Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12#include <linux/kvm_host.h>
13#include <linux/export.h>
14#include <linux/vmalloc.h>
15#include <linux/uaccess.h>
16#include <linux/sched/stat.h>
17
18#include <asm/processor.h>
19#include <asm/user.h>
20#include <asm/fpu/xstate.h>
21#include "cpuid.h"
22#include "lapic.h"
23#include "mmu.h"
24#include "trace.h"
25#include "pmu.h"
26
27/*
28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30 */
31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35{
36 int feature_bit = 0;
37 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39 xstate_bv &= XFEATURE_MASK_EXTEND;
40 while (xstate_bv) {
41 if (xstate_bv & 0x1) {
42 u32 eax, ebx, ecx, edx, offset;
43 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 offset = compacted ? ret : ebx;
45 ret = max(ret, offset + eax);
46 }
47
48 xstate_bv >>= 1;
49 feature_bit++;
50 }
51
52 return ret;
53}
54
55#define F feature_bit
56
57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
58{
59 struct kvm_cpuid_entry2 *best;
60
61 /*
62 * The existing code assumes virtual address is 48-bit or 57-bit in the
63 * canonical address checks; exit if it is ever changed.
64 */
65 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
66 if (best) {
67 int vaddr_bits = (best->eax & 0xff00) >> 8;
68
69 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
70 return -EINVAL;
71 }
72
73 return 0;
74}
75
76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
77{
78 struct kvm_cpuid_entry2 *best;
79
80 best = kvm_find_cpuid_entry(vcpu, 1, 0);
81 if (best) {
82 /* Update OSXSAVE bit */
83 if (boot_cpu_has(X86_FEATURE_XSAVE))
84 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
85 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
86
87 cpuid_entry_change(best, X86_FEATURE_APIC,
88 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
89 }
90
91 best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
93 cpuid_entry_change(best, X86_FEATURE_OSPKE,
94 kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
95
96 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
97 if (best)
98 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
99
100 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
101 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
102 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
103 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
104
105 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
106 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
107 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
108 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
109
110 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
111 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
112 if (best)
113 cpuid_entry_change(best, X86_FEATURE_MWAIT,
114 vcpu->arch.ia32_misc_enable_msr &
115 MSR_IA32_MISC_ENABLE_MWAIT);
116 }
117}
118
119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
120{
121 struct kvm_lapic *apic = vcpu->arch.apic;
122 struct kvm_cpuid_entry2 *best;
123
124 kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
125
126 best = kvm_find_cpuid_entry(vcpu, 1, 0);
127 if (best && apic) {
128 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
129 apic->lapic_timer.timer_mode_mask = 3 << 17;
130 else
131 apic->lapic_timer.timer_mode_mask = 1 << 17;
132
133 kvm_apic_set_version(vcpu);
134 }
135
136 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
137 if (!best)
138 vcpu->arch.guest_supported_xcr0 = 0;
139 else
140 vcpu->arch.guest_supported_xcr0 =
141 (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
142
143 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
144 kvm_mmu_reset_context(vcpu);
145
146 kvm_pmu_refresh(vcpu);
147 vcpu->arch.cr4_guest_rsvd_bits =
148 __cr4_reserved_bits(guest_cpuid_has, vcpu);
149 kvm_x86_ops.update_exception_bitmap(vcpu);
150}
151
152static int is_efer_nx(void)
153{
154 return host_efer & EFER_NX;
155}
156
157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
158{
159 int i;
160 struct kvm_cpuid_entry2 *e, *entry;
161
162 entry = NULL;
163 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
164 e = &vcpu->arch.cpuid_entries[i];
165 if (e->function == 0x80000001) {
166 entry = e;
167 break;
168 }
169 }
170 if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
171 cpuid_entry_clear(entry, X86_FEATURE_NX);
172 printk(KERN_INFO "kvm: guest NX capability removed\n");
173 }
174}
175
176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
177{
178 struct kvm_cpuid_entry2 *best;
179
180 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
181 if (!best || best->eax < 0x80000008)
182 goto not_found;
183 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
184 if (best)
185 return best->eax & 0xff;
186not_found:
187 return 36;
188}
189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
190
191/* when an old userspace process fills a new kernel module */
192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
193 struct kvm_cpuid *cpuid,
194 struct kvm_cpuid_entry __user *entries)
195{
196 int r, i;
197 struct kvm_cpuid_entry *cpuid_entries = NULL;
198
199 r = -E2BIG;
200 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
201 goto out;
202 if (cpuid->nent) {
203 cpuid_entries = vmemdup_user(entries,
204 array_size(sizeof(struct kvm_cpuid_entry),
205 cpuid->nent));
206 if (IS_ERR(cpuid_entries)) {
207 r = PTR_ERR(cpuid_entries);
208 goto out;
209 }
210 }
211 for (i = 0; i < cpuid->nent; i++) {
212 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
213 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
214 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
215 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
216 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
217 vcpu->arch.cpuid_entries[i].index = 0;
218 vcpu->arch.cpuid_entries[i].flags = 0;
219 vcpu->arch.cpuid_entries[i].padding[0] = 0;
220 vcpu->arch.cpuid_entries[i].padding[1] = 0;
221 vcpu->arch.cpuid_entries[i].padding[2] = 0;
222 }
223 vcpu->arch.cpuid_nent = cpuid->nent;
224 r = kvm_check_cpuid(vcpu);
225 if (r) {
226 vcpu->arch.cpuid_nent = 0;
227 kvfree(cpuid_entries);
228 goto out;
229 }
230
231 cpuid_fix_nx_cap(vcpu);
232 kvm_update_cpuid_runtime(vcpu);
233 kvm_vcpu_after_set_cpuid(vcpu);
234
235 kvfree(cpuid_entries);
236out:
237 return r;
238}
239
240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
241 struct kvm_cpuid2 *cpuid,
242 struct kvm_cpuid_entry2 __user *entries)
243{
244 int r;
245
246 r = -E2BIG;
247 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
248 goto out;
249 r = -EFAULT;
250 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
251 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
252 goto out;
253 vcpu->arch.cpuid_nent = cpuid->nent;
254 r = kvm_check_cpuid(vcpu);
255 if (r) {
256 vcpu->arch.cpuid_nent = 0;
257 goto out;
258 }
259
260 kvm_update_cpuid_runtime(vcpu);
261 kvm_vcpu_after_set_cpuid(vcpu);
262out:
263 return r;
264}
265
266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
267 struct kvm_cpuid2 *cpuid,
268 struct kvm_cpuid_entry2 __user *entries)
269{
270 int r;
271
272 r = -E2BIG;
273 if (cpuid->nent < vcpu->arch.cpuid_nent)
274 goto out;
275 r = -EFAULT;
276 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
277 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
278 goto out;
279 return 0;
280
281out:
282 cpuid->nent = vcpu->arch.cpuid_nent;
283 return r;
284}
285
286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
287{
288 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
289 struct kvm_cpuid_entry2 entry;
290
291 reverse_cpuid_check(leaf);
292 kvm_cpu_caps[leaf] &= mask;
293
294 cpuid_count(cpuid.function, cpuid.index,
295 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
296
297 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
298}
299
300void kvm_set_cpu_caps(void)
301{
302 unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
303#ifdef CONFIG_X86_64
304 unsigned int f_gbpages = F(GBPAGES);
305 unsigned int f_lm = F(LM);
306#else
307 unsigned int f_gbpages = 0;
308 unsigned int f_lm = 0;
309#endif
310
311 BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
312 sizeof(boot_cpu_data.x86_capability));
313
314 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
315 sizeof(kvm_cpu_caps));
316
317 kvm_cpu_cap_mask(CPUID_1_ECX,
318 /*
319 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
320 * advertised to guests via CPUID!
