Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * OMAP2 McSPI controller driver
   4 *
   5 * Copyright (C) 2005, 2006 Nokia Corporation
   6 * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
   7 *		Juha Yrj�l� <juha.yrjola@nokia.com>
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/delay.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmaengine.h>
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/platform_device.h>
  19#include <linux/err.h>
  20#include <linux/clk.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/gcd.h>
  27#include <linux/iopoll.h>
  28
  29#include <linux/spi/spi.h>
 
  30
  31#include <linux/platform_data/spi-omap2-mcspi.h>
  32
  33#define OMAP2_MCSPI_MAX_FREQ		48000000
  34#define OMAP2_MCSPI_MAX_DIVIDER		4096
  35#define OMAP2_MCSPI_MAX_FIFODEPTH	64
  36#define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
  37#define SPI_AUTOSUSPEND_TIMEOUT		2000
  38
  39#define OMAP2_MCSPI_REVISION		0x00
  40#define OMAP2_MCSPI_SYSSTATUS		0x14
  41#define OMAP2_MCSPI_IRQSTATUS		0x18
  42#define OMAP2_MCSPI_IRQENABLE		0x1c
  43#define OMAP2_MCSPI_WAKEUPENABLE	0x20
  44#define OMAP2_MCSPI_SYST		0x24
  45#define OMAP2_MCSPI_MODULCTRL		0x28
  46#define OMAP2_MCSPI_XFERLEVEL		0x7c
  47
  48/* per-channel banks, 0x14 bytes each, first is: */
  49#define OMAP2_MCSPI_CHCONF0		0x2c
  50#define OMAP2_MCSPI_CHSTAT0		0x30
  51#define OMAP2_MCSPI_CHCTRL0		0x34
  52#define OMAP2_MCSPI_TX0			0x38
  53#define OMAP2_MCSPI_RX0			0x3c
  54
  55/* per-register bitmasks: */
  56#define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
  57
  58#define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
  59#define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
  60#define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
  61
  62#define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
  63#define OMAP2_MCSPI_CHCONF_POL		BIT(1)
  64#define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
  65#define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
  66#define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
  67#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
  68#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
  69#define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
  70#define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
  71#define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
  72#define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
  73#define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
  74#define OMAP2_MCSPI_CHCONF_IS		BIT(18)
  75#define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
  76#define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
  77#define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
  78#define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
  79#define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
  80
  81#define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
  82#define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
  83#define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
  84#define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
  85
  86#define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
  87#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
  88
  89#define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
  90
  91/* We have 2 DMA channels per CS, one for RX and one for TX */
  92struct omap2_mcspi_dma {
  93	struct dma_chan *dma_tx;
  94	struct dma_chan *dma_rx;
  95
  96	struct completion dma_tx_completion;
  97	struct completion dma_rx_completion;
  98
  99	char dma_rx_ch_name[14];
 100	char dma_tx_ch_name[14];
 101};
 102
 103/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 104 * cache operations; better heuristics consider wordsize and bitrate.
 105 */
 106#define DMA_MIN_BYTES			160
 107
 108
 109/*
 110 * Used for context save and restore, structure members to be updated whenever
 111 * corresponding registers are modified.
 112 */
 113struct omap2_mcspi_regs {
 114	u32 modulctrl;
 115	u32 wakeupenable;
 116	struct list_head cs;
 117};
 118
 119struct omap2_mcspi {
 120	struct completion	txdone;
 121	struct spi_master	*master;
 122	/* Virtual base address of the controller */
 123	void __iomem		*base;
 124	unsigned long		phys;
 125	/* SPI1 has 4 channels, while SPI2 has 2 */
 126	struct omap2_mcspi_dma	*dma_channels;
 127	struct device		*dev;
 128	struct omap2_mcspi_regs ctx;
 129	int			fifo_depth;
 130	bool			slave_aborted;
 131	unsigned int		pin_dir:1;
 132	size_t			max_xfer_len;
 133};
 134
 135struct omap2_mcspi_cs {
 136	void __iomem		*base;
 137	unsigned long		phys;
 138	int			word_len;
 139	u16			mode;
 140	struct list_head	node;
 141	/* Context save and restore shadow register */
 142	u32			chconf0, chctrl0;
 143};
 144
 145static inline void mcspi_write_reg(struct spi_master *master,
 146		int idx, u32 val)
 147{
 148	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
 149
 150	writel_relaxed(val, mcspi->base + idx);
 151}
 152
 153static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
 154{
 155	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
 156
 157	return readl_relaxed(mcspi->base + idx);
 158}
 159
 160static inline void mcspi_write_cs_reg(const struct spi_device *spi,
 161		int idx, u32 val)
 162{
 163	struct omap2_mcspi_cs	*cs = spi->controller_state;
 164
 165	writel_relaxed(val, cs->base +  idx);
 166}
 167
 168static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
 169{
 170	struct omap2_mcspi_cs	*cs = spi->controller_state;
 171
 172	return readl_relaxed(cs->base + idx);
 173}
 174
 175static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
 176{
 177	struct omap2_mcspi_cs *cs = spi->controller_state;
 178
 179	return cs->chconf0;
 180}
 181
 182static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
 183{
 184	struct omap2_mcspi_cs *cs = spi->controller_state;
 185
 186	cs->chconf0 = val;
 187	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
 188	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
 189}
 190
 191static inline int mcspi_bytes_per_word(int word_len)
 192{
 193	if (word_len <= 8)
 194		return 1;
 195	else if (word_len <= 16)
 196		return 2;
 197	else /* word_len <= 32 */
 198		return 4;
 199}
 200
 201static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
 202		int is_read, int enable)
 203{
 204	u32 l, rw;
 205
 206	l = mcspi_cached_chconf0(spi);
 207
 208	if (is_read) /* 1 is read, 0 write */
 209		rw = OMAP2_MCSPI_CHCONF_DMAR;
 210	else
 211		rw = OMAP2_MCSPI_CHCONF_DMAW;
 212
 213	if (enable)
 214		l |= rw;
 215	else
 216		l &= ~rw;
 217
 218	mcspi_write_chconf0(spi, l);
 219}
 220
 221static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
 222{
 223	struct omap2_mcspi_cs *cs = spi->controller_state;
 224	u32 l;
 225
 226	l = cs->chctrl0;
 227	if (enable)
 228		l |= OMAP2_MCSPI_CHCTRL_EN;
 229	else
 230		l &= ~OMAP2_MCSPI_CHCTRL_EN;
 231	cs->chctrl0 = l;
 232	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
 233	/* Flash post-writes */
 234	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
 235}
 236
 237static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
 238{
 239	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 240	u32 l;
 241
 242	/* The controller handles the inverted chip selects
 243	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
 244	 * the inversion from the core spi_set_cs function.
 245	 */
 246	if (spi->mode & SPI_CS_HIGH)
 247		enable = !enable;
 248
 249	if (spi->controller_state) {
 250		int err = pm_runtime_get_sync(mcspi->dev);
 251		if (err < 0) {
 252			pm_runtime_put_noidle(mcspi->dev);
 253			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
 254			return;
 255		}
 256
 257		l = mcspi_cached_chconf0(spi);
 258
 259		if (enable)
 260			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
 261		else
 262			l |= OMAP2_MCSPI_CHCONF_FORCE;
 263
 264		mcspi_write_chconf0(spi, l);
 265
 266		pm_runtime_mark_last_busy(mcspi->dev);
 267		pm_runtime_put_autosuspend(mcspi->dev);
 268	}
 269}
 270
 271static void omap2_mcspi_set_mode(struct spi_master *master)
 272{
 273	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
 274	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
 275	u32 l;
 276
 277	/*
 278	 * Choose master or slave mode
 
 279	 */
 280	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
 281	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
 282	if (spi_controller_is_slave(master)) {
 283		l |= (OMAP2_MCSPI_MODULCTRL_MS);
 284	} else {
 285		l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
 286		l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
 287	}
 288	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
 289
 290	ctx->modulctrl = l;
 291}
 292
 293static void omap2_mcspi_set_fifo(const struct spi_device *spi,
 294				struct spi_transfer *t, int enable)
 295{
 296	struct spi_master *master = spi->master;
 297	struct omap2_mcspi_cs *cs = spi->controller_state;
 298	struct omap2_mcspi *mcspi;
 299	unsigned int wcnt;
 300	int max_fifo_depth, bytes_per_word;
 301	u32 chconf, xferlevel;
 302
 303	mcspi = spi_master_get_devdata(master);
 304
 305	chconf = mcspi_cached_chconf0(spi);
 306	if (enable) {
 307		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
 308		if (t->len % bytes_per_word != 0)
 309			goto disable_fifo;
 310
 311		if (t->rx_buf != NULL && t->tx_buf != NULL)
 312			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
 313		else
 314			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
 315
 
 
 
 
 316		wcnt = t->len / bytes_per_word;
 317		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
 318			goto disable_fifo;
 319
 320		xferlevel = wcnt << 16;
 321		if (t->rx_buf != NULL) {
 322			chconf |= OMAP2_MCSPI_CHCONF_FFER;
 323			xferlevel |= (bytes_per_word - 1) << 8;
 324		}
 325
 326		if (t->tx_buf != NULL) {
 327			chconf |= OMAP2_MCSPI_CHCONF_FFET;
 328			xferlevel |= bytes_per_word - 1;
 329		}
 330
 331		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
 332		mcspi_write_chconf0(spi, chconf);
 333		mcspi->fifo_depth = max_fifo_depth;
 334
 335		return;
 336	}
 337
 338disable_fifo:
 339	if (t->rx_buf != NULL)
 340		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
 341
 342	if (t->tx_buf != NULL)
 343		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
 344
 345	mcspi_write_chconf0(spi, chconf);
 346	mcspi->fifo_depth = 0;
 347}
 348
 349static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
 350{
 351	u32 val;
 
 
 352
 353	return readl_poll_timeout(reg, val, val & bit, 1, MSEC_PER_SEC);
 
 
 
 
 
 354}
 355
 356static int mcspi_wait_for_completion(struct  omap2_mcspi *mcspi,
 357				     struct completion *x)
 358{
 359	if (spi_controller_is_slave(mcspi->master)) {
 360		if (wait_for_completion_interruptible(x) ||
 361		    mcspi->slave_aborted)
 362			return -EINTR;
 363	} else {
 364		wait_for_completion(x);
 365	}
 366
 
 
 
 
 
 
 
 
 
 
 367	return 0;
 368}
 369
 370static void omap2_mcspi_rx_callback(void *data)
 371{
 372	struct spi_device *spi = data;
 373	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 374	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 375
 376	/* We must disable the DMA RX request */
 377	omap2_mcspi_set_dma_req(spi, 1, 0);
 378
 379	complete(&mcspi_dma->dma_rx_completion);
 380}
 381
 382static void omap2_mcspi_tx_callback(void *data)
 383{
 384	struct spi_device *spi = data;
 385	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 386	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 387
 388	/* We must disable the DMA TX request */
 389	omap2_mcspi_set_dma_req(spi, 0, 0);
 390
 391	complete(&mcspi_dma->dma_tx_completion);
 392}
 393
 394static void omap2_mcspi_tx_dma(struct spi_device *spi,
 395				struct spi_transfer *xfer,
 396				struct dma_slave_config cfg)
 397{
 398	struct omap2_mcspi	*mcspi;
 399	struct omap2_mcspi_dma  *mcspi_dma;
 400	struct dma_async_tx_descriptor *tx;
 401
 402	mcspi = spi_master_get_devdata(spi->master);
 403	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 
 404
 405	dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
 
 406
 407	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
 408				     xfer->tx_sg.nents,
 409				     DMA_MEM_TO_DEV,
 410				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 411	if (tx) {
 412		tx->callback = omap2_mcspi_tx_callback;
 413		tx->callback_param = spi;
 414		dmaengine_submit(tx);
 415	} else {
 416		/* FIXME: fall back to PIO? */
 
 
 
 417	}
 418	dma_async_issue_pending(mcspi_dma->dma_tx);
 419	omap2_mcspi_set_dma_req(spi, 0, 1);
 
