1029 return ret;
1030}
1031EXPORT_SYMBOL_GPL(vt_get_leds);
1032
1033/**
1034 * vt_set_led_state - set LED state of a console
1035 * @console: console to set
1036 * @leds: LED bits
1037 *
1038 * Set the LEDs on a console. This is a wrapper for the VT layer
1039 * so that we can keep kbd knowledge internal
1040 */
1041void vt_set_led_state(int console, int leds)
1042{
1043 struct kbd_struct * kbd = kbd_table + console;
1044 setledstate(kbd, leds);
1045}
1046
1047/**
1048 * vt_kbd_con_start - Keyboard side of console start
1049 * @console: console
1050 *
1051 * Handle console start. This is a wrapper for the VT layer
1052 * so that we can keep kbd knowledge internal
1053 *
1054 * FIXME: We eventually need to hold the kbd lock here to protect
1055 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1056 * and start_tty under the kbd_event_lock, while normal tty paths
1057 * don't hold the lock. We probably need to split out an LED lock
1058 * but not during an -rc release!
1059 */
1060void vt_kbd_con_start(int console)
1061{
1062 struct kbd_struct * kbd = kbd_table + console;
1063 unsigned long flags;
1064 spin_lock_irqsave(&led_lock, flags);
1065 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1066 set_leds();
1067 spin_unlock_irqrestore(&led_lock, flags);
1068}
1069
1070/**
1071 * vt_kbd_con_stop - Keyboard side of console stop
1072 * @console: console
1073 *
1074 * Handle console stop. This is a wrapper for the VT layer
1075 * so that we can keep kbd knowledge internal
1076 */
1077void vt_kbd_con_stop(int console)
1078{
1079 struct kbd_struct * kbd = kbd_table + console;
1080 unsigned long flags;
1081 spin_lock_irqsave(&led_lock, flags);
1082 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1083 set_leds();
1084 spin_unlock_irqrestore(&led_lock, flags);
1085}
1086
1087/*
1088 * This is the tasklet that updates LED state on all keyboards
1089 * attached to the box. The reason we use tasklet is that we
1090 * need to handle the scenario when keyboard handler is not
1091 * registered yet but we already getting updates from the VT to
1092 * update led state.
1093 */
1094static void kbd_bh(unsigned long dummy)
1095{
1096 unsigned char leds;
1097 unsigned long flags;
1098
1099 spin_lock_irqsave(&led_lock, flags);
1100 leds = getleds();
1101 spin_unlock_irqrestore(&led_lock, flags);
1102
1103 if (leds != ledstate) {
1104 input_handler_for_each_handle(&kbd_handler, &leds,
1105 kbd_update_leds_helper);
1106 ledstate = leds;
1107 }
1108}
1109
1110DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1111
1112#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1113 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1114 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1115 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1116 defined(CONFIG_AVR32)
1117
1118#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1119 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1120
1121static const unsigned short x86_keycodes[256] =
1122 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1123 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1124 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1125 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1126 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1127 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1128 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1129 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1130 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1131 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1132 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1133 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1134 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1135 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1136 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1137
1138#ifdef CONFIG_SPARC
1139static int sparc_l1_a_state;
1140extern void sun_do_break(void);
1141#endif
1142
1143static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1144 unsigned char up_flag)
1145{
1146 int code;
1147
1148 switch (keycode) {
1149
1150 case KEY_PAUSE:
1151 put_queue(vc, 0xe1);
1152 put_queue(vc, 0x1d | up_flag);
1153 put_queue(vc, 0x45 | up_flag);
1154 break;
1155
1156 case KEY_HANGEUL:
1157 if (!up_flag)
1158 put_queue(vc, 0xf2);
1159 break;
1160
1161 case KEY_HANJA:
1162 if (!up_flag)
1163 put_queue(vc, 0xf1);
1164 break;
1165
1166 case KEY_SYSRQ:
1167 /*
1168 * Real AT keyboards (that's what we're trying
1169 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1170 * pressing PrtSc/SysRq alone, but simply 0x54
1171 * when pressing Alt+PrtSc/SysRq.