321 */
322 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
323 0 /* DS-CPL, VMX, SMX, EST */ |
324 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
325 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
326 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
327 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
328 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
329 F(F16C) | F(RDRAND)
330 );
331 /* KVM emulates x2apic in software irrespective of host support. */
332 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
333
334 kvm_cpu_cap_mask(CPUID_1_EDX,
335 F(FPU) | F(VME) | F(DE) | F(PSE) |
336 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
337 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
338 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
339 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
340 0 /* Reserved, DS, ACPI */ | F(MMX) |
341 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
342 0 /* HTT, TM, Reserved, PBE */
343 );
344
345 kvm_cpu_cap_mask(CPUID_7_0_EBX,
346 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
347 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
348 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
349 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
350 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
351 );
352
353 kvm_cpu_cap_mask(CPUID_7_ECX,
354 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
355 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
356 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
357 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
358 );
359 /* Set LA57 based on hardware capability. */
360 if (cpuid_ecx(7) & F(LA57))
361 kvm_cpu_cap_set(X86_FEATURE_LA57);
362
363 /*
364 * PKU not yet implemented for shadow paging and requires OSPKE
365 * to be set on the host. Clear it if that is not the case
366 */
367 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
368 kvm_cpu_cap_clear(X86_FEATURE_PKU);
369
370 kvm_cpu_cap_mask(CPUID_7_EDX,
371 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
372 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
373 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
374 F(SERIALIZE)
375 );
376
377 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
378 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
379 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
380
381 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
382 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
383 if (boot_cpu_has(X86_FEATURE_STIBP))
384 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
385 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
386 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
387
388 kvm_cpu_cap_mask(CPUID_7_1_EAX,
389 F(AVX512_BF16)
390 );
391
392 kvm_cpu_cap_mask(CPUID_D_1_EAX,
393 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
394 );
395
396 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
397 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
398 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
399 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
400 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
401 F(TOPOEXT) | F(PERFCTR_CORE)
402 );
403
404 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
405 F(FPU) | F(VME) | F(DE) | F(PSE) |
406 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
407 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
408 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
409 F(PAT) | F(PSE36) | 0 /* Reserved */ |
410 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
411 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
412 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
413 );
414
415 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
416 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
417
418 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
419 F(CLZERO) | F(XSAVEERPTR) |
420 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
421 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
422 );
423
424 /*
425 * AMD has separate bits for each SPEC_CTRL bit.
426 * arch/x86/kernel/cpu/bugs.c is kind enough to
427 * record that in cpufeatures so use them.
428 */
429 if (boot_cpu_has(X86_FEATURE_IBPB))
430 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
431 if (boot_cpu_has(X86_FEATURE_IBRS))
432 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
433 if (boot_cpu_has(X86_FEATURE_STIBP))
434 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
435 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
436 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
437 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
438 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
439 /*
440 * The preference is to use SPEC CTRL MSR instead of the
441 * VIRT_SPEC MSR.
442 */
443 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
444 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
445 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
446
447 /*
448 * Hide all SVM features by default, SVM will set the cap bits for
449 * features it emulates and/or exposes for L1.
450 */
451 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
452
453 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
454 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
455 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
456 F(PMM) | F(PMM_EN)
457 );
458}
459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
460
461struct kvm_cpuid_array {
462 struct kvm_cpuid_entry2 *entries;
463 int maxnent;
464 int nent;
465};
466
467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
468 u32 function, u32 index)
469{
470 struct kvm_cpuid_entry2 *entry;
471
472 if (array->nent >= array->maxnent)
473 return NULL;
474
475 entry = &array->entries[array->nent++];
476
477 entry->function = function;
478 entry->index = index;
479 entry->flags = 0;
480
481 cpuid_count(entry->function, entry->index,
482 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
483
484 switch (function) {
485 case 4:
486 case 7:
487 case 0xb:
488 case 0xd:
489 case 0xf:
490 case 0x10:
491 case 0x12:
492 case 0x14:
493 case 0x17:
494 case 0x18:
495 case 0x1f:
496 case 0x8000001d:
497 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
498 break;
499 }
500
501 return entry;
502}
503
504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
505{
506 struct kvm_cpuid_entry2 *entry;
507
508 if (array->nent >= array->maxnent)
509 return -E2BIG;
510
511 entry = &array->entries[array->nent];
512 entry->function = func;
513 entry->index = 0;
514 entry->flags = 0;
515
516 switch (func) {
517 case 0:
518 entry->eax = 7;
519 ++array->nent;
520 break;
521 case 1:
522 entry->ecx = F(MOVBE);
523 ++array->nent;
524 break;
525 case 7:
526 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
527 entry->eax = 0;
528 entry->ecx = F(RDPID);
529 ++array->nent;
530 default:
531 break;
532 }
533
534 return 0;
535}
536
537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
538{
539 struct kvm_cpuid_entry2 *entry;
540 int r, i, max_idx;
541
542 /* all calls to cpuid_count() should be made on the same cpu */
543 get_cpu();
544
545 r = -E2BIG;
546
547 entry = do_host_cpuid(array, function, 0);
548 if (!entry)
549 goto out;
550
551 switch (function) {
552 case 0:
553 /* Limited to the highest leaf implemented in KVM. */
554 entry->eax = min(entry->eax, 0x1fU);
555 break;
556 case 1:
557 cpuid_entry_override(entry, CPUID_1_EDX);
558 cpuid_entry_override(entry, CPUID_1_ECX);
559 break;
560 case 2:
561 /*
562 * On ancient CPUs, function 2 entries are STATEFUL. That is,
563 * CPUID(function=2, index=0) may return different results each
564 * time, with the least-significant byte in EAX enumerating the
565 * number of times software should do CPUID(2, 0).