 420}
 421
 422static unsigned
 423omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
 424				struct dma_slave_config cfg,
 425				unsigned es)
 426{
 427	struct omap2_mcspi	*mcspi;
 428	struct omap2_mcspi_dma  *mcspi_dma;
 429	unsigned int		count, transfer_reduction = 0;
 430	struct scatterlist	*sg_out[2];
 431	int			nb_sizes = 0, out_mapped_nents[2], ret, x;
 432	size_t			sizes[2];
 433	u32			l;
 434	int			elements = 0;
 435	int			word_len, element_count;
 436	struct omap2_mcspi_cs	*cs = spi->controller_state;
 437	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
 438	struct dma_async_tx_descriptor *tx;
 439
 440	mcspi = spi_master_get_devdata(spi->master);
 441	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 442	count = xfer->len;
 443
 444	/*
 445	 *  In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
 446	 *  it mentions reducing DMA transfer length by one element in master
 447	 *  normal mode.
 448	 */
 449	if (mcspi->fifo_depth == 0)
 450		transfer_reduction = es;
 451
 452	word_len = cs->word_len;
 453	l = mcspi_cached_chconf0(spi);
 454
 455	if (word_len <= 8)
 456		element_count = count;
 457	else if (word_len <= 16)
 458		element_count = count >> 1;
 459	else /* word_len <= 32 */
 460		element_count = count >> 2;
 461
 
 
 462
 463	dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
 464
 465	/*
 466	 *  Reduce DMA transfer length by one more if McSPI is
 467	 *  configured in turbo mode.
 468	 */
 469	if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
 470		transfer_reduction += es;
 471
 472	if (transfer_reduction) {
 473		/* Split sgl into two. The second sgl won't be used. */
 474		sizes[0] = count - transfer_reduction;
 475		sizes[1] = transfer_reduction;
 476		nb_sizes = 2;
 477	} else {
 478		/*
 479		 * Don't bother splitting the sgl. This essentially
 480		 * clones the original sgl.
 481		 */
 482		sizes[0] = count;
 483		nb_sizes = 1;
 484	}
 485
 486	ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
 487		       sizes, sg_out, out_mapped_nents, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 488
 489	if (ret < 0) {
 490		dev_err(&spi->dev, "sg_split failed\n");
 491		return 0;
 492	}
 
 493
 494	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
 495				     out_mapped_nents[0], DMA_DEV_TO_MEM,
 496				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 497	if (tx) {
 498		tx->callback = omap2_mcspi_rx_callback;
 499		tx->callback_param = spi;
 500		dmaengine_submit(tx);
 501	} else {
 502		/* FIXME: fall back to PIO? */
 
 
 
 
 
 
 
 
 503	}
 504
 505	dma_async_issue_pending(mcspi_dma->dma_rx);
 506	omap2_mcspi_set_dma_req(spi, 1, 1);
 507
 508	ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
 509	if (ret || mcspi->slave_aborted) {
 510		dmaengine_terminate_sync(mcspi_dma->dma_rx);
 511		omap2_mcspi_set_dma_req(spi, 1, 0);
 512		return 0;
 513	}
 514
 515	for (x = 0; x < nb_sizes; x++)
 516		kfree(sg_out[x]);
 517
 518	if (mcspi->fifo_depth > 0)
 519		return count;
 520
 521	/*
 522	 *  Due to the DMA transfer length reduction the missing bytes must
 523	 *  be read manually to receive all of the expected data.
 524	 */
 525	omap2_mcspi_set_enable(spi, 0);
 526
 527	elements = element_count - 1;
 528
 529	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
 530		elements--;
 531
 532		if (!mcspi_wait_for_reg_bit(chstat_reg,
 533					    OMAP2_MCSPI_CHSTAT_RXS)) {
 534			u32 w;
 535
 536			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
 537			if (word_len <= 8)
 538				((u8 *)xfer->rx_buf)[elements++] = w;
 539			else if (word_len <= 16)
 540				((u16 *)xfer->rx_buf)[elements++] = w;
 541			else /* word_len <= 32 */
 542				((u32 *)xfer->rx_buf)[elements++] = w;
 543		} else {
 544			int bytes_per_word = mcspi_bytes_per_word(word_len);
 545			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
 546			count -= (bytes_per_word << 1);
 547			omap2_mcspi_set_enable(spi, 1);
 548			return count;
 549		}
 550	}
 551	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
 552		u32 w;
 553
 554		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
 555		if (word_len <= 8)
 556			((u8 *)xfer->rx_buf)[elements] = w;
 557		else if (word_len <= 16)
 558			((u16 *)xfer->rx_buf)[elements] = w;
 559		else /* word_len <= 32 */
 560			((u32 *)xfer->rx_buf)[elements] = w;
 561	} else {
 562		dev_err(&spi->dev, "DMA RX last word empty\n");
 563		count -= mcspi_bytes_per_word(word_len);
 564	}
 565	omap2_mcspi_set_enable(spi, 1);
 566	return count;
 567}
 568
 569static unsigned
 570omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
 571{
 572	struct omap2_mcspi	*mcspi;
 573	struct omap2_mcspi_cs	*cs = spi->controller_state;
 574	struct omap2_mcspi_dma  *mcspi_dma;
 575	unsigned int		count;
 
 576	u8			*rx;
 577	const u8		*tx;
 578	struct dma_slave_config	cfg;
 579	enum dma_slave_buswidth width;
 580	unsigned es;
 
 581	void __iomem		*chstat_reg;
 582	void __iomem            *irqstat_reg;
 583	int			wait_res;
 584
 585	mcspi = spi_master_get_devdata(spi->master);
 586	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 
 
 587
 588	if (cs->word_len <= 8) {
 589		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 590		es = 1;
 591	} else if (cs->word_len <= 16) {
 592		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 593		es = 2;
 594	} else {
 595		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 596		es = 4;
 597	}
 598
 599	count = xfer->len;
 
 
 
 
 
 
 
 
 600
 601	memset(&cfg, 0, sizeof(cfg));
 602	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
 603	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
 604	cfg.src_addr_width = width;
 605	cfg.dst_addr_width = width;
 606	cfg.src_maxburst = 1;
 607	cfg.dst_maxburst = 1;
 608
 609	rx = xfer->rx_buf;
 610	tx = xfer->tx_buf;
 611
 612	mcspi->slave_aborted = false;
 613	reinit_completion(&mcspi_dma->dma_tx_completion);
 614	reinit_completion(&mcspi_dma->dma_rx_completion);
 615	reinit_completion(&mcspi->txdone);
 616	if (tx) {
 617		/* Enable EOW IRQ to know end of tx in slave mode */
 618		if (spi_controller_is_slave(spi->master))
 619			mcspi_write_reg(spi->master,
 620					OMAP2_MCSPI_IRQENABLE,
 621					OMAP2_MCSPI_IRQSTATUS_EOW);
 622		omap2_mcspi_tx_dma(spi, xfer, cfg);
 623	}
 624
 625	if (rx != NULL)
 626		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
 627
 628	if (tx != NULL) {
 629		int ret;
 630
 631		ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
 632		if (ret || mcspi->slave_aborted) {
 633			dmaengine_terminate_sync(mcspi_dma->dma_tx);
 634			omap2_mcspi_set_dma_req(spi, 0, 0);
 635			return 0;
 636		}
 637
 638		if (spi_controller_is_slave(mcspi->master)) {
 639			ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
 640			if (ret || mcspi->slave_aborted)
 641				return 0;
 642		}
 643
 644		if (mcspi->fifo_depth > 0) {
 645			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
 646
 647			if (mcspi_wait_for_reg_bit(irqstat_reg,
 648						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
 649				dev_err(&spi->dev, "EOW timed out\n");
 650
 651			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
 652					OMAP2_MCSPI_IRQSTATUS_EOW);
 653		}
 654
 655		/* for TX_ONLY mode, be sure all words have shifted out */
 656		if (rx == NULL) {
 657			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
 658			if (mcspi->fifo_depth > 0) {
 659				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
 660						OMAP2_MCSPI_CHSTAT_TXFFE);
 661				if (wait_res < 0)
 662					dev_err(&spi->dev, "TXFFE timed out\n");
 663			} else {
 664				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
 665						OMAP2_MCSPI_CHSTAT_TXS);
 666				if (wait_res < 0)
 667					dev_err(&spi->dev, "TXS timed out\n");
 668			}
 669			if (wait_res >= 0 &&
 670				(mcspi_wait_for_reg_bit(chstat_reg,
 671					OMAP2_MCSPI_CHSTAT_EOT) < 0))
 672				dev_err(&spi->dev, "EOT timed out\n");
 673		}
 674	}
 675	return count;
 676}
 677
 678static unsigned
 679omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
 680{
 
 681	struct omap2_mcspi_cs	*cs = spi->controller_state;
 682	unsigned int		count, c;
 683	u32			l;
 684	void __iomem		*base = cs->base;
 685	void __iomem		*tx_reg;
 686	void __iomem		*rx_reg;
 687	void __iomem		*chstat_reg;
 688	int			word_len;
 689
 