1172 */
1173 if (test_bit(KEY_LEFTALT, key_down) ||
1174 test_bit(KEY_RIGHTALT, key_down)) {
1175 put_queue(vc, 0x54 | up_flag);
1176 } else {
1177 put_queue(vc, 0xe0);
1178 put_queue(vc, 0x2a | up_flag);
1179 put_queue(vc, 0xe0);
1180 put_queue(vc, 0x37 | up_flag);
1181 }
1182 break;
1183
1184 default:
1185 if (keycode > 255)
1186 return -1;
1187
1188 code = x86_keycodes[keycode];
1189 if (!code)
1190 return -1;
1191
1192 if (code & 0x100)
1193 put_queue(vc, 0xe0);
1194 put_queue(vc, (code & 0x7f) | up_flag);
1195
1196 break;
1197 }
1198
1199 return 0;
1200}
1201
1202#else
1203
1204#define HW_RAW(dev) 0
1205
1206static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1207{
1208 if (keycode > 127)
1209 return -1;
1210
1211 put_queue(vc, keycode | up_flag);
1212 return 0;
1213}
1214#endif
1215
1216static void kbd_rawcode(unsigned char data)
1217{
1218 struct vc_data *vc = vc_cons[fg_console].d;
1219
1220 kbd = kbd_table + vc->vc_num;
1221 if (kbd->kbdmode == VC_RAW)
1222 put_queue(vc, data);
1223}
1224
1225static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1226{
1227 struct vc_data *vc = vc_cons[fg_console].d;
1228 unsigned short keysym, *key_map;
1229 unsigned char type;
1230 bool raw_mode;
1231 struct tty_struct *tty;
1232 int shift_final;
1233 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1234 int rc;
1235
1236 tty = vc->port.tty;
1237
1238 if (tty && (!tty->driver_data)) {
1239 /* No driver data? Strange. Okay we fix it then. */
1240 tty->driver_data = vc;
1241 }
1242
1243 kbd = kbd_table + vc->vc_num;
1244
1245#ifdef CONFIG_SPARC
1246 if (keycode == KEY_STOP)
1247 sparc_l1_a_state = down;
1248#endif
1249
1250 rep = (down == 2);
1251
1252 raw_mode = (kbd->kbdmode == VC_RAW);
1253 if (raw_mode && !hw_raw)
1254 if (emulate_raw(vc, keycode, !down << 7))
1255 if (keycode < BTN_MISC && printk_ratelimit())
1256 pr_warning("can't emulate rawmode for keycode %d\n",
1257 keycode);
1258
1259#ifdef CONFIG_SPARC
1260 if (keycode == KEY_A && sparc_l1_a_state) {
1261 sparc_l1_a_state = false;
1262 sun_do_break();
1263 }
1264#endif
1265
1266 if (kbd->kbdmode == VC_MEDIUMRAW) {
1267 /*
1268 * This is extended medium raw mode, with keys above 127
1269 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1270 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1271 * interfere with anything else. The two bytes after 0 will
1272 * always have the up flag set not to interfere with older
1273 * applications. This allows for 16384 different keycodes,
1274 * which should be enough.
1275 */
1276 if (keycode < 128) {
1277 put_queue(vc, keycode | (!down << 7));
1278 } else {
1279 put_queue(vc, !down << 7);
1280 put_queue(vc, (keycode >> 7) | 0x80);
1281 put_queue(vc, keycode | 0x80);
1282 }
1283 raw_mode = true;
1284 }
1285
1286 if (down)
1287 set_bit(keycode, key_down);
1288 else
1289 clear_bit(keycode, key_down);
1290
1291 if (rep &&
1292 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1293 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1294 /*
1295 * Don't repeat a key if the input buffers are not empty and the
1296 * characters get aren't echoed locally. This makes key repeat
1297 * usable with slow applications and under heavy loads.
