Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
 
 
 
 
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27/*
  28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  30 */
  31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  33
  34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  35{
  36	int feature_bit = 0;
  37	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  38
  39	xstate_bv &= XFEATURE_MASK_EXTEND;
  40	while (xstate_bv) {
  41		if (xstate_bv & 0x1) {
  42		        u32 eax, ebx, ecx, edx, offset;
  43		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  44			offset = compacted ? ret : ebx;
  45			ret = max(ret, offset + eax);
  46		}
  47
  48		xstate_bv >>= 1;
  49		feature_bit++;
  50	}
  51
  52	return ret;
  53}
  54
  55#define F feature_bit
  56
  57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
  58{
  59	struct kvm_cpuid_entry2 *best;
  60
  61	/*
  62	 * The existing code assumes virtual address is 48-bit or 57-bit in the
  63	 * canonical address checks; exit if it is ever changed.
  64	 */
  65	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  66	if (best) {
  67		int vaddr_bits = (best->eax & 0xff00) >> 8;
  68
  69		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  70			return -EINVAL;
  71	}
  72
  73	return 0;
  74}
  75
  76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
  77{
  78	struct kvm_cpuid_entry2 *best;
 
  79
  80	best = kvm_find_cpuid_entry(vcpu, 1, 0);
  81	if (best) {
  82		/* Update OSXSAVE bit */
  83		if (boot_cpu_has(X86_FEATURE_XSAVE))
  84			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
  85				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
  86
  87		cpuid_entry_change(best, X86_FEATURE_APIC,
  88			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
  89	}
  90
  91	best = kvm_find_cpuid_entry(vcpu, 7, 0);
  92	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
  93		cpuid_entry_change(best, X86_FEATURE_OSPKE,
  94				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
  95
  96	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  97	if (best)
  98		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
  99
 100	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 101	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 102		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 103		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 104
 105	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 106	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 107		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 108		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 109
 110	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 111		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 112		if (best)
 113			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 114					   vcpu->arch.ia32_misc_enable_msr &
 115					   MSR_IA32_MISC_ENABLE_MWAIT);
 116	}
 117}
 118
 119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 120{
 121	struct kvm_lapic *apic = vcpu->arch.apic;
 122	struct kvm_cpuid_entry2 *best;
 123
 124	kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
 125
 126	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 127	if (best && apic) {
 128		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 129			apic->lapic_timer.timer_mode_mask = 3 << 17;
 130		else
 131			apic->lapic_timer.timer_mode_mask = 1 << 17;
 132
 133		kvm_apic_set_version(vcpu);
 134	}
 135
 136	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 137	if (!best)
 138		vcpu->arch.guest_supported_xcr0 = 0;
 139	else
 
 140		vcpu->arch.guest_supported_xcr0 =
 141			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 142
 143	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 144	kvm_mmu_reset_context(vcpu);
 
 145
 146	kvm_pmu_refresh(vcpu);
 147	vcpu->arch.cr4_guest_rsvd_bits =
 148	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 149	kvm_x86_ops.update_exception_bitmap(vcpu);
 150}
 151
 152static int is_efer_nx(void)
 153{
 154	return host_efer & EFER_NX;
 
 
 
 155}
 156
 157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 158{
 159	int i;
 160	struct kvm_cpuid_entry2 *e, *entry;
 161
 162	entry = NULL;
 163	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 164		e = &vcpu->arch.cpuid_entries[i];
 165		if (e->function == 0x80000001) {
 166			entry = e;
 167			break;
 168		}
 169	}
 170	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
 171		cpuid_entry_clear(entry, X86_FEATURE_NX);
 172		printk(KERN_INFO "kvm: guest NX capability removed\n");
 173	}
 174}
 175
 176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 177{
 178	struct kvm_cpuid_entry2 *best;
 179
 180	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 181	if (!best || best->eax < 0x80000008)
 182		goto not_found;
 183	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 184	if (best)
 185		return best->eax & 0xff;
 186not_found:
 187	return 36;
 188}
 189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 190
 191/* when an old userspace process fills a new kernel module */
 192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 193			     struct kvm_cpuid *cpuid,
 194			     struct kvm_cpuid_entry __user *entries)
 195{
 196	int r, i;
 197	struct kvm_cpuid_entry *cpuid_entries = NULL;
 198
 199	r = -E2BIG;
 200	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 201		goto out;
 202	if (cpuid->nent) {
 203		cpuid_entries = vmemdup_user(entries,
 204					     array_size(sizeof(struct kvm_cpuid_entry),
 205							cpuid->nent));
 206		if (IS_ERR(cpuid_entries)) {
 207			r = PTR_ERR(cpuid_entries);
 208			goto out;
 209		}
 210	}
 211	for (i = 0; i < cpuid->nent; i++) {
 212		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 213		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 214		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 215		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 216		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 217		vcpu->arch.cpuid_entries[i].index = 0;
 218		vcpu->arch.cpuid_entries[i].flags = 0;
 219		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 220		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 221		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 222	}
 223	vcpu->arch.cpuid_nent = cpuid->nent;
 224	r = kvm_check_cpuid(vcpu);
 225	if (r) {
 226		vcpu->arch.cpuid_nent = 0;
 227		kvfree(cpuid_entries);
 228		goto out;
 229	}
 230
 231	cpuid_fix_nx_cap(vcpu);
 232	kvm_update_cpuid_runtime(vcpu);
 233	kvm_vcpu_after_set_cpuid(vcpu);
 
 
 234
 235	kvfree(cpuid_entries);
 
 236out:
 237	return r;
 238}
 239
 240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 241			      struct kvm_cpuid2 *cpuid,
 242			      struct kvm_cpuid_entry2 __user *entries)
 243{
 244	int r;
 245
 246	r = -E2BIG;
 247	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 248		goto out;
 249	r = -EFAULT;
 250	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 251			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 252		goto out;
 253	vcpu->arch.cpuid_nent = cpuid->nent;
 254	r = kvm_check_cpuid(vcpu);
 255	if (r) {
 256		vcpu->arch.cpuid_nent = 0;
 257		goto out;
 258	}
 259
 260	kvm_update_cpuid_runtime(vcpu);
 261	kvm_vcpu_after_set_cpuid(vcpu);
 262out:
 263	return r;
 264}
 265
 266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 267			      struct kvm_cpuid2 *cpuid,
 268			      struct kvm_cpuid_entry2 __user *entries)
 269{
 270	int r;
 271
 272	r = -E2BIG;
 273	if (cpuid->nent < vcpu->arch.cpuid_nent)
 274		goto out;
 275	r = -EFAULT;
 276	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 277			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 278		goto out;
 279	return 0;
 280
 281out:
 282	cpuid->nent = vcpu->arch.cpuid_nent;
 283	return r;
 284}
 285
 286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 287{
 288	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 289	struct kvm_cpuid_entry2 entry;
 290
 291	reverse_cpuid_check(leaf);
 292	kvm_cpu_caps[leaf] &= mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293
 294	cpuid_count(cpuid.function, cpuid.index,
 295		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 296
 297	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 298}
 299
 300void kvm_set_cpu_caps(void)
 
