Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
 
 
 
 
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27/*
  28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  30 */
  31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  33
  34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  35{
  36	int feature_bit = 0;
  37	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  38
  39	xstate_bv &= XFEATURE_MASK_EXTEND;
  40	while (xstate_bv) {
  41		if (xstate_bv & 0x1) {
  42		        u32 eax, ebx, ecx, edx, offset;
  43		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  44			offset = compacted ? ret : ebx;
  45			ret = max(ret, offset + eax);
  46		}
  47
  48		xstate_bv >>= 1;
  49		feature_bit++;
  50	}
  51
  52	return ret;
  53}
  54
  55#define F feature_bit
  56
  57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
  58{
  59	struct kvm_cpuid_entry2 *best;
 
 
 
  60
  61	/*
  62	 * The existing code assumes virtual address is 48-bit or 57-bit in the
  63	 * canonical address checks; exit if it is ever changed.
  64	 */
  65	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  66	if (best) {
  67		int vaddr_bits = (best->eax & 0xff00) >> 8;
  68
  69		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  70			return -EINVAL;
  71	}
  72
  73	return 0;
  74}
  75
  76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 
 
  77{
  78	struct kvm_cpuid_entry2 *best;
 
  79
  80	best = kvm_find_cpuid_entry(vcpu, 1, 0);
  81	if (best) {
  82		/* Update OSXSAVE bit */
  83		if (boot_cpu_has(X86_FEATURE_XSAVE))
  84			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
  85				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
  86
  87		cpuid_entry_change(best, X86_FEATURE_APIC,
  88			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
  89	}
  90
  91	best = kvm_find_cpuid_entry(vcpu, 7, 0);
  92	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
  93		cpuid_entry_change(best, X86_FEATURE_OSPKE,
  94				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
  95
  96	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  97	if (best)
  98		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
  99
 100	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 101	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 102		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 103		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 104
 105	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 106	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 107		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 108		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 109
 110	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 111		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 112		if (best)
 113			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 114					   vcpu->arch.ia32_misc_enable_msr &
 115					   MSR_IA32_MISC_ENABLE_MWAIT);
 116	}
 117}
 118
 119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 120{
 121	struct kvm_lapic *apic = vcpu->arch.apic;
 122	struct kvm_cpuid_entry2 *best;
 123
 124	kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
 125
 126	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 127	if (best && apic) {
 128		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 129			apic->lapic_timer.timer_mode_mask = 3 << 17;
 130		else
 131			apic->lapic_timer.timer_mode_mask = 1 << 17;
 
 132
 133		kvm_apic_set_version(vcpu);
 
 
 
 
 
 
 
 134	}
 135
 136	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 137	if (!best)
 138		vcpu->arch.guest_supported_xcr0 = 0;
 139	else
 
 140		vcpu->arch.guest_supported_xcr0 =
 141			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 
 
 
 
 142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 144	kvm_mmu_reset_context(vcpu);
 145
 146	kvm_pmu_refresh(vcpu);
 147	vcpu->arch.cr4_guest_rsvd_bits =
 148	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 149	kvm_x86_ops.update_exception_bitmap(vcpu);
 150}
 151
 152static int is_efer_nx(void)
 153{
 154	return host_efer & EFER_NX;
 
 
 
 155}
 156
 157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 158{
 159	int i;
 160	struct kvm_cpuid_entry2 *e, *entry;
 161
 162	entry = NULL;
 163	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 164		e = &vcpu->arch.cpuid_entries[i];
 165		if (e->function == 0x80000001) {
 166			entry = e;
 167			break;
 168		}
 169	}
 170	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
 171		cpuid_entry_clear(entry, X86_FEATURE_NX);
 172		printk(KERN_INFO "kvm: guest NX capability removed\n");
 173	}
 174}
 175
 176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 177{
 178	struct kvm_cpuid_entry2 *best;
 179
 180	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 181	if (!best || best->eax < 0x80000008)
 182		goto not_found;
 183	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 184	if (best)
 185		return best->eax & 0xff;
 186not_found:
 187	return 36;
 188}
 189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 190
 191/* when an old userspace process fills a new kernel module */
 192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 193			     struct kvm_cpuid *cpuid,
 194			     struct kvm_cpuid_entry __user *entries)
 195{
 196	int r, i;
 197	struct kvm_cpuid_entry *cpuid_entries = NULL;
 198
 199	r = -E2BIG;
 200	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 201		goto out;
 202	if (cpuid->nent) {
 203		cpuid_entries = vmemdup_user(entries,
 204					     array_size(sizeof(struct kvm_cpuid_entry),
 205							cpuid->nent));
 206		if (IS_ERR(cpuid_entries)) {
 207			r = PTR_ERR(cpuid_entries);
 208			goto out;
 209		}
 210	}
 211	for (i = 0; i < cpuid->nent; i++) {
 212		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 213		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 214		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 215		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 216		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 217		vcpu->arch.cpuid_entries[i].index = 0;
 218		vcpu->arch.cpuid_entries[i].flags = 0;
 219		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 220		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 221		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 222	}
 223	vcpu->arch.cpuid_nent = cpuid->nent;
 224	r = kvm_check_cpuid(vcpu);
 225	if (r) {
 226		vcpu->arch.cpuid_nent = 0;
 227		kvfree(cpuid_entries);
 228		goto out;
 229	}
 230
 231	cpuid_fix_nx_cap(vcpu);
 232	kvm_update_cpuid_runtime(vcpu);
 233	kvm_vcpu_after_set_cpuid(vcpu);
 
 234
 235	kvfree(cpuid_entries);
 
 236out:
 237	return r;
 238}
 239
 240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 241			      struct kvm_cpuid2 *cpuid,
 242			      struct kvm_cpuid_entry2 __user *entries)
 243{
 244	int r;
 245
 246	r = -E2BIG;
 247	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 248		goto out;
 249	r = -EFAULT;
 250	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 251			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 252		goto out;
 253	vcpu->arch.cpuid_nent = cpuid->nent;
 254	r = kvm_check_cpuid(vcpu);
 255	if (r) {
 256		vcpu->arch.cpuid_nent = 0;
 257		goto out;
 258	}
 259
 260	kvm_update_cpuid_runtime(vcpu);
 261	kvm_vcpu_after_set_cpuid(vcpu);
 262out:
 263	return r;
 264}
 265
 266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 267			      struct kvm_cpuid2 *cpuid,
 268			      struct kvm_cpuid_entry2 __user *entries)
 269{
 270	int r;
 271
 272	r = -E2BIG;
 273	if (cpuid->nent < vcpu->arch.cpuid_nent)
 274		goto out;
 275	r = -EFAULT;
 276	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 277			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 278		goto out;
 279	return 0;
 280
 281out:
 282	cpuid->nent = vcpu->arch.cpuid_nent;
 283	return r;
 284}
 285
 286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 287{
 288	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 289	struct kvm_cpuid_entry2 entry;
 290
 291	reverse_cpuid_check(leaf);
 292	kvm_cpu_caps[leaf] &= mask;
 
