Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12#include <linux/kvm_host.h>
13#include <linux/export.h>
14#include <linux/vmalloc.h>
15#include <linux/uaccess.h>
16#include <linux/sched/stat.h>
17
18#include <asm/processor.h>
19#include <asm/user.h>
20#include <asm/fpu/xstate.h>
21#include "cpuid.h"
22#include "lapic.h"
23#include "mmu.h"
24#include "trace.h"
25#include "pmu.h"
26
27/*
28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30 */
31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35{
36 int feature_bit = 0;
37 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39 xstate_bv &= XFEATURE_MASK_EXTEND;
40 while (xstate_bv) {
41 if (xstate_bv & 0x1) {
42 u32 eax, ebx, ecx, edx, offset;
43 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 offset = compacted ? ret : ebx;
45 ret = max(ret, offset + eax);
46 }
47
48 xstate_bv >>= 1;
49 feature_bit++;
50 }
51
52 return ret;
53}
54
55#define F feature_bit
56
57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
58{
59 struct kvm_cpuid_entry2 *best;
60
61 /*
62 * The existing code assumes virtual address is 48-bit or 57-bit in the
63 * canonical address checks; exit if it is ever changed.
64 */
65 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
66 if (best) {
67 int vaddr_bits = (best->eax & 0xff00) >> 8;
68
69 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
70 return -EINVAL;
71 }
72
73 return 0;
74}
75
76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
77{
78 struct kvm_cpuid_entry2 *best;
79
80 best = kvm_find_cpuid_entry(vcpu, 1, 0);
81 if (best) {
82 /* Update OSXSAVE bit */
83 if (boot_cpu_has(X86_FEATURE_XSAVE))
84 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
85 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
86
87 cpuid_entry_change(best, X86_FEATURE_APIC,
88 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
89 }
90
91 best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
93 cpuid_entry_change(best, X86_FEATURE_OSPKE,
94 kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
95
96 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
97 if (best)
98 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
99
100 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
101 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
102 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
103 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
104
105 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
106 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
107 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
108 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
109
110 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
111 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
112 if (best)
113 cpuid_entry_change(best, X86_FEATURE_MWAIT,
114 vcpu->arch.ia32_misc_enable_msr &
115 MSR_IA32_MISC_ENABLE_MWAIT);
116 }
117}
118
119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
120{
121 struct kvm_lapic *apic = vcpu->arch.apic;
122 struct kvm_cpuid_entry2 *best;
123
124 kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
125
126 best = kvm_find_cpuid_entry(vcpu, 1, 0);
127 if (best && apic) {
128 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
129 apic->lapic_timer.timer_mode_mask = 3 << 17;
130 else
131 apic->lapic_timer.timer_mode_mask = 1 << 17;
132
133 kvm_apic_set_version(vcpu);
134 }
135
136 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
137 if (!best)
138 vcpu->arch.guest_supported_xcr0 = 0;
139 else
140 vcpu->arch.guest_supported_xcr0 =
141 (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
142
143 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
144 kvm_mmu_reset_context(vcpu);
145
146 kvm_pmu_refresh(vcpu);
147 vcpu->arch.cr4_guest_rsvd_bits =
148 __cr4_reserved_bits(guest_cpuid_has, vcpu);
149 kvm_x86_ops.update_exception_bitmap(vcpu);
150}
151
152static int is_efer_nx(void)
153{
154 return host_efer & EFER_NX;
155}
156
157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
158{
159 int i;
160 struct kvm_cpuid_entry2 *e, *entry;
161
162 entry = NULL;
163 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
164 e = &vcpu->arch.cpuid_entries[i];
165 if (e->function == 0x80000001) {
166 entry = e;
167 break;
168 }
169 }
170 if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
171 cpuid_entry_clear(entry, X86_FEATURE_NX);
172 printk(KERN_INFO "kvm: guest NX capability removed\n");
173 }
174}
175
176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
177{
178 struct kvm_cpuid_entry2 *best;
179
180 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
181 if (!best || best->eax < 0x80000008)
182 goto not_found;
183 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
184 if (best)
185 return best->eax & 0xff;
186not_found:
187 return 36;
188}
189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
190
191/* when an old userspace process fills a new kernel module */
192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
193 struct kvm_cpuid *cpuid,
194 struct kvm_cpuid_entry __user *entries)
195{
196 int r, i;
197 struct kvm_cpuid_entry *cpuid_entries = NULL;
198
199 r = -E2BIG;
200 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
201 goto out;
202 if (cpuid->nent) {
203 cpuid_entries = vmemdup_user(entries,
204 array_size(sizeof(struct kvm_cpuid_entry),
205 cpuid->nent));
206 if (IS_ERR(cpuid_entries)) {
207 r = PTR_ERR(cpuid_entries);
208 goto out;
209 }
210 }
211 for (i = 0; i < cpuid->nent; i++) {
212 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
213 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
214 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
215 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
216 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
217 vcpu->arch.cpuid_entries[i].index = 0;
218 vcpu->arch.cpuid_entries[i].flags = 0;
219 vcpu->arch.cpuid_entries[i].padding[0] = 0;
220 vcpu->arch.cpuid_entries[i].padding[1] = 0;
221 vcpu->arch.cpuid_entries[i].padding[2] = 0;
222 }
223 vcpu->arch.cpuid_nent = cpuid->nent;
224 r = kvm_check_cpuid(vcpu);
225 if (r) {
226 vcpu->arch.cpuid_nent = 0;
227 kvfree(cpuid_entries);
228 goto out;
229 }
230
231 cpuid_fix_nx_cap(vcpu);
232 kvm_update_cpuid_runtime(vcpu);
233 kvm_vcpu_after_set_cpuid(vcpu);
234
235 kvfree(cpuid_entries);
236out:
237 return r;
238}
239
240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
241 struct kvm_cpuid2 *cpuid,
242 struct kvm_cpuid_entry2 __user *entries)
243{
244 int r;
245
246 r = -E2BIG;
247 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
248 goto out;
249 r = -EFAULT;
250 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
251 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
252 goto out;
253 vcpu->arch.cpuid_nent = cpuid->nent;
254 r = kvm_check_cpuid(vcpu);
255 if (r) {