 301{
 302	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
 
 303#ifdef CONFIG_X86_64
 304	unsigned int f_gbpages = F(GBPAGES);
 305	unsigned int f_lm = F(LM);
 
 306#else
 307	unsigned int f_gbpages = 0;
 308	unsigned int f_lm = 0;
 309#endif
 
 
 
 310
 311	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
 312		     sizeof(boot_cpu_data.x86_capability));
 313
 314	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 315	       sizeof(kvm_cpu_caps));
 316
 317	kvm_cpu_cap_mask(CPUID_1_ECX,
 318		/*
 319		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 320		 * advertised to guests via CPUID!
 321		 */
 322		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 323		0 /* DS-CPL, VMX, SMX, EST */ |
 324		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 325		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 326		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 327		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 328		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 329		F(F16C) | F(RDRAND)
 330	);
 331	/* KVM emulates x2apic in software irrespective of host support. */
 332	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 333
 334	kvm_cpu_cap_mask(CPUID_1_EDX,
 335		F(FPU) | F(VME) | F(DE) | F(PSE) |
 336		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 337		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 338		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 339		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 340		0 /* Reserved, DS, ACPI */ | F(MMX) |
 341		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 342		0 /* HTT, TM, Reserved, PBE */
 343	);
 344
 345	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 346		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 347		F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 348		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 349		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 350		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 351	);
 352
 353	kvm_cpu_cap_mask(CPUID_7_ECX,
 354		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 355		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 356		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 357		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
 358	);
 359	/* Set LA57 based on hardware capability. */
 360	if (cpuid_ecx(7) & F(LA57))
 361		kvm_cpu_cap_set(X86_FEATURE_LA57);
 362
 363	/*
 364	 * PKU not yet implemented for shadow paging and requires OSPKE
 365	 * to be set on the host. Clear it if that is not the case
 366	 */
 367	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 368		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 369
 370	kvm_cpu_cap_mask(CPUID_7_EDX,
 371		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 372		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 373		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 374		F(SERIALIZE)
 375	);
 376
 377	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 378	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 379	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 380
 381	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 382		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 383	if (boot_cpu_has(X86_FEATURE_STIBP))
 384		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 385	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 386		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 387
 388	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 389		F(AVX512_BF16)
 390	);
 391
 392	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 393		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 394	);
 395
 396	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 397		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 398		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 399		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 400		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 401		F(TOPOEXT) | F(PERFCTR_CORE)
 402	);
 403
 404	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 405		F(FPU) | F(VME) | F(DE) | F(PSE) |
 406		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 407		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 408		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 409		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 410		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 411		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 412		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 413	);
 414
 415	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 416		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 417
 418	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 419		F(CLZERO) | F(XSAVEERPTR) |
 420		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 421		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 422	);
 423
 424	/*
 425	 * AMD has separate bits for each SPEC_CTRL bit.
 426	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 427	 * record that in cpufeatures so use them.
 428	 */
 429	if (boot_cpu_has(X86_FEATURE_IBPB))
 430		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 431	if (boot_cpu_has(X86_FEATURE_IBRS))
 432		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 433	if (boot_cpu_has(X86_FEATURE_STIBP))
 434		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 435	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 436		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 437	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 438		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 439	/*
 440	 * The preference is to use SPEC CTRL MSR instead of the
 441	 * VIRT_SPEC MSR.
 442	 */
 443	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 444	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 445		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 446
 447	/*
 448	 * Hide all SVM features by default, SVM will set the cap bits for
 449	 * features it emulates and/or exposes for L1.
 450	 */
 451	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 452
 453	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 
 454		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 455		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 456		F(PMM) | F(PMM_EN)
 457	);
 458}
 459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 460
 461struct kvm_cpuid_array {
 462	struct kvm_cpuid_entry2 *entries;
 463	int maxnent;
 464	int nent;
 465};
 466
 467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 468					      u32 function, u32 index)
 469{
 470	struct kvm_cpuid_entry2 *entry;
 471
 472	if (array->nent >= array->maxnent)
 473		return NULL;
 474
 475	entry = &array->entries[array->nent++];
 476
 477	entry->function = function;
 478	entry->index = index;
 479	entry->flags = 0;
 480
 481	cpuid_count(entry->function, entry->index,
 482		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 483
 484	switch (function) {
 485	case 4:
 486	case 7:
 487	case 0xb:
 488	case 0xd:
 489	case 0xf:
 490	case 0x10:
 491	case 0x12:
 492	case 0x14:
 493	case 0x17:
 494	case 0x18:
 495	case 0x1f:
 496	case 0x8000001d:
 497		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 498		break;
 499	}
 500
 501	return entry;
 502}
 503
 504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 505{
 506	struct kvm_cpuid_entry2 *entry;
 507
 508	if (array->nent >= array->maxnent)
 509		return -E2BIG;
 510
 511	entry = &array->entries[array->nent];
 512	entry->function = func;
 513	entry->index = 0;
 514	entry->flags = 0;
 515
 516	switch (func) {
 517	case 0:
 518		entry->eax = 7;
 519		++array->nent;
 520		break;
 521	case 1:
 522		entry->ecx = F(MOVBE);
 523		++array->nent;
 524		break;
 525	case 7:
 526		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 527		entry->eax = 0;
 528		entry->ecx = F(RDPID);
 529		++array->nent;
 530	default:
 531		break;
 532	}
 533
 534	return 0;
 535}
 536
 537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 538{
 539	struct kvm_cpuid_entry2 *entry;
 540	int r, i, max_idx;
 541
 542	/* all calls to cpuid_count() should be made on the same cpu */
 543	get_cpu();
 544
 545	r = -E2BIG;
 546
 547	entry = do_host_cpuid(array, function, 0);
 548	if (!entry)
 549		goto out;
 550
 