 690	count = xfer->len;
 691	c = count;
 692	word_len = cs->word_len;
 693
 694	l = mcspi_cached_chconf0(spi);
 695
 696	/* We store the pre-calculated register addresses on stack to speed
 697	 * up the transfer loop. */
 698	tx_reg		= base + OMAP2_MCSPI_TX0;
 699	rx_reg		= base + OMAP2_MCSPI_RX0;
 700	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
 701
 702	if (c < (word_len>>3))
 703		return 0;
 704
 705	if (word_len <= 8) {
 706		u8		*rx;
 707		const u8	*tx;
 708
 709		rx = xfer->rx_buf;
 710		tx = xfer->tx_buf;
 711
 712		do {
 713			c -= 1;
 714			if (tx != NULL) {
 715				if (mcspi_wait_for_reg_bit(chstat_reg,
 716						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 717					dev_err(&spi->dev, "TXS timed out\n");
 718					goto out;
 719				}
 720				dev_vdbg(&spi->dev, "write-%d %02x\n",
 721						word_len, *tx);
 722				writel_relaxed(*tx++, tx_reg);
 723			}
 724			if (rx != NULL) {
 725				if (mcspi_wait_for_reg_bit(chstat_reg,
 726						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 727					dev_err(&spi->dev, "RXS timed out\n");
 728					goto out;
 729				}
 730
 731				if (c == 1 && tx == NULL &&
 732				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 733					omap2_mcspi_set_enable(spi, 0);
 734					*rx++ = readl_relaxed(rx_reg);
 735					dev_vdbg(&spi->dev, "read-%d %02x\n",
 736						    word_len, *(rx - 1));
 737					if (mcspi_wait_for_reg_bit(chstat_reg,
 738						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 739						dev_err(&spi->dev,
 740							"RXS timed out\n");
 741						goto out;
 742					}
 743					c = 0;
 744				} else if (c == 0 && tx == NULL) {
 745					omap2_mcspi_set_enable(spi, 0);
 746				}
 747
 748				*rx++ = readl_relaxed(rx_reg);
 749				dev_vdbg(&spi->dev, "read-%d %02x\n",
 750						word_len, *(rx - 1));
 751			}
 752		} while (c);
 753	} else if (word_len <= 16) {
 754		u16		*rx;
 755		const u16	*tx;
 756
 757		rx = xfer->rx_buf;
 758		tx = xfer->tx_buf;
 759		do {
 760			c -= 2;
 761			if (tx != NULL) {
 762				if (mcspi_wait_for_reg_bit(chstat_reg,
 763						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 764					dev_err(&spi->dev, "TXS timed out\n");
 765					goto out;
 766				}
 767				dev_vdbg(&spi->dev, "write-%d %04x\n",
 768						word_len, *tx);
 769				writel_relaxed(*tx++, tx_reg);
 770			}
 771			if (rx != NULL) {
 772				if (mcspi_wait_for_reg_bit(chstat_reg,
 773						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 774					dev_err(&spi->dev, "RXS timed out\n");
 775					goto out;
 776				}
 777
 778				if (c == 2 && tx == NULL &&
 779				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 780					omap2_mcspi_set_enable(spi, 0);
 781					*rx++ = readl_relaxed(rx_reg);
 782					dev_vdbg(&spi->dev, "read-%d %04x\n",
 783						    word_len, *(rx - 1));
 784					if (mcspi_wait_for_reg_bit(chstat_reg,
 785						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 786						dev_err(&spi->dev,
 787							"RXS timed out\n");
 788						goto out;
 789					}
 790					c = 0;
 791				} else if (c == 0 && tx == NULL) {
 792					omap2_mcspi_set_enable(spi, 0);
 793				}
 794
 795				*rx++ = readl_relaxed(rx_reg);
 796				dev_vdbg(&spi->dev, "read-%d %04x\n",
 797						word_len, *(rx - 1));
 798			}
 799		} while (c >= 2);
 800	} else if (word_len <= 32) {
 801		u32		*rx;
 802		const u32	*tx;
 803
 804		rx = xfer->rx_buf;
 805		tx = xfer->tx_buf;
 806		do {
 807			c -= 4;
 808			if (tx != NULL) {
 809				if (mcspi_wait_for_reg_bit(chstat_reg,
 810						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 811					dev_err(&spi->dev, "TXS timed out\n");
 812					goto out;
 813				}
 814				dev_vdbg(&spi->dev, "write-%d %08x\n",
 815						word_len, *tx);
 816				writel_relaxed(*tx++, tx_reg);
 817			}
 818			if (rx != NULL) {
 819				if (mcspi_wait_for_reg_bit(chstat_reg,
 820						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 821					dev_err(&spi->dev, "RXS timed out\n");
 822					goto out;
 823				}
 824
 825				if (c == 4 && tx == NULL &&
 826				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 827					omap2_mcspi_set_enable(spi, 0);
 828					*rx++ = readl_relaxed(rx_reg);
 829					dev_vdbg(&spi->dev, "read-%d %08x\n",
 830						    word_len, *(rx - 1));
 831					if (mcspi_wait_for_reg_bit(chstat_reg,
 832						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 833						dev_err(&spi->dev,
 834							"RXS timed out\n");
 835						goto out;
 836					}
 837					c = 0;
 838				} else if (c == 0 && tx == NULL) {
 839					omap2_mcspi_set_enable(spi, 0);
 840				}
 841
 842				*rx++ = readl_relaxed(rx_reg);
 843				dev_vdbg(&spi->dev, "read-%d %08x\n",
 844						word_len, *(rx - 1));
 845			}
 846		} while (c >= 4);
 847	}
 848
 849	/* for TX_ONLY mode, be sure all words have shifted out */
 850	if (xfer->rx_buf == NULL) {
 851		if (mcspi_wait_for_reg_bit(chstat_reg,
 852				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 853			dev_err(&spi->dev, "TXS timed out\n");
 854		} else if (mcspi_wait_for_reg_bit(chstat_reg,
 855				OMAP2_MCSPI_CHSTAT_EOT) < 0)
 856			dev_err(&spi->dev, "EOT timed out\n");
 857
 858		/* disable chan to purge rx datas received in TX_ONLY transfer,
 859		 * otherwise these rx datas will affect the direct following
 860		 * RX_ONLY transfer.
 861		 */
 862		omap2_mcspi_set_enable(spi, 0);
 863	}
 864out:
 865	omap2_mcspi_set_enable(spi, 1);
 866	return count - c;
 867}
 868
 869static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
 870{
 871	u32 div;
 872
 873	for (div = 0; div < 15; div++)
 874		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
 875			return div;
 876
 877	return 15;
 878}
 879
 880/* called only when no transfer is active to this device */
 881static int omap2_mcspi_setup_transfer(struct spi_device *spi,
 882		struct spi_transfer *t)
 883{
 884	struct omap2_mcspi_cs *cs = spi->controller_state;
 885	struct omap2_mcspi *mcspi;
 
 886	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
 887	u8 word_len = spi->bits_per_word;
 888	u32 speed_hz = spi->max_speed_hz;
 889
 890	mcspi = spi_master_get_devdata(spi->master);
 
 891
 892	if (t != NULL && t->bits_per_word)
 893		word_len = t->bits_per_word;
 894
 895	cs->word_len = word_len;
 896
 897	if (t && t->speed_hz)
 898		speed_hz = t->speed_hz;
 899
 900	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
 901	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
 902		clkd = omap2_mcspi_calc_divisor(speed_hz);
 903		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
 904		clkg = 0;
 905	} else {
 906		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
 907		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
 908		clkd = (div - 1) & 0xf;
 909		extclk = (div - 1) >> 4;
 910		clkg = OMAP2_MCSPI_CHCONF_CLKG;
 911	}
 912
 913	l = mcspi_cached_chconf0(spi);
 914
 915	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
 916	 * REVISIT: this controller could support SPI_3WIRE mode.
 917	 */
 918	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
 919		l &= ~OMAP2_MCSPI_CHCONF_IS;
 920		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
 921		l |= OMAP2_MCSPI_CHCONF_DPE0;
 922	} else {
 923		l |= OMAP2_MCSPI_CHCONF_IS;
 924		l |= OMAP2_MCSPI_CHCONF_DPE1;
 925		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
 926	}
 927
 928	/* wordlength */
 929	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
 930	l |= (word_len - 1) << 7;
 931
 932	/* set chipselect polarity; manage with FORCE */
 933	if (!(spi->mode & SPI_CS_HIGH))
 934		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
 935	else
 936		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
 937
 938	/* set clock divisor */
 939	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
 940	l |= clkd << 2;
 941
 942	/* set clock granularity */
 943	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
 944	l |= clkg;
 945	if (clkg) {
 946		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
 947		cs->chctrl0 |= extclk << 8;
 948		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
 949	}
 950
 951	/* set SPI mode 0..3 */
 952	if (spi->mode & SPI_CPOL)
 953		l |= OMAP2_MCSPI_CHCONF_POL;
 954	else
 955		l &= ~OMAP2_MCSPI_CHCONF_POL;
 956	if (spi->mode & SPI_CPHA)
 957		l |= OMAP2_MCSPI_CHCONF_PHA;
 958	else
 959		l &= ~OMAP2_MCSPI_CHCONF_PHA;
 960
 961	mcspi_write_chconf0(spi, l);
 962
 963	cs->mode = spi->mode;
 964
 965	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
 966			speed_hz,
 967			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
 968			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
 969
 970	return 0;
 971}
 972
 973/*
 974 * Note that we currently allow DMA only if we get a channel
 975 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
 976 */
 977static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
 978				   struct omap2_mcspi_dma *mcspi_dma)
 979{
 
 
 
 980	int ret = 0;
 981
 982	mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
 
 
 
 
 
 
 983					     mcspi_dma->dma_rx_ch_name);
 984	if (IS_ERR(mcspi_dma->dma_rx)) {
 985		ret = PTR_ERR(mcspi_dma->dma_rx);
 986		mcspi_dma->dma_rx = NULL;
 987		goto no_dma;
 988	}
 989
 990	mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
 991					     mcspi_dma->dma_tx_ch_name);
 992	if (IS_ERR(mcspi_dma->dma_tx)) {
 993		ret = PTR_ERR(mcspi_dma->dma_tx);
 994		mcspi_dma->dma_tx = NULL;
 995		dma_release_channel(mcspi_dma->dma_rx);
 996		mcspi_dma->dma_rx = NULL;
 997	}
 998
 999	init_completion(&mcspi_dma->dma_rx_completion);
1000	init_completion(&mcspi_dma->dma_tx_completion);
1001
1002no_dma:
1003	return ret;
1004}
1005
1006static void omap2_mcspi_release_dma(struct spi_master *master)
1007{
1008	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1009	struct omap2_mcspi_dma	*mcspi_dma;
1010	int i;
1011
1012	for (i = 0; i < master->num_chipselect; i++) {
1013		mcspi_dma = &mcspi->dma_channels[i];
1014
1015		if (mcspi_dma->dma_rx) {
1016			dma_release_channel(mcspi_dma->dma_rx);
1017			mcspi_dma->dma_rx = NULL;
1018		}
1019		if (mcspi_dma->dma_tx) {
1020			dma_release_channel(mcspi_dma->dma_tx);
1021			mcspi_dma->dma_tx = NULL;
1022		}
1023	}
1024}
1025
1026static int omap2_mcspi_setup(struct spi_device *spi)
1027{
1028	int			ret;
1029	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
1030	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
 
1031	struct omap2_mcspi_cs	*cs = spi->controller_state;
1032
 
 
1033	if (!cs) {
1034		cs = kzalloc(sizeof *cs, GFP_KERNEL);
1035		if (!cs)
1036			return -ENOMEM;
1037		cs->base = mcspi->base + spi->chip_select * 0x14;
1038		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1039		cs->mode = 0;
1040		cs->chconf0 = 0;
1041		cs->chctrl0 = 0;
1042		spi->controller_state = cs;
1043		/* Link this to context save list */
1044		list_add_tail(&cs->node, &ctx->cs);
 
 
 
 
 
 
 
 
 
 
1045	}
1046
1047	ret = pm_runtime_get_sync(mcspi->dev);
1048	if (ret < 0) {
1049		pm_runtime_put_noidle(mcspi->dev);
 
 
 
1050
 
 
1051		return ret;
1052	}
1053
1054	ret = omap2_mcspi_setup_transfer(spi, NULL);
1055	pm_runtime_mark_last_busy(mcspi->dev);
1056	pm_runtime_put_autosuspend(mcspi->dev);
1057
1058	return ret;
1059}
1060
1061static void omap2_mcspi_cleanup(struct spi_device *spi)
1062{
 
 
1063	struct omap2_mcspi_cs	*cs;
1064
 
 
1065	if (spi->controller_state) {
1066		/* Unlink controller state from context save list */
1067		cs = spi->controller_state;
1068		list_del(&cs->node);
1069
1070		kfree(cs);
1071	}
1072}
1073
1074static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1075{
1076	struct omap2_mcspi *mcspi = data;
1077	u32 irqstat;
1078
1079	irqstat	= mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1080	if (!irqstat)
1081		return IRQ_NONE;
1082
1083	/* Disable IRQ and wakeup slave xfer task */
1084	mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1085	if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1086		complete(&mcspi->txdone);
1087
1088	return IRQ_HANDLED;
1089}
1090
1091static int omap2_mcspi_slave_abort(struct spi_master *master)
1092{
1093	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1094	struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1095
1096	mcspi->slave_aborted = true;
1097	complete(&mcspi_dma->dma_rx_completion);
1098	complete(&mcspi_dma->dma_tx_completion);
1099	complete(&mcspi->txdone);
 
 
 
 
 
1100
1101	return 0;
 