566 *
567 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
568 * idiotic. Intel's SDM states that EAX & 0xff "will always
569 * return 01H. Software should ignore this value and not
570 * interpret it as an informational descriptor", while AMD's
571 * APM states that CPUID(2) is reserved.
572 *
573 * WARN if a frankenstein CPU that supports virtualization and
574 * a stateful CPUID.0x2 is encountered.
575 */
576 WARN_ON_ONCE((entry->eax & 0xff) > 1);
577 break;
578 /* functions 4 and 0x8000001d have additional index. */
579 case 4:
580 case 0x8000001d:
581 /*
582 * Read entries until the cache type in the previous entry is
583 * zero, i.e. indicates an invalid entry.
584 */
585 for (i = 1; entry->eax & 0x1f; ++i) {
586 entry = do_host_cpuid(array, function, i);
587 if (!entry)
588 goto out;
589 }
590 break;
591 case 6: /* Thermal management */
592 entry->eax = 0x4; /* allow ARAT */
593 entry->ebx = 0;
594 entry->ecx = 0;
595 entry->edx = 0;
596 break;
597 /* function 7 has additional index. */
598 case 7:
599 entry->eax = min(entry->eax, 1u);
600 cpuid_entry_override(entry, CPUID_7_0_EBX);
601 cpuid_entry_override(entry, CPUID_7_ECX);
602 cpuid_entry_override(entry, CPUID_7_EDX);
603
604 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
605 if (entry->eax == 1) {
606 entry = do_host_cpuid(array, function, 1);
607 if (!entry)
608 goto out;
609
610 cpuid_entry_override(entry, CPUID_7_1_EAX);
611 entry->ebx = 0;
612 entry->ecx = 0;
613 entry->edx = 0;
614 }
615 break;
616 case 9:
617 break;
618 case 0xa: { /* Architectural Performance Monitoring */
619 struct x86_pmu_capability cap;
620 union cpuid10_eax eax;
621 union cpuid10_edx edx;
622
623 perf_get_x86_pmu_capability(&cap);
624
625 /*
626 * Only support guest architectural pmu on a host
627 * with architectural pmu.
628 */
629 if (!cap.version)
630 memset(&cap, 0, sizeof(cap));
631
632 eax.split.version_id = min(cap.version, 2);
633 eax.split.num_counters = cap.num_counters_gp;
634 eax.split.bit_width = cap.bit_width_gp;
635 eax.split.mask_length = cap.events_mask_len;
636
637 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
638 edx.split.bit_width_fixed = cap.bit_width_fixed;
639 edx.split.reserved = 0;
640
641 entry->eax = eax.full;
642 entry->ebx = cap.events_mask;
643 entry->ecx = 0;
644 entry->edx = edx.full;
645 break;
646 }
647 /*
648 * Per Intel's SDM, the 0x1f is a superset of 0xb,
649 * thus they can be handled by common code.
650 */
651 case 0x1f:
652 case 0xb:
653 /*
654 * Populate entries until the level type (ECX[15:8]) of the
655 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
656 * the starting entry, filled by the primary do_host_cpuid().
657 */
658 for (i = 1; entry->ecx & 0xff00; ++i) {
659 entry = do_host_cpuid(array, function, i);
660 if (!entry)
661 goto out;
662 }
663 break;
664 case 0xd:
665 entry->eax &= supported_xcr0;
666 entry->ebx = xstate_required_size(supported_xcr0, false);
667 entry->ecx = entry->ebx;
668 entry->edx &= supported_xcr0 >> 32;
669 if (!supported_xcr0)
670 break;
671
672 entry = do_host_cpuid(array, function, 1);
673 if (!entry)
674 goto out;
675
676 cpuid_entry_override(entry, CPUID_D_1_EAX);
677 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
678 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
679 true);
680 else {
681 WARN_ON_ONCE(supported_xss != 0);
682 entry->ebx = 0;
683 }
684 entry->ecx &= supported_xss;
685 entry->edx &= supported_xss >> 32;
686
687 for (i = 2; i < 64; ++i) {
688 bool s_state;
689 if (supported_xcr0 & BIT_ULL(i))
690 s_state = false;
691 else if (supported_xss & BIT_ULL(i))
692 s_state = true;
693 else
694 continue;
695
696 entry = do_host_cpuid(array, function, i);
697 if (!entry)
698 goto out;
699
700 /*
701 * The supported check above should have filtered out
702 * invalid sub-leafs. Only valid sub-leafs should
703 * reach this point, and they should have a non-zero
704 * save state size. Furthermore, check whether the
705 * processor agrees with supported_xcr0/supported_xss
706 * on whether this is an XCR0- or IA32_XSS-managed area.