 
 
 551	switch (function) {
 552	case 0:
 553		/* Limited to the highest leaf implemented in KVM. */
 554		entry->eax = min(entry->eax, 0x1fU);
 555		break;
 556	case 1:
 557		cpuid_entry_override(entry, CPUID_1_EDX);
 558		cpuid_entry_override(entry, CPUID_1_ECX);
 559		break;
 560	case 2:
 561		/*
 562		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 563		 * CPUID(function=2, index=0) may return different results each
 564		 * time, with the least-significant byte in EAX enumerating the
 565		 * number of times software should do CPUID(2, 0).
 566		 *
 567		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 568		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 569		 * return 01H. Software should ignore this value and not
 570		 * interpret it as an informational descriptor", while AMD's
 571		 * APM states that CPUID(2) is reserved.
 572		 *
 573		 * WARN if a frankenstein CPU that supports virtualization and
 574		 * a stateful CPUID.0x2 is encountered.
 575		 */
 576		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 577		break;
 578	/* functions 4 and 0x8000001d have additional index. */
 579	case 4:
 580	case 0x8000001d:
 581		/*
 582		 * Read entries until the cache type in the previous entry is
 583		 * zero, i.e. indicates an invalid entry.
 584		 */
 585		for (i = 1; entry->eax & 0x1f; ++i) {
 586			entry = do_host_cpuid(array, function, i);
 587			if (!entry)
 588				goto out;
 
 
 
 
 589		}
 590		break;
 591	case 6: /* Thermal management */
 592		entry->eax = 0x4; /* allow ARAT */
 593		entry->ebx = 0;
 594		entry->ecx = 0;
 595		entry->edx = 0;
 596		break;
 597	/* function 7 has additional index. */
 598	case 7:
 599		entry->eax = min(entry->eax, 1u);
 600		cpuid_entry_override(entry, CPUID_7_0_EBX);
 601		cpuid_entry_override(entry, CPUID_7_ECX);
 602		cpuid_entry_override(entry, CPUID_7_EDX);
 603
 604		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 605		if (entry->eax == 1) {
 606			entry = do_host_cpuid(array, function, 1);
 607			if (!entry)
 608				goto out;
 609
 610			cpuid_entry_override(entry, CPUID_7_1_EAX);
 611			entry->ebx = 0;
 612			entry->ecx = 0;
 613			entry->edx = 0;
 
 
 
 614		}
 615		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	case 9:
 617		break;
 618	case 0xa: { /* Architectural Performance Monitoring */
 619		struct x86_pmu_capability cap;
 620		union cpuid10_eax eax;
 621		union cpuid10_edx edx;
 622
 623		perf_get_x86_pmu_capability(&cap);
 624
 625		/*
 626		 * Only support guest architectural pmu on a host
 627		 * with architectural pmu.
 628		 */
 629		if (!cap.version)
 630			memset(&cap, 0, sizeof(cap));
 631
 632		eax.split.version_id = min(cap.version, 2);
 633		eax.split.num_counters = cap.num_counters_gp;
 634		eax.split.bit_width = cap.bit_width_gp;
 635		eax.split.mask_length = cap.events_mask_len;
 636
 637		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 638		edx.split.bit_width_fixed = cap.bit_width_fixed;
 639		edx.split.reserved = 0;
 640
 641		entry->eax = eax.full;
 642		entry->ebx = cap.events_mask;
 643		entry->ecx = 0;
 644		entry->edx = edx.full;
 645		break;
 646	}
 647	/*
 648	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
 649	 * thus they can be handled by common code.
 650	 */
 651	case 0x1f:
 652	case 0xb:
 653		/*
 654		 * Populate entries until the level type (ECX[15:8]) of the
 655		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 656		 * the starting entry, filled by the primary do_host_cpuid().
 657		 */
 658		for (i = 1; entry->ecx & 0xff00; ++i) {
 659			entry = do_host_cpuid(array, function, i);
 660			if (!entry)
 661				goto out;
 662		}
 663		break;
 664	case 0xd:
 665		entry->eax &= supported_xcr0;
 666		entry->ebx = xstate_required_size(supported_xcr0, false);
 667		entry->ecx = entry->ebx;
 668		entry->edx &= supported_xcr0 >> 32;
 669		if (!supported_xcr0)
 670			break;
 671
 672		entry = do_host_cpuid(array, function, 1);
 673		if (!entry)
 674			goto out;
 675
 676		cpuid_entry_override(entry, CPUID_D_1_EAX);
 677		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 678			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 679							  true);
 680		else {
 681			WARN_ON_ONCE(supported_xss != 0);
 682			entry->ebx = 0;
 683		}
 684		entry->ecx &= supported_xss;
 685		entry->edx &= supported_xss >> 32;
 686
 687		for (i = 2; i < 64; ++i) {
 688			bool s_state;
 689			if (supported_xcr0 & BIT_ULL(i))
 690				s_state = false;
 691			else if (supported_xss & BIT_ULL(i))
 692				s_state = true;
 693			else
 694				continue;
 695
 696			entry = do_host_cpuid(array, function, i);
 697			if (!entry)
 698				goto out;
 699
 700			/*
 701			 * The supported check above should have filtered out
 702			 * invalid sub-leafs.  Only valid sub-leafs should
 703			 * reach this point, and they should have a non-zero
 704			 * save state size.  Furthermore, check whether the
 705			 * processor agrees with supported_xcr0/supported_xss
 706			 * on whether this is an XCR0- or IA32_XSS-managed area.
 707			 */
 708			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 709				--array->nent;
 710				continue;
 711			}
 712			entry->edx = 0;
 713		}
 714		break;
 715	/* Intel PT */
 716	case 0x14:
 717		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 718			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 719			break;
 720		}
 721
 722		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 723			if (!do_host_cpuid(array, function, i))
 
 
 
 
 724				goto out;
 
 
 
 
 
 
 
 
 725		}
 726		break;
 