 
 
 
 
 
 
 293
 294	cpuid_count(cpuid.function, cpuid.index,
 295		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 298}
 299
 300void kvm_set_cpu_caps(void)
 
 301{
 302	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
 
 303#ifdef CONFIG_X86_64
 304	unsigned int f_gbpages = F(GBPAGES);
 305	unsigned int f_lm = F(LM);
 
 306#else
 307	unsigned int f_gbpages = 0;
 308	unsigned int f_lm = 0;
 309#endif
 
 
 
 
 310
 311	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
 312		     sizeof(boot_cpu_data.x86_capability));
 313
 314	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 315	       sizeof(kvm_cpu_caps));
 316
 317	kvm_cpu_cap_mask(CPUID_1_ECX,
 318		/*
 319		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 320		 * advertised to guests via CPUID!
 321		 */
 322		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 323		0 /* DS-CPL, VMX, SMX, EST */ |
 324		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 325		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 326		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 327		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 328		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 329		F(F16C) | F(RDRAND)
 330	);
 331	/* KVM emulates x2apic in software irrespective of host support. */
 332	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 333
 334	kvm_cpu_cap_mask(CPUID_1_EDX,
 335		F(FPU) | F(VME) | F(DE) | F(PSE) |
 336		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 337		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 338		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 339		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 340		0 /* Reserved, DS, ACPI */ | F(MMX) |
 341		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 342		0 /* HTT, TM, Reserved, PBE */
 343	);
 344
 345	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 346		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 347		F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 348		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 349		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 350		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 351	);
 352
 353	kvm_cpu_cap_mask(CPUID_7_ECX,
 354		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 355		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 356		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 357		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
 358	);
 359	/* Set LA57 based on hardware capability. */
 360	if (cpuid_ecx(7) & F(LA57))
 361		kvm_cpu_cap_set(X86_FEATURE_LA57);
 362
 363	/*
 364	 * PKU not yet implemented for shadow paging and requires OSPKE
 365	 * to be set on the host. Clear it if that is not the case
 366	 */
 367	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 368		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 369
 370	kvm_cpu_cap_mask(CPUID_7_EDX,
 371		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 372		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 373		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 374		F(SERIALIZE)
 375	);
 376
 377	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 378	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 379	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 380
 381	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 382		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 383	if (boot_cpu_has(X86_FEATURE_STIBP))
 384		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 385	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 386		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 387
 388	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 389		F(AVX512_BF16)
 390	);
 391
 392	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 393		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 394	);
 395
 396	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 397		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 398		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 399		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 400		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 401		F(TOPOEXT) | F(PERFCTR_CORE)
 402	);
 403
 404	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 405		F(FPU) | F(VME) | F(DE) | F(PSE) |
 406		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 407		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 408		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 409		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 410		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 411		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 412		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 413	);
 414
 415	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 416		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 417
 418	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 419		F(CLZERO) | F(XSAVEERPTR) |
 420		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 421		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 422	);
 423
 424	/*
 425	 * AMD has separate bits for each SPEC_CTRL bit.
 426	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 427	 * record that in cpufeatures so use them.
 428	 */
 429	if (boot_cpu_has(X86_FEATURE_IBPB))
 430		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 431	if (boot_cpu_has(X86_FEATURE_IBRS))
 432		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 433	if (boot_cpu_has(X86_FEATURE_STIBP))
 434		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 435	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 436		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 437	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 438		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 439	/*
 440	 * The preference is to use SPEC CTRL MSR instead of the
 441	 * VIRT_SPEC MSR.
 442	 */
 443	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 444	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 445		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 446
 447	/*
 448	 * Hide all SVM features by default, SVM will set the cap bits for
 449	 * features it emulates and/or exposes for L1.
 450	 */
 451	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 452
 453	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 
 454		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 455		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 456		F(PMM) | F(PMM_EN)
 457	);
 458}
 459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 460
 461struct kvm_cpuid_array {
 462	struct kvm_cpuid_entry2 *entries;
 463	int maxnent;
 464	int nent;
 465};
 466
 467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 468					      u32 function, u32 index)
 469{
 470	struct kvm_cpuid_entry2 *entry;
 471
 472	if (array->nent >= array->maxnent)
 473		return NULL;
 474
 475	entry = &array->entries[array->nent++];
 476
 477	entry->function = function;
 478	entry->index = index;
 479	entry->flags = 0;
 480
 481	cpuid_count(entry->function, entry->index,
 482		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 483
 484	switch (function) {
 485	case 4:
 486	case 7:
 487	case 0xb:
 488	case 0xd:
 489	case 0xf:
 490	case 0x10:
 491	case 0x12:
 492	case 0x14:
 493	case 0x17:
 494	case 0x18:
 495	case 0x1f:
 496	case 0x8000001d:
 497		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 498		break;
 499	}
 500
 501	return entry;
 502}
 503
 504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 505{
 506	struct kvm_cpuid_entry2 *entry;
 507
 508	if (array->nent >= array->maxnent)
 509		return -E2BIG;
 510
 511	entry = &array->entries[array->nent];
 512	entry->function = func;
 513	entry->index = 0;
 514	entry->flags = 0;
 515
 516	switch (func) {
 517	case 0:
 518		entry->eax = 7;
 519		++array->nent;
 520		break;
 521	case 1:
 522		entry->ecx = F(MOVBE);
 523		++array->nent;
 524		break;
 525	case 7:
 526		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 527		entry->eax = 0;
 528		entry->ecx = F(RDPID);
 529		++array->nent;
 530	default:
 531		break;
 532	}
 533
 534	return 0;
 535}
 536
 537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 538{
 539	struct kvm_cpuid_entry2 *entry;
 540	int r, i, max_idx;
 541
 542	/* all calls to cpuid_count() should be made on the same cpu */
 543	get_cpu();
 544
 545	r = -E2BIG;
 546
 547	entry = do_host_cpuid(array, function, 0);
 548	if (!entry)
 549		goto out;
 550
 
 
 
