Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_trans.h"
19#include "xfs_buf_item.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22
23static kmem_zone_t *xfs_buf_zone;
24
25#define xb_to_gfp(flags) \
26 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
27
28/*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
46 * xfs_buftarg_wait_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
54
55static inline int
56xfs_buf_is_vmapped(
57 struct xfs_buf *bp)
58{
59 /*
60 * Return true if the buffer is vmapped.
61 *
62 * b_addr is null if the buffer is not mapped, but the code is clever
63 * enough to know it doesn't have to map a single page, so the check has
64 * to be both for b_addr and bp->b_page_count > 1.
65 */
66 return bp->b_addr && bp->b_page_count > 1;
67}
68
69static inline int
70xfs_buf_vmap_len(
71 struct xfs_buf *bp)
72{
73 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
74}
75
76/*
77 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
78 * this buffer. The count is incremented once per buffer (per hold cycle)
79 * because the corresponding decrement is deferred to buffer release. Buffers
80 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
81 * tracking adds unnecessary overhead. This is used for sychronization purposes
82 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
83 * in-flight buffers.
84 *
85 * Buffers that are never released (e.g., superblock, iclog buffers) must set
86 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
87 * never reaches zero and unmount hangs indefinitely.
88 */
89static inline void
90xfs_buf_ioacct_inc(
91 struct xfs_buf *bp)
92{
93 if (bp->b_flags & XBF_NO_IOACCT)
94 return;
95
96 ASSERT(bp->b_flags & XBF_ASYNC);
97 spin_lock(&bp->b_lock);
98 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
99 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
100 percpu_counter_inc(&bp->b_target->bt_io_count);
101 }
102 spin_unlock(&bp->b_lock);
103}
104
105/*
106 * Clear the in-flight state on a buffer about to be released to the LRU or
107 * freed and unaccount from the buftarg.
108 */
109static inline void
110__xfs_buf_ioacct_dec(
111 struct xfs_buf *bp)
112{
113 lockdep_assert_held(&bp->b_lock);
114
115 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
116 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
117 percpu_counter_dec(&bp->b_target->bt_io_count);
118 }
119}
120
121static inline void
122xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
124{
125 spin_lock(&bp->b_lock);
126 __xfs_buf_ioacct_dec(bp);
127 spin_unlock(&bp->b_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
142 ASSERT(xfs_buf_islocked(bp));
143
144 bp->b_flags |= XBF_STALE;
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
153 /*
154 * Once the buffer is marked stale and unlocked, a subsequent lookup
155 * could reset b_flags. There is no guarantee that the buffer is
156 * unaccounted (released to LRU) before that occurs. Drop in-flight
157 * status now to preserve accounting consistency.
158 */
159 spin_lock(&bp->b_lock);
160 __xfs_buf_ioacct_dec(bp);
161
162 atomic_set(&bp->b_lru_ref, 0);
163 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
164 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
165 atomic_dec(&bp->b_hold);
166
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168 spin_unlock(&bp->b_lock);
169}
170
171static int
172xfs_buf_get_maps(
173 struct xfs_buf *bp,
174 int map_count)
175{
176 ASSERT(bp->b_maps == NULL);
177 bp->b_map_count = map_count;
178
179 if (map_count == 1) {
180 bp->b_maps = &bp->__b_map;
181 return 0;
182 }
183
184 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
185 KM_NOFS);
186 if (!bp->b_maps)
187 return -ENOMEM;
188 return 0;
189}
190
191/*
192 * Frees b_pages if it was allocated.
193 */
194static void
195xfs_buf_free_maps(
196 struct xfs_buf *bp)
197{
198 if (bp->b_maps != &bp->__b_map) {
199 kmem_free(bp->b_maps);
200 bp->b_maps = NULL;
201 }
202}
203
204static int
205_xfs_buf_alloc(
206 struct xfs_buftarg *target,
207 struct xfs_buf_map *map,
208 int nmaps,
209 xfs_buf_flags_t flags,
210 struct xfs_buf **bpp)
211{
212 struct xfs_buf *bp;
213 int error;
214 int i;
215
216 *bpp = NULL;
217 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
218
219 /*
220 * We don't want certain flags to appear in b_flags unless they are
221 * specifically set by later operations on the buffer.
222 */
223 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
224
225 atomic_set(&bp->b_hold, 1);
226 atomic_set(&bp->b_lru_ref, 1);
227 init_completion(&bp->b_iowait);
228 INIT_LIST_HEAD(&bp->b_lru);
229 INIT_LIST_HEAD(&bp->b_list);
230 INIT_LIST_HEAD(&bp->b_li_list);
231 sema_init(&bp->b_sema, 0); /* held, no waiters */
232 spin_lock_init(&bp->b_lock);
233 bp->b_target = target;
234 bp->b_mount = target->bt_mount;
235 bp->b_flags = flags;
236
237 /*
238 * Set length and io_length to the same value initially.
239 * I/O routines should use io_length, which will be the same in
240 * most cases but may be reset (e.g. XFS recovery).
241 */
242 error = xfs_buf_get_maps(bp, nmaps);
243 if (error) {
244 kmem_cache_free(xfs_buf_zone, bp);
245 return error;
246 }
247
248 bp->b_bn = map[0].bm_bn;
249 bp->b_length = 0;
250 for (i = 0; i < nmaps; i++) {
251 bp->b_maps[i].bm_bn = map[i].bm_bn;
252 bp->b_maps[i].bm_len = map[i].bm_len;
253 bp->b_length += map[i].bm_len;
254 }
255
256 atomic_set(&bp->b_pin_count, 0);
257 init_waitqueue_head(&bp->b_waiters);
258
259 XFS_STATS_INC(bp->b_mount, xb_create);
260 trace_xfs_buf_init(bp, _RET_IP_);
261
262 *bpp = bp;
263 return 0;
264}
265
266/*
267 * Allocate a page array capable of holding a specified number
268 * of pages, and point the page buf at it.
269 */
270STATIC int
271_xfs_buf_get_pages(
272 xfs_buf_t *bp,
273 int page_count)
274{
275 /* Make sure that we have a page list */
276 if (bp->b_pages == NULL) {
277 bp->b_page_count = page_count;
278 if (page_count <= XB_PAGES) {
279 bp->b_pages = bp->b_page_array;
280 } else {
281 bp->b_pages = kmem_alloc(sizeof(struct page *) *
282 page_count, KM_NOFS);
283 if (bp->b_pages == NULL)
284 return -ENOMEM;
285 }
286 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
287 }
288 return 0;
289}
290
291/*
292 * Frees b_pages if it was allocated.
293 */
294STATIC void
295_xfs_buf_free_pages(
296 xfs_buf_t *bp)
297{
298 if (bp->b_pages != bp->b_page_array) {
299 kmem_free(bp->b_pages);
300 bp->b_pages = NULL;
301 }
302}
303
304/*
305 * Releases the specified buffer.
306 *
307 * The modification state of any associated pages is left unchanged.
308 * The buffer must not be on any hash - use xfs_buf_rele instead for
309 * hashed and refcounted buffers
310 */
311static void
312xfs_buf_free(
313 xfs_buf_t *bp)
314{
315 trace_xfs_buf_free(bp, _RET_IP_);
316
317 ASSERT(list_empty(&bp->b_lru));
318
319 if (bp->b_flags & _XBF_PAGES) {
320 uint i;
321
322 if (xfs_buf_is_vmapped(bp))
323 vm_unmap_ram(bp->b_addr - bp->b_offset,
324 bp->b_page_count);
325
326 for (i = 0; i < bp->b_page_count; i++) {
327 struct page *page = bp->b_pages[i];
328
329 __free_page(page);
330 }
331 if (current->reclaim_state)
332 current->reclaim_state->reclaimed_slab +=
333 bp->b_page_count;
334 } else if (bp->b_flags & _XBF_KMEM)
335 kmem_free(bp->b_addr);
336 _xfs_buf_free_pages(bp);
337 xfs_buf_free_maps(bp);
338 kmem_cache_free(xfs_buf_zone, bp);
339}
340
341/*
342 * Allocates all the pages for buffer in question and builds it's page list.
343 */
344STATIC int
345xfs_buf_allocate_memory(
346 xfs_buf_t *bp,
347 uint flags)
348{
349 size_t size;
350 size_t nbytes, offset;
351 gfp_t gfp_mask = xb_to_gfp(flags);
352 unsigned short page_count, i;
353 xfs_off_t start, end;
354 int error;
355 xfs_km_flags_t kmflag_mask = 0;
356
357 /*
358 * assure zeroed buffer for non-read cases.
359 */
360 if (!(flags & XBF_READ)) {
361 kmflag_mask |= KM_ZERO;
362 gfp_mask |= __GFP_ZERO;
363 }
364
365 /*
366 * for buffers that are contained within a single page, just allocate
367 * the memory from the heap - there's no need for the complexity of
368 * page arrays to keep allocation down to order 0.
369 */
370 size = BBTOB(bp->b_length);
371 if (size < PAGE_SIZE) {
372 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
373 bp->b_addr = kmem_alloc_io(size, align_mask,
374 KM_NOFS | kmflag_mask);
375 if (!bp->b_addr) {
376 /* low memory - use alloc_page loop instead */
377 goto use_alloc_page;
378 }
379
380 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
381 ((unsigned long)bp->b_addr & PAGE_MASK)) {
382 /* b_addr spans two pages - use alloc_page instead */
383 kmem_free(bp->b_addr);
384 bp->b_addr = NULL;
385 goto use_alloc_page;
386 }
387 bp->b_offset = offset_in_page(bp->b_addr);
388 bp->b_pages = bp->b_page_array;
389 bp->b_pages[0] = kmem_to_page(bp->b_addr);
390 bp->b_page_count = 1;
391 bp->b_flags |= _XBF_KMEM;
392 return 0;
393 }
394
395use_alloc_page:
396 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
397 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
398 >> PAGE_SHIFT;
399 page_count = end - start;
400 error = _xfs_buf_get_pages(bp, page_count);
401 if (unlikely(error))
402 return error;
403
404 offset = bp->b_offset;
405 bp->b_flags |= _XBF_PAGES;
406
407 for (i = 0; i < bp->b_page_count; i++) {
408 struct page *page;
409 uint retries = 0;
410retry:
411 page = alloc_page(gfp_mask);
412 if (unlikely(page == NULL)) {
413 if (flags & XBF_READ_AHEAD) {
414 bp->b_page_count = i;
415 error = -ENOMEM;
416 goto out_free_pages;
417 }
418
419 /*
420 * This could deadlock.