 727	case KVM_CPUID_SIGNATURE: {
 728		static const char signature[12] = "KVMKVMKVM\0\0";
 729		const u32 *sigptr = (const u32 *)signature;
 730		entry->eax = KVM_CPUID_FEATURES;
 731		entry->ebx = sigptr[0];
 732		entry->ecx = sigptr[1];
 733		entry->edx = sigptr[2];
 734		break;
 735	}
 736	case KVM_CPUID_FEATURES:
 737		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 738			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 739			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 740			     (1 << KVM_FEATURE_ASYNC_PF) |
 741			     (1 << KVM_FEATURE_PV_EOI) |
 742			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 743			     (1 << KVM_FEATURE_PV_UNHALT) |
 744			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 745			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 746			     (1 << KVM_FEATURE_PV_SEND_IPI) |
 747			     (1 << KVM_FEATURE_POLL_CONTROL) |
 748			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 749			     (1 << KVM_FEATURE_ASYNC_PF_INT);
 750
 751		if (sched_info_on())
 752			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 753
 754		entry->ebx = 0;
 755		entry->ecx = 0;
 756		entry->edx = 0;
 757		break;
 758	case 0x80000000:
 759		entry->eax = min(entry->eax, 0x8000001f);
 760		break;
 761	case 0x80000001:
 762		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 763		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 764		break;
 765	case 0x80000006:
 766		/* L2 cache and TLB: pass through host info. */
 767		break;
 768	case 0x80000007: /* Advanced power management */
 769		/* invariant TSC is CPUID.80000007H:EDX[8] */
 770		entry->edx &= (1 << 8);
 771		/* mask against host */
 772		entry->edx &= boot_cpu_data.x86_power;
 773		entry->eax = entry->ebx = entry->ecx = 0;
 774		break;
 775	case 0x80000008: {
 776		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 777		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 778		unsigned phys_as = entry->eax & 0xff;
 779
 780		if (!g_phys_as)
 781			g_phys_as = phys_as;
 782		entry->eax = g_phys_as | (virt_as << 8);
 783		entry->edx = 0;
 784		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 785		break;
 786	}
 787	case 0x8000000A:
 788		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 789			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 790			break;
 791		}
 792		entry->eax = 1; /* SVM revision 1 */
 793		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 794				   ASID emulation to nested SVM */
 795		entry->ecx = 0; /* Reserved */
 796		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 797		break;
 798	case 0x80000019:
 799		entry->ecx = entry->edx = 0;
 800		break;
 801	case 0x8000001a:
 802	case 0x8000001e:
 803		break;
 804	/* Support memory encryption cpuid if host supports it */
 805	case 0x8000001F:
 806		if (!boot_cpu_has(X86_FEATURE_SEV))
 807			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 808		break;
 809	/*Add support for Centaur's CPUID instruction*/
 810	case 0xC0000000:
 811		/*Just support up to 0xC0000004 now*/
 812		entry->eax = min(entry->eax, 0xC0000004);
 813		break;
 814	case 0xC0000001:
 815		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 
 816		break;
 817	case 3: /* Processor serial number */
 818	case 5: /* MONITOR/MWAIT */
 
 
 819	case 0xC0000002:
 820	case 0xC0000003:
 821	case 0xC0000004:
 822	default:
 823		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 824		break;
 825	}
 826
 
 
 827	r = 0;
 828
 829out:
 830	put_cpu();
 831
 832	return r;
 833}
 834
 835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 836			 unsigned int type)
 837{
 838	if (type == KVM_GET_EMULATED_CPUID)
 839		return __do_cpuid_func_emulated(array, func);
 840
 841	return __do_cpuid_func(array, func);
 842}
 843
 844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
 845
 846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 847			  unsigned int type)
 848{
 849	u32 limit;
 850	int r;
 851
 852	if (func == CENTAUR_CPUID_SIGNATURE &&
 853	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
 854		return 0;
 855
 856	r = do_cpuid_func(array, func, type);
 857	if (r)
 858		return r;
 859
 860	limit = array->entries[array->nent - 1].eax;
 861	for (func = func + 1; func <= limit; ++func) {
 862		r = do_cpuid_func(array, func, type);
 863		if (r)
 864			break;
 865	}
 866
 867	return r;
 
 
 868}
 869
 870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 871				 __u32 num_entries, unsigned int ioctl_type)
 872{
 873	int i;
 874	__u32 pad[3];
 875
 876	if (ioctl_type != KVM_GET_EMULATED_CPUID)
 877		return false;
 878
 879	/*
 880	 * We want to make sure that ->padding is being passed clean from
 881	 * userspace in case we want to use it for something in the future.
 882	 *
 883	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 884	 * have to give ourselves satisfied only with the emulated side. /me
 885	 * sheds a tear.
 886	 */
 887	for (i = 0; i < num_entries; i++) {
 888		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 889			return true;
 890
 891		if (pad[0] || pad[1] || pad[2])
 892			return true;
 893	}
 894	return false;
 895}
 896
 897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 898			    struct kvm_cpuid_entry2 __user *entries,
 899			    unsigned int type)
 900{
 901	static const u32 funcs[] = {
 902		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 
 
 
 
 
 
 
 903	};
 904
 905	struct kvm_cpuid_array array = {
 906		.nent = 0,
 907	};
 908	int r, i;
 909
 910	if (cpuid->nent < 1)
 911		return -E2BIG;
 912	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 913		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 914
 915	if (sanity_check_entries(entries, cpuid->nent, type))
 916		return -EINVAL;
 917
 918	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 919					   cpuid->nent));
 920	if (!array.entries)
 921		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 922
 923	array.maxnent = cpuid->nent;
 
 
 
 
 
 
 
 
 
 924
 925	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
 926		r = get_cpuid_func(&array, funcs[i], type);
 927		if (r)
 928			goto out_free;
 929	}
 930	cpuid->nent = array.nent;
 931
 932	if (copy_to_user(entries, array.entries,
 933			 array.nent * sizeof(struct kvm_cpuid_entry2)))
 934		r = -EFAULT;
 
 
 
 935
 936out_free:
 937	vfree(array.entries);
 
 938	return r;
 939}
 940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 942					      u32 function, u32 index)
 943{
 944	struct kvm_cpuid_entry2 *e;
 945	int i;
 
 946
 947	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 948		e = &vcpu->arch.cpuid_entries[i];
 949
 950		if (e->function == function && (e->index == index ||
 951		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
 952			return e;
 
 
 