256 vcpu->arch.cpuid_nent = 0;
257 goto out;
258 }
259
260 kvm_update_cpuid_runtime(vcpu);
261 kvm_vcpu_after_set_cpuid(vcpu);
262out:
263 return r;
264}
265
266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
267 struct kvm_cpuid2 *cpuid,
268 struct kvm_cpuid_entry2 __user *entries)
269{
270 int r;
271
272 r = -E2BIG;
273 if (cpuid->nent < vcpu->arch.cpuid_nent)
274 goto out;
275 r = -EFAULT;
276 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
277 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
278 goto out;
279 return 0;
280
281out:
282 cpuid->nent = vcpu->arch.cpuid_nent;
283 return r;
284}
285
286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
287{
288 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
289 struct kvm_cpuid_entry2 entry;
290
291 reverse_cpuid_check(leaf);
292 kvm_cpu_caps[leaf] &= mask;
293
294 cpuid_count(cpuid.function, cpuid.index,
295 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
296
297 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
298}
299
300void kvm_set_cpu_caps(void)
301{
302 unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
303#ifdef CONFIG_X86_64
304 unsigned int f_gbpages = F(GBPAGES);
305 unsigned int f_lm = F(LM);
306#else
307 unsigned int f_gbpages = 0;
308 unsigned int f_lm = 0;
309#endif
310
311 BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
312 sizeof(boot_cpu_data.x86_capability));
313
314 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
315 sizeof(kvm_cpu_caps));
316
317 kvm_cpu_cap_mask(CPUID_1_ECX,
318 /*
319 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
320 * advertised to guests via CPUID!
321 */
322 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
323 0 /* DS-CPL, VMX, SMX, EST */ |
324 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
325 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
326 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
327 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
328 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
329 F(F16C) | F(RDRAND)
330 );
331 /* KVM emulates x2apic in software irrespective of host support. */
332 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
333
334 kvm_cpu_cap_mask(CPUID_1_EDX,
335 F(FPU) | F(VME) | F(DE) | F(PSE) |
336 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
337 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
338 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
339 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
340 0 /* Reserved, DS, ACPI */ | F(MMX) |
341 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
342 0 /* HTT, TM, Reserved, PBE */
343 );
344
345 kvm_cpu_cap_mask(CPUID_7_0_EBX,
346 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
347 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
348 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
349 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
350 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
351 );
352
353 kvm_cpu_cap_mask(CPUID_7_ECX,
354 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
355 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
356 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
357 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
358 );
359 /* Set LA57 based on hardware capability. */
360 if (cpuid_ecx(7) & F(LA57))
361 kvm_cpu_cap_set(X86_FEATURE_LA57);
362
363 /*
364 * PKU not yet implemented for shadow paging and requires OSPKE
365 * to be set on the host. Clear it if that is not the case
366 */
367 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
368 kvm_cpu_cap_clear(X86_FEATURE_PKU);
369
370 kvm_cpu_cap_mask(CPUID_7_EDX,
371 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
372 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
373 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
374 F(SERIALIZE)
375 );
376
377 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
378 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
379 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
380
381 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
382 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
383 if (boot_cpu_has(X86_FEATURE_STIBP))
384 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
385 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
386 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
387
388 kvm_cpu_cap_mask(CPUID_7_1_EAX,
389 F(AVX512_BF16)
390 );
391
392 kvm_cpu_cap_mask(CPUID_D_1_EAX,
393 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
394 );
395
396 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
397 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
398 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
399 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
400 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
401 F(TOPOEXT) | F(PERFCTR_CORE)
402 );
403
404 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
405 F(FPU) | F(VME) | F(DE) | F(PSE) |
406 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
407 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
408 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
409 F(PAT) | F(PSE36) | 0 /* Reserved */ |
410 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
411 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
412 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
413 );
414
415 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
416 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
417
418 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
419 F(CLZERO) | F(XSAVEERPTR) |
420 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
421 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
422 );
423
424 /*
425 * AMD has separate bits for each SPEC_CTRL bit.
426 * arch/x86/kernel/cpu/bugs.c is kind enough to
427 * record that in cpufeatures so use them.
428 */
429 if (boot_cpu_has(X86_FEATURE_IBPB))
430 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
431 if (boot_cpu_has(X86_FEATURE_IBRS))
432 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
433 if (boot_cpu_has(X86_FEATURE_STIBP))
434 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
435 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
436 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
437 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
438 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
439 /*
440 * The preference is to use SPEC CTRL MSR instead of the
441 * VIRT_SPEC MSR.
442 */
443 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
444 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
445 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
446
447 /*
448 * Hide all SVM features by default, SVM will set the cap bits for
449 * features it emulates and/or exposes for L1.