 551	switch (function) {
 552	case 0:
 553		/* Limited to the highest leaf implemented in KVM. */
 554		entry->eax = min(entry->eax, 0x1fU);
 555		break;
 556	case 1:
 557		cpuid_entry_override(entry, CPUID_1_EDX);
 558		cpuid_entry_override(entry, CPUID_1_ECX);
 559		break;
 560	case 2:
 561		/*
 562		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 563		 * CPUID(function=2, index=0) may return different results each
 564		 * time, with the least-significant byte in EAX enumerating the
 565		 * number of times software should do CPUID(2, 0).
 566		 *
 567		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 568		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 569		 * return 01H. Software should ignore this value and not
 570		 * interpret it as an informational descriptor", while AMD's
 571		 * APM states that CPUID(2) is reserved.
 572		 *
 573		 * WARN if a frankenstein CPU that supports virtualization and
 574		 * a stateful CPUID.0x2 is encountered.
 575		 */
 576		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 
 
 
 
 
 577		break;
 578	/* functions 4 and 0x8000001d have additional index. */
 579	case 4:
 580	case 0x8000001d:
 581		/*
 582		 * Read entries until the cache type in the previous entry is
 583		 * zero, i.e. indicates an invalid entry.
 584		 */
 585		for (i = 1; entry->eax & 0x1f; ++i) {
 586			entry = do_host_cpuid(array, function, i);
 587			if (!entry)
 588				goto out;
 
 
 
 
 
 
 
 
 589		}
 590		break;
 
 591	case 6: /* Thermal management */
 592		entry->eax = 0x4; /* allow ARAT */
 593		entry->ebx = 0;
 594		entry->ecx = 0;
 595		entry->edx = 0;
 596		break;
 597	/* function 7 has additional index. */
 598	case 7:
 599		entry->eax = min(entry->eax, 1u);
 600		cpuid_entry_override(entry, CPUID_7_0_EBX);
 601		cpuid_entry_override(entry, CPUID_7_ECX);
 602		cpuid_entry_override(entry, CPUID_7_EDX);
 603
 604		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 605		if (entry->eax == 1) {
 606			entry = do_host_cpuid(array, function, 1);
 607			if (!entry)
 608				goto out;
 609
 610			cpuid_entry_override(entry, CPUID_7_1_EAX);
 611			entry->ebx = 0;
 612			entry->ecx = 0;
 613			entry->edx = 0;
 614		}
 
 
 615		break;
 
 616	case 9:
 617		break;
 618	case 0xa: { /* Architectural Performance Monitoring */
 619		struct x86_pmu_capability cap;
 620		union cpuid10_eax eax;
 621		union cpuid10_edx edx;
 622
 623		perf_get_x86_pmu_capability(&cap);
 624
 625		/*
 626		 * Only support guest architectural pmu on a host
 627		 * with architectural pmu.
 628		 */
 629		if (!cap.version)
 630			memset(&cap, 0, sizeof(cap));
 631
 632		eax.split.version_id = min(cap.version, 2);
 633		eax.split.num_counters = cap.num_counters_gp;
 634		eax.split.bit_width = cap.bit_width_gp;
 635		eax.split.mask_length = cap.events_mask_len;
 636
 637		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 638		edx.split.bit_width_fixed = cap.bit_width_fixed;
 639		edx.split.reserved = 0;
 640
 641		entry->eax = eax.full;
 642		entry->ebx = cap.events_mask;
 643		entry->ecx = 0;
 644		entry->edx = edx.full;
 645		break;
 646	}
 647	/*
 648	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
 649	 * thus they can be handled by common code.
 650	 */
 651	case 0x1f:
 652	case 0xb:
 653		/*
 654		 * Populate entries until the level type (ECX[15:8]) of the
 655		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 656		 * the starting entry, filled by the primary do_host_cpuid().
 657		 */
 658		for (i = 1; entry->ecx & 0xff00; ++i) {
 659			entry = do_host_cpuid(array, function, i);
 660			if (!entry)
 661				goto out;
 
 
 
 
 
 
 
 
 662		}
 663		break;
 664	case 0xd:
 665		entry->eax &= supported_xcr0;
 666		entry->ebx = xstate_required_size(supported_xcr0, false);
 
 
 
 
 667		entry->ecx = entry->ebx;
 668		entry->edx &= supported_xcr0 >> 32;
 669		if (!supported_xcr0)
 
 670			break;
 671
 672		entry = do_host_cpuid(array, function, 1);
 673		if (!entry)
 674			goto out;
 675
 676		cpuid_entry_override(entry, CPUID_D_1_EAX);
 677		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 678			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 679							  true);
 680		else {
 681			WARN_ON_ONCE(supported_xss != 0);
 682			entry->ebx = 0;
 683		}
 684		entry->ecx &= supported_xss;
 685		entry->edx &= supported_xss >> 32;
 686
 687		for (i = 2; i < 64; ++i) {
 688			bool s_state;
 689			if (supported_xcr0 & BIT_ULL(i))
 690				s_state = false;
 691			else if (supported_xss & BIT_ULL(i))
 692				s_state = true;
 693			else
 694				continue;
 695
 696			entry = do_host_cpuid(array, function, i);
 697			if (!entry)
 698				goto out;
 699
 700			/*
 701			 * The supported check above should have filtered out
 702			 * invalid sub-leafs.  Only valid sub-leafs should
 703			 * reach this point, and they should have a non-zero
 704			 * save state size.  Furthermore, check whether the
 705			 * processor agrees with supported_xcr0/supported_xss
 706			 * on whether this is an XCR0- or IA32_XSS-managed area.
 707			 */
 708			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 709				--array->nent;
 710				continue;
 
 
 
 711			}
 712			entry->edx = 0;
 713		}
 714		break;
 715	/* Intel PT */
 716	case 0x14:
 717		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 718			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 719			break;
 720		}
 721
 722		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 723			if (!do_host_cpuid(array, function, i))
 724				goto out;
 725		}
 726		break;
 