1298 */
1299 return;
1300 }
1301
1302 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1303 param.ledstate = kbd->ledflagstate;
1304 key_map = key_maps[shift_final];
1305
1306 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1307 KBD_KEYCODE, ¶m);
1308 if (rc == NOTIFY_STOP || !key_map) {
1309 atomic_notifier_call_chain(&keyboard_notifier_list,
1310 KBD_UNBOUND_KEYCODE, ¶m);
1311 do_compute_shiftstate();
1312 kbd->slockstate = 0;
1313 return;
1314 }
1315
1316 if (keycode < NR_KEYS)
1317 keysym = key_map[keycode];
1318 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1319 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1320 else
1321 return;
1322
1323 type = KTYP(keysym);
1324
1325 if (type < 0xf0) {
1326 param.value = keysym;
1327 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1328 KBD_UNICODE, ¶m);
1329 if (rc != NOTIFY_STOP)
1330 if (down && !raw_mode)
1331 to_utf8(vc, keysym);
1332 return;
1333 }
1334
1335 type -= 0xf0;
1336
1337 if (type == KT_LETTER) {
1338 type = KT_LATIN;
1339 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1340 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1341 if (key_map)
1342 keysym = key_map[keycode];
1343 }
1344 }
1345
1346 param.value = keysym;
1347 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1348 KBD_KEYSYM, ¶m);
1349 if (rc == NOTIFY_STOP)
1350 return;
1351
1352 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1353 return;
1354
1355 (*k_handler[type])(vc, keysym & 0xff, !down);
1356
1357 param.ledstate = kbd->ledflagstate;
1358 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1359
1360 if (type != KT_SLOCK)
1361 kbd->slockstate = 0;
1362}
1363
1364static void kbd_event(struct input_handle *handle, unsigned int event_type,
1365 unsigned int event_code, int value)
1366{
1367 /* We are called with interrupts disabled, just take the lock */
1368 spin_lock(&kbd_event_lock);
1369
1370 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1371 kbd_rawcode(value);
1372 if (event_type == EV_KEY)
1373 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1374
1375 spin_unlock(&kbd_event_lock);
1376
1377 tasklet_schedule(&keyboard_tasklet);
1378 do_poke_blanked_console = 1;
1379 schedule_console_callback();
1380}
1381
1382static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1383{
1384 int i;
1385
1386 if (test_bit(EV_SND, dev->evbit))
1387 return true;
1388
1389 if (test_bit(EV_KEY, dev->evbit)) {
1390 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1391 if (test_bit(i, dev->keybit))
1392 return true;
1393 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1394 if (test_bit(i, dev->keybit))
1395 return true;
1396 }
1397
1398 return false;
1399}
1400
1401/*
1402 * When a keyboard (or other input device) is found, the kbd_connect
1403 * function is called. The function then looks at the device, and if it
1404 * likes it, it can open it and get events from it. In this (kbd_connect)
1405 * function, we should decide which VT to bind that keyboard to initially.
1406 */
1407static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1408 const struct input_device_id *id)
1409{
1410 struct input_handle *handle;
1411 int error;
1412
1413 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1414 if (!handle)
1415 return -ENOMEM;
1416
1417 handle->dev = dev;
1418 handle->handler = handler;
1419 handle->name = "kbd";
1420
1421 error = input_register_handle(handle);
1422 if (error)
1423 goto err_free_handle;
1424
1425 error = input_open_device(handle);
1426 if (error)
1427 goto err_unregister_handle;
1428
1429 return 0;
1430
1431 err_unregister_handle:
1432 input_unregister_handle(handle);
1433 err_free_handle:
1434 kfree(handle);
1435 return error;
1436}
1437
1438static void kbd_disconnect(struct input_handle *handle)
1439{
1440 input_close_device(handle);
1441 input_unregister_handle(handle);
1442 kfree(handle);
1443}
1444
1445/*
1446 * Start keyboard handler on the new keyboard by refreshing LED state to
1447 * match the rest of the system.