450 */
451 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
452
453 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
454 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
455 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
456 F(PMM) | F(PMM_EN)
457 );
458}
459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
460
461struct kvm_cpuid_array {
462 struct kvm_cpuid_entry2 *entries;
463 int maxnent;
464 int nent;
465};
466
467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
468 u32 function, u32 index)
469{
470 struct kvm_cpuid_entry2 *entry;
471
472 if (array->nent >= array->maxnent)
473 return NULL;
474
475 entry = &array->entries[array->nent++];
476
477 entry->function = function;
478 entry->index = index;
479 entry->flags = 0;
480
481 cpuid_count(entry->function, entry->index,
482 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
483
484 switch (function) {
485 case 4:
486 case 7:
487 case 0xb:
488 case 0xd:
489 case 0xf:
490 case 0x10:
491 case 0x12:
492 case 0x14:
493 case 0x17:
494 case 0x18:
495 case 0x1f:
496 case 0x8000001d:
497 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
498 break;
499 }
500
501 return entry;
502}
503
504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
505{
506 struct kvm_cpuid_entry2 *entry;
507
508 if (array->nent >= array->maxnent)
509 return -E2BIG;
510
511 entry = &array->entries[array->nent];
512 entry->function = func;
513 entry->index = 0;
514 entry->flags = 0;
515
516 switch (func) {
517 case 0:
518 entry->eax = 7;
519 ++array->nent;
520 break;
521 case 1:
522 entry->ecx = F(MOVBE);
523 ++array->nent;
524 break;
525 case 7:
526 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
527 entry->eax = 0;
528 entry->ecx = F(RDPID);
529 ++array->nent;
530 default:
531 break;
532 }
533
534 return 0;
535}
536
537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
538{
539 struct kvm_cpuid_entry2 *entry;
540 int r, i, max_idx;
541
542 /* all calls to cpuid_count() should be made on the same cpu */
543 get_cpu();
544
545 r = -E2BIG;
546
547 entry = do_host_cpuid(array, function, 0);
548 if (!entry)
549 goto out;
550
551 switch (function) {
552 case 0:
553 /* Limited to the highest leaf implemented in KVM. */
554 entry->eax = min(entry->eax, 0x1fU);
555 break;
556 case 1:
557 cpuid_entry_override(entry, CPUID_1_EDX);
558 cpuid_entry_override(entry, CPUID_1_ECX);
559 break;
560 case 2:
561 /*
562 * On ancient CPUs, function 2 entries are STATEFUL. That is,
563 * CPUID(function=2, index=0) may return different results each
564 * time, with the least-significant byte in EAX enumerating the
565 * number of times software should do CPUID(2, 0).
566 *
567 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
568 * idiotic. Intel's SDM states that EAX & 0xff "will always
569 * return 01H. Software should ignore this value and not
570 * interpret it as an informational descriptor", while AMD's
571 * APM states that CPUID(2) is reserved.
572 *
573 * WARN if a frankenstein CPU that supports virtualization and
574 * a stateful CPUID.0x2 is encountered.
575 */
576 WARN_ON_ONCE((entry->eax & 0xff) > 1);
577 break;
578 /* functions 4 and 0x8000001d have additional index. */
579 case 4:
580 case 0x8000001d:
581 /*
582 * Read entries until the cache type in the previous entry is
583 * zero, i.e. indicates an invalid entry.
584 */
585 for (i = 1; entry->eax & 0x1f; ++i) {
586 entry = do_host_cpuid(array, function, i);
587 if (!entry)
588 goto out;
589 }
590 break;
591 case 6: /* Thermal management */
592 entry->eax = 0x4; /* allow ARAT */
593 entry->ebx = 0;
594 entry->ecx = 0;
595 entry->edx = 0;
596 break;
597 /* function 7 has additional index. */
598 case 7:
599 entry->eax = min(entry->eax, 1u);
600 cpuid_entry_override(entry, CPUID_7_0_EBX);
601 cpuid_entry_override(entry, CPUID_7_ECX);
602 cpuid_entry_override(entry, CPUID_7_EDX);
603
604 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
605 if (entry->eax == 1) {
606 entry = do_host_cpuid(array, function, 1);
607 if (!entry)
608 goto out;
609
610 cpuid_entry_override(entry, CPUID_7_1_EAX);
611 entry->ebx = 0;
612 entry->ecx = 0;
613 entry->edx = 0;
614 }
615 break;
616 case 9:
617 break;
618 case 0xa: { /* Architectural Performance Monitoring */
619 struct x86_pmu_capability cap;
620 union cpuid10_eax eax;
621 union cpuid10_edx edx;
622
623 perf_get_x86_pmu_capability(&cap);
624
625 /*
626 * Only support guest architectural pmu on a host
627 * with architectural pmu.
628 */
629 if (!cap.version)
630 memset(&cap, 0, sizeof(cap));
631
632 eax.split.version_id = min(cap.version, 2);
633 eax.split.num_counters = cap.num_counters_gp;
634 eax.split.bit_width = cap.bit_width_gp;
635 eax.split.mask_length = cap.events_mask_len;
636
637 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
638 edx.split.bit_width_fixed = cap.bit_width_fixed;
639 edx.split.reserved = 0;
640
641 entry->eax = eax.full;
642 entry->ebx = cap.events_mask;
643 entry->ecx = 0;
644 entry->edx = edx.full;
645 break;
646 }
647 /*
648 * Per Intel's SDM, the 0x1f is a superset of 0xb,
649 * thus they can be handled by common code.
650 */
651 case 0x1f:
652 case 0xb:
653 /*
654 * Populate entries until the level type (ECX[15:8]) of the
655 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
656 * the starting entry, filled by the primary do_host_cpuid().