1102}
1103
1104static int omap2_mcspi_transfer_one(struct spi_master *master,
1105				    struct spi_device *spi,
1106				    struct spi_transfer *t)
1107{
1108
1109	/* We only enable one channel at a time -- the one whose message is
1110	 * -- although this controller would gladly
1111	 * arbitrate among multiple channels.  This corresponds to "single
1112	 * channel" master mode.  As a side effect, we need to manage the
1113	 * chipselect with the FORCE bit ... CS != channel enable.
1114	 */
1115
1116	struct omap2_mcspi		*mcspi;
1117	struct omap2_mcspi_dma		*mcspi_dma;
1118	struct omap2_mcspi_cs		*cs;
1119	struct omap2_mcspi_device_config *cd;
1120	int				par_override = 0;
1121	int				status = 0;
1122	u32				chconf;
1123
1124	mcspi = spi_master_get_devdata(master);
1125	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1126	cs = spi->controller_state;
1127	cd = spi->controller_data;
1128
1129	/*
1130	 * The slave driver could have changed spi->mode in which case
1131	 * it will be different from cs->mode (the current hardware setup).
1132	 * If so, set par_override (even though its not a parity issue) so
1133	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1134	 * with the correct mode on the first iteration of the loop below.
1135	 */
1136	if (spi->mode != cs->mode)
1137		par_override = 1;
1138
1139	omap2_mcspi_set_enable(spi, 0);
1140
1141	if (spi->cs_gpiod)
1142		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1143
1144	if (par_override ||
1145	    (t->speed_hz != spi->max_speed_hz) ||
1146	    (t->bits_per_word != spi->bits_per_word)) {
1147		par_override = 1;
1148		status = omap2_mcspi_setup_transfer(spi, t);
1149		if (status < 0)
1150			goto out;
1151		if (t->speed_hz == spi->max_speed_hz &&
1152		    t->bits_per_word == spi->bits_per_word)
1153			par_override = 0;
1154	}
1155	if (cd && cd->cs_per_word) {
1156		chconf = mcspi->ctx.modulctrl;
1157		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1158		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1159		mcspi->ctx.modulctrl =
1160			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1161	}
1162
1163	chconf = mcspi_cached_chconf0(spi);
1164	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1165	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1166
1167	if (t->tx_buf == NULL)
1168		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1169	else if (t->rx_buf == NULL)
1170		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1171
1172	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1173		/* Turbo mode is for more than one word */
1174		if (t->len > ((cs->word_len + 7) >> 3))
1175			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1176	}
1177
1178	mcspi_write_chconf0(spi, chconf);
1179
1180	if (t->len) {
1181		unsigned	count;
1182
1183		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1184		    master->cur_msg_mapped &&
1185		    master->can_dma(master, spi, t))
1186			omap2_mcspi_set_fifo(spi, t, 1);
1187
1188		omap2_mcspi_set_enable(spi, 1);
1189
1190		/* RX_ONLY mode needs dummy data in TX reg */
1191		if (t->tx_buf == NULL)
1192			writel_relaxed(0, cs->base
1193					+ OMAP2_MCSPI_TX0);
1194
1195		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1196		    master->cur_msg_mapped &&
1197		    master->can_dma(master, spi, t))
1198			count = omap2_mcspi_txrx_dma(spi, t);
1199		else
1200			count = omap2_mcspi_txrx_pio(spi, t);
1201
1202		if (count != t->len) {
1203			status = -EIO;
1204			goto out;
1205		}
1206	}
1207
1208	omap2_mcspi_set_enable(spi, 0);
1209
1210	if (mcspi->fifo_depth > 0)
1211		omap2_mcspi_set_fifo(spi, t, 0);
1212
1213out:
1214	/* Restore defaults if they were overriden */
1215	if (par_override) {
1216		par_override = 0;
1217		status = omap2_mcspi_setup_transfer(spi, NULL);
1218	}
1219
1220	if (cd && cd->cs_per_word) {
1221		chconf = mcspi->ctx.modulctrl;
1222		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1223		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1224		mcspi->ctx.modulctrl =
1225			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1226	}
1227
1228	omap2_mcspi_set_enable(spi, 0);
1229
1230	if (spi->cs_gpiod)
1231		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1232
1233	if (mcspi->fifo_depth > 0 && t)
1234		omap2_mcspi_set_fifo(spi, t, 0);
1235
1236	return status;
1237}
1238
1239static int omap2_mcspi_prepare_message(struct spi_master *master,
1240				       struct spi_message *msg)
1241{
1242	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1243	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1244	struct omap2_mcspi_cs	*cs;
1245
1246	/* Only a single channel can have the FORCE bit enabled
1247	 * in its chconf0 register.
1248	 * Scan all channels and disable them except the current one.
1249	 * A FORCE can remain from a last transfer having cs_change enabled
1250	 */
1251	list_for_each_entry(cs, &ctx->cs, node) {
1252		if (msg->spi->controller_state == cs)
1253			continue;
1254
1255		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1256			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1257			writel_relaxed(cs->chconf0,
1258					cs->base + OMAP2_MCSPI_CHCONF0);
1259			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1260		}
1261	}
1262
1263	return 0;
1264}
1265
1266static bool omap2_mcspi_can_dma(struct spi_master *master,
1267				struct spi_device *spi,
1268				struct spi_transfer *xfer)
1269{
1270	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1271	struct omap2_mcspi_dma *mcspi_dma =
1272		&mcspi->dma_channels[spi->chip_select];
1273
1274	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1275		return false;
1276
1277	if (spi_controller_is_slave(master))
1278		return true;
1279
1280	master->dma_rx = mcspi_dma->dma_rx;
1281	master->dma_tx = mcspi_dma->dma_tx;
1282
1283	return (xfer->len >= DMA_MIN_BYTES);
1284}
1285
1286static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1287{
1288	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1289	struct omap2_mcspi_dma *mcspi_dma =
1290		&mcspi->dma_channels[spi->chip_select];
1291
1292	if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1293		return mcspi->max_xfer_len;
1294
1295	return SIZE_MAX;
1296}
1297
1298static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1299{
1300	struct spi_master	*master = mcspi->master;
1301	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1302	int			ret = 0;
1303
1304	ret = pm_runtime_get_sync(mcspi->dev);
1305	if (ret < 0) {
1306		pm_runtime_put_noidle(mcspi->dev);
1307
1308		return ret;
1309	}
1310
1311	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1312			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1313	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1314
1315	omap2_mcspi_set_mode(master);
1316	pm_runtime_mark_last_busy(mcspi->dev);
1317	pm_runtime_put_autosuspend(mcspi->dev);
1318	return 0;
1319}
1320
1321/*
1322 * When SPI wake up from off-mode, CS is in activate state. If it was in
1323 * inactive state when driver was suspend, then force it to inactive state at
1324 * wake up.
1325 */
1326static int omap_mcspi_runtime_resume(struct device *dev)
1327{
1328	struct spi_master *master = dev_get_drvdata(dev);
1329	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1330	struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1331	struct omap2_mcspi_cs *cs;
1332
1333	/* McSPI: context restore */
1334	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1335	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1336
1337	list_for_each_entry(cs, &ctx->cs, node) {
1338		/*
1339		 * We need to toggle CS state for OMAP take this
1340		 * change in account.
1341		 */
1342		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1343			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1344			writel_relaxed(cs->chconf0,
1345				       cs->base + OMAP2_MCSPI_CHCONF0);
1346			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1347			writel_relaxed(cs->chconf0,
1348				       cs->base + OMAP2_MCSPI_CHCONF0);
1349		} else {
1350			writel_relaxed(cs->chconf0,
1351				       cs->base + OMAP2_MCSPI_CHCONF0);
1352		}
1353	}
1354
1355	return 0;
1356}
1357
1358static struct omap2_mcspi_platform_config omap2_pdata = {
1359	.regs_offset = 0,
1360};
1361
1362static struct omap2_mcspi_platform_config omap4_pdata = {
1363	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1364};
1365
1366static struct omap2_mcspi_platform_config am654_pdata = {
1367	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1368	.max_xfer_len = SZ_4K - 1,
1369};
1370
1371static const struct of_device_id omap_mcspi_of_match[] = {
1372	{
1373		.compatible = "ti,omap2-mcspi",
1374		.data = &omap2_pdata,
1375	},
1376	{
1377		.compatible = "ti,omap4-mcspi",
1378		.data = &omap4_pdata,
1379	},
1380	{
1381		.compatible = "ti,am654-mcspi",
1382		.data = &am654_pdata,
1383	},
1384	{ },
1385};
1386MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1387
1388static int omap2_mcspi_probe(struct platform_device *pdev)
1389{
1390	struct spi_master	*master;
1391	const struct omap2_mcspi_platform_config *pdata;
1392	struct omap2_mcspi	*mcspi;
1393	struct resource		*r;
1394	int			status = 0, i;
1395	u32			regs_offset = 0;
1396	struct device_node	*node = pdev->dev.of_node;
1397	const struct of_device_id *match;
1398
1399	if (of_property_read_bool(node, "spi-slave"))
1400		master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1401	else
1402		master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1403	if (!master)
1404		return -ENOMEM;
 
1405
1406	/* the spi->mode bits understood by this driver: */
1407	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1408	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1409	master->setup = omap2_mcspi_setup;
1410	master->auto_runtime_pm = true;
1411	master->prepare_message = omap2_mcspi_prepare_message;
1412	master->can_dma = omap2_mcspi_can_dma;
1413	master->transfer_one = omap2_mcspi_transfer_one;
1414	master->set_cs = omap2_mcspi_set_cs;
1415	master->cleanup = omap2_mcspi_cleanup;
1416	master->slave_abort = omap2_mcspi_slave_abort;
1417	master->dev.of_node = node;
1418	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1419	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1420	master->use_gpio_descriptors = true;
1421
1422	platform_set_drvdata(pdev, master);
1423
1424	mcspi = spi_master_get_devdata(master);
1425	mcspi->master = master;
1426
1427	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1428	if (match) {
1429		u32 num_cs = 1; /* default number of chipselect */
1430		pdata = match->data;
1431
1432		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1433		master->num_chipselect = num_cs;
1434		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1435			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1436	} else {
1437		pdata = dev_get_platdata(&pdev->dev);
1438		master->num_chipselect = pdata->num_cs;
1439		mcspi->pin_dir = pdata->pin_dir;
1440	}
1441	regs_offset = pdata->regs_offset;
1442	if (pdata->max_xfer_len) {
1443		mcspi->max_xfer_len = pdata->max_xfer_len;
1444		master->max_transfer_size = omap2_mcspi_max_xfer_size;
1445	}
1446
1447	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1448	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1449	if (IS_ERR(mcspi->base)) {
1450		status = PTR_ERR(mcspi->base);
1451		goto free_master;
1452	}
1453	mcspi->phys = r->start + regs_offset;
1454	mcspi->base += regs_offset;
1455
1456	mcspi->dev = &pdev->dev;
1457
1458	INIT_LIST_HEAD(&mcspi->ctx.cs);
1459
1460	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1461					   sizeof(struct omap2_mcspi_dma),
1462					   GFP_KERNEL);
1463	if (mcspi->dma_channels == NULL) {
1464		status = -ENOMEM;
1465		goto free_master;
1466	}
1467
1468	for (i = 0; i < master->num_chipselect; i++) {
1469		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1470		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1471
1472		status = omap2_mcspi_request_dma(mcspi,
1473						 &mcspi->dma_channels[i]);
1474		if (status == -EPROBE_DEFER)
1475			goto free_master;
1476	}
1477
1478	status = platform_get_irq(pdev, 0);
1479	if (status == -EPROBE_DEFER)
1480		goto free_master;
1481	if (status < 0) {
1482		dev_err(&pdev->dev, "no irq resource found\n");
1483		goto free_master;
1484	}
1485	init_completion(&mcspi->txdone);
1486	status = devm_request_irq(&pdev->dev, status,
1487				  omap2_mcspi_irq_handler, 0, pdev->name,
1488				  mcspi);
1489	if (status) {
1490		dev_err(&pdev->dev, "Cannot request IRQ");
1491		goto free_master;
1492	}
1493
1494	pm_runtime_use_autosuspend(&pdev->dev);
1495	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1496	pm_runtime_enable(&pdev->dev);
1497
1498	status = omap2_mcspi_controller_setup(mcspi);
1499	if (status < 0)
1500		goto disable_pm;
1501
1502	status = devm_spi_register_controller(&pdev->dev, master);
1503	if (status < 0)
1504		goto disable_pm;
1505
1506	return status;
1507
1508disable_pm:
1509	pm_runtime_dont_use_autosuspend(&pdev->dev);
1510	pm_runtime_put_sync(&pdev->dev);
1511	pm_runtime_disable(&pdev->dev);
1512free_master:
1513	omap2_mcspi_release_dma(master);
1514	spi_master_put(master);
1515	return status;
1516}
1517
1518static int omap2_mcspi_remove(struct platform_device *pdev)
1519{
1520	struct spi_master *master = platform_get_drvdata(pdev);
1521	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1522
1523	omap2_mcspi_release_dma(master);
1524
1525	pm_runtime_dont_use_autosuspend(mcspi->dev);
1526	pm_runtime_put_sync(mcspi->dev);
1527	pm_runtime_disable(&pdev->dev);
1528
1529	return 0;
1530}
1531
1532/* work with hotplug and coldplug */
1533MODULE_ALIAS("platform:omap2_mcspi");
1534
1535static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
 
 
 
 
 
 
1536{
1537	struct spi_master *master = dev_get_drvdata(dev);
1538	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1539	int error;
1540
1541	error = pinctrl_pm_select_sleep_state(dev);
1542	if (error)
1543		dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1544			 __func__, error);
1545
1546	error = spi_master_suspend(master);
1547	if (error)
1548		dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1549			 __func__, error);
 
 
 
 
 
 
 
 
 
 
 