707 */
708 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
709 --array->nent;
710 continue;
711 }
712 entry->edx = 0;
713 }
714 break;
715 /* Intel PT */
716 case 0x14:
717 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
718 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
719 break;
720 }
721
722 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
723 if (!do_host_cpuid(array, function, i))
724 goto out;
725 }
726 break;
727 case KVM_CPUID_SIGNATURE: {
728 static const char signature[12] = "KVMKVMKVM\0\0";
729 const u32 *sigptr = (const u32 *)signature;
730 entry->eax = KVM_CPUID_FEATURES;
731 entry->ebx = sigptr[0];
732 entry->ecx = sigptr[1];
733 entry->edx = sigptr[2];
734 break;
735 }
736 case KVM_CPUID_FEATURES:
737 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
738 (1 << KVM_FEATURE_NOP_IO_DELAY) |
739 (1 << KVM_FEATURE_CLOCKSOURCE2) |
740 (1 << KVM_FEATURE_ASYNC_PF) |
741 (1 << KVM_FEATURE_PV_EOI) |
742 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
743 (1 << KVM_FEATURE_PV_UNHALT) |
744 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
745 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
746 (1 << KVM_FEATURE_PV_SEND_IPI) |
747 (1 << KVM_FEATURE_POLL_CONTROL) |
748 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
749 (1 << KVM_FEATURE_ASYNC_PF_INT);
750
751 if (sched_info_on())
752 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
753
754 entry->ebx = 0;
755 entry->ecx = 0;
756 entry->edx = 0;
757 break;
758 case 0x80000000:
759 entry->eax = min(entry->eax, 0x8000001f);
760 break;
761 case 0x80000001:
762 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
763 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
764 break;
765 case 0x80000006:
766 /* L2 cache and TLB: pass through host info. */
767 break;
768 case 0x80000007: /* Advanced power management */
769 /* invariant TSC is CPUID.80000007H:EDX[8] */
770 entry->edx &= (1 << 8);
771 /* mask against host */
772 entry->edx &= boot_cpu_data.x86_power;
773 entry->eax = entry->ebx = entry->ecx = 0;
774 break;
775 case 0x80000008: {
776 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
777 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
778 unsigned phys_as = entry->eax & 0xff;
779
780 if (!g_phys_as)
781 g_phys_as = phys_as;
782 entry->eax = g_phys_as | (virt_as << 8);
783 entry->edx = 0;
784 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
785 break;
786 }
787 case 0x8000000A:
788 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
789 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
790 break;
791 }
792 entry->eax = 1; /* SVM revision 1 */
793 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
794 ASID emulation to nested SVM */
795 entry->ecx = 0; /* Reserved */
796 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
797 break;
798 case 0x80000019:
799 entry->ecx = entry->edx = 0;
800 break;
801 case 0x8000001a:
802 case 0x8000001e:
803 break;
804 /* Support memory encryption cpuid if host supports it */
805 case 0x8000001F:
806 if (!boot_cpu_has(X86_FEATURE_SEV))
807 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
808 break;
809 /*Add support for Centaur's CPUID instruction*/
810 case 0xC0000000:
811 /*Just support up to 0xC0000004 now*/
812 entry->eax = min(entry->eax, 0xC0000004);
813 break;
814 case 0xC0000001:
815 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
816 break;
817 case 3: /* Processor serial number */
818 case 5: /* MONITOR/MWAIT */
819 case 0xC0000002:
820 case 0xC0000003:
821 case 0xC0000004:
822 default:
823 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
824 break;
825 }
826
827 r = 0;
828
829out:
830 put_cpu();
831
832 return r;
833}
834
835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
836 unsigned int type)
837{
838 if (type == KVM_GET_EMULATED_CPUID)
839 return __do_cpuid_func_emulated(array, func);
840
841 return __do_cpuid_func(array, func);
842}
843
844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
845
846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
847 unsigned int type)
848{
849 u32 limit;
850 int r;
851
852 if (func == CENTAUR_CPUID_SIGNATURE &&
853 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
854 return 0;
855
856 r = do_cpuid_func(array, func, type);
857 if (r)
858 return r;
859
860 limit = array->entries[array->nent - 1].eax;
861 for (func = func + 1; func <= limit; ++func) {
862 r = do_cpuid_func(array, func, type);
863 if (r)
864 break;
865 }
866
867 return r;
868}
869
870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
871 __u32 num_entries, unsigned int ioctl_type)
872{
873 int i;
874 __u32 pad[3];
875
876 if (ioctl_type != KVM_GET_EMULATED_CPUID)
877 return false;
878
879 /*
880 * We want to make sure that ->padding is being passed clean from
881 * userspace in case we want to use it for something in the future.
882 *
883 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
884 * have to give ourselves satisfied only with the emulated side. /me
885 * sheds a tear.
886 */
887 for (i = 0; i < num_entries; i++) {
888 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
889 return true;
890
891 if (pad[0] || pad[1] || pad[2])
892 return true;
893 }
894 return false;
895}
896
897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
898 struct kvm_cpuid_entry2 __user *entries,
899 unsigned int type)
900{
901 static const u32 funcs[] = {
902 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
903 };
904
905 struct kvm_cpuid_array array = {
906 .nent = 0,
907 };
908 int r, i;
909
910 if (cpuid->nent < 1)
911 return -E2BIG;
912 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
913 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
914
915 if (sanity_check_entries(entries, cpuid->nent, type))
916 return -EINVAL;
917
918 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
919 cpuid->nent));
920 if (!array.entries)
921 return -ENOMEM;
922
923 array.maxnent = cpuid->nent;
924
925 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
926 r = get_cpuid_func(&array, funcs[i], type);
927 if (r)
928 goto out_free;
929 }
930 cpuid->nent = array.nent;
931
932 if (copy_to_user(entries, array.entries,
933 array.nent * sizeof(struct kvm_cpuid_entry2)))
934 r = -EFAULT;
935
936out_free:
937 vfree(array.entries);
938 return r;
939}
940
941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
942 u32 function, u32 index)
943{
944 struct kvm_cpuid_entry2 *e;
945 int i;
946
947 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
948 e = &vcpu->arch.cpuid_entries[i];
949
950 if (e->function == function && (e->index == index ||
951 !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
952 return e;
953 }
954 return NULL;
955}
956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
957
958/*
959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
962 * range. Centaur/VIA follows Intel semantics.
963 *
964 * A leaf is considered out-of-range if its function is higher than the maximum
965 * supported leaf of its associated class or if its associated class does not
966 * exist.
967 *
968 * There are three primary classes to be considered, with their respective
969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
970 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
972 *
973 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
974 * - Hypervisor: 0x40000000 - 0x4fffffff
975 * - Extended: 0x80000000 - 0xbfffffff
976 * - Centaur: 0xc0000000 - 0xcfffffff
977 *
978 * The Hypervisor class is further subdivided into sub-classes that each act as
979 * their own indepdent class associated with a 0x100 byte range. E.g. if Qemu
980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
981 * CPUID sub-classes are:
982 *
983 * - HyperV: 0x40000000 - 0x400000ff
984 * - KVM: 0x40000100 - 0x400001ff
985 */
986static struct kvm_cpuid_entry2 *
987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
988{
989 struct kvm_cpuid_entry2 *basic, *class;
990 u32 function = *fn_ptr;
991
992 basic = kvm_find_cpuid_entry(vcpu, 0, 0);
993 if (!basic)
994 return NULL;
995
996 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
997 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
998 return NULL;
999
1000 if (function >= 0x40000000 && function <= 0x4fffffff)
1001 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002 else if (function >= 0xc0000000)
1003 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004 else
1005 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007 if (class && function <= class->eax)
1008 return NULL;
1009
1010 /*
1011 * Leaf specific adjustments are also applied when redirecting to the
1012 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013 * entry for CPUID.0xb.index (see below), then the output value for EDX
1014 * needs to be pulled from CPUID.0xb.1.