657 */
658 for (i = 1; entry->ecx & 0xff00; ++i) {
659 entry = do_host_cpuid(array, function, i);
660 if (!entry)
661 goto out;
662 }
663 break;
664 case 0xd:
665 entry->eax &= supported_xcr0;
666 entry->ebx = xstate_required_size(supported_xcr0, false);
667 entry->ecx = entry->ebx;
668 entry->edx &= supported_xcr0 >> 32;
669 if (!supported_xcr0)
670 break;
671
672 entry = do_host_cpuid(array, function, 1);
673 if (!entry)
674 goto out;
675
676 cpuid_entry_override(entry, CPUID_D_1_EAX);
677 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
678 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
679 true);
680 else {
681 WARN_ON_ONCE(supported_xss != 0);
682 entry->ebx = 0;
683 }
684 entry->ecx &= supported_xss;
685 entry->edx &= supported_xss >> 32;
686
687 for (i = 2; i < 64; ++i) {
688 bool s_state;
689 if (supported_xcr0 & BIT_ULL(i))
690 s_state = false;
691 else if (supported_xss & BIT_ULL(i))
692 s_state = true;
693 else
694 continue;
695
696 entry = do_host_cpuid(array, function, i);
697 if (!entry)
698 goto out;
699
700 /*
701 * The supported check above should have filtered out
702 * invalid sub-leafs. Only valid sub-leafs should
703 * reach this point, and they should have a non-zero
704 * save state size. Furthermore, check whether the
705 * processor agrees with supported_xcr0/supported_xss
706 * on whether this is an XCR0- or IA32_XSS-managed area.
707 */
708 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
709 --array->nent;
710 continue;
711 }
712 entry->edx = 0;
713 }
714 break;
715 /* Intel PT */
716 case 0x14:
717 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
718 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
719 break;
720 }
721
722 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
723 if (!do_host_cpuid(array, function, i))
724 goto out;
725 }
726 break;
727 case KVM_CPUID_SIGNATURE: {
728 static const char signature[12] = "KVMKVMKVM\0\0";
729 const u32 *sigptr = (const u32 *)signature;
730 entry->eax = KVM_CPUID_FEATURES;
731 entry->ebx = sigptr[0];
732 entry->ecx = sigptr[1];
733 entry->edx = sigptr[2];
734 break;
735 }
736 case KVM_CPUID_FEATURES:
737 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
738 (1 << KVM_FEATURE_NOP_IO_DELAY) |
739 (1 << KVM_FEATURE_CLOCKSOURCE2) |
740 (1 << KVM_FEATURE_ASYNC_PF) |
741 (1 << KVM_FEATURE_PV_EOI) |
742 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
743 (1 << KVM_FEATURE_PV_UNHALT) |
744 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
745 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
746 (1 << KVM_FEATURE_PV_SEND_IPI) |
747 (1 << KVM_FEATURE_POLL_CONTROL) |
748 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
749 (1 << KVM_FEATURE_ASYNC_PF_INT);
750
751 if (sched_info_on())
752 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
753
754 entry->ebx = 0;
755 entry->ecx = 0;
756 entry->edx = 0;
757 break;
758 case 0x80000000:
759 entry->eax = min(entry->eax, 0x8000001f);
760 break;
761 case 0x80000001:
762 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
763 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
764 break;
765 case 0x80000006:
766 /* L2 cache and TLB: pass through host info. */
767 break;
768 case 0x80000007: /* Advanced power management */
769 /* invariant TSC is CPUID.80000007H:EDX[8] */
770 entry->edx &= (1 << 8);
771 /* mask against host */
772 entry->edx &= boot_cpu_data.x86_power;
773 entry->eax = entry->ebx = entry->ecx = 0;
774 break;
775 case 0x80000008: {
776 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
777 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
778 unsigned phys_as = entry->eax & 0xff;
779
780 if (!g_phys_as)
781 g_phys_as = phys_as;
782 entry->eax = g_phys_as | (virt_as << 8);
783 entry->edx = 0;
784 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
785 break;
786 }
787 case 0x8000000A:
788 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
789 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
790 break;
791 }
792 entry->eax = 1; /* SVM revision 1 */
793 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
794 ASID emulation to nested SVM */
795 entry->ecx = 0; /* Reserved */
796 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
797 break;
798 case 0x80000019:
799 entry->ecx = entry->edx = 0;
800 break;
801 case 0x8000001a:
802 case 0x8000001e:
803 break;
804 /* Support memory encryption cpuid if host supports it */
805 case 0x8000001F:
806 if (!boot_cpu_has(X86_FEATURE_SEV))
807 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
808 break;
809 /*Add support for Centaur's CPUID instruction*/
810 case 0xC0000000:
811 /*Just support up to 0xC0000004 now*/
812 entry->eax = min(entry->eax, 0xC0000004);
813 break;
814 case 0xC0000001:
815 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
816 break;
817 case 3: /* Processor serial number */
818 case 5: /* MONITOR/MWAIT */
819 case 0xC0000002:
820 case 0xC0000003:
821 case 0xC0000004:
822 default:
823 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
824 break;
825 }
826
827 r = 0;
828
829out:
830 put_cpu();
831
832 return r;
833}
834
835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
836 unsigned int type)
837{
838 if (type == KVM_GET_EMULATED_CPUID)
839 return __do_cpuid_func_emulated(array, func);
840
841 return __do_cpuid_func(array, func);
842}
843
844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
845
846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
847 unsigned int type)
848{
849 u32 limit;
850 int r;
851
852 if (func == CENTAUR_CPUID_SIGNATURE &&
853 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
854 return 0;
855
856 r = do_cpuid_func(array, func, type);
857 if (r)
858 return r;
859
860 limit = array->entries[array->nent - 1].eax;
861 for (func = func + 1; func <= limit; ++func) {
862 r = do_cpuid_func(array, func, type);
863 if (r)
864 break;
865 }
866
867 return r;
868}
869
870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
871 __u32 num_entries, unsigned int ioctl_type)
872{
873 int i;
874 __u32 pad[3];
875
876 if (ioctl_type != KVM_GET_EMULATED_CPUID)
877 return false;
878
879 /*
880 * We want to make sure that ->padding is being passed clean from
881 * userspace in case we want to use it for something in the future.
882 *
883 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
884 * have to give ourselves satisfied only with the emulated side. /me
885 * sheds a tear.