 727	case KVM_CPUID_SIGNATURE: {
 728		static const char signature[12] = "KVMKVMKVM\0\0";
 729		const u32 *sigptr = (const u32 *)signature;
 730		entry->eax = KVM_CPUID_FEATURES;
 731		entry->ebx = sigptr[0];
 732		entry->ecx = sigptr[1];
 733		entry->edx = sigptr[2];
 734		break;
 735	}
 736	case KVM_CPUID_FEATURES:
 737		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 738			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 739			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 740			     (1 << KVM_FEATURE_ASYNC_PF) |
 741			     (1 << KVM_FEATURE_PV_EOI) |
 742			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 743			     (1 << KVM_FEATURE_PV_UNHALT) |
 744			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 745			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 746			     (1 << KVM_FEATURE_PV_SEND_IPI) |
 747			     (1 << KVM_FEATURE_POLL_CONTROL) |
 748			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 749			     (1 << KVM_FEATURE_ASYNC_PF_INT);
 750
 751		if (sched_info_on())
 752			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 753
 754		entry->ebx = 0;
 755		entry->ecx = 0;
 756		entry->edx = 0;
 757		break;
 758	case 0x80000000:
 759		entry->eax = min(entry->eax, 0x8000001f);
 760		break;
 761	case 0x80000001:
 762		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 763		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 764		break;
 765	case 0x80000006:
 766		/* L2 cache and TLB: pass through host info. */
 767		break;
 768	case 0x80000007: /* Advanced power management */
 769		/* invariant TSC is CPUID.80000007H:EDX[8] */
 770		entry->edx &= (1 << 8);
 771		/* mask against host */
 772		entry->edx &= boot_cpu_data.x86_power;
 773		entry->eax = entry->ebx = entry->ecx = 0;
 774		break;
 775	case 0x80000008: {
 776		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 777		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 778		unsigned phys_as = entry->eax & 0xff;
 779
 780		if (!g_phys_as)
 781			g_phys_as = phys_as;
 782		entry->eax = g_phys_as | (virt_as << 8);
 783		entry->edx = 0;
 784		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 785		break;
 786	}
 787	case 0x8000000A:
 788		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 789			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 790			break;
 791		}
 792		entry->eax = 1; /* SVM revision 1 */
 793		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 794				   ASID emulation to nested SVM */
 795		entry->ecx = 0; /* Reserved */
 796		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 797		break;
 798	case 0x80000019:
 799		entry->ecx = entry->edx = 0;
 800		break;
 801	case 0x8000001a:
 802	case 0x8000001e:
 803		break;
 804	/* Support memory encryption cpuid if host supports it */
 805	case 0x8000001F:
 806		if (!boot_cpu_has(X86_FEATURE_SEV))
 807			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 808		break;
 809	/*Add support for Centaur's CPUID instruction*/
 810	case 0xC0000000:
 811		/*Just support up to 0xC0000004 now*/
 812		entry->eax = min(entry->eax, 0xC0000004);
 813		break;
 814	case 0xC0000001:
 815		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 
 816		break;
 817	case 3: /* Processor serial number */
 818	case 5: /* MONITOR/MWAIT */
 819	case 0xC0000002:
 820	case 0xC0000003:
 821	case 0xC0000004:
 822	default:
 823		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 824		break;
 825	}
 826
 
 
 827	r = 0;
 828
 829out:
 830	put_cpu();
 831
 832	return r;
 833}
 834
 835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 836			 unsigned int type)
 837{
 838	if (type == KVM_GET_EMULATED_CPUID)
 839		return __do_cpuid_func_emulated(array, func);
 840
 841	return __do_cpuid_func(array, func);
 842}
 843
 844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
 845
 846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 847			  unsigned int type)
 848{
 849	u32 limit;
 850	int r;
 851
 852	if (func == CENTAUR_CPUID_SIGNATURE &&
 853	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
 854		return 0;
 855
 856	r = do_cpuid_func(array, func, type);
 857	if (r)
 858		return r;
 859
 860	limit = array->entries[array->nent - 1].eax;
 861	for (func = func + 1; func <= limit; ++func) {
 862		r = do_cpuid_func(array, func, type);
 863		if (r)
 864			break;
 865	}
 866
 867	return r;
 
 
 868}
 869
 870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 871				 __u32 num_entries, unsigned int ioctl_type)
 872{
 873	int i;
 874	__u32 pad[3];
 875
 876	if (ioctl_type != KVM_GET_EMULATED_CPUID)
 877		return false;
 878
 879	/*
 880	 * We want to make sure that ->padding is being passed clean from
 881	 * userspace in case we want to use it for something in the future.
 882	 *
 883	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 884	 * have to give ourselves satisfied only with the emulated side. /me
 885	 * sheds a tear.
 886	 */
 887	for (i = 0; i < num_entries; i++) {
 888		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 889			return true;
 890
 891		if (pad[0] || pad[1] || pad[2])
 892			return true;
 893	}
 894	return false;
 895}
 896
 897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 898			    struct kvm_cpuid_entry2 __user *entries,
 899			    unsigned int type)
 900{
 901	static const u32 funcs[] = {
 902		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 
 
 
 
 
 
 
 903	};
 904
 905	struct kvm_cpuid_array array = {
 906		.nent = 0,
 907	};
 908	int r, i;
 909
 910	if (cpuid->nent < 1)
 911		return -E2BIG;
 912	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 913		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 914
 915	if (sanity_check_entries(entries, cpuid->nent, type))
 916		return -EINVAL;
 917
 918	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 919					   cpuid->nent));
 920	if (!array.entries)
 921		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923	array.maxnent = cpuid->nent;
 
 
 
 924
 925	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
 926		r = get_cpuid_func(&array, funcs[i], type);
 927		if (r)
 928			goto out_free;
 929	}
 930	cpuid->nent = array.nent;
 931
 932	if (copy_to_user(entries, array.entries,
 933			 array.nent * sizeof(struct kvm_cpuid_entry2)))
 934		r = -EFAULT;
 
 
 
 935
 936out_free:
 937	vfree(array.entries);
 
 938	return r;
 939}
 940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 942					      u32 function, u32 index)
 943{
 944	struct kvm_cpuid_entry2 *e;
 945	int i;
 
 946
 947	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 948		e = &vcpu->arch.cpuid_entries[i];
 949
 950		if (e->function == function && (e->index == index ||
 951		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
 952			return e;
 
 
 
 
 953	}
 954	return NULL;
 955}
 956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 957
 958/*
 959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
 962 * range.  Centaur/VIA follows Intel semantics.
 963 *
 964 * A leaf is considered out-of-range if its function is higher than the maximum
 965 * supported leaf of its associated class or if its associated class does not
 966 * exist.
 967 *
 968 * There are three primary classes to be considered, with their respective
 969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 970 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 972 *
 973 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 974 *  - Hypervisor: 0x40000000 - 0x4fffffff
 975 *  - Extended:   0x80000000 - 0xbfffffff
 976 *  - Centaur:    0xc0000000 - 0xcfffffff
 977 *
 978 * The Hypervisor class is further subdivided into sub-classes that each act as
 979 * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
 980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
 981 * CPUID sub-classes are:
 982 *
 983 *  - HyperV:     0x40000000 - 0x400000ff
 984 *  - KVM:        0x40000100 - 0x400001ff
 985 */
 986static struct kvm_cpuid_entry2 *
 987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
 988{
 989	struct kvm_cpuid_entry2 *basic, *class;
 990	u32 function = *fn_ptr;
 991
 992	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
 993	if (!basic)
 994		return NULL;
 995
 996	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
 997	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
 998		return NULL;
 