1015 */
1016 *fn_ptr = basic->eax;
1017
1018 /*
1019 * The class does not exist or the requested function is out of range;
1020 * the effective CPUID entry is the max basic leaf. Note, the index of
1021 * the original requested leaf is observed!
1022 */
1023 return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027 u32 *ecx, u32 *edx, bool exact_only)
1028{
1029 u32 orig_function = *eax, function = *eax, index = *ecx;
1030 struct kvm_cpuid_entry2 *entry;
1031 bool exact, used_max_basic = false;
1032
1033 entry = kvm_find_cpuid_entry(vcpu, function, index);
1034 exact = !!entry;
1035
1036 if (!entry && !exact_only) {
1037 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038 used_max_basic = !!entry;
1039 }
1040
1041 if (entry) {
1042 *eax = entry->eax;
1043 *ebx = entry->ebx;
1044 *ecx = entry->ecx;
1045 *edx = entry->edx;
1046 if (function == 7 && index == 0) {
1047 u64 data;
1048 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049 (data & TSX_CTRL_CPUID_CLEAR))
1050 *ebx &= ~(F(RTM) | F(HLE));
1051 }
1052 } else {
1053 *eax = *ebx = *ecx = *edx = 0;
1054 /*
1055 * When leaf 0BH or 1FH is defined, CL is pass-through
1056 * and EDX is always the x2APIC ID, even for undefined
1057 * subleaves. Index 1 will exist iff the leaf is
1058 * implemented, so we pass through CL iff leaf 1
1059 * exists. EDX can be copied from any existing index.
1060 */
1061 if (function == 0xb || function == 0x1f) {
1062 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063 if (entry) {
1064 *ecx = index & 0xff;
1065 *edx = entry->edx;
1066 }
1067 }
1068 }
1069 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070 used_max_basic);
1071 return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077 u32 eax, ebx, ecx, edx;
1078
1079 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080 return 1;
1081
1082 eax = kvm_rax_read(vcpu);
1083 ecx = kvm_rcx_read(vcpu);
1084 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085 kvm_rax_write(vcpu, eax);
1086 kvm_rbx_write(vcpu, ebx);
1087 kvm_rcx_write(vcpu, ecx);
1088 kvm_rdx_write(vcpu, edx);
1089 return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
12 *
13 */
14
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/uaccess.h>
19#include <asm/fpu/internal.h> /* For use_eager_fpu. Ugh! */
20#include <asm/user.h>
21#include <asm/fpu/xstate.h>
22#include "cpuid.h"
23#include "lapic.h"
24#include "mmu.h"
25#include "trace.h"
26#include "pmu.h"
27
28static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29{
30 int feature_bit = 0;
31 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32
33 xstate_bv &= XFEATURE_MASK_EXTEND;
34 while (xstate_bv) {
35 if (xstate_bv & 0x1) {
36 u32 eax, ebx, ecx, edx, offset;
37 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38 offset = compacted ? ret : ebx;
39 ret = max(ret, offset + eax);
40 }
41
42 xstate_bv >>= 1;
43 feature_bit++;
44 }
45
46 return ret;
47}
48
49bool kvm_mpx_supported(void)
50{
51 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52 && kvm_x86_ops->mpx_supported());
53}
54EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55
56u64 kvm_supported_xcr0(void)
57{
58 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59
60 if (!kvm_mpx_supported())
61 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62
63 return xcr0;
64}
65
66#define F(x) bit(X86_FEATURE_##x)
67
68int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69{
70 struct kvm_cpuid_entry2 *best;
71 struct kvm_lapic *apic = vcpu->arch.apic;
72
73 best = kvm_find_cpuid_entry(vcpu, 1, 0);
74 if (!best)
75 return 0;
76
77 /* Update OSXSAVE bit */
78 if (cpu_has_xsave && best->function == 0x1) {
79 best->ecx &= ~F(OSXSAVE);
80 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81 best->ecx |= F(OSXSAVE);
82 }
83
84 if (apic) {
85 if (best->ecx & F(TSC_DEADLINE_TIMER))
86 apic->lapic_timer.timer_mode_mask = 3 << 17;
87 else
88 apic->lapic_timer.timer_mode_mask = 1 << 17;
89 }
90
91 best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 if (best) {
93 /* Update OSPKE bit */
94 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
95 best->ecx &= ~F(OSPKE);
96 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
97 best->ecx |= F(OSPKE);
98 }
99 }
100
101 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102 if (!best) {
103 vcpu->arch.guest_supported_xcr0 = 0;
104 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105 } else {
106 vcpu->arch.guest_supported_xcr0 =
107 (best->eax | ((u64)best->edx << 32)) &
108 kvm_supported_xcr0();
109 vcpu->arch.guest_xstate_size = best->ebx =
110 xstate_required_size(vcpu->arch.xcr0, false);
111 }
112
113 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116
117 if (use_eager_fpu())
118 kvm_x86_ops->fpu_activate(vcpu);
119
120 /*
121 * The existing code assumes virtual address is 48-bit in the canonical
122 * address checks; exit if it is ever changed.