886 */
887 for (i = 0; i < num_entries; i++) {
888 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
889 return true;
890
891 if (pad[0] || pad[1] || pad[2])
892 return true;
893 }
894 return false;
895}
896
897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
898 struct kvm_cpuid_entry2 __user *entries,
899 unsigned int type)
900{
901 static const u32 funcs[] = {
902 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
903 };
904
905 struct kvm_cpuid_array array = {
906 .nent = 0,
907 };
908 int r, i;
909
910 if (cpuid->nent < 1)
911 return -E2BIG;
912 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
913 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
914
915 if (sanity_check_entries(entries, cpuid->nent, type))
916 return -EINVAL;
917
918 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
919 cpuid->nent));
920 if (!array.entries)
921 return -ENOMEM;
922
923 array.maxnent = cpuid->nent;
924
925 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
926 r = get_cpuid_func(&array, funcs[i], type);
927 if (r)
928 goto out_free;
929 }
930 cpuid->nent = array.nent;
931
932 if (copy_to_user(entries, array.entries,
933 array.nent * sizeof(struct kvm_cpuid_entry2)))
934 r = -EFAULT;
935
936out_free:
937 vfree(array.entries);
938 return r;
939}
940
941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
942 u32 function, u32 index)
943{
944 struct kvm_cpuid_entry2 *e;
945 int i;
946
947 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
948 e = &vcpu->arch.cpuid_entries[i];
949
950 if (e->function == function && (e->index == index ||
951 !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
952 return e;
953 }
954 return NULL;
955}
956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
957
958/*
959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
962 * range. Centaur/VIA follows Intel semantics.
963 *
964 * A leaf is considered out-of-range if its function is higher than the maximum
965 * supported leaf of its associated class or if its associated class does not
966 * exist.
967 *
968 * There are three primary classes to be considered, with their respective
969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
970 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
972 *
973 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
974 * - Hypervisor: 0x40000000 - 0x4fffffff
975 * - Extended: 0x80000000 - 0xbfffffff
976 * - Centaur: 0xc0000000 - 0xcfffffff
977 *
978 * The Hypervisor class is further subdivided into sub-classes that each act as
979 * their own indepdent class associated with a 0x100 byte range. E.g. if Qemu
980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
981 * CPUID sub-classes are:
982 *
983 * - HyperV: 0x40000000 - 0x400000ff
984 * - KVM: 0x40000100 - 0x400001ff
985 */
986static struct kvm_cpuid_entry2 *
987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
988{
989 struct kvm_cpuid_entry2 *basic, *class;
990 u32 function = *fn_ptr;
991
992 basic = kvm_find_cpuid_entry(vcpu, 0, 0);
993 if (!basic)
994 return NULL;
995
996 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
997 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
998 return NULL;
999
1000 if (function >= 0x40000000 && function <= 0x4fffffff)
1001 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002 else if (function >= 0xc0000000)
1003 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004 else
1005 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007 if (class && function <= class->eax)
1008 return NULL;
1009
1010 /*
1011 * Leaf specific adjustments are also applied when redirecting to the
1012 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013 * entry for CPUID.0xb.index (see below), then the output value for EDX
1014 * needs to be pulled from CPUID.0xb.1.
1015 */
1016 *fn_ptr = basic->eax;
1017
1018 /*
1019 * The class does not exist or the requested function is out of range;
1020 * the effective CPUID entry is the max basic leaf. Note, the index of
1021 * the original requested leaf is observed!
1022 */
1023 return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027 u32 *ecx, u32 *edx, bool exact_only)
1028{
1029 u32 orig_function = *eax, function = *eax, index = *ecx;
1030 struct kvm_cpuid_entry2 *entry;
1031 bool exact, used_max_basic = false;
1032
1033 entry = kvm_find_cpuid_entry(vcpu, function, index);
1034 exact = !!entry;
1035
1036 if (!entry && !exact_only) {
1037 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038 used_max_basic = !!entry;
1039 }
1040
1041 if (entry) {
1042 *eax = entry->eax;
1043 *ebx = entry->ebx;
1044 *ecx = entry->ecx;
1045 *edx = entry->edx;
1046 if (function == 7 && index == 0) {
1047 u64 data;
1048 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049 (data & TSX_CTRL_CPUID_CLEAR))
1050 *ebx &= ~(F(RTM) | F(HLE));
1051 }
1052 } else {
1053 *eax = *ebx = *ecx = *edx = 0;
1054 /*
1055 * When leaf 0BH or 1FH is defined, CL is pass-through
1056 * and EDX is always the x2APIC ID, even for undefined
1057 * subleaves. Index 1 will exist iff the leaf is
1058 * implemented, so we pass through CL iff leaf 1
1059 * exists. EDX can be copied from any existing index.