1550
1551	return pm_runtime_force_suspend(dev);
1552}
1553
1554static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1555{
1556	struct spi_master *master = dev_get_drvdata(dev);
1557	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1558	int error;
1559
1560	error = pinctrl_pm_select_default_state(dev);
1561	if (error)
1562		dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1563			 __func__, error);
1564
1565	error = spi_master_resume(master);
1566	if (error)
1567		dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1568			 __func__, error);
1569
1570	return pm_runtime_force_resume(dev);
1571}
1572
 
 
 
 
 
1573static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1574	SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1575				omap2_mcspi_resume)
1576	.runtime_resume	= omap_mcspi_runtime_resume,
1577};
1578
1579static struct platform_driver omap2_mcspi_driver = {
1580	.driver = {
1581		.name =		"omap2_mcspi",
1582		.pm =		&omap2_mcspi_pm_ops,
1583		.of_match_table = omap_mcspi_of_match,
1584	},
1585	.probe =	omap2_mcspi_probe,
1586	.remove =	omap2_mcspi_remove,
1587};
1588
1589module_platform_driver(omap2_mcspi_driver);
1590MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * OMAP2 McSPI controller driver
   3 *
   4 * Copyright (C) 2005, 2006 Nokia Corporation
   5 * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
   6 *		Juha Yrj�l� <juha.yrjola@nokia.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16 * GNU General Public License for more details.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/delay.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/dmaengine.h>
  26#include <linux/pinctrl/consumer.h>
  27#include <linux/platform_device.h>
  28#include <linux/err.h>
  29#include <linux/clk.h>
  30#include <linux/io.h>
  31#include <linux/slab.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/of.h>
  34#include <linux/of_device.h>
  35#include <linux/gcd.h>
 
  36
  37#include <linux/spi/spi.h>
  38#include <linux/gpio.h>
  39
  40#include <linux/platform_data/spi-omap2-mcspi.h>
  41
  42#define OMAP2_MCSPI_MAX_FREQ		48000000
  43#define OMAP2_MCSPI_MAX_DIVIDER		4096
  44#define OMAP2_MCSPI_MAX_FIFODEPTH	64
  45#define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
  46#define SPI_AUTOSUSPEND_TIMEOUT		2000
  47
  48#define OMAP2_MCSPI_REVISION		0x00
  49#define OMAP2_MCSPI_SYSSTATUS		0x14
  50#define OMAP2_MCSPI_IRQSTATUS		0x18
  51#define OMAP2_MCSPI_IRQENABLE		0x1c
  52#define OMAP2_MCSPI_WAKEUPENABLE	0x20
  53#define OMAP2_MCSPI_SYST		0x24
  54#define OMAP2_MCSPI_MODULCTRL		0x28
  55#define OMAP2_MCSPI_XFERLEVEL		0x7c
  56
  57/* per-channel banks, 0x14 bytes each, first is: */
  58#define OMAP2_MCSPI_CHCONF0		0x2c
  59#define OMAP2_MCSPI_CHSTAT0		0x30
  60#define OMAP2_MCSPI_CHCTRL0		0x34
  61#define OMAP2_MCSPI_TX0			0x38
  62#define OMAP2_MCSPI_RX0			0x3c
  63
  64/* per-register bitmasks: */
  65#define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
  66
  67#define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
  68#define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
  69#define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
  70
  71#define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
  72#define OMAP2_MCSPI_CHCONF_POL		BIT(1)
  73#define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
  74#define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
  75#define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
  76#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
  77#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
  78#define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
  79#define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
  80#define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
  81#define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
  82#define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
  83#define OMAP2_MCSPI_CHCONF_IS		BIT(18)
  84#define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
  85#define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
  86#define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
  87#define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
  88#define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
  89
  90#define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
  91#define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
  92#define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
  93#define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
  94
  95#define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
  96#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
  97
  98#define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
  99
 100/* We have 2 DMA channels per CS, one for RX and one for TX */
 101struct omap2_mcspi_dma {
 102	struct dma_chan *dma_tx;
 103	struct dma_chan *dma_rx;
 104
 105	struct completion dma_tx_completion;
 106	struct completion dma_rx_completion;
 107
 108	char dma_rx_ch_name[14];
 109	char dma_tx_ch_name[14];
 110};
 111
 112/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 113 * cache operations; better heuristics consider wordsize and bitrate.
 114 */
 115#define DMA_MIN_BYTES			160
 116
 117
 118/*
 119 * Used for context save and restore, structure members to be updated whenever
 120 * corresponding registers are modified.
 121 */
 122struct omap2_mcspi_regs {
 123	u32 modulctrl;
 124	u32 wakeupenable;
 125	struct list_head cs;
 126};
 127
 128struct omap2_mcspi {
 
 129	struct spi_master	*master;
 130	/* Virtual base address of the controller */
 131	void __iomem		*base;
 132	unsigned long		phys;
 133	/* SPI1 has 4 channels, while SPI2 has 2 */
 134	struct omap2_mcspi_dma	*dma_channels;
 135	struct device		*dev;
 136	struct omap2_mcspi_regs ctx;
 137	int			fifo_depth;
 
 138	unsigned int		pin_dir:1;
 
 139};
 140
 141struct omap2_mcspi_cs {
 142	void __iomem		*base;
 143	unsigned long		phys;
 144	int			word_len;
 145	u16			mode;
 146	struct list_head	node;
 147	/* Context save and restore shadow register */
 148	u32			chconf0, chctrl0;
 149};
 150
 151static inline void mcspi_write_reg(struct spi_master *master,
 152		int idx, u32 val)
 153{
 154	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
 155
 156	writel_relaxed(val, mcspi->base + idx);
 157}
 158
 159static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
 160{
 161	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
 162
 163	return readl_relaxed(mcspi->base + idx);
 164}
 165
 166static inline void mcspi_write_cs_reg(const struct spi_device *spi,
 167		int idx, u32 val)
 168{
 169	struct omap2_mcspi_cs	*cs = spi->controller_state;
 170
 171	writel_relaxed(val, cs->base +  idx);
 172}
 173
 174static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
 175{
 176	struct omap2_mcspi_cs	*cs = spi->controller_state;
 177
 178	return readl_relaxed(cs->base + idx);
 179}
 180
 181static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
 182{
 183	struct omap2_mcspi_cs *cs = spi->controller_state;
 184
 185	return cs->chconf0;
 186}
 187
 188static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
 189{
 190	struct omap2_mcspi_cs *cs = spi->controller_state;
 191
 192	cs->chconf0 = val;
 193	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
 194	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
 195}
 196
 197static inline int mcspi_bytes_per_word(int word_len)
 198{
 199	if (word_len <= 8)
 200		return 1;
 201	else if (word_len <= 16)
 202		return 2;
 203	else /* word_len <= 32 */
 204		return 4;
 205}
 206
 207static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
 208		int is_read, int enable)
 209{
 210	u32 l, rw;
 211
 212	l = mcspi_cached_chconf0(spi);
 213
 214	if (is_read) /* 1 is read, 0 write */
 215		rw = OMAP2_MCSPI_CHCONF_DMAR;
 216	else
 217		rw = OMAP2_MCSPI_CHCONF_DMAW;
 218
 219	if (enable)
 220		l |= rw;
 221	else
 222		l &= ~rw;
 223
 224	mcspi_write_chconf0(spi, l);
 225}
 226
 227static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
 228{
 229	struct omap2_mcspi_cs *cs = spi->controller_state;
 230	u32 l;
 231
 232	l = cs->chctrl0;
 233	if (enable)
 234		l |= OMAP2_MCSPI_CHCTRL_EN;
 235	else
 236		l &= ~OMAP2_MCSPI_CHCTRL_EN;
 237	cs->chctrl0 = l;
 238	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
 239	/* Flash post-writes */
 240	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
 241}
 242
 243static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
 244{
 245	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 246	u32 l;
 247
 248	/* The controller handles the inverted chip selects
 249	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
 250	 * the inversion from the core spi_set_cs function.
 251	 */
 252	if (spi->mode & SPI_CS_HIGH)
 253		enable = !enable;
 254
 255	if (spi->controller_state) {
 256		int err = pm_runtime_get_sync(mcspi->dev);
 257		if (err < 0) {
 
 258			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
 259			return;
 260		}
 261
 262		l = mcspi_cached_chconf0(spi);
 263
 264		if (enable)
 265			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
 266		else
 267			l |= OMAP2_MCSPI_CHCONF_FORCE;
 268
 269		mcspi_write_chconf0(spi, l);
 270
 271		pm_runtime_mark_last_busy(mcspi->dev);
 272		pm_runtime_put_autosuspend(mcspi->dev);
 273	}
 274}
 275
 276static void omap2_mcspi_set_master_mode(struct spi_master *master)
 277{
 278	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
 279	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
 280	u32 l;
 281
 282	/*
 283	 * Setup when switching from (reset default) slave mode
 284	 * to single-channel master mode
 285	 */
 286	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
 287	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
 288	l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
 
 
 
 
 
 289	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
 290
 291	ctx->modulctrl = l;
 292}
 293
 294static void omap2_mcspi_set_fifo(const struct spi_device *spi,
 295				struct spi_transfer *t, int enable)
 296{
 297	struct spi_master *master = spi->master;
 298	struct omap2_mcspi_cs *cs = spi->controller_state;
 299	struct omap2_mcspi *mcspi;
 300	unsigned int wcnt;
 301	int max_fifo_depth, fifo_depth, bytes_per_word;
 302	u32 chconf, xferlevel;
 303
 304	mcspi = spi_master_get_devdata(master);
 305
 306	chconf = mcspi_cached_chconf0(spi);
 307	if (enable) {
 308		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
 309		if (t->len % bytes_per_word != 0)
 310			goto disable_fifo;
 311
 312		if (t->rx_buf != NULL && t->tx_buf != NULL)
 313			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
 314		else
 315			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
 316
 317		fifo_depth = gcd(t->len, max_fifo_depth);
 318		if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
 319			goto disable_fifo;
 320
 321		wcnt = t->len / bytes_per_word;
 322		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
 323			goto disable_fifo;
 324
 325		xferlevel = wcnt << 16;
 326		if (t->rx_buf != NULL) {
 327			chconf |= OMAP2_MCSPI_CHCONF_FFER;
 328			xferlevel |= (fifo_depth - 1) << 8;
 329		}
 
 330		if (t->tx_buf != NULL) {
 331			chconf |= OMAP2_MCSPI_CHCONF_FFET;
 332			xferlevel |= fifo_depth - 1;
 333		}
 334
 335		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
 336		mcspi_write_chconf0(spi, chconf);
 337		mcspi->fifo_depth = fifo_depth;
 338
 339		return;
 340	}
 341
 342disable_fifo:
 343	if (t->rx_buf != NULL)
 344		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
 345
 346	if (t->tx_buf != NULL)
 347		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
 348
 349	mcspi_write_chconf0(spi, chconf);
 350	mcspi->fifo_depth = 0;
 351}
 352
 353static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
 354{
 355	struct spi_master	*spi_cntrl = mcspi->master;
 356	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
 357	struct omap2_mcspi_cs	*cs;
 358
 359	/* McSPI: context restore */
 360	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
 361	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
 362
 363	list_for_each_entry(cs, &ctx->cs, node)
 364		writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
 365}
 366
 367static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
 
 368{
 369	unsigned long timeout;
 
 
 
 
 