1448 */
1449static void kbd_start(struct input_handle *handle)
1450{
1451 tasklet_disable(&keyboard_tasklet);
1452
1453 if (ledstate != 0xff)
1454 kbd_update_leds_helper(handle, &ledstate);
1455
1456 tasklet_enable(&keyboard_tasklet);
1457}
1458
1459static const struct input_device_id kbd_ids[] = {
1460 {
1461 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1462 .evbit = { BIT_MASK(EV_KEY) },
1463 },
1464
1465 {
1466 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1467 .evbit = { BIT_MASK(EV_SND) },
1468 },
1469
1470 { }, /* Terminating entry */
1471};
1472
1473MODULE_DEVICE_TABLE(input, kbd_ids);
1474
1475static struct input_handler kbd_handler = {
1476 .event = kbd_event,
1477 .match = kbd_match,
1478 .connect = kbd_connect,
1479 .disconnect = kbd_disconnect,
1480 .start = kbd_start,
1481 .name = "kbd",
1482 .id_table = kbd_ids,
1483};
1484
1485int __init kbd_init(void)
1486{
1487 int i;
1488 int error;
1489
1490 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1491 kbd_table[i].ledflagstate = kbd_defleds();
1492 kbd_table[i].default_ledflagstate = kbd_defleds();
1493 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1494 kbd_table[i].lockstate = KBD_DEFLOCK;
1495 kbd_table[i].slockstate = 0;
1496 kbd_table[i].modeflags = KBD_DEFMODE;
1497 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1498 }
1499
1500 error = input_register_handler(&kbd_handler);
1501 if (error)
1502 return error;
1503
1504 tasklet_enable(&keyboard_tasklet);
1505 tasklet_schedule(&keyboard_tasklet);
1506
1507 return 0;
1508}
1509
1510/* Ioctl support code */
1511
1512/**
1513 * vt_do_diacrit - diacritical table updates
1514 * @cmd: ioctl request
1515 * @up: pointer to user data for ioctl
1516 * @perm: permissions check computed by caller
1517 *
1518 * Update the diacritical tables atomically and safely. Lock them
1519 * against simultaneous keypresses
1520 */
1521int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1522{
1523 struct kbdiacrs __user *a = up;
1524 unsigned long flags;
1525 int asize;
1526 int ret = 0;
1527
1528 switch (cmd) {
1529 case KDGKBDIACR:
1530 {
1531 struct kbdiacr *diacr;
1532 int i;
1533
1534 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1535 GFP_KERNEL);
1536 if (diacr == NULL)
1537 return -ENOMEM;
1538
1539 /* Lock the diacriticals table, make a copy and then
1540 copy it after we unlock */
1541 spin_lock_irqsave(&kbd_event_lock, flags);
1542
1543 asize = accent_table_size;
1544 for (i = 0; i < asize; i++) {
1545 diacr[i].diacr = conv_uni_to_8bit(
1546 accent_table[i].diacr);
1547 diacr[i].base = conv_uni_to_8bit(
1548 accent_table[i].base);
1549 diacr[i].result = conv_uni_to_8bit(
1550 accent_table[i].result);
1551 }
1552 spin_unlock_irqrestore(&kbd_event_lock, flags);
1553
1554 if (put_user(asize, &a->kb_cnt))
1555 ret = -EFAULT;
1556 else if (copy_to_user(a->kbdiacr, diacr,
1557 asize * sizeof(struct kbdiacr)))
1558 ret = -EFAULT;
1559 kfree(diacr);
1560 return ret;
1561 }
1562 case KDGKBDIACRUC:
1563 {
1564 struct kbdiacrsuc __user *a = up;
1565 void *buf;
1566
1567 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1568 GFP_KERNEL);
1569 if (buf == NULL)
1570 return -ENOMEM;
1571
1572 /* Lock the diacriticals table, make a copy and then
1573 copy it after we unlock */
1574 spin_lock_irqsave(&kbd_event_lock, flags);
1575
1576 asize = accent_table_size;
1577 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1578
1579 spin_unlock_irqrestore(&kbd_event_lock, flags);
1580
1581 if (put_user(asize, &a->kb_cnt))
1582 ret = -EFAULT;
1583 else if (copy_to_user(a->kbdiacruc, buf,
1584 asize*sizeof(struct kbdiacruc)))
1585 ret = -EFAULT;
1586 kfree(buf);
1587 return ret;
1588 }
1589
1590 case KDSKBDIACR:
1591 {
1592 struct kbdiacrs __user *a = up;
1593 struct kbdiacr *diacr = NULL;
1594 unsigned int ct;
1595 int i;
1596
1597 if (!perm)
1598 return -EPERM;
1599 if (get_user(ct, &a->kb_cnt))
1600 return -EFAULT;
1601 if (ct >= MAX_DIACR)
1602 return -EINVAL;
1603
1604 if (ct) {