421 *
422 * But until all the XFS lowlevel code is revamped to
423 * handle buffer allocation failures we can't do much.
424 */
425 if (!(++retries % 100))
426 xfs_err(NULL,
427 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
428 current->comm, current->pid,
429 __func__, gfp_mask);
430
431 XFS_STATS_INC(bp->b_mount, xb_page_retries);
432 congestion_wait(BLK_RW_ASYNC, HZ/50);
433 goto retry;
434 }
435
436 XFS_STATS_INC(bp->b_mount, xb_page_found);
437
438 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
439 size -= nbytes;
440 bp->b_pages[i] = page;
441 offset = 0;
442 }
443 return 0;
444
445out_free_pages:
446 for (i = 0; i < bp->b_page_count; i++)
447 __free_page(bp->b_pages[i]);
448 bp->b_flags &= ~_XBF_PAGES;
449 return error;
450}
451
452/*
453 * Map buffer into kernel address-space if necessary.
454 */
455STATIC int
456_xfs_buf_map_pages(
457 xfs_buf_t *bp,
458 uint flags)
459{
460 ASSERT(bp->b_flags & _XBF_PAGES);
461 if (bp->b_page_count == 1) {
462 /* A single page buffer is always mappable */
463 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
464 } else if (flags & XBF_UNMAPPED) {
465 bp->b_addr = NULL;
466 } else {
467 int retried = 0;
468 unsigned nofs_flag;
469
470 /*
471 * vm_map_ram() will allocate auxiliary structures (e.g.
472 * pagetables) with GFP_KERNEL, yet we are likely to be under
473 * GFP_NOFS context here. Hence we need to tell memory reclaim
474 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
475 * memory reclaim re-entering the filesystem here and
476 * potentially deadlocking.
477 */
478 nofs_flag = memalloc_nofs_save();
479 do {
480 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
481 -1);
482 if (bp->b_addr)
483 break;
484 vm_unmap_aliases();
485 } while (retried++ <= 1);
486 memalloc_nofs_restore(nofs_flag);
487
488 if (!bp->b_addr)
489 return -ENOMEM;
490 bp->b_addr += bp->b_offset;
491 }
492
493 return 0;
494}
495
496/*
497 * Finding and Reading Buffers
498 */
499static int
500_xfs_buf_obj_cmp(
501 struct rhashtable_compare_arg *arg,
502 const void *obj)
503{
504 const struct xfs_buf_map *map = arg->key;
505 const struct xfs_buf *bp = obj;
506
507 /*
508 * The key hashing in the lookup path depends on the key being the
509 * first element of the compare_arg, make sure to assert this.
510 */
511 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
512
513 if (bp->b_bn != map->bm_bn)
514 return 1;
515
516 if (unlikely(bp->b_length != map->bm_len)) {
517 /*
518 * found a block number match. If the range doesn't
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching for an exact match.
524 */
525 ASSERT(bp->b_flags & XBF_STALE);
526 return 1;
527 }
528 return 0;
529}
530
531static const struct rhashtable_params xfs_buf_hash_params = {
532 .min_size = 32, /* empty AGs have minimal footprint */
533 .nelem_hint = 16,
534 .key_len = sizeof(xfs_daddr_t),
535 .key_offset = offsetof(struct xfs_buf, b_bn),
536 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
537 .automatic_shrinking = true,
538 .obj_cmpfn = _xfs_buf_obj_cmp,
539};
540
541int
542xfs_buf_hash_init(
543 struct xfs_perag *pag)
544{
545 spin_lock_init(&pag->pag_buf_lock);
546 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
547}
548
549void
550xfs_buf_hash_destroy(
551 struct xfs_perag *pag)
552{
553 rhashtable_destroy(&pag->pag_buf_hash);
554}
555
556/*
557 * Look up a buffer in the buffer cache and return it referenced and locked
558 * in @found_bp.
559 *
560 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
561 * cache.
562 *
563 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
564 * -EAGAIN if we fail to lock it.
565 *
566 * Return values are:
567 * -EFSCORRUPTED if have been supplied with an invalid address
568 * -EAGAIN on trylock failure
569 * -ENOENT if we fail to find a match and @new_bp was NULL
570 * 0, with @found_bp:
571 * - @new_bp if we inserted it into the cache
572 * - the buffer we found and locked.
573 */
574static int
575xfs_buf_find(
576 struct xfs_buftarg *btp,
577 struct xfs_buf_map *map,
578 int nmaps,
579 xfs_buf_flags_t flags,
580 struct xfs_buf *new_bp,
581 struct xfs_buf **found_bp)
582{
583 struct xfs_perag *pag;
584 xfs_buf_t *bp;
585 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
586 xfs_daddr_t eofs;
587 int i;
588
589 *found_bp = NULL;
590
591 for (i = 0; i < nmaps; i++)
592 cmap.bm_len += map[i].bm_len;
593
594 /* Check for IOs smaller than the sector size / not sector aligned */
595 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
596 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
597
598 /*
599 * Corrupted block numbers can get through to here, unfortunately, so we
600 * have to check that the buffer falls within the filesystem bounds.
601 */
602 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
603 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
604 xfs_alert(btp->bt_mount,
605 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
606 __func__, cmap.bm_bn, eofs);
607 WARN_ON(1);
608 return -EFSCORRUPTED;
609 }
610
611 pag = xfs_perag_get(btp->bt_mount,
612 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
613
614 spin_lock(&pag->pag_buf_lock);
615 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
616 xfs_buf_hash_params);
617 if (bp) {
618 atomic_inc(&bp->b_hold);
619 goto found;
620 }
621
622 /* No match found */
623 if (!new_bp) {
624 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
625 spin_unlock(&pag->pag_buf_lock);
626 xfs_perag_put(pag);
627 return -ENOENT;
628 }
629
630 /* the buffer keeps the perag reference until it is freed */
631 new_bp->b_pag = pag;
632 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
633 xfs_buf_hash_params);
634 spin_unlock(&pag->pag_buf_lock);
635 *found_bp = new_bp;
636 return 0;
637
638found:
639 spin_unlock(&pag->pag_buf_lock);
640 xfs_perag_put(pag);
641
642 if (!xfs_buf_trylock(bp)) {
643 if (flags & XBF_TRYLOCK) {
644 xfs_buf_rele(bp);
645 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
646 return -EAGAIN;
647 }
648 xfs_buf_lock(bp);
649 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
650 }
651
652 /*
653 * if the buffer is stale, clear all the external state associated with
654 * it. We need to keep flags such as how we allocated the buffer memory
655 * intact here.
656 */
657 if (bp->b_flags & XBF_STALE) {
658 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
660 bp->b_ops = NULL;
661 }
662
663 trace_xfs_buf_find(bp, flags, _RET_IP_);
664 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
665 *found_bp = bp;
666 return 0;
667}
668
669struct xfs_buf *
670xfs_buf_incore(
671 struct xfs_buftarg *target,
672 xfs_daddr_t blkno,
673 size_t numblks,
674 xfs_buf_flags_t flags)
675{
676 struct xfs_buf *bp;
677 int error;
678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
679
680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 if (error)
682 return NULL;
683 return bp;
684}
685
686/*
687 * Assembles a buffer covering the specified range. The code is optimised for
688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689 * more hits than misses.
690 */
691int
692xfs_buf_get_map(
693 struct xfs_buftarg *target,
694 struct xfs_buf_map *map,
695 int nmaps,
696 xfs_buf_flags_t flags,
697 struct xfs_buf **bpp)
698{
699 struct xfs_buf *bp;
700 struct xfs_buf *new_bp;
701 int error = 0;
702
703 *bpp = NULL;
704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
705 if (!error)
706 goto found;
707 if (error != -ENOENT)
708 return error;
709
710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 if (error)
712 return error;
713
714 error = xfs_buf_allocate_memory(new_bp, flags);
715 if (error) {
716 xfs_buf_free(new_bp);
717 return error;
718 }
719
720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 if (error) {
722 xfs_buf_free(new_bp);
723 return error;
724 }
725
726 if (bp != new_bp)
727 xfs_buf_free(new_bp);
728
729found:
730 if (!bp->b_addr) {
731 error = _xfs_buf_map_pages(bp, flags);
732 if (unlikely(error)) {
733 xfs_warn_ratelimited(target->bt_mount,
734 "%s: failed to map %u pages", __func__,
735 bp->b_page_count);
736 xfs_buf_relse(bp);
737 return error;
738 }
739 }
740
741 /*
742 * Clear b_error if this is a lookup from a caller that doesn't expect
743 * valid data to be found in the buffer.
744 */
745 if (!(flags & XBF_READ))
746 xfs_buf_ioerror(bp, 0);
747
748 XFS_STATS_INC(target->bt_mount, xb_get);
749 trace_xfs_buf_get(bp, flags, _RET_IP_);
750 *bpp = bp;
751 return 0;
752}
753
754STATIC int
755_xfs_buf_read(
756 xfs_buf_t *bp,
757 xfs_buf_flags_t flags)
758{
759 ASSERT(!(flags & XBF_WRITE));
760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
761
762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
764
765 return xfs_buf_submit(bp);
766}
767
768/*
769 * Reverify a buffer found in cache without an attached ->b_ops.