 
 
 
 
 
 
 999
1000	if (function >= 0x40000000 && function <= 0x4fffffff)
1001		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002	else if (function >= 0xc0000000)
1003		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004	else
1005		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007	if (class && function <= class->eax)
1008		return NULL;
1009
1010	/*
1011	 * Leaf specific adjustments are also applied when redirecting to the
1012	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1014	 * needs to be pulled from CPUID.0xb.1.
1015	 */
1016	*fn_ptr = basic->eax;
1017
1018	/*
1019	 * The class does not exist or the requested function is out of range;
1020	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1021	 * the original requested leaf is observed!
1022	 */
1023	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027	       u32 *ecx, u32 *edx, bool exact_only)
1028{
1029	u32 orig_function = *eax, function = *eax, index = *ecx;
1030	struct kvm_cpuid_entry2 *entry;
1031	bool exact, used_max_basic = false;
1032
1033	entry = kvm_find_cpuid_entry(vcpu, function, index);
1034	exact = !!entry;
1035
1036	if (!entry && !exact_only) {
1037		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038		used_max_basic = !!entry;
1039	}
1040
1041	if (entry) {
1042		*eax = entry->eax;
1043		*ebx = entry->ebx;
1044		*ecx = entry->ecx;
1045		*edx = entry->edx;
1046		if (function == 7 && index == 0) {
1047			u64 data;
1048		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049			    (data & TSX_CTRL_CPUID_CLEAR))
1050				*ebx &= ~(F(RTM) | F(HLE));
1051		}
1052	} else {
1053		*eax = *ebx = *ecx = *edx = 0;
1054		/*
1055		 * When leaf 0BH or 1FH is defined, CL is pass-through
1056		 * and EDX is always the x2APIC ID, even for undefined
1057		 * subleaves. Index 1 will exist iff the leaf is
1058		 * implemented, so we pass through CL iff leaf 1
1059		 * exists. EDX can be copied from any existing index.
1060		 */
1061		if (function == 0xb || function == 0x1f) {
1062			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063			if (entry) {
1064				*ecx = index & 0xff;
1065				*edx = entry->edx;
1066			}
1067		}
1068	}
1069	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070			used_max_basic);
1071	return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077	u32 eax, ebx, ecx, edx;
1078
1079	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080		return 1;
1081
1082	eax = kvm_rax_read(vcpu);
1083	ecx = kvm_rcx_read(vcpu);
1084	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085	kvm_rax_write(vcpu, eax);
1086	kvm_rbx_write(vcpu, ebx);
1087	kvm_rcx_write(vcpu, ecx);
1088	kvm_rdx_write(vcpu, edx);
1089	return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v4.6
 
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 * cpuid support routines
  4 *
  5 * derived from arch/x86/kvm/x86.c
  6 *
  7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8 * Copyright IBM Corporation, 2008
  9 *
 10 * This work is licensed under the terms of the GNU GPL, version 2.  See
 11 * the COPYING file in the top-level directory.
 12 *
 13 */
 14
 15#include <linux/kvm_host.h>
 16#include <linux/module.h>
 17#include <linux/vmalloc.h>
 18#include <linux/uaccess.h>
 19#include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
 
 
 20#include <asm/user.h>
 21#include <asm/fpu/xstate.h>
 22#include "cpuid.h"
 23#include "lapic.h"
 24#include "mmu.h"
 25#include "trace.h"
 26#include "pmu.h"
 27
 
 
 
 
 
 
 
 28static u32 xstate_required_size(u64 xstate_bv, bool compacted)
 29{
 30	int feature_bit = 0;
 31	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 32
 33	xstate_bv &= XFEATURE_MASK_EXTEND;
 34	while (xstate_bv) {
 35		if (xstate_bv & 0x1) {
 36		        u32 eax, ebx, ecx, edx, offset;
 37		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 38			offset = compacted ? ret : ebx;
 39			ret = max(ret, offset + eax);
 40		}
 41
 42		xstate_bv >>= 1;
 43		feature_bit++;
 44	}
 45
 46	return ret;
 47}
 48
 49bool kvm_mpx_supported(void)
 
 
 50{
 51	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
 52		 && kvm_x86_ops->mpx_supported());
 53}
 54EXPORT_SYMBOL_GPL(kvm_mpx_supported);
 55
 56u64 kvm_supported_xcr0(void)
 57{
 58	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
 
 
 
 
 59
 60	if (!kvm_mpx_supported())
 61		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 
 62
 63	return xcr0;
 64}
 65
 66#define F(x) bit(X86_FEATURE_##x)
 67
 68int kvm_update_cpuid(struct kvm_vcpu *vcpu)
 69{
 70	struct kvm_cpuid_entry2 *best;
 71	struct kvm_lapic *apic = vcpu->arch.apic;
 72
 73	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 74	if (!best)
 75		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76
 77	/* Update OSXSAVE bit */
 78	if (cpu_has_xsave && best->function == 0x1) {
 79		best->ecx &= ~F(OSXSAVE);
 80		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 81			best->ecx |= F(OSXSAVE);
 
 82	}
 
 
 
 
 
 
 83
 84	if (apic) {
 85		if (best->ecx & F(TSC_DEADLINE_TIMER))
 
 
 
 86			apic->lapic_timer.timer_mode_mask = 3 << 17;
 87		else
 88			apic->lapic_timer.timer_mode_mask = 1 << 17;
 89	}
 90
 91	best = kvm_find_cpuid_entry(vcpu, 7, 0);
 92	if (best) {
 93		/* Update OSPKE bit */
 94		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
 95			best->ecx &= ~F(OSPKE);
 96			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
 97				best->ecx |= F(OSPKE);
 98		}
 99	}
100
101	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102	if (!best) {
103		vcpu->arch.guest_supported_xcr0 = 0;
104		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105	} else {
106		vcpu->arch.guest_supported_xcr0 =
107			(best->eax | ((u64)best->edx << 32)) &
108			kvm_supported_xcr0();
109		vcpu->arch.guest_xstate_size = best->ebx =
110			xstate_required_size(vcpu->arch.xcr0, false);
111	}
112
113	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116
117	if (use_eager_fpu())
118		kvm_x86_ops->fpu_activate(vcpu);
119
120	/*
121	 * The existing code assumes virtual address is 48-bit in the canonical
122	 * address checks; exit if it is ever changed.
123	 */
124	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126		((best->eax & 0xff00) >> 8) != 0)
127		return -EINVAL;
128
129	/* Update physical-address width */
130	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 
131
132	kvm_pmu_refresh(vcpu);
133	return 0;
 