1605 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1606 GFP_KERNEL);
1607 if (diacr == NULL)
1608 return -ENOMEM;
1609
1610 if (copy_from_user(diacr, a->kbdiacr,
1611 sizeof(struct kbdiacr) * ct)) {
1612 kfree(diacr);
1613 return -EFAULT;
1614 }
1615 }
1616
1617 spin_lock_irqsave(&kbd_event_lock, flags);
1618 accent_table_size = ct;
1619 for (i = 0; i < ct; i++) {
1620 accent_table[i].diacr =
1621 conv_8bit_to_uni(diacr[i].diacr);
1622 accent_table[i].base =
1623 conv_8bit_to_uni(diacr[i].base);
1624 accent_table[i].result =
1625 conv_8bit_to_uni(diacr[i].result);
1626 }
1627 spin_unlock_irqrestore(&kbd_event_lock, flags);
1628 kfree(diacr);
1629 return 0;
1630 }
1631
1632 case KDSKBDIACRUC:
1633 {
1634 struct kbdiacrsuc __user *a = up;
1635 unsigned int ct;
1636 void *buf = NULL;
1637
1638 if (!perm)
1639 return -EPERM;
1640
1641 if (get_user(ct, &a->kb_cnt))
1642 return -EFAULT;
1643
1644 if (ct >= MAX_DIACR)
1645 return -EINVAL;
1646
1647 if (ct) {
1648 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1649 GFP_KERNEL);
1650 if (buf == NULL)
1651 return -ENOMEM;
1652
1653 if (copy_from_user(buf, a->kbdiacruc,
1654 ct * sizeof(struct kbdiacruc))) {
1655 kfree(buf);
1656 return -EFAULT;
1657 }
1658 }
1659 spin_lock_irqsave(&kbd_event_lock, flags);
1660 if (ct)
1661 memcpy(accent_table, buf,
1662 ct * sizeof(struct kbdiacruc));
1663 accent_table_size = ct;
1664 spin_unlock_irqrestore(&kbd_event_lock, flags);
1665 kfree(buf);
1666 return 0;
1667 }
1668 }
1669 return ret;
1670}
1671
1672/**
1673 * vt_do_kdskbmode - set keyboard mode ioctl
1674 * @console: the console to use
1675 * @arg: the requested mode
1676 *
1677 * Update the keyboard mode bits while holding the correct locks.
1678 * Return 0 for success or an error code.
1679 */
1680int vt_do_kdskbmode(int console, unsigned int arg)
1681{
1682 struct kbd_struct * kbd = kbd_table + console;
1683 int ret = 0;
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&kbd_event_lock, flags);
1687 switch(arg) {
1688 case K_RAW:
1689 kbd->kbdmode = VC_RAW;
1690 break;
1691 case K_MEDIUMRAW:
1692 kbd->kbdmode = VC_MEDIUMRAW;
1693 break;
1694 case K_XLATE:
1695 kbd->kbdmode = VC_XLATE;
1696 do_compute_shiftstate();
1697 break;
1698 case K_UNICODE:
1699 kbd->kbdmode = VC_UNICODE;
1700 do_compute_shiftstate();
1701 break;
1702 case K_OFF:
1703 kbd->kbdmode = VC_OFF;
1704 break;
1705 default:
1706 ret = -EINVAL;
1707 }
1708 spin_unlock_irqrestore(&kbd_event_lock, flags);
1709 return ret;
1710}
1711
1712/**
1713 * vt_do_kdskbmeta - set keyboard meta state
1714 * @console: the console to use
1715 * @arg: the requested meta state
1716 *
1717 * Update the keyboard meta bits while holding the correct locks.
1718 * Return 0 for success or an error code.
1719 */
1720int vt_do_kdskbmeta(int console, unsigned int arg)
1721{
1722 struct kbd_struct * kbd = kbd_table + console;
1723 int ret = 0;
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&kbd_event_lock, flags);
1727 switch(arg) {
1728 case K_METABIT:
1729 clr_vc_kbd_mode(kbd, VC_META);
1730 break;
1731 case K_ESCPREFIX:
1732 set_vc_kbd_mode(kbd, VC_META);
1733 break;
1734 default:
1735 ret = -EINVAL;
1736 }
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738 return ret;
1739}
1740
1741int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1742 int perm)
1743{
1744 struct kbkeycode tmp;
1745 int kc = 0;
1746
1747 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1748 return -EFAULT;
1749 switch (cmd) {
1750 case KDGETKEYCODE:
1751 kc = getkeycode(tmp.scancode);
1752 if (kc >= 0)
1753 kc = put_user(kc, &user_kbkc->keycode);
1754 break;
1755 case KDSETKEYCODE:
1756 if (!perm)
1757 return -EPERM;
1758 kc = setkeycode(tmp.scancode, tmp.keycode);
1759 break;
1760 }
1761 return kc;
1762}
1763
1764#define i (tmp.kb_index)
1765#define s (tmp.kb_table)
1766#define v (tmp.kb_value)
1767
1768int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1769 int console)
1770{
1771 struct kbd_struct * kbd = kbd_table + console;
1772 struct kbentry tmp;