1060 */
1061 if (function == 0xb || function == 0x1f) {
1062 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063 if (entry) {
1064 *ecx = index & 0xff;
1065 *edx = entry->edx;
1066 }
1067 }
1068 }
1069 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070 used_max_basic);
1071 return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077 u32 eax, ebx, ecx, edx;
1078
1079 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080 return 1;
1081
1082 eax = kvm_rax_read(vcpu);
1083 ecx = kvm_rcx_read(vcpu);
1084 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085 kvm_rax_write(vcpu, eax);
1086 kvm_rbx_write(vcpu, ebx);
1087 kvm_rcx_write(vcpu, ecx);
1088 kvm_rdx_write(vcpu, edx);
1089 return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
12 *
13 */
14
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/uaccess.h>
19#include <asm/user.h>
20#include <asm/xsave.h>
21#include "cpuid.h"
22#include "lapic.h"
23#include "mmu.h"
24#include "trace.h"
25
26void kvm_update_cpuid(struct kvm_vcpu *vcpu)
27{
28 struct kvm_cpuid_entry2 *best;
29 struct kvm_lapic *apic = vcpu->arch.apic;
30
31 best = kvm_find_cpuid_entry(vcpu, 1, 0);
32 if (!best)
33 return;
34
35 /* Update OSXSAVE bit */
36 if (cpu_has_xsave && best->function == 0x1) {
37 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39 best->ecx |= bit(X86_FEATURE_OSXSAVE);
40 }
41
42 if (apic) {
43 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44 apic->lapic_timer.timer_mode_mask = 3 << 17;
45 else
46 apic->lapic_timer.timer_mode_mask = 1 << 17;
47 }
48
49 kvm_pmu_cpuid_update(vcpu);
50}
51
52static int is_efer_nx(void)
53{
54 unsigned long long efer = 0;
55
56 rdmsrl_safe(MSR_EFER, &efer);
57 return efer & EFER_NX;
58}
59
60static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
61{
62 int i;
63 struct kvm_cpuid_entry2 *e, *entry;
64
65 entry = NULL;
66 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
67 e = &vcpu->arch.cpuid_entries[i];
68 if (e->function == 0x80000001) {
69 entry = e;
70 break;
71 }
72 }
73 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
74 entry->edx &= ~(1 << 20);
75 printk(KERN_INFO "kvm: guest NX capability removed\n");
76 }
77}
78
79/* when an old userspace process fills a new kernel module */
80int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
81 struct kvm_cpuid *cpuid,
82 struct kvm_cpuid_entry __user *entries)
83{
84 int r, i;
85 struct kvm_cpuid_entry *cpuid_entries;
86
87 r = -E2BIG;
88 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
89 goto out;
90 r = -ENOMEM;
91 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
92 if (!cpuid_entries)
93 goto out;
94 r = -EFAULT;
95 if (copy_from_user(cpuid_entries, entries,
96 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
97 goto out_free;
98 for (i = 0; i < cpuid->nent; i++) {
99 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
100 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
101 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
102 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
103 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
104 vcpu->arch.cpuid_entries[i].index = 0;
105 vcpu->arch.cpuid_entries[i].flags = 0;
106 vcpu->arch.cpuid_entries[i].padding[0] = 0;
107 vcpu->arch.cpuid_entries[i].padding[1] = 0;
108 vcpu->arch.cpuid_entries[i].padding[2] = 0;
109 }
110 vcpu->arch.cpuid_nent = cpuid->nent;
111 cpuid_fix_nx_cap(vcpu);
112 r = 0;
113 kvm_apic_set_version(vcpu);
114 kvm_x86_ops->cpuid_update(vcpu);
115 kvm_update_cpuid(vcpu);
116
117out_free:
118 vfree(cpuid_entries);
119out:
120 return r;
121}
122
123int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
124 struct kvm_cpuid2 *cpuid,
125 struct kvm_cpuid_entry2 __user *entries)
126{
127 int r;
128
129 r = -E2BIG;
130 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131 goto out;
132 r = -EFAULT;
133 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
134 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
135 goto out;
136 vcpu->arch.cpuid_nent = cpuid->nent;
137 kvm_apic_set_version(vcpu);
138 kvm_x86_ops->cpuid_update(vcpu);
139 kvm_update_cpuid(vcpu);
140 return 0;
141
142out:
143 return r;
144}
145
146int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
147 struct kvm_cpuid2 *cpuid,
148 struct kvm_cpuid_entry2 __user *entries)
149{
150 int r;
151
152 r = -E2BIG;
153 if (cpuid->nent < vcpu->arch.cpuid_nent)
154 goto out;
155 r = -EFAULT;
156 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
157 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
158 goto out;
159 return 0;
160
161out:
162 cpuid->nent = vcpu->arch.cpuid_nent;
163 return r;
164}
165
166static void cpuid_mask(u32 *word, int wordnum)
167{
168 *word &= boot_cpu_data.x86_capability[wordnum];
169}
170
171static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
172 u32 index)
173{
174 entry->function = function;
175 entry->index = index;
176 cpuid_count(entry->function, entry->index,
177 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
178 entry->flags = 0;
179}
180
181static bool supported_xcr0_bit(unsigned bit)
182{
183 u64 mask = ((u64)1 << bit);
184
185 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
186}
187
188#define F(x) bit(X86_FEATURE_##x)
189
190static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
191 u32 index, int *nent, int maxnent)
192{
193 int r;
194 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
195#ifdef CONFIG_X86_64
196 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
197 ? F(GBPAGES) : 0;
198 unsigned f_lm = F(LM);
199#else
200 unsigned f_gbpages = 0;
201 unsigned f_lm = 0;
202#endif
203 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
204
205 /* cpuid 1.edx */
206 const u32 kvm_supported_word0_x86_features =
207 F(FPU) | F(VME) | F(DE) | F(PSE) |
208 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
209 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
210 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
211 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
212 0 /* Reserved, DS, ACPI */ | F(MMX) |
213 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
214 0 /* HTT, TM, Reserved, PBE */;
215 /* cpuid 0x80000001.edx */
216 const u32 kvm_supported_word1_x86_features =
217 F(FPU) | F(VME) | F(DE) | F(PSE) |
218 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
219 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
220 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
221 F(PAT) | F(PSE36) | 0 /* Reserved */ |
222 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