 
134}
135
136static int is_efer_nx(void)
137{
138	unsigned long long efer = 0;
139
140	rdmsrl_safe(MSR_EFER, &efer);
141	return efer & EFER_NX;
142}
143
144static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145{
146	int i;
147	struct kvm_cpuid_entry2 *e, *entry;
148
149	entry = NULL;
150	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151		e = &vcpu->arch.cpuid_entries[i];
152		if (e->function == 0x80000001) {
153			entry = e;
154			break;
155		}
156	}
157	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158		entry->edx &= ~F(NX);
159		printk(KERN_INFO "kvm: guest NX capability removed\n");
160	}
161}
162
163int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164{
165	struct kvm_cpuid_entry2 *best;
166
167	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168	if (!best || best->eax < 0x80000008)
169		goto not_found;
170	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171	if (best)
172		return best->eax & 0xff;
173not_found:
174	return 36;
175}
176EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177
178/* when an old userspace process fills a new kernel module */
179int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180			     struct kvm_cpuid *cpuid,
181			     struct kvm_cpuid_entry __user *entries)
182{
183	int r, i;
184	struct kvm_cpuid_entry *cpuid_entries;
185
186	r = -E2BIG;
187	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188		goto out;
189	r = -ENOMEM;
190	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
191	if (!cpuid_entries)
192		goto out;
193	r = -EFAULT;
194	if (copy_from_user(cpuid_entries, entries,
195			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
196		goto out_free;
 
197	for (i = 0; i < cpuid->nent; i++) {
198		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
199		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
200		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
201		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
202		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
203		vcpu->arch.cpuid_entries[i].index = 0;
204		vcpu->arch.cpuid_entries[i].flags = 0;
205		vcpu->arch.cpuid_entries[i].padding[0] = 0;
206		vcpu->arch.cpuid_entries[i].padding[1] = 0;
207		vcpu->arch.cpuid_entries[i].padding[2] = 0;
208	}
209	vcpu->arch.cpuid_nent = cpuid->nent;
 
 
 
 
 
 
 
210	cpuid_fix_nx_cap(vcpu);
211	kvm_apic_set_version(vcpu);
212	kvm_x86_ops->cpuid_update(vcpu);
213	r = kvm_update_cpuid(vcpu);
214
215out_free:
216	vfree(cpuid_entries);
217out:
218	return r;
219}
220
221int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
222			      struct kvm_cpuid2 *cpuid,
223			      struct kvm_cpuid_entry2 __user *entries)
224{
225	int r;
226
227	r = -E2BIG;
228	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
229		goto out;
230	r = -EFAULT;
231	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
232			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
233		goto out;
234	vcpu->arch.cpuid_nent = cpuid->nent;
235	kvm_apic_set_version(vcpu);
236	kvm_x86_ops->cpuid_update(vcpu);
237	r = kvm_update_cpuid(vcpu);
 
 
 
 
 
238out:
239	return r;
240}
241
242int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
243			      struct kvm_cpuid2 *cpuid,
244			      struct kvm_cpuid_entry2 __user *entries)
245{
246	int r;
247
248	r = -E2BIG;
249	if (cpuid->nent < vcpu->arch.cpuid_nent)
250		goto out;
251	r = -EFAULT;
252	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
253			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
254		goto out;
255	return 0;
256
257out:
258	cpuid->nent = vcpu->arch.cpuid_nent;
259	return r;
260}
261
262static void cpuid_mask(u32 *word, int wordnum)
263{
264	*word &= boot_cpu_data.x86_capability[wordnum];
265}
266
267static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
268			   u32 index)
269{
270	entry->function = function;
271	entry->index = index;
272	cpuid_count(entry->function, entry->index,
273		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
274	entry->flags = 0;
275}
276
277static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
278				   u32 func, u32 index, int *nent, int maxnent)
279{
280	switch (func) {
281	case 0:
282		entry->eax = 1;		/* only one leaf currently */
283		++*nent;
284		break;
285	case 1:
286		entry->ecx = F(MOVBE);
287		++*nent;
288		break;
289	default:
290		break;
291	}
292
293	entry->function = func;
294	entry->index = index;
295
296	return 0;
297}
298
299static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
300				 u32 index, int *nent, int maxnent)
301{
302	int r;
303	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
304#ifdef CONFIG_X86_64
305	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
306				? F(GBPAGES) : 0;
307	unsigned f_lm = F(LM);
308#else
309	unsigned f_gbpages = 0;
310	unsigned f_lm = 0;
311#endif
312	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
313	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
314	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
315	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
316
317	/* cpuid 1.edx */
318	const u32 kvm_cpuid_1_edx_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319		F(FPU) | F(VME) | F(DE) | F(PSE) |
320		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
321		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
322		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
323		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
324		0 /* Reserved, DS, ACPI */ | F(MMX) |
325		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
326		0 /* HTT, TM, Reserved, PBE */;
327	/* cpuid 0x80000001.edx */
328	const u32 kvm_cpuid_8000_0001_edx_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329		F(FPU) | F(VME) | F(DE) | F(PSE) |
330		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
331		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
332		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
333		F(PAT) | F(PSE36) | 0 /* Reserved */ |
334		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
335		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
336		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
337	/* cpuid 1.ecx */
338	const u32 kvm_cpuid_1_ecx_x86_features =
339		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
340		 * but *not* advertised to guests via CPUID ! */
341		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
342		0 /* DS-CPL, VMX, SMX, EST */ |
343		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
344		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
345		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
346		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
347		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
348		F(F16C) | F(RDRAND);
349	/* cpuid 0x80000001.ecx */
350	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
351		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
352		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
353		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
354		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
356	/* cpuid 0xC0000001.edx */
357	const u32 kvm_cpuid_C000_0001_edx_x86_features =
358		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
359		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
360		F(PMM) | F(PMM_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
362	/* cpuid 7.0.ebx */
363	const u32 kvm_cpuid_7_0_ebx_x86_features =
364		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
365		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
366		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
367		F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
368
369	/* cpuid 0xD.1.eax */
370	const u32 kvm_cpuid_D_1_eax_x86_features =
371		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
373	/* cpuid 7.0.ecx*/
374	const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
 
 
375
376	/* all calls to cpuid_count() should be made on the same cpu */
377	get_cpu();
378
379	r = -E2BIG;
380
381	if (*nent >= maxnent)
 
382		goto out;
383
384	do_cpuid_1_ent(entry, function, index);
385	++*nent;
386
387	switch (function) {
388	case 0:
389		entry->eax = min(entry->eax, (u32)0xd);
 