1773 ushort *key_map, *new_map, val, ov;
1774 unsigned long flags;
1775
1776 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1777 return -EFAULT;
1778
1779 if (!capable(CAP_SYS_TTY_CONFIG))
1780 perm = 0;
1781
1782 switch (cmd) {
1783 case KDGKBENT:
1784 /* Ensure another thread doesn't free it under us */
1785 spin_lock_irqsave(&kbd_event_lock, flags);
1786 key_map = key_maps[s];
1787 if (key_map) {
1788 val = U(key_map[i]);
1789 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1790 val = K_HOLE;
1791 } else
1792 val = (i ? K_HOLE : K_NOSUCHMAP);
1793 spin_unlock_irqrestore(&kbd_event_lock, flags);
1794 return put_user(val, &user_kbe->kb_value);
1795 case KDSKBENT:
1796 if (!perm)
1797 return -EPERM;
1798 if (!i && v == K_NOSUCHMAP) {
1799 spin_lock_irqsave(&kbd_event_lock, flags);
1800 /* deallocate map */
1801 key_map = key_maps[s];
1802 if (s && key_map) {
1803 key_maps[s] = NULL;
1804 if (key_map[0] == U(K_ALLOCATED)) {
1805 kfree(key_map);
1806 keymap_count--;
1807 }
1808 }
1809 spin_unlock_irqrestore(&kbd_event_lock, flags);
1810 break;
1811 }
1812
1813 if (KTYP(v) < NR_TYPES) {
1814 if (KVAL(v) > max_vals[KTYP(v)])
1815 return -EINVAL;
1816 } else
1817 if (kbd->kbdmode != VC_UNICODE)
1818 return -EINVAL;
1819
1820 /* ++Geert: non-PC keyboards may generate keycode zero */
1821#if !defined(__mc68000__) && !defined(__powerpc__)
1822 /* assignment to entry 0 only tests validity of args */
1823 if (!i)
1824 break;
1825#endif
1826
1827 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1828 if (!new_map)
1829 return -ENOMEM;
1830 spin_lock_irqsave(&kbd_event_lock, flags);
1831 key_map = key_maps[s];
1832 if (key_map == NULL) {
1833 int j;
1834
1835 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1836 !capable(CAP_SYS_RESOURCE)) {
1837 spin_unlock_irqrestore(&kbd_event_lock, flags);
1838 kfree(new_map);
1839 return -EPERM;
1840 }
1841 key_maps[s] = new_map;
1842 key_map = new_map;
1843 key_map[0] = U(K_ALLOCATED);
1844 for (j = 1; j < NR_KEYS; j++)
1845 key_map[j] = U(K_HOLE);
1846 keymap_count++;
1847 } else
1848 kfree(new_map);
1849
1850 ov = U(key_map[i]);
1851 if (v == ov)
1852 goto out;
1853 /*
1854 * Attention Key.
1855 */
1856 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1857 spin_unlock_irqrestore(&kbd_event_lock, flags);
1858 return -EPERM;
1859 }
1860 key_map[i] = U(v);
1861 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1862 do_compute_shiftstate();
1863out:
1864 spin_unlock_irqrestore(&kbd_event_lock, flags);
1865 break;
1866 }
1867 return 0;
1868}
1869#undef i
1870#undef s
1871#undef v
1872
1873/* FIXME: This one needs untangling and locking */
1874int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1875{
1876 struct kbsentry *kbs;
1877 char *p;
1878 u_char *q;
1879 u_char __user *up;
1880 int sz;
1881 int delta;
1882 char *first_free, *fj, *fnw;
1883 int i, j, k;
1884 int ret;
1885
1886 if (!capable(CAP_SYS_TTY_CONFIG))
1887 perm = 0;
1888
1889 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1890 if (!kbs) {
1891 ret = -ENOMEM;
1892 goto reterr;
1893 }
1894
1895 /* we mostly copy too much here (512bytes), but who cares ;) */
1896 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1897 ret = -EFAULT;
1898 goto reterr;
1899 }
1900 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1901 i = kbs->kb_func;
1902
1903 switch (cmd) {
1904 case KDGKBSENT:
1905 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1906 a struct member */
1907 up = user_kdgkb->kb_string;
1908 p = func_table[i];
1909 if(p)
1910 for ( ; *p && sz; p++, sz--)
1911 if (put_user(*p, up++)) {
1912 ret = -EFAULT;
1913 goto reterr;
1914 }
1915 if (put_user('\0', up)) {
1916 ret = -EFAULT;
1917 goto reterr;
1918 }
1919 kfree(kbs);
1920 return ((p && *p) ? -EOVERFLOW : 0);
1921 case KDSKBSENT:
1922 if (!perm) {
1923 ret = -EPERM;
1924 goto reterr;
1925 }
1926
1927 q = func_table[i];
1928 first_free = funcbufptr + (funcbufsize - funcbufleft);
1929 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1930 ;
1931 if (j < MAX_NR_FUNC)