 
 953	}
 954	return NULL;
 955}
 956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958/*
 959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
 962 * range.  Centaur/VIA follows Intel semantics.
 963 *
 964 * A leaf is considered out-of-range if its function is higher than the maximum
 965 * supported leaf of its associated class or if its associated class does not
 966 * exist.
 967 *
 968 * There are three primary classes to be considered, with their respective
 969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 970 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 972 *
 973 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 974 *  - Hypervisor: 0x40000000 - 0x4fffffff
 975 *  - Extended:   0x80000000 - 0xbfffffff
 976 *  - Centaur:    0xc0000000 - 0xcfffffff
 977 *
 978 * The Hypervisor class is further subdivided into sub-classes that each act as
 979 * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
 980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
 981 * CPUID sub-classes are:
 982 *
 983 *  - HyperV:     0x40000000 - 0x400000ff
 984 *  - KVM:        0x40000100 - 0x400001ff
 985 */
 986static struct kvm_cpuid_entry2 *
 987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
 988{
 989	struct kvm_cpuid_entry2 *basic, *class;
 990	u32 function = *fn_ptr;
 991
 992	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
 993	if (!basic)
 994		return NULL;
 995
 996	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
 997	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
 998		return NULL;
 
 
 
 
 
 
 
 999
1000	if (function >= 0x40000000 && function <= 0x4fffffff)
1001		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002	else if (function >= 0xc0000000)
1003		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004	else
1005		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007	if (class && function <= class->eax)
1008		return NULL;
1009
1010	/*
1011	 * Leaf specific adjustments are also applied when redirecting to the
1012	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1014	 * needs to be pulled from CPUID.0xb.1.
1015	 */
1016	*fn_ptr = basic->eax;
1017
1018	/*
1019	 * The class does not exist or the requested function is out of range;
1020	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1021	 * the original requested leaf is observed!
1022	 */
1023	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027	       u32 *ecx, u32 *edx, bool exact_only)
1028{
1029	u32 orig_function = *eax, function = *eax, index = *ecx;
1030	struct kvm_cpuid_entry2 *entry;
1031	bool exact, used_max_basic = false;
1032
1033	entry = kvm_find_cpuid_entry(vcpu, function, index);
1034	exact = !!entry;
1035
1036	if (!entry && !exact_only) {
1037		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038		used_max_basic = !!entry;
1039	}
1040
1041	if (entry) {
1042		*eax = entry->eax;
1043		*ebx = entry->ebx;
1044		*ecx = entry->ecx;
1045		*edx = entry->edx;
1046		if (function == 7 && index == 0) {
1047			u64 data;
1048		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049			    (data & TSX_CTRL_CPUID_CLEAR))
1050				*ebx &= ~(F(RTM) | F(HLE));
1051		}
1052	} else {
1053		*eax = *ebx = *ecx = *edx = 0;
1054		/*
1055		 * When leaf 0BH or 1FH is defined, CL is pass-through
1056		 * and EDX is always the x2APIC ID, even for undefined
1057		 * subleaves. Index 1 will exist iff the leaf is
1058		 * implemented, so we pass through CL iff leaf 1
1059		 * exists. EDX can be copied from any existing index.
1060		 */
1061		if (function == 0xb || function == 0x1f) {
1062			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063			if (entry) {
1064				*ecx = index & 0xff;
1065				*edx = entry->edx;
1066			}
1067		}
1068	}
1069	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070			used_max_basic);
1071	return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077	u32 eax, ebx, ecx, edx;
1078
1079	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080		return 1;
1081
1082	eax = kvm_rax_read(vcpu);
1083	ecx = kvm_rcx_read(vcpu);
1084	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085	kvm_rax_write(vcpu, eax);
1086	kvm_rbx_write(vcpu, ebx);
1087	kvm_rcx_write(vcpu, ecx);
1088	kvm_rdx_write(vcpu, edx);
1089	return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v3.15
 
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 * cpuid support routines
  4 *
  5 * derived from arch/x86/kvm/x86.c
  6 *
  7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8 * Copyright IBM Corporation, 2008
  9 *
 10 * This work is licensed under the terms of the GNU GPL, version 2.  See
 11 * the COPYING file in the top-level directory.
 12 *
 13 */
 14
 15#include <linux/kvm_host.h>
 16#include <linux/module.h>
 17#include <linux/vmalloc.h>
 18#include <linux/uaccess.h>
 
 
 
 19#include <asm/user.h>
 20#include <asm/xsave.h>
 21#include "cpuid.h"
 22#include "lapic.h"
 23#include "mmu.h"
 24#include "trace.h"
 
 
 
 
 
 
 
 
 25
 26static u32 xstate_required_size(u64 xstate_bv)
 27{
 28	int feature_bit = 0;
 29	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 30
 31	xstate_bv &= XSTATE_EXTEND_MASK;
 32	while (xstate_bv) {
 33		if (xstate_bv & 0x1) {
 34		        u32 eax, ebx, ecx, edx;
 35		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 36			ret = max(ret, eax + ebx);
 
 37		}
 38
 39		xstate_bv >>= 1;
 40		feature_bit++;
 41	}
 42
 43	return ret;
 44}
 45
 46u64 kvm_supported_xcr0(void)
 
 
 47{
 48	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
 
 
 
 
 
 
 
 
 49
 50	if (!kvm_x86_ops->mpx_supported())
 51		xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR);
 
 52
 53	return xcr0;
 54}
 55
 56void kvm_update_cpuid(struct kvm_vcpu *vcpu)
 57{
 58	struct kvm_cpuid_entry2 *best;
 59	struct kvm_lapic *apic = vcpu->arch.apic;
 60
 61	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 62	if (!best)
 63		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64
 65	/* Update OSXSAVE bit */
 66	if (cpu_has_xsave && best->function == 0x1) {
 67		best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
 68		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 69			best->ecx |= bit(X86_FEATURE_OSXSAVE);
 
 70	}
 
 
 
 
 
 
 71
 72	if (apic) {
 73		if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
 
 
 
 74			apic->lapic_timer.timer_mode_mask = 3 << 17;
 75		else
 76			apic->lapic_timer.timer_mode_mask = 1 << 17;
 
 
 77	}
 78
 79	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 80	if (!best) {
 81		vcpu->arch.guest_supported_xcr0 = 0;
 82		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 83	} else {
 84		vcpu->arch.guest_supported_xcr0 =
 85			(best->eax | ((u64)best->edx << 32)) &
 86			kvm_supported_xcr0();
 87		vcpu->arch.guest_xstate_size = best->ebx =
 88			xstate_required_size(vcpu->arch.xcr0);
 89	}
 90
 91	kvm_pmu_cpuid_update(vcpu);
 