770 *
771 * If the caller passed an ops structure and the buffer doesn't have ops
772 * assigned, set the ops and use it to verify the contents. If verification
773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774 * already in XBF_DONE state on entry.
775 *
776 * Under normal operations, every in-core buffer is verified on read I/O
777 * completion. There are two scenarios that can lead to in-core buffers without
778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779 * filesystem, though these buffers are purged at the end of recovery. The
780 * other is online repair, which intentionally reads with a NULL buffer ops to
781 * run several verifiers across an in-core buffer in order to establish buffer
782 * type. If repair can't establish that, the buffer will be left in memory
783 * with NULL buffer ops.
784 */
785int
786xfs_buf_reverify(
787 struct xfs_buf *bp,
788 const struct xfs_buf_ops *ops)
789{
790 ASSERT(bp->b_flags & XBF_DONE);
791 ASSERT(bp->b_error == 0);
792
793 if (!ops || bp->b_ops)
794 return 0;
795
796 bp->b_ops = ops;
797 bp->b_ops->verify_read(bp);
798 if (bp->b_error)
799 bp->b_flags &= ~XBF_DONE;
800 return bp->b_error;
801}
802
803int
804xfs_buf_read_map(
805 struct xfs_buftarg *target,
806 struct xfs_buf_map *map,
807 int nmaps,
808 xfs_buf_flags_t flags,
809 struct xfs_buf **bpp,
810 const struct xfs_buf_ops *ops,
811 xfs_failaddr_t fa)
812{
813 struct xfs_buf *bp;
814 int error;
815
816 flags |= XBF_READ;
817 *bpp = NULL;
818
819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 if (error)
821 return error;
822
823 trace_xfs_buf_read(bp, flags, _RET_IP_);
824
825 if (!(bp->b_flags & XBF_DONE)) {
826 /* Initiate the buffer read and wait. */
827 XFS_STATS_INC(target->bt_mount, xb_get_read);
828 bp->b_ops = ops;
829 error = _xfs_buf_read(bp, flags);
830
831 /* Readahead iodone already dropped the buffer, so exit. */
832 if (flags & XBF_ASYNC)
833 return 0;
834 } else {
835 /* Buffer already read; all we need to do is check it. */
836 error = xfs_buf_reverify(bp, ops);
837
838 /* Readahead already finished; drop the buffer and exit. */
839 if (flags & XBF_ASYNC) {
840 xfs_buf_relse(bp);
841 return 0;
842 }
843
844 /* We do not want read in the flags */
845 bp->b_flags &= ~XBF_READ;
846 ASSERT(bp->b_ops != NULL || ops == NULL);
847 }
848
849 /*
850 * If we've had a read error, then the contents of the buffer are
851 * invalid and should not be used. To ensure that a followup read tries
852 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 * mark the buffer stale. This ensures that anyone who has a current
854 * reference to the buffer will interpret it's contents correctly and
855 * future cache lookups will also treat it as an empty, uninitialised
856 * buffer.
857 */
858 if (error) {
859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
860 xfs_buf_ioerror_alert(bp, fa);
861
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
864 xfs_buf_relse(bp);
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
870 }
871
872 *bpp = bp;
873 return 0;
874}
875
876/*
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
879 */
880void
881xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
884 int nmaps,
885 const struct xfs_buf_ops *ops)
886{
887 struct xfs_buf *bp;
888
889 if (bdi_read_congested(target->bt_bdev->bd_bdi))
890 return;
891
892 xfs_buf_read_map(target, map, nmaps,
893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 __this_address);
895}
896
897/*
898 * Read an uncached buffer from disk. Allocates and returns a locked
899 * buffer containing the disk contents or nothing.
900 */
901int
902xfs_buf_read_uncached(
903 struct xfs_buftarg *target,
904 xfs_daddr_t daddr,
905 size_t numblks,
906 int flags,
907 struct xfs_buf **bpp,
908 const struct xfs_buf_ops *ops)
909{
910 struct xfs_buf *bp;
911 int error;
912
913 *bpp = NULL;
914
915 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 if (error)
917 return error;
918
919 /* set up the buffer for a read IO */
920 ASSERT(bp->b_map_count == 1);
921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
922 bp->b_maps[0].bm_bn = daddr;
923 bp->b_flags |= XBF_READ;
924 bp->b_ops = ops;
925
926 xfs_buf_submit(bp);
927 if (bp->b_error) {
928 error = bp->b_error;
929 xfs_buf_relse(bp);
930 return error;
931 }
932
933 *bpp = bp;
934 return 0;
935}
936
937int
938xfs_buf_get_uncached(
939 struct xfs_buftarg *target,
940 size_t numblks,
941 int flags,
942 struct xfs_buf **bpp)
943{
944 unsigned long page_count;
945 int error, i;
946 struct xfs_buf *bp;
947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
948
949 *bpp = NULL;
950
951 /* flags might contain irrelevant bits, pass only what we care about */
952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 if (error)
954 goto fail;
955
956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
957 error = _xfs_buf_get_pages(bp, page_count);
958 if (error)
959 goto fail_free_buf;
960
961 for (i = 0; i < page_count; i++) {
962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
963 if (!bp->b_pages[i]) {
964 error = -ENOMEM;
965 goto fail_free_mem;
966 }
967 }
968 bp->b_flags |= _XBF_PAGES;
969
970 error = _xfs_buf_map_pages(bp, 0);
971 if (unlikely(error)) {
972 xfs_warn(target->bt_mount,
973 "%s: failed to map pages", __func__);
974 goto fail_free_mem;
975 }
976
977 trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 *bpp = bp;
979 return 0;
980
981 fail_free_mem:
982 while (--i >= 0)
983 __free_page(bp->b_pages[i]);
984 _xfs_buf_free_pages(bp);
985 fail_free_buf:
986 xfs_buf_free_maps(bp);
987 kmem_cache_free(xfs_buf_zone, bp);
988 fail:
989 return error;
990}
991
992/*
993 * Increment reference count on buffer, to hold the buffer concurrently
994 * with another thread which may release (free) the buffer asynchronously.
995 * Must hold the buffer already to call this function.
996 */
997void
998xfs_buf_hold(
999 xfs_buf_t *bp)
1000{
1001 trace_xfs_buf_hold(bp, _RET_IP_);
1002 atomic_inc(&bp->b_hold);
1003}
1004
1005/*
1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007 * placed on LRU or freed (depending on b_lru_ref).
1008 */
1009void
1010xfs_buf_rele(
1011 xfs_buf_t *bp)
1012{
1013 struct xfs_perag *pag = bp->b_pag;
1014 bool release;
1015 bool freebuf = false;
1016
1017 trace_xfs_buf_rele(bp, _RET_IP_);
1018
1019 if (!pag) {
1020 ASSERT(list_empty(&bp->b_lru));
1021 if (atomic_dec_and_test(&bp->b_hold)) {
1022 xfs_buf_ioacct_dec(bp);
1023 xfs_buf_free(bp);
1024 }
1025 return;
1026 }
1027
1028 ASSERT(atomic_read(&bp->b_hold) > 0);
1029
1030 /*
1031 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 * calls. The pag_buf_lock being taken on the last reference only
1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 * to last reference we drop here is not serialised against the last
1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 * first, the last "release" reference can win the race to the lock and
1037 * free the buffer before the second-to-last reference is processed,
1038 * leading to a use-after-free scenario.
1039 */
1040 spin_lock(&bp->b_lock);
1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042 if (!release) {
1043 /*
1044 * Drop the in-flight state if the buffer is already on the LRU
1045 * and it holds the only reference. This is racy because we
1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 * ensures the decrement occurs only once per-buf.
1048 */
1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050 __xfs_buf_ioacct_dec(bp);
1051 goto out_unlock;
1052 }
1053
1054 /* the last reference has been dropped ... */
1055 __xfs_buf_ioacct_dec(bp);
1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 /*
1058 * If the buffer is added to the LRU take a new reference to the
1059 * buffer for the LRU and clear the (now stale) dispose list
1060 * state flag
1061 */
1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 atomic_inc(&bp->b_hold);
1065 }
1066 spin_unlock(&pag->pag_buf_lock);
1067 } else {
1068 /*
1069 * most of the time buffers will already be removed from the
1070 * LRU, so optimise that case by checking for the
1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 * was on was the disposal list
1073 */
1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 } else {
1077 ASSERT(list_empty(&bp->b_lru));
1078 }
1079
1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 xfs_buf_hash_params);
1083 spin_unlock(&pag->pag_buf_lock);
1084 xfs_perag_put(pag);
1085 freebuf = true;
1086 }
1087
1088out_unlock:
1089 spin_unlock(&bp->b_lock);
1090
1091 if (freebuf)
1092 xfs_buf_free(bp);
1093}
1094
1095
1096/*
1097 * Lock a buffer object, if it is not already locked.
1098 *
1099 * If we come across a stale, pinned, locked buffer, we know that we are
1100 * being asked to lock a buffer that has been reallocated. Because it is
1101 * pinned, we know that the log has not been pushed to disk and hence it
1102 * will still be locked. Rather than continuing to have trylock attempts
1103 * fail until someone else pushes the log, push it ourselves before
1104 * returning. This means that the xfsaild will not get stuck trying
1105 * to push on stale inode buffers.
1106 */
1107int
1108xfs_buf_trylock(
1109 struct xfs_buf *bp)
1110{
1111 int locked;
1112
1113 locked = down_trylock(&bp->b_sema) == 0;
1114 if (locked)
1115 trace_xfs_buf_trylock(bp, _RET_IP_);
1116 else
1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118 return locked;
1119}
1120
1121/*
1122 * Lock a buffer object.