123 */
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126 ((best->eax & 0xff00) >> 8) != 0)
127 return -EINVAL;
128
129 /* Update physical-address width */
130 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
131
132 kvm_pmu_refresh(vcpu);
133 return 0;
134}
135
136static int is_efer_nx(void)
137{
138 unsigned long long efer = 0;
139
140 rdmsrl_safe(MSR_EFER, &efer);
141 return efer & EFER_NX;
142}
143
144static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145{
146 int i;
147 struct kvm_cpuid_entry2 *e, *entry;
148
149 entry = NULL;
150 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151 e = &vcpu->arch.cpuid_entries[i];
152 if (e->function == 0x80000001) {
153 entry = e;
154 break;
155 }
156 }
157 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158 entry->edx &= ~F(NX);
159 printk(KERN_INFO "kvm: guest NX capability removed\n");
160 }
161}
162
163int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164{
165 struct kvm_cpuid_entry2 *best;
166
167 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168 if (!best || best->eax < 0x80000008)
169 goto not_found;
170 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171 if (best)
172 return best->eax & 0xff;
173not_found:
174 return 36;
175}
176EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177
178/* when an old userspace process fills a new kernel module */
179int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180 struct kvm_cpuid *cpuid,
181 struct kvm_cpuid_entry __user *entries)
182{
183 int r, i;
184 struct kvm_cpuid_entry *cpuid_entries;
185
186 r = -E2BIG;
187 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188 goto out;
189 r = -ENOMEM;
190 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
191 if (!cpuid_entries)
192 goto out;
193 r = -EFAULT;
194 if (copy_from_user(cpuid_entries, entries,
195 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
196 goto out_free;
197 for (i = 0; i < cpuid->nent; i++) {
198 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
199 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
200 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
201 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
202 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
203 vcpu->arch.cpuid_entries[i].index = 0;
204 vcpu->arch.cpuid_entries[i].flags = 0;
205 vcpu->arch.cpuid_entries[i].padding[0] = 0;
206 vcpu->arch.cpuid_entries[i].padding[1] = 0;
207 vcpu->arch.cpuid_entries[i].padding[2] = 0;
208 }
209 vcpu->arch.cpuid_nent = cpuid->nent;
210 cpuid_fix_nx_cap(vcpu);
211 kvm_apic_set_version(vcpu);
212 kvm_x86_ops->cpuid_update(vcpu);
213 r = kvm_update_cpuid(vcpu);
214
215out_free:
216 vfree(cpuid_entries);
217out:
218 return r;
219}
220
221int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
222 struct kvm_cpuid2 *cpuid,
223 struct kvm_cpuid_entry2 __user *entries)
224{
225 int r;
226
227 r = -E2BIG;
228 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
229 goto out;
230 r = -EFAULT;
231 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
232 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
233 goto out;
234 vcpu->arch.cpuid_nent = cpuid->nent;
235 kvm_apic_set_version(vcpu);
236 kvm_x86_ops->cpuid_update(vcpu);
237 r = kvm_update_cpuid(vcpu);
238out:
239 return r;
240}
241
242int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
243 struct kvm_cpuid2 *cpuid,
244 struct kvm_cpuid_entry2 __user *entries)
245{
246 int r;
247
248 r = -E2BIG;
249 if (cpuid->nent < vcpu->arch.cpuid_nent)
250 goto out;
251 r = -EFAULT;
252 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
253 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
254 goto out;
255 return 0;
256
257out:
258 cpuid->nent = vcpu->arch.cpuid_nent;
259 return r;
260}
261
262static void cpuid_mask(u32 *word, int wordnum)
263{
264 *word &= boot_cpu_data.x86_capability[wordnum];
265}
266
267static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
268 u32 index)
269{
270 entry->function = function;
271 entry->index = index;
272 cpuid_count(entry->function, entry->index,
273 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
274 entry->flags = 0;
275}
276
277static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
278 u32 func, u32 index, int *nent, int maxnent)
279{
280 switch (func) {
281 case 0:
282 entry->eax = 1; /* only one leaf currently */
283 ++*nent;
284 break;
285 case 1:
286 entry->ecx = F(MOVBE);
287 ++*nent;
288 break;
289 default:
290 break;
291 }
292
293 entry->function = func;
294 entry->index = index;
295
296 return 0;
297}
298
299static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
300 u32 index, int *nent, int maxnent)
301{
302 int r;
303 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
304#ifdef CONFIG_X86_64
305 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
306 ? F(GBPAGES) : 0;
307 unsigned f_lm = F(LM);
308#else
309 unsigned f_gbpages = 0;
310 unsigned f_lm = 0;
311#endif
312 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
313 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
314 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
315 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
316
317 /* cpuid 1.edx */
318 const u32 kvm_cpuid_1_edx_x86_features =
319 F(FPU) | F(VME) | F(DE) | F(PSE) |
320 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
321 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
322 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
323 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
324 0 /* Reserved, DS, ACPI */ | F(MMX) |
325 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
326 0 /* HTT, TM, Reserved, PBE */;
327 /* cpuid 0x80000001.edx */
328 const u32 kvm_cpuid_8000_0001_edx_x86_features =
329 F(FPU) | F(VME) | F(DE) | F(PSE) |
330 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
331 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
332 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
333 F(PAT) | F(PSE36) | 0 /* Reserved */ |
334 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
335 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
336 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
337 /* cpuid 1.ecx */
338 const u32 kvm_cpuid_1_ecx_x86_features =
339 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
340 * but *not* advertised to guests via CPUID ! */
341 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
342 0 /* DS-CPL, VMX, SMX, EST */ |
343 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
344 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
345 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
346 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
347 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
348 F(F16C) | F(RDRAND);
349 /* cpuid 0x80000001.ecx */
350 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
351 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
352 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
353 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
354 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
355
356 /* cpuid 0xC0000001.edx */
357 const u32 kvm_cpuid_C000_0001_edx_x86_features =
358 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
359 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
360 F(PMM) | F(PMM_EN);
361
362 /* cpuid 7.0.ebx */
363 const u32 kvm_cpuid_7_0_ebx_x86_features =
364 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
365 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
366 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
367 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
368
369 /* cpuid 0xD.1.eax */
370 const u32 kvm_cpuid_D_1_eax_x86_features =
371 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
372
373 /* cpuid 7.0.ecx*/
374 const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
375
376 /* all calls to cpuid_count() should be made on the same cpu */
377 get_cpu();
378
379 r = -E2BIG;
380
381 if (*nent >= maxnent)
382 goto out;
383
384 do_cpuid_1_ent(entry, function, index);
385 ++*nent;
386
387 switch (function) {
388 case 0:
389 entry->eax = min(entry->eax, (u32)0xd);