 
 
 92}
 93
 94static int is_efer_nx(void)
 95{
 96	unsigned long long efer = 0;
 97
 98	rdmsrl_safe(MSR_EFER, &efer);
 99	return efer & EFER_NX;
100}
101
102static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
103{
104	int i;
105	struct kvm_cpuid_entry2 *e, *entry;
106
107	entry = NULL;
108	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
109		e = &vcpu->arch.cpuid_entries[i];
110		if (e->function == 0x80000001) {
111			entry = e;
112			break;
113		}
114	}
115	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
116		entry->edx &= ~(1 << 20);
117		printk(KERN_INFO "kvm: guest NX capability removed\n");
118	}
119}
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121/* when an old userspace process fills a new kernel module */
122int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
123			     struct kvm_cpuid *cpuid,
124			     struct kvm_cpuid_entry __user *entries)
125{
126	int r, i;
127	struct kvm_cpuid_entry *cpuid_entries;
128
129	r = -E2BIG;
130	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131		goto out;
132	r = -ENOMEM;
133	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
134	if (!cpuid_entries)
135		goto out;
136	r = -EFAULT;
137	if (copy_from_user(cpuid_entries, entries,
138			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
139		goto out_free;
 
140	for (i = 0; i < cpuid->nent; i++) {
141		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
142		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
143		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
144		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
145		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
146		vcpu->arch.cpuid_entries[i].index = 0;
147		vcpu->arch.cpuid_entries[i].flags = 0;
148		vcpu->arch.cpuid_entries[i].padding[0] = 0;
149		vcpu->arch.cpuid_entries[i].padding[1] = 0;
150		vcpu->arch.cpuid_entries[i].padding[2] = 0;
151	}
152	vcpu->arch.cpuid_nent = cpuid->nent;
 
 
 
 
 
 
 
153	cpuid_fix_nx_cap(vcpu);
154	r = 0;
155	kvm_apic_set_version(vcpu);
156	kvm_x86_ops->cpuid_update(vcpu);
157	kvm_update_cpuid(vcpu);
158
159out_free:
160	vfree(cpuid_entries);
161out:
162	return r;
163}
164
165int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
166			      struct kvm_cpuid2 *cpuid,
167			      struct kvm_cpuid_entry2 __user *entries)
168{
169	int r;
170
171	r = -E2BIG;
172	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
173		goto out;
174	r = -EFAULT;
175	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
176			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
177		goto out;
178	vcpu->arch.cpuid_nent = cpuid->nent;
179	kvm_apic_set_version(vcpu);
180	kvm_x86_ops->cpuid_update(vcpu);
181	kvm_update_cpuid(vcpu);
182	return 0;
 
183
 
 
184out:
185	return r;
186}
187
188int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
189			      struct kvm_cpuid2 *cpuid,
190			      struct kvm_cpuid_entry2 __user *entries)
191{
192	int r;
193
194	r = -E2BIG;
195	if (cpuid->nent < vcpu->arch.cpuid_nent)
196		goto out;
197	r = -EFAULT;
198	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
199			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
200		goto out;
201	return 0;
202
203out:
204	cpuid->nent = vcpu->arch.cpuid_nent;
205	return r;
206}
207
208static void cpuid_mask(u32 *word, int wordnum)
209{
210	*word &= boot_cpu_data.x86_capability[wordnum];
211}
212
213static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
214			   u32 index)
215{
216	entry->function = function;
217	entry->index = index;
218	cpuid_count(entry->function, entry->index,
219		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
220	entry->flags = 0;
221}
222
223#define F(x) bit(X86_FEATURE_##x)
224
225static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
226				   u32 func, u32 index, int *nent, int maxnent)
227{
228	switch (func) {
229	case 0:
230		entry->eax = 1;		/* only one leaf currently */
231		++*nent;
232		break;
233	case 1:
234		entry->ecx = F(MOVBE);
235		++*nent;
236		break;
237	default:
238		break;
239	}
240
241	entry->function = func;
242	entry->index = index;
243
244	return 0;
245}
246
247static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
248				 u32 index, int *nent, int maxnent)
249{
250	int r;
251	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
252#ifdef CONFIG_X86_64
253	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
254				? F(GBPAGES) : 0;
255	unsigned f_lm = F(LM);
256#else
257	unsigned f_gbpages = 0;
258	unsigned f_lm = 0;
259#endif
260	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
261	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
262	unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0;
263
264	/* cpuid 1.edx */
265	const u32 kvm_supported_word0_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266		F(FPU) | F(VME) | F(DE) | F(PSE) |
267		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
268		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
269		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
270		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
271		0 /* Reserved, DS, ACPI */ | F(MMX) |
272		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
273		0 /* HTT, TM, Reserved, PBE */;
274	/* cpuid 0x80000001.edx */
275	const u32 kvm_supported_word1_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276		F(FPU) | F(VME) | F(DE) | F(PSE) |
277		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
278		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
279		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
280		F(PAT) | F(PSE36) | 0 /* Reserved */ |
281		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
282		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
283		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
284	/* cpuid 1.ecx */
285	const u32 kvm_supported_word4_x86_features =
286		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
287		0 /* DS-CPL, VMX, SMX, EST */ |
288		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
289		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
290		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
291		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
292		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
293		F(F16C) | F(RDRAND);
294	/* cpuid 0x80000001.ecx */
295	const u32 kvm_supported_word6_x86_features =
296		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
297		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
298		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
299		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300
301	/* cpuid 0xC0000001.edx */
302	const u32 kvm_supported_word5_x86_features =
303		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
304		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
305		F(PMM) | F(PMM_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
307	/* cpuid 7.0.ebx */
308	const u32 kvm_supported_word9_x86_features =
309		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
310		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
311		F(ADX) | F(SMAP);
 
 
312
313	/* all calls to cpuid_count() should be made on the same cpu */
314	get_cpu();
315
316	r = -E2BIG;
317
318	if (*nent >= maxnent)
 
319		goto out;
320
321	do_cpuid_1_ent(entry, function, index);
322	++*nent;
323
324	switch (function) {
325	case 0:
326		entry->eax = min(entry->eax, (u32)0xd);
 