1123 *
1124 * If we come across a stale, pinned, locked buffer, we know that we
1125 * are being asked to lock a buffer that has been reallocated. Because
1126 * it is pinned, we know that the log has not been pushed to disk and
1127 * hence it will still be locked. Rather than sleeping until someone
1128 * else pushes the log, push it ourselves before trying to get the lock.
1129 */
1130void
1131xfs_buf_lock(
1132 struct xfs_buf *bp)
1133{
1134 trace_xfs_buf_lock(bp, _RET_IP_);
1135
1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137 xfs_log_force(bp->b_mount, 0);
1138 down(&bp->b_sema);
1139
1140 trace_xfs_buf_lock_done(bp, _RET_IP_);
1141}
1142
1143void
1144xfs_buf_unlock(
1145 struct xfs_buf *bp)
1146{
1147 ASSERT(xfs_buf_islocked(bp));
1148
1149 up(&bp->b_sema);
1150 trace_xfs_buf_unlock(bp, _RET_IP_);
1151}
1152
1153STATIC void
1154xfs_buf_wait_unpin(
1155 xfs_buf_t *bp)
1156{
1157 DECLARE_WAITQUEUE (wait, current);
1158
1159 if (atomic_read(&bp->b_pin_count) == 0)
1160 return;
1161
1162 add_wait_queue(&bp->b_waiters, &wait);
1163 for (;;) {
1164 set_current_state(TASK_UNINTERRUPTIBLE);
1165 if (atomic_read(&bp->b_pin_count) == 0)
1166 break;
1167 io_schedule();
1168 }
1169 remove_wait_queue(&bp->b_waiters, &wait);
1170 set_current_state(TASK_RUNNING);
1171}
1172
1173/*
1174 * Buffer Utility Routines
1175 */
1176
1177void
1178xfs_buf_ioend(
1179 struct xfs_buf *bp)
1180{
1181 bool read = bp->b_flags & XBF_READ;
1182
1183 trace_xfs_buf_iodone(bp, _RET_IP_);
1184
1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186
1187 /*
1188 * Pull in IO completion errors now. We are guaranteed to be running
1189 * single threaded, so we don't need the lock to read b_io_error.
1190 */
1191 if (!bp->b_error && bp->b_io_error)
1192 xfs_buf_ioerror(bp, bp->b_io_error);
1193
1194 if (read) {
1195 if (!bp->b_error && bp->b_ops)
1196 bp->b_ops->verify_read(bp);
1197 if (!bp->b_error)
1198 bp->b_flags |= XBF_DONE;
1199 xfs_buf_ioend_finish(bp);
1200 return;
1201 }
1202
1203 if (!bp->b_error) {
1204 bp->b_flags &= ~XBF_WRITE_FAIL;
1205 bp->b_flags |= XBF_DONE;
1206 }
1207
1208 /*
1209 * If this is a log recovery buffer, we aren't doing transactional IO
1210 * yet so we need to let it handle IO completions.
1211 */
1212 if (bp->b_flags & _XBF_LOGRECOVERY) {
1213 xlog_recover_iodone(bp);
1214 return;
1215 }
1216
1217 if (bp->b_flags & _XBF_INODES) {
1218 xfs_buf_inode_iodone(bp);
1219 return;
1220 }
1221
1222 if (bp->b_flags & _XBF_DQUOTS) {
1223 xfs_buf_dquot_iodone(bp);
1224 return;
1225 }
1226 xfs_buf_iodone(bp);
1227}
1228
1229static void
1230xfs_buf_ioend_work(
1231 struct work_struct *work)
1232{
1233 struct xfs_buf *bp =
1234 container_of(work, xfs_buf_t, b_ioend_work);
1235
1236 xfs_buf_ioend(bp);
1237}
1238
1239static void
1240xfs_buf_ioend_async(
1241 struct xfs_buf *bp)
1242{
1243 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1244 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1245}
1246
1247void
1248__xfs_buf_ioerror(
1249 xfs_buf_t *bp,
1250 int error,
1251 xfs_failaddr_t failaddr)
1252{
1253 ASSERT(error <= 0 && error >= -1000);
1254 bp->b_error = error;
1255 trace_xfs_buf_ioerror(bp, error, failaddr);
1256}
1257
1258void
1259xfs_buf_ioerror_alert(
1260 struct xfs_buf *bp,
1261 xfs_failaddr_t func)
1262{
1263 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1264 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1265 func, (uint64_t)XFS_BUF_ADDR(bp),
1266 bp->b_length, -bp->b_error);
1267}
1268
1269/*
1270 * To simulate an I/O failure, the buffer must be locked and held with at least
1271 * three references. The LRU reference is dropped by the stale call. The buf
1272 * item reference is dropped via ioend processing. The third reference is owned
1273 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1274 */
1275void
1276xfs_buf_ioend_fail(
1277 struct xfs_buf *bp)
1278{
1279 bp->b_flags &= ~XBF_DONE;
1280 xfs_buf_stale(bp);
1281 xfs_buf_ioerror(bp, -EIO);
1282 xfs_buf_ioend(bp);
1283}
1284
1285int
1286xfs_bwrite(
1287 struct xfs_buf *bp)
1288{
1289 int error;
1290
1291 ASSERT(xfs_buf_islocked(bp));
1292
1293 bp->b_flags |= XBF_WRITE;
1294 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1295 XBF_DONE);
1296
1297 error = xfs_buf_submit(bp);
1298 if (error)
1299 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1300 return error;
1301}
1302
1303static void
1304xfs_buf_bio_end_io(
1305 struct bio *bio)
1306{
1307 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1308
1309 if (!bio->bi_status &&
1310 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1311 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1312 bio->bi_status = BLK_STS_IOERR;
1313
1314 /*
1315 * don't overwrite existing errors - otherwise we can lose errors on
1316 * buffers that require multiple bios to complete.
1317 */
1318 if (bio->bi_status) {
1319 int error = blk_status_to_errno(bio->bi_status);
1320
1321 cmpxchg(&bp->b_io_error, 0, error);
1322 }
1323
1324 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1325 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1326
1327 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1328 xfs_buf_ioend_async(bp);
1329 bio_put(bio);
1330}
1331
1332static void
1333xfs_buf_ioapply_map(
1334 struct xfs_buf *bp,
1335 int map,
1336 int *buf_offset,
1337 int *count,
1338 int op)
1339{
1340 int page_index;
1341 int total_nr_pages = bp->b_page_count;
1342 int nr_pages;
1343 struct bio *bio;
1344 sector_t sector = bp->b_maps[map].bm_bn;
1345 int size;
1346 int offset;
1347
1348 /* skip the pages in the buffer before the start offset */
1349 page_index = 0;
1350 offset = *buf_offset;
1351 while (offset >= PAGE_SIZE) {
1352 page_index++;
1353 offset -= PAGE_SIZE;
1354 }
1355
1356 /*
1357 * Limit the IO size to the length of the current vector, and update the
1358 * remaining IO count for the next time around.
1359 */
1360 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1361 *count -= size;
1362 *buf_offset += size;
1363
1364next_chunk:
1365 atomic_inc(&bp->b_io_remaining);
1366 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1367
1368 bio = bio_alloc(GFP_NOIO, nr_pages);
1369 bio_set_dev(bio, bp->b_target->bt_bdev);
1370 bio->bi_iter.bi_sector = sector;
1371 bio->bi_end_io = xfs_buf_bio_end_io;
1372 bio->bi_private = bp;
1373 bio->bi_opf = op;
1374
1375 for (; size && nr_pages; nr_pages--, page_index++) {
1376 int rbytes, nbytes = PAGE_SIZE - offset;
1377
1378 if (nbytes > size)
1379 nbytes = size;
1380
1381 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1382 offset);
1383 if (rbytes < nbytes)
1384 break;
1385
1386 offset = 0;
1387 sector += BTOBB(nbytes);
1388 size -= nbytes;
1389 total_nr_pages--;
1390 }
1391
1392 if (likely(bio->bi_iter.bi_size)) {
1393 if (xfs_buf_is_vmapped(bp)) {
1394 flush_kernel_vmap_range(bp->b_addr,
1395 xfs_buf_vmap_len(bp));
1396 }
1397 submit_bio(bio);
1398 if (size)
1399 goto next_chunk;
1400 } else {
1401 /*
1402 * This is guaranteed not to be the last io reference count
1403 * because the caller (xfs_buf_submit) holds a count itself.
1404 */
1405 atomic_dec(&bp->b_io_remaining);
1406 xfs_buf_ioerror(bp, -EIO);
1407 bio_put(bio);
1408 }
1409
1410}
1411
1412STATIC void
1413_xfs_buf_ioapply(
1414 struct xfs_buf *bp)
1415{
1416 struct blk_plug plug;
1417 int op;
1418 int offset;
1419 int size;
1420 int i;
1421
1422 /*
1423 * Make sure we capture only current IO errors rather than stale errors
1424 * left over from previous use of the buffer (e.g. failed readahead).
1425 */
1426 bp->b_error = 0;
1427
1428 if (bp->b_flags & XBF_WRITE) {
1429 op = REQ_OP_WRITE;
1430
1431 /*
1432 * Run the write verifier callback function if it exists. If
1433 * this function fails it will mark the buffer with an error and
1434 * the IO should not be dispatched.
1435 */
1436 if (bp->b_ops) {
1437 bp->b_ops->verify_write(bp);
1438 if (bp->b_error) {
1439 xfs_force_shutdown(bp->b_mount,
1440 SHUTDOWN_CORRUPT_INCORE);
1441 return;
1442 }
1443 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1444 struct xfs_mount *mp = bp->b_mount;
1445
1446 /*
1447 * non-crc filesystems don't attach verifiers during
1448 * log recovery, so don't warn for such filesystems.