1932 fj = func_table[j];
1933 else
1934 fj = first_free;
1935
1936 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1937 if (delta <= funcbufleft) { /* it fits in current buf */
1938 if (j < MAX_NR_FUNC) {
1939 memmove(fj + delta, fj, first_free - fj);
1940 for (k = j; k < MAX_NR_FUNC; k++)
1941 if (func_table[k])
1942 func_table[k] += delta;
1943 }
1944 if (!q)
1945 func_table[i] = fj;
1946 funcbufleft -= delta;
1947 } else { /* allocate a larger buffer */
1948 sz = 256;
1949 while (sz < funcbufsize - funcbufleft + delta)
1950 sz <<= 1;
1951 fnw = kmalloc(sz, GFP_KERNEL);
1952 if(!fnw) {
1953 ret = -ENOMEM;
1954 goto reterr;
1955 }
1956
1957 if (!q)
1958 func_table[i] = fj;
1959 if (fj > funcbufptr)
1960 memmove(fnw, funcbufptr, fj - funcbufptr);
1961 for (k = 0; k < j; k++)
1962 if (func_table[k])
1963 func_table[k] = fnw + (func_table[k] - funcbufptr);
1964
1965 if (first_free > fj) {
1966 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1967 for (k = j; k < MAX_NR_FUNC; k++)
1968 if (func_table[k])
1969 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1970 }
1971 if (funcbufptr != func_buf)
1972 kfree(funcbufptr);
1973 funcbufptr = fnw;
1974 funcbufleft = funcbufleft - delta + sz - funcbufsize;
1975 funcbufsize = sz;
1976 }
1977 strcpy(func_table[i], kbs->kb_string);
1978 break;
1979 }
1980 ret = 0;
1981reterr:
1982 kfree(kbs);
1983 return ret;
1984}
1985
1986int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
1987{
1988 struct kbd_struct * kbd = kbd_table + console;
1989 unsigned long flags;
1990 unsigned char ucval;
1991
1992 switch(cmd) {
1993 /* the ioctls below read/set the flags usually shown in the leds */
1994 /* don't use them - they will go away without warning */
1995 case KDGKBLED:
1996 spin_lock_irqsave(&kbd_event_lock, flags);
1997 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
1998 spin_unlock_irqrestore(&kbd_event_lock, flags);
1999 return put_user(ucval, (char __user *)arg);
2000
2001 case KDSKBLED:
2002 if (!perm)
2003 return -EPERM;
2004 if (arg & ~0x77)
2005 return -EINVAL;
2006 spin_lock_irqsave(&led_lock, flags);
2007 kbd->ledflagstate = (arg & 7);
2008 kbd->default_ledflagstate = ((arg >> 4) & 7);
2009 set_leds();
2010 spin_unlock_irqrestore(&led_lock, flags);
2011 return 0;
2012
2013 /* the ioctls below only set the lights, not the functions */
2014 /* for those, see KDGKBLED and KDSKBLED above */
2015 case KDGETLED:
2016 ucval = getledstate();
2017 return put_user(ucval, (char __user *)arg);
2018
2019 case KDSETLED:
2020 if (!perm)
2021 return -EPERM;
2022 setledstate(kbd, arg);
2023 return 0;
2024 }
2025 return -ENOIOCTLCMD;
2026}
2027
2028int vt_do_kdgkbmode(int console)
2029{
2030 struct kbd_struct * kbd = kbd_table + console;
2031 /* This is a spot read so needs no locking */
2032 switch (kbd->kbdmode) {
2033 case VC_RAW:
2034 return K_RAW;
2035 case VC_MEDIUMRAW:
2036 return K_MEDIUMRAW;
2037 case VC_UNICODE:
2038 return K_UNICODE;
2039 case VC_OFF:
2040 return K_OFF;
2041 default:
2042 return K_XLATE;
2043 }
2044}
2045
2046/**
2047 * vt_do_kdgkbmeta - report meta status
2048 * @console: console to report
2049 *
2050 * Report the meta flag status of this console
2051 */
2052int vt_do_kdgkbmeta(int console)
2053{
2054 struct kbd_struct * kbd = kbd_table + console;
2055 /* Again a spot read so no locking */
2056 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2057}
2058
2059/**
2060 * vt_reset_unicode - reset the unicode status
2061 * @console: console being reset
2062 *
2063 * Restore the unicode console state to its default
2064 */
2065void vt_reset_unicode(int console)
2066{
2067 unsigned long flags;
2068
2069 spin_lock_irqsave(&kbd_event_lock, flags);
2070 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2071 spin_unlock_irqrestore(&kbd_event_lock, flags);
2072}
2073
2074/**
2075 * vt_get_shiftstate - shift bit state
2076 *
2077 * Report the shift bits from the keyboard state. We have to export
2078 * this to support some oddities in the vt layer.