 
 370
 371	timeout = jiffies + msecs_to_jiffies(1000);
 372	while (!(readl_relaxed(reg) & bit)) {
 373		if (time_after(jiffies, timeout)) {
 374			if (!(readl_relaxed(reg) & bit))
 375				return -ETIMEDOUT;
 376			else
 377				return 0;
 378		}
 379		cpu_relax();
 380	}
 381	return 0;
 382}
 383
 384static void omap2_mcspi_rx_callback(void *data)
 385{
 386	struct spi_device *spi = data;
 387	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 388	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 389
 390	/* We must disable the DMA RX request */
 391	omap2_mcspi_set_dma_req(spi, 1, 0);
 392
 393	complete(&mcspi_dma->dma_rx_completion);
 394}
 395
 396static void omap2_mcspi_tx_callback(void *data)
 397{
 398	struct spi_device *spi = data;
 399	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
 400	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 401
 402	/* We must disable the DMA TX request */
 403	omap2_mcspi_set_dma_req(spi, 0, 0);
 404
 405	complete(&mcspi_dma->dma_tx_completion);
 406}
 407
 408static void omap2_mcspi_tx_dma(struct spi_device *spi,
 409				struct spi_transfer *xfer,
 410				struct dma_slave_config cfg)
 411{
 412	struct omap2_mcspi	*mcspi;
 413	struct omap2_mcspi_dma  *mcspi_dma;
 414	unsigned int		count;
 415
 416	mcspi = spi_master_get_devdata(spi->master);
 417	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 418	count = xfer->len;
 419
 420	if (mcspi_dma->dma_tx) {
 421		struct dma_async_tx_descriptor *tx;
 422
 423		dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
 424
 425		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
 426					     xfer->tx_sg.nents,
 427					     DMA_MEM_TO_DEV,
 428					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 429		if (tx) {
 430			tx->callback = omap2_mcspi_tx_callback;
 431			tx->callback_param = spi;
 432			dmaengine_submit(tx);
 433		} else {
 434			/* FIXME: fall back to PIO? */
 435		}
 436	}
 437	dma_async_issue_pending(mcspi_dma->dma_tx);
 438	omap2_mcspi_set_dma_req(spi, 0, 1);
 439
 440}
 441
 442static unsigned
 443omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
 444				struct dma_slave_config cfg,
 445				unsigned es)
 446{
 447	struct omap2_mcspi	*mcspi;
 448	struct omap2_mcspi_dma  *mcspi_dma;
 449	unsigned int		count, transfer_reduction = 0;
 450	struct scatterlist	*sg_out[2];
 451	int			nb_sizes = 0, out_mapped_nents[2], ret, x;
 452	size_t			sizes[2];
 453	u32			l;
 454	int			elements = 0;
 455	int			word_len, element_count;
 456	struct omap2_mcspi_cs	*cs = spi->controller_state;
 457	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
 
 458
 459	mcspi = spi_master_get_devdata(spi->master);
 460	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 461	count = xfer->len;
 462
 463	/*
 464	 *  In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
 465	 *  it mentions reducing DMA transfer length by one element in master
 466	 *  normal mode.
 467	 */
 468	if (mcspi->fifo_depth == 0)
 469		transfer_reduction = es;
 470
 471	word_len = cs->word_len;
 472	l = mcspi_cached_chconf0(spi);
 473
 474	if (word_len <= 8)
 475		element_count = count;
 476	else if (word_len <= 16)
 477		element_count = count >> 1;
 478	else /* word_len <= 32 */
 479		element_count = count >> 2;
 480
 481	if (mcspi_dma->dma_rx) {
 482		struct dma_async_tx_descriptor *tx;
 483
 484		dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
 485
 
 
 
 
 
 
 
 
 
 
 
 
 
 486		/*
 487		 *  Reduce DMA transfer length by one more if McSPI is
 488		 *  configured in turbo mode.
 489		 */
 490		if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
 491			transfer_reduction += es;
 
 492
 493		if (transfer_reduction) {
 494			/* Split sgl into two. The second sgl won't be used. */
 495			sizes[0] = count - transfer_reduction;
 496			sizes[1] = transfer_reduction;
 497			nb_sizes = 2;
 498		} else {
 499			/*
 500			 * Don't bother splitting the sgl. This essentially
 501			 * clones the original sgl.
 502			 */
 503			sizes[0] = count;
 504			nb_sizes = 1;
 505		}
 506
 507		ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents,
 508			       0, nb_sizes,
 509			       sizes,
 510			       sg_out, out_mapped_nents,
 511			       GFP_KERNEL);
 512
 513		if (ret < 0) {
 514			dev_err(&spi->dev, "sg_split failed\n");
 515			return 0;
 516		}
 517
 518		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx,
 519					     sg_out[0],
 520					     out_mapped_nents[0],
 521					     DMA_DEV_TO_MEM,
 522					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 523		if (tx) {
 524			tx->callback = omap2_mcspi_rx_callback;
 525			tx->callback_param = spi;
 526			dmaengine_submit(tx);
 527		} else {
 528				/* FIXME: fall back to PIO? */
 529		}
 530	}
 531
 532	dma_async_issue_pending(mcspi_dma->dma_rx);
 533	omap2_mcspi_set_dma_req(spi, 1, 1);
 534
 535	wait_for_completion(&mcspi_dma->dma_rx_completion);
 
 
 
 
 
 536
 537	for (x = 0; x < nb_sizes; x++)
 538		kfree(sg_out[x]);
 539
 540	if (mcspi->fifo_depth > 0)
 541		return count;
 542
 543	/*
 544	 *  Due to the DMA transfer length reduction the missing bytes must
 545	 *  be read manually to receive all of the expected data.
 546	 */
 547	omap2_mcspi_set_enable(spi, 0);
 548
 549	elements = element_count - 1;
 550
 551	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
 552		elements--;
 553
 554		if (!mcspi_wait_for_reg_bit(chstat_reg,
 555					    OMAP2_MCSPI_CHSTAT_RXS)) {
 556			u32 w;
 557
 558			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
 559			if (word_len <= 8)
 560				((u8 *)xfer->rx_buf)[elements++] = w;
 561			else if (word_len <= 16)
 562				((u16 *)xfer->rx_buf)[elements++] = w;
 563			else /* word_len <= 32 */
 564				((u32 *)xfer->rx_buf)[elements++] = w;
 565		} else {
 566			int bytes_per_word = mcspi_bytes_per_word(word_len);
 567			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
 568			count -= (bytes_per_word << 1);
 569			omap2_mcspi_set_enable(spi, 1);
 570			return count;
 571		}
 572	}
 573	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
 574		u32 w;
 575
 576		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
 577		if (word_len <= 8)
 578			((u8 *)xfer->rx_buf)[elements] = w;
 579		else if (word_len <= 16)
 580			((u16 *)xfer->rx_buf)[elements] = w;
 581		else /* word_len <= 32 */
 582			((u32 *)xfer->rx_buf)[elements] = w;
 583	} else {
 584		dev_err(&spi->dev, "DMA RX last word empty\n");
 585		count -= mcspi_bytes_per_word(word_len);
 586	}
 587	omap2_mcspi_set_enable(spi, 1);
 588	return count;
 589}
 590
 591static unsigned
 592omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
 593{
 594	struct omap2_mcspi	*mcspi;
 595	struct omap2_mcspi_cs	*cs = spi->controller_state;
 596	struct omap2_mcspi_dma  *mcspi_dma;
 597	unsigned int		count;
 598	u32			l;
 599	u8			*rx;
 600	const u8		*tx;
 601	struct dma_slave_config	cfg;
 602	enum dma_slave_buswidth width;
 603	unsigned es;
 604	u32			burst;
 605	void __iomem		*chstat_reg;
 606	void __iomem            *irqstat_reg;
 607	int			wait_res;
 608
 609	mcspi = spi_master_get_devdata(spi->master);
 610	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 611	l = mcspi_cached_chconf0(spi);
 612
 613
 614	if (cs->word_len <= 8) {
 615		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 616		es = 1;
 617	} else if (cs->word_len <= 16) {
 618		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 619		es = 2;
 620	} else {
 621		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 622		es = 4;
 623	}
 624
 625	count = xfer->len;
 626	burst = 1;
 627
 628	if (mcspi->fifo_depth > 0) {
 629		if (count > mcspi->fifo_depth)
 630			burst = mcspi->fifo_depth / es;
 631		else
 632			burst = count / es;
 633	}
 634
 635	memset(&cfg, 0, sizeof(cfg));
 636	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
 637	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
 638	cfg.src_addr_width = width;
 639	cfg.dst_addr_width = width;
 640	cfg.src_maxburst = burst;
 641	cfg.dst_maxburst = burst;
 642
 643	rx = xfer->rx_buf;
 644	tx = xfer->tx_buf;
 645
 646	if (tx != NULL)
 
 
 
 
 
 
 
 
 
 647		omap2_mcspi_tx_dma(spi, xfer, cfg);
 