1449 */
1450 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1451 xfs_warn(mp,
1452 "%s: no buf ops on daddr 0x%llx len %d",
1453 __func__, bp->b_bn, bp->b_length);
1454 xfs_hex_dump(bp->b_addr,
1455 XFS_CORRUPTION_DUMP_LEN);
1456 dump_stack();
1457 }
1458 }
1459 } else {
1460 op = REQ_OP_READ;
1461 if (bp->b_flags & XBF_READ_AHEAD)
1462 op |= REQ_RAHEAD;
1463 }
1464
1465 /* we only use the buffer cache for meta-data */
1466 op |= REQ_META;
1467
1468 /*
1469 * Walk all the vectors issuing IO on them. Set up the initial offset
1470 * into the buffer and the desired IO size before we start -
1471 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1472 * subsequent call.
1473 */
1474 offset = bp->b_offset;
1475 size = BBTOB(bp->b_length);
1476 blk_start_plug(&plug);
1477 for (i = 0; i < bp->b_map_count; i++) {
1478 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1479 if (bp->b_error)
1480 break;
1481 if (size <= 0)
1482 break; /* all done */
1483 }
1484 blk_finish_plug(&plug);
1485}
1486
1487/*
1488 * Wait for I/O completion of a sync buffer and return the I/O error code.
1489 */
1490static int
1491xfs_buf_iowait(
1492 struct xfs_buf *bp)
1493{
1494 ASSERT(!(bp->b_flags & XBF_ASYNC));
1495
1496 trace_xfs_buf_iowait(bp, _RET_IP_);
1497 wait_for_completion(&bp->b_iowait);
1498 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1499
1500 return bp->b_error;
1501}
1502
1503/*
1504 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1505 * the buffer lock ownership and the current reference to the IO. It is not
1506 * safe to reference the buffer after a call to this function unless the caller
1507 * holds an additional reference itself.
1508 */
1509int
1510__xfs_buf_submit(
1511 struct xfs_buf *bp,
1512 bool wait)
1513{
1514 int error = 0;
1515
1516 trace_xfs_buf_submit(bp, _RET_IP_);
1517
1518 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1519
1520 /* on shutdown we stale and complete the buffer immediately */
1521 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1522 xfs_buf_ioend_fail(bp);
1523 return -EIO;
1524 }
1525
1526 /*
1527 * Grab a reference so the buffer does not go away underneath us. For
1528 * async buffers, I/O completion drops the callers reference, which
1529 * could occur before submission returns.
1530 */
1531 xfs_buf_hold(bp);
1532
1533 if (bp->b_flags & XBF_WRITE)
1534 xfs_buf_wait_unpin(bp);
1535
1536 /* clear the internal error state to avoid spurious errors */
1537 bp->b_io_error = 0;
1538
1539 /*
1540 * Set the count to 1 initially, this will stop an I/O completion
1541 * callout which happens before we have started all the I/O from calling
1542 * xfs_buf_ioend too early.
1543 */
1544 atomic_set(&bp->b_io_remaining, 1);
1545 if (bp->b_flags & XBF_ASYNC)
1546 xfs_buf_ioacct_inc(bp);
1547 _xfs_buf_ioapply(bp);
1548
1549 /*
1550 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1551 * reference we took above. If we drop it to zero, run completion so
1552 * that we don't return to the caller with completion still pending.
1553 */
1554 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1555 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1556 xfs_buf_ioend(bp);
1557 else
1558 xfs_buf_ioend_async(bp);
1559 }
1560
1561 if (wait)
1562 error = xfs_buf_iowait(bp);
1563
1564 /*
1565 * Release the hold that keeps the buffer referenced for the entire
1566 * I/O. Note that if the buffer is async, it is not safe to reference
1567 * after this release.
1568 */
1569 xfs_buf_rele(bp);
1570 return error;
1571}
1572
1573void *
1574xfs_buf_offset(
1575 struct xfs_buf *bp,
1576 size_t offset)
1577{
1578 struct page *page;
1579
1580 if (bp->b_addr)
1581 return bp->b_addr + offset;
1582
1583 offset += bp->b_offset;
1584 page = bp->b_pages[offset >> PAGE_SHIFT];
1585 return page_address(page) + (offset & (PAGE_SIZE-1));
1586}
1587
1588void
1589xfs_buf_zero(
1590 struct xfs_buf *bp,
1591 size_t boff,
1592 size_t bsize)
1593{
1594 size_t bend;
1595
1596 bend = boff + bsize;
1597 while (boff < bend) {
1598 struct page *page;
1599 int page_index, page_offset, csize;
1600
1601 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1602 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1603 page = bp->b_pages[page_index];
1604 csize = min_t(size_t, PAGE_SIZE - page_offset,
1605 BBTOB(bp->b_length) - boff);
1606
1607 ASSERT((csize + page_offset) <= PAGE_SIZE);
1608
1609 memset(page_address(page) + page_offset, 0, csize);
1610
1611 boff += csize;
1612 }
1613}
1614
1615/*
1616 * Log a message about and stale a buffer that a caller has decided is corrupt.
1617 *
1618 * This function should be called for the kinds of metadata corruption that
1619 * cannot be detect from a verifier, such as incorrect inter-block relationship
1620 * data. Do /not/ call this function from a verifier function.
1621 *
1622 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1623 * be marked stale, but b_error will not be set. The caller is responsible for
1624 * releasing the buffer or fixing it.
1625 */
1626void
1627__xfs_buf_mark_corrupt(
1628 struct xfs_buf *bp,
1629 xfs_failaddr_t fa)
1630{
1631 ASSERT(bp->b_flags & XBF_DONE);
1632
1633 xfs_buf_corruption_error(bp, fa);
1634 xfs_buf_stale(bp);
1635}
1636
1637/*
1638 * Handling of buffer targets (buftargs).
1639 */
1640
1641/*
1642 * Wait for any bufs with callbacks that have been submitted but have not yet
1643 * returned. These buffers will have an elevated hold count, so wait on those
1644 * while freeing all the buffers only held by the LRU.
1645 */
1646static enum lru_status
1647xfs_buftarg_wait_rele(
1648 struct list_head *item,
1649 struct list_lru_one *lru,
1650 spinlock_t *lru_lock,
1651 void *arg)
1652
1653{
1654 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1655 struct list_head *dispose = arg;
1656
1657 if (atomic_read(&bp->b_hold) > 1) {
1658 /* need to wait, so skip it this pass */
1659 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1660 return LRU_SKIP;
1661 }
1662 if (!spin_trylock(&bp->b_lock))
1663 return LRU_SKIP;
1664
1665 /*
1666 * clear the LRU reference count so the buffer doesn't get
1667 * ignored in xfs_buf_rele().
1668 */
1669 atomic_set(&bp->b_lru_ref, 0);
1670 bp->b_state |= XFS_BSTATE_DISPOSE;
1671 list_lru_isolate_move(lru, item, dispose);
1672 spin_unlock(&bp->b_lock);
1673 return LRU_REMOVED;
1674}
1675
1676void
1677xfs_wait_buftarg(
1678 struct xfs_buftarg *btp)
1679{
1680 LIST_HEAD(dispose);
1681 int loop = 0;
1682 bool write_fail = false;
1683
1684 /*
1685 * First wait on the buftarg I/O count for all in-flight buffers to be
1686 * released. This is critical as new buffers do not make the LRU until
1687 * they are released.
1688 *
1689 * Next, flush the buffer workqueue to ensure all completion processing
1690 * has finished. Just waiting on buffer locks is not sufficient for
1691 * async IO as the reference count held over IO is not released until
1692 * after the buffer lock is dropped. Hence we need to ensure here that
1693 * all reference counts have been dropped before we start walking the
1694 * LRU list.
1695 */
1696 while (percpu_counter_sum(&btp->bt_io_count))
1697 delay(100);
1698 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1699
1700 /* loop until there is nothing left on the lru list. */
1701 while (list_lru_count(&btp->bt_lru)) {
1702 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1703 &dispose, LONG_MAX);
1704
1705 while (!list_empty(&dispose)) {
1706 struct xfs_buf *bp;
1707 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708 list_del_init(&bp->b_lru);
1709 if (bp->b_flags & XBF_WRITE_FAIL) {
1710 write_fail = true;
1711 xfs_buf_alert_ratelimited(bp,
1712 "XFS: Corruption Alert",
1713"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714 (long long)bp->b_bn);
1715 }
1716 xfs_buf_rele(bp);
1717 }
1718 if (loop++ != 0)
1719 delay(100);
1720 }
1721
1722 /*
1723 * If one or more failed buffers were freed, that means dirty metadata
1724 * was thrown away. This should only ever happen after I/O completion
1725 * handling has elevated I/O error(s) to permanent failures and shuts
1726 * down the fs.
1727 */
1728 if (write_fail) {
1729 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1730 xfs_alert(btp->bt_mount,
1731 "Please run xfs_repair to determine the extent of the problem.");
1732 }
1733}
1734
1735static enum lru_status
1736xfs_buftarg_isolate(
1737 struct list_head *item,
1738 struct list_lru_one *lru,
1739 spinlock_t *lru_lock,
1740 void *arg)
1741{
1742 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1743 struct list_head *dispose = arg;
1744
1745 /*
1746 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1747 * If we fail to get the lock, just skip it.
1748 */
1749 if (!spin_trylock(&bp->b_lock))
1750 return LRU_SKIP;
1751 /*
1752 * Decrement the b_lru_ref count unless the value is already
1753 * zero. If the value is already zero, we need to reclaim the
1754 * buffer, otherwise it gets another trip through the LRU.