390 break;
391 case 1:
392 entry->edx &= kvm_cpuid_1_edx_x86_features;
393 cpuid_mask(&entry->edx, CPUID_1_EDX);
394 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
395 cpuid_mask(&entry->ecx, CPUID_1_ECX);
396 /* we support x2apic emulation even if host does not support
397 * it since we emulate x2apic in software */
398 entry->ecx |= F(X2APIC);
399 break;
400 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
401 * may return different values. This forces us to get_cpu() before
402 * issuing the first command, and also to emulate this annoying behavior
403 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404 case 2: {
405 int t, times = entry->eax & 0xff;
406
407 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409 for (t = 1; t < times; ++t) {
410 if (*nent >= maxnent)
411 goto out;
412
413 do_cpuid_1_ent(&entry[t], function, 0);
414 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415 ++*nent;
416 }
417 break;
418 }
419 /* function 4 has additional index. */
420 case 4: {
421 int i, cache_type;
422
423 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 /* read more entries until cache_type is zero */
425 for (i = 1; ; ++i) {
426 if (*nent >= maxnent)
427 goto out;
428
429 cache_type = entry[i - 1].eax & 0x1f;
430 if (!cache_type)
431 break;
432 do_cpuid_1_ent(&entry[i], function, i);
433 entry[i].flags |=
434 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 ++*nent;
436 }
437 break;
438 }
439 case 6: /* Thermal management */
440 entry->eax = 0x4; /* allow ARAT */
441 entry->ebx = 0;
442 entry->ecx = 0;
443 entry->edx = 0;
444 break;
445 case 7: {
446 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447 /* Mask ebx against host capability word 9 */
448 if (index == 0) {
449 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
450 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
451 // TSC_ADJUST is emulated
452 entry->ebx |= F(TSC_ADJUST);
453 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
454 cpuid_mask(&entry->ecx, CPUID_7_ECX);
455 /* PKU is not yet implemented for shadow paging. */
456 if (!tdp_enabled)
457 entry->ecx &= ~F(PKU);
458 } else {
459 entry->ebx = 0;
460 entry->ecx = 0;
461 }
462 entry->eax = 0;
463 entry->edx = 0;
464 break;
465 }
466 case 9:
467 break;
468 case 0xa: { /* Architectural Performance Monitoring */
469 struct x86_pmu_capability cap;
470 union cpuid10_eax eax;
471 union cpuid10_edx edx;
472
473 perf_get_x86_pmu_capability(&cap);
474
475 /*
476 * Only support guest architectural pmu on a host
477 * with architectural pmu.
478 */
479 if (!cap.version)
480 memset(&cap, 0, sizeof(cap));
481
482 eax.split.version_id = min(cap.version, 2);
483 eax.split.num_counters = cap.num_counters_gp;
484 eax.split.bit_width = cap.bit_width_gp;
485 eax.split.mask_length = cap.events_mask_len;
486
487 edx.split.num_counters_fixed = cap.num_counters_fixed;
488 edx.split.bit_width_fixed = cap.bit_width_fixed;
489 edx.split.reserved = 0;
490
491 entry->eax = eax.full;
492 entry->ebx = cap.events_mask;
493 entry->ecx = 0;
494 entry->edx = edx.full;
495 break;
496 }
497 /* function 0xb has additional index. */
498 case 0xb: {
499 int i, level_type;
500
501 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
502 /* read more entries until level_type is zero */
503 for (i = 1; ; ++i) {
504 if (*nent >= maxnent)
505 goto out;
506
507 level_type = entry[i - 1].ecx & 0xff00;
508 if (!level_type)
509 break;
510 do_cpuid_1_ent(&entry[i], function, i);
511 entry[i].flags |=
512 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
513 ++*nent;
514 }
515 break;
516 }
517 case 0xd: {
518 int idx, i;
519 u64 supported = kvm_supported_xcr0();
520
521 entry->eax &= supported;
522 entry->ebx = xstate_required_size(supported, false);
523 entry->ecx = entry->ebx;
524 entry->edx &= supported >> 32;
525 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 if (!supported)
527 break;
528
529 for (idx = 1, i = 1; idx < 64; ++idx) {
530 u64 mask = ((u64)1 << idx);
531 if (*nent >= maxnent)
532 goto out;
533
534 do_cpuid_1_ent(&entry[i], function, idx);
535 if (idx == 1) {
536 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
537 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
538 entry[i].ebx = 0;
539 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
540 entry[i].ebx =
541 xstate_required_size(supported,
542 true);
543 } else {
544 if (entry[i].eax == 0 || !(supported & mask))
545 continue;
546 if (WARN_ON_ONCE(entry[i].ecx & 1))
547 continue;
548 }
549 entry[i].ecx = 0;
550 entry[i].edx = 0;
551 entry[i].flags |=
552 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
553 ++*nent;
554 ++i;
555 }
556 break;
557 }
558 case KVM_CPUID_SIGNATURE: {
559 static const char signature[12] = "KVMKVMKVM\0\0";
560 const u32 *sigptr = (const u32 *)signature;
561 entry->eax = KVM_CPUID_FEATURES;
562 entry->ebx = sigptr[0];
563 entry->ecx = sigptr[1];
564 entry->edx = sigptr[2];
565 break;
566 }
567 case KVM_CPUID_FEATURES:
568 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
569 (1 << KVM_FEATURE_NOP_IO_DELAY) |
570 (1 << KVM_FEATURE_CLOCKSOURCE2) |
571 (1 << KVM_FEATURE_ASYNC_PF) |
572 (1 << KVM_FEATURE_PV_EOI) |
573 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
574 (1 << KVM_FEATURE_PV_UNHALT);
575
576 if (sched_info_on())
577 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
578
579 entry->ebx = 0;
580 entry->ecx = 0;
581 entry->edx = 0;
582 break;
583 case 0x80000000:
584 entry->eax = min(entry->eax, 0x8000001a);
585 break;
586 case 0x80000001:
587 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
588 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
589 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
590 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
591 break;
592 case 0x80000007: /* Advanced power management */
593 /* invariant TSC is CPUID.80000007H:EDX[8] */
594 entry->edx &= (1 << 8);
595 /* mask against host */
596 entry->edx &= boot_cpu_data.x86_power;
597 entry->eax = entry->ebx = entry->ecx = 0;
598 break;
599 case 0x80000008: {
600 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
601 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
602 unsigned phys_as = entry->eax & 0xff;
603
604 if (!g_phys_as)
605 g_phys_as = phys_as;
606 entry->eax = g_phys_as | (virt_as << 8);
607 entry->ebx = entry->edx = 0;
608 break;
609 }
610 case 0x80000019:
611 entry->ecx = entry->edx = 0;
612 break;
613 case 0x8000001a:
614 break;
615 case 0x8000001d:
616 break;
617 /*Add support for Centaur's CPUID instruction*/
618 case 0xC0000000:
619 /*Just support up to 0xC0000004 now*/
620 entry->eax = min(entry->eax, 0xC0000004);
621 break;
622 case 0xC0000001:
623 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
624 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
625 break;
626 case 3: /* Processor serial number */
627 case 5: /* MONITOR/MWAIT */
628 case 0xC0000002:
629 case 0xC0000003:
630 case 0xC0000004:
631 default:
632 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
633 break;
634 }
635
636 kvm_x86_ops->set_supported_cpuid(function, entry);
637
638 r = 0;
639
640out:
641 put_cpu();
642
643 return r;
644}
645
646static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
647 u32 idx, int *nent, int maxnent, unsigned int type)
648{
649 if (type == KVM_GET_EMULATED_CPUID)
650 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
651
652 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
653}
654
655#undef F
656
657struct kvm_cpuid_param {
658 u32 func;
659 u32 idx;
660 bool has_leaf_count;
661 bool (*qualifier)(const struct kvm_cpuid_param *param);
662};
663
664static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
665{
666 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
667}
668
669static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
670 __u32 num_entries, unsigned int ioctl_type)
671{
672 int i;
673 __u32 pad[3];
674
675 if (ioctl_type != KVM_GET_EMULATED_CPUID)
676 return false;
677
678 /*
679 * We want to make sure that ->padding is being passed clean from
680 * userspace in case we want to use it for something in the future.