327		break;
328	case 1:
329		entry->edx &= kvm_supported_word0_x86_features;
330		cpuid_mask(&entry->edx, 0);
331		entry->ecx &= kvm_supported_word4_x86_features;
332		cpuid_mask(&entry->ecx, 4);
333		/* we support x2apic emulation even if host does not support
334		 * it since we emulate x2apic in software */
335		entry->ecx |= F(X2APIC);
336		break;
337	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
338	 * may return different values. This forces us to get_cpu() before
339	 * issuing the first command, and also to emulate this annoying behavior
340	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
341	case 2: {
342		int t, times = entry->eax & 0xff;
343
344		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
345		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
346		for (t = 1; t < times; ++t) {
347			if (*nent >= maxnent)
 
 
 
 
 
 
 
 
 
 
 
 
348				goto out;
349
350			do_cpuid_1_ent(&entry[t], function, 0);
351			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
352			++*nent;
353		}
354		break;
355	}
356	/* function 4 has additional index. */
357	case 4: {
358		int i, cache_type;
359
360		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
361		/* read more entries until cache_type is zero */
362		for (i = 1; ; ++i) {
363			if (*nent >= maxnent)
 
 
 
 
 
 
 
 
364				goto out;
365
366			cache_type = entry[i - 1].eax & 0x1f;
367			if (!cache_type)
368				break;
369			do_cpuid_1_ent(&entry[i], function, i);
370			entry[i].flags |=
371			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
372			++*nent;
373		}
374		break;
375	}
376	case 7: {
377		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
378		/* Mask ebx against host capability word 9 */
379		if (index == 0) {
380			entry->ebx &= kvm_supported_word9_x86_features;
381			cpuid_mask(&entry->ebx, 9);
382			// TSC_ADJUST is emulated
383			entry->ebx |= F(TSC_ADJUST);
384		} else
385			entry->ebx = 0;
386		entry->eax = 0;
387		entry->ecx = 0;
388		entry->edx = 0;
389		break;
390	}
391	case 9:
392		break;
393	case 0xa: { /* Architectural Performance Monitoring */
394		struct x86_pmu_capability cap;
395		union cpuid10_eax eax;
396		union cpuid10_edx edx;
397
398		perf_get_x86_pmu_capability(&cap);
399
400		/*
401		 * Only support guest architectural pmu on a host
402		 * with architectural pmu.
403		 */
404		if (!cap.version)
405			memset(&cap, 0, sizeof(cap));
406
407		eax.split.version_id = min(cap.version, 2);
408		eax.split.num_counters = cap.num_counters_gp;
409		eax.split.bit_width = cap.bit_width_gp;
410		eax.split.mask_length = cap.events_mask_len;
411
412		edx.split.num_counters_fixed = cap.num_counters_fixed;
413		edx.split.bit_width_fixed = cap.bit_width_fixed;
414		edx.split.reserved = 0;
415
416		entry->eax = eax.full;
417		entry->ebx = cap.events_mask;
418		entry->ecx = 0;
419		entry->edx = edx.full;
420		break;
421	}
422	/* function 0xb has additional index. */
423	case 0xb: {
424		int i, level_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425
426		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427		/* read more entries until level_type is zero */
428		for (i = 1; ; ++i) {
429			if (*nent >= maxnent)
 
 
 
 
 
 
 
430				goto out;
431
432			level_type = entry[i - 1].ecx & 0xff00;
433			if (!level_type)
434				break;
435			do_cpuid_1_ent(&entry[i], function, i);
436			entry[i].flags |=
437			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
438			++*nent;
 
 
 
 
 
 
439		}
440		break;
441	}
442	case 0xd: {
443		int idx, i;
444		u64 supported = kvm_supported_xcr0();
 
 
445
446		entry->eax &= supported;
447		entry->edx &= supported >> 32;
448		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
449		for (idx = 1, i = 1; idx < 64; ++idx) {
450			u64 mask = ((u64)1 << idx);
451			if (*nent >= maxnent)
452				goto out;
453
454			do_cpuid_1_ent(&entry[i], function, idx);
455			if (entry[i].eax == 0 || !(supported & mask))
456				continue;
457			entry[i].flags |=
458			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
459			++*nent;
460			++i;
461		}
462		break;
463	}
464	case KVM_CPUID_SIGNATURE: {
465		static const char signature[12] = "KVMKVMKVM\0\0";
466		const u32 *sigptr = (const u32 *)signature;
467		entry->eax = KVM_CPUID_FEATURES;
468		entry->ebx = sigptr[0];
469		entry->ecx = sigptr[1];
470		entry->edx = sigptr[2];
471		break;
472	}
473	case KVM_CPUID_FEATURES:
474		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
475			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
476			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
477			     (1 << KVM_FEATURE_ASYNC_PF) |
478			     (1 << KVM_FEATURE_PV_EOI) |
479			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
480			     (1 << KVM_FEATURE_PV_UNHALT);
 
 
 
 
 
 
481
482		if (sched_info_on())
483			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
484
485		entry->ebx = 0;
486		entry->ecx = 0;
487		entry->edx = 0;
488		break;
489	case 0x80000000:
490		entry->eax = min(entry->eax, 0x8000001a);
491		break;
492	case 0x80000001:
493		entry->edx &= kvm_supported_word1_x86_features;
494		cpuid_mask(&entry->edx, 1);
495		entry->ecx &= kvm_supported_word6_x86_features;
496		cpuid_mask(&entry->ecx, 6);
 
 
 
 
 
 
 
 
497		break;
498	case 0x80000008: {
499		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
500		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
501		unsigned phys_as = entry->eax & 0xff;
502
503		if (!g_phys_as)
504			g_phys_as = phys_as;
505		entry->eax = g_phys_as | (virt_as << 8);
506		entry->ebx = entry->edx = 0;
 
507		break;
508	}
 
 
 
 
 
 
 
 
 
 
 
509	case 0x80000019:
510		entry->ecx = entry->edx = 0;
511		break;
512	case 0x8000001a:
 
513		break;
514	case 0x8000001d:
 
 
 