1755 */
1756 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1757 spin_unlock(&bp->b_lock);
1758 return LRU_ROTATE;
1759 }
1760
1761 bp->b_state |= XFS_BSTATE_DISPOSE;
1762 list_lru_isolate_move(lru, item, dispose);
1763 spin_unlock(&bp->b_lock);
1764 return LRU_REMOVED;
1765}
1766
1767static unsigned long
1768xfs_buftarg_shrink_scan(
1769 struct shrinker *shrink,
1770 struct shrink_control *sc)
1771{
1772 struct xfs_buftarg *btp = container_of(shrink,
1773 struct xfs_buftarg, bt_shrinker);
1774 LIST_HEAD(dispose);
1775 unsigned long freed;
1776
1777 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1778 xfs_buftarg_isolate, &dispose);
1779
1780 while (!list_empty(&dispose)) {
1781 struct xfs_buf *bp;
1782 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1783 list_del_init(&bp->b_lru);
1784 xfs_buf_rele(bp);
1785 }
1786
1787 return freed;
1788}
1789
1790static unsigned long
1791xfs_buftarg_shrink_count(
1792 struct shrinker *shrink,
1793 struct shrink_control *sc)
1794{
1795 struct xfs_buftarg *btp = container_of(shrink,
1796 struct xfs_buftarg, bt_shrinker);
1797 return list_lru_shrink_count(&btp->bt_lru, sc);
1798}
1799
1800void
1801xfs_free_buftarg(
1802 struct xfs_buftarg *btp)
1803{
1804 unregister_shrinker(&btp->bt_shrinker);
1805 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1806 percpu_counter_destroy(&btp->bt_io_count);
1807 list_lru_destroy(&btp->bt_lru);
1808
1809 xfs_blkdev_issue_flush(btp);
1810
1811 kmem_free(btp);
1812}
1813
1814int
1815xfs_setsize_buftarg(
1816 xfs_buftarg_t *btp,
1817 unsigned int sectorsize)
1818{
1819 /* Set up metadata sector size info */
1820 btp->bt_meta_sectorsize = sectorsize;
1821 btp->bt_meta_sectormask = sectorsize - 1;
1822
1823 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1824 xfs_warn(btp->bt_mount,
1825 "Cannot set_blocksize to %u on device %pg",
1826 sectorsize, btp->bt_bdev);
1827 return -EINVAL;
1828 }
1829
1830 /* Set up device logical sector size mask */
1831 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1832 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1833
1834 return 0;
1835}
1836
1837/*
1838 * When allocating the initial buffer target we have not yet
1839 * read in the superblock, so don't know what sized sectors
1840 * are being used at this early stage. Play safe.
1841 */
1842STATIC int
1843xfs_setsize_buftarg_early(
1844 xfs_buftarg_t *btp,
1845 struct block_device *bdev)
1846{
1847 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1848}
1849
1850xfs_buftarg_t *
1851xfs_alloc_buftarg(
1852 struct xfs_mount *mp,
1853 struct block_device *bdev,
1854 struct dax_device *dax_dev)
1855{
1856 xfs_buftarg_t *btp;
1857
1858 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1859
1860 btp->bt_mount = mp;
1861 btp->bt_dev = bdev->bd_dev;
1862 btp->bt_bdev = bdev;
1863 btp->bt_daxdev = dax_dev;
1864
1865 /*
1866 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1867 * per 30 seconds so as to not spam logs too much on repeated errors.
1868 */
1869 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1870 DEFAULT_RATELIMIT_BURST);
1871
1872 if (xfs_setsize_buftarg_early(btp, bdev))
1873 goto error_free;
1874
1875 if (list_lru_init(&btp->bt_lru))
1876 goto error_free;
1877
1878 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1879 goto error_lru;
1880
1881 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1882 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1883 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1884 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1885 if (register_shrinker(&btp->bt_shrinker))
1886 goto error_pcpu;
1887 return btp;
1888
1889error_pcpu:
1890 percpu_counter_destroy(&btp->bt_io_count);
1891error_lru:
1892 list_lru_destroy(&btp->bt_lru);
1893error_free:
1894 kmem_free(btp);
1895 return NULL;
1896}
1897
1898/*
1899 * Cancel a delayed write list.
1900 *
1901 * Remove each buffer from the list, clear the delwri queue flag and drop the
1902 * associated buffer reference.
1903 */
1904void
1905xfs_buf_delwri_cancel(
1906 struct list_head *list)
1907{
1908 struct xfs_buf *bp;
1909
1910 while (!list_empty(list)) {
1911 bp = list_first_entry(list, struct xfs_buf, b_list);
1912
1913 xfs_buf_lock(bp);
1914 bp->b_flags &= ~_XBF_DELWRI_Q;
1915 list_del_init(&bp->b_list);
1916 xfs_buf_relse(bp);
1917 }
1918}
1919
1920/*
1921 * Add a buffer to the delayed write list.
1922 *
1923 * This queues a buffer for writeout if it hasn't already been. Note that
1924 * neither this routine nor the buffer list submission functions perform
1925 * any internal synchronization. It is expected that the lists are thread-local
1926 * to the callers.
1927 *
1928 * Returns true if we queued up the buffer, or false if it already had
1929 * been on the buffer list.
1930 */
1931bool
1932xfs_buf_delwri_queue(
1933 struct xfs_buf *bp,
1934 struct list_head *list)
1935{
1936 ASSERT(xfs_buf_islocked(bp));
1937 ASSERT(!(bp->b_flags & XBF_READ));
1938
1939 /*
1940 * If the buffer is already marked delwri it already is queued up
1941 * by someone else for imediate writeout. Just ignore it in that
1942 * case.
1943 */
1944 if (bp->b_flags & _XBF_DELWRI_Q) {
1945 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1946 return false;
1947 }
1948
1949 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1950
1951 /*
1952 * If a buffer gets written out synchronously or marked stale while it
1953 * is on a delwri list we lazily remove it. To do this, the other party
1954 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1955 * It remains referenced and on the list. In a rare corner case it
1956 * might get readded to a delwri list after the synchronous writeout, in
1957 * which case we need just need to re-add the flag here.
1958 */
1959 bp->b_flags |= _XBF_DELWRI_Q;
1960 if (list_empty(&bp->b_list)) {
1961 atomic_inc(&bp->b_hold);
1962 list_add_tail(&bp->b_list, list);
1963 }
1964
1965 return true;
1966}
1967
1968/*
1969 * Compare function is more complex than it needs to be because
1970 * the return value is only 32 bits and we are doing comparisons
1971 * on 64 bit values
1972 */
1973static int
1974xfs_buf_cmp(
1975 void *priv,
1976 struct list_head *a,
1977 struct list_head *b)
1978{
1979 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1980 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1981 xfs_daddr_t diff;
1982
1983 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1984 if (diff < 0)
1985 return -1;
1986 if (diff > 0)
1987 return 1;
1988 return 0;
1989}
1990
1991/*
1992 * Submit buffers for write. If wait_list is specified, the buffers are
1993 * submitted using sync I/O and placed on the wait list such that the caller can
1994 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1995 * at I/O completion time. In either case, buffers remain locked until I/O
1996 * completes and the buffer is released from the queue.
1997 */
1998static int
1999xfs_buf_delwri_submit_buffers(
2000 struct list_head *buffer_list,
2001 struct list_head *wait_list)
2002{
2003 struct xfs_buf *bp, *n;
2004 int pinned = 0;
2005 struct blk_plug plug;
2006
2007 list_sort(NULL, buffer_list, xfs_buf_cmp);
2008
2009 blk_start_plug(&plug);
2010 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2011 if (!wait_list) {
2012 if (xfs_buf_ispinned(bp)) {
2013 pinned++;
2014 continue;
2015 }
2016 if (!xfs_buf_trylock(bp))
2017 continue;
2018 } else {
2019 xfs_buf_lock(bp);
2020 }
2021
2022 /*
2023 * Someone else might have written the buffer synchronously or
2024 * marked it stale in the meantime. In that case only the
2025 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2026 * reference and remove it from the list here.
2027 */
2028 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2029 list_del_init(&bp->b_list);
2030 xfs_buf_relse(bp);
2031 continue;
2032 }
2033
2034 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2035
2036 /*
2037 * If we have a wait list, each buffer (and associated delwri
2038 * queue reference) transfers to it and is submitted
2039 * synchronously. Otherwise, drop the buffer from the delwri
2040 * queue and submit async.
2041 */
2042 bp->b_flags &= ~_XBF_DELWRI_Q;
2043 bp->b_flags |= XBF_WRITE;
2044 if (wait_list) {
2045 bp->b_flags &= ~XBF_ASYNC;
2046 list_move_tail(&bp->b_list, wait_list);
2047 } else {
2048 bp->b_flags |= XBF_ASYNC;
2049 list_del_init(&bp->b_list);
2050 }
2051 __xfs_buf_submit(bp, false);
2052 }
2053 blk_finish_plug(&plug);
2054
2055 return pinned;
2056}
2057
2058/*
2059 * Write out a buffer list asynchronously.
2060 *
2061 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2062 * out and not wait for I/O completion on any of the buffers. This interface
2063 * is only safely useable for callers that can track I/O completion by higher
2064 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2065 * function.
2066 *
2067 * Note: this function will skip buffers it would block on, and in doing so
2068 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2069 * it is up to the caller to ensure that the buffer list is fully submitted or
2070 * cancelled appropriately when they are finished with the list. Failure to
2071 * cancel or resubmit the list until it is empty will result in leaked buffers
2072 * at unmount time.
2073 */
2074int
2075xfs_buf_delwri_submit_nowait(
2076 struct list_head *buffer_list)
2077{
2078 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2079}
2080
2081/*
2082 * Write out a buffer list synchronously.