390		break;
391	case 1:
392		entry->edx &= kvm_cpuid_1_edx_x86_features;
393		cpuid_mask(&entry->edx, CPUID_1_EDX);
394		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
395		cpuid_mask(&entry->ecx, CPUID_1_ECX);
396		/* we support x2apic emulation even if host does not support
397		 * it since we emulate x2apic in software */
398		entry->ecx |= F(X2APIC);
399		break;
400	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
401	 * may return different values. This forces us to get_cpu() before
402	 * issuing the first command, and also to emulate this annoying behavior
403	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404	case 2: {
405		int t, times = entry->eax & 0xff;
406
407		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409		for (t = 1; t < times; ++t) {
410			if (*nent >= maxnent)
411				goto out;
412
413			do_cpuid_1_ent(&entry[t], function, 0);
414			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415			++*nent;
416		}
417		break;
418	}
419	/* function 4 has additional index. */
420	case 4: {
421		int i, cache_type;
422
423		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424		/* read more entries until cache_type is zero */
425		for (i = 1; ; ++i) {
426			if (*nent >= maxnent)
 
427				goto out;
428
429			cache_type = entry[i - 1].eax & 0x1f;
430			if (!cache_type)
431				break;
432			do_cpuid_1_ent(&entry[i], function, i);
433			entry[i].flags |=
434			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435			++*nent;
436		}
437		break;
438	}
439	case 6: /* Thermal management */
440		entry->eax = 0x4; /* allow ARAT */
441		entry->ebx = 0;
442		entry->ecx = 0;
443		entry->edx = 0;
444		break;
445	case 7: {
446		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447		/* Mask ebx against host capability word 9 */
448		if (index == 0) {
449			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
450			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
451			// TSC_ADJUST is emulated
452			entry->ebx |= F(TSC_ADJUST);
453			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
454			cpuid_mask(&entry->ecx, CPUID_7_ECX);
455			/* PKU is not yet implemented for shadow paging. */
456			if (!tdp_enabled)
457				entry->ecx &= ~F(PKU);
458		} else {
459			entry->ebx = 0;
460			entry->ecx = 0;
 
461		}
462		entry->eax = 0;
463		entry->edx = 0;
464		break;
465	}
466	case 9:
467		break;
468	case 0xa: { /* Architectural Performance Monitoring */
469		struct x86_pmu_capability cap;
470		union cpuid10_eax eax;
471		union cpuid10_edx edx;
472
473		perf_get_x86_pmu_capability(&cap);
474
475		/*
476		 * Only support guest architectural pmu on a host
477		 * with architectural pmu.
478		 */
479		if (!cap.version)
480			memset(&cap, 0, sizeof(cap));
481
482		eax.split.version_id = min(cap.version, 2);
483		eax.split.num_counters = cap.num_counters_gp;
484		eax.split.bit_width = cap.bit_width_gp;
485		eax.split.mask_length = cap.events_mask_len;
486
487		edx.split.num_counters_fixed = cap.num_counters_fixed;
488		edx.split.bit_width_fixed = cap.bit_width_fixed;
489		edx.split.reserved = 0;
490
491		entry->eax = eax.full;
492		entry->ebx = cap.events_mask;
493		entry->ecx = 0;
494		entry->edx = edx.full;
495		break;
496	}
497	/* function 0xb has additional index. */
498	case 0xb: {
499		int i, level_type;
500
501		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
502		/* read more entries until level_type is zero */
503		for (i = 1; ; ++i) {
504			if (*nent >= maxnent)
 
 
 
 
 
 
505				goto out;
506
507			level_type = entry[i - 1].ecx & 0xff00;
508			if (!level_type)
509				break;
510			do_cpuid_1_ent(&entry[i], function, i);
511			entry[i].flags |=
512			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
513			++*nent;
514		}
515		break;
516	}
517	case 0xd: {
518		int idx, i;
519		u64 supported = kvm_supported_xcr0();
520
521		entry->eax &= supported;
522		entry->ebx = xstate_required_size(supported, false);
523		entry->ecx = entry->ebx;
524		entry->edx &= supported >> 32;
525		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526		if (!supported)
527			break;
528
529		for (idx = 1, i = 1; idx < 64; ++idx) {
530			u64 mask = ((u64)1 << idx);
531			if (*nent >= maxnent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532				goto out;
533
534			do_cpuid_1_ent(&entry[i], function, idx);
535			if (idx == 1) {
536				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
537				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
538				entry[i].ebx = 0;
539				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
540					entry[i].ebx =
541						xstate_required_size(supported,
542								     true);
543			} else {
544				if (entry[i].eax == 0 || !(supported & mask))
545					continue;
546				if (WARN_ON_ONCE(entry[i].ecx & 1))
547					continue;
548			}
549			entry[i].ecx = 0;
550			entry[i].edx = 0;
551			entry[i].flags |=
552			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
553			++*nent;
554			++i;
 
 
 
 
 
 
 
555		}
556		break;
557	}
558	case KVM_CPUID_SIGNATURE: {
559		static const char signature[12] = "KVMKVMKVM\0\0";
560		const u32 *sigptr = (const u32 *)signature;
561		entry->eax = KVM_CPUID_FEATURES;
562		entry->ebx = sigptr[0];
563		entry->ecx = sigptr[1];
564		entry->edx = sigptr[2];
565		break;
566	}
567	case KVM_CPUID_FEATURES:
568		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
569			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
570			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
571			     (1 << KVM_FEATURE_ASYNC_PF) |
572			     (1 << KVM_FEATURE_PV_EOI) |
573			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
574			     (1 << KVM_FEATURE_PV_UNHALT);
 
 
 
 
 
 
575
576		if (sched_info_on())
577			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
578
579		entry->ebx = 0;
580		entry->ecx = 0;
581		entry->edx = 0;
582		break;
583	case 0x80000000:
584		entry->eax = min(entry->eax, 0x8000001a);
585		break;
586	case 0x80000001:
587		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
588		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
589		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
590		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 
591		break;
592	case 0x80000007: /* Advanced power management */
593		/* invariant TSC is CPUID.80000007H:EDX[8] */
594		entry->edx &= (1 << 8);
595		/* mask against host */
596		entry->edx &= boot_cpu_data.x86_power;
597		entry->eax = entry->ebx = entry->ecx = 0;
598		break;
599	case 0x80000008: {
600		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
601		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
602		unsigned phys_as = entry->eax & 0xff;
603
604		if (!g_phys_as)
605			g_phys_as = phys_as;
606		entry->eax = g_phys_as | (virt_as << 8);
607		entry->ebx = entry->edx = 0;
 
608		break;
609	}
 
 
 
 
 
 
 
 
 
 
 