515		break;
516	/*Add support for Centaur's CPUID instruction*/
517	case 0xC0000000:
518		/*Just support up to 0xC0000004 now*/
519		entry->eax = min(entry->eax, 0xC0000004);
520		break;
521	case 0xC0000001:
522		entry->edx &= kvm_supported_word5_x86_features;
523		cpuid_mask(&entry->edx, 5);
524		break;
525	case 3: /* Processor serial number */
526	case 5: /* MONITOR/MWAIT */
527	case 6: /* Thermal management */
528	case 0x80000007: /* Advanced power management */
529	case 0xC0000002:
530	case 0xC0000003:
531	case 0xC0000004:
532	default:
533		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
534		break;
535	}
536
537	kvm_x86_ops->set_supported_cpuid(function, entry);
538
539	r = 0;
540
541out:
542	put_cpu();
543
544	return r;
545}
546
547static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
548			u32 idx, int *nent, int maxnent, unsigned int type)
549{
550	if (type == KVM_GET_EMULATED_CPUID)
551		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
552
553	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
554}
555
556#undef F
 
 
 
 
 
 
 
 
 
 
557
558struct kvm_cpuid_param {
559	u32 func;
560	u32 idx;
561	bool has_leaf_count;
562	bool (*qualifier)(const struct kvm_cpuid_param *param);
563};
 
 
 
 
564
565static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
566{
567	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
568}
569
570static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
571				 __u32 num_entries, unsigned int ioctl_type)
572{
573	int i;
574	__u32 pad[3];
575
576	if (ioctl_type != KVM_GET_EMULATED_CPUID)
577		return false;
578
579	/*
580	 * We want to make sure that ->padding is being passed clean from
581	 * userspace in case we want to use it for something in the future.
582	 *
583	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
584	 * have to give ourselves satisfied only with the emulated side. /me
585	 * sheds a tear.
586	 */
587	for (i = 0; i < num_entries; i++) {
588		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
589			return true;
590
591		if (pad[0] || pad[1] || pad[2])
592			return true;
593	}
594	return false;
595}
596
597int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
598			    struct kvm_cpuid_entry2 __user *entries,
599			    unsigned int type)
600{
601	struct kvm_cpuid_entry2 *cpuid_entries;
602	int limit, nent = 0, r = -E2BIG, i;
603	u32 func;
604	static const struct kvm_cpuid_param param[] = {
605		{ .func = 0, .has_leaf_count = true },
606		{ .func = 0x80000000, .has_leaf_count = true },
607		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
608		{ .func = KVM_CPUID_SIGNATURE },
609		{ .func = KVM_CPUID_FEATURES },
610	};
611
 
 
 
 
 
612	if (cpuid->nent < 1)
613		goto out;
614	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
615		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
616
617	if (sanity_check_entries(entries, cpuid->nent, type))
618		return -EINVAL;
619
620	r = -ENOMEM;
621	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
622	if (!cpuid_entries)
623		goto out;
624
625	r = 0;
626	for (i = 0; i < ARRAY_SIZE(param); i++) {
627		const struct kvm_cpuid_param *ent = &param[i];
628
629		if (ent->qualifier && !ent->qualifier(ent))
630			continue;
631
632		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
633				&nent, cpuid->nent, type);
634
635		if (r)
636			goto out_free;
637
638		if (!ent->has_leaf_count)
639			continue;
640
641		limit = cpuid_entries[nent - 1].eax;
642		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
643			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
644				     &nent, cpuid->nent, type);
645
 
 
646		if (r)
647			goto out_free;
648	}
 
649
650	r = -EFAULT;
651	if (copy_to_user(entries, cpuid_entries,
652			 nent * sizeof(struct kvm_cpuid_entry2)))
653		goto out_free;
654	cpuid->nent = nent;
655	r = 0;
656
657out_free:
658	vfree(cpuid_entries);
659out:
660	return r;
661}
662
663static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
664{
665	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
666	int j, nent = vcpu->arch.cpuid_nent;
667
668	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
669	/* when no next entry is found, the current entry[i] is reselected */
670	for (j = i + 1; ; j = (j + 1) % nent) {
671		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
672		if (ej->function == e->function) {
673			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
674			return j;
675		}
676	}
677	return 0; /* silence gcc, even though control never reaches here */
678}
679
680/* find an entry with matching function, matching index (if needed), and that
681 * should be read next (if it's stateful) */
682static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
683	u32 function, u32 index)
684{
685	if (e->function != function)
686		return 0;
687	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
688		return 0;
689	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
690	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
691		return 0;
692	return 1;
693}
694
695struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
696					      u32 function, u32 index)
697{
 
698	int i;
699	struct kvm_cpuid_entry2 *best = NULL;
700
701	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
702		struct kvm_cpuid_entry2 *e;
703
704		e = &vcpu->arch.cpuid_entries[i];
705		if (is_matching_cpuid_entry(e, function, index)) {
706			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
707				move_to_next_stateful_cpuid_entry(vcpu, i);
708			best = e;
709			break;
710		}
711	}
712	return best;
713}
714EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
715
716int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
717{
718	struct kvm_cpuid_entry2 *best;
719
720	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
721	if (!best || best->eax < 0x80000008)
722		goto not_found;
723	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
724	if (best)
725		return best->eax & 0xff;
726not_found:
727	return 36;
728}
729
730/*
731 * If no match is found, check whether we exceed the vCPU's limit
732 * and return the content of the highest valid _standard_ leaf instead.
733 * This is to satisfy the CPUID specification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734 */
735static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
736                                                  u32 function, u32 index)
737{
738	struct kvm_cpuid_entry2 *maxlevel;
 
 
 
 
 
739
740	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
741	if (!maxlevel || maxlevel->eax >= function)
742		return NULL;
743	if (function & 0x80000000) {
744		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
745		if (!maxlevel)
746			return NULL;
747	}
748	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
749}
750
751void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
752{
753	u32 function = *eax, index = *ecx;
754	struct kvm_cpuid_entry2 *best;
 
 
 
 
 
755
756	best = kvm_find_cpuid_entry(vcpu, function, index);
 
 
 
 
 
 
757
758	if (!best)
759		best = check_cpuid_limit(vcpu, function, index);
 
 
 
 
 
760
761	if (best) {
762		*eax = best->eax;
763		*ebx = best->ebx;
764		*ecx = best->ecx;
765		*edx = best->edx;
766	} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767		*eax = *ebx = *ecx = *edx = 0;
768	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769}
770EXPORT_SYMBOL_GPL(kvm_cpuid);
771
772void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
773{
774	u32 function, eax, ebx, ecx, edx;
 
 
 
775
776	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
777	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
778	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
779	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
780	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
781	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
782	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
783	kvm_x86_ops->skip_emulated_instruction(vcpu);
784}
785EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);