2083 *
2084 * This will take the @buffer_list, write all buffers out and wait for I/O
2085 * completion on all of the buffers. @buffer_list is consumed by the function,
2086 * so callers must have some other way of tracking buffers if they require such
2087 * functionality.
2088 */
2089int
2090xfs_buf_delwri_submit(
2091 struct list_head *buffer_list)
2092{
2093 LIST_HEAD (wait_list);
2094 int error = 0, error2;
2095 struct xfs_buf *bp;
2096
2097 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2098
2099 /* Wait for IO to complete. */
2100 while (!list_empty(&wait_list)) {
2101 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2102
2103 list_del_init(&bp->b_list);
2104
2105 /*
2106 * Wait on the locked buffer, check for errors and unlock and
2107 * release the delwri queue reference.
2108 */
2109 error2 = xfs_buf_iowait(bp);
2110 xfs_buf_relse(bp);
2111 if (!error)
2112 error = error2;
2113 }
2114
2115 return error;
2116}
2117
2118/*
2119 * Push a single buffer on a delwri queue.
2120 *
2121 * The purpose of this function is to submit a single buffer of a delwri queue
2122 * and return with the buffer still on the original queue. The waiting delwri
2123 * buffer submission infrastructure guarantees transfer of the delwri queue
2124 * buffer reference to a temporary wait list. We reuse this infrastructure to
2125 * transfer the buffer back to the original queue.
2126 *
2127 * Note the buffer transitions from the queued state, to the submitted and wait
2128 * listed state and back to the queued state during this call. The buffer
2129 * locking and queue management logic between _delwri_pushbuf() and
2130 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2131 * before returning.
2132 */
2133int
2134xfs_buf_delwri_pushbuf(
2135 struct xfs_buf *bp,
2136 struct list_head *buffer_list)
2137{
2138 LIST_HEAD (submit_list);
2139 int error;
2140
2141 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2142
2143 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2144
2145 /*
2146 * Isolate the buffer to a new local list so we can submit it for I/O
2147 * independently from the rest of the original list.
2148 */
2149 xfs_buf_lock(bp);
2150 list_move(&bp->b_list, &submit_list);
2151 xfs_buf_unlock(bp);
2152
2153 /*
2154 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2155 * the buffer on the wait list with the original reference. Rather than
2156 * bounce the buffer from a local wait list back to the original list
2157 * after I/O completion, reuse the original list as the wait list.
2158 */
2159 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2160
2161 /*
2162 * The buffer is now locked, under I/O and wait listed on the original
2163 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2164 * return with the buffer unlocked and on the original queue.
2165 */
2166 error = xfs_buf_iowait(bp);
2167 bp->b_flags |= _XBF_DELWRI_Q;
2168 xfs_buf_unlock(bp);
2169
2170 return error;
2171}
2172
2173int __init
2174xfs_buf_init(void)
2175{
2176 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2177 SLAB_HWCACHE_ALIGN |
2178 SLAB_RECLAIM_ACCOUNT |
2179 SLAB_MEM_SPREAD,
2180 NULL);
2181 if (!xfs_buf_zone)
2182 goto out;
2183
2184 return 0;
2185
2186 out:
2187 return -ENOMEM;
2188}
2189
2190void
2191xfs_buf_terminate(void)
2192{
2193 kmem_cache_destroy(xfs_buf_zone);
2194}
2195
2196void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2197{
2198 /*
2199 * Set the lru reference count to 0 based on the error injection tag.
2200 * This allows userspace to disrupt buffer caching for debug/testing
2201 * purposes.
2202 */
2203 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2204 lru_ref = 0;
2205
2206 atomic_set(&bp->b_lru_ref, lru_ref);
2207}
2208
2209/*
2210 * Verify an on-disk magic value against the magic value specified in the
2211 * verifier structure. The verifier magic is in disk byte order so the caller is
2212 * expected to pass the value directly from disk.
2213 */
2214bool
2215xfs_verify_magic(
2216 struct xfs_buf *bp,
2217 __be32 dmagic)
2218{
2219 struct xfs_mount *mp = bp->b_mount;
2220 int idx;
2221
2222 idx = xfs_sb_version_hascrc(&mp->m_sb);
2223 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2224 return false;
2225 return dmagic == bp->b_ops->magic[idx];
2226}
2227/*
2228 * Verify an on-disk magic value against the magic value specified in the
2229 * verifier structure. The verifier magic is in disk byte order so the caller is
2230 * expected to pass the value directly from disk.
2231 */
2232bool
2233xfs_verify_magic16(
2234 struct xfs_buf *bp,
2235 __be16 dmagic)
2236{
2237 struct xfs_mount *mp = bp->b_mount;
2238 int idx;
2239
2240 idx = xfs_sb_version_hascrc(&mp->m_sb);
2241 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2242 return false;
2243 return dmagic == bp->b_ops->magic16[idx];
2244}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161}
162
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
196struct xfs_buf *
197_xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202{
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255}
256
257/*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261STATIC int
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265{
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280}
281
282/*
283 * Frees b_pages if it was allocated.
284 */
285STATIC void
286_xfs_buf_free_pages(
287 xfs_buf_t *bp)
288{
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302void
303xfs_buf_free(
304 xfs_buf_t *bp)
305{
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327}
328
329/*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332STATIC int
333xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336{
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 bp->b_flags &= ~_XBF_PAGES;
426 return error;
427}
428
429/*
430 * Map buffer into kernel address-space if necessary.
431 */
432STATIC int
433_xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436{
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
532
533/*
534 * Look up, and creates if absent, a lockable buffer for
535 * a given range of an inode. The buffer is returned
536 * locked. No I/O is implied by this call.
537 */
538xfs_buf_t *
539_xfs_buf_find(
540 struct xfs_buftarg *btp,
541 struct xfs_buf_map *map,
542 int nmaps,
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
545{
546 struct xfs_perag *pag;
547 xfs_buf_t *bp;
548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
549 xfs_daddr_t eofs;
550 int i;
551
552 for (i = 0; i < nmaps; i++)
553 cmap.bm_len += map[i].bm_len;
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 /*
566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 __func__, cmap.bm_bn, eofs);
573 WARN_ON(1);
574 return NULL;
575 }
576
577 pag = xfs_perag_get(btp->bt_mount,
578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579
580 spin_lock(&pag->pag_buf_lock);
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
586 }
587
588 /* No match found */
589 if (new_bp) {
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
595 spin_unlock(&pag->pag_buf_lock);
596 } else {
597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
600 }
601 return new_bp;
602
603found:
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
606
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
609 xfs_buf_rele(bp);
610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 return NULL;
612 }
613 xfs_buf_lock(bp);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 }
616
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 ASSERT(bp->b_iodone == NULL);
625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 bp->b_ops = NULL;
627 }
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 return bp;
632}
633
634/*
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
638 */
639struct xfs_buf *
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags)
645{
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
648 int error = 0;
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 if (likely(bp))
652 goto found;
653
654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 if (unlikely(!new_bp))
656 return NULL;
657
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
660 xfs_buf_free(new_bp);
661 return NULL;
662 }
663
664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 if (!bp) {
666 xfs_buf_free(new_bp);
667 return NULL;
668 }
669
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
672
673found:
674 if (!bp->b_addr) {
675 error = _xfs_buf_map_pages(bp, flags);
676 if (unlikely(error)) {
677 xfs_warn(target->bt_mount,
678 "%s: failed to map pagesn", __func__);
679 xfs_buf_relse(bp);
680 return NULL;
681 }
682 }
683
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
691 XFS_STATS_INC(target->bt_mount, xb_get);
692 trace_xfs_buf_get(bp, flags, _RET_IP_);
693 return bp;
694}
695
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
701 ASSERT(!(flags & XBF_WRITE));
702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703
704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
709 return 0;
710 }
711 return xfs_buf_submit_wait(bp);
712}
713
714xfs_buf_t *
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
719 xfs_buf_flags_t flags,
720 const struct xfs_buf_ops *ops)
721{
722 struct xfs_buf *bp;
723
724 flags |= XBF_READ;
725
726 bp = xfs_buf_get_map(target, map, nmaps, flags);
727 if (bp) {
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
730 if (!(bp->b_flags & XBF_DONE)) {
731 XFS_STATS_INC(target->bt_mount, xb_get_read);
732 bp->b_ops = ops;
733 _xfs_buf_read(bp, flags);
734 } else if (flags & XBF_ASYNC) {
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
739 xfs_buf_relse(bp);
740 return NULL;
741 } else {
742 /* We do not want read in the flags */
743 bp->b_flags &= ~XBF_READ;
744 }
745 }
746
747 return bp;
748}
749
750/*
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
753 */
754void
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
758 int nmaps,
759 const struct xfs_buf_ops *ops)
760{
761 if (bdi_read_congested(target->bt_bdi))
762 return;
763
764 xfs_buf_read_map(target, map, nmaps,
765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766}
767
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
772int
773xfs_buf_read_uncached(
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
776 size_t numblks,
777 int flags,
778 struct xfs_buf **bpp,
779 const struct xfs_buf_ops *ops)
780{
781 struct xfs_buf *bp;
782
783 *bpp = NULL;
784
785 bp = xfs_buf_get_uncached(target, numblks, flags);
786 if (!bp)
787 return -ENOMEM;
788
789 /* set up the buffer for a read IO */
790 ASSERT(bp->b_map_count == 1);
791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
792 bp->b_maps[0].bm_bn = daddr;
793 bp->b_flags |= XBF_READ;
794 bp->b_ops = ops;
795
796 xfs_buf_submit_wait(bp);
797 if (bp->b_error) {
798 int error = bp->b_error;
799 xfs_buf_relse(bp);
800 return error;
801 }
802
803 *bpp = bp;
804 return 0;
805}
806
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
814 size_t numblks)
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
822 bp->b_length = numblks;
823 bp->b_io_length = numblks;
824
825 ASSERT(bp->b_map_count == 1);
826 bp->b_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
829}
830
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
835 if ((!is_vmalloc_addr(addr))) {
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
853 int page_count;
854
855 pageaddr = (unsigned long)mem & PAGE_MASK;
856 offset = (unsigned long)mem - pageaddr;
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
859
860 /* Free any previous set of page pointers */
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
863
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
866
867 rval = _xfs_buf_get_pages(bp, page_count);
868 if (rval)
869 return rval;
870
871 bp->b_offset = offset;
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 pageaddr += PAGE_SIZE;
876 }
877
878 bp->b_io_length = BTOBB(len);
879 bp->b_length = BTOBB(buflen);
880
881 return 0;
882}
883
884xfs_buf_t *
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
887 size_t numblks,
888 int flags)
889{
890 unsigned long page_count;
891 int error, i;
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 if (unlikely(bp == NULL))
898 goto fail;
899
900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 error = _xfs_buf_get_pages(bp, page_count);
902 if (error)
903 goto fail_free_buf;
904
905 for (i = 0; i < page_count; i++) {
906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
909 }
910 bp->b_flags |= _XBF_PAGES;
911
912 error = _xfs_buf_map_pages(bp, 0);
913 if (unlikely(error)) {
914 xfs_warn(target->bt_mount,
915 "%s: failed to map pages", __func__);
916 goto fail_free_mem;
917 }
918
919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 return bp;
921
922 fail_free_mem:
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
925 _xfs_buf_free_pages(bp);
926 fail_free_buf:
927 xfs_buf_free_maps(bp);
928 kmem_zone_free(xfs_buf_zone, bp);
929 fail:
930 return NULL;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 xfs_buf_t *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 xfs_buf_t *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
996 }
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1009 }
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1017 }
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1024}
1025
1026
1027/*
1028 * Lock a buffer object, if it is not already locked.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1037 */
1038int
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1041{
1042 int locked;
1043
1044 locked = down_trylock(&bp->b_sema) == 0;
1045 if (locked) {
1046 XB_SET_OWNER(bp);
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
1051 return locked;
1052}
1053
1054/*
1055 * Lock a buffer object.