610	case 0x80000019:
611		entry->ecx = entry->edx = 0;
612		break;
613	case 0x8000001a:
 
614		break;
615	case 0x8000001d:
 
 
 
616		break;
617	/*Add support for Centaur's CPUID instruction*/
618	case 0xC0000000:
619		/*Just support up to 0xC0000004 now*/
620		entry->eax = min(entry->eax, 0xC0000004);
621		break;
622	case 0xC0000001:
623		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
624		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
625		break;
626	case 3: /* Processor serial number */
627	case 5: /* MONITOR/MWAIT */
628	case 0xC0000002:
629	case 0xC0000003:
630	case 0xC0000004:
631	default:
632		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
633		break;
634	}
635
636	kvm_x86_ops->set_supported_cpuid(function, entry);
637
638	r = 0;
639
640out:
641	put_cpu();
642
643	return r;
644}
645
646static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
647			u32 idx, int *nent, int maxnent, unsigned int type)
648{
649	if (type == KVM_GET_EMULATED_CPUID)
650		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
651
652	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
653}
654
655#undef F
 
 
 
 
 
 
656
657struct kvm_cpuid_param {
658	u32 func;
659	u32 idx;
660	bool has_leaf_count;
661	bool (*qualifier)(const struct kvm_cpuid_param *param);
662};
 
 
 
 
 
 
 
 
663
664static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
665{
666	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
667}
668
669static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
670				 __u32 num_entries, unsigned int ioctl_type)
671{
672	int i;
673	__u32 pad[3];
674
675	if (ioctl_type != KVM_GET_EMULATED_CPUID)
676		return false;
677
678	/*
679	 * We want to make sure that ->padding is being passed clean from
680	 * userspace in case we want to use it for something in the future.
681	 *
682	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
683	 * have to give ourselves satisfied only with the emulated side. /me
684	 * sheds a tear.
685	 */
686	for (i = 0; i < num_entries; i++) {
687		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
688			return true;
689
690		if (pad[0] || pad[1] || pad[2])
691			return true;
692	}
693	return false;
694}
695
696int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
697			    struct kvm_cpuid_entry2 __user *entries,
698			    unsigned int type)
699{
700	struct kvm_cpuid_entry2 *cpuid_entries;
701	int limit, nent = 0, r = -E2BIG, i;
702	u32 func;
703	static const struct kvm_cpuid_param param[] = {
704		{ .func = 0, .has_leaf_count = true },
705		{ .func = 0x80000000, .has_leaf_count = true },
706		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
707		{ .func = KVM_CPUID_SIGNATURE },
708		{ .func = KVM_CPUID_FEATURES },
709	};
710
 
 
 
 
 
711	if (cpuid->nent < 1)
712		goto out;
713	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
714		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
715
716	if (sanity_check_entries(entries, cpuid->nent, type))
717		return -EINVAL;
718
719	r = -ENOMEM;
720	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
721	if (!cpuid_entries)
722		goto out;
723
724	r = 0;
725	for (i = 0; i < ARRAY_SIZE(param); i++) {
726		const struct kvm_cpuid_param *ent = &param[i];
727
728		if (ent->qualifier && !ent->qualifier(ent))
729			continue;
730
731		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
732				&nent, cpuid->nent, type);
733
734		if (r)
735			goto out_free;
736
737		if (!ent->has_leaf_count)
738			continue;
739
740		limit = cpuid_entries[nent - 1].eax;
741		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
742			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
743				     &nent, cpuid->nent, type);
744
 
 
745		if (r)
746			goto out_free;
747	}
 
748
749	r = -EFAULT;
750	if (copy_to_user(entries, cpuid_entries,
751			 nent * sizeof(struct kvm_cpuid_entry2)))
752		goto out_free;
753	cpuid->nent = nent;
754	r = 0;
755
756out_free:
757	vfree(cpuid_entries);
758out:
759	return r;
760}
761
762static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
763{
764	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
765	int j, nent = vcpu->arch.cpuid_nent;
766
767	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
768	/* when no next entry is found, the current entry[i] is reselected */
769	for (j = i + 1; ; j = (j + 1) % nent) {
770		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
771		if (ej->function == e->function) {
772			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
773			return j;
774		}
775	}
776	return 0; /* silence gcc, even though control never reaches here */
777}
778
779/* find an entry with matching function, matching index (if needed), and that
780 * should be read next (if it's stateful) */
781static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
782	u32 function, u32 index)
783{
784	if (e->function != function)
785		return 0;
786	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
787		return 0;
788	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
789	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
790		return 0;
791	return 1;
792}
793
794struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
795					      u32 function, u32 index)
796{
 
797	int i;
798	struct kvm_cpuid_entry2 *best = NULL;
799
800	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
801		struct kvm_cpuid_entry2 *e;
802
803		e = &vcpu->arch.cpuid_entries[i];
804		if (is_matching_cpuid_entry(e, function, index)) {
805			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
806				move_to_next_stateful_cpuid_entry(vcpu, i);
807			best = e;
808			break;
809		}
810	}
811	return best;
812}
813EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
814
815/*
816 * If no match is found, check whether we exceed the vCPU's limit
817 * and return the content of the highest valid _standard_ leaf instead.
818 * This is to satisfy the CPUID specification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819 */
820static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
821                                                  u32 function, u32 index)
822{
823	struct kvm_cpuid_entry2 *maxlevel;
 
 
 
 
 
824
825	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
826	if (!maxlevel || maxlevel->eax >= function)
827		return NULL;
828	if (function & 0x80000000) {
829		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
830		if (!maxlevel)
831			return NULL;
832	}
833	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
834}
835
836void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
837{
838	u32 function = *eax, index = *ecx;
839	struct kvm_cpuid_entry2 *best;
 
 
840
841	best = kvm_find_cpuid_entry(vcpu, function, index);
 
842
843	if (!best)
844		best = check_cpuid_limit(vcpu, function, index);
 
 
 
 
 
845
846	/*
847	 * Perfmon not yet supported for L2 guest.
 
 
848	 */
849	if (is_guest_mode(vcpu) && function == 0xa)
850		best = NULL;
851
852	if (best) {
853		*eax = best->eax;
854		*ebx = best->ebx;
855		*ecx = best->ecx;
856		*edx = best->edx;
857	} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858		*eax = *ebx = *ecx = *edx = 0;
859	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860}
861EXPORT_SYMBOL_GPL(kvm_cpuid);
862
863void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
864{
865	u32 function, eax, ebx, ecx, edx;
 
 
 
866
867	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
868	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
869	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
870	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
871	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
872	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
873	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
874	kvm_x86_ops->skip_emulated_instruction(vcpu);
875}
876EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);