 648
 649	if (rx != NULL)
 650		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
 651
 652	if (tx != NULL) {
 653		wait_for_completion(&mcspi_dma->dma_tx_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 654
 655		if (mcspi->fifo_depth > 0) {
 656			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
 657
 658			if (mcspi_wait_for_reg_bit(irqstat_reg,
 659						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
 660				dev_err(&spi->dev, "EOW timed out\n");
 661
 662			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
 663					OMAP2_MCSPI_IRQSTATUS_EOW);
 664		}
 665
 666		/* for TX_ONLY mode, be sure all words have shifted out */
 667		if (rx == NULL) {
 668			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
 669			if (mcspi->fifo_depth > 0) {
 670				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
 671						OMAP2_MCSPI_CHSTAT_TXFFE);
 672				if (wait_res < 0)
 673					dev_err(&spi->dev, "TXFFE timed out\n");
 674			} else {
 675				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
 676						OMAP2_MCSPI_CHSTAT_TXS);
 677				if (wait_res < 0)
 678					dev_err(&spi->dev, "TXS timed out\n");
 679			}
 680			if (wait_res >= 0 &&
 681				(mcspi_wait_for_reg_bit(chstat_reg,
 682					OMAP2_MCSPI_CHSTAT_EOT) < 0))
 683				dev_err(&spi->dev, "EOT timed out\n");
 684		}
 685	}
 686	return count;
 687}
 688
 689static unsigned
 690omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
 691{
 692	struct omap2_mcspi	*mcspi;
 693	struct omap2_mcspi_cs	*cs = spi->controller_state;
 694	unsigned int		count, c;
 695	u32			l;
 696	void __iomem		*base = cs->base;
 697	void __iomem		*tx_reg;
 698	void __iomem		*rx_reg;
 699	void __iomem		*chstat_reg;
 700	int			word_len;
 701
 702	mcspi = spi_master_get_devdata(spi->master);
 703	count = xfer->len;
 704	c = count;
 705	word_len = cs->word_len;
 706
 707	l = mcspi_cached_chconf0(spi);
 708
 709	/* We store the pre-calculated register addresses on stack to speed
 710	 * up the transfer loop. */
 711	tx_reg		= base + OMAP2_MCSPI_TX0;
 712	rx_reg		= base + OMAP2_MCSPI_RX0;
 713	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
 714
 715	if (c < (word_len>>3))
 716		return 0;
 717
 718	if (word_len <= 8) {
 719		u8		*rx;
 720		const u8	*tx;
 721
 722		rx = xfer->rx_buf;
 723		tx = xfer->tx_buf;
 724
 725		do {
 726			c -= 1;
 727			if (tx != NULL) {
 728				if (mcspi_wait_for_reg_bit(chstat_reg,
 729						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 730					dev_err(&spi->dev, "TXS timed out\n");
 731					goto out;
 732				}
 733				dev_vdbg(&spi->dev, "write-%d %02x\n",
 734						word_len, *tx);
 735				writel_relaxed(*tx++, tx_reg);
 736			}
 737			if (rx != NULL) {
 738				if (mcspi_wait_for_reg_bit(chstat_reg,
 739						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 740					dev_err(&spi->dev, "RXS timed out\n");
 741					goto out;
 742				}
 743
 744				if (c == 1 && tx == NULL &&
 745				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 746					omap2_mcspi_set_enable(spi, 0);
 747					*rx++ = readl_relaxed(rx_reg);
 748					dev_vdbg(&spi->dev, "read-%d %02x\n",
 749						    word_len, *(rx - 1));
 750					if (mcspi_wait_for_reg_bit(chstat_reg,
 751						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 752						dev_err(&spi->dev,
 753							"RXS timed out\n");
 754						goto out;
 755					}
 756					c = 0;
 757				} else if (c == 0 && tx == NULL) {
 758					omap2_mcspi_set_enable(spi, 0);
 759				}
 760
 761				*rx++ = readl_relaxed(rx_reg);
 762				dev_vdbg(&spi->dev, "read-%d %02x\n",
 763						word_len, *(rx - 1));
 764			}
 765		} while (c);
 766	} else if (word_len <= 16) {
 767		u16		*rx;
 768		const u16	*tx;
 769
 770		rx = xfer->rx_buf;
 771		tx = xfer->tx_buf;
 772		do {
 773			c -= 2;
 774			if (tx != NULL) {
 775				if (mcspi_wait_for_reg_bit(chstat_reg,
 776						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 777					dev_err(&spi->dev, "TXS timed out\n");
 778					goto out;
 779				}
 780				dev_vdbg(&spi->dev, "write-%d %04x\n",
 781						word_len, *tx);
 782				writel_relaxed(*tx++, tx_reg);
 783			}
 784			if (rx != NULL) {
 785				if (mcspi_wait_for_reg_bit(chstat_reg,
 786						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 787					dev_err(&spi->dev, "RXS timed out\n");
 788					goto out;
 789				}
 790
 791				if (c == 2 && tx == NULL &&
 792				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 793					omap2_mcspi_set_enable(spi, 0);
 794					*rx++ = readl_relaxed(rx_reg);
 795					dev_vdbg(&spi->dev, "read-%d %04x\n",
 796						    word_len, *(rx - 1));
 797					if (mcspi_wait_for_reg_bit(chstat_reg,
 798						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 799						dev_err(&spi->dev,
 800							"RXS timed out\n");
 801						goto out;
 802					}
 803					c = 0;
 804				} else if (c == 0 && tx == NULL) {
 805					omap2_mcspi_set_enable(spi, 0);
 806				}
 807
 808				*rx++ = readl_relaxed(rx_reg);
 809				dev_vdbg(&spi->dev, "read-%d %04x\n",
 810						word_len, *(rx - 1));
 811			}
 812		} while (c >= 2);
 813	} else if (word_len <= 32) {
 814		u32		*rx;
 815		const u32	*tx;
 816
 817		rx = xfer->rx_buf;
 818		tx = xfer->tx_buf;
 819		do {
 820			c -= 4;
 821			if (tx != NULL) {
 822				if (mcspi_wait_for_reg_bit(chstat_reg,
 823						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 824					dev_err(&spi->dev, "TXS timed out\n");
 825					goto out;
 826				}
 827				dev_vdbg(&spi->dev, "write-%d %08x\n",
 828						word_len, *tx);
 829				writel_relaxed(*tx++, tx_reg);
 830			}
 831			if (rx != NULL) {
 832				if (mcspi_wait_for_reg_bit(chstat_reg,
 833						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 834					dev_err(&spi->dev, "RXS timed out\n");
 835					goto out;
 836				}
 837
 838				if (c == 4 && tx == NULL &&
 839				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
 840					omap2_mcspi_set_enable(spi, 0);
 841					*rx++ = readl_relaxed(rx_reg);
 842					dev_vdbg(&spi->dev, "read-%d %08x\n",
 843						    word_len, *(rx - 1));
 844					if (mcspi_wait_for_reg_bit(chstat_reg,
 845						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
 846						dev_err(&spi->dev,
 847							"RXS timed out\n");
 848						goto out;
 849					}
 850					c = 0;
 851				} else if (c == 0 && tx == NULL) {
 852					omap2_mcspi_set_enable(spi, 0);
 853				}
 854
 855				*rx++ = readl_relaxed(rx_reg);
 856				dev_vdbg(&spi->dev, "read-%d %08x\n",
 857						word_len, *(rx - 1));
 858			}
 859		} while (c >= 4);
 860	}
 861
 862	/* for TX_ONLY mode, be sure all words have shifted out */
 863	if (xfer->rx_buf == NULL) {
 864		if (mcspi_wait_for_reg_bit(chstat_reg,
 865				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
 866			dev_err(&spi->dev, "TXS timed out\n");
 867		} else if (mcspi_wait_for_reg_bit(chstat_reg,
 868				OMAP2_MCSPI_CHSTAT_EOT) < 0)
 869			dev_err(&spi->dev, "EOT timed out\n");
 870
 871		/* disable chan to purge rx datas received in TX_ONLY transfer,
 872		 * otherwise these rx datas will affect the direct following
 873		 * RX_ONLY transfer.
 874		 */
 875		omap2_mcspi_set_enable(spi, 0);
 876	}
 877out:
 878	omap2_mcspi_set_enable(spi, 1);
 879	return count - c;
 880}
 881
 882static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
 883{
 884	u32 div;
 885
 886	for (div = 0; div < 15; div++)
 887		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
 888			return div;
 889
 890	return 15;
 891}
 892
 893/* called only when no transfer is active to this device */
 894static int omap2_mcspi_setup_transfer(struct spi_device *spi,
 895		struct spi_transfer *t)
 896{
 897	struct omap2_mcspi_cs *cs = spi->controller_state;
 898	struct omap2_mcspi *mcspi;
 899	struct spi_master *spi_cntrl;
 900	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
 901	u8 word_len = spi->bits_per_word;
 902	u32 speed_hz = spi->max_speed_hz;
 903
 904	mcspi = spi_master_get_devdata(spi->master);
 905	spi_cntrl = mcspi->master;
 906
 907	if (t != NULL && t->bits_per_word)
 908		word_len = t->bits_per_word;
 909
 910	cs->word_len = word_len;
 911
 912	if (t && t->speed_hz)
 913		speed_hz = t->speed_hz;
 914
 915	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
 916	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
 917		clkd = omap2_mcspi_calc_divisor(speed_hz);
 918		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
 919		clkg = 0;
 920	} else {
 921		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
 922		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
 923		clkd = (div - 1) & 0xf;
 924		extclk = (div - 1) >> 4;
 925		clkg = OMAP2_MCSPI_CHCONF_CLKG;
 926	}
 927
 928	l = mcspi_cached_chconf0(spi);
 929
 930	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
 931	 * REVISIT: this controller could support SPI_3WIRE mode.
 932	 */
 933	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
 934		l &= ~OMAP2_MCSPI_CHCONF_IS;
 935		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
 936		l |= OMAP2_MCSPI_CHCONF_DPE0;
 937	} else {
 938		l |= OMAP2_MCSPI_CHCONF_IS;
 939		l |= OMAP2_MCSPI_CHCONF_DPE1;
 940		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
 941	}
 942
 943	/* wordlength */
 944	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
 945	l |= (word_len - 1) << 7;
 946
 947	/* set chipselect polarity; manage with FORCE */
 948	if (!(spi->mode & SPI_CS_HIGH))
 949		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
 950	else
 951		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
 952
 953	/* set clock divisor */
 954	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
 955	l |= clkd << 2;
 956
 957	/* set clock granularity */
 958	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
 959	l |= clkg;
 960	if (clkg) {
 961		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
 962		cs->chctrl0 |= extclk << 8;
 963		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
 964	}
 965
 966	/* set SPI mode 0..3 */
 967	if (spi->mode & SPI_CPOL)
 968		l |= OMAP2_MCSPI_CHCONF_POL;
 969	else
 970		l &= ~OMAP2_MCSPI_CHCONF_POL;
 971	if (spi->mode & SPI_CPHA)
 972		l |= OMAP2_MCSPI_CHCONF_PHA;
 973	else
 974		l &= ~OMAP2_MCSPI_CHCONF_PHA;
 975
 976	mcspi_write_chconf0(spi, l);
 977
 978	cs->mode = spi->mode;
 979
 980	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
 981			speed_hz,
 982			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
 983			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
 984
 985	return 0;
 986}
 987
 988/*
 989 * Note that we currently allow DMA only if we get a channel
 990 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
 991 */
 992static int omap2_mcspi_request_dma(struct spi_device *spi)
 
 993{
 994	struct spi_master	*master = spi->master;
 995	struct omap2_mcspi	*mcspi;
 996	struct omap2_mcspi_dma	*mcspi_dma;
 997	int ret = 0;
 998
 999	mcspi = spi_master_get_devdata(master);
1000	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1001
1002	init_completion(&mcspi_dma->dma_rx_completion);
1003	init_completion(&mcspi_dma->dma_tx_completion);
1004
1005	mcspi_dma->dma_rx = dma_request_chan(&master->dev,
1006					     mcspi_dma->dma_rx_ch_name);
1007	if (IS_ERR(mcspi_dma->dma_rx)) {
1008		ret = PTR_ERR(mcspi_dma->dma_rx);
1009		mcspi_dma->dma_rx = NULL;
1010		goto no_dma;
1011	}
1012
1013	mcspi_dma->dma_tx = dma_request_chan(&master->dev,
1014					     mcspi_dma->dma_tx_ch_name);
1015	if (IS_ERR(mcspi_dma->dma_tx)) {
1016		ret = PTR_ERR(mcspi_dma->dma_tx);
1017		mcspi_dma->dma_tx = NULL;
1018		dma_release_channel(mcspi_dma->dma_rx);
1019		mcspi_dma->dma_rx = NULL;
1020	}
1021
 
 
 
1022no_dma:
1023	return ret;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026static int omap2_mcspi_setup(struct spi_device *spi)
1027{
1028	int			ret;
1029	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
1030	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1031	struct omap2_mcspi_dma	*mcspi_dma;
1032	struct omap2_mcspi_cs	*cs = spi->controller_state;
1033
1034	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1035
1036	if (!cs) {
1037		cs = kzalloc(sizeof *cs, GFP_KERNEL);
1038		if (!cs)
1039			return -ENOMEM;
1040		cs->base = mcspi->base + spi->chip_select * 0x14;
1041		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1042		cs->mode = 0;
1043		cs->chconf0 = 0;
1044		cs->chctrl0 = 0;
1045		spi->controller_state = cs;
1046		/* Link this to context save list */
1047		list_add_tail(&cs->node, &ctx->cs);
1048
1049		if (gpio_is_valid(spi->cs_gpio)) {
1050			ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1051			if (ret) {
1052				dev_err(&spi->dev, "failed to request gpio\n");
1053				return ret;
1054			}
1055			gpio_direction_output(spi->cs_gpio,
1056					 !(spi->mode & SPI_CS_HIGH));
1057		}
1058	}
1059
1060	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1061		ret = omap2_mcspi_request_dma(spi);
1062		if (ret)
1063			dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n",
1064				 ret);
1065	}
1066
1067	ret = pm_runtime_get_sync(mcspi->dev);
1068	if (ret < 0)
1069		return ret;
 
1070
1071	ret = omap2_mcspi_setup_transfer(spi, NULL);
1072	pm_runtime_mark_last_busy(mcspi->dev);
1073	pm_runtime_put_autosuspend(mcspi->dev);
1074
1075	return ret;
1076}
1077
1078static void omap2_mcspi_cleanup(struct spi_device *spi)
1079{
1080	struct omap2_mcspi	*mcspi;
1081	struct omap2_mcspi_dma	*mcspi_dma;
1082	struct omap2_mcspi_cs	*cs;
1083
1084	mcspi = spi_master_get_devdata(spi->master);
1085
1086	if (spi->controller_state) {
1087		/* Unlink controller state from context save list */
1088		cs = spi->controller_state;
1089		list_del(&cs->node);
1090
1091		kfree(cs);
1092	}
 
 
 
 
 