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1062 */
1063void
1064xfs_buf_lock(
1065 struct xfs_buf *bp)
1066{
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 xfs_log_force(bp->b_target->bt_mount, 0);
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1075}
1076
1077void
1078xfs_buf_unlock(
1079 struct xfs_buf *bp)
1080{
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1085}
1086
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
1093 if (atomic_read(&bp->b_pin_count) == 0)
1094 return;
1095
1096 add_wait_queue(&bp->b_waiters, &wait);
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
1099 if (atomic_read(&bp->b_pin_count) == 0)
1100 break;
1101 io_schedule();
1102 }
1103 remove_wait_queue(&bp->b_waiters, &wait);
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1114{
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1131 bp->b_ops->verify_read(bp);
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1136
1137 if (bp->b_iodone)
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1140 xfs_buf_relse(bp);
1141 else
1142 complete(&bp->b_iowait);
1143}
1144
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1148{
1149 struct xfs_buf *bp =
1150 container_of(work, xfs_buf_t, b_ioend_work);
1151
1152 xfs_buf_ioend(bp);
1153}
1154
1155static void
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161}
1162
1163void
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1167{
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171}
1172
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181}
1182
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
1194
1195 error = xfs_buf_submit_wait(bp);
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
1203static void
1204xfs_buf_bio_end_io(
1205 struct bio *bio)
1206{
1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1208
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215
1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1221 bio_put(bio);
1222}
1223
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
1230 int op,
1231 int op_flags)
1232{
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1240
1241 total_nr_pages = bp->b_page_count;
1242
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
1249 }
1250
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
1258
1259next_chunk:
1260 atomic_inc(&bp->b_io_remaining);
1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
1264 bio->bi_bdev = bp->b_target->bt_bdev;
1265 bio->bi_iter.bi_sector = sector;
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
1268 bio_set_op_attrs(bio, op, op_flags);
1269
1270 for (; size && nr_pages; nr_pages--, page_index++) {
1271 int rbytes, nbytes = PAGE_SIZE - offset;
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
1278 if (rbytes < nbytes)
1279 break;
1280
1281 offset = 0;
1282 sector += BTOBB(nbytes);
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
1287 if (likely(bio->bi_iter.bi_size)) {
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
1292 submit_bio(bio);
1293 if (size)
1294 goto next_chunk;
1295 } else {
1296 /*
1297 * This is guaranteed not to be the last io reference count
1298 * because the caller (xfs_buf_submit) holds a count itself.
1299 */
1300 atomic_dec(&bp->b_io_remaining);
1301 xfs_buf_ioerror(bp, -EIO);
1302 bio_put(bio);
1303 }
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
1312 int op;
1313 int op_flags = 0;
1314 int offset;
1315 int size;
1316 int i;
1317
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 op = REQ_OP_WRITE;
1333 if (bp->b_flags & XBF_SYNCIO)
1334 op_flags = REQ_SYNC;
1335 if (bp->b_flags & XBF_FUA)
1336 op_flags |= REQ_FUA;
1337 if (bp->b_flags & XBF_FLUSH)
1338 op_flags |= REQ_PREFLUSH;
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1366 }
1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
1370 } else {
1371 op = REQ_OP_READ;
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
1375 op_flags |= REQ_META;
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1394}
1395
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
1402void
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1405{
1406 trace_xfs_buf_submit(bp, _RET_IP_);
1407
1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1419
1420 if (bp->b_flags & XBF_WRITE)
1421 xfs_buf_wait_unpin(bp);
1422
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
1426 /*
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
1433 */
1434 xfs_buf_hold(bp);
1435
1436 /*
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1440 */
1441 atomic_set(&bp->b_io_remaining, 1);
1442 xfs_buf_ioacct_inc(bp);
1443 _xfs_buf_ioapply(bp);
1444
1445 /*
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
1449 */
1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 if (bp->b_error)
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1456
1457 xfs_buf_rele(bp);
1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1459}
1460
1461/*
1462 * Synchronous buffer IO submission path, read or write.
1463 */
1464int
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1467{
1468 int error;
1469
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
1509
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1522}
1523
1524void *
1525xfs_buf_offset(
1526 struct xfs_buf *bp,
1527 size_t offset)
1528{
1529 struct page *page;
1530
1531 if (bp->b_addr)
1532 return bp->b_addr + offset;
1533
1534 offset += bp->b_offset;
1535 page = bp->b_pages[offset >> PAGE_SHIFT];
1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1537}
1538
1539/*
1540 * Move data into or out of a buffer.
1541 */
1542void
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
1547 void *data, /* data address */
1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1549{
1550 size_t bend;
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1562
1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1564
1565 switch (mode) {
1566 case XBRW_ZERO:
1567 memset(page_address(page) + page_offset, 0, csize);
1568 break;
1569 case XBRW_READ:
1570 memcpy(data, page_address(page) + page_offset, csize);
1571 break;
1572 case XBRW_WRITE:
1573 memcpy(page_address(page) + page_offset, data, csize);
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
1582 * Handling of buffer targets (buftargs).
1583 */
1584
1585/*
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1589 */
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
1593 struct list_lru_one *lru,
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1597{
1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1599 struct list_head *dispose = arg;
1600
1601 if (atomic_read(&bp->b_hold) > 1) {
1602 /* need to wait, so skip it this pass */
1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 return LRU_SKIP;
1605 }
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
1608
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
1615 list_lru_isolate_move(lru, item, dispose);
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1618}
1619
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
1627 /*
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
1638 */
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 (long long)bp->b_bn);
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
1658 }
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
1669 struct list_lru_one *lru,
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
1689 return LRU_ROTATE;
1690 }
1691
1692 bp->b_state |= XFS_BSTATE_DISPOSE;
1693 list_lru_isolate_move(lru, item, dispose);
1694 spin_unlock(&bp->b_lock);
1695 return LRU_REMOVED;
1696}
1697
1698static unsigned long
1699xfs_buftarg_shrink_scan(
1700 struct shrinker *shrink,
1701 struct shrink_control *sc)
1702{
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
1705 LIST_HEAD(dispose);
1706 unsigned long freed;
1707
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
1710
1711 while (!list_empty(&dispose)) {
1712 struct xfs_buf *bp;
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
1718 return freed;
1719}
1720
1721static unsigned long
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
1728 return list_lru_shrink_count(&btp->bt_lru, sc);
1729}
1730
1731void
1732xfs_free_buftarg(
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1735{
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744}
1745
1746int
1747xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750{
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767}
1768
1769/*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780}
1781
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev)
1786{
1787 xfs_buftarg_t *btp;
1788
1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790
1791 btp->bt_mount = mp;
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1811
1812error:
1813 kmem_free(btp);
1814 return NULL;
1815}
1816
1817/*
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1827 */
1828bool
1829xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1832{
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1835
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1844 }
1845
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847
1848 /*
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1855 */
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1860 }
1861
1862 return true;
1863}
1864
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
1900static int
1901xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1904{
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1909
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1911
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
1924
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
1936
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938
1939 /*
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1945 */
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1953
1954 xfs_buf_submit(bp);
1955 }
1956 blk_finish_plug(&plug);
1957
1958 return pinned;
1959}
1960
1961/*
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1969 */
1970int
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1973{
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975}
1976
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1992
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2007 }
2008
2009 return error;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2019
2020 return 0;
2021
2022 out:
2023 return -ENOMEM;
2024}
2025
2026void
2027xfs_buf_terminate(void)
2028{
2029 kmem_zone_destroy(xfs_buf_zone);
2030}