223 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
224 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
225 /* cpuid 1.ecx */
226 const u32 kvm_supported_word4_x86_features =
227 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
228 0 /* DS-CPL, VMX, SMX, EST */ |
229 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
230 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
231 0 /* Reserved, DCA */ | F(XMM4_1) |
232 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
233 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
234 F(F16C) | F(RDRAND);
235 /* cpuid 0x80000001.ecx */
236 const u32 kvm_supported_word6_x86_features =
237 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
238 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
239 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
240 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
241
242 /* cpuid 0xC0000001.edx */
243 const u32 kvm_supported_word5_x86_features =
244 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
245 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
246 F(PMM) | F(PMM_EN);
247
248 /* cpuid 7.0.ebx */
249 const u32 kvm_supported_word9_x86_features =
250 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
251 F(BMI2) | F(ERMS) | F(RTM);
252
253 /* all calls to cpuid_count() should be made on the same cpu */
254 get_cpu();
255
256 r = -E2BIG;
257
258 if (*nent >= maxnent)
259 goto out;
260
261 do_cpuid_1_ent(entry, function, index);
262 ++*nent;
263
264 switch (function) {
265 case 0:
266 entry->eax = min(entry->eax, (u32)0xd);
267 break;
268 case 1:
269 entry->edx &= kvm_supported_word0_x86_features;
270 cpuid_mask(&entry->edx, 0);
271 entry->ecx &= kvm_supported_word4_x86_features;
272 cpuid_mask(&entry->ecx, 4);
273 /* we support x2apic emulation even if host does not support
274 * it since we emulate x2apic in software */
275 entry->ecx |= F(X2APIC);
276 break;
277 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
278 * may return different values. This forces us to get_cpu() before
279 * issuing the first command, and also to emulate this annoying behavior
280 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
281 case 2: {
282 int t, times = entry->eax & 0xff;
283
284 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
285 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
286 for (t = 1; t < times; ++t) {
287 if (*nent >= maxnent)
288 goto out;
289
290 do_cpuid_1_ent(&entry[t], function, 0);
291 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
292 ++*nent;
293 }
294 break;
295 }
296 /* function 4 has additional index. */
297 case 4: {
298 int i, cache_type;
299
300 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
301 /* read more entries until cache_type is zero */
302 for (i = 1; ; ++i) {
303 if (*nent >= maxnent)
304 goto out;
305
306 cache_type = entry[i - 1].eax & 0x1f;
307 if (!cache_type)
308 break;
309 do_cpuid_1_ent(&entry[i], function, i);
310 entry[i].flags |=
311 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
312 ++*nent;
313 }
314 break;
315 }
316 case 7: {
317 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
318 /* Mask ebx against host capbability word 9 */
319 if (index == 0) {
320 entry->ebx &= kvm_supported_word9_x86_features;
321 cpuid_mask(&entry->ebx, 9);
322 } else
323 entry->ebx = 0;
324 entry->eax = 0;
325 entry->ecx = 0;
326 entry->edx = 0;
327 break;
328 }
329 case 9:
330 break;
331 case 0xa: { /* Architectural Performance Monitoring */
332 struct x86_pmu_capability cap;
333 union cpuid10_eax eax;
334 union cpuid10_edx edx;
335
336 perf_get_x86_pmu_capability(&cap);
337
338 /*
339 * Only support guest architectural pmu on a host
340 * with architectural pmu.
341 */
342 if (!cap.version)
343 memset(&cap, 0, sizeof(cap));
344
345 eax.split.version_id = min(cap.version, 2);
346 eax.split.num_counters = cap.num_counters_gp;
347 eax.split.bit_width = cap.bit_width_gp;
348 eax.split.mask_length = cap.events_mask_len;
349
350 edx.split.num_counters_fixed = cap.num_counters_fixed;
351 edx.split.bit_width_fixed = cap.bit_width_fixed;
352 edx.split.reserved = 0;
353
354 entry->eax = eax.full;
355 entry->ebx = cap.events_mask;
356 entry->ecx = 0;
357 entry->edx = edx.full;
358 break;
359 }
360 /* function 0xb has additional index. */
361 case 0xb: {
362 int i, level_type;
363
364 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
365 /* read more entries until level_type is zero */
366 for (i = 1; ; ++i) {
367 if (*nent >= maxnent)
368 goto out;
369
370 level_type = entry[i - 1].ecx & 0xff00;
371 if (!level_type)
372 break;
373 do_cpuid_1_ent(&entry[i], function, i);
374 entry[i].flags |=
375 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
376 ++*nent;
377 }
378 break;
379 }
380 case 0xd: {
381 int idx, i;
382
383 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
384 for (idx = 1, i = 1; idx < 64; ++idx) {
385 if (*nent >= maxnent)
386 goto out;
387
388 do_cpuid_1_ent(&entry[i], function, idx);
389 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
390 continue;
391 entry[i].flags |=
392 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
393 ++*nent;
394 ++i;
395 }
396 break;
397 }
398 case KVM_CPUID_SIGNATURE: {
399 char signature[12] = "KVMKVMKVM\0\0";
400 u32 *sigptr = (u32 *)signature;
401 entry->eax = KVM_CPUID_FEATURES;
402 entry->ebx = sigptr[0];
403 entry->ecx = sigptr[1];
404 entry->edx = sigptr[2];
405 break;
406 }
407 case KVM_CPUID_FEATURES:
408 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
409 (1 << KVM_FEATURE_NOP_IO_DELAY) |
410 (1 << KVM_FEATURE_CLOCKSOURCE2) |
411 (1 << KVM_FEATURE_ASYNC_PF) |
412 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
413
414 if (sched_info_on())
415 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
416
417 entry->ebx = 0;
418 entry->ecx = 0;
419 entry->edx = 0;
420 break;
421 case 0x80000000:
422 entry->eax = min(entry->eax, 0x8000001a);
423 break;
424 case 0x80000001:
425 entry->edx &= kvm_supported_word1_x86_features;
426 cpuid_mask(&entry->edx, 1);
427 entry->ecx &= kvm_supported_word6_x86_features;
428 cpuid_mask(&entry->ecx, 6);
429 break;
430 case 0x80000008: {
431 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
432 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
433 unsigned phys_as = entry->eax & 0xff;
434
435 if (!g_phys_as)
436 g_phys_as = phys_as;
437 entry->eax = g_phys_as | (virt_as << 8);
438 entry->ebx = entry->edx = 0;
439 break;
440 }
441 case 0x80000019:
442 entry->ecx = entry->edx = 0;
443 break;
444 case 0x8000001a:
445 break;
446 case 0x8000001d:
447 break;
448 /*Add support for Centaur's CPUID instruction*/
449 case 0xC0000000:
450 /*Just support up to 0xC0000004 now*/
451 entry->eax = min(entry->eax, 0xC0000004);
452 break;
453 case 0xC0000001:
454 entry->edx &= kvm_supported_word5_x86_features;
455 cpuid_mask(&entry->edx, 5);
456 break;
457 case 3: /* Processor serial number */
458 case 5: /* MONITOR/MWAIT */
459 case 6: /* Thermal management */
460 case 0x80000007: /* Advanced power management */
461 case 0xC0000002:
462 case 0xC0000003:
463 case 0xC0000004:
464 default:
465 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
466 break;
467 }
468
469 kvm_x86_ops->set_supported_cpuid(function, entry);
470
471 r = 0;
472
473out:
474 put_cpu();
475
476 return r;
477}
478
479#undef F
480
481struct kvm_cpuid_param {
482 u32 func;
483 u32 idx;
484 bool has_leaf_count;
485 bool (*qualifier)(struct kvm_cpuid_param *param);
486};
487
488static bool is_centaur_cpu(struct kvm_cpuid_param *param)
489{
490 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
491}
492
493int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
494 struct kvm_cpuid_entry2 __user *entries)
495{
496 struct kvm_cpuid_entry2 *cpuid_entries;
497 int limit, nent = 0, r = -E2BIG, i;
498 u32 func;
499 static struct kvm_cpuid_param param[] = {
500 { .func = 0, .has_leaf_count = true },
501 { .func = 0x80000000, .has_leaf_count = true },
502 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
503 { .func = KVM_CPUID_SIGNATURE },
504 { .func = KVM_CPUID_FEATURES },
505 };
506
507 if (cpuid->nent < 1)
508 goto out;
509 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
510 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
511 r = -ENOMEM;
512 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
513 if (!cpuid_entries)
514 goto out;
515
516 r = 0;
517 for (i = 0; i < ARRAY_SIZE(param); i++) {
518 struct kvm_cpuid_param *ent = ¶m[i];
519
520 if (ent->qualifier && !ent->qualifier(ent))
521 continue;
522
523 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
524 &nent, cpuid->nent);
525
526 if (r)
527 goto out_free;
528
529 if (!ent->has_leaf_count)
530 continue;
531
532 limit = cpuid_entries[nent - 1].eax;
533 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
534 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
535 &nent, cpuid->nent);
536
537 if (r)
538 goto out_free;
539 }
540
541 r = -EFAULT;
542 if (copy_to_user(entries, cpuid_entries,
543 nent * sizeof(struct kvm_cpuid_entry2)))
544 goto out_free;
545 cpuid->nent = nent;
546 r = 0;
547
548out_free:
549 vfree(cpuid_entries);
550out:
551 return r;
552}
553
554static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
555{
556 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
557 int j, nent = vcpu->arch.cpuid_nent;
558
559 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
560 /* when no next entry is found, the current entry[i] is reselected */
561 for (j = i + 1; ; j = (j + 1) % nent) {
562 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
563 if (ej->function == e->function) {
564 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
565 return j;
566 }
567 }
568 return 0; /* silence gcc, even though control never reaches here */
569}
570
571/* find an entry with matching function, matching index (if needed), and that
572 * should be read next (if it's stateful) */
573static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
574 u32 function, u32 index)
575{
576 if (e->function != function)
577 return 0;
578 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
579 return 0;
580 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
581 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
582 return 0;
583 return 1;
584}
585
586struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
587 u32 function, u32 index)
588{
589 int i;
590 struct kvm_cpuid_entry2 *best = NULL;
591
592 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
593 struct kvm_cpuid_entry2 *e;
594
595 e = &vcpu->arch.cpuid_entries[i];
596 if (is_matching_cpuid_entry(e, function, index)) {
597 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
598 move_to_next_stateful_cpuid_entry(vcpu, i);
599 best = e;
600 break;
601 }
602 }
603 return best;
604}
605EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
606
607int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
608{
609 struct kvm_cpuid_entry2 *best;
610
611 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
612 if (!best || best->eax < 0x80000008)
613 goto not_found;
614 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
615 if (best)
616 return best->eax & 0xff;
617not_found:
618 return 36;
619}
620
621/*
622 * If no match is found, check whether we exceed the vCPU's limit
623 * and return the content of the highest valid _standard_ leaf instead.
624 * This is to satisfy the CPUID specification.
625 */
626static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
627 u32 function, u32 index)
628{
629 struct kvm_cpuid_entry2 *maxlevel;
630
631 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
632 if (!maxlevel || maxlevel->eax >= function)
633 return NULL;
634 if (function & 0x80000000) {
635 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
636 if (!maxlevel)
637 return NULL;
638 }
639 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
640}
641
642void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
643{
644 u32 function, index;
645 struct kvm_cpuid_entry2 *best;
646
647 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
648 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
649 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
650 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
651 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
652 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
653 best = kvm_find_cpuid_entry(vcpu, function, index);
654
655 if (!best)
656 best = check_cpuid_limit(vcpu, function, index);
657
658 if (best) {
659 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
660 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
661 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
662 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
663 }
664 kvm_x86_ops->skip_emulated_instruction(vcpu);
665 trace_kvm_cpuid(function,
666 kvm_register_read(vcpu, VCPU_REGS_RAX),
667 kvm_register_read(vcpu, VCPU_REGS_RBX),
668 kvm_register_read(vcpu, VCPU_REGS_RCX),
669 kvm_register_read(vcpu, VCPU_REGS_RDX));
670}
671EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);