681 *
682 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
683 * have to give ourselves satisfied only with the emulated side. /me
684 * sheds a tear.
685 */
686 for (i = 0; i < num_entries; i++) {
687 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
688 return true;
689
690 if (pad[0] || pad[1] || pad[2])
691 return true;
692 }
693 return false;
694}
695
696int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
697 struct kvm_cpuid_entry2 __user *entries,
698 unsigned int type)
699{
700 struct kvm_cpuid_entry2 *cpuid_entries;
701 int limit, nent = 0, r = -E2BIG, i;
702 u32 func;
703 static const struct kvm_cpuid_param param[] = {
704 { .func = 0, .has_leaf_count = true },
705 { .func = 0x80000000, .has_leaf_count = true },
706 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
707 { .func = KVM_CPUID_SIGNATURE },
708 { .func = KVM_CPUID_FEATURES },
709 };
710
711 if (cpuid->nent < 1)
712 goto out;
713 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
714 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
715
716 if (sanity_check_entries(entries, cpuid->nent, type))
717 return -EINVAL;
718
719 r = -ENOMEM;
720 cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
721 if (!cpuid_entries)
722 goto out;
723
724 r = 0;
725 for (i = 0; i < ARRAY_SIZE(param); i++) {
726 const struct kvm_cpuid_param *ent = ¶m[i];
727
728 if (ent->qualifier && !ent->qualifier(ent))
729 continue;
730
731 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
732 &nent, cpuid->nent, type);
733
734 if (r)
735 goto out_free;
736
737 if (!ent->has_leaf_count)
738 continue;
739
740 limit = cpuid_entries[nent - 1].eax;
741 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
742 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
743 &nent, cpuid->nent, type);
744
745 if (r)
746 goto out_free;
747 }
748
749 r = -EFAULT;
750 if (copy_to_user(entries, cpuid_entries,
751 nent * sizeof(struct kvm_cpuid_entry2)))
752 goto out_free;
753 cpuid->nent = nent;
754 r = 0;
755
756out_free:
757 vfree(cpuid_entries);
758out:
759 return r;
760}
761
762static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
763{
764 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
765 int j, nent = vcpu->arch.cpuid_nent;
766
767 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
768 /* when no next entry is found, the current entry[i] is reselected */
769 for (j = i + 1; ; j = (j + 1) % nent) {
770 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
771 if (ej->function == e->function) {
772 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
773 return j;
774 }
775 }
776 return 0; /* silence gcc, even though control never reaches here */
777}
778
779/* find an entry with matching function, matching index (if needed), and that
780 * should be read next (if it's stateful) */
781static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
782 u32 function, u32 index)
783{
784 if (e->function != function)
785 return 0;
786 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
787 return 0;
788 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
789 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
790 return 0;
791 return 1;
792}
793
794struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
795 u32 function, u32 index)
796{
797 int i;
798 struct kvm_cpuid_entry2 *best = NULL;
799
800 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
801 struct kvm_cpuid_entry2 *e;
802
803 e = &vcpu->arch.cpuid_entries[i];
804 if (is_matching_cpuid_entry(e, function, index)) {
805 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
806 move_to_next_stateful_cpuid_entry(vcpu, i);
807 best = e;
808 break;
809 }
810 }
811 return best;
812}
813EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
814
815/*
816 * If no match is found, check whether we exceed the vCPU's limit
817 * and return the content of the highest valid _standard_ leaf instead.
818 * This is to satisfy the CPUID specification.
819 */
820static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
821 u32 function, u32 index)
822{
823 struct kvm_cpuid_entry2 *maxlevel;
824
825 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
826 if (!maxlevel || maxlevel->eax >= function)
827 return NULL;
828 if (function & 0x80000000) {
829 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
830 if (!maxlevel)
831 return NULL;
832 }
833 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
834}
835
836void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
837{
838 u32 function = *eax, index = *ecx;
839 struct kvm_cpuid_entry2 *best;
840
841 best = kvm_find_cpuid_entry(vcpu, function, index);
842
843 if (!best)
844 best = check_cpuid_limit(vcpu, function, index);
845
846 /*
847 * Perfmon not yet supported for L2 guest.
848 */
849 if (is_guest_mode(vcpu) && function == 0xa)
850 best = NULL;
851
852 if (best) {
853 *eax = best->eax;
854 *ebx = best->ebx;
855 *ecx = best->ecx;
856 *edx = best->edx;
857 } else
858 *eax = *ebx = *ecx = *edx = 0;
859 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
860}
861EXPORT_SYMBOL_GPL(kvm_cpuid);
862
863void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
864{
865 u32 function, eax, ebx, ecx, edx;
866
867 function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
868 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
869 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
870 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
871 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
872 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
873 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
874 kvm_x86_ops->skip_emulated_instruction(vcpu);
875}
876EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);