2079 */
2080int vt_get_shift_state(void)
2081{
2082 /* Don't lock as this is a transient report */
2083 return shift_state;
2084}
2085
2086/**
2087 * vt_reset_keyboard - reset keyboard state
2088 * @console: console to reset
2089 *
2090 * Reset the keyboard bits for a console as part of a general console
2091 * reset event
2092 */
2093void vt_reset_keyboard(int console)
2094{
2095 struct kbd_struct * kbd = kbd_table + console;
2096 unsigned long flags;
2097
2098 spin_lock_irqsave(&kbd_event_lock, flags);
2099 set_vc_kbd_mode(kbd, VC_REPEAT);
2100 clr_vc_kbd_mode(kbd, VC_CKMODE);
2101 clr_vc_kbd_mode(kbd, VC_APPLIC);
2102 clr_vc_kbd_mode(kbd, VC_CRLF);
2103 kbd->lockstate = 0;
2104 kbd->slockstate = 0;
2105 spin_lock(&led_lock);
2106 kbd->ledmode = LED_SHOW_FLAGS;
2107 kbd->ledflagstate = kbd->default_ledflagstate;
2108 spin_unlock(&led_lock);
2109 /* do not do set_leds here because this causes an endless tasklet loop
2110 when the keyboard hasn't been initialized yet */
2111 spin_unlock_irqrestore(&kbd_event_lock, flags);
2112}
2113
2114/**
2115 * vt_get_kbd_mode_bit - read keyboard status bits
2116 * @console: console to read from
2117 * @bit: mode bit to read
2118 *
2119 * Report back a vt mode bit. We do this without locking so the
2120 * caller must be sure that there are no synchronization needs
2121 */
2122
2123int vt_get_kbd_mode_bit(int console, int bit)
2124{
2125 struct kbd_struct * kbd = kbd_table + console;
2126 return vc_kbd_mode(kbd, bit);
2127}
2128
2129/**
2130 * vt_set_kbd_mode_bit - read keyboard status bits
2131 * @console: console to read from
2132 * @bit: mode bit to read
2133 *
2134 * Set a vt mode bit. We do this without locking so the
2135 * caller must be sure that there are no synchronization needs
2136 */
2137
2138void vt_set_kbd_mode_bit(int console, int bit)
2139{
2140 struct kbd_struct * kbd = kbd_table + console;
2141 unsigned long flags;
2142
2143 spin_lock_irqsave(&kbd_event_lock, flags);
2144 set_vc_kbd_mode(kbd, bit);
2145 spin_unlock_irqrestore(&kbd_event_lock, flags);
2146}
2147
2148/**
2149 * vt_clr_kbd_mode_bit - read keyboard status bits
2150 * @console: console to read from
2151 * @bit: mode bit to read
2152 *
2153 * Report back a vt mode bit. We do this without locking so the
2154 * caller must be sure that there are no synchronization needs
2155 */
2156
2157void vt_clr_kbd_mode_bit(int console, int bit)
2158{
2159 struct kbd_struct * kbd = kbd_table + console;
2160 unsigned long flags;
2161
2162 spin_lock_irqsave(&kbd_event_lock, flags);
2163 clr_vc_kbd_mode(kbd, bit);
2164 spin_unlock_irqrestore(&kbd_event_lock, flags);
2165}