 
1093
1094	if (spi->chip_select < spi->master->num_chipselect) {
1095		mcspi_dma = &mcspi->dma_channels[spi->chip_select];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096
1097		if (mcspi_dma->dma_rx) {
1098			dma_release_channel(mcspi_dma->dma_rx);
1099			mcspi_dma->dma_rx = NULL;
1100		}
1101		if (mcspi_dma->dma_tx) {
1102			dma_release_channel(mcspi_dma->dma_tx);
1103			mcspi_dma->dma_tx = NULL;
1104		}
1105	}
1106
1107	if (gpio_is_valid(spi->cs_gpio))
1108		gpio_free(spi->cs_gpio);
1109}
1110
1111static int omap2_mcspi_transfer_one(struct spi_master *master,
1112				    struct spi_device *spi,
1113				    struct spi_transfer *t)
1114{
1115
1116	/* We only enable one channel at a time -- the one whose message is
1117	 * -- although this controller would gladly
1118	 * arbitrate among multiple channels.  This corresponds to "single
1119	 * channel" master mode.  As a side effect, we need to manage the
1120	 * chipselect with the FORCE bit ... CS != channel enable.
1121	 */
1122
1123	struct omap2_mcspi		*mcspi;
1124	struct omap2_mcspi_dma		*mcspi_dma;
1125	struct omap2_mcspi_cs		*cs;
1126	struct omap2_mcspi_device_config *cd;
1127	int				par_override = 0;
1128	int				status = 0;
1129	u32				chconf;
1130
1131	mcspi = spi_master_get_devdata(master);
1132	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1133	cs = spi->controller_state;
1134	cd = spi->controller_data;
1135
1136	/*
1137	 * The slave driver could have changed spi->mode in which case
1138	 * it will be different from cs->mode (the current hardware setup).
1139	 * If so, set par_override (even though its not a parity issue) so
1140	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1141	 * with the correct mode on the first iteration of the loop below.
1142	 */
1143	if (spi->mode != cs->mode)
1144		par_override = 1;
1145
1146	omap2_mcspi_set_enable(spi, 0);
1147
1148	if (gpio_is_valid(spi->cs_gpio))
1149		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1150
1151	if (par_override ||
1152	    (t->speed_hz != spi->max_speed_hz) ||
1153	    (t->bits_per_word != spi->bits_per_word)) {
1154		par_override = 1;
1155		status = omap2_mcspi_setup_transfer(spi, t);
1156		if (status < 0)
1157			goto out;
1158		if (t->speed_hz == spi->max_speed_hz &&
1159		    t->bits_per_word == spi->bits_per_word)
1160			par_override = 0;
1161	}
1162	if (cd && cd->cs_per_word) {
1163		chconf = mcspi->ctx.modulctrl;
1164		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1165		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1166		mcspi->ctx.modulctrl =
1167			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1168	}
1169
1170	chconf = mcspi_cached_chconf0(spi);
1171	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1172	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1173
1174	if (t->tx_buf == NULL)
1175		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1176	else if (t->rx_buf == NULL)
1177		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1178
1179	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1180		/* Turbo mode is for more than one word */
1181		if (t->len > ((cs->word_len + 7) >> 3))
1182			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1183	}
1184
1185	mcspi_write_chconf0(spi, chconf);
1186
1187	if (t->len) {
1188		unsigned	count;
1189
1190		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1191		    master->cur_msg_mapped &&
1192		    master->can_dma(master, spi, t))
1193			omap2_mcspi_set_fifo(spi, t, 1);
1194
1195		omap2_mcspi_set_enable(spi, 1);
1196
1197		/* RX_ONLY mode needs dummy data in TX reg */
1198		if (t->tx_buf == NULL)
1199			writel_relaxed(0, cs->base
1200					+ OMAP2_MCSPI_TX0);
1201
1202		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1203		    master->cur_msg_mapped &&
1204		    master->can_dma(master, spi, t))
1205			count = omap2_mcspi_txrx_dma(spi, t);
1206		else
1207			count = omap2_mcspi_txrx_pio(spi, t);
1208
1209		if (count != t->len) {
1210			status = -EIO;
1211			goto out;
1212		}
1213	}
1214
1215	omap2_mcspi_set_enable(spi, 0);
1216
1217	if (mcspi->fifo_depth > 0)
1218		omap2_mcspi_set_fifo(spi, t, 0);
1219
1220out:
1221	/* Restore defaults if they were overriden */
1222	if (par_override) {
1223		par_override = 0;
1224		status = omap2_mcspi_setup_transfer(spi, NULL);
1225	}
1226
1227	if (cd && cd->cs_per_word) {
1228		chconf = mcspi->ctx.modulctrl;
1229		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1230		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1231		mcspi->ctx.modulctrl =
1232			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1233	}
1234
1235	omap2_mcspi_set_enable(spi, 0);
1236
1237	if (gpio_is_valid(spi->cs_gpio))
1238		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1239
1240	if (mcspi->fifo_depth > 0 && t)
1241		omap2_mcspi_set_fifo(spi, t, 0);
1242
1243	return status;
1244}
1245
1246static int omap2_mcspi_prepare_message(struct spi_master *master,
1247				       struct spi_message *msg)
1248{
1249	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1250	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1251	struct omap2_mcspi_cs	*cs;
1252
1253	/* Only a single channel can have the FORCE bit enabled
1254	 * in its chconf0 register.
1255	 * Scan all channels and disable them except the current one.
1256	 * A FORCE can remain from a last transfer having cs_change enabled
1257	 */
1258	list_for_each_entry(cs, &ctx->cs, node) {
1259		if (msg->spi->controller_state == cs)
1260			continue;
1261
1262		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1263			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1264			writel_relaxed(cs->chconf0,
1265					cs->base + OMAP2_MCSPI_CHCONF0);
1266			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1267		}
1268	}
1269
1270	return 0;
1271}
1272
1273static bool omap2_mcspi_can_dma(struct spi_master *master,
1274				struct spi_device *spi,
1275				struct spi_transfer *xfer)
1276{
 
 
 
 
 
 
 
 
 
 
 
 
 
1277	return (xfer->len >= DMA_MIN_BYTES);
1278}
1279
1280static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
 
 
 
 
 
 
 
 
 
 
 
 
1281{
1282	struct spi_master	*master = mcspi->master;
1283	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1284	int			ret = 0;
1285
1286	ret = pm_runtime_get_sync(mcspi->dev);
1287	if (ret < 0)
 
 
1288		return ret;
 
1289
1290	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1291			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1292	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1293
1294	omap2_mcspi_set_master_mode(master);
1295	pm_runtime_mark_last_busy(mcspi->dev);
1296	pm_runtime_put_autosuspend(mcspi->dev);
1297	return 0;
1298}
1299
 
 
 
 
 
1300static int omap_mcspi_runtime_resume(struct device *dev)
1301{
1302	struct omap2_mcspi	*mcspi;
1303	struct spi_master	*master;
 
 
 
 
 
 
1304
1305	master = dev_get_drvdata(dev);
1306	mcspi = spi_master_get_devdata(master);
1307	omap2_mcspi_restore_ctx(mcspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
1309	return 0;
1310}
1311
1312static struct omap2_mcspi_platform_config omap2_pdata = {
1313	.regs_offset = 0,
1314};
1315
1316static struct omap2_mcspi_platform_config omap4_pdata = {
1317	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1318};
1319
 
 
 
 
 
1320static const struct of_device_id omap_mcspi_of_match[] = {
1321	{
1322		.compatible = "ti,omap2-mcspi",
1323		.data = &omap2_pdata,
1324	},
1325	{
1326		.compatible = "ti,omap4-mcspi",
1327		.data = &omap4_pdata,
1328	},
 
 
 
 
1329	{ },
1330};
1331MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1332
1333static int omap2_mcspi_probe(struct platform_device *pdev)
1334{
1335	struct spi_master	*master;
1336	const struct omap2_mcspi_platform_config *pdata;
1337	struct omap2_mcspi	*mcspi;
1338	struct resource		*r;
1339	int			status = 0, i;
1340	u32			regs_offset = 0;
1341	struct device_node	*node = pdev->dev.of_node;
1342	const struct of_device_id *match;
1343
1344	master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1345	if (master == NULL) {
1346		dev_dbg(&pdev->dev, "master allocation failed\n");
 
 
1347		return -ENOMEM;
1348	}
1349
1350	/* the spi->mode bits understood by this driver: */
1351	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1352	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1353	master->setup = omap2_mcspi_setup;
1354	master->auto_runtime_pm = true;
1355	master->prepare_message = omap2_mcspi_prepare_message;
1356	master->can_dma = omap2_mcspi_can_dma;
1357	master->transfer_one = omap2_mcspi_transfer_one;
1358	master->set_cs = omap2_mcspi_set_cs;
1359	master->cleanup = omap2_mcspi_cleanup;
 
1360	master->dev.of_node = node;
1361	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1362	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
 
1363
1364	platform_set_drvdata(pdev, master);
1365
1366	mcspi = spi_master_get_devdata(master);
1367	mcspi->master = master;
1368
1369	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1370	if (match) {
1371		u32 num_cs = 1; /* default number of chipselect */
1372		pdata = match->data;
1373
1374		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1375		master->num_chipselect = num_cs;
1376		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1377			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1378	} else {
1379		pdata = dev_get_platdata(&pdev->dev);
1380		master->num_chipselect = pdata->num_cs;
1381		mcspi->pin_dir = pdata->pin_dir;
1382	}
1383	regs_offset = pdata->regs_offset;
 
 
 
 
1384
1385	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1386	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1387	if (IS_ERR(mcspi->base)) {
1388		status = PTR_ERR(mcspi->base);
1389		goto free_master;
1390	}
1391	mcspi->phys = r->start + regs_offset;
1392	mcspi->base += regs_offset;
1393
1394	mcspi->dev = &pdev->dev;
1395
1396	INIT_LIST_HEAD(&mcspi->ctx.cs);
1397
1398	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1399					   sizeof(struct omap2_mcspi_dma),
1400					   GFP_KERNEL);
1401	if (mcspi->dma_channels == NULL) {
1402		status = -ENOMEM;
1403		goto free_master;
1404	}
1405
1406	for (i = 0; i < master->num_chipselect; i++) {
1407		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1408		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409	}
1410
1411	pm_runtime_use_autosuspend(&pdev->dev);
1412	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1413	pm_runtime_enable(&pdev->dev);
1414
1415	status = omap2_mcspi_master_setup(mcspi);
1416	if (status < 0)
1417		goto disable_pm;
1418
1419	status = devm_spi_register_master(&pdev->dev, master);
1420	if (status < 0)
1421		goto disable_pm;
1422
1423	return status;
1424
1425disable_pm:
1426	pm_runtime_dont_use_autosuspend(&pdev->dev);
1427	pm_runtime_put_sync(&pdev->dev);
1428	pm_runtime_disable(&pdev->dev);
1429free_master:
 
1430	spi_master_put(master);
1431	return status;
1432}
1433
1434static int omap2_mcspi_remove(struct platform_device *pdev)
1435{
1436	struct spi_master *master = platform_get_drvdata(pdev);
1437	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1438
 
 
1439	pm_runtime_dont_use_autosuspend(mcspi->dev);
1440	pm_runtime_put_sync(mcspi->dev);
1441	pm_runtime_disable(&pdev->dev);
1442
1443	return 0;
1444}
1445
1446/* work with hotplug and coldplug */
1447MODULE_ALIAS("platform:omap2_mcspi");
1448
1449#ifdef	CONFIG_SUSPEND
1450/*
1451 * When SPI wake up from off-mode, CS is in activate state. If it was in
1452 * unactive state when driver was suspend, then force it to unactive state at
1453 * wake up.
1454 */
1455static int omap2_mcspi_resume(struct device *dev)
1456{
1457	struct spi_master	*master = dev_get_drvdata(dev);
1458	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1459	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1460	struct omap2_mcspi_cs	*cs;
 
 
 
 
1461
1462	pm_runtime_get_sync(mcspi->dev);
1463	list_for_each_entry(cs, &ctx->cs, node) {
1464		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1465			/*
1466			 * We need to toggle CS state for OMAP take this
1467			 * change in account.
1468			 */
1469			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1470			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1471			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1472			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1473		}
1474	}
1475	pm_runtime_mark_last_busy(mcspi->dev);
1476	pm_runtime_put_autosuspend(mcspi->dev);
1477
1478	return pinctrl_pm_select_default_state(dev);
1479}
1480
1481static int omap2_mcspi_suspend(struct device *dev)
1482{
1483	return pinctrl_pm_select_sleep_state(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484}
1485
1486#else
1487#define omap2_mcspi_suspend	NULL
1488#define	omap2_mcspi_resume	NULL
1489#endif
1490
1491static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1492	.resume = omap2_mcspi_resume,
1493	.suspend = omap2_mcspi_suspend,
1494	.runtime_resume	= omap_mcspi_runtime_resume,
1495};
1496
1497static struct platform_driver omap2_mcspi_driver = {
1498	.driver = {
1499		.name =		"omap2_mcspi",
1500		.pm =		&omap2_mcspi_pm_ops,
1501		.of_match_table = omap_mcspi_of_match,
1502	},
1503	.probe =	omap2_mcspi_probe,
1504	.remove =	omap2_mcspi_remove,
1505};
1506
1507module_platform_driver(omap2_mcspi_driver);
1508MODULE_LICENSE("GPL");